Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h
Warning:line 85, column 47
The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CoreCore.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -fhalf-no-semantic-interposition -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -D PIC -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -D_RET_PROTECTOR -ret-protector -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ CoreCore.cpp

CoreCore.cpp

1//===-- Core.cpp ----------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the common infrastructure (including the C bindings)
10// for libLLVMCore.a, which implements the LLVM intermediate representation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm-c/Core.h"
15#include "llvm/IR/Attributes.h"
16#include "llvm/IR/Constants.h"
17#include "llvm/IR/DebugInfoMetadata.h"
18#include "llvm/IR/DerivedTypes.h"
19#include "llvm/IR/DiagnosticInfo.h"
20#include "llvm/IR/DiagnosticPrinter.h"
21#include "llvm/IR/GlobalAlias.h"
22#include "llvm/IR/GlobalVariable.h"
23#include "llvm/IR/IRBuilder.h"
24#include "llvm/IR/InlineAsm.h"
25#include "llvm/IR/IntrinsicInst.h"
26#include "llvm/IR/LLVMContext.h"
27#include "llvm/IR/LegacyPassManager.h"
28#include "llvm/IR/Module.h"
29#include "llvm/InitializePasses.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/FileSystem.h"
33#include "llvm/Support/ManagedStatic.h"
34#include "llvm/Support/MemoryBuffer.h"
35#include "llvm/Support/Threading.h"
36#include "llvm/Support/raw_ostream.h"
37#include <cassert>
38#include <cstdlib>
39#include <cstring>
40#include <system_error>
41
42using namespace llvm;
43
44#define DEBUG_TYPE"ir" "ir"
45
46void llvm::initializeCore(PassRegistry &Registry) {
47 initializeDominatorTreeWrapperPassPass(Registry);
48 initializePrintModulePassWrapperPass(Registry);
49 initializePrintFunctionPassWrapperPass(Registry);
50 initializeSafepointIRVerifierPass(Registry);
51 initializeVerifierLegacyPassPass(Registry);
52}
53
54void LLVMInitializeCore(LLVMPassRegistryRef R) {
55 initializeCore(*unwrap(R));
56}
57
58void LLVMShutdown() {
59 llvm_shutdown();
60}
61
62/*===-- Error handling ----------------------------------------------------===*/
63
64char *LLVMCreateMessage(const char *Message) {
65 return strdup(Message);
66}
67
68void LLVMDisposeMessage(char *Message) {
69 free(Message);
70}
71
72
73/*===-- Operations on contexts --------------------------------------------===*/
74
75static ManagedStatic<LLVMContext> GlobalContext;
76
77LLVMContextRef LLVMContextCreate() {
78 return wrap(new LLVMContext());
79}
80
81LLVMContextRef LLVMGetGlobalContext() { return wrap(&*GlobalContext); }
82
83void LLVMContextSetDiagnosticHandler(LLVMContextRef C,
84 LLVMDiagnosticHandler Handler,
85 void *DiagnosticContext) {
86 unwrap(C)->setDiagnosticHandlerCallBack(
87 LLVM_EXTENSION__extension__ reinterpret_cast<DiagnosticHandler::DiagnosticHandlerTy>(
88 Handler),
89 DiagnosticContext);
90}
91
92LLVMDiagnosticHandler LLVMContextGetDiagnosticHandler(LLVMContextRef C) {
93 return LLVM_EXTENSION__extension__ reinterpret_cast<LLVMDiagnosticHandler>(
94 unwrap(C)->getDiagnosticHandlerCallBack());
95}
96
97void *LLVMContextGetDiagnosticContext(LLVMContextRef C) {
98 return unwrap(C)->getDiagnosticContext();
99}
100
101void LLVMContextSetYieldCallback(LLVMContextRef C, LLVMYieldCallback Callback,
102 void *OpaqueHandle) {
103 auto YieldCallback =
104 LLVM_EXTENSION__extension__ reinterpret_cast<LLVMContext::YieldCallbackTy>(Callback);
105 unwrap(C)->setYieldCallback(YieldCallback, OpaqueHandle);
106}
107
108LLVMBool LLVMContextShouldDiscardValueNames(LLVMContextRef C) {
109 return unwrap(C)->shouldDiscardValueNames();
110}
111
112void LLVMContextSetDiscardValueNames(LLVMContextRef C, LLVMBool Discard) {
113 unwrap(C)->setDiscardValueNames(Discard);
114}
115
116void LLVMContextDispose(LLVMContextRef C) {
117 delete unwrap(C);
118}
119
120unsigned LLVMGetMDKindIDInContext(LLVMContextRef C, const char *Name,
121 unsigned SLen) {
122 return unwrap(C)->getMDKindID(StringRef(Name, SLen));
123}
124
125unsigned LLVMGetMDKindID(const char *Name, unsigned SLen) {
126 return LLVMGetMDKindIDInContext(LLVMGetGlobalContext(), Name, SLen);
127}
128
129unsigned LLVMGetEnumAttributeKindForName(const char *Name, size_t SLen) {
130 return Attribute::getAttrKindFromName(StringRef(Name, SLen));
131}
132
133unsigned LLVMGetLastEnumAttributeKind(void) {
134 return Attribute::AttrKind::EndAttrKinds;
135}
136
137LLVMAttributeRef LLVMCreateEnumAttribute(LLVMContextRef C, unsigned KindID,
138 uint64_t Val) {
139 auto &Ctx = *unwrap(C);
140 auto AttrKind = (Attribute::AttrKind)KindID;
141
142 if (AttrKind == Attribute::AttrKind::ByVal) {
143 // After r362128, byval attributes need to have a type attribute. Provide a
144 // NULL one until a proper API is added for this.
145 return wrap(Attribute::getWithByValType(Ctx, NULL__null));
146 }
147
148 if (AttrKind == Attribute::AttrKind::StructRet) {
149 // Same as byval.
150 return wrap(Attribute::getWithStructRetType(Ctx, NULL__null));
151 }
152
153 return wrap(Attribute::get(Ctx, AttrKind, Val));
154}
155
156unsigned LLVMGetEnumAttributeKind(LLVMAttributeRef A) {
157 return unwrap(A).getKindAsEnum();
158}
159
160uint64_t LLVMGetEnumAttributeValue(LLVMAttributeRef A) {
161 auto Attr = unwrap(A);
162 if (Attr.isEnumAttribute())
163 return 0;
164 return Attr.getValueAsInt();
165}
166
167LLVMAttributeRef LLVMCreateTypeAttribute(LLVMContextRef C, unsigned KindID,
168 LLVMTypeRef type_ref) {
169 auto &Ctx = *unwrap(C);
170 auto AttrKind = (Attribute::AttrKind)KindID;
171 return wrap(Attribute::get(Ctx, AttrKind, unwrap(type_ref)));
172}
173
174LLVMTypeRef LLVMGetTypeAttributeValue(LLVMAttributeRef A) {
175 auto Attr = unwrap(A);
176 return wrap(Attr.getValueAsType());
177}
178
179LLVMAttributeRef LLVMCreateStringAttribute(LLVMContextRef C,
180 const char *K, unsigned KLength,
181 const char *V, unsigned VLength) {
182 return wrap(Attribute::get(*unwrap(C), StringRef(K, KLength),
183 StringRef(V, VLength)));
184}
185
186const char *LLVMGetStringAttributeKind(LLVMAttributeRef A,
187 unsigned *Length) {
188 auto S = unwrap(A).getKindAsString();
189 *Length = S.size();
190 return S.data();
191}
192
193const char *LLVMGetStringAttributeValue(LLVMAttributeRef A,
194 unsigned *Length) {
195 auto S = unwrap(A).getValueAsString();
196 *Length = S.size();
197 return S.data();
198}
199
200LLVMBool LLVMIsEnumAttribute(LLVMAttributeRef A) {
201 auto Attr = unwrap(A);
202 return Attr.isEnumAttribute() || Attr.isIntAttribute();
203}
204
205LLVMBool LLVMIsStringAttribute(LLVMAttributeRef A) {
206 return unwrap(A).isStringAttribute();
207}
208
209LLVMBool LLVMIsTypeAttribute(LLVMAttributeRef A) {
210 return unwrap(A).isTypeAttribute();
211}
212
213char *LLVMGetDiagInfoDescription(LLVMDiagnosticInfoRef DI) {
214 std::string MsgStorage;
215 raw_string_ostream Stream(MsgStorage);
216 DiagnosticPrinterRawOStream DP(Stream);
217
218 unwrap(DI)->print(DP);
219 Stream.flush();
220
221 return LLVMCreateMessage(MsgStorage.c_str());
222}
223
224LLVMDiagnosticSeverity LLVMGetDiagInfoSeverity(LLVMDiagnosticInfoRef DI) {
225 LLVMDiagnosticSeverity severity;
226
227 switch(unwrap(DI)->getSeverity()) {
228 default:
229 severity = LLVMDSError;
230 break;
231 case DS_Warning:
232 severity = LLVMDSWarning;
233 break;
234 case DS_Remark:
235 severity = LLVMDSRemark;
236 break;
237 case DS_Note:
238 severity = LLVMDSNote;
239 break;
240 }
241
242 return severity;
243}
244
245/*===-- Operations on modules ---------------------------------------------===*/
246
247LLVMModuleRef LLVMModuleCreateWithName(const char *ModuleID) {
248 return wrap(new Module(ModuleID, *GlobalContext));
249}
250
251LLVMModuleRef LLVMModuleCreateWithNameInContext(const char *ModuleID,
252 LLVMContextRef C) {
253 return wrap(new Module(ModuleID, *unwrap(C)));
254}
255
256void LLVMDisposeModule(LLVMModuleRef M) {
257 delete unwrap(M);
258}
259
260const char *LLVMGetModuleIdentifier(LLVMModuleRef M, size_t *Len) {
261 auto &Str = unwrap(M)->getModuleIdentifier();
262 *Len = Str.length();
263 return Str.c_str();
264}
265
266void LLVMSetModuleIdentifier(LLVMModuleRef M, const char *Ident, size_t Len) {
267 unwrap(M)->setModuleIdentifier(StringRef(Ident, Len));
268}
269
270const char *LLVMGetSourceFileName(LLVMModuleRef M, size_t *Len) {
271 auto &Str = unwrap(M)->getSourceFileName();
272 *Len = Str.length();
273 return Str.c_str();
274}
275
276void LLVMSetSourceFileName(LLVMModuleRef M, const char *Name, size_t Len) {
277 unwrap(M)->setSourceFileName(StringRef(Name, Len));
278}
279
280/*--.. Data layout .........................................................--*/
281const char *LLVMGetDataLayoutStr(LLVMModuleRef M) {
282 return unwrap(M)->getDataLayoutStr().c_str();
283}
284
285const char *LLVMGetDataLayout(LLVMModuleRef M) {
286 return LLVMGetDataLayoutStr(M);
287}
288
289void LLVMSetDataLayout(LLVMModuleRef M, const char *DataLayoutStr) {
290 unwrap(M)->setDataLayout(DataLayoutStr);
291}
292
293/*--.. Target triple .......................................................--*/
294const char * LLVMGetTarget(LLVMModuleRef M) {
295 return unwrap(M)->getTargetTriple().c_str();
296}
297
298void LLVMSetTarget(LLVMModuleRef M, const char *Triple) {
299 unwrap(M)->setTargetTriple(Triple);
300}
301
302/*--.. Module flags ........................................................--*/
303struct LLVMOpaqueModuleFlagEntry {
304 LLVMModuleFlagBehavior Behavior;
305 const char *Key;
306 size_t KeyLen;
307 LLVMMetadataRef Metadata;
308};
309
310static Module::ModFlagBehavior
311map_to_llvmModFlagBehavior(LLVMModuleFlagBehavior Behavior) {
312 switch (Behavior) {
313 case LLVMModuleFlagBehaviorError:
314 return Module::ModFlagBehavior::Error;
315 case LLVMModuleFlagBehaviorWarning:
316 return Module::ModFlagBehavior::Warning;
317 case LLVMModuleFlagBehaviorRequire:
318 return Module::ModFlagBehavior::Require;
319 case LLVMModuleFlagBehaviorOverride:
320 return Module::ModFlagBehavior::Override;
321 case LLVMModuleFlagBehaviorAppend:
322 return Module::ModFlagBehavior::Append;
323 case LLVMModuleFlagBehaviorAppendUnique:
324 return Module::ModFlagBehavior::AppendUnique;
325 }
326 llvm_unreachable("Unknown LLVMModuleFlagBehavior")__builtin_unreachable();
327}
328
329static LLVMModuleFlagBehavior
330map_from_llvmModFlagBehavior(Module::ModFlagBehavior Behavior) {
331 switch (Behavior) {
332 case Module::ModFlagBehavior::Error:
333 return LLVMModuleFlagBehaviorError;
334 case Module::ModFlagBehavior::Warning:
335 return LLVMModuleFlagBehaviorWarning;
336 case Module::ModFlagBehavior::Require:
337 return LLVMModuleFlagBehaviorRequire;
338 case Module::ModFlagBehavior::Override:
339 return LLVMModuleFlagBehaviorOverride;
340 case Module::ModFlagBehavior::Append:
341 return LLVMModuleFlagBehaviorAppend;
342 case Module::ModFlagBehavior::AppendUnique:
343 return LLVMModuleFlagBehaviorAppendUnique;
344 default:
345 llvm_unreachable("Unhandled Flag Behavior")__builtin_unreachable();
346 }
347}
348
349LLVMModuleFlagEntry *LLVMCopyModuleFlagsMetadata(LLVMModuleRef M, size_t *Len) {
350 SmallVector<Module::ModuleFlagEntry, 8> MFEs;
351 unwrap(M)->getModuleFlagsMetadata(MFEs);
352
353 LLVMOpaqueModuleFlagEntry *Result = static_cast<LLVMOpaqueModuleFlagEntry *>(
354 safe_malloc(MFEs.size() * sizeof(LLVMOpaqueModuleFlagEntry)));
355 for (unsigned i = 0; i < MFEs.size(); ++i) {
356 const auto &ModuleFlag = MFEs[i];
357 Result[i].Behavior = map_from_llvmModFlagBehavior(ModuleFlag.Behavior);
358 Result[i].Key = ModuleFlag.Key->getString().data();
359 Result[i].KeyLen = ModuleFlag.Key->getString().size();
360 Result[i].Metadata = wrap(ModuleFlag.Val);
361 }
362 *Len = MFEs.size();
363 return Result;
364}
365
366void LLVMDisposeModuleFlagsMetadata(LLVMModuleFlagEntry *Entries) {
367 free(Entries);
368}
369
370LLVMModuleFlagBehavior
371LLVMModuleFlagEntriesGetFlagBehavior(LLVMModuleFlagEntry *Entries,
372 unsigned Index) {
373 LLVMOpaqueModuleFlagEntry MFE =
374 static_cast<LLVMOpaqueModuleFlagEntry>(Entries[Index]);
375 return MFE.Behavior;
376}
377
378const char *LLVMModuleFlagEntriesGetKey(LLVMModuleFlagEntry *Entries,
379 unsigned Index, size_t *Len) {
380 LLVMOpaqueModuleFlagEntry MFE =
381 static_cast<LLVMOpaqueModuleFlagEntry>(Entries[Index]);
382 *Len = MFE.KeyLen;
383 return MFE.Key;
384}
385
386LLVMMetadataRef LLVMModuleFlagEntriesGetMetadata(LLVMModuleFlagEntry *Entries,
387 unsigned Index) {
388 LLVMOpaqueModuleFlagEntry MFE =
389 static_cast<LLVMOpaqueModuleFlagEntry>(Entries[Index]);
390 return MFE.Metadata;
391}
392
393LLVMMetadataRef LLVMGetModuleFlag(LLVMModuleRef M,
394 const char *Key, size_t KeyLen) {
395 return wrap(unwrap(M)->getModuleFlag({Key, KeyLen}));
396}
397
398void LLVMAddModuleFlag(LLVMModuleRef M, LLVMModuleFlagBehavior Behavior,
399 const char *Key, size_t KeyLen,
400 LLVMMetadataRef Val) {
401 unwrap(M)->addModuleFlag(map_to_llvmModFlagBehavior(Behavior),
402 {Key, KeyLen}, unwrap(Val));
403}
404
405/*--.. Printing modules ....................................................--*/
406
407void LLVMDumpModule(LLVMModuleRef M) {
408 unwrap(M)->print(errs(), nullptr,
409 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
410}
411
412LLVMBool LLVMPrintModuleToFile(LLVMModuleRef M, const char *Filename,
413 char **ErrorMessage) {
414 std::error_code EC;
415 raw_fd_ostream dest(Filename, EC, sys::fs::OF_TextWithCRLF);
416 if (EC) {
417 *ErrorMessage = strdup(EC.message().c_str());
418 return true;
419 }
420
421 unwrap(M)->print(dest, nullptr);
422
423 dest.close();
424
425 if (dest.has_error()) {
426 std::string E = "Error printing to file: " + dest.error().message();
427 *ErrorMessage = strdup(E.c_str());
428 return true;
429 }
430
431 return false;
432}
433
434char *LLVMPrintModuleToString(LLVMModuleRef M) {
435 std::string buf;
436 raw_string_ostream os(buf);
437
438 unwrap(M)->print(os, nullptr);
439 os.flush();
440
441 return strdup(buf.c_str());
442}
443
444/*--.. Operations on inline assembler ......................................--*/
445void LLVMSetModuleInlineAsm2(LLVMModuleRef M, const char *Asm, size_t Len) {
446 unwrap(M)->setModuleInlineAsm(StringRef(Asm, Len));
447}
448
449void LLVMSetModuleInlineAsm(LLVMModuleRef M, const char *Asm) {
450 unwrap(M)->setModuleInlineAsm(StringRef(Asm));
451}
452
453void LLVMAppendModuleInlineAsm(LLVMModuleRef M, const char *Asm, size_t Len) {
454 unwrap(M)->appendModuleInlineAsm(StringRef(Asm, Len));
455}
456
457const char *LLVMGetModuleInlineAsm(LLVMModuleRef M, size_t *Len) {
458 auto &Str = unwrap(M)->getModuleInlineAsm();
459 *Len = Str.length();
460 return Str.c_str();
461}
462
463LLVMValueRef LLVMGetInlineAsm(LLVMTypeRef Ty, char *AsmString,
464 size_t AsmStringSize, char *Constraints,
465 size_t ConstraintsSize, LLVMBool HasSideEffects,
466 LLVMBool IsAlignStack,
467 LLVMInlineAsmDialect Dialect, LLVMBool CanThrow) {
468 InlineAsm::AsmDialect AD;
469 switch (Dialect) {
470 case LLVMInlineAsmDialectATT:
471 AD = InlineAsm::AD_ATT;
472 break;
473 case LLVMInlineAsmDialectIntel:
474 AD = InlineAsm::AD_Intel;
475 break;
476 }
477 return wrap(InlineAsm::get(unwrap<FunctionType>(Ty),
478 StringRef(AsmString, AsmStringSize),
479 StringRef(Constraints, ConstraintsSize),
480 HasSideEffects, IsAlignStack, AD, CanThrow));
481}
482
483/*--.. Operations on module contexts ......................................--*/
484LLVMContextRef LLVMGetModuleContext(LLVMModuleRef M) {
485 return wrap(&unwrap(M)->getContext());
486}
487
488
489/*===-- Operations on types -----------------------------------------------===*/
490
491/*--.. Operations on all types (mostly) ....................................--*/
492
493LLVMTypeKind LLVMGetTypeKind(LLVMTypeRef Ty) {
494 switch (unwrap(Ty)->getTypeID()) {
495 case Type::VoidTyID:
496 return LLVMVoidTypeKind;
497 case Type::HalfTyID:
498 return LLVMHalfTypeKind;
499 case Type::BFloatTyID:
500 return LLVMBFloatTypeKind;
501 case Type::FloatTyID:
502 return LLVMFloatTypeKind;
503 case Type::DoubleTyID:
504 return LLVMDoubleTypeKind;
505 case Type::X86_FP80TyID:
506 return LLVMX86_FP80TypeKind;
507 case Type::FP128TyID:
508 return LLVMFP128TypeKind;
509 case Type::PPC_FP128TyID:
510 return LLVMPPC_FP128TypeKind;
511 case Type::LabelTyID:
512 return LLVMLabelTypeKind;
513 case Type::MetadataTyID:
514 return LLVMMetadataTypeKind;
515 case Type::IntegerTyID:
516 return LLVMIntegerTypeKind;
517 case Type::FunctionTyID:
518 return LLVMFunctionTypeKind;
519 case Type::StructTyID:
520 return LLVMStructTypeKind;
521 case Type::ArrayTyID:
522 return LLVMArrayTypeKind;
523 case Type::PointerTyID:
524 return LLVMPointerTypeKind;
525 case Type::FixedVectorTyID:
526 return LLVMVectorTypeKind;
527 case Type::X86_MMXTyID:
528 return LLVMX86_MMXTypeKind;
529 case Type::X86_AMXTyID:
530 return LLVMX86_AMXTypeKind;
531 case Type::TokenTyID:
532 return LLVMTokenTypeKind;
533 case Type::ScalableVectorTyID:
534 return LLVMScalableVectorTypeKind;
535 }
536 llvm_unreachable("Unhandled TypeID.")__builtin_unreachable();
537}
538
539LLVMBool LLVMTypeIsSized(LLVMTypeRef Ty)
540{
541 return unwrap(Ty)->isSized();
542}
543
544LLVMContextRef LLVMGetTypeContext(LLVMTypeRef Ty) {
545 return wrap(&unwrap(Ty)->getContext());
546}
547
548void LLVMDumpType(LLVMTypeRef Ty) {
549 return unwrap(Ty)->print(errs(), /*IsForDebug=*/true);
550}
551
552char *LLVMPrintTypeToString(LLVMTypeRef Ty) {
553 std::string buf;
554 raw_string_ostream os(buf);
555
556 if (unwrap(Ty))
557 unwrap(Ty)->print(os);
558 else
559 os << "Printing <null> Type";
560
561 os.flush();
562
563 return strdup(buf.c_str());
564}
565
566/*--.. Operations on integer types .........................................--*/
567
568LLVMTypeRef LLVMInt1TypeInContext(LLVMContextRef C) {
569 return (LLVMTypeRef) Type::getInt1Ty(*unwrap(C));
570}
571LLVMTypeRef LLVMInt8TypeInContext(LLVMContextRef C) {
572 return (LLVMTypeRef) Type::getInt8Ty(*unwrap(C));
573}
574LLVMTypeRef LLVMInt16TypeInContext(LLVMContextRef C) {
575 return (LLVMTypeRef) Type::getInt16Ty(*unwrap(C));
576}
577LLVMTypeRef LLVMInt32TypeInContext(LLVMContextRef C) {
578 return (LLVMTypeRef) Type::getInt32Ty(*unwrap(C));
579}
580LLVMTypeRef LLVMInt64TypeInContext(LLVMContextRef C) {
581 return (LLVMTypeRef) Type::getInt64Ty(*unwrap(C));
582}
583LLVMTypeRef LLVMInt128TypeInContext(LLVMContextRef C) {
584 return (LLVMTypeRef) Type::getInt128Ty(*unwrap(C));
585}
586LLVMTypeRef LLVMIntTypeInContext(LLVMContextRef C, unsigned NumBits) {
587 return wrap(IntegerType::get(*unwrap(C), NumBits));
588}
589
590LLVMTypeRef LLVMInt1Type(void) {
591 return LLVMInt1TypeInContext(LLVMGetGlobalContext());
592}
593LLVMTypeRef LLVMInt8Type(void) {
594 return LLVMInt8TypeInContext(LLVMGetGlobalContext());
595}
596LLVMTypeRef LLVMInt16Type(void) {
597 return LLVMInt16TypeInContext(LLVMGetGlobalContext());
598}
599LLVMTypeRef LLVMInt32Type(void) {
600 return LLVMInt32TypeInContext(LLVMGetGlobalContext());
601}
602LLVMTypeRef LLVMInt64Type(void) {
603 return LLVMInt64TypeInContext(LLVMGetGlobalContext());
604}
605LLVMTypeRef LLVMInt128Type(void) {
606 return LLVMInt128TypeInContext(LLVMGetGlobalContext());
607}
608LLVMTypeRef LLVMIntType(unsigned NumBits) {
609 return LLVMIntTypeInContext(LLVMGetGlobalContext(), NumBits);
610}
611
612unsigned LLVMGetIntTypeWidth(LLVMTypeRef IntegerTy) {
613 return unwrap<IntegerType>(IntegerTy)->getBitWidth();
614}
615
616/*--.. Operations on real types ............................................--*/
617
618LLVMTypeRef LLVMHalfTypeInContext(LLVMContextRef C) {
619 return (LLVMTypeRef) Type::getHalfTy(*unwrap(C));
620}
621LLVMTypeRef LLVMBFloatTypeInContext(LLVMContextRef C) {
622 return (LLVMTypeRef) Type::getBFloatTy(*unwrap(C));
623}
624LLVMTypeRef LLVMFloatTypeInContext(LLVMContextRef C) {
625 return (LLVMTypeRef) Type::getFloatTy(*unwrap(C));
626}
627LLVMTypeRef LLVMDoubleTypeInContext(LLVMContextRef C) {
628 return (LLVMTypeRef) Type::getDoubleTy(*unwrap(C));
629}
630LLVMTypeRef LLVMX86FP80TypeInContext(LLVMContextRef C) {
631 return (LLVMTypeRef) Type::getX86_FP80Ty(*unwrap(C));
632}
633LLVMTypeRef LLVMFP128TypeInContext(LLVMContextRef C) {
634 return (LLVMTypeRef) Type::getFP128Ty(*unwrap(C));
635}
636LLVMTypeRef LLVMPPCFP128TypeInContext(LLVMContextRef C) {
637 return (LLVMTypeRef) Type::getPPC_FP128Ty(*unwrap(C));
638}
639LLVMTypeRef LLVMX86MMXTypeInContext(LLVMContextRef C) {
640 return (LLVMTypeRef) Type::getX86_MMXTy(*unwrap(C));
641}
642LLVMTypeRef LLVMX86AMXTypeInContext(LLVMContextRef C) {
643 return (LLVMTypeRef) Type::getX86_AMXTy(*unwrap(C));
644}
645
646LLVMTypeRef LLVMHalfType(void) {
647 return LLVMHalfTypeInContext(LLVMGetGlobalContext());
648}
649LLVMTypeRef LLVMBFloatType(void) {
650 return LLVMBFloatTypeInContext(LLVMGetGlobalContext());
651}
652LLVMTypeRef LLVMFloatType(void) {
653 return LLVMFloatTypeInContext(LLVMGetGlobalContext());
654}
655LLVMTypeRef LLVMDoubleType(void) {
656 return LLVMDoubleTypeInContext(LLVMGetGlobalContext());
657}
658LLVMTypeRef LLVMX86FP80Type(void) {
659 return LLVMX86FP80TypeInContext(LLVMGetGlobalContext());
660}
661LLVMTypeRef LLVMFP128Type(void) {
662 return LLVMFP128TypeInContext(LLVMGetGlobalContext());
663}
664LLVMTypeRef LLVMPPCFP128Type(void) {
665 return LLVMPPCFP128TypeInContext(LLVMGetGlobalContext());
666}
667LLVMTypeRef LLVMX86MMXType(void) {
668 return LLVMX86MMXTypeInContext(LLVMGetGlobalContext());
669}
670LLVMTypeRef LLVMX86AMXType(void) {
671 return LLVMX86AMXTypeInContext(LLVMGetGlobalContext());
672}
673
674/*--.. Operations on function types ........................................--*/
675
676LLVMTypeRef LLVMFunctionType(LLVMTypeRef ReturnType,
677 LLVMTypeRef *ParamTypes, unsigned ParamCount,
678 LLVMBool IsVarArg) {
679 ArrayRef<Type*> Tys(unwrap(ParamTypes), ParamCount);
680 return wrap(FunctionType::get(unwrap(ReturnType), Tys, IsVarArg != 0));
681}
682
683LLVMBool LLVMIsFunctionVarArg(LLVMTypeRef FunctionTy) {
684 return unwrap<FunctionType>(FunctionTy)->isVarArg();
685}
686
687LLVMTypeRef LLVMGetReturnType(LLVMTypeRef FunctionTy) {
688 return wrap(unwrap<FunctionType>(FunctionTy)->getReturnType());
689}
690
691unsigned LLVMCountParamTypes(LLVMTypeRef FunctionTy) {
692 return unwrap<FunctionType>(FunctionTy)->getNumParams();
693}
694
695void LLVMGetParamTypes(LLVMTypeRef FunctionTy, LLVMTypeRef *Dest) {
696 FunctionType *Ty = unwrap<FunctionType>(FunctionTy);
697 for (Type *T : Ty->params())
698 *Dest++ = wrap(T);
699}
700
701/*--.. Operations on struct types ..........................................--*/
702
703LLVMTypeRef LLVMStructTypeInContext(LLVMContextRef C, LLVMTypeRef *ElementTypes,
704 unsigned ElementCount, LLVMBool Packed) {
705 ArrayRef<Type*> Tys(unwrap(ElementTypes), ElementCount);
706 return wrap(StructType::get(*unwrap(C), Tys, Packed != 0));
707}
708
709LLVMTypeRef LLVMStructType(LLVMTypeRef *ElementTypes,
710 unsigned ElementCount, LLVMBool Packed) {
711 return LLVMStructTypeInContext(LLVMGetGlobalContext(), ElementTypes,
712 ElementCount, Packed);
713}
714
715LLVMTypeRef LLVMStructCreateNamed(LLVMContextRef C, const char *Name)
716{
717 return wrap(StructType::create(*unwrap(C), Name));
718}
719
720const char *LLVMGetStructName(LLVMTypeRef Ty)
721{
722 StructType *Type = unwrap<StructType>(Ty);
723 if (!Type->hasName())
724 return nullptr;
725 return Type->getName().data();
726}
727
728void LLVMStructSetBody(LLVMTypeRef StructTy, LLVMTypeRef *ElementTypes,
729 unsigned ElementCount, LLVMBool Packed) {
730 ArrayRef<Type*> Tys(unwrap(ElementTypes), ElementCount);
731 unwrap<StructType>(StructTy)->setBody(Tys, Packed != 0);
732}
733
734unsigned LLVMCountStructElementTypes(LLVMTypeRef StructTy) {
735 return unwrap<StructType>(StructTy)->getNumElements();
736}
737
738void LLVMGetStructElementTypes(LLVMTypeRef StructTy, LLVMTypeRef *Dest) {
739 StructType *Ty = unwrap<StructType>(StructTy);
740 for (Type *T : Ty->elements())
741 *Dest++ = wrap(T);
742}
743
744LLVMTypeRef LLVMStructGetTypeAtIndex(LLVMTypeRef StructTy, unsigned i) {
745 StructType *Ty = unwrap<StructType>(StructTy);
746 return wrap(Ty->getTypeAtIndex(i));
747}
748
749LLVMBool LLVMIsPackedStruct(LLVMTypeRef StructTy) {
750 return unwrap<StructType>(StructTy)->isPacked();
751}
752
753LLVMBool LLVMIsOpaqueStruct(LLVMTypeRef StructTy) {
754 return unwrap<StructType>(StructTy)->isOpaque();
755}
756
757LLVMBool LLVMIsLiteralStruct(LLVMTypeRef StructTy) {
758 return unwrap<StructType>(StructTy)->isLiteral();
759}
760
761LLVMTypeRef LLVMGetTypeByName(LLVMModuleRef M, const char *Name) {
762 return wrap(StructType::getTypeByName(unwrap(M)->getContext(), Name));
763}
764
765LLVMTypeRef LLVMGetTypeByName2(LLVMContextRef C, const char *Name) {
766 return wrap(StructType::getTypeByName(*unwrap(C), Name));
767}
768
769/*--.. Operations on array, pointer, and vector types (sequence types) .....--*/
770
771void LLVMGetSubtypes(LLVMTypeRef Tp, LLVMTypeRef *Arr) {
772 int i = 0;
773 for (auto *T : unwrap(Tp)->subtypes()) {
774 Arr[i] = wrap(T);
775 i++;
776 }
777}
778
779LLVMTypeRef LLVMArrayType(LLVMTypeRef ElementType, unsigned ElementCount) {
780 return wrap(ArrayType::get(unwrap(ElementType), ElementCount));
781}
782
783LLVMTypeRef LLVMPointerType(LLVMTypeRef ElementType, unsigned AddressSpace) {
784 return wrap(PointerType::get(unwrap(ElementType), AddressSpace));
785}
786
787LLVMTypeRef LLVMVectorType(LLVMTypeRef ElementType, unsigned ElementCount) {
788 return wrap(FixedVectorType::get(unwrap(ElementType), ElementCount));
789}
790
791LLVMTypeRef LLVMScalableVectorType(LLVMTypeRef ElementType,
792 unsigned ElementCount) {
793 return wrap(ScalableVectorType::get(unwrap(ElementType), ElementCount));
794}
795
796LLVMTypeRef LLVMGetElementType(LLVMTypeRef WrappedTy) {
797 auto *Ty = unwrap<Type>(WrappedTy);
798 if (auto *PTy = dyn_cast<PointerType>(Ty))
799 return wrap(PTy->getElementType());
800 if (auto *ATy = dyn_cast<ArrayType>(Ty))
801 return wrap(ATy->getElementType());
802 return wrap(cast<VectorType>(Ty)->getElementType());
803}
804
805unsigned LLVMGetNumContainedTypes(LLVMTypeRef Tp) {
806 return unwrap(Tp)->getNumContainedTypes();
807}
808
809unsigned LLVMGetArrayLength(LLVMTypeRef ArrayTy) {
810 return unwrap<ArrayType>(ArrayTy)->getNumElements();
811}
812
813unsigned LLVMGetPointerAddressSpace(LLVMTypeRef PointerTy) {
814 return unwrap<PointerType>(PointerTy)->getAddressSpace();
815}
816
817unsigned LLVMGetVectorSize(LLVMTypeRef VectorTy) {
818 return unwrap<VectorType>(VectorTy)->getElementCount().getKnownMinValue();
819}
820
821/*--.. Operations on other types ...........................................--*/
822
823LLVMTypeRef LLVMVoidTypeInContext(LLVMContextRef C) {
824 return wrap(Type::getVoidTy(*unwrap(C)));
825}
826LLVMTypeRef LLVMLabelTypeInContext(LLVMContextRef C) {
827 return wrap(Type::getLabelTy(*unwrap(C)));
828}
829LLVMTypeRef LLVMTokenTypeInContext(LLVMContextRef C) {
830 return wrap(Type::getTokenTy(*unwrap(C)));
831}
832LLVMTypeRef LLVMMetadataTypeInContext(LLVMContextRef C) {
833 return wrap(Type::getMetadataTy(*unwrap(C)));
834}
835
836LLVMTypeRef LLVMVoidType(void) {
837 return LLVMVoidTypeInContext(LLVMGetGlobalContext());
838}
839LLVMTypeRef LLVMLabelType(void) {
840 return LLVMLabelTypeInContext(LLVMGetGlobalContext());
841}
842
843/*===-- Operations on values ----------------------------------------------===*/
844
845/*--.. Operations on all values ............................................--*/
846
847LLVMTypeRef LLVMTypeOf(LLVMValueRef Val) {
848 return wrap(unwrap(Val)->getType());
849}
850
851LLVMValueKind LLVMGetValueKind(LLVMValueRef Val) {
852 switch(unwrap(Val)->getValueID()) {
853#define LLVM_C_API 1
854#define HANDLE_VALUE(Name) \
855 case Value::Name##Val: \
856 return LLVM##Name##ValueKind;
857#include "llvm/IR/Value.def"
858 default:
859 return LLVMInstructionValueKind;
860 }
861}
862
863const char *LLVMGetValueName2(LLVMValueRef Val, size_t *Length) {
864 auto *V = unwrap(Val);
865 *Length = V->getName().size();
866 return V->getName().data();
867}
868
869void LLVMSetValueName2(LLVMValueRef Val, const char *Name, size_t NameLen) {
870 unwrap(Val)->setName(StringRef(Name, NameLen));
871}
872
873const char *LLVMGetValueName(LLVMValueRef Val) {
874 return unwrap(Val)->getName().data();
875}
876
877void LLVMSetValueName(LLVMValueRef Val, const char *Name) {
878 unwrap(Val)->setName(Name);
879}
880
881void LLVMDumpValue(LLVMValueRef Val) {
882 unwrap(Val)->print(errs(), /*IsForDebug=*/true);
883}
884
885char* LLVMPrintValueToString(LLVMValueRef Val) {
886 std::string buf;
887 raw_string_ostream os(buf);
888
889 if (unwrap(Val))
890 unwrap(Val)->print(os);
891 else
892 os << "Printing <null> Value";
893
894 os.flush();
895
896 return strdup(buf.c_str());
897}
898
899void LLVMReplaceAllUsesWith(LLVMValueRef OldVal, LLVMValueRef NewVal) {
900 unwrap(OldVal)->replaceAllUsesWith(unwrap(NewVal));
901}
902
903int LLVMHasMetadata(LLVMValueRef Inst) {
904 return unwrap<Instruction>(Inst)->hasMetadata();
905}
906
907LLVMValueRef LLVMGetMetadata(LLVMValueRef Inst, unsigned KindID) {
908 auto *I = unwrap<Instruction>(Inst);
909 assert(I && "Expected instruction")((void)0);
910 if (auto *MD = I->getMetadata(KindID))
911 return wrap(MetadataAsValue::get(I->getContext(), MD));
912 return nullptr;
913}
914
915// MetadataAsValue uses a canonical format which strips the actual MDNode for
916// MDNode with just a single constant value, storing just a ConstantAsMetadata
917// This undoes this canonicalization, reconstructing the MDNode.
