Bug Summary

File:src/lib/libcrypto/x509/x509_addr.c
Warning:line 2006, column 16
Access to field 'rfc3779_addr' results in a dereference of a null pointer (loaded from variable 'cert')

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.4 -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name x509_addr.c -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -pic-is-pie -mframe-pointer=all -relaxed-aliasing -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/lib/libcrypto/obj -resource-dir /usr/local/llvm16/lib/clang/16 -D LIBRESSL_INTERNAL -D HAVE_FUNOPEN -I /usr/src/lib/libcrypto -I /usr/src/lib/libcrypto/arch/amd64 -I /usr/src/lib/libcrypto/asn1 -I /usr/src/lib/libcrypto/bio -I /usr/src/lib/libcrypto/bn -I /usr/src/lib/libcrypto/bn/arch/amd64 -I /usr/src/lib/libcrypto/bytestring -I /usr/src/lib/libcrypto/curve25519 -I /usr/src/lib/libcrypto/dh -I /usr/src/lib/libcrypto/dsa -I /usr/src/lib/libcrypto/ec -I /usr/src/lib/libcrypto/ecdsa -I /usr/src/lib/libcrypto/evp -I /usr/src/lib/libcrypto/hidden -I /usr/src/lib/libcrypto/hmac -I /usr/src/lib/libcrypto/kdf -I /usr/src/lib/libcrypto/modes -I /usr/src/lib/libcrypto/ocsp -I /usr/src/lib/libcrypto/pkcs12 -I /usr/src/lib/libcrypto/rsa -I /usr/src/lib/libcrypto/sha -I /usr/src/lib/libcrypto/ts -I /usr/src/lib/libcrypto/x509 -I /usr/src/lib/libcrypto/obj -D AES_ASM -D BSAES_ASM -D VPAES_ASM -D OPENSSL_IA32_SSE2 -D RSA_ASM -D OPENSSL_BN_ASM_MONT -D OPENSSL_BN_ASM_MONT5 -D MD5_ASM -D GHASH_ASM -D RC4_MD5_ASM -D SHA1_ASM -D SHA256_ASM -D SHA512_ASM -D WHIRLPOOL_ASM -D OPENSSL_CPUID_OBJ -internal-isystem /usr/local/llvm16/lib/clang/16/include -internal-externc-isystem /usr/include -O2 -fdebug-compilation-dir=/usr/src/lib/libcrypto/obj -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fcf-protection=branch -fno-jump-tables -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/scan/2024-01-11-140451-98009-1 -x c /usr/src/lib/libcrypto/x509/x509_addr.c
1/* $OpenBSD: x509_addr.c,v 1.91 2023/10/29 13:22:37 tb Exp $ */
2/*
3 * Contributed to the OpenSSL Project by the American Registry for
4 * Internet Numbers ("ARIN").
5 */
6/* ====================================================================
7 * Copyright (c) 2006-2016 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * licensing@OpenSSL.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ====================================================================
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 */
58
59/*
60 * Implementation of RFC 3779 section 2.2.
61 */
62
63#include <limits.h>
64#include <stdio.h>
65#include <stdlib.h>
66#include <string.h>
67
68#include <openssl/asn1.h>
69#include <openssl/asn1t.h>
70#include <openssl/buffer.h>
71#include <openssl/conf.h>
72#include <openssl/err.h>
73#include <openssl/x509.h>
74#include <openssl/x509v3.h>
75
76#include "asn1_local.h"
77#include "bytestring.h"
78#include "x509_local.h"
79
80#ifndef OPENSSL_NO_RFC3779
81
82/*
83 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
84 */
85
86static const ASN1_TEMPLATE IPAddressRange_seq_tt[] = {
87 {
88 .flags = 0,
89 .tag = 0,
90 .offset = offsetof(IPAddressRange, min)__builtin_offsetof(IPAddressRange, min),
91 .field_name = "min",
92 .item = &ASN1_BIT_STRING_it,
93 },
94 {
95 .flags = 0,
96 .tag = 0,
97 .offset = offsetof(IPAddressRange, max)__builtin_offsetof(IPAddressRange, max),
98 .field_name = "max",
99 .item = &ASN1_BIT_STRING_it,
100 },
101};
102
103const ASN1_ITEM IPAddressRange_it = {
104 .itype = ASN1_ITYPE_SEQUENCE0x1,
105 .utype = V_ASN1_SEQUENCE16,
106 .templates = IPAddressRange_seq_tt,
107 .tcount = sizeof(IPAddressRange_seq_tt) / sizeof(ASN1_TEMPLATE),
108 .funcs = NULL((void *)0),
109 .size = sizeof(IPAddressRange),
110 .sname = "IPAddressRange",
111};
112
113static const ASN1_TEMPLATE IPAddressOrRange_ch_tt[] = {
114 {
115 .flags = 0,
116 .tag = 0,
117 .offset = offsetof(IPAddressOrRange, u.addressPrefix)__builtin_offsetof(IPAddressOrRange, u.addressPrefix),
118 .field_name = "u.addressPrefix",
119 .item = &ASN1_BIT_STRING_it,
120 },
121 {
122 .flags = 0,
123 .tag = 0,
124 .offset = offsetof(IPAddressOrRange, u.addressRange)__builtin_offsetof(IPAddressOrRange, u.addressRange),
125 .field_name = "u.addressRange",
126 .item = &IPAddressRange_it,
127 },
128};
129
130const ASN1_ITEM IPAddressOrRange_it = {
131 .itype = ASN1_ITYPE_CHOICE0x2,
132 .utype = offsetof(IPAddressOrRange, type)__builtin_offsetof(IPAddressOrRange, type),
133 .templates = IPAddressOrRange_ch_tt,
134 .tcount = sizeof(IPAddressOrRange_ch_tt) / sizeof(ASN1_TEMPLATE),
135 .funcs = NULL((void *)0),
136 .size = sizeof(IPAddressOrRange),
137 .sname = "IPAddressOrRange",
138};
139
140static const ASN1_TEMPLATE IPAddressChoice_ch_tt[] = {
141 {
142 .flags = 0,
143 .tag = 0,
144 .offset = offsetof(IPAddressChoice, u.inherit)__builtin_offsetof(IPAddressChoice, u.inherit),
145 .field_name = "u.inherit",
146 .item = &ASN1_NULL_it,
147 },
148 {
149 .flags = ASN1_TFLG_SEQUENCE_OF(0x2 << 1),
150 .tag = 0,
151 .offset = offsetof(IPAddressChoice, u.addressesOrRanges)__builtin_offsetof(IPAddressChoice, u.addressesOrRanges),
152 .field_name = "u.addressesOrRanges",
153 .item = &IPAddressOrRange_it,
154 },
155};
156
157const ASN1_ITEM IPAddressChoice_it = {
158 .itype = ASN1_ITYPE_CHOICE0x2,
159 .utype = offsetof(IPAddressChoice, type)__builtin_offsetof(IPAddressChoice, type),
160 .templates = IPAddressChoice_ch_tt,
161 .tcount = sizeof(IPAddressChoice_ch_tt) / sizeof(ASN1_TEMPLATE),
162 .funcs = NULL((void *)0),
163 .size = sizeof(IPAddressChoice),
164 .sname = "IPAddressChoice",
165};
166
167static const ASN1_TEMPLATE IPAddressFamily_seq_tt[] = {
168 {
169 .flags = 0,
170 .tag = 0,
171 .offset = offsetof(IPAddressFamily, addressFamily)__builtin_offsetof(IPAddressFamily, addressFamily),
172 .field_name = "addressFamily",
173 .item = &ASN1_OCTET_STRING_it,
174 },
175 {
176 .flags = 0,
177 .tag = 0,
178 .offset = offsetof(IPAddressFamily, ipAddressChoice)__builtin_offsetof(IPAddressFamily, ipAddressChoice),
179 .field_name = "ipAddressChoice",
180 .item = &IPAddressChoice_it,
181 },
182};
183
184const ASN1_ITEM IPAddressFamily_it = {
185 .itype = ASN1_ITYPE_SEQUENCE0x1,
186 .utype = V_ASN1_SEQUENCE16,
187 .templates = IPAddressFamily_seq_tt,
188 .tcount = sizeof(IPAddressFamily_seq_tt) / sizeof(ASN1_TEMPLATE),
189 .funcs = NULL((void *)0),
190 .size = sizeof(IPAddressFamily),
191 .sname = "IPAddressFamily",
192};
193
194static const ASN1_TEMPLATE IPAddrBlocks_item_tt = {
195 .flags = ASN1_TFLG_SEQUENCE_OF(0x2 << 1),
196 .tag = 0,
197 .offset = 0,
198 .field_name = "IPAddrBlocks",
199 .item = &IPAddressFamily_it,
200};
201
202static const ASN1_ITEM IPAddrBlocks_it = {
203 .itype = ASN1_ITYPE_PRIMITIVE0x0,
204 .utype = -1,
205 .templates = &IPAddrBlocks_item_tt,
206 .tcount = 0,
207 .funcs = NULL((void *)0),
208 .size = 0,
209 .sname = "IPAddrBlocks",
210};
211
212IPAddressRange *
213d2i_IPAddressRange(IPAddressRange **a, const unsigned char **in, long len)
214{
215 return (IPAddressRange *)ASN1_item_d2i((ASN1_VALUE **)a, in, len,
216 &IPAddressRange_it);
217}
218LCRYPTO_ALIAS(d2i_IPAddressRange)asm("");
219
220int
221i2d_IPAddressRange(IPAddressRange *a, unsigned char **out)
222{
223 return ASN1_item_i2d((ASN1_VALUE *)a, out, &IPAddressRange_it);
224}
225LCRYPTO_ALIAS(i2d_IPAddressRange)asm("");
226
227IPAddressRange *
228IPAddressRange_new(void)
229{
230 return (IPAddressRange *)ASN1_item_new(&IPAddressRange_it);
231}
232LCRYPTO_ALIAS(IPAddressRange_new)asm("");
233
234void
235IPAddressRange_free(IPAddressRange *a)
236{
237 ASN1_item_free((ASN1_VALUE *)a, &IPAddressRange_it);
238}
239LCRYPTO_ALIAS(IPAddressRange_free)asm("");
240
241IPAddressOrRange *
242d2i_IPAddressOrRange(IPAddressOrRange **a, const unsigned char **in, long len)
243{
244 return (IPAddressOrRange *)ASN1_item_d2i((ASN1_VALUE **)a, in, len,
245 &IPAddressOrRange_it);
246}
247LCRYPTO_ALIAS(d2i_IPAddressOrRange)asm("");
248
249int
250i2d_IPAddressOrRange(IPAddressOrRange *a, unsigned char **out)
251{
252 return ASN1_item_i2d((ASN1_VALUE *)a, out, &IPAddressOrRange_it);
253}
254LCRYPTO_ALIAS(i2d_IPAddressOrRange)asm("");
255
256IPAddressOrRange *
257IPAddressOrRange_new(void)
258{
259 return (IPAddressOrRange *)ASN1_item_new(&IPAddressOrRange_it);
260}
261LCRYPTO_ALIAS(IPAddressOrRange_new)asm("");
262
263void
264IPAddressOrRange_free(IPAddressOrRange *a)
265{
266 ASN1_item_free((ASN1_VALUE *)a, &IPAddressOrRange_it);
267}
268LCRYPTO_ALIAS(IPAddressOrRange_free)asm("");
269
270IPAddressChoice *
271d2i_IPAddressChoice(IPAddressChoice **a, const unsigned char **in, long len)
272{
273 return (IPAddressChoice *)ASN1_item_d2i((ASN1_VALUE **)a, in, len,
274 &IPAddressChoice_it);
275}
276LCRYPTO_ALIAS(d2i_IPAddressChoice)asm("");
277
278int
279i2d_IPAddressChoice(IPAddressChoice *a, unsigned char **out)
280{
281 return ASN1_item_i2d((ASN1_VALUE *)a, out, &IPAddressChoice_it);
282}
283LCRYPTO_ALIAS(i2d_IPAddressChoice)asm("");
284
285IPAddressChoice *
286IPAddressChoice_new(void)
287{
288 return (IPAddressChoice *)ASN1_item_new(&IPAddressChoice_it);
289}
290LCRYPTO_ALIAS(IPAddressChoice_new)asm("");
291
292void
293IPAddressChoice_free(IPAddressChoice *a)
294{
295 ASN1_item_free((ASN1_VALUE *)a, &IPAddressChoice_it);
296}
297LCRYPTO_ALIAS(IPAddressChoice_free)asm("");
298
299IPAddressFamily *
300d2i_IPAddressFamily(IPAddressFamily **a, const unsigned char **in, long len)
301{
302 return (IPAddressFamily *)ASN1_item_d2i((ASN1_VALUE **)a, in, len,
303 &IPAddressFamily_it);
304}
305LCRYPTO_ALIAS(d2i_IPAddressFamily)asm("");
306
307int
308i2d_IPAddressFamily(IPAddressFamily *a, unsigned char **out)
309{
310 return ASN1_item_i2d((ASN1_VALUE *)a, out, &IPAddressFamily_it);
311}
312LCRYPTO_ALIAS(i2d_IPAddressFamily)asm("");
313
314IPAddressFamily *
315IPAddressFamily_new(void)
316{
317 return (IPAddressFamily *)ASN1_item_new(&IPAddressFamily_it);
318}
319LCRYPTO_ALIAS(IPAddressFamily_new)asm("");
320
321void
322IPAddressFamily_free(IPAddressFamily *a)
323{
324 ASN1_item_free((ASN1_VALUE *)a, &IPAddressFamily_it);
325}
326LCRYPTO_ALIAS(IPAddressFamily_free)asm("");
327
328/*
329 * Convenience accessors for IPAddressFamily.