918static MDNode *extractMDNode(MetadataAsValue *MAV) {
919 Metadata *MD = MAV->getMetadata();
920 assert((isa<MDNode>(MD) || isa<ConstantAsMetadata>(MD)) &&((void)0)
921 "Expected a metadata node or a canonicalized constant")((void)0);
922
923 if (MDNode *N = dyn_cast<MDNode>(MD))
924 return N;
925
926 return MDNode::get(MAV->getContext(), MD);
927}
928
929void LLVMSetMetadata(LLVMValueRef Inst, unsigned KindID, LLVMValueRef Val) {
930 MDNode *N = Val ? extractMDNode(unwrap<MetadataAsValue>(Val)) : nullptr;
931
932 unwrap<Instruction>(Inst)->setMetadata(KindID, N);
933}
934
935struct LLVMOpaqueValueMetadataEntry {
936 unsigned Kind;
937 LLVMMetadataRef Metadata;
938};
939
940using MetadataEntries = SmallVectorImpl<std::pair<unsigned, MDNode *>>;
941static LLVMValueMetadataEntry *
942llvm_getMetadata(size_t *NumEntries,
943 llvm::function_ref<void(MetadataEntries &)> AccessMD) {
944 SmallVector<std::pair<unsigned, MDNode *>, 8> MVEs;
945 AccessMD(MVEs);
946
947 LLVMOpaqueValueMetadataEntry *Result =
948 static_cast<LLVMOpaqueValueMetadataEntry *>(
949 safe_malloc(MVEs.size() * sizeof(LLVMOpaqueValueMetadataEntry)));
950 for (unsigned i = 0; i < MVEs.size(); ++i) {
951 const auto &ModuleFlag = MVEs[i];
952 Result[i].Kind = ModuleFlag.first;
953 Result[i].Metadata = wrap(ModuleFlag.second);
954 }
955 *NumEntries = MVEs.size();
956 return Result;
957}
958
959LLVMValueMetadataEntry *
960LLVMInstructionGetAllMetadataOtherThanDebugLoc(LLVMValueRef Value,
961 size_t *NumEntries) {
962 return llvm_getMetadata(NumEntries, [&Value](MetadataEntries &Entries) {
963 Entries.clear();
964 unwrap<Instruction>(Value)->getAllMetadata(Entries);
965 });
966}
967
968/*--.. Conversion functions ................................................--*/
969
970#define LLVM_DEFINE_VALUE_CAST(name)LLVMValueRef LLVMIsAname(LLVMValueRef Val) { return wrap(static_cast
<Value*>(dyn_cast_or_null<name>(unwrap(Val)))); }
\
971 LLVMValueRef LLVMIsA##name(LLVMValueRef Val) { \
972 return wrap(static_cast<Value*>(dyn_cast_or_null<name>(unwrap(Val)))); \
973 }
974
975LLVM_FOR_EACH_VALUE_SUBCLASS(LLVM_DEFINE_VALUE_CAST)LLVMValueRef LLVMIsAArgument(LLVMValueRef Val) { return wrap(
static_cast<Value*>(dyn_cast_or_null<Argument>(unwrap
(Val)))); } LLVMValueRef LLVMIsABasicBlock(LLVMValueRef Val) {
return wrap(static_cast<Value*>(dyn_cast_or_null<BasicBlock
>(unwrap(Val)))); } LLVMValueRef LLVMIsAInlineAsm(LLVMValueRef
Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<InlineAsm>(unwrap(Val)))); } LLVMValueRef LLVMIsAUser(
LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<User>(unwrap(Val)))); } LLVMValueRef LLVMIsAConstant(LLVMValueRef
Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<Constant>(unwrap(Val)))); } LLVMValueRef LLVMIsABlockAddress
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<BlockAddress>(unwrap(Val)))); } LLVMValueRef LLVMIsAConstantAggregateZero
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ConstantAggregateZero>(unwrap(Val)))); } LLVMValueRef LLVMIsAConstantArray
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ConstantArray>(unwrap(Val)))); } LLVMValueRef LLVMIsAConstantDataSequential
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ConstantDataSequential>(unwrap(Val)))); } LLVMValueRef
LLVMIsAConstantDataArray(LLVMValueRef Val) { return wrap(static_cast
<Value*>(dyn_cast_or_null<ConstantDataArray>(unwrap
(Val)))); } LLVMValueRef LLVMIsAConstantDataVector(LLVMValueRef
Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ConstantDataVector>(unwrap(Val)))); } LLVMValueRef LLVMIsAConstantExpr
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ConstantExpr>(unwrap(Val)))); } LLVMValueRef LLVMIsAConstantFP
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ConstantFP>(unwrap(Val)))); } LLVMValueRef LLVMIsAConstantInt
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ConstantInt>(unwrap(Val)))); } LLVMValueRef LLVMIsAConstantPointerNull
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ConstantPointerNull>(unwrap(Val)))); } LLVMValueRef LLVMIsAConstantStruct
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ConstantStruct>(unwrap(Val)))); } LLVMValueRef LLVMIsAConstantTokenNone
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ConstantTokenNone>(unwrap(Val)))); } LLVMValueRef LLVMIsAConstantVector
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ConstantVector>(unwrap(Val)))); } LLVMValueRef LLVMIsAGlobalValue
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<GlobalValue>(unwrap(Val)))); } LLVMValueRef LLVMIsAGlobalAlias
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<GlobalAlias>(unwrap(Val)))); } LLVMValueRef LLVMIsAGlobalIFunc
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<GlobalIFunc>(unwrap(Val)))); } LLVMValueRef LLVMIsAGlobalObject
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<GlobalObject>(unwrap(Val)))); } LLVMValueRef LLVMIsAFunction
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<Function>(unwrap(Val)))); } LLVMValueRef LLVMIsAGlobalVariable
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<GlobalVariable>(unwrap(Val)))); } LLVMValueRef LLVMIsAUndefValue
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<UndefValue>(unwrap(Val)))); } LLVMValueRef LLVMIsAPoisonValue
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<PoisonValue>(unwrap(Val)))); } LLVMValueRef LLVMIsAInstruction
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<Instruction>(unwrap(Val)))); } LLVMValueRef LLVMIsAUnaryOperator
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<UnaryOperator>(unwrap(Val)))); } LLVMValueRef LLVMIsABinaryOperator
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<BinaryOperator>(unwrap(Val)))); } LLVMValueRef LLVMIsACallInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<CallInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAIntrinsicInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<IntrinsicInst>(unwrap(Val)))); } LLVMValueRef LLVMIsADbgInfoIntrinsic
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<DbgInfoIntrinsic>(unwrap(Val)))); } LLVMValueRef LLVMIsADbgVariableIntrinsic
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<DbgVariableIntrinsic>(unwrap(Val)))); } LLVMValueRef LLVMIsADbgDeclareInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<DbgDeclareInst>(unwrap(Val)))); } LLVMValueRef LLVMIsADbgLabelInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<DbgLabelInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAMemIntrinsic
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<MemIntrinsic>(unwrap(Val)))); } LLVMValueRef LLVMIsAMemCpyInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<MemCpyInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAMemMoveInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<MemMoveInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAMemSetInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<MemSetInst>(unwrap(Val)))); } LLVMValueRef LLVMIsACmpInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<CmpInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAFCmpInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<FCmpInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAICmpInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ICmpInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAExtractElementInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ExtractElementInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAGetElementPtrInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<GetElementPtrInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAInsertElementInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<InsertElementInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAInsertValueInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<InsertValueInst>(unwrap(Val)))); } LLVMValueRef LLVMIsALandingPadInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<LandingPadInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAPHINode
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<PHINode>(unwrap(Val)))); } LLVMValueRef LLVMIsASelectInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<SelectInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAShuffleVectorInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ShuffleVectorInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAStoreInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<StoreInst>(unwrap(Val)))); } LLVMValueRef LLVMIsABranchInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<BranchInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAIndirectBrInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<IndirectBrInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAInvokeInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<InvokeInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAReturnInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ReturnInst>(unwrap(Val)))); } LLVMValueRef LLVMIsASwitchInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<SwitchInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAUnreachableInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<UnreachableInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAResumeInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ResumeInst>(unwrap(Val)))); } LLVMValueRef LLVMIsACleanupReturnInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<CleanupReturnInst>(unwrap(Val)))); } LLVMValueRef LLVMIsACatchReturnInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<CatchReturnInst>(unwrap(Val)))); } LLVMValueRef LLVMIsACatchSwitchInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<CatchSwitchInst>(unwrap(Val)))); } LLVMValueRef LLVMIsACallBrInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<CallBrInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAFuncletPadInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<FuncletPadInst>(unwrap(Val)))); } LLVMValueRef LLVMIsACatchPadInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<CatchPadInst>(unwrap(Val)))); } LLVMValueRef LLVMIsACleanupPadInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<CleanupPadInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAUnaryInstruction
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<UnaryInstruction>(unwrap(Val)))); } LLVMValueRef LLVMIsAAllocaInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<AllocaInst>(unwrap(Val)))); } LLVMValueRef LLVMIsACastInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<CastInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAAddrSpaceCastInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<AddrSpaceCastInst>(unwrap(Val)))); } LLVMValueRef LLVMIsABitCastInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<BitCastInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAFPExtInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<FPExtInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAFPToSIInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<FPToSIInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAFPToUIInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<FPToUIInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAFPTruncInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<FPTruncInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAIntToPtrInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<IntToPtrInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAPtrToIntInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<PtrToIntInst>(unwrap(Val)))); } LLVMValueRef LLVMIsASExtInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<SExtInst>(unwrap(Val)))); } LLVMValueRef LLVMIsASIToFPInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<SIToFPInst>(unwrap(Val)))); } LLVMValueRef LLVMIsATruncInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<TruncInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAUIToFPInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<UIToFPInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAZExtInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ZExtInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAExtractValueInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<ExtractValueInst>(unwrap(Val)))); } LLVMValueRef LLVMIsALoadInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<LoadInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAVAArgInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<VAArgInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAFreezeInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<FreezeInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAAtomicCmpXchgInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<AtomicCmpXchgInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAAtomicRMWInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<AtomicRMWInst>(unwrap(Val)))); } LLVMValueRef LLVMIsAFenceInst
(LLVMValueRef Val) { return wrap(static_cast<Value*>(dyn_cast_or_null
<FenceInst>(unwrap(Val)))); }
976
977LLVMValueRef LLVMIsAMDNode(LLVMValueRef Val) {
978 if (auto *MD = dyn_cast_or_null<MetadataAsValue>(unwrap(Val)))
979 if (isa<MDNode>(MD->getMetadata()) ||
980 isa<ValueAsMetadata>(MD->getMetadata()))
981 return Val;
982 return nullptr;
983}
984
985LLVMValueRef LLVMIsAMDString(LLVMValueRef Val) {
986 if (auto *MD = dyn_cast_or_null<MetadataAsValue>(unwrap(Val)))
987 if (isa<MDString>(MD->getMetadata()))
988 return Val;
989 return nullptr;
990}
991
992/*--.. Operations on Uses ..................................................--*/
993LLVMUseRef LLVMGetFirstUse(LLVMValueRef Val) {
994 Value *V = unwrap(Val);
995 Value::use_iterator I = V->use_begin();
996 if (I == V->use_end())
997 return nullptr;
998 return wrap(&*I);
999}
1000
1001LLVMUseRef LLVMGetNextUse(LLVMUseRef U) {
1002 Use *Next = unwrap(U)->getNext();
1003 if (Next)
1004 return wrap(Next);
1005 return nullptr;
1006}
1007
1008LLVMValueRef LLVMGetUser(LLVMUseRef U) {
1009 return wrap(unwrap(U)->getUser());
1010}
1011
1012LLVMValueRef LLVMGetUsedValue(LLVMUseRef U) {
1013 return wrap(unwrap(U)->get());
1014}
1015
1016/*--.. Operations on Users .................................................--*/
1017
1018static LLVMValueRef getMDNodeOperandImpl(LLVMContext &Context, const MDNode *N,
1019 unsigned Index) {
1020 Metadata *Op = N->getOperand(Index);
1021 if (!Op)
1022 return nullptr;
1023 if (auto *C = dyn_cast<ConstantAsMetadata>(Op))
1024 return wrap(C->getValue());
1025 return wrap(MetadataAsValue::get(Context, Op));
1026}
1027
1028LLVMValueRef LLVMGetOperand(LLVMValueRef Val, unsigned Index) {
1029 Value *V = unwrap(Val);
1030 if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
1031 if (auto *L = dyn_cast<ValueAsMetadata>(MD->getMetadata())) {
1032 assert(Index == 0 && "Function-local metadata can only have one operand")((void)0);
1033 return wrap(L->getValue());
1034 }
1035 return getMDNodeOperandImpl(V->getContext(),
1036 cast<MDNode>(MD->getMetadata()), Index);
1037 }
1038
1039 return wrap(cast<User>(V)->getOperand(Index));
1040}
1041
1042LLVMUseRef LLVMGetOperandUse(LLVMValueRef Val, unsigned Index) {
1043 Value *V = unwrap(Val);
1044 return wrap(&cast<User>(V)->getOperandUse(Index));
1045}
1046
1047void LLVMSetOperand(LLVMValueRef Val, unsigned Index, LLVMValueRef Op) {
1048 unwrap<User>(Val)->setOperand(Index, unwrap(Op));
1049}
1050
1051int LLVMGetNumOperands(LLVMValueRef Val) {
1052 Value *V = unwrap(Val);
1053 if (isa<MetadataAsValue>(V))
1054 return LLVMGetMDNodeNumOperands(Val);
1055
1056 return cast<User>(V)->getNumOperands();
1057}
1058
1059/*--.. Operations on constants of any type .................................--*/
1060
1061LLVMValueRef LLVMConstNull(LLVMTypeRef Ty) {
1062 return wrap(Constant::getNullValue(unwrap(Ty)));
1063}
1064
1065LLVMValueRef LLVMConstAllOnes(LLVMTypeRef Ty) {
1066 return wrap(Constant::getAllOnesValue(unwrap(Ty)));
1067}
1068
1069LLVMValueRef LLVMGetUndef(LLVMTypeRef Ty) {
1070 return wrap(UndefValue::get(unwrap(Ty)));
1071}
1072
1073LLVMValueRef LLVMGetPoison(LLVMTypeRef Ty) {
1074 return wrap(PoisonValue::get(unwrap(Ty)));
1075}
1076
1077LLVMBool LLVMIsConstant(LLVMValueRef Ty) {
1078 return isa<Constant>(unwrap(Ty));
1079}
1080
1081LLVMBool LLVMIsNull(LLVMValueRef Val) {
1082 if (Constant *C = dyn_cast<Constant>(unwrap(Val)))
1083 return C->isNullValue();
1084 return false;
1085}
1086
1087LLVMBool LLVMIsUndef(LLVMValueRef Val) {
1088 return isa<UndefValue>(unwrap(Val));
1089}
1090
1091LLVMBool LLVMIsPoison(LLVMValueRef Val) {
1092 return isa<PoisonValue>(unwrap(Val));
1093}
1094
1095LLVMValueRef LLVMConstPointerNull(LLVMTypeRef Ty) {
1096 return wrap(ConstantPointerNull::get(unwrap<PointerType>(Ty)));
1097}
1098
1099/*--.. Operations on metadata nodes ........................................--*/
1100
1101LLVMMetadataRef LLVMMDStringInContext2(LLVMContextRef C, const char *Str,
1102 size_t SLen) {
1103 return wrap(MDString::get(*unwrap(C), StringRef(Str, SLen)));
1104}
1105
1106LLVMMetadataRef LLVMMDNodeInContext2(LLVMContextRef C, LLVMMetadataRef *MDs,
1107 size_t Count) {
1108 return wrap(MDNode::get(*unwrap(C), ArrayRef<Metadata*>(unwrap(MDs), Count)));
1109}
1110
1111LLVMValueRef LLVMMDStringInContext(LLVMContextRef C, const char *Str,
1112 unsigned SLen) {
1113 LLVMContext &Context = *unwrap(C);
1114 return wrap(MetadataAsValue::get(
1115 Context, MDString::get(Context, StringRef(Str, SLen))));
1116}
1117
1118LLVMValueRef LLVMMDString(const char *Str, unsigned SLen) {
1119 return LLVMMDStringInContext(LLVMGetGlobalContext(), Str, SLen);
1120}
1121
1122LLVMValueRef LLVMMDNodeInContext(LLVMContextRef C, LLVMValueRef *Vals,
1123 unsigned Count) {
1124 LLVMContext &Context = *unwrap(C);
1125 SmallVector<Metadata *, 8> MDs;
1126 for (auto *OV : makeArrayRef(Vals, Count)) {
1127 Value *V = unwrap(OV);
1128 Metadata *MD;
1129 if (!V)
1130 MD = nullptr;
1131 else if (auto *C = dyn_cast<Constant>(V))
1132 MD = ConstantAsMetadata::get(C);
1133 else if (auto *MDV = dyn_cast<MetadataAsValue>(V)) {
1134 MD = MDV->getMetadata();
1135 assert(!isa<LocalAsMetadata>(MD) && "Unexpected function-local metadata "((void)0)
1136 "outside of direct argument to call")((void)0);
1137 } else {
1138 // This is function-local metadata. Pretend to make an MDNode.
1139 assert(Count == 1 &&((void)0)
1140 "Expected only one operand to function-local metadata")((void)0);
1141 return wrap(MetadataAsValue::get(Context, LocalAsMetadata::get(V)));
1142 }
1143
1144 MDs.push_back(MD);
1145 }
1146 return wrap(MetadataAsValue::get(Context, MDNode::get(Context, MDs)));
1147}
1148
1149LLVMValueRef LLVMMDNode(LLVMValueRef *Vals, unsigned Count) {
1150 return LLVMMDNodeInContext(LLVMGetGlobalContext(), Vals, Count);
1151}
1152
1153LLVMValueRef LLVMMetadataAsValue(LLVMContextRef C, LLVMMetadataRef MD) {
1154 return wrap(MetadataAsValue::get(*unwrap(C), unwrap(MD)));
1155}
1156
1157LLVMMetadataRef LLVMValueAsMetadata(LLVMValueRef Val) {
1158 auto *V = unwrap(Val);
1159 if (auto *C = dyn_cast<Constant>(V))
1160 return wrap(ConstantAsMetadata::get(C));
1161 if (auto *MAV = dyn_cast<MetadataAsValue>(V))
1162 return wrap(MAV->getMetadata());
1163 return wrap(ValueAsMetadata::get(V));
1164}
1165
1166const char *LLVMGetMDString(LLVMValueRef V, unsigned *Length) {
1167 if (const auto *MD = dyn_cast<MetadataAsValue>(unwrap(V)))
1168 if (const MDString *S = dyn_cast<MDString>(MD->getMetadata())) {
1169 *Length = S->getString().size();
1170 return S->getString().data();
1171 }
1172 *Length = 0;
1173 return nullptr;
1174}
1175
1176unsigned LLVMGetMDNodeNumOperands(LLVMValueRef V) {
1177 auto *MD = cast<MetadataAsValue>(unwrap(V));
1178 if (isa<ValueAsMetadata>(MD->getMetadata()))
1179 return 1;
1180 return cast<MDNode>(MD->getMetadata())->getNumOperands();
1181}
1182
1183LLVMNamedMDNodeRef LLVMGetFirstNamedMetadata(LLVMModuleRef M) {
1184 Module *Mod = unwrap(M);
1185 Module::named_metadata_iterator I = Mod->named_metadata_begin();
1186 if (I == Mod->named_metadata_end())
1187 return nullptr;
1188 return wrap(&*I);
1189}
1190
1191LLVMNamedMDNodeRef LLVMGetLastNamedMetadata(LLVMModuleRef M) {
1192 Module *Mod = unwrap(M);
1193 Module::named_metadata_iterator I = Mod->named_metadata_end();
1194 if (I == Mod->named_metadata_begin())
1195 return nullptr;
1196 return wrap(&*--I);
1197}
1198
1199LLVMNamedMDNodeRef LLVMGetNextNamedMetadata(LLVMNamedMDNodeRef NMD) {
1200 NamedMDNode *NamedNode = unwrap<NamedMDNode>(NMD);
1201 Module::named_metadata_iterator I(NamedNode);
1202 if (++I == NamedNode->getParent()->named_metadata_end())
1203 return nullptr;
1204 return wrap(&*I);
1205}
1206
1207LLVMNamedMDNodeRef LLVMGetPreviousNamedMetadata(LLVMNamedMDNodeRef NMD) {
1208 NamedMDNode *NamedNode = unwrap<NamedMDNode>(NMD);
1209 Module::named_metadata_iterator I(NamedNode);
1210 if (I == NamedNode->getParent()->named_metadata_begin())
1211 return nullptr;
1212 return wrap(&*--I);
1213}
1214
1215LLVMNamedMDNodeRef LLVMGetNamedMetadata(LLVMModuleRef M,
1216 const char *Name, size_t NameLen) {
1217 return wrap(unwrap(M)->getNamedMetadata(StringRef(Name, NameLen)));
1218}
1219
1220LLVMNamedMDNodeRef LLVMGetOrInsertNamedMetadata(LLVMModuleRef M,
1221 const char *Name, size_t NameLen) {
1222 return wrap(unwrap(M)->getOrInsertNamedMetadata({Name, NameLen}));
1223}
1224
1225const char *LLVMGetNamedMetadataName(LLVMNamedMDNodeRef NMD, size_t *NameLen) {
1226 NamedMDNode *NamedNode = unwrap<NamedMDNode>(NMD);
1227 *NameLen = NamedNode->getName().size();
1228 return NamedNode->getName().data();
1229}
1230
1231void LLVMGetMDNodeOperands(LLVMValueRef V, LLVMValueRef *Dest) {
1232 auto *MD = cast<MetadataAsValue>(unwrap(V));
1233 if (auto *MDV = dyn_cast<ValueAsMetadata>(MD->getMetadata())) {
1234 *Dest = wrap(MDV->getValue());
1235 return;
1236 }
1237 const auto *N = cast<MDNode>(MD->getMetadata());
1238 const unsigned numOperands = N->getNumOperands();
1239 LLVMContext &Context = unwrap(V)->getContext();
1240 for (unsigned i = 0; i < numOperands; i++)
1241 Dest[i] = getMDNodeOperandImpl(Context, N, i);
1242}
1243
1244unsigned LLVMGetNamedMetadataNumOperands(LLVMModuleRef M, const char *Name) {
1245 if (NamedMDNode *N = unwrap(M)->getNamedMetadata(Name)) {
1246 return N->getNumOperands();
1247 }
1248 return 0;
1249}
1250
1251void LLVMGetNamedMetadataOperands(LLVMModuleRef M, const char *Name,
1252 LLVMValueRef *Dest) {
1253 NamedMDNode *N = unwrap(M)->getNamedMetadata(Name);
1254 if (!N)
1255 return;
1256 LLVMContext &Context = unwrap(M)->getContext();
1257 for (unsigned i=0;i<N->getNumOperands();i++)
1258 Dest[i] = wrap(MetadataAsValue::get(Context, N->getOperand(i)));
1259}
1260
1261void LLVMAddNamedMetadataOperand(LLVMModuleRef M, const char *Name,
1262 LLVMValueRef Val) {
1263 NamedMDNode *N = unwrap(M)->getOrInsertNamedMetadata(Name);
1264 if (!N)
1265 return;
1266 if (!Val)
1267 return;
1268 N->addOperand(extractMDNode(unwrap<MetadataAsValue>(Val)));
1269}
1270
1271const char *LLVMGetDebugLocDirectory(LLVMValueRef Val, unsigned *Length) {
1272 if (!Length) return nullptr;
1273 StringRef S;
1274 if (const auto *I = dyn_cast<Instruction>(unwrap(Val))) {
1275 if (const auto &DL = I->getDebugLoc()) {
1276 S = DL->getDirectory();
1277 }
1278 } else if (const auto *GV = dyn_cast<GlobalVariable>(unwrap(Val))) {
1279 SmallVector<DIGlobalVariableExpression *, 1> GVEs;
1280 GV->getDebugInfo(GVEs);
1281 if (GVEs.size())
1282 if (const DIGlobalVariable *DGV = GVEs[0]->getVariable())
1283 S = DGV->getDirectory();
1284 } else if (const auto *F = dyn_cast<Function>(unwrap(Val))) {
1285 if (const DISubprogram *DSP = F->getSubprogram())
1286 S = DSP->getDirectory();
1287 } else {
1288 assert(0 && "Expected Instruction, GlobalVariable or Function")((void)0);
1289 return nullptr;
1290 }
1291 *Length = S.size();
1292 return S.data();
1293}
1294
1295const char *LLVMGetDebugLocFilename(LLVMValueRef Val, unsigned *Length) {
1296 if (!Length) return nullptr;
1297 StringRef S;
1298 if (const auto *I = dyn_cast<Instruction>(unwrap(Val))) {
1299 if (const auto &DL = I->getDebugLoc()) {
1300 S = DL->getFilename();
1301 }
1302 } else if (const auto *GV = dyn_cast<GlobalVariable>(unwrap(Val))) {
1303 SmallVector<DIGlobalVariableExpression *, 1> GVEs;
1304 GV->getDebugInfo(GVEs);
1305 if (GVEs.size())
1306 if (const DIGlobalVariable *DGV = GVEs[0]->getVariable())
1307 S = DGV->getFilename();
1308 } else if (const auto *F = dyn_cast<Function>(unwrap(Val))) {
1309 if (const DISubprogram *DSP = F->getSubprogram())
1310 S = DSP->getFilename();
1311 } else {
1312 assert(0 && "Expected Instruction, GlobalVariable or Function")((void)0);
1313 return nullptr;
1314 }
1315 *Length = S.size();
1316 return S.data();
1317}
1318
1319unsigned LLVMGetDebugLocLine(LLVMValueRef Val) {
1320 unsigned L = 0;
1321 if (const auto *I = dyn_cast<Instruction>(unwrap(Val))) {
1322 if (const auto &DL = I->getDebugLoc()) {
1323 L = DL->getLine();
1324 }
1325 } else if (const auto *GV = dyn_cast<GlobalVariable>(unwrap(Val))) {
1326 SmallVector<DIGlobalVariableExpression *, 1> GVEs;
1327 GV->getDebugInfo(GVEs);
1328 if (GVEs.size())
1329 if (const DIGlobalVariable *DGV = GVEs[0]->getVariable())
1330 L = DGV->getLine();
1331 } else if (const auto *F = dyn_cast<Function>(unwrap(Val))) {
1332 if (const DISubprogram *DSP = F->getSubprogram())
1333 L = DSP->getLine();
1334 } else {
1335 assert(0 && "Expected Instruction, GlobalVariable or Function")((void)0);
1336 return -1;
1337 }
1338 return L;
1339}
1340
1341unsigned LLVMGetDebugLocColumn(LLVMValueRef Val) {
1342 unsigned C = 0;
1343 if (const auto *I = dyn_cast<Instruction>(unwrap(Val)))
1344 if (const auto &DL = I->getDebugLoc())
1345 C = DL->getColumn();
1346 return C;
1347}
1348
1349/*--.. Operations on scalar constants ......................................--*/
1350
1351LLVMValueRef LLVMConstInt(LLVMTypeRef IntTy, unsigned long long N,
1352 LLVMBool SignExtend) {
1353 return wrap(ConstantInt::get(unwrap<IntegerType>(IntTy), N, SignExtend != 0));
1354}
1355
1356LLVMValueRef LLVMConstIntOfArbitraryPrecision(LLVMTypeRef IntTy,
1357 unsigned NumWords,
1358 const uint64_t Words[]) {
1359 IntegerType *Ty = unwrap<IntegerType>(IntTy);
1360 return wrap(ConstantInt::get(Ty->getContext(),
1361 APInt(Ty->getBitWidth(),
1362 makeArrayRef(Words, NumWords))));
1363}
1364
1365LLVMValueRef LLVMConstIntOfString(LLVMTypeRef IntTy, const char Str[],
1366 uint8_t Radix) {
1367 return wrap(ConstantInt::get(unwrap<IntegerType>(IntTy), StringRef(Str),
1368 Radix));
1369}
1370
1371LLVMValueRef LLVMConstIntOfStringAndSize(LLVMTypeRef IntTy, const char Str[],
1372 unsigned SLen, uint8_t Radix) {
1373 return wrap(ConstantInt::get(unwrap<IntegerType>(IntTy), StringRef(Str, SLen),
1374 Radix));
1375}
1376
1377LLVMValueRef LLVMConstReal(LLVMTypeRef RealTy, double N) {
1378 return wrap(ConstantFP::get(unwrap(RealTy), N));
1379}
1380
1381LLVMValueRef LLVMConstRealOfString(LLVMTypeRef RealTy, const char *Text) {
1382 return wrap(ConstantFP::get(unwrap(RealTy), StringRef(Text)));
1383}
1384
1385LLVMValueRef LLVMConstRealOfStringAndSize(LLVMTypeRef RealTy, const char Str[],
1386 unsigned SLen) {
1387 return wrap(ConstantFP::get(unwrap(RealTy), StringRef(Str, SLen)));
1388}
1389
1390unsigned long long LLVMConstIntGetZExtValue(LLVMValueRef ConstantVal) {
1391 return unwrap<ConstantInt>(ConstantVal)->getZExtValue();
1392}
1393
1394long long LLVMConstIntGetSExtValue(LLVMValueRef ConstantVal) {
1395 return unwrap<ConstantInt>(ConstantVal)->getSExtValue();
1396}
1397
1398double LLVMConstRealGetDouble(LLVMValueRef ConstantVal, LLVMBool *LosesInfo) {
1399 ConstantFP *cFP = unwrap<ConstantFP>(ConstantVal) ;
1400 Type *Ty = cFP->getType();
1401
1402 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
1403 Ty->isDoubleTy()) {
1404 *LosesInfo = false;
1405 return cFP->getValueAPF().convertToDouble();
1406 }
1407
1408 bool APFLosesInfo;
1409 APFloat APF = cFP->getValueAPF();
1410 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &APFLosesInfo);
1411 *LosesInfo = APFLosesInfo;
1412 return APF.convertToDouble();
1413}
1414
1415/*--.. Operations on composite constants ...................................--*/
1416
1417LLVMValueRef LLVMConstStringInContext(LLVMContextRef C, const char *Str,
1418 unsigned Length,
1419 LLVMBool DontNullTerminate) {
1420 /* Inverted the sense of AddNull because ', 0)' is a
1421 better mnemonic for null termination than ', 1)'. */
1422 return wrap(ConstantDataArray::getString(*unwrap(C), StringRef(Str, Length),
1423 DontNullTerminate == 0));
1424}
1425
1426LLVMValueRef LLVMConstString(const char *Str, unsigned Length,
1427 LLVMBool DontNullTerminate) {
1428 return LLVMConstStringInContext(LLVMGetGlobalContext(), Str, Length,
1429 DontNullTerminate);
1430}
1431
1432LLVMValueRef LLVMGetElementAsConstant(LLVMValueRef C, unsigned idx) {
1433 return wrap(unwrap<ConstantDataSequential>(C)->getElementAsConstant(idx));
1434}
1435
1436LLVMBool LLVMIsConstantString(LLVMValueRef C) {
1437 return unwrap<ConstantDataSequential>(C)->isString();
1438}
1439
1440const char *LLVMGetAsString(LLVMValueRef C, size_t *Length) {
1441 StringRef Str = unwrap<ConstantDataSequential>(C)->getAsString();
1442 *Length = Str.size();
1443 return Str.data();
1444}
1445
1446LLVMValueRef LLVMConstArray(LLVMTypeRef ElementTy,
1447 LLVMValueRef *ConstantVals, unsigned Length) {
1448 ArrayRef<Constant*> V(unwrap<Constant>(ConstantVals, Length), Length);
1449 return wrap(ConstantArray::get(ArrayType::get(unwrap(ElementTy), Length), V));
1450}
1451
1452LLVMValueRef LLVMConstStructInContext(LLVMContextRef C,
1453 LLVMValueRef *ConstantVals,
1454 unsigned Count, LLVMBool Packed) {
1455 Constant **Elements = unwrap<Constant>(ConstantVals, Count);
1456 return wrap(ConstantStruct::getAnon(*unwrap(C), makeArrayRef(Elements, Count),
1457 Packed != 0));
1458}
1459
1460LLVMValueRef LLVMConstStruct(LLVMValueRef *ConstantVals, unsigned Count,
1461 LLVMBool Packed) {
1462 return LLVMConstStructInContext(LLVMGetGlobalContext(), ConstantVals, Count,
1463 Packed);
1464}
1465
1466LLVMValueRef LLVMConstNamedStruct(LLVMTypeRef StructTy,
1467 LLVMValueRef *ConstantVals,
1468 unsigned Count) {
1469 Constant **Elements = unwrap<Constant>(ConstantVals, Count);
1470 StructType *Ty = cast<StructType>(unwrap(StructTy));
1471
1472 return wrap(ConstantStruct::get(Ty, makeArrayRef(Elements, Count)));
1473}
1474
1475LLVMValueRef LLVMConstVector(LLVMValueRef *ScalarConstantVals, unsigned Size) {
1476 return wrap(ConstantVector::get(makeArrayRef(
1477 unwrap<Constant>(ScalarConstantVals, Size), Size)));
1478}
1479
1480/*-- Opcode mapping */
1481
1482static LLVMOpcode map_to_llvmopcode(int opcode)
1483{
1484 switch (opcode) {
1485 default: llvm_unreachable("Unhandled Opcode.")__builtin_unreachable();
1486#define HANDLE_INST(num, opc, clas) case num: return LLVM##opc;
1487#include "llvm/IR/Instruction.def"
1488#undef HANDLE_INST
1489 }
1490}
1491
1492static int map_from_llvmopcode(LLVMOpcode code)
1493{
1494 switch (code) {
1495#define HANDLE_INST(num, opc, clas) case LLVM##opc: return num;
1496#include "llvm/IR/Instruction.def"
1497#undef HANDLE_INST
1498 }
1499 llvm_unreachable("Unhandled Opcode.")__builtin_unreachable();
1500}
1501
1502/*--.. Constant expressions ................................................--*/
1503
1504LLVMOpcode LLVMGetConstOpcode(LLVMValueRef ConstantVal) {
1505 return map_to_llvmopcode(unwrap<ConstantExpr>(ConstantVal)->getOpcode());
1506}
1507
1508LLVMValueRef LLVMAlignOf(LLVMTypeRef Ty) {
1509 return wrap(ConstantExpr::getAlignOf(unwrap(Ty)));
1510}
1511
1512LLVMValueRef LLVMSizeOf(LLVMTypeRef Ty) {
1513 return wrap(ConstantExpr::getSizeOf(unwrap(Ty)));
1514}
1515
1516LLVMValueRef LLVMConstNeg(LLVMValueRef ConstantVal) {
1517 return wrap(ConstantExpr::getNeg(unwrap<Constant>(ConstantVal)));
1518}
1519
1520LLVMValueRef LLVMConstNSWNeg(LLVMValueRef ConstantVal) {
1521 return wrap(ConstantExpr::getNSWNeg(unwrap<Constant>(ConstantVal)));
1522}
1523
1524LLVMValueRef LLVMConstNUWNeg(LLVMValueRef ConstantVal) {
1525 return wrap(ConstantExpr::getNUWNeg(unwrap<Constant>(ConstantVal)));
1526}
1527
1528
1529LLVMValueRef LLVMConstFNeg(LLVMValueRef ConstantVal) {
1530 return wrap(ConstantExpr::getFNeg(unwrap<Constant>(ConstantVal)));
1531}
1532
1533LLVMValueRef LLVMConstNot(LLVMValueRef ConstantVal) {
1534 return wrap(ConstantExpr::getNot(unwrap<Constant>(ConstantVal)));
1535}
1536
1537LLVMValueRef LLVMConstAdd(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1538 return wrap(ConstantExpr::getAdd(unwrap<Constant>(LHSConstant),
1539 unwrap<Constant>(RHSConstant)));
1540}
1541
1542LLVMValueRef LLVMConstNSWAdd(LLVMValueRef LHSConstant,
1543 LLVMValueRef RHSConstant) {
1544 return wrap(ConstantExpr::getNSWAdd(unwrap<Constant>(LHSConstant),
1545 unwrap<Constant>(RHSConstant)));
1546}
1547
1548LLVMValueRef LLVMConstNUWAdd(LLVMValueRef LHSConstant,
1549 LLVMValueRef RHSConstant) {
1550 return wrap(ConstantExpr::getNUWAdd(unwrap<Constant>(LHSConstant),
1551 unwrap<Constant>(RHSConstant)));
1552}
1553
1554LLVMValueRef LLVMConstFAdd(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1555 return wrap(ConstantExpr::getFAdd(unwrap<Constant>(LHSConstant),
1556 unwrap<Constant>(RHSConstant)));
1557}
1558
1559LLVMValueRef LLVMConstSub(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1560 return wrap(ConstantExpr::getSub(unwrap<Constant>(LHSConstant),
1561 unwrap<Constant>(RHSConstant)));
1562}
1563
1564LLVMValueRef LLVMConstNSWSub(LLVMValueRef LHSConstant,
1565 LLVMValueRef RHSConstant) {
1566 return wrap(ConstantExpr::getNSWSub(unwrap<Constant>(LHSConstant),
1567 unwrap<Constant>(RHSConstant)));
1568}
1569
1570LLVMValueRef LLVMConstNUWSub(LLVMValueRef LHSConstant,
1571 LLVMValueRef RHSConstant) {
1572 return wrap(ConstantExpr::getNUWSub(unwrap<Constant>(LHSConstant),
1573 unwrap<Constant>(RHSConstant)));
1574}
1575
1576LLVMValueRef LLVMConstFSub(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1577 return wrap(ConstantExpr::getFSub(unwrap<Constant>(LHSConstant),
1578 unwrap<Constant>(RHSConstant)));
1579}
1580
1581LLVMValueRef LLVMConstMul(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1582 return wrap(ConstantExpr::getMul(unwrap<Constant>(LHSConstant),
1583 unwrap<Constant>(RHSConstant)));
1584}
1585
1586LLVMValueRef LLVMConstNSWMul(LLVMValueRef LHSConstant,
1587 LLVMValueRef RHSConstant) {
1588 return wrap(ConstantExpr::getNSWMul(unwrap<Constant>(LHSConstant),
1589 unwrap<Constant>(RHSConstant)));
1590}
1591
1592LLVMValueRef LLVMConstNUWMul(LLVMValueRef LHSConstant,
1593 LLVMValueRef RHSConstant) {
1594 return wrap(ConstantExpr::getNUWMul(unwrap<Constant>(LHSConstant),
1595 unwrap<Constant>(RHSConstant)));
1596}
1597
1598LLVMValueRef LLVMConstFMul(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1599 return wrap(ConstantExpr::getFMul(unwrap<Constant>(LHSConstant),
1600 unwrap<Constant>(RHSConstant)));
1601}
1602
1603LLVMValueRef LLVMConstUDiv(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1604 return wrap(ConstantExpr::getUDiv(unwrap<Constant>(LHSConstant),
1605 unwrap<Constant>(RHSConstant)));
1606}
1607
1608LLVMValueRef LLVMConstExactUDiv(LLVMValueRef LHSConstant,
1609 LLVMValueRef RHSConstant) {
1610 return wrap(ConstantExpr::getExactUDiv(unwrap<Constant>(LHSConstant),
1611 unwrap<Constant>(RHSConstant)));
1612}
1613
1614LLVMValueRef LLVMConstSDiv(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1615 return wrap(ConstantExpr::getSDiv(unwrap<Constant>(LHSConstant),
1616 unwrap<Constant>(RHSConstant)));
1617}
1618
1619LLVMValueRef LLVMConstExactSDiv(LLVMValueRef LHSConstant,
1620 LLVMValueRef RHSConstant) {
1621 return wrap(ConstantExpr::getExactSDiv(unwrap<Constant>(LHSConstant),
1622 unwrap<Constant>(RHSConstant)));
1623}
1624
1625LLVMValueRef LLVMConstFDiv(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1626 return wrap(ConstantExpr::getFDiv(unwrap<Constant>(LHSConstant),
1627 unwrap<Constant>(RHSConstant)));
1628}
1629
1630LLVMValueRef LLVMConstURem(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1631 return wrap(ConstantExpr::getURem(unwrap<Constant>(LHSConstant),
1632 unwrap<Constant>(RHSConstant)));
1633}
1634
1635LLVMValueRef LLVMConstSRem(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1636 return wrap(ConstantExpr::getSRem(unwrap<Constant>(LHSConstant),
1637 unwrap<Constant>(RHSConstant)));
1638}
1639
1640LLVMValueRef LLVMConstFRem(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1641 return wrap(ConstantExpr::getFRem(unwrap<Constant>(LHSConstant),
1642 unwrap<Constant>(RHSConstant)));
1643}
1644
1645LLVMValueRef LLVMConstAnd(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1646 return wrap(ConstantExpr::getAnd(unwrap<Constant>(LHSConstant),
1647 unwrap<Constant>(RHSConstant)));
1648}
1649
1650LLVMValueRef LLVMConstOr(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1651 return wrap(ConstantExpr::getOr(unwrap<Constant>(LHSConstant),
1652 unwrap<Constant>(RHSConstant)));
1653}
1654
1655LLVMValueRef LLVMConstXor(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1656 return wrap(ConstantExpr::getXor(unwrap<Constant>(LHSConstant),
1657 unwrap<Constant>(RHSConstant)));
1658}
1659
1660LLVMValueRef LLVMConstICmp(LLVMIntPredicate Predicate,
1661 LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1662 return wrap(ConstantExpr::getICmp(Predicate,
1663 unwrap<Constant>(LHSConstant),
1664 unwrap<Constant>(RHSConstant)));
1665}
1666
1667LLVMValueRef LLVMConstFCmp(LLVMRealPredicate Predicate,
1668 LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1669 return wrap(ConstantExpr::getFCmp(Predicate,
1670 unwrap<Constant>(LHSConstant),
1671 unwrap<Constant>(RHSConstant)));
1672}
1673
1674LLVMValueRef LLVMConstShl(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1675 return wrap(ConstantExpr::getShl(unwrap<Constant>(LHSConstant),
1676 unwrap<Constant>(RHSConstant)));
1677}
1678
1679LLVMValueRef LLVMConstLShr(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1680 return wrap(ConstantExpr::getLShr(unwrap<Constant>(LHSConstant),
1681 unwrap<Constant>(RHSConstant)));
1682}
1683
1684LLVMValueRef LLVMConstAShr(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
1685 return wrap(ConstantExpr::getAShr(unwrap<Constant>(LHSConstant),
1686 unwrap<Constant>(RHSConstant)));
1687}
1688
1689LLVMValueRef LLVMConstGEP(LLVMValueRef ConstantVal,
1690 LLVMValueRef *ConstantIndices, unsigned NumIndices) {
1691 ArrayRef<Constant *> IdxList(unwrap<Constant>(ConstantIndices, NumIndices),
1692 NumIndices);
1693 Constant *Val = unwrap<Constant>(ConstantVal);
1694 Type *Ty =
1695 cast<PointerType>(Val->getType()->getScalarType())->getElementType();
1696 return wrap(ConstantExpr::getGetElementPtr(Ty, Val, IdxList));
1697}
1698
1699LLVMValueRef LLVMConstInBoundsGEP(LLVMValueRef ConstantVal,
1700 LLVMValueRef *ConstantIndices,
1701 unsigned NumIndices) {
1702 ArrayRef<Constant *> IdxList(unwrap<Constant>(ConstantIndices, NumIndices),
1703 NumIndices);
1704 Constant *Val = unwrap<Constant>(ConstantVal);
1705 Type *Ty =
1706 cast<PointerType>(Val->getType()->getScalarType())->getElementType();
1707 return wrap(ConstantExpr::getInBoundsGetElementPtr(Ty, Val, IdxList));
1708}
1709
1710LLVMValueRef LLVMConstTrunc(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
1711 return wrap(ConstantExpr::getTrunc(unwrap<Constant>(ConstantVal),
1712 unwrap(ToType)));
1713}
1714
1715LLVMValueRef LLVMConstSExt(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
1716 return wrap(ConstantExpr::getSExt(unwrap<Constant>(ConstantVal),
1717 unwrap(ToType)));
1718}
1719
1720LLVMValueRef LLVMConstZExt(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
1721 return wrap(ConstantExpr::getZExt(unwrap<Constant>(ConstantVal),
1722 unwrap(ToType)));
1723}
1724
1725LLVMValueRef LLVMConstFPTrunc(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
1726 return wrap(ConstantExpr::getFPTrunc(unwrap<Constant>(ConstantVal),
1727 unwrap(ToType)));
1728}
1729
1730LLVMValueRef LLVMConstFPExt(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
1731 return wrap(ConstantExpr::getFPExtend(unwrap<Constant>(ConstantVal),
1732 unwrap(ToType)));
1733}
1734
1735LLVMValueRef LLVMConstUIToFP(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
1736 return wrap(ConstantExpr::getUIToFP(unwrap<Constant>(ConstantVal),
1737 unwrap(ToType)));
1738}
1739
1740LLVMValueRef LLVMConstSIToFP(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
1741 return wrap(ConstantExpr::getSIToFP(unwrap<Constant>(ConstantVal),
1742 unwrap(ToType)));
1743}
1744
1745LLVMValueRef LLVMConstFPToUI(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
1746 return wrap(ConstantExpr::getFPToUI(unwrap<Constant>(ConstantVal),
1747 unwrap(ToType)));
1748}
1749
1750LLVMValueRef LLVMConstFPToSI(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
1751 return wrap(ConstantExpr::getFPToSI(unwrap<Constant>(ConstantVal),
1752 unwrap(ToType)));
1753}
1754
1755LLVMValueRef LLVMConstPtrToInt(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
1756 return wrap(ConstantExpr::getPtrToInt(unwrap<Constant>(ConstantVal),
1757 unwrap(ToType)));
1758}
1759
1760LLVMValueRef LLVMConstIntToPtr(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
1761 return wrap(ConstantExpr::getIntToPtr(unwrap<Constant>(ConstantVal),
1762 unwrap(ToType)));
1763}
1764
1765LLVMValueRef LLVMConstBitCast(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
1766 return wrap(ConstantExpr::getBitCast(unwrap<Constant>(ConstantVal),
1767 unwrap(ToType)));
1768}
1769
1770LLVMValueRef LLVMConstAddrSpaceCast(LLVMValueRef ConstantVal,
1771 LLVMTypeRef ToType) {
1772 return wrap(ConstantExpr::getAddrSpaceCast(unwrap<Constant>(ConstantVal),
1773 unwrap(ToType)));
1774}
1775
1776LLVMValueRef LLVMConstZExtOrBitCast(LLVMValueRef ConstantVal,
1777 LLVMTypeRef ToType) {
1778 return wrap(ConstantExpr::getZExtOrBitCast(unwrap<Constant>(ConstantVal),
1779 unwrap(ToType)));
1780}
1781
1782LLVMValueRef LLVMConstSExtOrBitCast(LLVMValueRef ConstantVal,
1783 LLVMTypeRef ToType) {
1784 return wrap(ConstantExpr::getSExtOrBitCast(unwrap<Constant>(ConstantVal),
1785 unwrap(ToType)));
1786}
1787
1788LLVMValueRef LLVMConstTruncOrBitCast(LLVMValueRef ConstantVal,
1789 LLVMTypeRef ToType) {
1790 return wrap(ConstantExpr::getTruncOrBitCast(unwrap<Constant>(ConstantVal),
1791 unwrap(ToType)));
1792}
1793
1794LLVMValueRef LLVMConstPointerCast(LLVMValueRef ConstantVal,
1795 LLVMTypeRef ToType) {
1796 return wrap(ConstantExpr::getPointerCast(unwrap<Constant>(ConstantVal),
1797 unwrap(ToType)));
1798}
1799
1800LLVMValueRef LLVMConstIntCast(LLVMValueRef ConstantVal, LLVMTypeRef ToType,
1801 LLVMBool isSigned) {
1802 return wrap(ConstantExpr::getIntegerCast(unwrap<Constant>(ConstantVal),
1803 unwrap(ToType), isSigned));
1804}
1805
1806LLVMValueRef LLVMConstFPCast(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
1807 return wrap(ConstantExpr::getFPCast(unwrap<Constant>(ConstantVal),
1808 unwrap(ToType)));
1809}
1810
1811LLVMValueRef LLVMConstSelect(LLVMValueRef ConstantCondition,
1812 LLVMValueRef ConstantIfTrue,
1813 LLVMValueRef ConstantIfFalse) {
1814 return wrap(ConstantExpr::getSelect(unwrap<Constant>(ConstantCondition),
1815 unwrap<Constant>(ConstantIfTrue),
1816 unwrap<Constant>(ConstantIfFalse)));
1817}
1818
1819LLVMValueRef LLVMConstExtractElement(LLVMValueRef VectorConstant,
1820 LLVMValueRef IndexConstant) {
1821 return wrap(ConstantExpr::getExtractElement(unwrap<Constant>(VectorConstant),
1822 unwrap<Constant>(IndexConstant)));
1823}
1824
1825LLVMValueRef LLVMConstInsertElement(LLVMValueRef VectorConstant,
1826 LLVMValueRef ElementValueConstant,
1827 LLVMValueRef IndexConstant) {
1828 return wrap(ConstantExpr::getInsertElement(unwrap<Constant>(VectorConstant),
1829 unwrap<Constant>(ElementValueConstant),
1830 unwrap<Constant>(IndexConstant)));
1831}
1832
1833LLVMValueRef LLVMConstShuffleVector(LLVMValueRef VectorAConstant,
1834 LLVMValueRef VectorBConstant,
1835 LLVMValueRef MaskConstant) {
1836 SmallVector<int, 16> IntMask;
1837 ShuffleVectorInst::getShuffleMask(unwrap<Constant>(MaskConstant), IntMask);
1838 return wrap(ConstantExpr::getShuffleVector(unwrap<Constant>(VectorAConstant),
1839 unwrap<Constant>(VectorBConstant),
1840 IntMask));
1841}
1842
1843LLVMValueRef LLVMConstExtractValue(LLVMValueRef AggConstant, unsigned *IdxList,
1844 unsigned NumIdx) {
1845 return wrap(ConstantExpr::getExtractValue(unwrap<Constant>(AggConstant),
1846 makeArrayRef(IdxList, NumIdx)));
1847}
1848
1849LLVMValueRef LLVMConstInsertValue(LLVMValueRef AggConstant,
1850 LLVMValueRef ElementValueConstant,
1851 unsigned *IdxList, unsigned NumIdx) {
1852 return wrap(ConstantExpr::getInsertValue(unwrap<Constant>(AggConstant),
1853 unwrap<Constant>(ElementValueConstant),
1854 makeArrayRef(IdxList, NumIdx)));
1855}
1856
1857LLVMValueRef LLVMConstInlineAsm(LLVMTypeRef Ty, const char *AsmString,
1858 const char *Constraints,
1859 LLVMBool HasSideEffects,
1860 LLVMBool IsAlignStack) {
1861 return wrap(InlineAsm::get(dyn_cast<FunctionType>(unwrap(Ty)), AsmString,
1862 Constraints, HasSideEffects, IsAlignStack));
1863}
1864
1865LLVMValueRef LLVMBlockAddress(LLVMValueRef F, LLVMBasicBlockRef BB) {
1866 return wrap(BlockAddress::get(unwrap<Function>(F), unwrap(BB)));
1867}
1868
1869/*--.. Operations on global variables, functions, and aliases (globals) ....--*/
1870
1871LLVMModuleRef LLVMGetGlobalParent(LLVMValueRef Global) {
1872 return wrap(unwrap<GlobalValue>(Global)->getParent());
1873}
1874
1875LLVMBool LLVMIsDeclaration(LLVMValueRef Global) {
1876 return unwrap<GlobalValue>(Global)->isDeclaration();
1877}
1878
1879LLVMLinkage LLVMGetLinkage(LLVMValueRef Global) {
1880 switch (unwrap<GlobalValue>(Global)->getLinkage()) {
1881 case GlobalValue::ExternalLinkage:
1882 return LLVMExternalLinkage;
1883 case GlobalValue::AvailableExternallyLinkage:
1884 return LLVMAvailableExternallyLinkage;
1885 case GlobalValue::LinkOnceAnyLinkage:
1886 return LLVMLinkOnceAnyLinkage;
1887 case GlobalValue::LinkOnceODRLinkage:
1888 return LLVMLinkOnceODRLinkage;
1889 case GlobalValue::WeakAnyLinkage:
1890 return LLVMWeakAnyLinkage;
1891 case GlobalValue::WeakODRLinkage:
1892 return LLVMWeakODRLinkage;
1893 case GlobalValue::AppendingLinkage:
1894 return LLVMAppendingLinkage;
1895 case GlobalValue::InternalLinkage:
1896 return LLVMInternalLinkage;
1897 case GlobalValue::PrivateLinkage:
1898 return LLVMPrivateLinkage;
1899 case GlobalValue::ExternalWeakLinkage:
1900 return LLVMExternalWeakLinkage;
1901 case GlobalValue::CommonLinkage:
1902 return LLVMCommonLinkage;
1903 }
1904
1905 llvm_unreachable("Invalid GlobalValue linkage!")__builtin_unreachable();
1906}
1907
1908void LLVMSetLinkage(LLVMValueRef Global, LLVMLinkage Linkage) {
1909 GlobalValue *GV = unwrap<GlobalValue>(Global);
1910
1911 switch (Linkage) {
1912 case LLVMExternalLinkage:
1913 GV->setLinkage(GlobalValue::ExternalLinkage);
1914 break;
1915 case LLVMAvailableExternallyLinkage:
1916 GV->setLinkage(GlobalValue::AvailableExternallyLinkage);
1917 break;
1918 case LLVMLinkOnceAnyLinkage:
1919 GV->setLinkage(GlobalValue::LinkOnceAnyLinkage);
1920 break;
1921 case LLVMLinkOnceODRLinkage:
1922 GV->setLinkage(GlobalValue::LinkOnceODRLinkage);
1923 break;
1924 case LLVMLinkOnceODRAutoHideLinkage:
1925 LLVM_DEBUG(do { } while (false)
1926 errs() << "LLVMSetLinkage(): LLVMLinkOnceODRAutoHideLinkage is no "do { } while (false)
1927 "longer supported.")do { } while (false);
1928 break;
1929 case LLVMWeakAnyLinkage:
1930 GV->setLinkage(GlobalValue::WeakAnyLinkage);
1931 break;
1932 case LLVMWeakODRLinkage:
1933 GV->setLinkage(GlobalValue::WeakODRLinkage);
1934 break;
1935 case LLVMAppendingLinkage:
1936 GV->setLinkage(GlobalValue::AppendingLinkage);
1937 break;
1938 case LLVMInternalLinkage:
1939 GV->setLinkage(GlobalValue::InternalLinkage);
1940 break;
1941 case LLVMPrivateLinkage:
1942 GV->setLinkage(GlobalValue::PrivateLinkage);
1943 break;
1944 case LLVMLinkerPrivateLinkage:
1945 GV->setLinkage(GlobalValue::PrivateLinkage);
1946 break;
1947 case LLVMLinkerPrivateWeakLinkage:
1948 GV->setLinkage(GlobalValue::PrivateLinkage);
1949 break;
1950 case LLVMDLLImportLinkage:
1951 LLVM_DEBUG(do { } while (false)
1952 errs()do { } while (false)
1953 << "LLVMSetLinkage(): LLVMDLLImportLinkage is no longer supported.")do { } while (false);
1954 break;
1955 case LLVMDLLExportLinkage:
1956 LLVM_DEBUG(do { } while (false)
1957 errs()do { } while (false)
1958 << "LLVMSetLinkage(): LLVMDLLExportLinkage is no longer supported.")do { } while (false);
1959 break;
1960 case LLVMExternalWeakLinkage:
1961 GV->setLinkage(GlobalValue::ExternalWeakLinkage);
1962 break;
1963 case LLVMGhostLinkage:
1964 LLVM_DEBUG(do { } while (false)
1965 errs() << "LLVMSetLinkage(): LLVMGhostLinkage is no longer supported.")do { } while (false);
1966 break;
1967 case LLVMCommonLinkage:
1968 GV->setLinkage(GlobalValue::CommonLinkage);
1969 break;
1970 }
1971}
1972
1973const char *LLVMGetSection(LLVMValueRef Global) {
1974 // Using .data() is safe because of how GlobalObject::setSection is
1975 // implemented.
1976 return unwrap<GlobalValue>(Global)->getSection().data();
1977}
1978
1979void LLVMSetSection(LLVMValueRef Global, const char *Section) {
1980 unwrap<GlobalObject>(Global)->setSection(Section);
1981}
1982
1983LLVMVisibility LLVMGetVisibility(LLVMValueRef Global) {
1984 return static_cast<LLVMVisibility>(
1985 unwrap<GlobalValue>(Global)->getVisibility());
1986}
1987
1988void LLVMSetVisibility(LLVMValueRef Global, LLVMVisibility Viz) {
1989 unwrap<GlobalValue>(Global)
1990 ->setVisibility(static_cast<GlobalValue::VisibilityTypes>(Viz));
1991}
1992
1993LLVMDLLStorageClass LLVMGetDLLStorageClass(LLVMValueRef Global) {
1994 return static_cast<LLVMDLLStorageClass>(
1995 unwrap<GlobalValue>(Global)->getDLLStorageClass());
1996}
1997
1998void LLVMSetDLLStorageClass(LLVMValueRef Global, LLVMDLLStorageClass Class) {
1999 unwrap<GlobalValue>(Global)->setDLLStorageClass(
2000 static_cast<GlobalValue::DLLStorageClassTypes>(Class));
2001}
2002
2003LLVMUnnamedAddr LLVMGetUnnamedAddress(LLVMValueRef Global) {
2004 switch (unwrap<GlobalValue>(Global)->getUnnamedAddr()) {
2005 case GlobalVariable::UnnamedAddr::None:
2006 return LLVMNoUnnamedAddr;
2007 case GlobalVariable::UnnamedAddr::Local:
2008 return LLVMLocalUnnamedAddr;
2009 case GlobalVariable::UnnamedAddr::Global:
2010 return LLVMGlobalUnnamedAddr;
2011 }
2012 llvm_unreachable("Unknown UnnamedAddr kind!")__builtin_unreachable();
2013}
2014
2015void LLVMSetUnnamedAddress(LLVMValueRef Global, LLVMUnnamedAddr UnnamedAddr) {
2016 GlobalValue *GV = unwrap<GlobalValue>(Global);
2017
2018 switch (UnnamedAddr) {
2019 case LLVMNoUnnamedAddr:
2020 return GV->setUnnamedAddr(GlobalVariable::UnnamedAddr::None);
2021 case LLVMLocalUnnamedAddr:
2022 return GV->setUnnamedAddr(GlobalVariable::UnnamedAddr::Local);
2023 case LLVMGlobalUnnamedAddr:
2024 return GV->setUnnamedAddr(GlobalVariable::UnnamedAddr::Global);
2025 }
2026}
2027
2028LLVMBool LLVMHasUnnamedAddr(LLVMValueRef Global) {
2029 return unwrap<GlobalValue>(Global)->hasGlobalUnnamedAddr();
2030}
2031
2032void LLVMSetUnnamedAddr(LLVMValueRef Global, LLVMBool HasUnnamedAddr) {
2033 unwrap<GlobalValue>(Global)->setUnnamedAddr(
2034 HasUnnamedAddr ? GlobalValue::UnnamedAddr::Global
2035 : GlobalValue::UnnamedAddr::None);
2036}
2037
2038LLVMTypeRef LLVMGlobalGetValueType(LLVMValueRef Global) {
2039 return wrap(unwrap<GlobalValue>(Global)->getValueType());
2040}
2041
2042/*--.. Operations on global variables, load and store instructions .........--*/
2043
2044unsigned LLVMGetAlignment(LLVMValueRef V) {
2045 Value *P = unwrap<Value>(V);
2046 if (GlobalObject *GV
1.1
'GV' is null
1.1
'GV' is null
1.1
'GV' is null
1.1
'GV' is null
= dyn_cast<GlobalObject>(P))
1
Assuming 'P' is not a 'GlobalObject'
2
Taking false branch
2047 return GV->getAlignment();
2048 if (AllocaInst *AI
3.1
'AI' is non-null
3.1
'AI' is non-null
3.1
'AI' is non-null
3.1
'AI' is non-null
= dyn_cast<AllocaInst>(P))
3
Assuming 'P' is a 'AllocaInst'
4
Taking true branch
2049 return AI->getAlignment();
5
Calling 'AllocaInst::getAlignment'
2050 if (LoadInst *LI = dyn_cast<LoadInst>(P))
2051 return LI->getAlignment();
2052 if (StoreInst *SI = dyn_cast<StoreInst>(P))
2053 return SI->getAlignment();
2054 if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(P))
2055 return RMWI->getAlign().value();
2056 if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(P))
2057 return CXI->getAlign().value();
2058
2059 llvm_unreachable(__builtin_unreachable()
2060 "only GlobalValue, AllocaInst, LoadInst, StoreInst, AtomicRMWInst, "__builtin_unreachable()
2061 "and AtomicCmpXchgInst have alignment")__builtin_unreachable();
2062}
2063
2064void LLVMSetAlignment(LLVMValueRef V, unsigned Bytes) {
2065 Value *P = unwrap<Value>(V);
2066 if (GlobalObject *GV = dyn_cast<GlobalObject>(P))
2067 GV->setAlignment(MaybeAlign(Bytes));
2068 else if (AllocaInst *AI = dyn_cast<AllocaInst>(P))
2069 AI->setAlignment(Align(Bytes));
2070 else if (LoadInst *LI = dyn_cast<LoadInst>(P))
2071 LI->setAlignment(Align(Bytes));
2072 else if (StoreInst *SI = dyn_cast<StoreInst>(P))
2073 SI->setAlignment(Align(Bytes));
2074 else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(P))
2075 RMWI->setAlignment(Align(Bytes));
2076 else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(P))
2077 CXI->setAlignment(Align(Bytes));
2078 else
2079 llvm_unreachable(__builtin_unreachable()
2080 "only GlobalValue, AllocaInst, LoadInst, StoreInst, AtomicRMWInst, and "__builtin_unreachable()
2081 "and AtomicCmpXchgInst have alignment")__builtin_unreachable();
2082}
2083
2084LLVMValueMetadataEntry *LLVMGlobalCopyAllMetadata(LLVMValueRef Value,
2085 size_t *NumEntries) {
2086 return llvm_getMetadata(NumEntries, [&Value](MetadataEntries &Entries) {
2087 Entries.clear();
2088 if (Instruction *Instr = dyn_cast<Instruction>(unwrap(Value))) {
2089 Instr->getAllMetadata(Entries);
2090 } else {
2091 unwrap<GlobalObject>(Value)->getAllMetadata(Entries);
2092 }
2093 });
2094}
2095
2096unsigned LLVMValueMetadataEntriesGetKind(LLVMValueMetadataEntry *Entries,
2097 unsigned Index) {
2098 LLVMOpaqueValueMetadataEntry MVE =
2099 static_cast<LLVMOpaqueValueMetadataEntry>(Entries[Index]);
2100 return MVE.Kind;
2101}
2102
2103LLVMMetadataRef
2104LLVMValueMetadataEntriesGetMetadata(LLVMValueMetadataEntry *Entries,
2105 unsigned Index) {
2106 LLVMOpaqueValueMetadataEntry MVE =
2107 static_cast<LLVMOpaqueValueMetadataEntry>(Entries[Index]);
2108 return MVE.Metadata;
2109}
2110
2111void LLVMDisposeValueMetadataEntries(LLVMValueMetadataEntry *Entries) {
2112 free(Entries);
2113}
2114
2115void LLVMGlobalSetMetadata(LLVMValueRef Global, unsigned Kind,
2116 LLVMMetadataRef MD) {
2117 unwrap<GlobalObject>(Global)->setMetadata(Kind, unwrap<MDNode>(MD));
2118}
2119
2120void LLVMGlobalEraseMetadata(LLVMValueRef Global, unsigned Kind) {
2121 unwrap<GlobalObject>(Global)->eraseMetadata(Kind);
2122}
2123
2124void LLVMGlobalClearMetadata(LLVMValueRef Global) {
2125 unwrap<GlobalObject>(Global)->clearMetadata();
2126}
2127
2128/*--.. Operations on global variables ......................................--*/
2129
2130LLVMValueRef LLVMAddGlobal(LLVMModuleRef M, LLVMTypeRef Ty, const char *Name) {