330 */
331
332static int
333IPAddressFamily_type(IPAddressFamily *af)
334{
335 /* XXX - can af->ipAddressChoice == NULL actually happen? */
336 if (af == NULL((void *)0) || af->ipAddressChoice == NULL((void *)0))
337 return -1;
338
339 switch (af->ipAddressChoice->type) {
340 case IPAddressChoice_inherit0:
341 case IPAddressChoice_addressesOrRanges1:
342 return af->ipAddressChoice->type;
343 default:
344 return -1;
345 }
346}
347
348static IPAddressOrRanges *
349IPAddressFamily_addressesOrRanges(IPAddressFamily *af)
350{
351 if (IPAddressFamily_type(af) == IPAddressChoice_addressesOrRanges1)
352 return af->ipAddressChoice->u.addressesOrRanges;
353
354 return NULL((void *)0);
355}
356
357static ASN1_NULL *
358IPAddressFamily_inheritance(IPAddressFamily *af)
359{
360 if (IPAddressFamily_type(af) == IPAddressChoice_inherit0)
361 return af->ipAddressChoice->u.inherit;
362
363 return NULL((void *)0);
364}
365
366static int
367IPAddressFamily_set_inheritance(IPAddressFamily *af)
368{
369 if (IPAddressFamily_addressesOrRanges(af) != NULL((void *)0))
370 return 0;
371
372 if (IPAddressFamily_inheritance(af) != NULL((void *)0))
373 return 1;
374
375 if ((af->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL((void *)0))
376 return 0;
377 af->ipAddressChoice->type = IPAddressChoice_inherit0;
378
379 return 1;
380}
381
382/*
383 * How much buffer space do we need for a raw address?
384 */
385#define ADDR_RAW_BUF_LEN16 16
386
387/*
388 * What's the address length associated with this AFI?
389 */
390static int
391length_from_afi(const unsigned afi, int *length)
392{
393 switch (afi) {
394 case IANA_AFI_IPV41:
395 *length = 4;
396 return 1;
397 case IANA_AFI_IPV62:
398 *length = 16;
399 return 1;
400 default:
401 *length = 0;
402 return 0;
403 }
404}
405
406/*
407 * Get AFI and optional SAFI from an IPAddressFamily. All three out arguments
408 * are optional; if |out_safi| is non-NULL, |safi_is_set| must be non-NULL.
409 */
410static int
411IPAddressFamily_afi_safi(const IPAddressFamily *af, uint16_t *out_afi,
412 uint8_t *out_safi, int *safi_is_set)
413{
414 CBS cbs;
415 uint16_t afi;
416 uint8_t safi = 0;
417 int got_safi = 0;
418
419 if (out_afi != NULL((void *)0))
420 *out_afi = 0;
421 if (out_safi != NULL((void *)0)) {
422 *out_safi = 0;
423 *safi_is_set = 0;
424 }
425
426 CBS_init(&cbs, af->addressFamily->data, af->addressFamily->length);
427
428 if (!CBS_get_u16(&cbs, &afi))
429 return 0;
430
431 if (afi != IANA_AFI_IPV41 && afi != IANA_AFI_IPV62)
432 return 0;
433
434 /* Fetch the optional SAFI. */
435 if (CBS_len(&cbs) != 0) {
436 if (!CBS_get_u8(&cbs, &safi))
437 return 0;
438 got_safi = 1;
439 }
440
441 /* If there's anything left, it's garbage. */
442 if (CBS_len(&cbs) != 0)
443 return 0;
444
445 /* XXX - error on reserved AFI/SAFI? */
446
447 if (out_afi != NULL((void *)0))
448 *out_afi = afi;
449
450 if (out_safi != NULL((void *)0)) {
451 *out_safi = safi;
452 *safi_is_set = got_safi;
453 }
454
455 return 1;
456}
457
458static int
459IPAddressFamily_afi(const IPAddressFamily *af, uint16_t *out_afi)
460{
461 return IPAddressFamily_afi_safi(af, out_afi, NULL((void *)0), NULL((void *)0));
462}
463
464static int
465IPAddressFamily_afi_is_valid(const IPAddressFamily *af)
466{
467 return IPAddressFamily_afi_safi(af, NULL((void *)0), NULL((void *)0), NULL((void *)0));
468}
469
470static int
471IPAddressFamily_afi_length(const IPAddressFamily *af, int *out_length)
472{
473 uint16_t afi;
474
475 *out_length = 0;
476
477 if (!IPAddressFamily_afi(af, &afi))
478 return 0;
479
480 return length_from_afi(afi, out_length);
481}
482
483#define MINIMUM(a, b)(((a) < (b)) ? (a) : (b)) (((a) < (b)) ? (a) : (b))
484
485/*
486 * Sort comparison function for a sequence of IPAddressFamily.
487 *
488 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
489 * the ordering: I can read it as meaning that IPv6 without a SAFI
490 * comes before IPv4 with a SAFI, which seems pretty weird. The
491 * examples in appendix B suggest that the author intended the
492 * null-SAFI rule to apply only within a single AFI, which is what I
493 * would have expected and is what the following code implements.
494 */
495static int
496IPAddressFamily_cmp(const IPAddressFamily *const *a_,
497 const IPAddressFamily *const *b_)
498{
499 const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
500 const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
501 int len, cmp;
502
503 len = MINIMUM(a->length, b->length)(((a->length) < (b->length)) ? (a->length) : (b->
length))
;
504
505 if ((cmp = memcmp(a->data, b->data, len)) != 0)
506 return cmp;
507
508 return a->length - b->length;
509}
510
511static IPAddressFamily *
512IPAddressFamily_find_in_parent(IPAddrBlocks *parent, IPAddressFamily *child_af)
513{
514 int index;
515
516 (void)sk_IPAddressFamily_set_cmp_func(parent, IPAddressFamily_cmp)((int (*)(const IPAddressFamily * const *,const IPAddressFamily
* const *)) sk_set_cmp_func(((_STACK*) (1 ? (parent) : (struct
stack_st_IPAddressFamily*)0)), ((int (*)(const void *, const
void *)) ((1 ? (IPAddressFamily_cmp) : (int (*)(const IPAddressFamily
* const *, const IPAddressFamily * const *))0)))))
;
517
518 if ((index = sk_IPAddressFamily_find(parent, child_af)sk_find(((_STACK*) (1 ? (parent) : (struct stack_st_IPAddressFamily
*)0)), ((void*) (1 ? (child_af) : (IPAddressFamily*)0)))
) < 0)
519 return NULL((void *)0);
520
521 return sk_IPAddressFamily_value(parent, index)((IPAddressFamily *)sk_value(((_STACK*) (1 ? (parent) : (struct
stack_st_IPAddressFamily*)0)), (index)))
;
522}
523
524/*
525 * Extract the AFI from an IPAddressFamily.
526 *
527 * This is public API. It uses the reserved AFI 0 as an in-band error
528 * while it doesn't care about the reserved AFI 65535...
529 */
530unsigned int
531X509v3_addr_get_afi(const IPAddressFamily *af)
532{
533 uint16_t afi;
534
535 /*
536 * XXX are these NULL checks really sensible? If af is non-NULL, it
537 * should have both addressFamily and ipAddressChoice...
538 */
539 if (af == NULL((void *)0) || af->addressFamily == NULL((void *)0) ||
540 af->addressFamily->data == NULL((void *)0))
541 return 0;
542
543 if (!IPAddressFamily_afi(af, &afi))
544 return 0;
545
546 return afi;
547}
548LCRYPTO_ALIAS(X509v3_addr_get_afi)asm("");
549
550/*
551 * Expand the bitstring form (RFC 3779, section 2.1.2) of an address into
552 * a raw byte array. At the moment this is coded for simplicity, not speed.
553 *
554 * Unused bits in the last octet of |bs| and all bits in subsequent bytes
555 * of |addr| are set to 0 or 1 depending on whether |fill| is 0 or not.