2131 return wrap(new GlobalVariable(*unwrap(M), unwrap(Ty), false,
2132 GlobalValue::ExternalLinkage, nullptr, Name));
2133}
2134
2135LLVMValueRef LLVMAddGlobalInAddressSpace(LLVMModuleRef M, LLVMTypeRef Ty,
2136 const char *Name,
2137 unsigned AddressSpace) {
2138 return wrap(new GlobalVariable(*unwrap(M), unwrap(Ty), false,
2139 GlobalValue::ExternalLinkage, nullptr, Name,
2140 nullptr, GlobalVariable::NotThreadLocal,
2141 AddressSpace));
2142}
2143
2144LLVMValueRef LLVMGetNamedGlobal(LLVMModuleRef M, const char *Name) {
2145 return wrap(unwrap(M)->getNamedGlobal(Name));
2146}
2147
2148LLVMValueRef LLVMGetFirstGlobal(LLVMModuleRef M) {
2149 Module *Mod = unwrap(M);
2150 Module::global_iterator I = Mod->global_begin();
2151 if (I == Mod->global_end())
2152 return nullptr;
2153 return wrap(&*I);
2154}
2155
2156LLVMValueRef LLVMGetLastGlobal(LLVMModuleRef M) {
2157 Module *Mod = unwrap(M);
2158 Module::global_iterator I = Mod->global_end();
2159 if (I == Mod->global_begin())
2160 return nullptr;
2161 return wrap(&*--I);
2162}
2163
2164LLVMValueRef LLVMGetNextGlobal(LLVMValueRef GlobalVar) {
2165 GlobalVariable *GV = unwrap<GlobalVariable>(GlobalVar);
2166 Module::global_iterator I(GV);
2167 if (++I == GV->getParent()->global_end())
2168 return nullptr;
2169 return wrap(&*I);
2170}
2171
2172LLVMValueRef LLVMGetPreviousGlobal(LLVMValueRef GlobalVar) {
2173 GlobalVariable *GV = unwrap<GlobalVariable>(GlobalVar);
2174 Module::global_iterator I(GV);
2175 if (I == GV->getParent()->global_begin())
2176 return nullptr;
2177 return wrap(&*--I);
2178}
2179
2180void LLVMDeleteGlobal(LLVMValueRef GlobalVar) {
2181 unwrap<GlobalVariable>(GlobalVar)->eraseFromParent();
2182}
2183
2184LLVMValueRef LLVMGetInitializer(LLVMValueRef GlobalVar) {
2185 GlobalVariable* GV = unwrap<GlobalVariable>(GlobalVar);
2186 if ( !GV->hasInitializer() )
2187 return nullptr;
2188 return wrap(GV->getInitializer());
2189}
2190
2191void LLVMSetInitializer(LLVMValueRef GlobalVar, LLVMValueRef ConstantVal) {
2192 unwrap<GlobalVariable>(GlobalVar)
2193 ->setInitializer(unwrap<Constant>(ConstantVal));
2194}
2195
2196LLVMBool LLVMIsThreadLocal(LLVMValueRef GlobalVar) {
2197 return unwrap<GlobalVariable>(GlobalVar)->isThreadLocal();
2198}
2199
2200void LLVMSetThreadLocal(LLVMValueRef GlobalVar, LLVMBool IsThreadLocal) {
2201 unwrap<GlobalVariable>(GlobalVar)->setThreadLocal(IsThreadLocal != 0);
2202}
2203
2204LLVMBool LLVMIsGlobalConstant(LLVMValueRef GlobalVar) {
2205 return unwrap<GlobalVariable>(GlobalVar)->isConstant();
2206}
2207
2208void LLVMSetGlobalConstant(LLVMValueRef GlobalVar, LLVMBool IsConstant) {
2209 unwrap<GlobalVariable>(GlobalVar)->setConstant(IsConstant != 0);
2210}
2211
2212LLVMThreadLocalMode LLVMGetThreadLocalMode(LLVMValueRef GlobalVar) {
2213 switch (unwrap<GlobalVariable>(GlobalVar)->getThreadLocalMode()) {
2214 case GlobalVariable::NotThreadLocal:
2215 return LLVMNotThreadLocal;
2216 case GlobalVariable::GeneralDynamicTLSModel:
2217 return LLVMGeneralDynamicTLSModel;
2218 case GlobalVariable::LocalDynamicTLSModel:
2219 return LLVMLocalDynamicTLSModel;
2220 case GlobalVariable::InitialExecTLSModel:
2221 return LLVMInitialExecTLSModel;
2222 case GlobalVariable::LocalExecTLSModel:
2223 return LLVMLocalExecTLSModel;
2224 }
2225
2226 llvm_unreachable("Invalid GlobalVariable thread local mode")__builtin_unreachable();
2227}
2228
2229void LLVMSetThreadLocalMode(LLVMValueRef GlobalVar, LLVMThreadLocalMode Mode) {
2230 GlobalVariable *GV = unwrap<GlobalVariable>(GlobalVar);
2231
2232 switch (Mode) {
2233 case LLVMNotThreadLocal:
2234 GV->setThreadLocalMode(GlobalVariable::NotThreadLocal);
2235 break;
2236 case LLVMGeneralDynamicTLSModel:
2237 GV->setThreadLocalMode(GlobalVariable::GeneralDynamicTLSModel);
2238 break;
2239 case LLVMLocalDynamicTLSModel:
2240 GV->setThreadLocalMode(GlobalVariable::LocalDynamicTLSModel);
2241 break;
2242 case LLVMInitialExecTLSModel:
2243 GV->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
2244 break;
2245 case LLVMLocalExecTLSModel:
2246 GV->setThreadLocalMode(GlobalVariable::LocalExecTLSModel);
2247 break;
2248 }
2249}
2250
2251LLVMBool LLVMIsExternallyInitialized(LLVMValueRef GlobalVar) {
2252 return unwrap<GlobalVariable>(GlobalVar)->isExternallyInitialized();
2253}
2254
2255void LLVMSetExternallyInitialized(LLVMValueRef GlobalVar, LLVMBool IsExtInit) {
2256 unwrap<GlobalVariable>(GlobalVar)->setExternallyInitialized(IsExtInit);
2257}
2258
2259/*--.. Operations on aliases ......................................--*/
2260
2261LLVMValueRef LLVMAddAlias(LLVMModuleRef M, LLVMTypeRef Ty, LLVMValueRef Aliasee,
2262 const char *Name) {
2263 auto *PTy = cast<PointerType>(unwrap(Ty));
2264 return wrap(GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
2265 GlobalValue::ExternalLinkage, Name,
2266 unwrap<Constant>(Aliasee), unwrap(M)));
2267}
2268
2269LLVMValueRef LLVMGetNamedGlobalAlias(LLVMModuleRef M,
2270 const char *Name, size_t NameLen) {
2271 return wrap(unwrap(M)->getNamedAlias(Name));
2272}
2273
2274LLVMValueRef LLVMGetFirstGlobalAlias(LLVMModuleRef M) {
2275 Module *Mod = unwrap(M);
2276 Module::alias_iterator I = Mod->alias_begin();
2277 if (I == Mod->alias_end())
2278 return nullptr;
2279 return wrap(&*I);
2280}
2281
2282LLVMValueRef LLVMGetLastGlobalAlias(LLVMModuleRef M) {
2283 Module *Mod = unwrap(M);
2284 Module::alias_iterator I = Mod->alias_end();
2285 if (I == Mod->alias_begin())
2286 return nullptr;
2287 return wrap(&*--I);
2288}
2289
2290LLVMValueRef LLVMGetNextGlobalAlias(LLVMValueRef GA) {
2291 GlobalAlias *Alias = unwrap<GlobalAlias>(GA);
2292 Module::alias_iterator I(Alias);
2293 if (++I == Alias->getParent()->alias_end())
2294 return nullptr;
2295 return wrap(&*I);
2296}
2297
2298LLVMValueRef LLVMGetPreviousGlobalAlias(LLVMValueRef GA) {
2299 GlobalAlias *Alias = unwrap<GlobalAlias>(GA);
2300 Module::alias_iterator I(Alias);
2301 if (I == Alias->getParent()->alias_begin())
2302 return nullptr;
2303 return wrap(&*--I);
2304}
2305
2306LLVMValueRef LLVMAliasGetAliasee(LLVMValueRef Alias) {
2307 return wrap(unwrap<GlobalAlias>(Alias)->getAliasee());
2308}
2309
2310void LLVMAliasSetAliasee(LLVMValueRef Alias, LLVMValueRef Aliasee) {
2311 unwrap<GlobalAlias>(Alias)->setAliasee(unwrap<Constant>(Aliasee));
2312}
2313
2314/*--.. Operations on functions .............................................--*/
2315
2316LLVMValueRef LLVMAddFunction(LLVMModuleRef M, const char *Name,
2317 LLVMTypeRef FunctionTy) {
2318 return wrap(Function::Create(unwrap<FunctionType>(FunctionTy),
2319 GlobalValue::ExternalLinkage, Name, unwrap(M)));
2320}
2321
2322LLVMValueRef LLVMGetNamedFunction(LLVMModuleRef M, const char *Name) {
2323 return wrap(unwrap(M)->getFunction(Name));
2324}
2325
2326LLVMValueRef LLVMGetFirstFunction(LLVMModuleRef M) {
2327 Module *Mod = unwrap(M);
2328 Module::iterator I = Mod->begin();
2329 if (I == Mod->end())
2330 return nullptr;
2331 return wrap(&*I);
2332}
2333
2334LLVMValueRef LLVMGetLastFunction(LLVMModuleRef M) {
2335 Module *Mod = unwrap(M);
2336 Module::iterator I = Mod->end();
2337 if (I == Mod->begin())
2338 return nullptr;
2339 return wrap(&*--I);
2340}
2341
2342LLVMValueRef LLVMGetNextFunction(LLVMValueRef Fn) {
2343 Function *Func = unwrap<Function>(Fn);
2344 Module::iterator I(Func);
2345 if (++I == Func->getParent()->end())
2346 return nullptr;
2347 return wrap(&*I);
2348}
2349
2350LLVMValueRef LLVMGetPreviousFunction(LLVMValueRef Fn) {
2351 Function *Func = unwrap<Function>(Fn);
2352 Module::iterator I(Func);
2353 if (I == Func->getParent()->begin())
2354 return nullptr;
2355 return wrap(&*--I);
2356}
2357
2358void LLVMDeleteFunction(LLVMValueRef Fn) {
2359 unwrap<Function>(Fn)->eraseFromParent();
2360}
2361
2362LLVMBool LLVMHasPersonalityFn(LLVMValueRef Fn) {
2363 return unwrap<Function>(Fn)->hasPersonalityFn();
2364}
2365
2366LLVMValueRef LLVMGetPersonalityFn(LLVMValueRef Fn) {
2367 return wrap(unwrap<Function>(Fn)->getPersonalityFn());
2368}
2369
2370void LLVMSetPersonalityFn(LLVMValueRef Fn, LLVMValueRef PersonalityFn) {
2371 unwrap<Function>(Fn)->setPersonalityFn(unwrap<Constant>(PersonalityFn));
2372}
2373
2374unsigned LLVMGetIntrinsicID(LLVMValueRef Fn) {
2375 if (Function *F = dyn_cast<Function>(unwrap(Fn)))
2376 return F->getIntrinsicID();
2377 return 0;
2378}
2379
2380static Intrinsic::ID llvm_map_to_intrinsic_id(unsigned ID) {
2381 assert(ID < llvm::Intrinsic::num_intrinsics && "Intrinsic ID out of range")((void)0);
2382 return llvm::Intrinsic::ID(ID);
2383}
2384
2385LLVMValueRef LLVMGetIntrinsicDeclaration(LLVMModuleRef Mod,
2386 unsigned ID,
2387 LLVMTypeRef *ParamTypes,
2388 size_t ParamCount) {
2389 ArrayRef<Type*> Tys(unwrap(ParamTypes), ParamCount);
2390 auto IID = llvm_map_to_intrinsic_id(ID);
2391 return wrap(llvm::Intrinsic::getDeclaration(unwrap(Mod), IID, Tys));
2392}
2393
2394const char *LLVMIntrinsicGetName(unsigned ID, size_t *NameLength) {
2395 auto IID = llvm_map_to_intrinsic_id(ID);
2396 auto Str = llvm::Intrinsic::getName(IID);
2397 *NameLength = Str.size();
2398 return Str.data();
2399}
2400
2401LLVMTypeRef LLVMIntrinsicGetType(LLVMContextRef Ctx, unsigned ID,
2402 LLVMTypeRef *ParamTypes, size_t ParamCount) {
2403 auto IID = llvm_map_to_intrinsic_id(ID);
2404 ArrayRef<Type*> Tys(unwrap(ParamTypes), ParamCount);
2405 return wrap(llvm::Intrinsic::getType(*unwrap(Ctx), IID, Tys));
2406}
2407
2408const char *LLVMIntrinsicCopyOverloadedName(unsigned ID,
2409 LLVMTypeRef *ParamTypes,
2410 size_t ParamCount,
2411 size_t *NameLength) {
2412 auto IID = llvm_map_to_intrinsic_id(ID);
2413 ArrayRef<Type*> Tys(unwrap(ParamTypes), ParamCount);
2414 auto Str = llvm::Intrinsic::getNameNoUnnamedTypes(IID, Tys);
2415 *NameLength = Str.length();
2416 return strdup(Str.c_str());
2417}
2418
2419const char *LLVMIntrinsicCopyOverloadedName2(LLVMModuleRef Mod, unsigned ID,
2420 LLVMTypeRef *ParamTypes,
2421 size_t ParamCount,
2422 size_t *NameLength) {
2423 auto IID = llvm_map_to_intrinsic_id(ID);
2424 ArrayRef<Type *> Tys(unwrap(ParamTypes), ParamCount);
2425 auto Str = llvm::Intrinsic::getName(IID, Tys, unwrap(Mod));
2426 *NameLength = Str.length();
2427 return strdup(Str.c_str());
2428}
2429
2430unsigned LLVMLookupIntrinsicID(const char *Name, size_t NameLen) {
2431 return Function::lookupIntrinsicID({Name, NameLen});
2432}
2433
2434LLVMBool LLVMIntrinsicIsOverloaded(unsigned ID) {
2435 auto IID = llvm_map_to_intrinsic_id(ID);
2436 return llvm::Intrinsic::isOverloaded(IID);
2437}
2438
2439unsigned LLVMGetFunctionCallConv(LLVMValueRef Fn) {
2440 return unwrap<Function>(Fn)->getCallingConv();
2441}
2442
2443void LLVMSetFunctionCallConv(LLVMValueRef Fn, unsigned CC) {
2444 return unwrap<Function>(Fn)->setCallingConv(
2445 static_cast<CallingConv::ID>(CC));
2446}
2447
2448const char *LLVMGetGC(LLVMValueRef Fn) {
2449 Function *F = unwrap<Function>(Fn);
2450 return F->hasGC()? F->getGC().c_str() : nullptr;
2451}
2452
2453void LLVMSetGC(LLVMValueRef Fn, const char *GC) {
2454 Function *F = unwrap<Function>(Fn);
2455 if (GC)
2456 F->setGC(GC);
2457 else
2458 F->clearGC();
2459}
2460
2461void LLVMAddAttributeAtIndex(LLVMValueRef F, LLVMAttributeIndex Idx,
2462 LLVMAttributeRef A) {
2463 unwrap<Function>(F)->addAttribute(Idx, unwrap(A));
2464}
2465
2466unsigned LLVMGetAttributeCountAtIndex(LLVMValueRef F, LLVMAttributeIndex Idx) {
2467 auto AS = unwrap<Function>(F)->getAttributes().getAttributes(Idx);
2468 return AS.getNumAttributes();
2469}
2470
2471void LLVMGetAttributesAtIndex(LLVMValueRef F, LLVMAttributeIndex Idx,
2472 LLVMAttributeRef *Attrs) {
2473 auto AS = unwrap<Function>(F)->getAttributes().getAttributes(Idx);
2474 for (auto A : AS)
2475 *Attrs++ = wrap(A);
2476}
2477
2478LLVMAttributeRef LLVMGetEnumAttributeAtIndex(LLVMValueRef F,
2479 LLVMAttributeIndex Idx,
2480 unsigned KindID) {
2481 return wrap(unwrap<Function>(F)->getAttribute(Idx,
2482 (Attribute::AttrKind)KindID));
2483}
2484
2485LLVMAttributeRef LLVMGetStringAttributeAtIndex(LLVMValueRef F,
2486 LLVMAttributeIndex Idx,
2487 const char *K, unsigned KLen) {
2488 return wrap(unwrap<Function>(F)->getAttribute(Idx, StringRef(K, KLen)));
2489}
2490
2491void LLVMRemoveEnumAttributeAtIndex(LLVMValueRef F, LLVMAttributeIndex Idx,
2492 unsigned KindID) {
2493 unwrap<Function>(F)->removeAttribute(Idx, (Attribute::AttrKind)KindID);
2494}
2495
2496void LLVMRemoveStringAttributeAtIndex(LLVMValueRef F, LLVMAttributeIndex Idx,
2497 const char *K, unsigned KLen) {
2498 unwrap<Function>(F)->removeAttribute(Idx, StringRef(K, KLen));
2499}
2500
2501void LLVMAddTargetDependentFunctionAttr(LLVMValueRef Fn, const char *A,
2502 const char *V) {
2503 Function *Func = unwrap<Function>(Fn);
2504 Attribute Attr = Attribute::get(Func->getContext(), A, V);
2505 Func->addAttribute(AttributeList::FunctionIndex, Attr);
2506}
2507
2508/*--.. Operations on parameters ............................................--*/
2509
2510unsigned LLVMCountParams(LLVMValueRef FnRef) {
2511 // This function is strictly redundant to
2512 // LLVMCountParamTypes(LLVMGetElementType(LLVMTypeOf(FnRef)))
2513 return unwrap<Function>(FnRef)->arg_size();
2514}
2515
2516void LLVMGetParams(LLVMValueRef FnRef, LLVMValueRef *ParamRefs) {
2517 Function *Fn = unwrap<Function>(FnRef);
2518 for (Argument &A : Fn->args())
2519 *ParamRefs++ = wrap(&A);
2520}
2521
2522LLVMValueRef LLVMGetParam(LLVMValueRef FnRef, unsigned index) {
2523 Function *Fn = unwrap<Function>(FnRef);
2524 return wrap(&Fn->arg_begin()[index]);
2525}
2526
2527LLVMValueRef LLVMGetParamParent(LLVMValueRef V) {
2528 return wrap(unwrap<Argument>(V)->getParent());
2529}
2530
2531LLVMValueRef LLVMGetFirstParam(LLVMValueRef Fn) {
2532 Function *Func = unwrap<Function>(Fn);
2533 Function::arg_iterator I = Func->arg_begin();
2534 if (I == Func->arg_end())
2535 return nullptr;
2536 return wrap(&*I);
2537}
2538
2539LLVMValueRef LLVMGetLastParam(LLVMValueRef Fn) {
2540 Function *Func = unwrap<Function>(Fn);
2541 Function::arg_iterator I = Func->arg_end();
2542 if (I == Func->arg_begin())
2543 return nullptr;
2544 return wrap(&*--I);
2545}
2546
2547LLVMValueRef LLVMGetNextParam(LLVMValueRef Arg) {
2548 Argument *A = unwrap<Argument>(Arg);
2549 Function *Fn = A->getParent();
2550 if (A->getArgNo() + 1 >= Fn->arg_size())
2551 return nullptr;
2552 return wrap(&Fn->arg_begin()[A->getArgNo() + 1]);
2553}
2554
2555LLVMValueRef LLVMGetPreviousParam(LLVMValueRef Arg) {
2556 Argument *A = unwrap<Argument>(Arg);
2557 if (A->getArgNo() == 0)
2558 return nullptr;
2559 return wrap(&A->getParent()->arg_begin()[A->getArgNo() - 1]);
2560}
2561
2562void LLVMSetParamAlignment(LLVMValueRef Arg, unsigned align) {
2563 Argument *A = unwrap<Argument>(Arg);
2564 A->addAttr(Attribute::getWithAlignment(A->getContext(), Align(align)));
2565}
2566
2567/*--.. Operations on ifuncs ................................................--*/
2568
2569LLVMValueRef LLVMAddGlobalIFunc(LLVMModuleRef M,
2570 const char *Name, size_t NameLen,
2571 LLVMTypeRef Ty, unsigned AddrSpace,
2572 LLVMValueRef Resolver) {
2573 return wrap(GlobalIFunc::create(unwrap(Ty), AddrSpace,
2574 GlobalValue::ExternalLinkage,
2575 StringRef(Name, NameLen),
2576 unwrap<Constant>(Resolver), unwrap(M)));
2577}
2578
2579LLVMValueRef LLVMGetNamedGlobalIFunc(LLVMModuleRef M,
2580 const char *Name, size_t NameLen) {
2581 return wrap(unwrap(M)->getNamedIFunc(StringRef(Name, NameLen)));
2582}
2583
2584LLVMValueRef LLVMGetFirstGlobalIFunc(LLVMModuleRef M) {
2585 Module *Mod = unwrap(M);
2586 Module::ifunc_iterator I = Mod->ifunc_begin();
2587 if (I == Mod->ifunc_end())
2588 return nullptr;
2589 return wrap(&*I);
2590}
2591
2592LLVMValueRef LLVMGetLastGlobalIFunc(LLVMModuleRef M) {
2593 Module *Mod = unwrap(M);
2594 Module::ifunc_iterator I = Mod->ifunc_end();
2595 if (I == Mod->ifunc_begin())
2596 return nullptr;
2597 return wrap(&*--I);
2598}
2599
2600LLVMValueRef LLVMGetNextGlobalIFunc(LLVMValueRef IFunc) {
2601 GlobalIFunc *GIF = unwrap<GlobalIFunc>(IFunc);
2602 Module::ifunc_iterator I(GIF);
2603 if (++I == GIF->getParent()->ifunc_end())
2604 return nullptr;
2605 return wrap(&*I);
2606}
2607
2608LLVMValueRef LLVMGetPreviousGlobalIFunc(LLVMValueRef IFunc) {
2609 GlobalIFunc *GIF = unwrap<GlobalIFunc>(IFunc);
2610 Module::ifunc_iterator I(GIF);
2611 if (I == GIF->getParent()->ifunc_begin())
2612 return nullptr;
2613 return wrap(&*--I);
2614}
2615
2616LLVMValueRef LLVMGetGlobalIFuncResolver(LLVMValueRef IFunc) {
2617 return wrap(unwrap<GlobalIFunc>(IFunc)->getResolver());
2618}
2619
2620void LLVMSetGlobalIFuncResolver(LLVMValueRef IFunc, LLVMValueRef Resolver) {
2621 unwrap<GlobalIFunc>(IFunc)->setResolver(unwrap<Constant>(Resolver));
2622}
2623
2624void LLVMEraseGlobalIFunc(LLVMValueRef IFunc) {
2625 unwrap<GlobalIFunc>(IFunc)->eraseFromParent();
2626}
2627
2628void LLVMRemoveGlobalIFunc(LLVMValueRef IFunc) {
2629 unwrap<GlobalIFunc>(IFunc)->removeFromParent();
2630}
2631
2632/*--.. Operations on basic blocks ..........................................--*/
2633
2634LLVMValueRef LLVMBasicBlockAsValue(LLVMBasicBlockRef BB) {
2635 return wrap(static_cast<Value*>(unwrap(BB)));
2636}
2637
2638LLVMBool LLVMValueIsBasicBlock(LLVMValueRef Val) {
2639 return isa<BasicBlock>(unwrap(Val));
2640}
2641
2642LLVMBasicBlockRef LLVMValueAsBasicBlock(LLVMValueRef Val) {
2643 return wrap(unwrap<BasicBlock>(Val));
2644}
2645
2646const char *LLVMGetBasicBlockName(LLVMBasicBlockRef BB) {
2647 return unwrap(BB)->getName().data();
2648}
2649
2650LLVMValueRef LLVMGetBasicBlockParent(LLVMBasicBlockRef BB) {
2651 return wrap(unwrap(BB)->getParent());
2652}
2653
2654LLVMValueRef LLVMGetBasicBlockTerminator(LLVMBasicBlockRef BB) {
2655 return wrap(unwrap(BB)->getTerminator());
2656}
2657
2658unsigned LLVMCountBasicBlocks(LLVMValueRef FnRef) {
2659 return unwrap<Function>(FnRef)->size();
2660}
2661
2662void LLVMGetBasicBlocks(LLVMValueRef FnRef, LLVMBasicBlockRef *BasicBlocksRefs){
2663 Function *Fn = unwrap<Function>(FnRef);
2664 for (BasicBlock &BB : *Fn)
2665 *BasicBlocksRefs++ = wrap(&BB);
2666}
2667
2668LLVMBasicBlockRef LLVMGetEntryBasicBlock(LLVMValueRef Fn) {
2669 return wrap(&unwrap<Function>(Fn)->getEntryBlock());
2670}
2671
2672LLVMBasicBlockRef LLVMGetFirstBasicBlock(LLVMValueRef Fn) {
2673 Function *Func = unwrap<Function>(Fn);
2674 Function::iterator I = Func->begin();
2675 if (I == Func->end())
2676 return nullptr;
2677 return wrap(&*I);
2678}
2679
2680LLVMBasicBlockRef LLVMGetLastBasicBlock(LLVMValueRef Fn) {
2681 Function *Func = unwrap<Function>(Fn);
2682 Function::iterator I = Func->end();
2683 if (I == Func->begin())
2684 return nullptr;
2685 return wrap(&*--I);
2686}
2687
2688LLVMBasicBlockRef LLVMGetNextBasicBlock(LLVMBasicBlockRef BB) {
2689 BasicBlock *Block = unwrap(BB);
2690 Function::iterator I(Block);
2691 if (++I == Block->getParent()->end())
2692 return nullptr;
2693 return wrap(&*I);
2694}
2695
2696LLVMBasicBlockRef LLVMGetPreviousBasicBlock(LLVMBasicBlockRef BB) {
2697 BasicBlock *Block = unwrap(BB);
2698 Function::iterator I(Block);
2699 if (I == Block->getParent()->begin())
2700 return nullptr;
2701 return wrap(&*--I);
2702}
2703
2704LLVMBasicBlockRef LLVMCreateBasicBlockInContext(LLVMContextRef C,
2705 const char *Name) {
2706 return wrap(llvm::BasicBlock::Create(*unwrap(C), Name));
2707}
2708
2709void LLVMInsertExistingBasicBlockAfterInsertBlock(LLVMBuilderRef Builder,
2710 LLVMBasicBlockRef BB) {
2711 BasicBlock *ToInsert = unwrap(BB);
2712 BasicBlock *CurBB = unwrap(Builder)->GetInsertBlock();
2713 assert(CurBB && "current insertion point is invalid!")((void)0);
2714 CurBB->getParent()->getBasicBlockList().insertAfter(CurBB->getIterator(),
2715 ToInsert);
2716}
2717
2718void LLVMAppendExistingBasicBlock(LLVMValueRef Fn,
2719 LLVMBasicBlockRef BB) {
2720 unwrap<Function>(Fn)->getBasicBlockList().push_back(unwrap(BB));
2721}
2722
2723LLVMBasicBlockRef LLVMAppendBasicBlockInContext(LLVMContextRef C,
2724 LLVMValueRef FnRef,
2725 const char *Name) {
2726 return wrap(BasicBlock::Create(*unwrap(C), Name, unwrap<Function>(FnRef)));
2727}
2728
2729LLVMBasicBlockRef LLVMAppendBasicBlock(LLVMValueRef FnRef, const char *Name) {
2730 return LLVMAppendBasicBlockInContext(LLVMGetGlobalContext(), FnRef, Name);
2731}
2732
2733LLVMBasicBlockRef LLVMInsertBasicBlockInContext(LLVMContextRef C,
2734 LLVMBasicBlockRef BBRef,
2735 const char *Name) {
2736 BasicBlock *BB = unwrap(BBRef);
2737 return wrap(BasicBlock::Create(*unwrap(C), Name, BB->getParent(), BB));
2738}
2739
2740LLVMBasicBlockRef LLVMInsertBasicBlock(LLVMBasicBlockRef BBRef,
2741 const char *Name) {
2742 return LLVMInsertBasicBlockInContext(LLVMGetGlobalContext(), BBRef, Name);
2743}
2744
2745void LLVMDeleteBasicBlock(LLVMBasicBlockRef BBRef) {
2746 unwrap(BBRef)->eraseFromParent();
2747}
2748
2749void LLVMRemoveBasicBlockFromParent(LLVMBasicBlockRef BBRef) {
2750 unwrap(BBRef)->removeFromParent();
2751}
2752
2753void LLVMMoveBasicBlockBefore(LLVMBasicBlockRef BB, LLVMBasicBlockRef MovePos) {
2754 unwrap(BB)->moveBefore(unwrap(MovePos));
2755}
2756
2757void LLVMMoveBasicBlockAfter(LLVMBasicBlockRef BB, LLVMBasicBlockRef MovePos) {
2758 unwrap(BB)->moveAfter(unwrap(MovePos));
2759}
2760
2761/*--.. Operations on instructions ..........................................--*/
2762
2763LLVMBasicBlockRef LLVMGetInstructionParent(LLVMValueRef Inst) {
2764 return wrap(unwrap<Instruction>(Inst)->getParent());
2765}
2766
2767LLVMValueRef LLVMGetFirstInstruction(LLVMBasicBlockRef BB) {
2768 BasicBlock *Block = unwrap(BB);
2769 BasicBlock::iterator I = Block->begin();
2770 if (I == Block->end())
2771 return nullptr;
2772 return wrap(&*I);
2773}
2774
2775LLVMValueRef LLVMGetLastInstruction(LLVMBasicBlockRef BB) {
2776 BasicBlock *Block = unwrap(BB);
2777 BasicBlock::iterator I = Block->end();
2778 if (I == Block->begin())
2779 return nullptr;
2780 return wrap(&*--I);
2781}
2782
2783LLVMValueRef LLVMGetNextInstruction(LLVMValueRef Inst) {
2784 Instruction *Instr = unwrap<Instruction>(Inst);
2785 BasicBlock::iterator I(Instr);
2786 if (++I == Instr->getParent()->end())
2787 return nullptr;
2788 return wrap(&*I);
2789}
2790
2791LLVMValueRef LLVMGetPreviousInstruction(LLVMValueRef Inst) {
2792 Instruction *Instr = unwrap<Instruction>(Inst);
2793 BasicBlock::iterator I(Instr);
2794 if (I == Instr->getParent()->begin())
2795 return nullptr;
2796 return wrap(&*--I);
2797}
2798
2799void LLVMInstructionRemoveFromParent(LLVMValueRef Inst) {
2800 unwrap<Instruction>(Inst)->removeFromParent();
2801}
2802
2803void LLVMInstructionEraseFromParent(LLVMValueRef Inst) {
2804 unwrap<Instruction>(Inst)->eraseFromParent();
2805}
2806
2807LLVMIntPredicate LLVMGetICmpPredicate(LLVMValueRef Inst) {
2808 if (ICmpInst *I = dyn_cast<ICmpInst>(unwrap(Inst)))
2809 return (LLVMIntPredicate)I->getPredicate();
2810 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(unwrap(Inst)))
2811 if (CE->getOpcode() == Instruction::ICmp)
2812 return (LLVMIntPredicate)CE->getPredicate();
2813 return (LLVMIntPredicate)0;
2814}
2815
2816LLVMRealPredicate LLVMGetFCmpPredicate(LLVMValueRef Inst) {
2817 if (FCmpInst *I = dyn_cast<FCmpInst>(unwrap(Inst)))
2818 return (LLVMRealPredicate)I->getPredicate();
2819 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(unwrap(Inst)))
2820 if (CE->getOpcode() == Instruction::FCmp)
2821 return (LLVMRealPredicate)CE->getPredicate();
2822 return (LLVMRealPredicate)0;
2823}
2824
2825LLVMOpcode LLVMGetInstructionOpcode(LLVMValueRef Inst) {
2826 if (Instruction *C = dyn_cast<Instruction>(unwrap(Inst)))
2827 return map_to_llvmopcode(C->getOpcode());
2828 return (LLVMOpcode)0;
2829}
2830
2831LLVMValueRef LLVMInstructionClone(LLVMValueRef Inst) {
2832 if (Instruction *C = dyn_cast<Instruction>(unwrap(Inst)))
2833 return wrap(C->clone());
2834 return nullptr;
2835}
2836
2837LLVMValueRef LLVMIsATerminatorInst(LLVMValueRef Inst) {
2838 Instruction *I = dyn_cast<Instruction>(unwrap(Inst));
2839 return (I && I->isTerminator()) ? wrap(I) : nullptr;
2840}
2841
2842unsigned LLVMGetNumArgOperands(LLVMValueRef Instr) {
2843 if (FuncletPadInst *FPI = dyn_cast<FuncletPadInst>(unwrap(Instr))) {
2844 return FPI->getNumArgOperands();
2845 }
2846 return unwrap<CallBase>(Instr)->getNumArgOperands();
2847}
2848
2849/*--.. Call and invoke instructions ........................................--*/
2850
2851unsigned LLVMGetInstructionCallConv(LLVMValueRef Instr) {
2852 return unwrap<CallBase>(Instr)->getCallingConv();
2853}
2854
2855void LLVMSetInstructionCallConv(LLVMValueRef Instr, unsigned CC) {
2856 return unwrap<CallBase>(Instr)->setCallingConv(
2857 static_cast<CallingConv::ID>(CC));
2858}
2859
2860void LLVMSetInstrParamAlignment(LLVMValueRef Instr, unsigned index,
2861 unsigned align) {
2862 auto *Call = unwrap<CallBase>(Instr);
2863 Attribute AlignAttr =
2864 Attribute::getWithAlignment(Call->getContext(), Align(align));
2865 Call->addAttribute(index, AlignAttr);
2866}
2867
2868void LLVMAddCallSiteAttribute(LLVMValueRef C, LLVMAttributeIndex Idx,
2869 LLVMAttributeRef A) {
2870 unwrap<CallBase>(C)->addAttribute(Idx, unwrap(A));
2871}
2872
2873unsigned LLVMGetCallSiteAttributeCount(LLVMValueRef C,
2874 LLVMAttributeIndex Idx) {
2875 auto *Call = unwrap<CallBase>(C);
2876 auto AS = Call->getAttributes().getAttributes(Idx);
2877 return AS.getNumAttributes();
2878}
2879
2880void LLVMGetCallSiteAttributes(LLVMValueRef C, LLVMAttributeIndex Idx,
2881 LLVMAttributeRef *Attrs) {
2882 auto *Call = unwrap<CallBase>(C);
2883 auto AS = Call->getAttributes().getAttributes(Idx);
2884 for (auto A : AS)
2885 *Attrs++ = wrap(A);
2886}
2887
2888LLVMAttributeRef LLVMGetCallSiteEnumAttribute(LLVMValueRef C,
2889 LLVMAttributeIndex Idx,
2890 unsigned KindID) {
2891 return wrap(
2892 unwrap<CallBase>(C)->getAttribute(Idx, (Attribute::AttrKind)KindID));
2893}
2894
2895LLVMAttributeRef LLVMGetCallSiteStringAttribute(LLVMValueRef C,
2896 LLVMAttributeIndex Idx,
2897 const char *K, unsigned KLen) {
2898 return wrap(unwrap<CallBase>(C)->getAttribute(Idx, StringRef(K, KLen)));
2899}
2900
2901void LLVMRemoveCallSiteEnumAttribute(LLVMValueRef C, LLVMAttributeIndex Idx,
2902 unsigned KindID) {
2903 unwrap<CallBase>(C)->removeAttribute(Idx, (Attribute::AttrKind)KindID);
2904}
2905
2906void LLVMRemoveCallSiteStringAttribute(LLVMValueRef C, LLVMAttributeIndex Idx,
2907 const char *K, unsigned KLen) {
2908 unwrap<CallBase>(C)->removeAttribute(Idx, StringRef(K, KLen));
2909}
2910
2911LLVMValueRef LLVMGetCalledValue(LLVMValueRef Instr) {
2912 return wrap(unwrap<CallBase>(Instr)->getCalledOperand());
2913}
2914
2915LLVMTypeRef LLVMGetCalledFunctionType(LLVMValueRef Instr) {
2916 return wrap(unwrap<CallBase>(Instr)->getFunctionType());
2917}
2918
2919/*--.. Operations on call instructions (only) ..............................--*/
2920
2921LLVMBool LLVMIsTailCall(LLVMValueRef Call) {
2922 return unwrap<CallInst>(Call)->isTailCall();
2923}
2924
2925void LLVMSetTailCall(LLVMValueRef Call, LLVMBool isTailCall) {
2926 unwrap<CallInst>(Call)->setTailCall(isTailCall);
2927}
2928
2929/*--.. Operations on invoke instructions (only) ............................--*/
2930
2931LLVMBasicBlockRef LLVMGetNormalDest(LLVMValueRef Invoke) {
2932 return wrap(unwrap<InvokeInst>(Invoke)->getNormalDest());
2933}
2934
2935LLVMBasicBlockRef LLVMGetUnwindDest(LLVMValueRef Invoke) {
2936 if (CleanupReturnInst *CRI = dyn_cast<CleanupReturnInst>(unwrap(Invoke))) {
2937 return wrap(CRI->getUnwindDest());
2938 } else if (CatchSwitchInst *CSI = dyn_cast<CatchSwitchInst>(unwrap(Invoke))) {
2939 return wrap(CSI->getUnwindDest());
2940 }
2941 return wrap(unwrap<InvokeInst>(Invoke)->getUnwindDest());