556 */
557static int
558addr_expand(unsigned char *addr, const ASN1_BIT_STRING *bs, const int length,
559 uint8_t fill)
560{
561 if (bs->length < 0 || bs->length > length)
562 return 0;
563
564 if (fill != 0)
565 fill = 0xff;
566
567 if (bs->length > 0) {
568 /* XXX - shouldn't this check ASN1_STRING_FLAG_BITS_LEFT? */
569 uint8_t unused_bits = bs->flags & 7;
570 uint8_t mask = (1 << unused_bits) - 1;
571
572 memcpy(addr, bs->data, bs->length);
573
574 if (fill == 0)
575 addr[bs->length - 1] &= ~mask;
576 else
577 addr[bs->length - 1] |= mask;
578 }
579
580 memset(addr + bs->length, fill, length - bs->length);
581
582 return 1;
583}
584
585/*
586 * Extract the prefix length from a bitstring: 8 * length - unused bits.
587 */
588#define addr_prefix_len(bs)((int) ((bs)->length * 8 - ((bs)->flags & 7))) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
589
590/*
591 * i2r handler for one address bitstring.
592 */
593static int
594i2r_address(BIO *out, const unsigned afi, const unsigned char fill,
595 const ASN1_BIT_STRING *bs)
596{
597 unsigned char addr[ADDR_RAW_BUF_LEN16];
598 int i, n;
599
600 if (bs->length < 0)
601 return 0;
602 switch (afi) {
603 case IANA_AFI_IPV41:
604 if (!addr_expand(addr, bs, 4, fill))
605 return 0;
606 BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2],
607 addr[3]);
608 break;
609 case IANA_AFI_IPV62:
610 if (!addr_expand(addr, bs, 16, fill))
611 return 0;
612 for (n = 16;
613 n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00; n -= 2)
614 continue;
615 for (i = 0; i < n; i += 2)
616 BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
617 (i < 14 ? ":" : ""));
618 if (i < 16)
619 BIO_puts(out, ":");
620 if (i == 0)
621 BIO_puts(out, ":");
622 break;
623 default:
624 for (i = 0; i < bs->length; i++)
625 BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""),
626 bs->data[i]);
627 BIO_printf(out, "[%d]", (int)(bs->flags & 7));
628 break;
629 }
630 return 1;
631}
632
633/*
634 * i2r handler for a sequence of addresses and ranges.
635 */
636static int
637i2r_IPAddressOrRanges(BIO *out, const int indent,
638 const IPAddressOrRanges *aors, const unsigned afi)
639{
640 const IPAddressOrRange *aor;
641 const ASN1_BIT_STRING *prefix;
642 const IPAddressRange *range;
643 int i;
644
645 for (i = 0; i < sk_IPAddressOrRange_num(aors)sk_num(((_STACK*) (1 ? (aors) : (struct stack_st_IPAddressOrRange
*)0)))
; i++) {
646 aor = sk_IPAddressOrRange_value(aors, i)((IPAddressOrRange *)sk_value(((_STACK*) (1 ? (aors) : (struct
stack_st_IPAddressOrRange*)0)), (i)))
;
647
648 BIO_printf(out, "%*s", indent, "");
649
650 switch (aor->type) {
651 case IPAddressOrRange_addressPrefix0:
652 prefix = aor->u.addressPrefix;
653
654 if (!i2r_address(out, afi, 0x00, prefix))
655 return 0;
656 BIO_printf(out, "/%d\n", addr_prefix_len(prefix)((int) ((prefix)->length * 8 - ((prefix)->flags & 7
)))
);
657 continue;
658 case IPAddressOrRange_addressRange1:
659 range = aor->u.addressRange;
660
661 if (!i2r_address(out, afi, 0x00, range->min))
662 return 0;
663 BIO_puts(out, "-");
664 if (!i2r_address(out, afi, 0xff, range->max))
665 return 0;
666 BIO_puts(out, "\n");
667 continue;
668 }
669 }
670
671 return 1;
672}
673
674/*
675 * i2r handler for an IPAddrBlocks extension.
676 */
677static int
678i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, void *ext, BIO *out,
679 int indent)
680{
681 const IPAddrBlocks *addr = ext;
682 IPAddressFamily *af;
683 uint16_t afi;
684 uint8_t safi;
685 int i, safi_is_set;
686
687 for (i = 0; i < sk_IPAddressFamily_num(addr)sk_num(((_STACK*) (1 ? (addr) : (struct stack_st_IPAddressFamily
*)0)))
; i++) {
688 af = sk_IPAddressFamily_value(addr, i)((IPAddressFamily *)sk_value(((_STACK*) (1 ? (addr) : (struct
stack_st_IPAddressFamily*)0)), (i)))
;
689
690 if (!IPAddressFamily_afi_safi(af, &afi, &safi, &safi_is_set))
691 goto print_addresses;
692
693 switch (afi) {
694 case IANA_AFI_IPV41:
695 BIO_printf(out, "%*sIPv4", indent, "");
696 break;
697 case IANA_AFI_IPV62:
698 BIO_printf(out, "%*sIPv6", indent, "");
699 break;
700 default:
701 BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
702 break;
703 }
704 if (safi_is_set) {
705 switch (safi) {
706 case 1:
707 BIO_puts(out, " (Unicast)");
708 break;
709 case 2:
710 BIO_puts(out, " (Multicast)");
711 break;
712 case 3:
713 BIO_puts(out, " (Unicast/Multicast)");
714 break;
715 case 4:
716 BIO_puts(out, " (MPLS)");
717 break;
718 case 64:
719 BIO_puts(out, " (Tunnel)");
720 break;
721 case 65:
722 BIO_puts(out, " (VPLS)");
723 break;
724 case 66:
725 BIO_puts(out, " (BGP MDT)");
726 break;
727 case 128:
728 BIO_puts(out, " (MPLS-labeled VPN)");
729 break;
730 default:
731 BIO_printf(out, " (Unknown SAFI %u)", safi);
732 break;
733 }
734 }
735
736 print_addresses:
737 switch (IPAddressFamily_type(af)) {
738 case IPAddressChoice_inherit0:
739 BIO_puts(out, ": inherit\n");
740 break;
741 case IPAddressChoice_addressesOrRanges1:
742 BIO_puts(out, ":\n");
743 if (!i2r_IPAddressOrRanges(out, indent + 2,
744 IPAddressFamily_addressesOrRanges(af), afi))
745 return 0;
746 break;
747 /* XXX - how should we handle -1 here? */
748 }
749 }
750 return 1;
751}
752
753/*
754 * Sort comparison function for a sequence of IPAddressOrRange
755 * elements.
756 *
757 * There's no sane answer we can give if addr_expand() fails, and an
758 * assertion failure on externally supplied data is seriously uncool,
759 * so we just arbitrarily declare that if given invalid inputs this
760 * function returns -1. If this messes up your preferred sort order
761 * for garbage input, tough noogies.
762 */
763static int
764IPAddressOrRange_cmp(const IPAddressOrRange *a, const IPAddressOrRange *b,
765 const int length)
766{
767 unsigned char addr_a[ADDR_RAW_BUF_LEN16], addr_b[ADDR_RAW_BUF_LEN16];
768 int prefix_len_a = 0, prefix_len_b = 0;
769 int r;
770
771 switch (a->type) {
772 case IPAddressOrRange_addressPrefix0:
773 if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
774 return -1;
775 prefix_len_a = addr_prefix_len(a->u.addressPrefix)((int) ((a->u.addressPrefix)->length * 8 - ((a->u.addressPrefix
)->flags & 7)))
;
776 break;
777 case IPAddressOrRange_addressRange1:
778 if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
779 return -1;
780 prefix_len_a = length * 8;
781 break;
782 }
783
784 switch (b->type) {
785 case IPAddressOrRange_addressPrefix0:
786 if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
787 return -1;
788 prefix_len_b = addr_prefix_len(b->u.addressPrefix)((int) ((b->u.addressPrefix)->length * 8 - ((b->u.addressPrefix
)->flags & 7)))
;
789 break;
790 case IPAddressOrRange_addressRange1:
791 if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
792 return -1;
793 prefix_len_b = length * 8;
794 break;
795 }
796
797 if ((r = memcmp(addr_a, addr_b, length)) != 0)
798 return r;
799 else
800 return prefix_len_a - prefix_len_b;
801}
802
803/*
804 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
805 * comparison routines are only allowed two arguments.
806 */
807static int
808v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
809 const IPAddressOrRange *const *b)
810{
811 return IPAddressOrRange_cmp(*a, *b, 4);
812}
813
814/*
815 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
816 * comparison routines are only allowed two arguments.
817 */
818static int
819v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
820 const IPAddressOrRange *const *b)
821{
822 return IPAddressOrRange_cmp(*a, *b, 16);
823}
824
825/*
826 * Calculate whether a range collapses to a prefix.
827 * See last paragraph of RFC 3779 2.2.3.7.
828 *
829 * It's the caller's responsibility to ensure that min <= max.
830 */
831static int
832range_should_be_prefix(const unsigned char *min, const unsigned char *max,
833 const int length)
834{
835 unsigned char mask;
836 int i, j;
837
838 for (i = 0; i < length && min[i] == max[i]; i++)
839 continue;
840 for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xff; j--)
841 continue;
842 if (i < j)
843 return -1;
844 if (i > j)
845 return i * 8;
846 mask = min[i] ^ max[i];
847 switch (mask) {
848 case 0x01:
849 j = 7;
850 break;
851 case 0x03:
852 j = 6;
853 break;
854 case 0x07:
855 j = 5;
856 break;
857 case 0x0f:
858 j = 4;
859 break;
860 case 0x1f:
861 j = 3;
862 break;
863 case 0x3f:
864 j = 2;
865 break;
866 case 0x7f:
867 j = 1;
868 break;
869 default:
870 return -1;
871 }
872 if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
873 return -1;
874 else
875 return i * 8 + j;
876}
877
878/*
879 * Fill IPAddressOrRange with bit string encoding of a prefix - RFC 3779, 2.1.1.
880 */
881static int
882make_addressPrefix(IPAddressOrRange **out_aor, uint8_t *addr, uint32_t afi,
883 int prefix_len)
884{
885 IPAddressOrRange *aor = NULL((void *)0);
886 int afi_len, num_bits, num_octets;
887 uint8_t unused_bits;
888
889 if (prefix_len < 0)
890 goto err;
891
892 if (!length_from_afi(afi, &afi_len))
893 goto err;
894 if (prefix_len > 8 * afi_len)
895 goto err;
896
897 num_octets = (prefix_len + 7) / 8;
898 num_bits = prefix_len % 8;
899
900 unused_bits = 0;
901 if (num_bits > 0)
902 unused_bits = 8 - num_bits;
903
904 if ((aor = IPAddressOrRange_new()) == NULL((void *)0))
905 goto err;
906
907 aor->type = IPAddressOrRange_addressPrefix0;
908
909 if ((aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL((void *)0))
910 goto err;
911 if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, num_octets))
912 goto err;
913 if (!asn1_abs_set_unused_bits(aor->u.addressPrefix, unused_bits))
914 goto err;
915
916 *out_aor = aor;
917 return 1;
918
919 err:
920 IPAddressOrRange_free(aor);
921 return 0;
922}
923
924static uint8_t
925count_trailing_zeroes(uint8_t octet)
926{
927 uint8_t count = 0;
928
929 if (octet == 0)
930 return 8;
931
932 while ((octet & (1 << count)) == 0)
933 count++;
934
935 return count;
936}
937
938static int
939trim_end_u8(CBS *cbs, uint8_t trim)
940{
941 uint8_t octet;
942
943 while (CBS_len(cbs) > 0) {
944 if (!CBS_peek_last_u8(cbs, &octet))
945 return 0;
946 if (octet != trim)
947 return 1;
948 if (!CBS_get_last_u8(cbs, &octet))
949 return 0;
950 }
951
952 return 1;
953}
954
955/*
956 * Populate IPAddressOrRange with bit string encoding of a range, see
957 * RFC 3779, 2.1.2.