2942}
2943
2944void LLVMSetNormalDest(LLVMValueRef Invoke, LLVMBasicBlockRef B) {
2945 unwrap<InvokeInst>(Invoke)->setNormalDest(unwrap(B));
2946}
2947
2948void LLVMSetUnwindDest(LLVMValueRef Invoke, LLVMBasicBlockRef B) {
2949 if (CleanupReturnInst *CRI = dyn_cast<CleanupReturnInst>(unwrap(Invoke))) {
2950 return CRI->setUnwindDest(unwrap(B));
2951 } else if (CatchSwitchInst *CSI = dyn_cast<CatchSwitchInst>(unwrap(Invoke))) {
2952 return CSI->setUnwindDest(unwrap(B));
2953 }
2954 unwrap<InvokeInst>(Invoke)->setUnwindDest(unwrap(B));
2955}
2956
2957/*--.. Operations on terminators ...........................................--*/
2958
2959unsigned LLVMGetNumSuccessors(LLVMValueRef Term) {
2960 return unwrap<Instruction>(Term)->getNumSuccessors();
2961}
2962
2963LLVMBasicBlockRef LLVMGetSuccessor(LLVMValueRef Term, unsigned i) {
2964 return wrap(unwrap<Instruction>(Term)->getSuccessor(i));
2965}
2966
2967void LLVMSetSuccessor(LLVMValueRef Term, unsigned i, LLVMBasicBlockRef block) {
2968 return unwrap<Instruction>(Term)->setSuccessor(i, unwrap(block));
2969}
2970
2971/*--.. Operations on branch instructions (only) ............................--*/
2972
2973LLVMBool LLVMIsConditional(LLVMValueRef Branch) {
2974 return unwrap<BranchInst>(Branch)->isConditional();
2975}
2976
2977LLVMValueRef LLVMGetCondition(LLVMValueRef Branch) {
2978 return wrap(unwrap<BranchInst>(Branch)->getCondition());
2979}
2980
2981void LLVMSetCondition(LLVMValueRef Branch, LLVMValueRef Cond) {
2982 return unwrap<BranchInst>(Branch)->setCondition(unwrap(Cond));
2983}
2984
2985/*--.. Operations on switch instructions (only) ............................--*/
2986
2987LLVMBasicBlockRef LLVMGetSwitchDefaultDest(LLVMValueRef Switch) {
2988 return wrap(unwrap<SwitchInst>(Switch)->getDefaultDest());
2989}
2990
2991/*--.. Operations on alloca instructions (only) ............................--*/
2992
2993LLVMTypeRef LLVMGetAllocatedType(LLVMValueRef Alloca) {
2994 return wrap(unwrap<AllocaInst>(Alloca)->getAllocatedType());
2995}
2996
2997/*--.. Operations on gep instructions (only) ...............................--*/
2998
2999LLVMBool LLVMIsInBounds(LLVMValueRef GEP) {
3000 return unwrap<GetElementPtrInst>(GEP)->isInBounds();
3001}
3002
3003void LLVMSetIsInBounds(LLVMValueRef GEP, LLVMBool InBounds) {
3004 return unwrap<GetElementPtrInst>(GEP)->setIsInBounds(InBounds);
3005}
3006
3007/*--.. Operations on phi nodes .............................................--*/
3008
3009void LLVMAddIncoming(LLVMValueRef PhiNode, LLVMValueRef *IncomingValues,
3010 LLVMBasicBlockRef *IncomingBlocks, unsigned Count) {
3011 PHINode *PhiVal = unwrap<PHINode>(PhiNode);
3012 for (unsigned I = 0; I != Count; ++I)
3013 PhiVal->addIncoming(unwrap(IncomingValues[I]), unwrap(IncomingBlocks[I]));
3014}
3015
3016unsigned LLVMCountIncoming(LLVMValueRef PhiNode) {
3017 return unwrap<PHINode>(PhiNode)->getNumIncomingValues();
3018}
3019
3020LLVMValueRef LLVMGetIncomingValue(LLVMValueRef PhiNode, unsigned Index) {
3021 return wrap(unwrap<PHINode>(PhiNode)->getIncomingValue(Index));
3022}
3023
3024LLVMBasicBlockRef LLVMGetIncomingBlock(LLVMValueRef PhiNode, unsigned Index) {
3025 return wrap(unwrap<PHINode>(PhiNode)->getIncomingBlock(Index));
3026}
3027
3028/*--.. Operations on extractvalue and insertvalue nodes ....................--*/
3029
3030unsigned LLVMGetNumIndices(LLVMValueRef Inst) {
3031 auto *I = unwrap(Inst);
3032 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
3033 return GEP->getNumIndices();
3034 if (auto *EV = dyn_cast<ExtractValueInst>(I))
3035 return EV->getNumIndices();
3036 if (auto *IV = dyn_cast<InsertValueInst>(I))
3037 return IV->getNumIndices();
3038 if (auto *CE = dyn_cast<ConstantExpr>(I))
3039 return CE->getIndices().size();
3040 llvm_unreachable(__builtin_unreachable()
3041 "LLVMGetNumIndices applies only to extractvalue and insertvalue!")__builtin_unreachable();
3042}
3043
3044const unsigned *LLVMGetIndices(LLVMValueRef Inst) {
3045 auto *I = unwrap(Inst);
3046 if (auto *EV = dyn_cast<ExtractValueInst>(I))
3047 return EV->getIndices().data();
3048 if (auto *IV = dyn_cast<InsertValueInst>(I))
3049 return IV->getIndices().data();
3050 if (auto *CE = dyn_cast<ConstantExpr>(I))
3051 return CE->getIndices().data();
3052 llvm_unreachable(__builtin_unreachable()
3053 "LLVMGetIndices applies only to extractvalue and insertvalue!")__builtin_unreachable();
3054}
3055
3056
3057/*===-- Instruction builders ----------------------------------------------===*/
3058
3059LLVMBuilderRef LLVMCreateBuilderInContext(LLVMContextRef C) {
3060 return wrap(new IRBuilder<>(*unwrap(C)));
3061}
3062
3063LLVMBuilderRef LLVMCreateBuilder(void) {
3064 return LLVMCreateBuilderInContext(LLVMGetGlobalContext());
3065}
3066
3067void LLVMPositionBuilder(LLVMBuilderRef Builder, LLVMBasicBlockRef Block,
3068 LLVMValueRef Instr) {
3069 BasicBlock *BB = unwrap(Block);
3070 auto I = Instr ? unwrap<Instruction>(Instr)->getIterator() : BB->end();
3071 unwrap(Builder)->SetInsertPoint(BB, I);
3072}
3073
3074void LLVMPositionBuilderBefore(LLVMBuilderRef Builder, LLVMValueRef Instr) {
3075 Instruction *I = unwrap<Instruction>(Instr);
3076 unwrap(Builder)->SetInsertPoint(I->getParent(), I->getIterator());
3077}
3078
3079void LLVMPositionBuilderAtEnd(LLVMBuilderRef Builder, LLVMBasicBlockRef Block) {
3080 BasicBlock *BB = unwrap(Block);
3081 unwrap(Builder)->SetInsertPoint(BB);
3082}
3083
3084LLVMBasicBlockRef LLVMGetInsertBlock(LLVMBuilderRef Builder) {
3085 return wrap(unwrap(Builder)->GetInsertBlock());
3086}
3087
3088void LLVMClearInsertionPosition(LLVMBuilderRef Builder) {
3089 unwrap(Builder)->ClearInsertionPoint();
3090}
3091
3092void LLVMInsertIntoBuilder(LLVMBuilderRef Builder, LLVMValueRef Instr) {
3093 unwrap(Builder)->Insert(unwrap<Instruction>(Instr));
3094}
3095
3096void LLVMInsertIntoBuilderWithName(LLVMBuilderRef Builder, LLVMValueRef Instr,
3097 const char *Name) {
3098 unwrap(Builder)->Insert(unwrap<Instruction>(Instr), Name);
3099}
3100
3101void LLVMDisposeBuilder(LLVMBuilderRef Builder) {
3102 delete unwrap(Builder);
3103}
3104
3105/*--.. Metadata builders ...................................................--*/
3106
3107LLVMMetadataRef LLVMGetCurrentDebugLocation2(LLVMBuilderRef Builder) {
3108 return wrap(unwrap(Builder)->getCurrentDebugLocation().getAsMDNode());
3109}
3110
3111void LLVMSetCurrentDebugLocation2(LLVMBuilderRef Builder, LLVMMetadataRef Loc) {
3112 if (Loc)
3113 unwrap(Builder)->SetCurrentDebugLocation(DebugLoc(unwrap<MDNode>(Loc)));
3114 else
3115 unwrap(Builder)->SetCurrentDebugLocation(DebugLoc());
3116}
3117
3118void LLVMSetCurrentDebugLocation(LLVMBuilderRef Builder, LLVMValueRef L) {
3119 MDNode *Loc =
3120 L ? cast<MDNode>(unwrap<MetadataAsValue>(L)->getMetadata()) : nullptr;
3121 unwrap(Builder)->SetCurrentDebugLocation(DebugLoc(Loc));
3122}
3123
3124LLVMValueRef LLVMGetCurrentDebugLocation(LLVMBuilderRef Builder) {
3125 LLVMContext &Context = unwrap(Builder)->getContext();
3126 return wrap(MetadataAsValue::get(
3127 Context, unwrap(Builder)->getCurrentDebugLocation().getAsMDNode()));
3128}
3129
3130void LLVMSetInstDebugLocation(LLVMBuilderRef Builder, LLVMValueRef Inst) {
3131 unwrap(Builder)->SetInstDebugLocation(unwrap<Instruction>(Inst));
3132}
3133
3134void LLVMBuilderSetDefaultFPMathTag(LLVMBuilderRef Builder,
3135 LLVMMetadataRef FPMathTag) {
3136
3137 unwrap(Builder)->setDefaultFPMathTag(FPMathTag
3138 ? unwrap<MDNode>(FPMathTag)
3139 : nullptr);
3140}
3141
3142LLVMMetadataRef LLVMBuilderGetDefaultFPMathTag(LLVMBuilderRef Builder) {
3143 return wrap(unwrap(Builder)->getDefaultFPMathTag());
3144}
3145
3146/*--.. Instruction builders ................................................--*/
3147
3148LLVMValueRef LLVMBuildRetVoid(LLVMBuilderRef B) {
3149 return wrap(unwrap(B)->CreateRetVoid());
3150}
3151
3152LLVMValueRef LLVMBuildRet(LLVMBuilderRef B, LLVMValueRef V) {
3153 return wrap(unwrap(B)->CreateRet(unwrap(V)));
3154}
3155
3156LLVMValueRef LLVMBuildAggregateRet(LLVMBuilderRef B, LLVMValueRef *RetVals,
3157 unsigned N) {
3158 return wrap(unwrap(B)->CreateAggregateRet(unwrap(RetVals), N));
3159}
3160
3161LLVMValueRef LLVMBuildBr(LLVMBuilderRef B, LLVMBasicBlockRef Dest) {
3162 return wrap(unwrap(B)->CreateBr(unwrap(Dest)));
3163}
3164
3165LLVMValueRef LLVMBuildCondBr(LLVMBuilderRef B, LLVMValueRef If,
3166 LLVMBasicBlockRef Then, LLVMBasicBlockRef Else) {
3167 return wrap(unwrap(B)->CreateCondBr(unwrap(If), unwrap(Then), unwrap(Else)));
3168}
3169
3170LLVMValueRef LLVMBuildSwitch(LLVMBuilderRef B, LLVMValueRef V,
3171 LLVMBasicBlockRef Else, unsigned NumCases) {
3172 return wrap(unwrap(B)->CreateSwitch(unwrap(V), unwrap(Else), NumCases));
3173}
3174
3175LLVMValueRef LLVMBuildIndirectBr(LLVMBuilderRef B, LLVMValueRef Addr,
3176 unsigned NumDests) {
3177 return wrap(unwrap(B)->CreateIndirectBr(unwrap(Addr), NumDests));
3178}
3179
3180LLVMValueRef LLVMBuildInvoke(LLVMBuilderRef B, LLVMValueRef Fn,
3181 LLVMValueRef *Args, unsigned NumArgs,
3182 LLVMBasicBlockRef Then, LLVMBasicBlockRef Catch,
3183 const char *Name) {
3184 Value *V = unwrap(Fn);
3185 FunctionType *FnT =
3186 cast<FunctionType>(cast<PointerType>(V->getType())->getElementType());
3187
3188 return wrap(
3189 unwrap(B)->CreateInvoke(FnT, unwrap(Fn), unwrap(Then), unwrap(Catch),
3190 makeArrayRef(unwrap(Args), NumArgs), Name));
3191}
3192
3193LLVMValueRef LLVMBuildInvoke2(LLVMBuilderRef B, LLVMTypeRef Ty, LLVMValueRef Fn,
3194 LLVMValueRef *Args, unsigned NumArgs,
3195 LLVMBasicBlockRef Then, LLVMBasicBlockRef Catch,
3196 const char *Name) {
3197 return wrap(unwrap(B)->CreateInvoke(
3198 unwrap<FunctionType>(Ty), unwrap(Fn), unwrap(Then), unwrap(Catch),
3199 makeArrayRef(unwrap(Args), NumArgs), Name));
3200}
3201
3202LLVMValueRef LLVMBuildLandingPad(LLVMBuilderRef B, LLVMTypeRef Ty,
3203 LLVMValueRef PersFn, unsigned NumClauses,
3204 const char *Name) {
3205 // The personality used to live on the landingpad instruction, but now it
3206 // lives on the parent function. For compatibility, take the provided
3207 // personality and put it on the parent function.
3208 if (PersFn)
3209 unwrap(B)->GetInsertBlock()->getParent()->setPersonalityFn(
3210 cast<Function>(unwrap(PersFn)));
3211 return wrap(unwrap(B)->CreateLandingPad(unwrap(Ty), NumClauses, Name));
3212}
3213
3214LLVMValueRef LLVMBuildCatchPad(LLVMBuilderRef B, LLVMValueRef ParentPad,
3215 LLVMValueRef *Args, unsigned NumArgs,
3216 const char *Name) {
3217 return wrap(unwrap(B)->CreateCatchPad(unwrap(ParentPad),
3218 makeArrayRef(unwrap(Args), NumArgs),
3219 Name));
3220}
3221
3222LLVMValueRef LLVMBuildCleanupPad(LLVMBuilderRef B, LLVMValueRef ParentPad,
3223 LLVMValueRef *Args, unsigned NumArgs,
3224 const char *Name) {
3225 if (ParentPad == nullptr) {
3226 Type *Ty = Type::getTokenTy(unwrap(B)->getContext());
3227 ParentPad = wrap(Constant::getNullValue(Ty));
3228 }
3229 return wrap(unwrap(B)->CreateCleanupPad(unwrap(ParentPad),
3230 makeArrayRef(unwrap(Args), NumArgs),
3231 Name));
3232}
3233
3234LLVMValueRef LLVMBuildResume(LLVMBuilderRef B, LLVMValueRef Exn) {
3235 return wrap(unwrap(B)->CreateResume(unwrap(Exn)));
3236}
3237
3238LLVMValueRef LLVMBuildCatchSwitch(LLVMBuilderRef B, LLVMValueRef ParentPad,
3239 LLVMBasicBlockRef UnwindBB,
3240 unsigned NumHandlers, const char *Name) {
3241 if (ParentPad == nullptr) {
3242 Type *Ty = Type::getTokenTy(unwrap(B)->getContext());
3243 ParentPad = wrap(Constant::getNullValue(Ty));
3244 }
3245 return wrap(unwrap(B)->CreateCatchSwitch(unwrap(ParentPad), unwrap(UnwindBB),
3246 NumHandlers, Name));
3247}
3248
3249LLVMValueRef LLVMBuildCatchRet(LLVMBuilderRef B, LLVMValueRef CatchPad,
3250 LLVMBasicBlockRef BB) {
3251 return wrap(unwrap(B)->CreateCatchRet(unwrap<CatchPadInst>(CatchPad),
3252 unwrap(BB)));
3253}
3254
3255LLVMValueRef LLVMBuildCleanupRet(LLVMBuilderRef B, LLVMValueRef CatchPad,
3256 LLVMBasicBlockRef BB) {
3257 return wrap(unwrap(B)->CreateCleanupRet(unwrap<CleanupPadInst>(CatchPad),
3258 unwrap(BB)));
3259}
3260
3261LLVMValueRef LLVMBuildUnreachable(LLVMBuilderRef B) {
3262 return wrap(unwrap(B)->CreateUnreachable());
3263}
3264
3265void LLVMAddCase(LLVMValueRef Switch, LLVMValueRef OnVal,
3266 LLVMBasicBlockRef Dest) {
3267 unwrap<SwitchInst>(Switch)->addCase(unwrap<ConstantInt>(OnVal), unwrap(Dest));
3268}
3269
3270void LLVMAddDestination(LLVMValueRef IndirectBr, LLVMBasicBlockRef Dest) {
3271 unwrap<IndirectBrInst>(IndirectBr)->addDestination(unwrap(Dest));
3272}
3273
3274unsigned LLVMGetNumClauses(LLVMValueRef LandingPad) {
3275 return unwrap<LandingPadInst>(LandingPad)->getNumClauses();
3276}
3277
3278LLVMValueRef LLVMGetClause(LLVMValueRef LandingPad, unsigned Idx) {
3279 return wrap(unwrap<LandingPadInst>(LandingPad)->getClause(Idx));
3280}
3281
3282void LLVMAddClause(LLVMValueRef LandingPad, LLVMValueRef ClauseVal) {
3283 unwrap<LandingPadInst>(LandingPad)->
3284 addClause(cast<Constant>(unwrap(ClauseVal)));
3285}
3286
3287LLVMBool LLVMIsCleanup(LLVMValueRef LandingPad) {
3288 return unwrap<LandingPadInst>(LandingPad)->isCleanup();
3289}
3290
3291void LLVMSetCleanup(LLVMValueRef LandingPad, LLVMBool Val) {
3292 unwrap<LandingPadInst>(LandingPad)->setCleanup(Val);
3293}
3294
3295void LLVMAddHandler(LLVMValueRef CatchSwitch, LLVMBasicBlockRef Dest) {
3296 unwrap<CatchSwitchInst>(CatchSwitch)->addHandler(unwrap(Dest));
3297}
3298
3299unsigned LLVMGetNumHandlers(LLVMValueRef CatchSwitch) {
3300 return unwrap<CatchSwitchInst>(CatchSwitch)->getNumHandlers();
3301}
3302
3303void LLVMGetHandlers(LLVMValueRef CatchSwitch, LLVMBasicBlockRef *Handlers) {
3304 CatchSwitchInst *CSI = unwrap<CatchSwitchInst>(CatchSwitch);
3305 for (const BasicBlock *H : CSI->handlers())
3306 *Handlers++ = wrap(H);
3307}
3308
3309LLVMValueRef LLVMGetParentCatchSwitch(LLVMValueRef CatchPad) {
3310 return wrap(unwrap<CatchPadInst>(CatchPad)->getCatchSwitch());
3311}
3312
3313void LLVMSetParentCatchSwitch(LLVMValueRef CatchPad, LLVMValueRef CatchSwitch) {
3314 unwrap<CatchPadInst>(CatchPad)
3315 ->setCatchSwitch(unwrap<CatchSwitchInst>(CatchSwitch));
3316}
3317
3318/*--.. Funclets ...........................................................--*/
3319
3320LLVMValueRef LLVMGetArgOperand(LLVMValueRef Funclet, unsigned i) {
3321 return wrap(unwrap<FuncletPadInst>(Funclet)->getArgOperand(i));
3322}
3323
3324void LLVMSetArgOperand(LLVMValueRef Funclet, unsigned i, LLVMValueRef value) {
3325 unwrap<FuncletPadInst>(Funclet)->setArgOperand(i, unwrap(value));
3326}
3327
3328/*--.. Arithmetic ..........................................................--*/
3329
3330LLVMValueRef LLVMBuildAdd(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3331 const char *Name) {
3332 return wrap(unwrap(B)->CreateAdd(unwrap(LHS), unwrap(RHS), Name));
3333}
3334
3335LLVMValueRef LLVMBuildNSWAdd(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3336 const char *Name) {
3337 return wrap(unwrap(B)->CreateNSWAdd(unwrap(LHS), unwrap(RHS), Name));
3338}
3339
3340LLVMValueRef LLVMBuildNUWAdd(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3341 const char *Name) {
3342 return wrap(unwrap(B)->CreateNUWAdd(unwrap(LHS), unwrap(RHS), Name));
3343}
3344
3345LLVMValueRef LLVMBuildFAdd(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3346 const char *Name) {
3347 return wrap(unwrap(B)->CreateFAdd(unwrap(LHS), unwrap(RHS), Name));
3348}
3349
3350LLVMValueRef LLVMBuildSub(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3351 const char *Name) {
3352 return wrap(unwrap(B)->CreateSub(unwrap(LHS), unwrap(RHS), Name));
3353}
3354
3355LLVMValueRef LLVMBuildNSWSub(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3356 const char *Name) {
3357 return wrap(unwrap(B)->CreateNSWSub(unwrap(LHS), unwrap(RHS), Name));
3358}
3359
3360LLVMValueRef LLVMBuildNUWSub(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3361 const char *Name) {
3362 return wrap(unwrap(B)->CreateNUWSub(unwrap(LHS), unwrap(RHS), Name));
3363}
3364
3365LLVMValueRef LLVMBuildFSub(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3366 const char *Name) {
3367 return wrap(unwrap(B)->CreateFSub(unwrap(LHS), unwrap(RHS), Name));
3368}
3369
3370LLVMValueRef LLVMBuildMul(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3371 const char *Name) {
3372 return wrap(unwrap(B)->CreateMul(unwrap(LHS), unwrap(RHS), Name));
3373}
3374
3375LLVMValueRef LLVMBuildNSWMul(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3376 const char *Name) {
3377 return wrap(unwrap(B)->CreateNSWMul(unwrap(LHS), unwrap(RHS), Name));
3378}
3379
3380LLVMValueRef LLVMBuildNUWMul(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3381 const char *Name) {
3382 return wrap(unwrap(B)->CreateNUWMul(unwrap(LHS), unwrap(RHS), Name));
3383}
3384
3385LLVMValueRef LLVMBuildFMul(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3386 const char *Name) {
3387 return wrap(unwrap(B)->CreateFMul(unwrap(LHS), unwrap(RHS), Name));
3388}
3389
3390LLVMValueRef LLVMBuildUDiv(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3391 const char *Name) {
3392 return wrap(unwrap(B)->CreateUDiv(unwrap(LHS), unwrap(RHS), Name));
3393}
3394
3395LLVMValueRef LLVMBuildExactUDiv(LLVMBuilderRef B, LLVMValueRef LHS,
3396 LLVMValueRef RHS, const char *Name) {
3397 return wrap(unwrap(B)->CreateExactUDiv(unwrap(LHS), unwrap(RHS), Name));
3398}
3399
3400LLVMValueRef LLVMBuildSDiv(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3401 const char *Name) {
3402 return wrap(unwrap(B)->CreateSDiv(unwrap(LHS), unwrap(RHS), Name));
3403}
3404
3405LLVMValueRef LLVMBuildExactSDiv(LLVMBuilderRef B, LLVMValueRef LHS,
3406 LLVMValueRef RHS, const char *Name) {
3407 return wrap(unwrap(B)->CreateExactSDiv(unwrap(LHS), unwrap(RHS), Name));
3408}
3409
3410LLVMValueRef LLVMBuildFDiv(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3411 const char *Name) {
3412 return wrap(unwrap(B)->CreateFDiv(unwrap(LHS), unwrap(RHS), Name));
3413}
3414
3415LLVMValueRef LLVMBuildURem(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3416 const char *Name) {
3417 return wrap(unwrap(B)->CreateURem(unwrap(LHS), unwrap(RHS), Name));
3418}
3419
3420LLVMValueRef LLVMBuildSRem(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3421 const char *Name) {
3422 return wrap(unwrap(B)->CreateSRem(unwrap(LHS), unwrap(RHS), Name));
3423}
3424
3425LLVMValueRef LLVMBuildFRem(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3426 const char *Name) {
3427 return wrap(unwrap(B)->CreateFRem(unwrap(LHS), unwrap(RHS), Name));
3428}
3429
3430LLVMValueRef LLVMBuildShl(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3431 const char *Name) {
3432 return wrap(unwrap(B)->CreateShl(unwrap(LHS), unwrap(RHS), Name));
3433}
3434
3435LLVMValueRef LLVMBuildLShr(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3436 const char *Name) {
3437 return wrap(unwrap(B)->CreateLShr(unwrap(LHS), unwrap(RHS), Name));
3438}
3439
3440LLVMValueRef LLVMBuildAShr(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3441 const char *Name) {
3442 return wrap(unwrap(B)->CreateAShr(unwrap(LHS), unwrap(RHS), Name));
3443}
3444
3445LLVMValueRef LLVMBuildAnd(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3446 const char *Name) {
3447 return wrap(unwrap(B)->CreateAnd(unwrap(LHS), unwrap(RHS), Name));
3448}
3449
3450LLVMValueRef LLVMBuildOr(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3451 const char *Name) {
3452 return wrap(unwrap(B)->CreateOr(unwrap(LHS), unwrap(RHS), Name));
3453}
3454
3455LLVMValueRef LLVMBuildXor(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
3456 const char *Name) {
3457 return wrap(unwrap(B)->CreateXor(unwrap(LHS), unwrap(RHS), Name));
3458}
3459
3460LLVMValueRef LLVMBuildBinOp(LLVMBuilderRef B, LLVMOpcode Op,
3461 LLVMValueRef LHS, LLVMValueRef RHS,
3462 const char *Name) {
3463 return wrap(unwrap(B)->CreateBinOp(Instruction::BinaryOps(map_from_llvmopcode(Op)), unwrap(LHS),
3464 unwrap(RHS), Name));
3465}
3466
3467LLVMValueRef LLVMBuildNeg(LLVMBuilderRef B, LLVMValueRef V, const char *Name) {
3468 return wrap(unwrap(B)->CreateNeg(unwrap(V), Name));
3469}
3470
3471LLVMValueRef LLVMBuildNSWNeg(LLVMBuilderRef B, LLVMValueRef V,
3472 const char *Name) {
3473 return wrap(unwrap(B)->CreateNSWNeg(unwrap(V), Name));
3474}
3475
3476LLVMValueRef LLVMBuildNUWNeg(LLVMBuilderRef B, LLVMValueRef V,
3477 const char *Name) {
3478 return wrap(unwrap(B)->CreateNUWNeg(unwrap(V), Name));
3479}
3480
3481LLVMValueRef LLVMBuildFNeg(LLVMBuilderRef B, LLVMValueRef V, const char *Name) {
3482 return wrap(unwrap(B)->CreateFNeg(unwrap(V), Name));
3483}
3484
3485LLVMValueRef LLVMBuildNot(LLVMBuilderRef B, LLVMValueRef V, const char *Name) {
3486 return wrap(unwrap(B)->CreateNot(unwrap(V), Name));
3487}
3488
3489/*--.. Memory ..............................................................--*/
3490
3491LLVMValueRef LLVMBuildMalloc(LLVMBuilderRef B, LLVMTypeRef Ty,
3492 const char *Name) {
3493 Type* ITy = Type::getInt32Ty(unwrap(B)->GetInsertBlock()->getContext());
3494 Constant* AllocSize = ConstantExpr::getSizeOf(unwrap(Ty));
3495 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, ITy);
3496 Instruction* Malloc = CallInst::CreateMalloc(unwrap(B)->GetInsertBlock(),
3497 ITy, unwrap(Ty), AllocSize,
3498 nullptr, nullptr, "");
3499 return wrap(unwrap(B)->Insert(Malloc, Twine(Name)));
3500}
3501
3502LLVMValueRef LLVMBuildArrayMalloc(LLVMBuilderRef B, LLVMTypeRef Ty,
3503 LLVMValueRef Val, const char *Name) {
3504 Type* ITy = Type::getInt32Ty(unwrap(B)->GetInsertBlock()->getContext());
3505 Constant* AllocSize = ConstantExpr::getSizeOf(unwrap(Ty));
3506 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, ITy);
3507 Instruction* Malloc = CallInst::CreateMalloc(unwrap(B)->GetInsertBlock(),
3508 ITy, unwrap(Ty), AllocSize,
3509 unwrap(Val), nullptr, "");
3510 return wrap(unwrap(B)->Insert(Malloc, Twine(Name)));
3511}
3512
3513LLVMValueRef LLVMBuildMemSet(LLVMBuilderRef B, LLVMValueRef Ptr,
3514 LLVMValueRef Val, LLVMValueRef Len,
3515 unsigned Align) {
3516 return wrap(unwrap(B)->CreateMemSet(unwrap(Ptr), unwrap(Val), unwrap(Len),
3517 MaybeAlign(Align)));
3518}
3519
3520LLVMValueRef LLVMBuildMemCpy(LLVMBuilderRef B,
3521 LLVMValueRef Dst, unsigned DstAlign,
3522 LLVMValueRef Src, unsigned SrcAlign,
3523 LLVMValueRef Size) {
3524 return wrap(unwrap(B)->CreateMemCpy(unwrap(Dst), MaybeAlign(DstAlign),
3525 unwrap(Src), MaybeAlign(SrcAlign),
3526 unwrap(Size)));
3527}
3528
3529LLVMValueRef LLVMBuildMemMove(LLVMBuilderRef B,
3530 LLVMValueRef Dst, unsigned DstAlign,
3531 LLVMValueRef Src, unsigned SrcAlign,
3532 LLVMValueRef Size) {
3533 return wrap(unwrap(B)->CreateMemMove(unwrap(Dst), MaybeAlign(DstAlign),
3534 unwrap(Src), MaybeAlign(SrcAlign),
3535 unwrap(Size)));
3536}
3537
3538LLVMValueRef LLVMBuildAlloca(LLVMBuilderRef B, LLVMTypeRef Ty,
3539 const char *Name) {
3540 return wrap(unwrap(B)->CreateAlloca(unwrap(Ty), nullptr, Name));
3541}
3542
3543LLVMValueRef LLVMBuildArrayAlloca(LLVMBuilderRef B, LLVMTypeRef Ty,
3544 LLVMValueRef Val, const char *Name) {
3545 return wrap(unwrap(B)->CreateAlloca(unwrap(Ty), unwrap(Val), Name));
3546}
3547
3548LLVMValueRef LLVMBuildFree(LLVMBuilderRef B, LLVMValueRef PointerVal) {
3549 return wrap(unwrap(B)->Insert(
3550 CallInst::CreateFree(unwrap(PointerVal), unwrap(B)->GetInsertBlock())));
3551}
3552
3553LLVMValueRef LLVMBuildLoad(LLVMBuilderRef B, LLVMValueRef PointerVal,
3554 const char *Name) {
3555 Value *V = unwrap(PointerVal);
3556 PointerType *Ty = cast<PointerType>(V->getType());
3557
3558 return wrap(unwrap(B)->CreateLoad(Ty->getElementType(), V, Name));
3559}
3560
3561LLVMValueRef LLVMBuildLoad2(LLVMBuilderRef B, LLVMTypeRef Ty,
3562 LLVMValueRef PointerVal, const char *Name) {
3563 return wrap(unwrap(B)->CreateLoad(unwrap(Ty), unwrap(PointerVal), Name));
3564}
3565
3566LLVMValueRef LLVMBuildStore(LLVMBuilderRef B, LLVMValueRef Val,
3567 LLVMValueRef PointerVal) {
3568 return wrap(unwrap(B)->CreateStore(unwrap(Val), unwrap(PointerVal)));
3569}
3570
3571static AtomicOrdering mapFromLLVMOrdering(LLVMAtomicOrdering Ordering) {
3572 switch (Ordering) {
3573 case LLVMAtomicOrderingNotAtomic: return AtomicOrdering::NotAtomic;
3574 case LLVMAtomicOrderingUnordered: return AtomicOrdering::Unordered;
3575 case LLVMAtomicOrderingMonotonic: return AtomicOrdering::Monotonic;
3576 case LLVMAtomicOrderingAcquire: return AtomicOrdering::Acquire;
3577 case LLVMAtomicOrderingRelease: return AtomicOrdering::Release;
3578 case LLVMAtomicOrderingAcquireRelease:
3579 return AtomicOrdering::AcquireRelease;
3580 case LLVMAtomicOrderingSequentiallyConsistent:
3581 return AtomicOrdering::SequentiallyConsistent;
3582 }
3583
3584 llvm_unreachable("Invalid LLVMAtomicOrdering value!")__builtin_unreachable();
3585}
3586
3587static LLVMAtomicOrdering mapToLLVMOrdering(AtomicOrdering Ordering) {
3588 switch (Ordering) {
3589 case AtomicOrdering::NotAtomic: return LLVMAtomicOrderingNotAtomic;
3590 case AtomicOrdering::Unordered: return LLVMAtomicOrderingUnordered;
3591 case AtomicOrdering::Monotonic: return LLVMAtomicOrderingMonotonic;
3592 case AtomicOrdering::Acquire: return LLVMAtomicOrderingAcquire;
3593 case AtomicOrdering::Release: return LLVMAtomicOrderingRelease;
3594 case AtomicOrdering::AcquireRelease:
3595 return LLVMAtomicOrderingAcquireRelease;
3596 case AtomicOrdering::SequentiallyConsistent:
3597 return LLVMAtomicOrderingSequentiallyConsistent;
3598 }
3599
3600 llvm_unreachable("Invalid AtomicOrdering value!")__builtin_unreachable();
3601}
3602
3603static AtomicRMWInst::BinOp mapFromLLVMRMWBinOp(LLVMAtomicRMWBinOp BinOp) {
3604 switch (BinOp) {
3605 case LLVMAtomicRMWBinOpXchg: return AtomicRMWInst::Xchg;
3606 case LLVMAtomicRMWBinOpAdd: return AtomicRMWInst::Add;
3607 case LLVMAtomicRMWBinOpSub: return AtomicRMWInst::Sub;
3608 case LLVMAtomicRMWBinOpAnd: return AtomicRMWInst::And;
3609 case LLVMAtomicRMWBinOpNand: return AtomicRMWInst::Nand;
3610 case LLVMAtomicRMWBinOpOr: return AtomicRMWInst::Or;
3611 case LLVMAtomicRMWBinOpXor: return AtomicRMWInst::Xor;
3612 case LLVMAtomicRMWBinOpMax: return AtomicRMWInst::Max;
3613 case LLVMAtomicRMWBinOpMin: return AtomicRMWInst::Min;
3614 case LLVMAtomicRMWBinOpUMax: return AtomicRMWInst::UMax;
3615 case LLVMAtomicRMWBinOpUMin: return AtomicRMWInst::UMin;
3616 case LLVMAtomicRMWBinOpFAdd: return AtomicRMWInst::FAdd;
3617 case LLVMAtomicRMWBinOpFSub: return AtomicRMWInst::FSub;
3618 }
3619
3620 llvm_unreachable("Invalid LLVMAtomicRMWBinOp value!")__builtin_unreachable();
3621}
3622
3623static LLVMAtomicRMWBinOp mapToLLVMRMWBinOp(AtomicRMWInst::BinOp BinOp) {
3624 switch (BinOp) {
3625 case AtomicRMWInst::Xchg: return LLVMAtomicRMWBinOpXchg;
3626 case AtomicRMWInst::Add: return LLVMAtomicRMWBinOpAdd;
3627 case AtomicRMWInst::Sub: return LLVMAtomicRMWBinOpSub;
3628 case AtomicRMWInst::And: return LLVMAtomicRMWBinOpAnd;
3629 case AtomicRMWInst::Nand: return LLVMAtomicRMWBinOpNand;
3630 case AtomicRMWInst::Or: return LLVMAtomicRMWBinOpOr;
3631 case AtomicRMWInst::Xor: return LLVMAtomicRMWBinOpXor;
3632 case AtomicRMWInst::Max: return LLVMAtomicRMWBinOpMax;
3633 case AtomicRMWInst::Min: return LLVMAtomicRMWBinOpMin;
3634 case AtomicRMWInst::UMax: return LLVMAtomicRMWBinOpUMax;
3635 case AtomicRMWInst::UMin: return LLVMAtomicRMWBinOpUMin;
3636 case AtomicRMWInst::FAdd: return LLVMAtomicRMWBinOpFAdd;
3637 case AtomicRMWInst::FSub: return LLVMAtomicRMWBinOpFSub;
3638 default: break;
3639 }
3640
3641 llvm_unreachable("Invalid AtomicRMWBinOp value!")__builtin_unreachable();
3642}
3643
3644// TODO: Should this and other atomic instructions support building with
3645// "syncscope"?
3646LLVMValueRef LLVMBuildFence(LLVMBuilderRef B, LLVMAtomicOrdering Ordering,
3647 LLVMBool isSingleThread, const char *Name) {
3648 return wrap(
3649 unwrap(B)->CreateFence(mapFromLLVMOrdering(Ordering),
3650 isSingleThread ? SyncScope::SingleThread
3651 : SyncScope::System,
3652 Name));
3653}
3654
3655LLVMValueRef LLVMBuildGEP(LLVMBuilderRef B, LLVMValueRef Pointer,
3656 LLVMValueRef *Indices, unsigned NumIndices,
3657 const char *Name) {
3658 ArrayRef<Value *> IdxList(unwrap(Indices), NumIndices);
3659 Value *Val = unwrap(Pointer);
3660 Type *Ty =
3661 cast<PointerType>(Val->getType()->getScalarType())->getElementType();
3662 return wrap(unwrap(B)->CreateGEP(Ty, Val, IdxList, Name));
3663}
3664
3665LLVMValueRef LLVMBuildGEP2(LLVMBuilderRef B, LLVMTypeRef Ty,
3666 LLVMValueRef Pointer, LLVMValueRef *Indices,
3667 unsigned NumIndices, const char *Name) {
3668 ArrayRef<Value *> IdxList(unwrap(Indices), NumIndices);
3669 return wrap(unwrap(B)->CreateGEP(unwrap(Ty), unwrap(Pointer), IdxList, Name));
3670}
3671
3672LLVMValueRef LLVMBuildInBoundsGEP(LLVMBuilderRef B, LLVMValueRef Pointer,
3673 LLVMValueRef *Indices, unsigned NumIndices,
3674 const char *Name) {
3675 ArrayRef<Value *> IdxList(unwrap(Indices), NumIndices);
3676 Value *Val = unwrap(Pointer);
3677 Type *Ty =
3678 cast<PointerType>(Val->getType()->getScalarType())->getElementType();
3679 return wrap(unwrap(B)->CreateInBoundsGEP(Ty, Val, IdxList, Name));
3680}
3681
3682LLVMValueRef LLVMBuildInBoundsGEP2(LLVMBuilderRef B, LLVMTypeRef Ty,
3683 LLVMValueRef Pointer, LLVMValueRef *Indices,
3684 unsigned NumIndices, const char *Name) {
3685 ArrayRef<Value *> IdxList(unwrap(Indices), NumIndices);
3686 return wrap(
3687 unwrap(B)->CreateInBoundsGEP(unwrap(Ty), unwrap(Pointer), IdxList, Name));
3688}
3689
3690LLVMValueRef LLVMBuildStructGEP(LLVMBuilderRef B, LLVMValueRef Pointer,
3691 unsigned Idx, const char *Name) {
3692 Value *Val = unwrap(Pointer);
3693 Type *Ty =
3694 cast<PointerType>(Val->getType()->getScalarType())->getElementType();
3695 return wrap(unwrap(B)->CreateStructGEP(Ty, Val, Idx, Name));
3696}
3697
3698LLVMValueRef LLVMBuildStructGEP2(LLVMBuilderRef B, LLVMTypeRef Ty,
3699 LLVMValueRef Pointer, unsigned Idx,
3700 const char *Name) {
3701 return wrap(
3702 unwrap(B)->CreateStructGEP(unwrap(Ty), unwrap(Pointer), Idx, Name));
3703}
3704
3705LLVMValueRef LLVMBuildGlobalString(LLVMBuilderRef B, const char *Str,
3706 const char *Name) {
3707 return wrap(unwrap(B)->CreateGlobalString(Str, Name));
3708}
3709
3710LLVMValueRef LLVMBuildGlobalStringPtr(LLVMBuilderRef B, const char *Str,
3711 const char *Name) {
3712 return wrap(unwrap(B)->CreateGlobalStringPtr(Str, Name));
3713}
3714
3715LLVMBool LLVMGetVolatile(LLVMValueRef MemAccessInst) {
3716 Value *P = unwrap<Value>(MemAccessInst);
3717 if (LoadInst *LI = dyn_cast<LoadInst>(P))
3718 return LI->isVolatile();
3719 if (StoreInst *SI = dyn_cast<StoreInst>(P))
3720 return SI->isVolatile();
3721 if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(P))
3722 return AI->isVolatile();
3723 return cast<AtomicCmpXchgInst>(P)->isVolatile();
3724}
3725
3726void LLVMSetVolatile(LLVMValueRef MemAccessInst, LLVMBool isVolatile) {
3727 Value *P = unwrap<Value>(MemAccessInst);
3728 if (LoadInst *LI = dyn_cast<LoadInst>(P))
3729 return LI->setVolatile(isVolatile);
3730 if (StoreInst *SI = dyn_cast<StoreInst>(P))
3731 return SI->setVolatile(isVolatile);
3732 if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(P))
3733 return AI->setVolatile(isVolatile);
3734 return cast<AtomicCmpXchgInst>(P)->setVolatile(isVolatile);
3735}
3736
3737LLVMBool LLVMGetWeak(LLVMValueRef CmpXchgInst) {
3738 return unwrap<AtomicCmpXchgInst>(CmpXchgInst)->isWeak();
3739}
3740
3741void LLVMSetWeak(LLVMValueRef CmpXchgInst, LLVMBool isWeak) {
3742 return unwrap<AtomicCmpXchgInst>(CmpXchgInst)->setWeak(isWeak);
3743}
3744
3745LLVMAtomicOrdering LLVMGetOrdering(LLVMValueRef MemAccessInst) {
3746 Value *P = unwrap<Value>(MemAccessInst);
3747 AtomicOrdering O;
3748 if (LoadInst *LI = dyn_cast<LoadInst>(P))
3749 O = LI->getOrdering();
3750 else if (StoreInst *SI = dyn_cast<StoreInst>(P))
3751 O = SI->getOrdering();
3752 else
3753 O = cast<AtomicRMWInst>(P)->getOrdering();
3754 return mapToLLVMOrdering(O);
3755}
3756
3757void LLVMSetOrdering(LLVMValueRef MemAccessInst, LLVMAtomicOrdering Ordering) {
3758 Value *P = unwrap<Value>(MemAccessInst);
3759 AtomicOrdering O = mapFromLLVMOrdering(Ordering);
3760
3761 if (LoadInst *LI = dyn_cast<LoadInst>(P))
3762 return LI->setOrdering(O);
3763 return cast<StoreInst>(P)->setOrdering(O);
3764}
3765
3766LLVMAtomicRMWBinOp LLVMGetAtomicRMWBinOp(LLVMValueRef Inst) {
3767 return mapToLLVMRMWBinOp(unwrap<AtomicRMWInst>(Inst)->getOperation());
3768}
3769
3770void LLVMSetAtomicRMWBinOp(LLVMValueRef Inst, LLVMAtomicRMWBinOp BinOp) {
3771 unwrap<AtomicRMWInst>(Inst)->setOperation(mapFromLLVMRMWBinOp(BinOp));
3772}
3773
3774/*--.. Casts ...............................................................--*/
3775
3776LLVMValueRef LLVMBuildTrunc(LLVMBuilderRef B, LLVMValueRef Val,
3777 LLVMTypeRef DestTy, const char *Name) {
3778 return wrap(unwrap(B)->CreateTrunc(unwrap(Val), unwrap(DestTy), Name));
3779}
3780
3781LLVMValueRef LLVMBuildZExt(LLVMBuilderRef B, LLVMValueRef Val,
3782 LLVMTypeRef DestTy, const char *Name) {
3783 return wrap(unwrap(B)->CreateZExt(unwrap(Val), unwrap(DestTy), Name));
3784}
3785
3786LLVMValueRef LLVMBuildSExt(LLVMBuilderRef B, LLVMValueRef Val,
3787 LLVMTypeRef DestTy, const char *Name) {
3788 return wrap(unwrap(B)->CreateSExt(unwrap(Val), unwrap(DestTy), Name));
3789}
3790
3791LLVMValueRef LLVMBuildFPToUI(LLVMBuilderRef B, LLVMValueRef Val,
3792 LLVMTypeRef DestTy, const char *Name) {
3793 return wrap(unwrap(B)->CreateFPToUI(unwrap(Val), unwrap(DestTy), Name));
3794}
3795
3796LLVMValueRef LLVMBuildFPToSI(LLVMBuilderRef B, LLVMValueRef Val,
3797 LLVMTypeRef DestTy, const char *Name) {
3798 return wrap(unwrap(B)->CreateFPToSI(unwrap(Val), unwrap(DestTy), Name));
3799}
3800
3801LLVMValueRef LLVMBuildUIToFP(LLVMBuilderRef B, LLVMValueRef Val,
3802 LLVMTypeRef DestTy, const char *Name) {
3803 return wrap(unwrap(B)->CreateUIToFP(unwrap(Val), unwrap(DestTy), Name));
3804}
3805
3806LLVMValueRef LLVMBuildSIToFP(LLVMBuilderRef B, LLVMValueRef Val,
3807 LLVMTypeRef DestTy, const char *Name) {
3808 return wrap(unwrap(B)->CreateSIToFP(unwrap(Val), unwrap(DestTy), Name));
3809}
3810
3811LLVMValueRef LLVMBuildFPTrunc(LLVMBuilderRef B, LLVMValueRef Val,
3812 LLVMTypeRef DestTy, const char *Name) {
3813 return wrap(unwrap(B)->CreateFPTrunc(unwrap(Val), unwrap(DestTy), Name));
3814}
3815
3816LLVMValueRef LLVMBuildFPExt(LLVMBuilderRef B, LLVMValueRef Val,
3817 LLVMTypeRef DestTy, const char *Name) {
3818 return wrap(unwrap(B)->CreateFPExt(unwrap(Val), unwrap(DestTy), Name));
3819}
3820
3821LLVMValueRef LLVMBuildPtrToInt(LLVMBuilderRef B, LLVMValueRef Val,
3822 LLVMTypeRef DestTy, const char *Name) {
3823 return wrap(unwrap(B)->CreatePtrToInt(unwrap(Val), unwrap(DestTy), Name));
3824}
3825
3826LLVMValueRef LLVMBuildIntToPtr(LLVMBuilderRef B, LLVMValueRef Val,
3827 LLVMTypeRef DestTy, const char *Name) {
3828 return wrap(unwrap(B)->CreateIntToPtr(unwrap(Val), unwrap(DestTy), Name));
3829}
3830
3831LLVMValueRef LLVMBuildBitCast(LLVMBuilderRef B, LLVMValueRef Val,
3832 LLVMTypeRef DestTy, const char *Name) {
3833 return wrap(unwrap(B)->CreateBitCast(unwrap(Val), unwrap(DestTy), Name));
3834}
3835
3836LLVMValueRef LLVMBuildAddrSpaceCast(LLVMBuilderRef B, LLVMValueRef Val,
3837 LLVMTypeRef DestTy, const char *Name) {
3838 return wrap(unwrap(B)->CreateAddrSpaceCast(unwrap(Val), unwrap(DestTy), Name));
3839}
3840
3841LLVMValueRef LLVMBuildZExtOrBitCast(LLVMBuilderRef B, LLVMValueRef Val,
3842 LLVMTypeRef DestTy, const char *Name) {
3843 return wrap(unwrap(B)->CreateZExtOrBitCast(unwrap(Val), unwrap(DestTy),
3844 Name));
3845}
3846
3847LLVMValueRef LLVMBuildSExtOrBitCast(LLVMBuilderRef B, LLVMValueRef Val,
3848 LLVMTypeRef DestTy, const char *Name) {
3849 return wrap(unwrap(B)->CreateSExtOrBitCast(unwrap(Val), unwrap(DestTy),
3850 Name));
3851}
3852
3853LLVMValueRef LLVMBuildTruncOrBitCast(LLVMBuilderRef B, LLVMValueRef Val,
3854 LLVMTypeRef DestTy, const char *Name) {
3855 return wrap(unwrap(B)->CreateTruncOrBitCast(unwrap(Val), unwrap(DestTy),
3856 Name));
3857}
3858
3859LLVMValueRef LLVMBuildCast(LLVMBuilderRef B, LLVMOpcode Op, LLVMValueRef Val,
3860 LLVMTypeRef DestTy, const char *Name) {
3861 return wrap(unwrap(B)->CreateCast(Instruction::CastOps(map_from_llvmopcode(Op)), unwrap(Val),
3862 unwrap(DestTy), Name));
3863}
3864
3865LLVMValueRef LLVMBuildPointerCast(LLVMBuilderRef B, LLVMValueRef Val,
3866 LLVMTypeRef DestTy, const char *Name) {
3867 return wrap(unwrap(B)->CreatePointerCast(unwrap(Val), unwrap(DestTy), Name));
3868}
3869
3870LLVMValueRef LLVMBuildIntCast2(LLVMBuilderRef B, LLVMValueRef Val,
3871 LLVMTypeRef DestTy, LLVMBool IsSigned,
3872 const char *Name) {
3873 return wrap(
3874 unwrap(B)->CreateIntCast(unwrap(Val), unwrap(DestTy), IsSigned, Name));
3875}
3876
3877LLVMValueRef LLVMBuildIntCast(LLVMBuilderRef B, LLVMValueRef Val,
3878 LLVMTypeRef DestTy, const char *Name) {
3879 return wrap(unwrap(B)->CreateIntCast(unwrap(Val), unwrap(DestTy),
3880 /*isSigned*/true, Name));
3881}
3882
3883LLVMValueRef LLVMBuildFPCast(LLVMBuilderRef B, LLVMValueRef Val,
3884 LLVMTypeRef DestTy, const char *Name) {
3885 return wrap(unwrap(B)->CreateFPCast(unwrap(Val), unwrap(DestTy), Name));
3886}
3887
3888/*--.. Comparisons .........................................................--*/
3889
3890LLVMValueRef LLVMBuildICmp(LLVMBuilderRef B, LLVMIntPredicate Op,
3891 LLVMValueRef LHS, LLVMValueRef RHS,
3892 const char *Name) {
3893 return wrap(unwrap(B)->CreateICmp(static_cast<ICmpInst::Predicate>(Op),
3894 unwrap(LHS), unwrap(RHS), Name));
3895}
3896
3897LLVMValueRef LLVMBuildFCmp(LLVMBuilderRef B, LLVMRealPredicate Op,
3898 LLVMValueRef LHS, LLVMValueRef RHS,
3899 const char *Name) {
3900 return wrap(unwrap(B)->CreateFCmp(static_cast<FCmpInst::Predicate>(Op),
3901 unwrap(LHS), unwrap(RHS), Name));
3902}
3903
3904/*--.. Miscellaneous instructions ..........................................--*/
3905
3906LLVMValueRef LLVMBuildPhi(LLVMBuilderRef B, LLVMTypeRef Ty, const char *Name) {
3907 return wrap(unwrap(B)->CreatePHI(unwrap(Ty), 0, Name));
3908}
3909
3910LLVMValueRef LLVMBuildCall(LLVMBuilderRef B, LLVMValueRef Fn,
3911 LLVMValueRef *Args, unsigned NumArgs,
3912 const char *Name) {
3913 Value *V = unwrap(Fn);
3914 FunctionType *FnT =
3915 cast<FunctionType>(cast<PointerType>(V->getType())->getElementType());
3916
3917 return wrap(unwrap(B)->CreateCall(FnT, unwrap(Fn),
3918 makeArrayRef(unwrap(Args), NumArgs), Name));
3919}
3920
3921LLVMValueRef LLVMBuildCall2(LLVMBuilderRef B, LLVMTypeRef Ty, LLVMValueRef Fn,
3922 LLVMValueRef *Args, unsigned NumArgs,
3923 const char *Name) {
3924 FunctionType *FTy = unwrap<FunctionType>(Ty);
3925 return wrap(unwrap(B)->CreateCall(FTy, unwrap(Fn),
3926 makeArrayRef(unwrap(Args), NumArgs), Name));
3927}
3928
3929LLVMValueRef LLVMBuildSelect(LLVMBuilderRef B, LLVMValueRef If,
3930 LLVMValueRef Then, LLVMValueRef Else,
3931 const char *Name) {
3932 return wrap(unwrap(B)->CreateSelect(unwrap(If), unwrap(Then), unwrap(Else),
3933 Name));
3934}
3935
3936LLVMValueRef LLVMBuildVAArg(LLVMBuilderRef B, LLVMValueRef List,
3937 LLVMTypeRef Ty, const char *Name) {
3938 return wrap(unwrap(B)->CreateVAArg(unwrap(List), unwrap(Ty), Name));
3939}
3940
3941LLVMValueRef LLVMBuildExtractElement(LLVMBuilderRef B, LLVMValueRef VecVal,
3942 LLVMValueRef Index, const char *Name) {
3943 return wrap(unwrap(B)->CreateExtractElement(unwrap(VecVal), unwrap(Index),
3944 Name));
3945}
3946
3947LLVMValueRef LLVMBuildInsertElement(LLVMBuilderRef B, LLVMValueRef VecVal,
3948 LLVMValueRef EltVal, LLVMValueRef Index,
3949 const char *Name) {
3950 return wrap(unwrap(B)->CreateInsertElement(unwrap(VecVal), unwrap(EltVal),
3951 unwrap(Index), Name));
3952}
3953
3954LLVMValueRef LLVMBuildShuffleVector(LLVMBuilderRef B, LLVMValueRef V1,
3955 LLVMValueRef V2, LLVMValueRef Mask,
3956 const char *Name) {
3957 return wrap(unwrap(B)->CreateShuffleVector(unwrap(V1), unwrap(V2),
3958 unwrap(Mask), Name));
3959}
3960
3961LLVMValueRef LLVMBuildExtractValue(LLVMBuilderRef B, LLVMValueRef AggVal,
3962 unsigned Index, const char *Name) {
3963 return wrap(unwrap(B)->CreateExtractValue(unwrap(AggVal), Index, Name));
3964}
3965
3966LLVMValueRef LLVMBuildInsertValue(LLVMBuilderRef B, LLVMValueRef AggVal,
3967 LLVMValueRef EltVal, unsigned Index,
3968 const char *Name) {
3969 return wrap(unwrap(B)->CreateInsertValue(unwrap(AggVal), unwrap(EltVal),
3970 Index, Name));
3971}
3972
3973LLVMValueRef LLVMBuildFreeze(LLVMBuilderRef B, LLVMValueRef Val,
3974 const char *Name) {
3975 return wrap(unwrap(B)->CreateFreeze(unwrap(Val), Name));
3976}
3977
3978LLVMValueRef LLVMBuildIsNull(LLVMBuilderRef B, LLVMValueRef Val,
3979 const char *Name) {
3980 return wrap(unwrap(B)->CreateIsNull(unwrap(Val), Name));
3981}
3982
3983LLVMValueRef LLVMBuildIsNotNull(LLVMBuilderRef B, LLVMValueRef Val,
3984 const char *Name) {
3985 return wrap(unwrap(B)->CreateIsNotNull(unwrap(Val), Name));
3986}
3987
3988LLVMValueRef LLVMBuildPtrDiff(LLVMBuilderRef B, LLVMValueRef LHS,
3989 LLVMValueRef RHS, const char *Name) {
3990 return wrap(unwrap(B)->CreatePtrDiff(unwrap(LHS), unwrap(RHS), Name));
3991}
3992
3993LLVMValueRef LLVMBuildAtomicRMW(LLVMBuilderRef B,LLVMAtomicRMWBinOp op,
3994 LLVMValueRef PTR, LLVMValueRef Val,
3995 LLVMAtomicOrdering ordering,
3996 LLVMBool singleThread) {
3997 AtomicRMWInst::BinOp intop = mapFromLLVMRMWBinOp(op);
3998 return wrap(unwrap(B)->CreateAtomicRMW(
3999 intop, unwrap(PTR), unwrap(Val), MaybeAlign(),
4000 mapFromLLVMOrdering(ordering),
4001 singleThread ? SyncScope::SingleThread : SyncScope::System));
4002}
4003
4004LLVMValueRef LLVMBuildAtomicCmpXchg(LLVMBuilderRef B, LLVMValueRef Ptr,
4005 LLVMValueRef Cmp, LLVMValueRef New,
4006 LLVMAtomicOrdering SuccessOrdering,
4007 LLVMAtomicOrdering FailureOrdering,
4008 LLVMBool singleThread) {
4009
4010 return wrap(unwrap(B)->CreateAtomicCmpXchg(
4011 unwrap(Ptr), unwrap(Cmp), unwrap(New), MaybeAlign(),
4012 mapFromLLVMOrdering(SuccessOrdering),
4013 mapFromLLVMOrdering(FailureOrdering),
4014 singleThread ? SyncScope::SingleThread : SyncScope::System));
4015}
4016
4017unsigned LLVMGetNumMaskElements(LLVMValueRef SVInst) {
4018 Value *P = unwrap<Value>(SVInst);
4019 ShuffleVectorInst *I = cast<ShuffleVectorInst>(P);
4020 return I->getShuffleMask().size();
4021}
4022
4023int LLVMGetMaskValue(LLVMValueRef SVInst, unsigned Elt) {
4024 Value *P = unwrap<Value>(SVInst);
4025 ShuffleVectorInst *I = cast<ShuffleVectorInst>(P);
4026 return I->getMaskValue(Elt);
4027}
4028
4029int LLVMGetUndefMaskElem(void) { return UndefMaskElem; }
4030
4031LLVMBool LLVMIsAtomicSingleThread(LLVMValueRef AtomicInst) {
4032 Value *P = unwrap<Value>(AtomicInst);
4033
4034 if (AtomicRMWInst *I = dyn_cast<AtomicRMWInst>(P))
4035 return I->getSyncScopeID() == SyncScope::SingleThread;
4036 return cast<AtomicCmpXchgInst>(P)->getSyncScopeID() ==
4037 SyncScope::SingleThread;
4038}
4039
4040void LLVMSetAtomicSingleThread(LLVMValueRef AtomicInst, LLVMBool NewValue) {
4041 Value *P = unwrap<Value>(AtomicInst);
4042 SyncScope::ID SSID = NewValue ? SyncScope::SingleThread : SyncScope::System;
4043
4044 if (AtomicRMWInst *I = dyn_cast<AtomicRMWInst>(P))
4045 return I->setSyncScopeID(SSID);
4046 return cast<AtomicCmpXchgInst>(P)->setSyncScopeID(SSID);
4047}
4048
4049LLVMAtomicOrdering LLVMGetCmpXchgSuccessOrdering(LLVMValueRef CmpXchgInst) {
4050 Value *P = unwrap<Value>(CmpXchgInst);
4051 return mapToLLVMOrdering(cast<AtomicCmpXchgInst>(P)->getSuccessOrdering());
4052}
4053
4054void LLVMSetCmpXchgSuccessOrdering(LLVMValueRef CmpXchgInst,
4055 LLVMAtomicOrdering Ordering) {
4056 Value *P = unwrap<Value>(CmpXchgInst);
4057 AtomicOrdering O = mapFromLLVMOrdering(Ordering);
4058
4059 return cast<AtomicCmpXchgInst>(P)->setSuccessOrdering(O);
4060}
4061
4062LLVMAtomicOrdering LLVMGetCmpXchgFailureOrdering(LLVMValueRef CmpXchgInst) {
4063 Value *P = unwrap<Value>(CmpXchgInst);
4064 return mapToLLVMOrdering(cast<AtomicCmpXchgInst>(P)->getFailureOrdering());
4065}
4066
4067void LLVMSetCmpXchgFailureOrdering(LLVMValueRef CmpXchgInst,
4068 LLVMAtomicOrdering Ordering) {
4069 Value *P = unwrap<Value>(CmpXchgInst);
4070 AtomicOrdering O = mapFromLLVMOrdering(Ordering);
4071
4072 return cast<AtomicCmpXchgInst>(P)->setFailureOrdering(O);
4073}
4074
4075/*===-- Module providers --------------------------------------------------===*/
4076
4077LLVMModuleProviderRef
4078LLVMCreateModuleProviderForExistingModule(LLVMModuleRef M) {
4079 return reinterpret_cast<LLVMModuleProviderRef>(M);
4080}
4081
4082void LLVMDisposeModuleProvider(LLVMModuleProviderRef MP) {
4083 delete unwrap(MP);
4084}
4085
4086
4087/*===-- Memory buffers ----------------------------------------------------===*/
4088
4089LLVMBool LLVMCreateMemoryBufferWithContentsOfFile(
4090 const char *Path,
4091 LLVMMemoryBufferRef *OutMemBuf,
4092 char **OutMessage) {
4093
4094 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = MemoryBuffer::getFile(Path);
4095 if (std::error_code EC = MBOrErr.getError()) {
4096 *OutMessage = strdup(EC.message().c_str());
4097 return 1;
4098 }
4099 *OutMemBuf = wrap(MBOrErr.get().release());
4100 return 0;
4101}
4102
4103LLVMBool LLVMCreateMemoryBufferWithSTDIN(LLVMMemoryBufferRef *OutMemBuf,
4104 char **OutMessage) {
4105 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = MemoryBuffer::getSTDIN();
4106 if (std::error_code EC = MBOrErr.getError()) {
4107 *OutMessage = strdup(EC.message().c_str());
4108 return 1;
4109 }
4110 *OutMemBuf = wrap(MBOrErr.get().release());
4111 return 0;
4112}
4113
4114LLVMMemoryBufferRef LLVMCreateMemoryBufferWithMemoryRange(
4115 const char *InputData,
4116 size_t InputDataLength,
4117 const char *BufferName,
4118 LLVMBool RequiresNullTerminator) {
4119
4120 return wrap(MemoryBuffer::getMemBuffer(StringRef(InputData, InputDataLength),
4121 StringRef(BufferName),
4122 RequiresNullTerminator).release());
4123}
4124
4125LLVMMemoryBufferRef LLVMCreateMemoryBufferWithMemoryRangeCopy(
4126 const char *InputData,
4127 size_t InputDataLength,
4128 const char *BufferName) {
4129
4130 return wrap(
4131 MemoryBuffer::getMemBufferCopy(StringRef(InputData, InputDataLength),
4132 StringRef(BufferName)).release());
4133}
4134
4135const char *LLVMGetBufferStart(LLVMMemoryBufferRef MemBuf) {
4136 return unwrap(MemBuf)->getBufferStart();
4137}
4138
4139size_t LLVMGetBufferSize(LLVMMemoryBufferRef MemBuf) {
4140 return unwrap(MemBuf)->getBufferSize();
4141}
4142
4143void LLVMDisposeMemoryBuffer(LLVMMemoryBufferRef MemBuf) {
4144 delete unwrap(MemBuf);
4145}
4146
4147/*===-- Pass Registry -----------------------------------------------------===*/
4148
4149LLVMPassRegistryRef LLVMGetGlobalPassRegistry(void) {
4150 return wrap(PassRegistry::getPassRegistry());
4151}
4152
4153/*===-- Pass Manager ------------------------------------------------------===*/
4154
4155LLVMPassManagerRef LLVMCreatePassManager() {
4156 return wrap(new legacy::PassManager());
4157}
4158
4159LLVMPassManagerRef LLVMCreateFunctionPassManagerForModule(LLVMModuleRef M) {
4160 return wrap(new legacy::FunctionPassManager(unwrap(M)));
4161}
4162
4163LLVMPassManagerRef LLVMCreateFunctionPassManager(LLVMModuleProviderRef P) {
4164 return LLVMCreateFunctionPassManagerForModule(
4165 reinterpret_cast<LLVMModuleRef>(P));
4166}
4167
4168LLVMBool LLVMRunPassManager(LLVMPassManagerRef PM, LLVMModuleRef M) {
4169 return unwrap<legacy::PassManager>(PM)->run(*unwrap(M));
4170}
4171
4172LLVMBool LLVMInitializeFunctionPassManager(LLVMPassManagerRef FPM) {
4173 return unwrap<legacy::FunctionPassManager>(FPM)->doInitialization();
4174}
4175
4176LLVMBool LLVMRunFunctionPassManager(LLVMPassManagerRef FPM, LLVMValueRef F) {
4177 return unwrap<legacy::FunctionPassManager>(FPM)->run(*unwrap<Function>(F));
4178}
4179
4180LLVMBool LLVMFinalizeFunctionPassManager(LLVMPassManagerRef FPM) {
4181 return unwrap<legacy::FunctionPassManager>(FPM)->doFinalization();
4182}
4183
4184void LLVMDisposePassManager(LLVMPassManagerRef PM) {
4185 delete unwrap(PM);
4186}
4187
4188/*===-- Threading ------------------------------------------------------===*/
4189
4190LLVMBool LLVMStartMultithreaded() {
4191 return LLVMIsMultithreaded();
4192}
4193
4194void LLVMStopMultithreaded() {
4195}
4196
4197LLVMBool LLVMIsMultithreaded() {
4198 return llvm_is_multithreaded();
4199}

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/None.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringRef.h"
25#include "llvm/ADT/Twine.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/IR/Attributes.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/CFG.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/InstrTypes.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/OperandTraits.h"
38#include "llvm/IR/Type.h"
39#include "llvm/IR/Use.h"
40#include "llvm/IR/User.h"
41#include "llvm/IR/Value.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include <cassert>
46#include <cstddef>
47#include <cstdint>
48#include <iterator>
49
50namespace llvm {
51
52class APInt;
53class ConstantInt;
54class DataLayout;
55class LLVMContext;
56
57//===----------------------------------------------------------------------===//
58// AllocaInst Class
59//===----------------------------------------------------------------------===//
60
61/// an instruction to allocate memory on the stack
62class AllocaInst : public UnaryInstruction {
63 Type *AllocatedType;
64
65 using AlignmentField = AlignmentBitfieldElementT<0>;
66 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
67 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
68 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
69 SwiftErrorField>(),
70 "Bitfields must be contiguous");
71
72protected:
73 // Note: Instruction needs to be a friend here to call cloneImpl.
74 friend class Instruction;
75
76 AllocaInst *cloneImpl() const;
77
78public:
79 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
80 const Twine &Name, Instruction *InsertBefore);
81 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
82 const Twine &Name, BasicBlock *InsertAtEnd);
83
84 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
85 Instruction *InsertBefore);
86 AllocaInst(Type *Ty, unsigned AddrSpace,
87 const Twine &Name, BasicBlock *InsertAtEnd);
88
89 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
90 const Twine &Name = "", Instruction *InsertBefore = nullptr);
91 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
92 const Twine &Name, BasicBlock *InsertAtEnd);
93
94 /// Return true if there is an allocation size parameter to the allocation
95 /// instruction that is not 1.
96 bool isArrayAllocation() const;
97
98 /// Get the number of elements allocated. For a simple allocation of a single
99 /// element, this will return a constant 1 value.
100 const Value *getArraySize() const { return getOperand(0); }
101 Value *getArraySize() { return getOperand(0); }
102
103 /// Overload to return most specific pointer type.
104 PointerType *getType() const {
105 return cast<PointerType>(Instruction::getType());
106 }
107
108 /// Get allocation size in bits. Returns None if size can't be determined,
109 /// e.g. in case of a VLA.
110 Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
111
112 /// Return the type that is being allocated by the instruction.
113 Type *getAllocatedType() const { return AllocatedType; }
114 /// for use only in special circumstances that need to generically
115 /// transform a whole instruction (eg: IR linking and vectorization).
116 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
117
118 /// Return the alignment of the memory that is being allocated by the
119 /// instruction.
120 Align getAlign() const {
121 return Align(1ULL << getSubclassData<AlignmentField>());
7
Calling constructor for 'Align'
12
Returning from constructor for 'Align'
122 }
123
124 void setAlignment(Align Align) {
125 setSubclassData<AlignmentField>(Log2(Align));
126 }
127
128 // FIXME: Remove this one transition to Align is over.
129 unsigned getAlignment() const { return getAlign().value(); }
6
Calling 'AllocaInst::getAlign'
13
Returning from 'AllocaInst::getAlign'
14
Calling 'Align::value'
130
131 /// Return true if this alloca is in the entry block of the function and is a
132 /// constant size. If so, the code generator will fold it into the
133 /// prolog/epilog code, so it is basically free.
134 bool isStaticAlloca() const;
135
136 /// Return true if this alloca is used as an inalloca argument to a call. Such
137 /// allocas are never considered static even if they are in the entry block.
138 bool isUsedWithInAlloca() const {
139 return getSubclassData<UsedWithInAllocaField>();
140 }
141
142 /// Specify whether this alloca is used to represent the arguments to a call.
143 void setUsedWithInAlloca(bool V) {
144 setSubclassData<UsedWithInAllocaField>(V);
145 }
146
147 /// Return true if this alloca is used as a swifterror argument to a call.
148 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
149 /// Specify whether this alloca is used to represent a swifterror.
150 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
151
152 // Methods for support type inquiry through isa, cast, and dyn_cast:
153 static bool classof(const Instruction *I) {
154 return (I->getOpcode() == Instruction::Alloca);
155 }
156 static bool classof(const Value *V) {
157 return isa<Instruction>(V) && classof(cast<Instruction>(V));
158 }
159
160private:
161 // Shadow Instruction::setInstructionSubclassData with a private forwarding
162 // method so that subclasses cannot accidentally use it.
163 template <typename Bitfield>
164 void setSubclassData(typename Bitfield::Type Value) {
165 Instruction::setSubclassData<Bitfield>(Value);
166 }
167};
168
169//===----------------------------------------------------------------------===//
170// LoadInst Class
171//===----------------------------------------------------------------------===//
172
173/// An instruction for reading from memory. This uses the SubclassData field in
174/// Value to store whether or not the load is volatile.
175class LoadInst : public UnaryInstruction {
176 using VolatileField = BoolBitfieldElementT<0>;
177 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
178 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
179 static_assert(
180 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
181 "Bitfields must be contiguous");
182
183 void AssertOK();
184
185protected:
186 // Note: Instruction needs to be a friend here to call cloneImpl.
187 friend class Instruction;
188
189 LoadInst *cloneImpl() const;
190
191public:
192 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
193 Instruction *InsertBefore);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
195 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
196 Instruction *InsertBefore);
197 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
198 BasicBlock *InsertAtEnd);
199 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
200 Align Align, Instruction *InsertBefore = nullptr);
201 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
202 Align Align, BasicBlock *InsertAtEnd);
203 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
204 Align Align, AtomicOrdering Order,
205 SyncScope::ID SSID = SyncScope::System,
206 Instruction *InsertBefore = nullptr);
207 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
208 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
209 BasicBlock *InsertAtEnd);
210
211 /// Return true if this is a load from a volatile memory location.
212 bool isVolatile() const { return getSubclassData<VolatileField>(); }
213
214 /// Specify whether this is a volatile load or not.
215 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
216
217 /// Return the alignment of the access that is being performed.
218 /// FIXME: Remove this function once transition to Align is over.
219 /// Use getAlign() instead.
220 unsigned getAlignment() const { return getAlign().value(); }
221
222 /// Return the alignment of the access that is being performed.
223 Align getAlign() const {
224 return Align(1ULL << (getSubclassData<AlignmentField>()));
225 }
226
227 void setAlignment(Align Align) {
228 setSubclassData<AlignmentField>(Log2(Align));
229 }
230
231 /// Returns the ordering constraint of this load instruction.
232 AtomicOrdering getOrdering() const {
233 return getSubclassData<OrderingField>();
234 }
235 /// Sets the ordering constraint of this load instruction. May not be Release
236 /// or AcquireRelease.
237 void setOrdering(AtomicOrdering Ordering) {
238 setSubclassData<OrderingField>(Ordering);
239 }
240
241 /// Returns the synchronization scope ID of this load instruction.
242 SyncScope::ID getSyncScopeID() const {
243 return SSID;
244 }
245
246 /// Sets the synchronization scope ID of this load instruction.
247 void setSyncScopeID(SyncScope::ID SSID) {
248 this->SSID = SSID;
249 }
250
251 /// Sets the ordering constraint and the synchronization scope ID of this load
252 /// instruction.