958 */
959static int
960make_addressRange(IPAddressOrRange **out_aor, uint8_t *min, uint8_t *max,
961 uint32_t afi, int length)
962{
963 IPAddressOrRange *aor = NULL((void *)0);
964 IPAddressRange *range;
965 int prefix_len;
966 CBS cbs;
967 size_t max_len, min_len;
968 uint8_t unused_bits_min, unused_bits_max;
969 uint8_t octet;
970
971 if (memcmp(min, max, length) > 0)
972 goto err;
973
974 /*
975 * RFC 3779, 2.2.3.6 - a range that can be expressed as a prefix
976 * must be encoded as a prefix.
977 */
978
979 if ((prefix_len = range_should_be_prefix(min, max, length)) >= 0)
980 return make_addressPrefix(out_aor, min, afi, prefix_len);
981
982 /*
983 * The bit string representing min is formed by removing all its
984 * trailing zero bits, so remove all trailing zero octets and count
985 * the trailing zero bits of the last octet.
986 */
987
988 CBS_init(&cbs, min, length);
989
990 if (!trim_end_u8(&cbs, 0x00))
991 goto err;
992
993 unused_bits_min = 0;
994 if ((min_len = CBS_len(&cbs)) > 0) {
995 if (!CBS_peek_last_u8(&cbs, &octet))
996 goto err;
997
998 unused_bits_min = count_trailing_zeroes(octet);
999 }
1000
1001 /*
1002 * The bit string representing max is formed by removing all its
1003 * trailing one bits, so remove all trailing 0xff octets and count
1004 * the trailing ones of the last octet.
1005 */
1006
1007 CBS_init(&cbs, max, length);
1008
1009 if (!trim_end_u8(&cbs, 0xff))
1010 goto err;
1011
1012 unused_bits_max = 0;
1013 if ((max_len = CBS_len(&cbs)) > 0) {
1014 if (!CBS_peek_last_u8(&cbs, &octet))
1015 goto err;
1016
1017 unused_bits_max = count_trailing_zeroes(octet + 1);
1018 }
1019
1020 /*
1021 * Populate IPAddressOrRange.
1022 */
1023
1024 if ((aor = IPAddressOrRange_new()) == NULL((void *)0))
1025 goto err;
1026
1027 aor->type = IPAddressOrRange_addressRange1;
1028
1029 if ((range = aor->u.addressRange = IPAddressRange_new()) == NULL((void *)0))
1030 goto err;
1031
1032 if (!ASN1_BIT_STRING_set(range->min, min, min_len))
1033 goto err;
1034 if (!asn1_abs_set_unused_bits(range->min, unused_bits_min))
1035 goto err;
1036
1037 if (!ASN1_BIT_STRING_set(range->max, max, max_len))
1038 goto err;
1039 if (!asn1_abs_set_unused_bits(range->max, unused_bits_max))
1040 goto err;
1041
1042 *out_aor = aor;
1043
1044 return 1;
1045
1046 err:
1047 IPAddressOrRange_free(aor);
1048 return 0;
1049}
1050
1051/*
1052 * Construct a new address family or find an existing one.
1053 */
1054static IPAddressFamily *
1055make_IPAddressFamily(IPAddrBlocks *addr, const unsigned afi,
1056 const unsigned *safi)
1057{
1058 IPAddressFamily *af = NULL((void *)0);
1059 CBB cbb;
1060 CBS cbs;
1061 uint8_t *key = NULL((void *)0);
1062 size_t keylen;
1063 int i;
1064
1065 if (!CBB_init(&cbb, 0))
1066 goto err;
1067
1068 if (afi != IANA_AFI_IPV41 && afi != IANA_AFI_IPV62)
1069 goto err;
1070 if (!CBB_add_u16(&cbb, afi))
1071 goto err;
1072
1073 if (safi != NULL((void *)0)) {
1074 if (*safi > 255)
1075 goto err;
1076 if (!CBB_add_u8(&cbb, *safi))
1077 goto err;
1078 }
1079
1080 if (!CBB_finish(&cbb, &key, &keylen))
1081 goto err;
1082
1083 for (i = 0; i < sk_IPAddressFamily_num(addr)sk_num(((_STACK*) (1 ? (addr) : (struct stack_st_IPAddressFamily
*)0)))
; i++) {
1084 af = sk_IPAddressFamily_value(addr, i)((IPAddressFamily *)sk_value(((_STACK*) (1 ? (addr) : (struct
stack_st_IPAddressFamily*)0)), (i)))
;
1085
1086 CBS_init(&cbs, af->addressFamily->data,
1087 af->addressFamily->length);
1088 if (CBS_mem_equal(&cbs, key, keylen))
1089 goto done;
1090 }
1091
1092 if ((af = IPAddressFamily_new()) == NULL((void *)0))
1093 goto err;
1094 if (!ASN1_OCTET_STRING_set(af->addressFamily, key, keylen))
1095 goto err;
1096 if (!sk_IPAddressFamily_push(addr, af)sk_push(((_STACK*) (1 ? (addr) : (struct stack_st_IPAddressFamily
*)0)), ((void*) (1 ? (af) : (IPAddressFamily*)0)))
)
1097 goto err;
1098
1099 done:
1100 free(key);
1101
1102 return af;
1103
1104 err:
1105 CBB_cleanup(&cbb);
1106 free(key);
1107 IPAddressFamily_free(af);
1108
1109 return NULL((void *)0);
1110}
1111
1112/*
1113 * Add an inheritance element.
1114 */
1115int
1116X509v3_addr_add_inherit(IPAddrBlocks *addr, const unsigned afi,
1117 const unsigned *safi)
1118{
1119 IPAddressFamily *af;
1120
1121 if ((af = make_IPAddressFamily(addr, afi, safi)) == NULL((void *)0))
1122 return 0;
1123
1124 return IPAddressFamily_set_inheritance(af);
1125}
1126LCRYPTO_ALIAS(X509v3_addr_add_inherit)asm("");
1127
1128/*
1129 * Construct an IPAddressOrRange sequence, or return an existing one.
1130 */
1131static IPAddressOrRanges *
1132make_prefix_or_range(IPAddrBlocks *addr, const unsigned afi,
1133 const unsigned *safi)
1134{
1135 IPAddressFamily *af;
1136 IPAddressOrRanges *aors = NULL((void *)0);
1137
1138 if ((af = make_IPAddressFamily(addr, afi, safi)) == NULL((void *)0))
1139 return NULL((void *)0);
1140
1141 if (IPAddressFamily_inheritance(af) != NULL((void *)0))
1142 return NULL((void *)0);
1143
1144 if ((aors = IPAddressFamily_addressesOrRanges(af)) != NULL((void *)0))
1145 return aors;
1146
1147 if ((aors = sk_IPAddressOrRange_new_null()((struct stack_st_IPAddressOrRange *)sk_new_null())) == NULL((void *)0))
1148 return NULL((void *)0);
1149
1150 switch (afi) {
1151 case IANA_AFI_IPV41:
1152 (void)sk_IPAddressOrRange_set_cmp_func(aors,((int (*)(const IPAddressOrRange * const *,const IPAddressOrRange
* const *)) sk_set_cmp_func(((_STACK*) (1 ? (aors) : (struct
stack_st_IPAddressOrRange*)0)), ((int (*)(const void *, const
void *)) ((1 ? (v4IPAddressOrRange_cmp) : (int (*)(const IPAddressOrRange
* const *, const IPAddressOrRange * const *))0)))))
1153 v4IPAddressOrRange_cmp)((int (*)(const IPAddressOrRange * const *,const IPAddressOrRange
* const *)) sk_set_cmp_func(((_STACK*) (1 ? (aors) : (struct
stack_st_IPAddressOrRange*)0)), ((int (*)(const void *, const
void *)) ((1 ? (v4IPAddressOrRange_cmp) : (int (*)(const IPAddressOrRange
* const *, const IPAddressOrRange * const *))0)))))
;
1154 break;
1155 case IANA_AFI_IPV62:
1156 (void)sk_IPAddressOrRange_set_cmp_func(aors,((int (*)(const IPAddressOrRange * const *,const IPAddressOrRange
* const *)) sk_set_cmp_func(((_STACK*) (1 ? (aors) : (struct
stack_st_IPAddressOrRange*)0)), ((int (*)(const void *, const
void *)) ((1 ? (v6IPAddressOrRange_cmp) : (int (*)(const IPAddressOrRange
* const *, const IPAddressOrRange * const *))0)))))
1157 v6IPAddressOrRange_cmp)((int (*)(const IPAddressOrRange * const *,const IPAddressOrRange
* const *)) sk_set_cmp_func(((_STACK*) (1 ? (aors) : (struct
stack_st_IPAddressOrRange*)0)), ((int (*)(const void *, const
void *)) ((1 ? (v6IPAddressOrRange_cmp) : (int (*)(const IPAddressOrRange
* const *, const IPAddressOrRange * const *))0)))))
;
1158 break;
1159 }
1160
1161 af->ipAddressChoice->type = IPAddressChoice_addressesOrRanges1;
1162 af->ipAddressChoice->u.addressesOrRanges = aors;
1163
1164 return aors;
1165}
1166
1167/*
1168 * Add a prefix.
1169 */
1170int
1171X509v3_addr_add_prefix(IPAddrBlocks *addr, const unsigned afi,
1172 const unsigned *safi, unsigned char *a, const int prefix_len)
1173{
1174 IPAddressOrRanges *aors;
1175 IPAddressOrRange *aor;
1176
1177 if ((aors = make_prefix_or_range(addr, afi, safi)) == NULL((void *)0))
1178 return 0;
1179
1180 if (!make_addressPrefix(&aor, a, afi, prefix_len))
1181 return 0;
1182
1183 if (sk_IPAddressOrRange_push(aors, aor)sk_push(((_STACK*) (1 ? (aors) : (struct stack_st_IPAddressOrRange
*)0)), ((void*) (1 ? (aor) : (IPAddressOrRange*)0)))
<= 0) {
1184 IPAddressOrRange_free(aor);
1185 return 0;
1186 }
1187
1188 return 1;
1189}
1190LCRYPTO_ALIAS(X509v3_addr_add_prefix)asm("");
1191
1192/*
1193 * Add a range.