253 void setAtomic(AtomicOrdering Ordering,
254 SyncScope::ID SSID = SyncScope::System) {
255 setOrdering(Ordering);
256 setSyncScopeID(SSID);
257 }
258
259 bool isSimple() const { return !isAtomic() && !isVolatile(); }
260
261 bool isUnordered() const {
262 return (getOrdering() == AtomicOrdering::NotAtomic ||
263 getOrdering() == AtomicOrdering::Unordered) &&
264 !isVolatile();
265 }
266
267 Value *getPointerOperand() { return getOperand(0); }
268 const Value *getPointerOperand() const { return getOperand(0); }
269 static unsigned getPointerOperandIndex() { return 0U; }
270 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
271
272 /// Returns the address space of the pointer operand.
273 unsigned getPointerAddressSpace() const {
274 return getPointerOperandType()->getPointerAddressSpace();
275 }
276
277 // Methods for support type inquiry through isa, cast, and dyn_cast:
278 static bool classof(const Instruction *I) {
279 return I->getOpcode() == Instruction::Load;
280 }
281 static bool classof(const Value *V) {
282 return isa<Instruction>(V) && classof(cast<Instruction>(V));
283 }
284
285private:
286 // Shadow Instruction::setInstructionSubclassData with a private forwarding
287 // method so that subclasses cannot accidentally use it.
288 template <typename Bitfield>
289 void setSubclassData(typename Bitfield::Type Value) {
290 Instruction::setSubclassData<Bitfield>(Value);
291 }
292
293 /// The synchronization scope ID of this load instruction. Not quite enough
294 /// room in SubClassData for everything, so synchronization scope ID gets its
295 /// own field.
296 SyncScope::ID SSID;
297};
298
299//===----------------------------------------------------------------------===//
300// StoreInst Class
301//===----------------------------------------------------------------------===//
302
303/// An instruction for storing to memory.
304class StoreInst : public Instruction {
305 using VolatileField = BoolBitfieldElementT<0>;
306 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
307 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
308 static_assert(
309 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
310 "Bitfields must be contiguous");
311
312 void AssertOK();
313
314protected:
315 // Note: Instruction needs to be a friend here to call cloneImpl.
316 friend class Instruction;
317
318 StoreInst *cloneImpl() const;
319
320public:
321 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
322 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
323 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
325 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
326 Instruction *InsertBefore = nullptr);
327 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
328 BasicBlock *InsertAtEnd);
329 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
330 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
331 Instruction *InsertBefore = nullptr);
332 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
333 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
334
335 // allocate space for exactly two operands
336 void *operator new(size_t S) { return User::operator new(S, 2); }
337 void operator delete(void *Ptr) { User::operator delete(Ptr); }
338
339 /// Return true if this is a store to a volatile memory location.
340 bool isVolatile() const { return getSubclassData<VolatileField>(); }
341
342 /// Specify whether this is a volatile store or not.
343 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344
345 /// Transparently provide more efficient getOperand methods.
346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
347
348 /// Return the alignment of the access that is being performed
349 /// FIXME: Remove this function once transition to Align is over.
350 /// Use getAlign() instead.
351 unsigned getAlignment() const { return getAlign().value(); }
352
353 Align getAlign() const {
354 return Align(1ULL << (getSubclassData<AlignmentField>()));
355 }
356
357 void setAlignment(Align Align) {
358 setSubclassData<AlignmentField>(Log2(Align));
359 }
360
361 /// Returns the ordering constraint of this store instruction.
362 AtomicOrdering getOrdering() const {
363 return getSubclassData<OrderingField>();
364 }
365
366 /// Sets the ordering constraint of this store instruction. May not be
367 /// Acquire or AcquireRelease.
368 void setOrdering(AtomicOrdering Ordering) {
369 setSubclassData<OrderingField>(Ordering);
370 }
371
372 /// Returns the synchronization scope ID of this store instruction.
373 SyncScope::ID getSyncScopeID() const {
374 return SSID;
375 }
376
377 /// Sets the synchronization scope ID of this store instruction.
378 void setSyncScopeID(SyncScope::ID SSID) {
379 this->SSID = SSID;
380 }
381
382 /// Sets the ordering constraint and the synchronization scope ID of this
383 /// store instruction.
384 void setAtomic(AtomicOrdering Ordering,
385 SyncScope::ID SSID = SyncScope::System) {
386 setOrdering(Ordering);
387 setSyncScopeID(SSID);
388 }
389
390 bool isSimple() const { return !isAtomic() && !isVolatile(); }
391
392 bool isUnordered() const {
393 return (getOrdering() == AtomicOrdering::NotAtomic ||
394 getOrdering() == AtomicOrdering::Unordered) &&
395 !isVolatile();
396 }
397
398 Value *getValueOperand() { return getOperand(0); }
399 const Value *getValueOperand() const { return getOperand(0); }
400
401 Value *getPointerOperand() { return getOperand(1); }
402 const Value *getPointerOperand() const { return getOperand(1); }
403 static unsigned getPointerOperandIndex() { return 1U; }
404 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405
406 /// Returns the address space of the pointer operand.
407 unsigned getPointerAddressSpace() const {
408 return getPointerOperandType()->getPointerAddressSpace();
409 }
410
411 // Methods for support type inquiry through isa, cast, and dyn_cast:
412 static bool classof(const Instruction *I) {
413 return I->getOpcode() == Instruction::Store;
414 }
415 static bool classof(const Value *V) {
416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
417 }
418
419private:
420 // Shadow Instruction::setInstructionSubclassData with a private forwarding
421 // method so that subclasses cannot accidentally use it.
422 template <typename Bitfield>
423 void setSubclassData(typename Bitfield::Type Value) {
424 Instruction::setSubclassData<Bitfield>(Value);
425 }
426
427 /// The synchronization scope ID of this store instruction. Not quite enough
428 /// room in SubClassData for everything, so synchronization scope ID gets its
429 /// own field.
430 SyncScope::ID SSID;
431};
432
433template <>
434struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435};
436
437DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<StoreInst>::op_begin(const_cast
<StoreInst*>(this))[i_nocapture].get()); } void StoreInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<StoreInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned StoreInst::getNumOperands() const
{ return OperandTraits<StoreInst>::operands(this); } template
<int Idx_nocapture> Use &StoreInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &StoreInst::Op() const { return this->OpFrom
<Idx_nocapture>(this); }
438
439//===----------------------------------------------------------------------===//
440// FenceInst Class
441//===----------------------------------------------------------------------===//
442
443/// An instruction for ordering other memory operations.
444class FenceInst : public Instruction {
445 using OrderingField = AtomicOrderingBitfieldElementT<0>;
446
447 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448
449protected:
450 // Note: Instruction needs to be a friend here to call cloneImpl.
451 friend class Instruction;
452
453 FenceInst *cloneImpl() const;
454
455public:
456 // Ordering may only be Acquire, Release, AcquireRelease, or
457 // SequentiallyConsistent.
458 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459 SyncScope::ID SSID = SyncScope::System,
460 Instruction *InsertBefore = nullptr);
461 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462 BasicBlock *InsertAtEnd);
463
464 // allocate space for exactly zero operands
465 void *operator new(size_t S) { return User::operator new(S, 0); }
466 void operator delete(void *Ptr) { User::operator delete(Ptr); }
467
468 /// Returns the ordering constraint of this fence instruction.
469 AtomicOrdering getOrdering() const {
470 return getSubclassData<OrderingField>();
471 }
472
473 /// Sets the ordering constraint of this fence instruction. May only be
474 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
475 void setOrdering(AtomicOrdering Ordering) {
476 setSubclassData<OrderingField>(Ordering);
477 }
478
479 /// Returns the synchronization scope ID of this fence instruction.
480 SyncScope::ID getSyncScopeID() const {
481 return SSID;
482 }
483
484 /// Sets the synchronization scope ID of this fence instruction.
485 void setSyncScopeID(SyncScope::ID SSID) {
486 this->SSID = SSID;
487 }
488
489 // Methods for support type inquiry through isa, cast, and dyn_cast:
490 static bool classof(const Instruction *I) {
491 return I->getOpcode() == Instruction::Fence;
492 }
493 static bool classof(const Value *V) {
494 return isa<Instruction>(V) && classof(cast<Instruction>(V));
495 }
496
497private:
498 // Shadow Instruction::setInstructionSubclassData with a private forwarding
499 // method so that subclasses cannot accidentally use it.
500 template <typename Bitfield>
501 void setSubclassData(typename Bitfield::Type Value) {
502 Instruction::setSubclassData<Bitfield>(Value);
503 }
504
505 /// The synchronization scope ID of this fence instruction. Not quite enough
506 /// room in SubClassData for everything, so synchronization scope ID gets its
507 /// own field.
508 SyncScope::ID SSID;
509};
510
511//===----------------------------------------------------------------------===//
512// AtomicCmpXchgInst Class
513//===----------------------------------------------------------------------===//
514
515/// An instruction that atomically checks whether a
516/// specified value is in a memory location, and, if it is, stores a new value
517/// there. The value returned by this instruction is a pair containing the
518/// original value as first element, and an i1 indicating success (true) or
519/// failure (false) as second element.
520///
521class AtomicCmpXchgInst : public Instruction {
522 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
523 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
524 SyncScope::ID SSID);
525
526 template <unsigned Offset>
527 using AtomicOrderingBitfieldElement =
528 typename Bitfield::Element<AtomicOrdering, Offset, 3,
529 AtomicOrdering::LAST>;
530
531protected:
532 // Note: Instruction needs to be a friend here to call cloneImpl.
533 friend class Instruction;
534
535 AtomicCmpXchgInst *cloneImpl() const;
536
537public:
538 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
539 AtomicOrdering SuccessOrdering,
540 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
541 Instruction *InsertBefore = nullptr);
542 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
543 AtomicOrdering SuccessOrdering,
544 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
545 BasicBlock *InsertAtEnd);
546
547 // allocate space for exactly three operands
548 void *operator new(size_t S) { return User::operator new(S, 3); }
549 void operator delete(void *Ptr) { User::operator delete(Ptr); }
550
551 using VolatileField = BoolBitfieldElementT<0>;
552 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
553 using SuccessOrderingField =
554 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
555 using FailureOrderingField =
556 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
557 using AlignmentField =
558 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
559 static_assert(
560 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
561 FailureOrderingField, AlignmentField>(),
562 "Bitfields must be contiguous");
563
564 /// Return the alignment of the memory that is being allocated by the
565 /// instruction.
566 Align getAlign() const {
567 return Align(1ULL << getSubclassData<AlignmentField>());
568 }
569
570 void setAlignment(Align Align) {
571 setSubclassData<AlignmentField>(Log2(Align));
572 }
573
574 /// Return true if this is a cmpxchg from a volatile memory
575 /// location.
576 ///
577 bool isVolatile() const { return getSubclassData<VolatileField>(); }
578
579 /// Specify whether this is a volatile cmpxchg.
580 ///
581 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
582
583 /// Return true if this cmpxchg may spuriously fail.
584 bool isWeak() const { return getSubclassData<WeakField>(); }
585
586 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
587
588 /// Transparently provide more efficient getOperand methods.
589 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
590
591 static bool isValidSuccessOrdering(AtomicOrdering Ordering) {
592 return Ordering != AtomicOrdering::NotAtomic &&
593 Ordering != AtomicOrdering::Unordered;
594 }
595
596 static bool isValidFailureOrdering(AtomicOrdering Ordering) {
597 return Ordering != AtomicOrdering::NotAtomic &&
598 Ordering != AtomicOrdering::Unordered &&
599 Ordering != AtomicOrdering::AcquireRelease &&
600 Ordering != AtomicOrdering::Release;
601 }
602
603 /// Returns the success ordering constraint of this cmpxchg instruction.
604 AtomicOrdering getSuccessOrdering() const {
605 return getSubclassData<SuccessOrderingField>();
606 }
607
608 /// Sets the success ordering constraint of this cmpxchg instruction.
609 void setSuccessOrdering(AtomicOrdering Ordering) {
610 assert(isValidSuccessOrdering(Ordering) &&((void)0)
611 "invalid CmpXchg success ordering")((void)0);
612 setSubclassData<SuccessOrderingField>(Ordering);
613 }
614
615 /// Returns the failure ordering constraint of this cmpxchg instruction.
616 AtomicOrdering getFailureOrdering() const {
617 return getSubclassData<FailureOrderingField>();
618 }
619
620 /// Sets the failure ordering constraint of this cmpxchg instruction.
621 void setFailureOrdering(AtomicOrdering Ordering) {
622 assert(isValidFailureOrdering(Ordering) &&((void)0)
623 "invalid CmpXchg failure ordering")((void)0);
624 setSubclassData<FailureOrderingField>(Ordering);
625 }
626
627 /// Returns a single ordering which is at least as strong as both the
628 /// success and failure orderings for this cmpxchg.
629 AtomicOrdering getMergedOrdering() const {
630 if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent)
631 return AtomicOrdering::SequentiallyConsistent;
632 if (getFailureOrdering() == AtomicOrdering::Acquire) {
633 if (getSuccessOrdering() == AtomicOrdering::Monotonic)
634 return AtomicOrdering::Acquire;
635 if (getSuccessOrdering() == AtomicOrdering::Release)
636 return AtomicOrdering::AcquireRelease;
637 }
638 return getSuccessOrdering();
639 }
640
641 /// Returns the synchronization scope ID of this cmpxchg instruction.
642 SyncScope::ID getSyncScopeID() const {
643 return SSID;
644 }
645
646 /// Sets the synchronization scope ID of this cmpxchg instruction.
647 void setSyncScopeID(SyncScope::ID SSID) {
648 this->SSID = SSID;
649 }
650
651 Value *getPointerOperand() { return getOperand(0); }
652 const Value *getPointerOperand() const { return getOperand(0); }
653 static unsigned getPointerOperandIndex() { return 0U; }
654
655 Value *getCompareOperand() { return getOperand(1); }
656 const Value *getCompareOperand() const { return getOperand(1); }
657
658 Value *getNewValOperand() { return getOperand(2); }
659 const Value *getNewValOperand() const { return getOperand(2); }
660
661 /// Returns the address space of the pointer operand.
662 unsigned getPointerAddressSpace() const {
663 return getPointerOperand()->getType()->getPointerAddressSpace();
664 }
665
666 /// Returns the strongest permitted ordering on failure, given the
667 /// desired ordering on success.
668 ///
669 /// If the comparison in a cmpxchg operation fails, there is no atomic store
670 /// so release semantics cannot be provided. So this function drops explicit
671 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
672 /// operation would remain SequentiallyConsistent.
673 static AtomicOrdering
674 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
675 switch (SuccessOrdering) {
676 default:
677 llvm_unreachable("invalid cmpxchg success ordering")__builtin_unreachable();
678 case AtomicOrdering::Release:
679 case AtomicOrdering::Monotonic:
680 return AtomicOrdering::Monotonic;
681 case AtomicOrdering::AcquireRelease:
682 case AtomicOrdering::Acquire:
683 return AtomicOrdering::Acquire;
684 case AtomicOrdering::SequentiallyConsistent:
685 return AtomicOrdering::SequentiallyConsistent;
686 }
687 }
688
689 // Methods for support type inquiry through isa, cast, and dyn_cast:
690 static bool classof(const Instruction *I) {
691 return I->getOpcode() == Instruction::AtomicCmpXchg;
692 }
693 static bool classof(const Value *V) {
694 return isa<Instruction>(V) && classof(cast<Instruction>(V));
695 }
696
697private:
698 // Shadow Instruction::setInstructionSubclassData with a private forwarding
699 // method so that subclasses cannot accidentally use it.
700 template <typename Bitfield>
701 void setSubclassData(typename Bitfield::Type Value) {
702 Instruction::setSubclassData<Bitfield>(Value);
703 }
704
705 /// The synchronization scope ID of this cmpxchg instruction. Not quite
706 /// enough room in SubClassData for everything, so synchronization scope ID
707 /// gets its own field.
708 SyncScope::ID SSID;
709};
710
711template <>
712struct OperandTraits<AtomicCmpXchgInst> :
713 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
714};
715
716DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast
<AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void
AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<AtomicCmpXchgInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned AtomicCmpXchgInst
::getNumOperands() const { return OperandTraits<AtomicCmpXchgInst
>::operands(this); } template <int Idx_nocapture> Use
&AtomicCmpXchgInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
AtomicCmpXchgInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
717
718//===----------------------------------------------------------------------===//
719// AtomicRMWInst Class
720//===----------------------------------------------------------------------===//
721
722/// an instruction that atomically reads a memory location,
723/// combines it with another value, and then stores the result back. Returns
724/// the old value.
725///
726class AtomicRMWInst : public Instruction {
727protected:
728 // Note: Instruction needs to be a friend here to call cloneImpl.
729 friend class Instruction;
730
731 AtomicRMWInst *cloneImpl() const;
732
733public:
734 /// This enumeration lists the possible modifications atomicrmw can make. In
735 /// the descriptions, 'p' is the pointer to the instruction's memory location,
736 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
737 /// instruction. These instructions always return 'old'.
738 enum BinOp : unsigned {
739 /// *p = v
740 Xchg,
741 /// *p = old + v
742 Add,
743 /// *p = old - v
744 Sub,
745 /// *p = old & v
746 And,
747 /// *p = ~(old & v)
748 Nand,
749 /// *p = old | v
750 Or,
751 /// *p = old ^ v
752 Xor,
753 /// *p = old >signed v ? old : v
754 Max,
755 /// *p = old <signed v ? old : v
756 Min,
757 /// *p = old >unsigned v ? old : v
758 UMax,
759 /// *p = old <unsigned v ? old : v
760 UMin,
761
762 /// *p = old + v
763 FAdd,
764
765 /// *p = old - v
766 FSub,
767
768 FIRST_BINOP = Xchg,
769 LAST_BINOP = FSub,
770 BAD_BINOP
771 };
772
773private:
774 template <unsigned Offset>
775 using AtomicOrderingBitfieldElement =
776 typename Bitfield::Element<AtomicOrdering, Offset, 3,
777 AtomicOrdering::LAST>;
778
779 template <unsigned Offset>
780 using BinOpBitfieldElement =
781 typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
782
783public:
784 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
785 AtomicOrdering Ordering, SyncScope::ID SSID,
786 Instruction *InsertBefore = nullptr);
787 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
788 AtomicOrdering Ordering, SyncScope::ID SSID,
789 BasicBlock *InsertAtEnd);
790
791 // allocate space for exactly two operands
792 void *operator new(size_t S) { return User::operator new(S, 2); }
793 void operator delete(void *Ptr) { User::operator delete(Ptr); }
794
795 using VolatileField = BoolBitfieldElementT<0>;
796 using AtomicOrderingField =
797 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
798 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
799 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
800 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
801 OperationField, AlignmentField>(),
802 "Bitfields must be contiguous");
803
804 BinOp getOperation() const { return getSubclassData<OperationField>(); }
805
806 static StringRef getOperationName(BinOp Op);
807
808 static bool isFPOperation(BinOp Op) {
809 switch (Op) {
810 case AtomicRMWInst::FAdd:
811 case AtomicRMWInst::FSub:
812 return true;
813 default:
814 return false;
815 }
816 }
817
818 void setOperation(BinOp Operation) {
819 setSubclassData<OperationField>(Operation);
820 }
821
822 /// Return the alignment of the memory that is being allocated by the
823 /// instruction.
824 Align getAlign() const {
825 return Align(1ULL << getSubclassData<AlignmentField>());
826 }
827
828 void setAlignment(Align Align) {
829 setSubclassData<AlignmentField>(Log2(Align));
830 }
831
832 /// Return true if this is a RMW on a volatile memory location.
833 ///
834 bool isVolatile() const { return getSubclassData<VolatileField>(); }
835
836 /// Specify whether this is a volatile RMW or not.
837 ///
838 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
839
840 /// Transparently provide more efficient getOperand methods.
841 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
842
843 /// Returns the ordering constraint of this rmw instruction.
844 AtomicOrdering getOrdering() const {
845 return getSubclassData<AtomicOrderingField>();
846 }
847
848 /// Sets the ordering constraint of this rmw instruction.
849 void setOrdering(AtomicOrdering Ordering) {
850 assert(Ordering != AtomicOrdering::NotAtomic &&((void)0)
851 "atomicrmw instructions can only be atomic.")((void)0);
852 setSubclassData<AtomicOrderingField>(Ordering);
853 }
854
855 /// Returns the synchronization scope ID of this rmw instruction.
856 SyncScope::ID getSyncScopeID() const {
857 return SSID;
858 }
859
860 /// Sets the synchronization scope ID of this rmw instruction.
861 void setSyncScopeID(SyncScope::ID SSID) {
862 this->SSID = SSID;
863 }
864
865 Value *getPointerOperand() { return getOperand(0); }
866 const Value *getPointerOperand() const { return getOperand(0); }
867 static unsigned getPointerOperandIndex() { return 0U; }
868
869 Value *getValOperand() { return getOperand(1); }
870 const Value *getValOperand() const { return getOperand(1); }
871
872 /// Returns the address space of the pointer operand.
873 unsigned getPointerAddressSpace() const {
874 return getPointerOperand()->getType()->getPointerAddressSpace();
875 }
876
877 bool isFloatingPointOperation() const {
878 return isFPOperation(getOperation());
879 }
880
881 // Methods for support type inquiry through isa, cast, and dyn_cast:
882 static bool classof(const Instruction *I) {
883 return I->getOpcode() == Instruction::AtomicRMW;
884 }
885 static bool classof(const Value *V) {
886 return isa<Instruction>(V) && classof(cast<Instruction>(V));
887 }
888
889private:
890 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
891 AtomicOrdering Ordering, SyncScope::ID SSID);
892
893 // Shadow Instruction::setInstructionSubclassData with a private forwarding
894 // method so that subclasses cannot accidentally use it.
895 template <typename Bitfield>
896 void setSubclassData(typename Bitfield::Type Value) {
897 Instruction::setSubclassData<Bitfield>(Value);
898 }
899
900 /// The synchronization scope ID of this rmw instruction. Not quite enough
901 /// room in SubClassData for everything, so synchronization scope ID gets its
902 /// own field.
903 SyncScope::ID SSID;
904};
905
906template <>
907struct OperandTraits<AtomicRMWInst>
908 : public FixedNumOperandTraits<AtomicRMWInst,2> {
909};
910
911DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast
<AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<AtomicRMWInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned AtomicRMWInst::getNumOperands()
const { return OperandTraits<AtomicRMWInst>::operands(
this); } template <int Idx_nocapture> Use &AtomicRMWInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &AtomicRMWInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
912
913//===----------------------------------------------------------------------===//
914// GetElementPtrInst Class
915//===----------------------------------------------------------------------===//
916
917// checkGEPType - Simple wrapper function to give a better assertion failure
918// message on bad indexes for a gep instruction.
919//
920inline Type *checkGEPType(Type *Ty) {
921 assert(Ty && "Invalid GetElementPtrInst indices for type!")((void)0);
922 return Ty;
923}
924
925/// an instruction for type-safe pointer arithmetic to
926/// access elements of arrays and structs
927///
928class GetElementPtrInst : public Instruction {
929 Type *SourceElementType;
930 Type *ResultElementType;
931
932 GetElementPtrInst(const GetElementPtrInst &GEPI);
933
934 /// Constructors - Create a getelementptr instruction with a base pointer an
935 /// list of indices. The first ctor can optionally insert before an existing
936 /// instruction, the second appends the new instruction to the specified
937 /// BasicBlock.
938 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
939 ArrayRef<Value *> IdxList, unsigned Values,
940 const Twine &NameStr, Instruction *InsertBefore);
941 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
942 ArrayRef<Value *> IdxList, unsigned Values,
943 const Twine &NameStr, BasicBlock *InsertAtEnd);
944
945 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
946
947protected:
948 // Note: Instruction needs to be a friend here to call cloneImpl.
949 friend class Instruction;
950
951 GetElementPtrInst *cloneImpl() const;
952
953public:
954 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
955 ArrayRef<Value *> IdxList,
956 const Twine &NameStr = "",
957 Instruction *InsertBefore = nullptr) {
958 unsigned Values = 1 + unsigned(IdxList.size());
959 assert(PointeeType && "Must specify element type")((void)0);
960 assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0)
961 ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0);
962 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
963 NameStr, InsertBefore);
964 }
965
966 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
967 ArrayRef<Value *> IdxList,
968 const Twine &NameStr,
969 BasicBlock *InsertAtEnd) {
970 unsigned Values = 1 + unsigned(IdxList.size());
971 assert(PointeeType && "Must specify element type")((void)0);
972 assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0)
973 ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0);
974 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
975 NameStr, InsertAtEnd);
976 }
977
978 LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
979 Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
980 Instruction *InsertBefore = nullptr),[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
981 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
{
982 return CreateInBounds(
983 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
984 NameStr, InsertBefore);
985 }
986
987 /// Create an "inbounds" getelementptr. See the documentation for the
988 /// "inbounds" flag in LangRef.html for details.
989 static GetElementPtrInst *
990 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
991 const Twine &NameStr = "",
992 Instruction *InsertBefore = nullptr) {
993 GetElementPtrInst *GEP =
994 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
995 GEP->setIsInBounds(true);
996 return GEP;
997 }
998
999 LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1000 Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1001 BasicBlock *InsertAtEnd),[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1002 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
{
1003 return CreateInBounds(
1004 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
1005 NameStr, InsertAtEnd);
1006 }
1007
1008 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
1009 ArrayRef<Value *> IdxList,
1010 const Twine &NameStr,
1011 BasicBlock *InsertAtEnd) {
1012 GetElementPtrInst *GEP =
1013 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
1014 GEP->setIsInBounds(true);
1015 return GEP;
1016 }
1017
1018 /// Transparently provide more efficient getOperand methods.
1019 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1020
1021 Type *getSourceElementType() const { return SourceElementType; }
1022
1023 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1024 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1025
1026 Type *getResultElementType() const {
1027 assert(cast<PointerType>(getType()->getScalarType())((void)0)
1028 ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0);
1029 return ResultElementType;
1030 }
1031
1032 /// Returns the address space of this instruction's pointer type.
1033 unsigned getAddressSpace() const {
1034 // Note that this is always the same as the pointer operand's address space
1035 // and that is cheaper to compute, so cheat here.
1036 return getPointerAddressSpace();
1037 }
1038
1039 /// Returns the result type of a getelementptr with the given source
1040 /// element type and indexes.
1041 ///
1042 /// Null is returned if the indices are invalid for the specified
1043 /// source element type.
1044 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1045 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1046 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1047
1048 /// Return the type of the element at the given index of an indexable
1049 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1050 ///
1051 /// Returns null if the type can't be indexed, or the given index is not
1052 /// legal for the given type.
1053 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1054 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1055
1056 inline op_iterator idx_begin() { return op_begin()+1; }
1057 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1058 inline op_iterator idx_end() { return op_end(); }
1059 inline const_op_iterator idx_end() const { return op_end(); }
1060
1061 inline iterator_range<op_iterator> indices() {
1062 return make_range(idx_begin(), idx_end());
1063 }
1064
1065 inline iterator_range<const_op_iterator> indices() const {
1066 return make_range(idx_begin(), idx_end());
1067 }
1068
1069 Value *getPointerOperand() {
1070 return getOperand(0);
1071 }
1072 const Value *getPointerOperand() const {
1073 return getOperand(0);
1074 }
1075 static unsigned getPointerOperandIndex() {
1076 return 0U; // get index for modifying correct operand.
1077 }
1078
1079 /// Method to return the pointer operand as a
1080 /// PointerType.
1081 Type *getPointerOperandType() const {
1082 return getPointerOperand()->getType();
1083 }
1084
1085 /// Returns the address space of the pointer operand.
1086 unsigned getPointerAddressSpace() const {
1087 return getPointerOperandType()->getPointerAddressSpace();
1088 }
1089
1090 /// Returns the pointer type returned by the GEP
1091 /// instruction, which may be a vector of pointers.
1092 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1093 ArrayRef<Value *> IdxList) {
1094 PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1095 unsigned AddrSpace = OrigPtrTy->getAddressSpace();
1096 Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList));
1097 Type *PtrTy = OrigPtrTy->isOpaque()
1098 ? PointerType::get(OrigPtrTy->getContext(), AddrSpace)
1099 : PointerType::get(ResultElemTy, AddrSpace);
1100 // Vector GEP
1101 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1102 ElementCount EltCount = PtrVTy->getElementCount();
1103 return VectorType::get(PtrTy, EltCount);
1104 }
1105 for (Value *Index : IdxList)
1106 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1107 ElementCount EltCount = IndexVTy->getElementCount();
1108 return VectorType::get(PtrTy, EltCount);
1109 }
1110 // Scalar GEP
1111 return PtrTy;
1112 }
1113
1114 unsigned getNumIndices() const { // Note: always non-negative
1115 return getNumOperands() - 1;
1116 }
1117
1118 bool hasIndices() const {
1119 return getNumOperands() > 1;
1120 }
1121
1122 /// Return true if all of the indices of this GEP are
1123 /// zeros. If so, the result pointer and the first operand have the same
1124 /// value, just potentially different types.
1125 bool hasAllZeroIndices() const;
1126
1127 /// Return true if all of the indices of this GEP are
1128 /// constant integers. If so, the result pointer and the first operand have
1129 /// a constant offset between them.
1130 bool hasAllConstantIndices() const;
1131
1132 /// Set or clear the inbounds flag on this GEP instruction.
1133 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1134 void setIsInBounds(bool b = true);
1135
1136 /// Determine whether the GEP has the inbounds flag.
1137 bool isInBounds() const;
1138
1139 /// Accumulate the constant address offset of this GEP if possible.
1140 ///
1141 /// This routine accepts an APInt into which it will accumulate the constant
1142 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1143 /// all-constant, it returns false and the value of the offset APInt is
1144 /// undefined (it is *not* preserved!). The APInt passed into this routine
1145 /// must be at least as wide as the IntPtr type for the address space of
1146 /// the base GEP pointer.
1147 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1148 bool collectOffset(const DataLayout &DL, unsigned BitWidth,
1149 MapVector<Value *, APInt> &VariableOffsets,
1150 APInt &ConstantOffset) const;
1151 // Methods for support type inquiry through isa, cast, and dyn_cast:
1152 static bool classof(const Instruction *I) {
1153 return (I->getOpcode() == Instruction::GetElementPtr);
1154 }
1155 static bool classof(const Value *V) {
1156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1157 }
1158};
1159
1160template <>
1161struct OperandTraits<GetElementPtrInst> :
1162 public VariadicOperandTraits<GetElementPtrInst, 1> {
1163};
1164
1165GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1166 ArrayRef<Value *> IdxList, unsigned Values,
1167 const Twine &NameStr,
1168 Instruction *InsertBefore)
1169 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1170 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1171 Values, InsertBefore),
1172 SourceElementType(PointeeType),
1173 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1174 assert(cast<PointerType>(getType()->getScalarType())((void)0)
1175 ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0);
1176 init(Ptr, IdxList, NameStr);
1177}
1178
1179GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1180 ArrayRef<Value *> IdxList, unsigned Values,
1181 const Twine &NameStr,
1182 BasicBlock *InsertAtEnd)
1183 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1184 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1185 Values, InsertAtEnd),
1186 SourceElementType(PointeeType),
1187 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1188 assert(cast<PointerType>(getType()->getScalarType())((void)0)
1189 ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0);
1190 init(Ptr, IdxList, NameStr);
1191}
1192
1193DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<GetElementPtrInst>::op_begin(const_cast
<GetElementPtrInst*>(this))[i_nocapture].get()); } void
GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<GetElementPtrInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned GetElementPtrInst
::getNumOperands() const { return OperandTraits<GetElementPtrInst
>::operands(this); } template <int Idx_nocapture> Use
&GetElementPtrInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
GetElementPtrInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1194
1195//===----------------------------------------------------------------------===//
1196// ICmpInst Class
1197//===----------------------------------------------------------------------===//
1198
1199/// This instruction compares its operands according to the predicate given
1200/// to the constructor. It only operates on integers or pointers. The operands
1201/// must be identical types.
1202/// Represent an integer comparison operator.
1203class ICmpInst: public CmpInst {
1204 void AssertOK() {
1205 assert(isIntPredicate() &&((void)0)
1206 "Invalid ICmp predicate value")((void)0);
1207 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0)
1208 "Both operands to ICmp instruction are not of the same type!")((void)0);
1209 // Check that the operands are the right type
1210 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||((void)0)
1211 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&((void)0)
1212 "Invalid operand types for ICmp instruction")((void)0);
1213 }
1214
1215protected:
1216 // Note: Instruction needs to be a friend here to call cloneImpl.
1217 friend class Instruction;
1218
1219 /// Clone an identical ICmpInst
1220 ICmpInst *cloneImpl() const;
1221
1222public:
1223 /// Constructor with insert-before-instruction semantics.
1224 ICmpInst(
1225 Instruction *InsertBefore, ///< Where to insert
1226 Predicate pred, ///< The predicate to use for the comparison
1227 Value *LHS, ///< The left-hand-side of the expression
1228 Value *RHS, ///< The right-hand-side of the expression
1229 const Twine &NameStr = "" ///< Name of the instruction
1230 ) : CmpInst(makeCmpResultType(LHS->getType()),
1231 Instruction::ICmp, pred, LHS, RHS, NameStr,
1232 InsertBefore) {
1233#ifndef NDEBUG1
1234 AssertOK();
1235#endif
1236 }
1237
1238 /// Constructor with insert-at-end semantics.
1239 ICmpInst(
1240 BasicBlock &InsertAtEnd, ///< Block to insert into.
1241 Predicate pred, ///< The predicate to use for the comparison
1242 Value *LHS, ///< The left-hand-side of the expression
1243 Value *RHS, ///< The right-hand-side of the expression
1244 const Twine &NameStr = "" ///< Name of the instruction
1245 ) : CmpInst(makeCmpResultType(LHS->getType()),
1246 Instruction::ICmp, pred, LHS, RHS, NameStr,
1247 &InsertAtEnd) {
1248#ifndef NDEBUG1
1249 AssertOK();
1250#endif
1251 }
1252
1253 /// Constructor with no-insertion semantics
1254 ICmpInst(
1255 Predicate pred, ///< The predicate to use for the comparison
1256 Value *LHS, ///< The left-hand-side of the expression
1257 Value *RHS, ///< The right-hand-side of the expression
1258 const Twine &NameStr = "" ///< Name of the instruction
1259 ) : CmpInst(makeCmpResultType(LHS->getType()),
1260 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1261#ifndef NDEBUG1
1262 AssertOK();
1263#endif
1264 }
1265
1266 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1267 /// @returns the predicate that would be the result if the operand were
1268 /// regarded as signed.
1269 /// Return the signed version of the predicate
1270 Predicate getSignedPredicate() const {
1271 return getSignedPredicate(getPredicate());
1272 }
1273
1274 /// This is a static version that you can use without an instruction.
1275 /// Return the signed version of the predicate.
1276 static Predicate getSignedPredicate(Predicate pred);
1277
1278 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1279 /// @returns the predicate that would be the result if the operand were
1280 /// regarded as unsigned.
1281 /// Return the unsigned version of the predicate
1282 Predicate getUnsignedPredicate() const {
1283 return getUnsignedPredicate(getPredicate());
1284 }
1285
1286 /// This is a static version that you can use without an instruction.
1287 /// Return the unsigned version of the predicate.