1194 */
1195int
1196X509v3_addr_add_range(IPAddrBlocks *addr, const unsigned afi,
1197 const unsigned *safi, unsigned char *min, unsigned char *max)
1198{
1199 IPAddressOrRanges *aors;
1200 IPAddressOrRange *aor;
1201 int length;
1202
1203 if ((aors = make_prefix_or_range(addr, afi, safi)) == NULL((void *)0))
1204 return 0;
1205
1206 if (!length_from_afi(afi, &length))
1207 return 0;
1208
1209 if (!make_addressRange(&aor, min, max, afi, length))
1210 return 0;
1211
1212 if (sk_IPAddressOrRange_push(aors, aor)sk_push(((_STACK*) (1 ? (aors) : (struct stack_st_IPAddressOrRange
*)0)), ((void*) (1 ? (aor) : (IPAddressOrRange*)0)))
<= 0) {
1213 IPAddressOrRange_free(aor);
1214 return 0;
1215 }
1216
1217 return 1;
1218}
1219LCRYPTO_ALIAS(X509v3_addr_add_range)asm("");
1220
1221static int
1222extract_min_max_bitstr(IPAddressOrRange *aor, ASN1_BIT_STRING **out_min,
1223 ASN1_BIT_STRING **out_max)
1224{
1225 switch (aor->type) {
1226 case IPAddressOrRange_addressPrefix0:
1227 *out_min = *out_max = aor->u.addressPrefix;
1228 return 1;
1229 case IPAddressOrRange_addressRange1:
1230 *out_min = aor->u.addressRange->min;
1231 *out_max = aor->u.addressRange->max;
1232 return 1;
1233 default:
1234 return 0;
1235 }
1236}
1237
1238/*
1239 * Extract min and max values from an IPAddressOrRange.
1240 */
1241static int
1242extract_min_max(IPAddressOrRange *aor, unsigned char *min, unsigned char *max,
1243 int length)
1244{
1245 ASN1_BIT_STRING *min_bitstr, *max_bitstr;
1246
1247 if (aor == NULL((void *)0) || min == NULL((void *)0) || max == NULL((void *)0))
1248 return 0;
1249
1250 if (!extract_min_max_bitstr(aor, &min_bitstr, &max_bitstr))
1251 return 0;
1252
1253 if (!addr_expand(min, min_bitstr, length, 0))
1254 return 0;
1255
1256 return addr_expand(max, max_bitstr, length, 1);
1257}
1258
1259/*
1260 * Public wrapper for extract_min_max().
1261 */
1262int
1263X509v3_addr_get_range(IPAddressOrRange *aor, const unsigned afi,
1264 unsigned char *min, unsigned char *max, const int length)
1265{
1266 int afi_len;
1267
1268 if (!length_from_afi(afi, &afi_len))
1269 return 0;
1270
1271 if (length < afi_len)
1272 return 0;
1273
1274 if (!extract_min_max(aor, min, max, afi_len))
1275 return 0;
1276
1277 return afi_len;
1278}
1279LCRYPTO_ALIAS(X509v3_addr_get_range)asm("");
1280
1281/*
1282 * Check whether an IPAddrBLocks is in canonical form.
1283 */
1284int
1285X509v3_addr_is_canonical(IPAddrBlocks *addr)
1286{
1287 unsigned char a_min[ADDR_RAW_BUF_LEN16], a_max[ADDR_RAW_BUF_LEN16];
1288 unsigned char b_min[ADDR_RAW_BUF_LEN16], b_max[ADDR_RAW_BUF_LEN16];
1289 IPAddressFamily *af;
1290 IPAddressOrRanges *aors;
1291 IPAddressOrRange *aor, *aor_a, *aor_b;
1292 int i, j, k, length;
1293
1294 /*
1295 * Empty extension is canonical.
1296 */
1297 if (addr == NULL((void *)0))
1298 return 1;
1299
1300 /*
1301 * Check whether the top-level list is in order.
1302 */
1303 for (i = 0; i < sk_IPAddressFamily_num(addr)sk_num(((_STACK*) (1 ? (addr) : (struct stack_st_IPAddressFamily
*)0)))
- 1; i++) {
1304 const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i)((IPAddressFamily *)sk_value(((_STACK*) (1 ? (addr) : (struct
stack_st_IPAddressFamily*)0)), (i)))
;
1305 const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1)((IPAddressFamily *)sk_value(((_STACK*) (1 ? (addr) : (struct
stack_st_IPAddressFamily*)0)), (i + 1)))
;
1306
1307 /* Check that both have valid AFIs before comparing them. */
1308 if (!IPAddressFamily_afi_is_valid(a))
1309 return 0;
1310 if (!IPAddressFamily_afi_is_valid(b))
1311 return 0;
1312
1313 if (IPAddressFamily_cmp(&a, &b) >= 0)
1314 return 0;
1315 }
1316
1317 /*
1318 * Top level's ok, now check each address family.
1319 */
1320 for (i = 0; i < sk_IPAddressFamily_num(addr)sk_num(((_STACK*) (1 ? (addr) : (struct stack_st_IPAddressFamily
*)0)))
; i++) {
1321 af = sk_IPAddressFamily_value(addr, i)((IPAddressFamily *)sk_value(((_STACK*) (1 ? (addr) : (struct
stack_st_IPAddressFamily*)0)), (i)))
;
1322
1323 if (!IPAddressFamily_afi_length(af, &length))
1324 return 0;
1325
1326 /*
1327 * If this family has an inheritance element, it is canonical.
1328 */
1329 if (IPAddressFamily_inheritance(af) != NULL((void *)0))
1330 continue;
1331
1332 /*
1333 * If this family has neither an inheritance element nor an
1334 * addressesOrRanges, we don't know what this is.
1335 */
1336 if ((aors = IPAddressFamily_addressesOrRanges(af)) == NULL((void *)0))
1337 return 0;
1338
1339 if (sk_IPAddressOrRange_num(aors)sk_num(((_STACK*) (1 ? (aors) : (struct stack_st_IPAddressOrRange
*)0)))
== 0)
1340 return 0;
1341
1342 for (j = 0; j < sk_IPAddressOrRange_num(aors)sk_num(((_STACK*) (1 ? (aors) : (struct stack_st_IPAddressOrRange
*)0)))
- 1; j++) {
1343 aor_a = sk_IPAddressOrRange_value(aors, j)((IPAddressOrRange *)sk_value(((_STACK*) (1 ? (aors) : (struct
stack_st_IPAddressOrRange*)0)), (j)))
;
1344 aor_b = sk_IPAddressOrRange_value(aors, j + 1)((IPAddressOrRange *)sk_value(((_STACK*) (1 ? (aors) : (struct
stack_st_IPAddressOrRange*)0)), (j + 1)))
;
1345
1346 if (!extract_min_max(aor_a, a_min, a_max, length) ||
1347 !extract_min_max(aor_b, b_min, b_max, length))
1348 return 0;
1349
1350 /*
1351 * Punt misordered list, overlapping start, or inverted
1352 * range.
1353 */
1354 if (memcmp(a_min, b_min, length) >= 0 ||
1355 memcmp(a_min, a_max, length) > 0 ||
1356 memcmp(b_min, b_max, length) > 0)
1357 return 0;
1358
1359 /*
1360 * Punt if adjacent or overlapping. Check for adjacency
1361 * by subtracting one from b_min first.
1362 */
1363 for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
1364 continue;
1365 if (memcmp(a_max, b_min, length) >= 0)
1366 return 0;
1367
1368 /*
1369 * Check for range that should be expressed as a prefix.
1370 */
1371 if (aor_a->type == IPAddressOrRange_addressPrefix0)
1372 continue;
1373
1374 if (range_should_be_prefix(a_min, a_max, length) >= 0)
1375 return 0;
1376 }
1377
1378 /*
1379 * Check final range to see if it's inverted or should be a
1380 * prefix.
1381 */
1382 aor = sk_IPAddressOrRange_value(aors, j)((IPAddressOrRange *)sk_value(((_STACK*) (1 ? (aors) : (struct
stack_st_IPAddressOrRange*)0)), (j)))
;
1383 if (aor->type == IPAddressOrRange_addressRange1) {
1384 if (!extract_min_max(aor, a_min, a_max, length))
1385 return 0;
1386 if (memcmp(a_min, a_max, length) > 0)
1387 return 0;
1388 if (range_should_be_prefix(a_min, a_max, length) >= 0)
1389 return 0;
1390 }
1391 }
1392
1393 /*
1394 * If we made it through all that, we're happy.
1395 */
1396 return 1;
1397}
1398LCRYPTO_ALIAS(X509v3_addr_is_canonical)asm("");
1399
1400/*
1401 * Whack an IPAddressOrRanges into canonical form.
1402 */
1403static int
1404IPAddressOrRanges_canonize(IPAddressOrRanges *aors, const unsigned afi)
1405{
1406 IPAddressOrRange *a, *b, *merged;
1407 unsigned char a_min[ADDR_RAW_BUF_LEN16], a_max[ADDR_RAW_BUF_LEN16];
1408 unsigned char b_min[ADDR_RAW_BUF_LEN16], b_max[ADDR_RAW_BUF_LEN16];
1409 int i, j, length;
1410
1411 if (!length_from_afi(afi, &length))
1412 return 0;
1413
1414 /*
1415 * Sort the IPAddressOrRanges sequence.
1416 */
1417 sk_IPAddressOrRange_sort(aors)sk_sort(((_STACK*) (1 ? (aors) : (struct stack_st_IPAddressOrRange
*)0)))
;
1418
1419 /*
1420 * Clean up representation issues, punt on duplicates or overlaps.
1421 */
1422 for (i = 0; i < sk_IPAddressOrRange_num(aors)sk_num(((_STACK*) (1 ? (aors) : (struct stack_st_IPAddressOrRange
*)0)))
- 1; i++) {
1423 a = sk_IPAddressOrRange_value(aors, i)((IPAddressOrRange *)sk_value(((_STACK*) (1 ? (aors) : (struct
stack_st_IPAddressOrRange*)0)), (i)))
;
1424 b = sk_IPAddressOrRange_value(aors, i + 1)((IPAddressOrRange *)sk_value(((_STACK*) (1 ? (aors) : (struct
stack_st_IPAddressOrRange*)0)), (i + 1)))
;
1425
1426 if (!extract_min_max(a, a_min, a_max, length) ||
1427 !extract_min_max(b, b_min, b_max, length))
1428 return 0;
1429
1430 /*
1431 * Punt inverted ranges.
1432 */
1433 if (memcmp(a_min, a_max, length) > 0 ||
1434 memcmp(b_min, b_max, length) > 0)
1435 return 0;
1436
1437 /*
1438 * Punt overlaps.
1439 */
1440 if (memcmp(a_max, b_min, length) >= 0)
1441 return 0;
1442
1443 /*
1444 * Merge if a and b are adjacent. We check for
1445 * adjacency by subtracting one from b_min first.
1446 */
1447 for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
1448 continue;
1449
1450 if (memcmp(a_max, b_min, length) != 0)
1451 continue;
1452
1453 if (!make_addressRange(&merged, a_min, b_max, afi, length))
1454 return 0;
1455 sk_IPAddressOrRange_set(aors, i, merged)sk_set(((_STACK*) (1 ? (aors) : (struct stack_st_IPAddressOrRange
*)0)), (i), ((void*) (1 ? (merged) : (IPAddressOrRange*)0)))
;
1456 (void)sk_IPAddressOrRange_delete(aors, i + 1)(IPAddressOrRange *)sk_delete(((_STACK*) (1 ? (aors) : (struct
stack_st_IPAddressOrRange*)0)), (i + 1))
;
1457 IPAddressOrRange_free(a);
1458 IPAddressOrRange_free(b);
1459 i--;
1460 }
1461
1462 /*
1463 * Check for inverted final range.
1464 */
1465 a = sk_IPAddressOrRange_value(aors, i)((IPAddressOrRange *)sk_value(((_STACK*) (1 ? (aors) : (struct
stack_st_IPAddressOrRange*)0)), (i)))
;
1466 if (a != NULL((void *)0) && a->type == IPAddressOrRange_addressRange1) {
1467 if (!extract_min_max(a, a_min, a_max, length))
1468 return 0;
1469 if (memcmp(a_min, a_max, length) > 0)
1470 return 0;
1471 }
1472
1473 return 1;
1474}
1475
1476/*
1477 * Whack an IPAddrBlocks extension into canonical form.
1478 */
1479int
1480X509v3_addr_canonize(IPAddrBlocks *addr)
1481{
1482 IPAddressFamily *af;
1483 IPAddressOrRanges *aors;
1484 uint16_t afi;
1485 int i;
1486
1487 for (i = 0; i < sk_IPAddressFamily_num(addr)sk_num(((_STACK*) (1 ? (addr) : (struct stack_st_IPAddressFamily
*)0)))
; i++) {
1488 af = sk_IPAddressFamily_value(addr, i)((IPAddressFamily *)sk_value(((_STACK*) (1 ? (addr) : (struct
stack_st_IPAddressFamily*)0)), (i)))
;
1489
1490 /* Check AFI/SAFI here - IPAddressFamily_cmp() can't error. */
1491 if (!IPAddressFamily_afi(af, &afi))
1492 return 0;
1493
1494 if ((aors = IPAddressFamily_addressesOrRanges(af)) == NULL((void *)0))
1495 continue;
1496
1497 if (!IPAddressOrRanges_canonize(aors, afi))
1498 return 0;
1499 }
1500
1501 (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp)((int (*)(const IPAddressFamily * const *,const IPAddressFamily
* const *)) sk_set_cmp_func(((_STACK*) (1 ? (addr) : (struct
stack_st_IPAddressFamily*)0)), ((int (*)(const void *, const
void *)) ((1 ? (IPAddressFamily_cmp) : (int (*)(const IPAddressFamily
* const *, const IPAddressFamily * const *))0)))))
;
1502 sk_IPAddressFamily_sort(addr)sk_sort(((_STACK*) (1 ? (addr) : (struct stack_st_IPAddressFamily
*)0)))
;
1503
1504 return X509v3_addr_is_canonical(addr);
1505}
1506LCRYPTO_ALIAS(X509v3_addr_canonize)asm("");
1507
1508/*
1509 * v2i handler for the IPAddrBlocks extension.
1510 */
1511static void *
1512v2i_IPAddrBlocks(const struct v3_ext_method *method, struct v3_ext_ctx *ctx,
1513 STACK_OF(CONF_VALUE)struct stack_st_CONF_VALUE*values)
1514{
1515 static const char v4addr_chars[] = "0123456789.";
1516 static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
1517 IPAddrBlocks *addr = NULL((void *)0);
1518 char *s = NULL((void *)0), *t;
1519 int i;
1520
1521 if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)((struct stack_st_IPAddressFamily *)sk_new(((int (*)(const void
*, const void *)) ((1 ? (IPAddressFamily_cmp) : (int (*)(const
IPAddressFamily * const *, const IPAddressFamily * const *))
0)))))
) == NULL((void *)0)) {
1522 X509V3error(ERR_R_MALLOC_FAILURE)ERR_put_error(34,(0xfff),((1|64)),"/usr/src/lib/libcrypto/x509/x509_addr.c"
,1522)
;
1523 return NULL((void *)0);
1524 }
1525
1526 for (i = 0; i < sk_CONF_VALUE_num(values)sk_num(((_STACK*) (1 ? (values) : (struct stack_st_CONF_VALUE
*)0)))
; i++) {
1527 CONF_VALUE *val = sk_CONF_VALUE_value(values, i)((CONF_VALUE *)sk_value(((_STACK*) (1 ? (values) : (struct stack_st_CONF_VALUE
*)0)), (i)))
;
1528 unsigned char min[ADDR_RAW_BUF_LEN16], max[ADDR_RAW_BUF_LEN16];
1529 unsigned afi, *safi = NULL((void *)0), safi_;
1530 const char *addr_chars = NULL((void *)0);
1531 const char *errstr;
1532 int prefix_len, i1, i2, delim, length;
1533
1534 if (!name_cmp(val->name, "IPv4")) {
1535 afi = IANA_AFI_IPV41;
1536 } else if (!name_cmp(val->name, "IPv6")) {
1537 afi = IANA_AFI_IPV62;
1538 } else if (!name_cmp(val->name, "IPv4-SAFI")) {
1539 afi = IANA_AFI_IPV41;
1540 safi = &safi_;
1541 } else if (!name_cmp(val->name, "IPv6-SAFI")) {
1542 afi = IANA_AFI_IPV62;
1543 safi = &safi_;
1544 } else {
1545 X509V3error(X509V3_R_EXTENSION_NAME_ERROR)ERR_put_error(34,(0xfff),(115),"/usr/src/lib/libcrypto/x509/x509_addr.c"
,1545)
;
1546 X509V3_conf_err(val)ERR_asprintf_error_data( "section:%s,name:%s,value:%s", val->
section, val->name, val->value);
;
1547 goto err;
1548 }
1549
1550 switch (afi) {
1551 case IANA_AFI_IPV41:
1552 addr_chars = v4addr_chars;
1553 break;
1554 case IANA_AFI_IPV62:
1555 addr_chars = v6addr_chars;
1556 break;
1557 }
1558
1559 if (!length_from_afi(afi, &length))
1560 goto err;
1561
1562 /*
1563 * Handle SAFI, if any, and strdup() so we can null-terminate
1564 * the other input values.
1565 */
1566 if (safi != NULL((void *)0)) {
1567 unsigned long parsed_safi;
1568 int saved_errno = errno(*__errno());
1569
1570 errno(*__errno()) = 0;
1571 parsed_safi = strtoul(val->value, &t, 0);
1572
1573 /* Value must be present, then a tab, space or colon. */
1574 if (val->value[0] == '\0' ||
1575 (*t != '\t' && *t != ' ' && *t != ':')) {
1576 X509V3error(X509V3_R_INVALID_SAFI)ERR_put_error(34,(0xfff),(164),"/usr/src/lib/libcrypto/x509/x509_addr.c"
,1576)
;
1577 X509V3_conf_err(val)ERR_asprintf_error_data( "section:%s,name:%s,value:%s", val->
section, val->name, val->value);
;
1578 goto err;
1579 }
1580 /* Range and overflow check. */
1581 if ((errno(*__errno()) == ERANGE34 && parsed_safi == ULONG_MAX0xffffffffffffffffUL) ||
1582 parsed_safi > 0xff) {
1583 X509V3error(X509V3_R_INVALID_SAFI)ERR_put_error(34,(0xfff),(164),"/usr/src/lib/libcrypto/x509/x509_addr.c"
,1583)
;
1584 X509V3_conf_err(val)ERR_asprintf_error_data( "section:%s,name:%s,value:%s", val->
section, val->name, val->value);
;
1585 goto err;
1586 }
1587 errno(*__errno()) = saved_errno;
1588
1589 *safi = parsed_safi;
1590
1591 /* Check possible whitespace is followed by a colon. */
1592 t += strspn(t, " \t");
1593 if (*t != ':') {
1594 X509V3error(X509V3_R_INVALID_SAFI)ERR_put_error(34,(0xfff),(164),"/usr/src/lib/libcrypto/x509/x509_addr.c"
,1594)
;
1595 X509V3_conf_err(val)ERR_asprintf_error_data( "section:%s,name:%s,value:%s", val->
section, val->name, val->value);
;
1596 goto err;
1597 }
1598
1599 /* Skip over colon. */
1600 t++;
1601
1602 /* Then over any trailing whitespace. */
1603 t += strspn(t, " \t");
1604
1605 s = strdup(t);
1606 } else {
1607 s = strdup(val->value);
1608 }
1609 if (s == NULL((void *)0)) {
1610 X509V3error(ERR_R_MALLOC_FAILURE)ERR_put_error(34,(0xfff),((1|64)),"/usr/src/lib/libcrypto/x509/x509_addr.c"
,1610)
;
1611 goto err;
1612 }
1613
1614 /*
1615 * Check for inheritance. Not worth additional complexity to
1616 * optimize this (seldom-used) case.
1617 */
1618 if (strcmp(s, "inherit") == 0) {
1619 if (!X509v3_addr_add_inherit(addr, afi, safi)) {
1620 X509V3error(X509V3_R_INVALID_INHERITANCE)ERR_put_error(34,(0xfff),(165),"/usr/src/lib/libcrypto/x509/x509_addr.c"
,1620)
;
1621 X509V3_conf_err(val)ERR_asprintf_error_data( "section:%s,name:%s,value:%s", val->
section, val->name, val->value);
;
1622 goto err;
1623 }
1624 free(s);
1625 s = NULL((void *)0);
1626 continue;
1627 }
1628
1629 i1 = strspn(s, addr_chars);
1630 i2 = i1 + strspn(s + i1, " \t");
1631 delim = s[i2++];
1632 s[i1] = '\0';
1633
1634 if (a2i_ipadd(min, s) != length) {
1635 X509V3error(X509V3_R_INVALID_IPADDRESS)ERR_put_error(34,(0xfff),(166),"/usr/src/lib/libcrypto/x509/x509_addr.c"
,1635)
;
1636 X509V3_conf_err(val)ERR_asprintf_error_data( "section:%s,name:%s,value:%s", val->
section, val->name, val->value);
;
1637 goto err;
1638 }
1639
1640 switch (delim) {
1641 case '/':
1642 /* length contains the size of the address in bytes. */
1643 if (length != 4 && length != 16)
1644 goto err;
1645 prefix_len = strtonum(s + i2, 0, 8 * length, &errstr);
1646 if (errstr != NULL((void *)0)) {
1647 X509V3error(X509V3_R_EXTENSION_VALUE_ERROR)ERR_put_error(34,(0xfff),(116),"/usr/src/lib/libcrypto/x509/x509_addr.c"
,1647)
;
1648 X509V3_conf_err(val)ERR_asprintf_error_data( "section:%s,name:%s,value:%s", val->
section, val->name, val->value);
;
1649 goto err;
1650 }
1651 if (!X509v3_addr_add_prefix(addr, afi, safi, min,
1652 prefix_len)) {
1653 X509V3error(ERR_R_MALLOC_FAILURE)ERR_put_error(34,(0xfff),((1|64)),"/usr/src/lib/libcrypto/x509/x509_addr.c"
,1653)
;
1654 goto err;
1655 }
1656 break;
1657 case '-':
1658 i1 = i2 + strspn(s + i2, " \t");
1659 i2 = i1 + strspn(s + i1, addr_chars);
1660 if (i1 == i2 || s[i2] != '\0') {
1661 X509V3error(X509V3_R_EXTENSION_VALUE_ERROR)ERR_put_error(34,(0xfff),(116),"/usr/src/lib/libcrypto/x509/x509_addr.c"
,1661)
;
1662 X509V3_conf_err(val)ERR_asprintf_error_data( "section:%s,name:%s,value:%s", val->
section, val->name, val->value);
;
1663 goto err;
1664 }
1665 if (a2i_ipadd(max, s + i1) != length) {
1666 X509V3error(X509V3_R_INVALID_IPADDRESS)ERR_put_error(34,(0xfff),(166),"/usr/src/lib/libcrypto/x509/x509_addr.c"
,1666)
;
1667 X509V3_conf_err(val)ERR_asprintf_error_data( "section:%s,name:%s,value:%s", val->
section, val->name, val->value);
;
1668 goto err;
1669 }
1670 if (memcmp(min, max, length) > 0) {
1671 X509V3error(X509V3_R_EXTENSION_VALUE_ERROR)ERR_put_error(34,(0xfff),(116),"/usr/src/lib/libcrypto/x509/x509_addr.c"
,1671)
;
1672 X509V3_conf_err(val)ERR_asprintf_error_data( "section:%s,name:%s,value:%s", val->
section, val->name, val->value);
;
1673 goto err;
1674 }
1675 if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1676 X509V3error(ERR_R_MALLOC_FAILURE)ERR_put_error(34,(0xfff),((1|64)),"/usr/src/lib/libcrypto/x509/x509_addr.c"
,1676)
;
1677 goto err;
1678 }
1679 break;
1680 case '\0':
1681 if (!X509v3_addr_add_prefix(addr, afi, safi, min,
1682 length * 8)) {
1683 X509V3error(ERR_R_MALLOC_FAILURE)ERR_put_error(34,(0xfff),((1|64)),"/usr/src/lib/libcrypto/x509/x509_addr.c"
,1683)
;
1684 goto err;
1685 }
1686 break;
1687 default:
1688 X509V3error(X509V3_R_EXTENSION_VALUE_ERROR)ERR_put_error(34,(0xfff),(116),"/usr/src/lib/libcrypto/x509/x509_addr.c"
,1688)
;
1689 X509V3_conf_err(val)ERR_asprintf_error_data( "section:%s,name:%s,value:%s", val->
section, val->name, val->value);
;
1690 goto err;
1691 }
1692
1693 free(s);
1694 s = NULL((void *)0);
1695 }
1696
1697 /*
1698 * Canonize the result, then we're done.
1699 */
1700 if (!X509v3_addr_canonize(addr))
1701 goto err;
1702 return addr;
1703
1704 err:
1705 free(s);
1706 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free)sk_pop_free(((_STACK*) (1 ? (addr) : (struct stack_st_IPAddressFamily
*)0)), ((void (*)(void *)) ((1 ? (IPAddressFamily_free) : (void
(*)(IPAddressFamily *))0))))
;
1707 return NULL((void *)0);
1708}
1709
1710/*
1711 * OpenSSL dispatch
1712 */
1713const X509V3_EXT_METHOD v3_addr = {
1714 .ext_nid = NID_sbgp_ipAddrBlock290,
1715 .ext_flags = 0,
1716 .it = &IPAddrBlocks_it,
1717 .ext_new = NULL((void *)0),
1718 .ext_free = NULL((void *)0),
1719 .d2i = NULL((void *)0),
1720 .i2d = NULL((void *)0),
1721 .i2s = NULL((void *)0),
1722 .s2i = NULL((void *)0),
1723 .i2v = NULL((void *)0),
1724 .v2i = v2i_IPAddrBlocks,
1725 .i2r = i2r_IPAddrBlocks,
1726 .r2i = NULL((void *)0),
1727 .usr_data = NULL((void *)0),
1728};
1729
1730/*
1731 * Figure out whether extension uses inheritance.
1732 */
1733int
1734X509v3_addr_inherits(IPAddrBlocks *addr)
1735{
1736 IPAddressFamily *af;
1737 int i;
1738
1739 if (addr == NULL((void *)0))
1740 return 0;
1741
1742 for (i = 0; i < sk_IPAddressFamily_num(addr)sk_num(((_STACK*) (1 ? (addr) : (struct stack_st_IPAddressFamily
*)0)))
; i++) {
1743 af = sk_IPAddressFamily_value(addr, i)((IPAddressFamily *)sk_value(((_STACK*) (1 ? (addr) : (struct
stack_st_IPAddressFamily*)0)), (i)))
;
1744
1745 if (IPAddressFamily_inheritance(af) != NULL((void *)0))
1746 return 1;
1747 }
1748
1749 return 0;
1750}
1751LCRYPTO_ALIAS(X509v3_addr_inherits)asm("");
1752
1753/*
1754 * Figure out whether parent contains child.
1755 *
1756 * This only works correctly if both parent and child are in canonical form.
1757 */
1758static int
1759addr_contains(IPAddressOrRanges *parent, IPAddressOrRanges *child, int length)
1760{
1761 IPAddressOrRange *child_aor, *parent_aor;
1762 uint8_t parent_min[ADDR_RAW_BUF_LEN16], parent_max[ADDR_RAW_BUF_LEN16];
1763 uint8_t child_min[ADDR_RAW_BUF_LEN16], child_max[ADDR_RAW_BUF_LEN16];
1764 int p, c;
1765
1766 if (child == NULL((void *)0) || parent == child)
1767 return 1;
1768 if (parent == NULL((void *)0))
1769 return 0;
1770
1771 p = 0;
1772 for (c = 0; c < sk_IPAddressOrRange_num(child)sk_num(((_STACK*) (1 ? (child) : (struct stack_st_IPAddressOrRange
*)0)))
; c++) {
1773 child_aor = sk_IPAddressOrRange_value(child, c)((IPAddressOrRange *)sk_value(((_STACK*) (1 ? (child) : (struct
stack_st_IPAddressOrRange*)0)), (c)))
;
1774
1775 if (!extract_min_max(child_aor, child_min, child_max, length))
1776 return 0;
1777
1778 for (;; p++) {
1779 if (p >= sk_IPAddressOrRange_num(parent)sk_num(((_STACK*) (1 ? (parent) : (struct stack_st_IPAddressOrRange
*)0)))
)
1780 return 0;
1781
1782 parent_aor = sk_IPAddressOrRange_value(parent, p)((IPAddressOrRange *)sk_value(((_STACK*) (1 ? (parent) : (struct
stack_st_IPAddressOrRange*)0)), (p)))
;
1783
1784 if (!extract_min_max(parent_aor, parent_min, parent_max,
1785 length))
1786 return 0;
1787
1788 if (memcmp(parent_max, child_max, length) < 0)
1789 continue;
1790 if (memcmp(parent_min, child_min, length) > 0)
1791 return 0;
1792 break;
1793 }
1794 }
1795
1796 return 1;
1797}
1798
1799/*
1800 * Test whether |child| is a subset of |parent|.
1801 */
1802int
1803X509v3_addr_subset(IPAddrBlocks *child, IPAddrBlocks *parent)
1804{
1805 IPAddressFamily *child_af, *parent_af;
1806 IPAddressOrRanges *child_aor, *parent_aor;
1807 int i, length;
1808
1809 if (child == NULL((void *)0) || child == parent)
1810 return 1;
1811 if (parent == NULL((void *)0))
1812 return 0;
1813
1814 if (X509v3_addr_inherits(child) || X509v3_addr_inherits(parent))
1815 return 0;
1816
1817 for (i = 0; i < sk_IPAddressFamily_num(child)sk_num(((_STACK*) (1 ? (child) : (struct stack_st_IPAddressFamily
*)0)))
; i++) {
1818 child_af = sk_IPAddressFamily_value(child, i)((IPAddressFamily *)sk_value(((_STACK*) (1 ? (child) : (struct
stack_st_IPAddressFamily*)0)), (i)))
;
1819
1820 parent_af = IPAddressFamily_find_in_parent(parent, child_af);
1821 if (parent_af == NULL((void *)0))
1822 return 0;
1823
1824 if (!IPAddressFamily_afi_length(parent_af, &length))
1825 return 0;
1826
1827 child_aor = IPAddressFamily_addressesOrRanges(child_af);
1828 parent_aor = IPAddressFamily_addressesOrRanges(parent_af);
1829
1830 if (!addr_contains(parent_aor, child_aor, length))
1831 return 0;
1832 }
1833 return 1;
1834}
1835LCRYPTO_ALIAS(X509v3_addr_subset)asm("");
1836
1837static int
1838verify_error(X509_STORE_CTX *ctx, X509 *cert, int error, int depth)
1839{
1840 if (ctx == NULL((void *)0))
1841 return 0;
1842
1843 ctx->current_cert = cert;
1844 ctx->error = error;
1845 ctx->error_depth = depth;
1846
1847 return ctx->verify_cb(0, ctx);
1848}
1849
1850/*
1851 * Core code for RFC 3779 2.3 path validation.
1852 *
1853 * Returns 1 for success, 0 on error.
1854 *
1855 * When returning 0, ctx->error MUST be set to an appropriate value other than
1856 * X509_V_OK.
1857 */
1858static int
1859addr_validate_path_internal(X509_STORE_CTX *ctx, STACK_OF(X509)struct stack_st_X509 *chain,
1860 IPAddrBlocks *ext)
1861{
1862 IPAddrBlocks *child = NULL((void *)0), *parent = NULL((void *)0);
1863 IPAddressFamily *child_af, *parent_af;
1864 IPAddressOrRanges *child_aor, *parent_aor;
1865 X509 *cert = NULL((void *)0);
1
'cert' initialized to a null pointer value
1866 int depth = -1;
1867 int i;
1868 unsigned int length;
1869 int ret = 1;
1870
1871 /* We need a non-empty chain to test against. */
1872 if (sk_X509_num(chain)sk_num(((_STACK*) (1 ? (chain) : (struct stack_st_X509*)0))) <= 0)
2
'?' condition is true
3
Assuming the condition is false
1873 goto err;
1874 /* We need either a store ctx or an extension to work with. */
1875 if (ctx == NULL((void *)0) && ext == NULL((void *)0))
4
Assuming 'ctx' is not equal to NULL
1876 goto err;
1877 /* If there is a store ctx, it needs a verify_cb. */
1878 if (ctx
4.1
'ctx' is not equal to NULL
!= NULL((void *)0) && ctx->verify_cb == NULL((void *)0))
5
Assuming field 'verify_cb' is not equal to NULL
6
Taking false branch
1879 goto err;
1880
1881 /*
1882 * Figure out where to start. If we don't have an extension to check,
1883 * (either extracted from the leaf or passed by the caller), we're done.
1884 * Otherwise, check canonical form and set up for walking up the chain.
1885 */
1886 if (ext == NULL((void *)0)) {
7
Assuming 'ext' is not equal to NULL
8
Taking false branch
1887 depth = 0;
1888 cert = sk_X509_value(chain, depth)((X509 *)sk_value(((_STACK*) (1 ? (chain) : (struct stack_st_X509
*)0)), (depth)))
;
1889 if ((X509_get_extension_flags(cert) & EXFLAG_INVALID0x0080) != 0) {
1890 if ((ret = verify_error(ctx, cert,
1891 X509_V_ERR_INVALID_EXTENSION41, depth)) == 0)
1892 goto done;
1893 }
1894 if ((ext = cert->rfc3779_addr) == NULL((void *)0))
1895 goto done;
1896 } else if (!X509v3_addr_is_canonical(ext)) {
9
Assuming the condition is false
10
Taking false branch
1897 if ((ret = verify_error(ctx, cert,
1898 X509_V_ERR_INVALID_EXTENSION41, depth)) == 0)
1899 goto done;
1900 }
1901
1902 (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp)((int (*)(const IPAddressFamily * const *,const IPAddressFamily
* const *)) sk_set_cmp_func(((_STACK*) (1 ? (ext) : (struct stack_st_IPAddressFamily
*)0)), ((int (*)(const void *, const void *)) ((1 ? (IPAddressFamily_cmp
) : (int (*)(const IPAddressFamily * const *, const IPAddressFamily
* const *))0)))))
;
11
'?' condition is true
12
'?' condition is true
1903 if ((child = sk_IPAddressFamily_dup(ext)(struct stack_st_IPAddressFamily *)sk_dup(((_STACK*) (1 ? ext
: (struct stack_st_IPAddressFamily*)0)))
) == NULL((void *)0)
) {
13
'?' condition is true
14
Assuming the condition is false
15
Taking false branch
1904 X509V3error(ERR_R_MALLOC_FAILURE)ERR_put_error(34,(0xfff),((1|64)),"/usr/src/lib/libcrypto/x509/x509_addr.c"
,1904)
;
1905 if (ctx != NULL((void *)0))
1906 ctx->error = X509_V_ERR_OUT_OF_MEM17;
1907 ret = 0;
1908 goto done;
1909 }
1910
1911 /*
1912 * Now walk up the chain. No cert may list resources that its parent
1913 * doesn't list.
1914 */
1915 for (depth++; depth < sk_X509_num(chain)sk_num(((_STACK*) (1 ? (chain) : (struct stack_st_X509*)0))); depth++) {
16
'?' condition is true
17
Assuming the condition is false
18
Loop condition is false. Execution continues on line 2006
1916 cert = sk_X509_value(chain, depth)((X509 *)sk_value(((_STACK*) (1 ? (chain) : (struct stack_st_X509
*)0)), (depth)))
;
1917
1918 if ((X509_get_extension_flags(cert) & EXFLAG_INVALID0x0080) != 0) {
1919 if ((ret = verify_error(ctx, cert,
1920 X509_V_ERR_INVALID_EXTENSION41, depth)) == 0)
1921 goto done;
1922 }
1923
1924 if ((parent = cert->rfc3779_addr) == NULL((void *)0)) {
1925 for (i = 0; i < sk_IPAddressFamily_num(child)sk_num(((_STACK*) (1 ? (child) : (struct stack_st_IPAddressFamily
*)0)))
; i++) {
1926 child_af = sk_IPAddressFamily_value(child, i)((IPAddressFamily *)sk_value(((_STACK*) (1 ? (child) : (struct
stack_st_IPAddressFamily*)0)), (i)))
;
1927
1928 if (IPAddressFamily_inheritance(child_af) !=
1929 NULL((void *)0))
1930 continue;
1931
1932 if ((ret = verify_error(ctx, cert,
1933 X509_V_ERR_UNNESTED_RESOURCE46, depth)) == 0)
1934 goto done;
1935 break;
1936 }
1937 continue;
1938 }
1939
1940 /*
1941 * Check that the child's resources are covered by the parent.
1942 * Each covered resource is replaced with the parent's resource
1943 * covering it, so the next iteration will check that the
1944 * parent's resources are covered by the grandparent.
1945 */
1946 for (i = 0; i < sk_IPAddressFamily_num(child)sk_num(((_STACK*) (1 ? (child) : (struct stack_st_IPAddressFamily
*)0)))
; i++) {
1947 child_af = sk_IPAddressFamily_value(child, i)((IPAddressFamily *)sk_value(((_STACK*) (1 ? (child) : (struct
stack_st_IPAddressFamily*)0)), (i)))
;
1948
1949 if ((parent_af = IPAddressFamily_find_in_parent(parent,
1950 child_af)) == NULL((void *)0)) {
1951 /*
1952 * If we have no match in the parent and the
1953 * child inherits, that's fine.
1954 */
1955 if (IPAddressFamily_inheritance(child_af) !=
1956 NULL((void *)0))
1957 continue;
1958
1959 /* Otherwise the child isn't covered. */
1960 if ((ret = verify_error(ctx, cert,
1961 X509_V_ERR_UNNESTED_RESOURCE46, depth)) == 0)
1962 goto done;
1963 break;
1964 }
1965
1966 /* Parent inherits, nothing to do. */
1967 if (IPAddressFamily_inheritance(parent_af) != NULL((void *)0))
1968 continue;
1969
1970 /* Child inherits. Use parent's address family. */
1971 if (IPAddressFamily_inheritance(child_af) != NULL((void *)0)) {
1972 sk_IPAddressFamily_set(child, i, parent_af)sk_set(((_STACK*) (1 ? (child) : (struct stack_st_IPAddressFamily
*)0)), (i), ((void*) (1 ? (parent_af) : (IPAddressFamily*)0))
)
;
1973 continue;
1974 }
1975
1976 child_aor = IPAddressFamily_addressesOrRanges(child_af);
1977 parent_aor =
1978 IPAddressFamily_addressesOrRanges(parent_af);
1979
1980 /*
1981 * Child and parent are canonical and neither inherits.
1982 * If either addressesOrRanges is NULL, something's
1983 * very wrong.
1984 */
1985 if (child_aor == NULL((void *)0) || parent_aor == NULL((void *)0))
1986 goto err;
1987
1988 if (!IPAddressFamily_afi_length(child_af, &length))
1989 goto err;
1990
1991 /* Now check containment and replace or error. */
1992 if (addr_contains(parent_aor, child_aor, length)) {
1993 sk_IPAddressFamily_set(child, i, parent_af)sk_set(((_STACK*) (1 ? (child) : (struct stack_st_IPAddressFamily
*)0)), (i), ((void*) (1 ? (parent_af) : (IPAddressFamily*)0))
)
;
1994 continue;
1995 }
1996
1997 if ((ret = verify_error(ctx, cert,
1998 X509_V_ERR_UNNESTED_RESOURCE46, depth)) == 0)
1999 goto done;
2000 }
2001 }
2002
2003 /*
2004 * Trust anchor can't inherit.
2005 */
2006 if ((parent = cert->rfc3779_addr) != NULL((void *)0)) {
19
Access to field 'rfc3779_addr' results in a dereference of a null pointer (loaded from variable 'cert')
2007 for (i = 0; i < sk_IPAddressFamily_num(parent)sk_num(((_STACK*) (1 ? (parent) : (struct stack_st_IPAddressFamily
*)0)))
; i++) {
2008 parent_af = sk_IPAddressFamily_value(parent, i)((IPAddressFamily *)sk_value(((_STACK*) (1 ? (parent) : (struct
stack_st_IPAddressFamily*)0)), (i)))
;
2009
2010 if (IPAddressFamily_inheritance(parent_af) == NULL((void *)0))
2011 continue;
2012
2013 if ((ret = verify_error(ctx, cert,
2014 X509_V_ERR_UNNESTED_RESOURCE46, depth)) == 0)
2015 goto done;
2016 }
2017 }
2018
2019 done:
2020 sk_IPAddressFamily_free(child)sk_free(((_STACK*) (1 ? (child) : (struct stack_st_IPAddressFamily
*)0)))
;
2021 return ret;
2022
2023 err:
2024 sk_IPAddressFamily_free(child)sk_free(((_STACK*) (1 ? (child) : (struct stack_st_IPAddressFamily
*)0)))
;
2025
2026 if (ctx != NULL((void *)0))
2027 ctx->error = X509_V_ERR_UNSPECIFIED1;
2028
2029 return 0;
2030}
2031
2032/*
2033 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
2034 */
2035int
2036X509v3_addr_validate_path(X509_STORE_CTX *ctx)
2037{
2038 if (sk_X509_num(ctx->chain)sk_num(((_STACK*) (1 ? (ctx->chain) : (struct stack_st_X509
*)0)))
<= 0 || ctx->verify_cb == NULL((void *)0)) {
2039 ctx->error = X509_V_ERR_UNSPECIFIED1;
2040 return 0;
2041 }
2042 return addr_validate_path_internal(ctx, ctx->chain, NULL((void *)0));
2043}
2044LCRYPTO_ALIAS(X509v3_addr_validate_path)asm("");
2045
2046/*
2047 * RFC 3779 2.3 path validation of an extension.
2048 * Test whether chain covers extension.
2049 */
2050int
2051X509v3_addr_validate_resource_set(STACK_OF(X509)struct stack_st_X509 *chain, IPAddrBlocks *ext,
2052 int allow_inheritance)
2053{
2054 if (ext == NULL((void *)0))
2055 return 1;
2056 if (sk_X509_num(chain)sk_num(((_STACK*) (1 ? (chain) : (struct stack_st_X509*)0))) <= 0)
2057 return 0;
2058 if (!allow_inheritance && X509v3_addr_inherits(ext))
2059 return 0;
2060 return addr_validate_path_internal(NULL((void *)0), chain, ext);
2061}
2062LCRYPTO_ALIAS(X509v3_addr_validate_resource_set)asm("");
2063
2064#endif /* OPENSSL_NO_RFC3779 */