1288 static Predicate getUnsignedPredicate(Predicate pred);
1289
1290 /// Return true if this predicate is either EQ or NE. This also
1291 /// tests for commutativity.
1292 static bool isEquality(Predicate P) {
1293 return P == ICMP_EQ || P == ICMP_NE;
1294 }
1295
1296 /// Return true if this predicate is either EQ or NE. This also
1297 /// tests for commutativity.
1298 bool isEquality() const {
1299 return isEquality(getPredicate());
1300 }
1301
1302 /// @returns true if the predicate of this ICmpInst is commutative
1303 /// Determine if this relation is commutative.
1304 bool isCommutative() const { return isEquality(); }
1305
1306 /// Return true if the predicate is relational (not EQ or NE).
1307 ///
1308 bool isRelational() const {
1309 return !isEquality();
1310 }
1311
1312 /// Return true if the predicate is relational (not EQ or NE).
1313 ///
1314 static bool isRelational(Predicate P) {
1315 return !isEquality(P);
1316 }
1317
1318 /// Return true if the predicate is SGT or UGT.
1319 ///
1320 static bool isGT(Predicate P) {
1321 return P == ICMP_SGT || P == ICMP_UGT;
1322 }
1323
1324 /// Return true if the predicate is SLT or ULT.
1325 ///
1326 static bool isLT(Predicate P) {
1327 return P == ICMP_SLT || P == ICMP_ULT;
1328 }
1329
1330 /// Return true if the predicate is SGE or UGE.
1331 ///
1332 static bool isGE(Predicate P) {
1333 return P == ICMP_SGE || P == ICMP_UGE;
1334 }
1335
1336 /// Return true if the predicate is SLE or ULE.
1337 ///
1338 static bool isLE(Predicate P) {
1339 return P == ICMP_SLE || P == ICMP_ULE;
1340 }
1341
1342 /// Exchange the two operands to this instruction in such a way that it does
1343 /// not modify the semantics of the instruction. The predicate value may be
1344 /// changed to retain the same result if the predicate is order dependent
1345 /// (e.g. ult).
1346 /// Swap operands and adjust predicate.
1347 void swapOperands() {
1348 setPredicate(getSwappedPredicate());
1349 Op<0>().swap(Op<1>());
1350 }
1351
1352 // Methods for support type inquiry through isa, cast, and dyn_cast:
1353 static bool classof(const Instruction *I) {
1354 return I->getOpcode() == Instruction::ICmp;
1355 }
1356 static bool classof(const Value *V) {
1357 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1358 }
1359};
1360
1361//===----------------------------------------------------------------------===//
1362// FCmpInst Class
1363//===----------------------------------------------------------------------===//
1364
1365/// This instruction compares its operands according to the predicate given
1366/// to the constructor. It only operates on floating point values or packed
1367/// vectors of floating point values. The operands must be identical types.
1368/// Represents a floating point comparison operator.
1369class FCmpInst: public CmpInst {
1370 void AssertOK() {
1371 assert(isFPPredicate() && "Invalid FCmp predicate value")((void)0);
1372 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0)
1373 "Both operands to FCmp instruction are not of the same type!")((void)0);
1374 // Check that the operands are the right type
1375 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((void)0)
1376 "Invalid operand types for FCmp instruction")((void)0);
1377 }
1378
1379protected:
1380 // Note: Instruction needs to be a friend here to call cloneImpl.
1381 friend class Instruction;
1382
1383 /// Clone an identical FCmpInst
1384 FCmpInst *cloneImpl() const;
1385
1386public:
1387 /// Constructor with insert-before-instruction semantics.
1388 FCmpInst(
1389 Instruction *InsertBefore, ///< Where to insert
1390 Predicate pred, ///< The predicate to use for the comparison
1391 Value *LHS, ///< The left-hand-side of the expression
1392 Value *RHS, ///< The right-hand-side of the expression
1393 const Twine &NameStr = "" ///< Name of the instruction
1394 ) : CmpInst(makeCmpResultType(LHS->getType()),
1395 Instruction::FCmp, pred, LHS, RHS, NameStr,
1396 InsertBefore) {
1397 AssertOK();
1398 }
1399
1400 /// Constructor with insert-at-end semantics.
1401 FCmpInst(
1402 BasicBlock &InsertAtEnd, ///< Block to insert into.
1403 Predicate pred, ///< The predicate to use for the comparison
1404 Value *LHS, ///< The left-hand-side of the expression
1405 Value *RHS, ///< The right-hand-side of the expression
1406 const Twine &NameStr = "" ///< Name of the instruction
1407 ) : CmpInst(makeCmpResultType(LHS->getType()),
1408 Instruction::FCmp, pred, LHS, RHS, NameStr,
1409 &InsertAtEnd) {
1410 AssertOK();
1411 }
1412
1413 /// Constructor with no-insertion semantics
1414 FCmpInst(
1415 Predicate Pred, ///< The predicate to use for the comparison
1416 Value *LHS, ///< The left-hand-side of the expression
1417 Value *RHS, ///< The right-hand-side of the expression
1418 const Twine &NameStr = "", ///< Name of the instruction
1419 Instruction *FlagsSource = nullptr
1420 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1421 RHS, NameStr, nullptr, FlagsSource) {
1422 AssertOK();
1423 }
1424
1425 /// @returns true if the predicate of this instruction is EQ or NE.
1426 /// Determine if this is an equality predicate.
1427 static bool isEquality(Predicate Pred) {
1428 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1429 Pred == FCMP_UNE;
1430 }
1431
1432 /// @returns true if the predicate of this instruction is EQ or NE.
1433 /// Determine if this is an equality predicate.
1434 bool isEquality() const { return isEquality(getPredicate()); }
1435
1436 /// @returns true if the predicate of this instruction is commutative.
1437 /// Determine if this is a commutative predicate.
1438 bool isCommutative() const {
1439 return isEquality() ||
1440 getPredicate() == FCMP_FALSE ||
1441 getPredicate() == FCMP_TRUE ||
1442 getPredicate() == FCMP_ORD ||
1443 getPredicate() == FCMP_UNO;
1444 }
1445
1446 /// @returns true if the predicate is relational (not EQ or NE).
1447 /// Determine if this a relational predicate.
1448 bool isRelational() const { return !isEquality(); }
1449
1450 /// Exchange the two operands to this instruction in such a way that it does
1451 /// not modify the semantics of the instruction. The predicate value may be
1452 /// changed to retain the same result if the predicate is order dependent
1453 /// (e.g. ult).
1454 /// Swap operands and adjust predicate.
1455 void swapOperands() {
1456 setPredicate(getSwappedPredicate());
1457 Op<0>().swap(Op<1>());
1458 }
1459
1460 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1461 static bool classof(const Instruction *I) {
1462 return I->getOpcode() == Instruction::FCmp;
1463 }
1464 static bool classof(const Value *V) {
1465 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1466 }
1467};
1468
1469//===----------------------------------------------------------------------===//
1470/// This class represents a function call, abstracting a target
1471/// machine's calling convention. This class uses low bit of the SubClassData
1472/// field to indicate whether or not this is a tail call. The rest of the bits
1473/// hold the calling convention of the call.
1474///
1475class CallInst : public CallBase {
1476 CallInst(const CallInst &CI);
1477
1478 /// Construct a CallInst given a range of arguments.
1479 /// Construct a CallInst from a range of arguments
1480 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1481 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1482 Instruction *InsertBefore);
1483
1484 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1485 const Twine &NameStr, Instruction *InsertBefore)
1486 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1487
1488 /// Construct a CallInst given a range of arguments.
1489 /// Construct a CallInst from a range of arguments
1490 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1491 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1492 BasicBlock *InsertAtEnd);
1493
1494 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1495 Instruction *InsertBefore);
1496
1497 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1498 BasicBlock *InsertAtEnd);
1499
1500 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1501 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1502 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1503
1504 /// Compute the number of operands to allocate.
1505 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1506 // We need one operand for the called function, plus the input operand
1507 // counts provided.
1508 return 1 + NumArgs + NumBundleInputs;
1509 }
1510
1511protected:
1512 // Note: Instruction needs to be a friend here to call cloneImpl.
1513 friend class Instruction;
1514
1515 CallInst *cloneImpl() const;
1516
1517public:
1518 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1519 Instruction *InsertBefore = nullptr) {
1520 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1521 }
1522
1523 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1524 const Twine &NameStr,
1525 Instruction *InsertBefore = nullptr) {
1526 return new (ComputeNumOperands(Args.size()))
1527 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1528 }
1529
1530 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1531 ArrayRef<OperandBundleDef> Bundles = None,
1532 const Twine &NameStr = "",
1533 Instruction *InsertBefore = nullptr) {
1534 const int NumOperands =
1535 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1536 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1537
1538 return new (NumOperands, DescriptorBytes)
1539 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1540 }
1541
1542 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1543 BasicBlock *InsertAtEnd) {
1544 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1545 }
1546
1547 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1548 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1549 return new (ComputeNumOperands(Args.size()))
1550 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1551 }
1552
1553 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1554 ArrayRef<OperandBundleDef> Bundles,
1555 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1556 const int NumOperands =
1557 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1558 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1559
1560 return new (NumOperands, DescriptorBytes)
1561 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1562 }
1563
1564 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1565 Instruction *InsertBefore = nullptr) {
1566 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1567 InsertBefore);
1568 }
1569
1570 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1571 ArrayRef<OperandBundleDef> Bundles = None,
1572 const Twine &NameStr = "",
1573 Instruction *InsertBefore = nullptr) {
1574 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1575 NameStr, InsertBefore);
1576 }
1577
1578 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1579 const Twine &NameStr,
1580 Instruction *InsertBefore = nullptr) {
1581 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1582 InsertBefore);
1583 }
1584
1585 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1586 BasicBlock *InsertAtEnd) {
1587 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1588 InsertAtEnd);
1589 }
1590
1591 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1592 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1593 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1594 InsertAtEnd);
1595 }
1596
1597 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1598 ArrayRef<OperandBundleDef> Bundles,
1599 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1600 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1601 NameStr, InsertAtEnd);
1602 }
1603
1604 /// Create a clone of \p CI with a different set of operand bundles and
1605 /// insert it before \p InsertPt.
1606 ///
1607 /// The returned call instruction is identical \p CI in every way except that
1608 /// the operand bundles for the new instruction are set to the operand bundles
1609 /// in \p Bundles.
1610 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1611 Instruction *InsertPt = nullptr);
1612
1613 /// Generate the IR for a call to malloc:
1614 /// 1. Compute the malloc call's argument as the specified type's size,
1615 /// possibly multiplied by the array size if the array size is not
1616 /// constant 1.
1617 /// 2. Call malloc with that argument.
1618 /// 3. Bitcast the result of the malloc call to the specified type.
1619 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1620 Type *AllocTy, Value *AllocSize,
1621 Value *ArraySize = nullptr,
1622 Function *MallocF = nullptr,
1623 const Twine &Name = "");
1624 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1625 Type *AllocTy, Value *AllocSize,
1626 Value *ArraySize = nullptr,
1627 Function *MallocF = nullptr,
1628 const Twine &Name = "");
1629 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1630 Type *AllocTy, Value *AllocSize,
1631 Value *ArraySize = nullptr,
1632 ArrayRef<OperandBundleDef> Bundles = None,
1633 Function *MallocF = nullptr,
1634 const Twine &Name = "");
1635 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1636 Type *AllocTy, Value *AllocSize,
1637 Value *ArraySize = nullptr,
1638 ArrayRef<OperandBundleDef> Bundles = None,
1639 Function *MallocF = nullptr,
1640 const Twine &Name = "");
1641 /// Generate the IR for a call to the builtin free function.
1642 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1643 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1644 static Instruction *CreateFree(Value *Source,
1645 ArrayRef<OperandBundleDef> Bundles,
1646 Instruction *InsertBefore);
1647 static Instruction *CreateFree(Value *Source,
1648 ArrayRef<OperandBundleDef> Bundles,
1649 BasicBlock *InsertAtEnd);
1650
1651 // Note that 'musttail' implies 'tail'.
1652 enum TailCallKind : unsigned {
1653 TCK_None = 0,
1654 TCK_Tail = 1,
1655 TCK_MustTail = 2,
1656 TCK_NoTail = 3,
1657 TCK_LAST = TCK_NoTail
1658 };
1659
1660 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1661 static_assert(
1662 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1663 "Bitfields must be contiguous");
1664
1665 TailCallKind getTailCallKind() const {
1666 return getSubclassData<TailCallKindField>();
1667 }
1668
1669 bool isTailCall() const {
1670 TailCallKind Kind = getTailCallKind();
1671 return Kind == TCK_Tail || Kind == TCK_MustTail;
1672 }
1673
1674 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1675
1676 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1677
1678 void setTailCallKind(TailCallKind TCK) {
1679 setSubclassData<TailCallKindField>(TCK);
1680 }
1681
1682 void setTailCall(bool IsTc = true) {
1683 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1684 }
1685
1686 /// Return true if the call can return twice
1687 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1688 void setCanReturnTwice() {
1689 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1690 }
1691
1692 // Methods for support type inquiry through isa, cast, and dyn_cast:
1693 static bool classof(const Instruction *I) {
1694 return I->getOpcode() == Instruction::Call;
1695 }
1696 static bool classof(const Value *V) {
1697 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1698 }
1699
1700 /// Updates profile metadata by scaling it by \p S / \p T.
1701 void updateProfWeight(uint64_t S, uint64_t T);
1702
1703private:
1704 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1705 // method so that subclasses cannot accidentally use it.
1706 template <typename Bitfield>
1707 void setSubclassData(typename Bitfield::Type Value) {
1708 Instruction::setSubclassData<Bitfield>(Value);
1709 }
1710};
1711
1712CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1713 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1714 BasicBlock *InsertAtEnd)
1715 : CallBase(Ty->getReturnType(), Instruction::Call,
1716 OperandTraits<CallBase>::op_end(this) -
1717 (Args.size() + CountBundleInputs(Bundles) + 1),
1718 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1719 InsertAtEnd) {
1720 init(Ty, Func, Args, Bundles, NameStr);
1721}
1722
1723CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1724 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1725 Instruction *InsertBefore)
1726 : CallBase(Ty->getReturnType(), Instruction::Call,
1727 OperandTraits<CallBase>::op_end(this) -
1728 (Args.size() + CountBundleInputs(Bundles) + 1),
1729 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1730 InsertBefore) {
1731 init(Ty, Func, Args, Bundles, NameStr);
1732}
1733
1734//===----------------------------------------------------------------------===//
1735// SelectInst Class
1736//===----------------------------------------------------------------------===//
1737
1738/// This class represents the LLVM 'select' instruction.
1739///
1740class SelectInst : public Instruction {
1741 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1742 Instruction *InsertBefore)
1743 : Instruction(S1->getType(), Instruction::Select,
1744 &Op<0>(), 3, InsertBefore) {
1745 init(C, S1, S2);
1746 setName(NameStr);
1747 }
1748
1749 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1750 BasicBlock *InsertAtEnd)
1751 : Instruction(S1->getType(), Instruction::Select,
1752 &Op<0>(), 3, InsertAtEnd) {
1753 init(C, S1, S2);
1754 setName(NameStr);
1755 }
1756
1757 void init(Value *C, Value *S1, Value *S2) {
1758 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((void)0);
1759 Op<0>() = C;
1760 Op<1>() = S1;
1761 Op<2>() = S2;
1762 }
1763
1764protected:
1765 // Note: Instruction needs to be a friend here to call cloneImpl.
1766 friend class Instruction;
1767
1768 SelectInst *cloneImpl() const;
1769
1770public:
1771 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1772 const Twine &NameStr = "",
1773 Instruction *InsertBefore = nullptr,
1774 Instruction *MDFrom = nullptr) {
1775 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1776 if (MDFrom)
1777 Sel->copyMetadata(*MDFrom);
1778 return Sel;
1779 }
1780
1781 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1782 const Twine &NameStr,
1783 BasicBlock *InsertAtEnd) {
1784 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1785 }
1786
1787 const Value *getCondition() const { return Op<0>(); }
1788 const Value *getTrueValue() const { return Op<1>(); }
1789 const Value *getFalseValue() const { return Op<2>(); }
1790 Value *getCondition() { return Op<0>(); }
1791 Value *getTrueValue() { return Op<1>(); }
1792 Value *getFalseValue() { return Op<2>(); }
1793
1794 void setCondition(Value *V) { Op<0>() = V; }
1795 void setTrueValue(Value *V) { Op<1>() = V; }
1796 void setFalseValue(Value *V) { Op<2>() = V; }
1797
1798 /// Swap the true and false values of the select instruction.
1799 /// This doesn't swap prof metadata.
1800 void swapValues() { Op<1>().swap(Op<2>()); }
1801
1802 /// Return a string if the specified operands are invalid
1803 /// for a select operation, otherwise return null.
1804 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1805
1806 /// Transparently provide more efficient getOperand methods.
1807 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1808
1809 OtherOps getOpcode() const {
1810 return static_cast<OtherOps>(Instruction::getOpcode());
1811 }
1812
1813 // Methods for support type inquiry through isa, cast, and dyn_cast:
1814 static bool classof(const Instruction *I) {
1815 return I->getOpcode() == Instruction::Select;
1816 }
1817 static bool classof(const Value *V) {
1818 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1819 }
1820};
1821
1822template <>
1823struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1824};
1825
1826DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<SelectInst>::op_begin(const_cast
<SelectInst*>(this))[i_nocapture].get()); } void SelectInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<SelectInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned SelectInst::getNumOperands() const
{ return OperandTraits<SelectInst>::operands(this); } template
<int Idx_nocapture> Use &SelectInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &SelectInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
1827
1828//===----------------------------------------------------------------------===//
1829// VAArgInst Class
1830//===----------------------------------------------------------------------===//
1831
1832/// This class represents the va_arg llvm instruction, which returns
1833/// an argument of the specified type given a va_list and increments that list
1834///
1835class VAArgInst : public UnaryInstruction {
1836protected:
1837 // Note: Instruction needs to be a friend here to call cloneImpl.
1838 friend class Instruction;
1839
1840 VAArgInst *cloneImpl() const;
1841
1842public:
1843 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1844 Instruction *InsertBefore = nullptr)
1845 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1846 setName(NameStr);
1847 }
1848
1849 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1850 BasicBlock *InsertAtEnd)
1851 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1852 setName(NameStr);
1853 }
1854
1855 Value *getPointerOperand() { return getOperand(0); }
1856 const Value *getPointerOperand() const { return getOperand(0); }
1857 static unsigned getPointerOperandIndex() { return 0U; }
1858
1859 // Methods for support type inquiry through isa, cast, and dyn_cast:
1860 static bool classof(const Instruction *I) {
1861 return I->getOpcode() == VAArg;
1862 }
1863 static bool classof(const Value *V) {
1864 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1865 }
1866};
1867
1868//===----------------------------------------------------------------------===//
1869// ExtractElementInst Class
1870//===----------------------------------------------------------------------===//
1871
1872/// This instruction extracts a single (scalar)
1873/// element from a VectorType value
1874///
1875class ExtractElementInst : public Instruction {
1876 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1877 Instruction *InsertBefore = nullptr);
1878 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1879 BasicBlock *InsertAtEnd);
1880
1881protected:
1882 // Note: Instruction needs to be a friend here to call cloneImpl.
1883 friend class Instruction;
1884
1885 ExtractElementInst *cloneImpl() const;
1886
1887public:
1888 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1889 const Twine &NameStr = "",
1890 Instruction *InsertBefore = nullptr) {
1891 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1892 }
1893
1894 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1895 const Twine &NameStr,
1896 BasicBlock *InsertAtEnd) {
1897 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1898 }
1899
1900 /// Return true if an extractelement instruction can be
1901 /// formed with the specified operands.
1902 static bool isValidOperands(const Value *Vec, const Value *Idx);
1903
1904 Value *getVectorOperand() { return Op<0>(); }
1905 Value *getIndexOperand() { return Op<1>(); }
1906 const Value *getVectorOperand() const { return Op<0>(); }
1907 const Value *getIndexOperand() const { return Op<1>(); }
1908
1909 VectorType *getVectorOperandType() const {
1910 return cast<VectorType>(getVectorOperand()->getType());
1911 }
1912
1913 /// Transparently provide more efficient getOperand methods.
1914 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1915
1916 // Methods for support type inquiry through isa, cast, and dyn_cast:
1917 static bool classof(const Instruction *I) {
1918 return I->getOpcode() == Instruction::ExtractElement;
1919 }
1920 static bool classof(const Value *V) {
1921 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1922 }
1923};
1924
1925template <>
1926struct OperandTraits<ExtractElementInst> :
1927 public FixedNumOperandTraits<ExtractElementInst, 2> {
1928};
1929
1930DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
((void)0); return cast_or_null<Value>( OperandTraits<
ExtractElementInst>::op_begin(const_cast<ExtractElementInst
*>(this))[i_nocapture].get()); } void ExtractElementInst::
setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void
)0); OperandTraits<ExtractElementInst>::op_begin(this)[
i_nocapture] = Val_nocapture; } unsigned ExtractElementInst::
getNumOperands() const { return OperandTraits<ExtractElementInst
>::operands(this); } template <int Idx_nocapture> Use
&ExtractElementInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ExtractElementInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1931
1932//===----------------------------------------------------------------------===//
1933// InsertElementInst Class
1934//===----------------------------------------------------------------------===//
1935
1936/// This instruction inserts a single (scalar)
1937/// element into a VectorType value
1938///
1939class InsertElementInst : public Instruction {
1940 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1941 const Twine &NameStr = "",
1942 Instruction *InsertBefore = nullptr);
1943 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1944 BasicBlock *InsertAtEnd);
1945
1946protected:
1947 // Note: Instruction needs to be a friend here to call cloneImpl.
1948 friend class Instruction;
1949
1950 InsertElementInst *cloneImpl() const;
1951
1952public:
1953 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1954 const Twine &NameStr = "",
1955 Instruction *InsertBefore = nullptr) {
1956 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1957 }
1958
1959 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1960 const Twine &NameStr,
1961 BasicBlock *InsertAtEnd) {
1962 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1963 }
1964
1965 /// Return true if an insertelement instruction can be
1966 /// formed with the specified operands.
1967 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1968 const Value *Idx);
1969
1970 /// Overload to return most specific vector type.
1971 ///
1972 VectorType *getType() const {
1973 return cast<VectorType>(Instruction::getType());
1974 }
1975
1976 /// Transparently provide more efficient getOperand methods.
1977 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1978
1979 // Methods for support type inquiry through isa, cast, and dyn_cast:
1980 static bool classof(const Instruction *I) {
1981 return I->getOpcode() == Instruction::InsertElement;
1982 }
1983 static bool classof(const Value *V) {
1984 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1985 }
1986};
1987
1988template <>
1989struct OperandTraits<InsertElementInst> :
1990 public FixedNumOperandTraits<InsertElementInst, 3> {
1991};
1992
1993DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<InsertElementInst>::op_begin(const_cast
<InsertElementInst*>(this))[i_nocapture].get()); } void
InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<InsertElementInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned InsertElementInst
::getNumOperands() const { return OperandTraits<InsertElementInst
>::operands(this); } template <int Idx_nocapture> Use
&InsertElementInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
InsertElementInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1994
1995//===----------------------------------------------------------------------===//
1996// ShuffleVectorInst Class
1997//===----------------------------------------------------------------------===//
1998
1999constexpr int UndefMaskElem = -1;
2000
2001/// This instruction constructs a fixed permutation of two
2002/// input vectors.
2003///
2004/// For each element of the result vector, the shuffle mask selects an element
2005/// from one of the input vectors to copy to the result. Non-negative elements
2006/// in the mask represent an index into the concatenated pair of input vectors.
2007/// UndefMaskElem (-1) specifies that the result element is undefined.
2008///
2009/// For scalable vectors, all the elements of the mask must be 0 or -1. This
2010/// requirement may be relaxed in the future.
2011class ShuffleVectorInst : public Instruction {
2012 SmallVector<int, 4> ShuffleMask;
2013 Constant *ShuffleMaskForBitcode;
2014
2015protected:
2016 // Note: Instruction needs to be a friend here to call cloneImpl.
2017 friend class Instruction;
2018
2019 ShuffleVectorInst *cloneImpl() const;
2020
2021public:
2022 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2023 const Twine &NameStr = "",
2024 Instruction *InsertBefor = nullptr);
2025 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2026 const Twine &NameStr, BasicBlock *InsertAtEnd);
2027 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2028 const Twine &NameStr = "",
2029 Instruction *InsertBefor = nullptr);
2030 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2031 const Twine &NameStr, BasicBlock *InsertAtEnd);
2032
2033 void *operator new(size_t S) { return User::operator new(S, 2); }
2034 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
2035
2036 /// Swap the operands and adjust the mask to preserve the semantics
2037 /// of the instruction.
2038 void commute();
2039
2040 /// Return true if a shufflevector instruction can be
2041 /// formed with the specified operands.
2042 static bool isValidOperands(const Value *V1, const Value *V2,
2043 const Value *Mask);
2044 static bool isValidOperands(const Value *V1, const Value *V2,
2045 ArrayRef<int> Mask);
2046
2047 /// Overload to return most specific vector type.
2048 ///
2049 VectorType *getType() const {
2050 return cast<VectorType>(Instruction::getType());
2051 }
2052
2053 /// Transparently provide more efficient getOperand methods.
2054 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2055
2056 /// Return the shuffle mask value of this instruction for the given element
2057 /// index. Return UndefMaskElem if the element is undef.
2058 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2059
2060 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2061 /// elements of the mask are returned as UndefMaskElem.
2062 static void getShuffleMask(const Constant *Mask,
2063 SmallVectorImpl<int> &Result);
2064
2065 /// Return the mask for this instruction as a vector of integers. Undefined
2066 /// elements of the mask are returned as UndefMaskElem.
2067 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2068 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2069 }
2070
2071 /// Return the mask for this instruction, for use in bitcode.
2072 ///
2073 /// TODO: This is temporary until we decide a new bitcode encoding for
2074 /// shufflevector.
2075 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2076
2077 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2078 Type *ResultTy);
2079
2080 void setShuffleMask(ArrayRef<int> Mask);
2081
2082 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2083
2084 /// Return true if this shuffle returns a vector with a different number of
2085 /// elements than its source vectors.
2086 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2087 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2088 bool changesLength() const {
2089 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2090 ->getElementCount()
2091 .getKnownMinValue();
2092 unsigned NumMaskElts = ShuffleMask.size();
2093 return NumSourceElts != NumMaskElts;
2094 }
2095
2096 /// Return true if this shuffle returns a vector with a greater number of
2097 /// elements than its source vectors.
2098 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2099 bool increasesLength() const {
2100 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2101 ->getElementCount()
2102 .getKnownMinValue();
2103 unsigned NumMaskElts = ShuffleMask.size();
2104 return NumSourceElts < NumMaskElts;
2105 }
2106
2107 /// Return true if this shuffle mask chooses elements from exactly one source
2108 /// vector.
2109 /// Example: <7,5,undef,7>
2110 /// This assumes that vector operands are the same length as the mask.
2111 static bool isSingleSourceMask(ArrayRef<int> Mask);
2112 static bool isSingleSourceMask(const Constant *Mask) {
2113 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2114 SmallVector<int, 16> MaskAsInts;
2115 getShuffleMask(Mask, MaskAsInts);
2116 return isSingleSourceMask(MaskAsInts);
2117 }
2118
2119 /// Return true if this shuffle chooses elements from exactly one source
2120 /// vector without changing the length of that vector.
2121 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2122 /// TODO: Optionally allow length-changing shuffles.
2123 bool isSingleSource() const {
2124 return !changesLength() && isSingleSourceMask(ShuffleMask);
2125 }
2126
2127 /// Return true if this shuffle mask chooses elements from exactly one source
2128 /// vector without lane crossings. A shuffle using this mask is not
2129 /// necessarily a no-op because it may change the number of elements from its
2130 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2131 /// Example: <undef,undef,2,3>
2132 static bool isIdentityMask(ArrayRef<int> Mask);
2133 static bool isIdentityMask(const Constant *Mask) {
2134 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2135 SmallVector<int, 16> MaskAsInts;
2136 getShuffleMask(Mask, MaskAsInts);
2137 return isIdentityMask(MaskAsInts);
2138 }
2139
2140 /// Return true if this shuffle chooses elements from exactly one source
2141 /// vector without lane crossings and does not change the number of elements
2142 /// from its input vectors.
2143 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2144 bool isIdentity() const {
2145 return !changesLength() && isIdentityMask(ShuffleMask);
2146 }
2147
2148 /// Return true if this shuffle lengthens exactly one source vector with
2149 /// undefs in the high elements.
2150 bool isIdentityWithPadding() const;
2151
2152 /// Return true if this shuffle extracts the first N elements of exactly one
2153 /// source vector.
2154 bool isIdentityWithExtract() const;
2155
2156 /// Return true if this shuffle concatenates its 2 source vectors. This
2157 /// returns false if either input is undefined. In that case, the shuffle is
2158 /// is better classified as an identity with padding operation.
2159 bool isConcat() const;
2160
2161 /// Return true if this shuffle mask chooses elements from its source vectors
2162 /// without lane crossings. A shuffle using this mask would be
2163 /// equivalent to a vector select with a constant condition operand.
2164 /// Example: <4,1,6,undef>
2165 /// This returns false if the mask does not choose from both input vectors.
2166 /// In that case, the shuffle is better classified as an identity shuffle.
2167 /// This assumes that vector operands are the same length as the mask
2168 /// (a length-changing shuffle can never be equivalent to a vector select).
2169 static bool isSelectMask(ArrayRef<int> Mask);
2170 static bool isSelectMask(const Constant *Mask) {
2171 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2172 SmallVector<int, 16> MaskAsInts;
2173 getShuffleMask(Mask, MaskAsInts);
2174 return isSelectMask(MaskAsInts);
2175 }
2176
2177 /// Return true if this shuffle chooses elements from its source vectors
2178 /// without lane crossings and all operands have the same number of elements.
2179 /// In other words, this shuffle is equivalent to a vector select with a
2180 /// constant condition operand.
2181 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2182 /// This returns false if the mask does not choose from both input vectors.
2183 /// In that case, the shuffle is better classified as an identity shuffle.
2184 /// TODO: Optionally allow length-changing shuffles.
2185 bool isSelect() const {
2186 return !changesLength() && isSelectMask(ShuffleMask);
2187 }
2188
2189 /// Return true if this shuffle mask swaps the order of elements from exactly
2190 /// one source vector.
2191 /// Example: <7,6,undef,4>
2192 /// This assumes that vector operands are the same length as the mask.
2193 static bool isReverseMask(ArrayRef<int> Mask);
2194 static bool isReverseMask(const Constant *Mask) {
2195 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2196 SmallVector<int, 16> MaskAsInts;
2197 getShuffleMask(Mask, MaskAsInts);
2198 return isReverseMask(MaskAsInts);
2199 }
2200
2201 /// Return true if this shuffle swaps the order of elements from exactly
2202 /// one source vector.
2203 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2204 /// TODO: Optionally allow length-changing shuffles.
2205 bool isReverse() const {
2206 return !changesLength() && isReverseMask(ShuffleMask);
2207 }
2208
2209 /// Return true if this shuffle mask chooses all elements with the same value
2210 /// as the first element of exactly one source vector.
2211 /// Example: <4,undef,undef,4>
2212 /// This assumes that vector operands are the same length as the mask.
2213 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2214 static bool isZeroEltSplatMask(const Constant *Mask) {
2215 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2216 SmallVector<int, 16> MaskAsInts;
2217 getShuffleMask(Mask, MaskAsInts);
2218 return isZeroEltSplatMask(MaskAsInts);
2219 }
2220
2221 /// Return true if all elements of this shuffle are the same value as the
2222 /// first element of exactly one source vector without changing the length
2223 /// of that vector.
2224 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2225 /// TODO: Optionally allow length-changing shuffles.
2226 /// TODO: Optionally allow splats from other elements.
2227 bool isZeroEltSplat() const {
2228 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2229 }
2230
2231 /// Return true if this shuffle mask is a transpose mask.
2232 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2233 /// even- or odd-numbered vector elements from two n-dimensional source
2234 /// vectors and write each result into consecutive elements of an
2235 /// n-dimensional destination vector. Two shuffles are necessary to complete
2236 /// the transpose, one for the even elements and another for the odd elements.
2237 /// This description closely follows how the TRN1 and TRN2 AArch64
2238 /// instructions operate.
2239 ///
2240 /// For example, a simple 2x2 matrix can be transposed with:
2241 ///
2242 /// ; Original matrix
2243 /// m0 = < a, b >
2244 /// m1 = < c, d >
2245 ///
2246 /// ; Transposed matrix
2247 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2248 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2249 ///
2250 /// For matrices having greater than n columns, the resulting nx2 transposed
2251 /// matrix is stored in two result vectors such that one vector contains
2252 /// interleaved elements from all the even-numbered rows and the other vector
2253 /// contains interleaved elements from all the odd-numbered rows. For example,
2254 /// a 2x4 matrix can be transposed with:
2255 ///
2256 /// ; Original matrix
2257 /// m0 = < a, b, c, d >
2258 /// m1 = < e, f, g, h >
2259 ///
2260 /// ; Transposed matrix
2261 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2262 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2263 static bool isTransposeMask(ArrayRef<int> Mask);
2264 static bool isTransposeMask(const Constant *Mask) {
2265 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2266 SmallVector<int, 16> MaskAsInts;
2267 getShuffleMask(Mask, MaskAsInts);
2268 return isTransposeMask(MaskAsInts);
2269 }
2270
2271 /// Return true if this shuffle transposes the elements of its inputs without
2272 /// changing the length of the vectors. This operation may also be known as a
2273 /// merge or interleave. See the description for isTransposeMask() for the
2274 /// exact specification.
2275 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2276 bool isTranspose() const {
2277 return !changesLength() && isTransposeMask(ShuffleMask);
2278 }
2279
2280 /// Return true if this shuffle mask is an extract subvector mask.
2281 /// A valid extract subvector mask returns a smaller vector from a single
2282 /// source operand. The base extraction index is returned as well.
2283 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2284 int &Index);
2285 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2286 int &Index) {
2287 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2288 // Not possible to express a shuffle mask for a scalable vector for this
2289 // case.
2290 if (isa<ScalableVectorType>(Mask->getType()))
2291 return false;
2292 SmallVector<int, 16> MaskAsInts;
2293 getShuffleMask(Mask, MaskAsInts);
2294 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2295 }
2296
2297 /// Return true if this shuffle mask is an extract subvector mask.
2298 bool isExtractSubvectorMask(int &Index) const {
2299 // Not possible to express a shuffle mask for a scalable vector for this
2300 // case.
2301 if (isa<ScalableVectorType>(getType()))
2302 return false;
2303
2304 int NumSrcElts =
2305 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2306 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2307 }
2308
2309 /// Change values in a shuffle permute mask assuming the two vector operands
2310 /// of length InVecNumElts have swapped position.
2311 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2312 unsigned InVecNumElts) {
2313 for (int &Idx : Mask) {
2314 if (Idx == -1)
2315 continue;
2316 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2317 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((void)0)
2318 "shufflevector mask index out of range")((void)0);
2319 }
2320 }
2321
2322 // Methods for support type inquiry through isa, cast, and dyn_cast:
2323 static bool classof(const Instruction *I) {
2324 return I->getOpcode() == Instruction::ShuffleVector;
2325 }
2326 static bool classof(const Value *V) {
2327 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2328 }
2329};
2330
2331template <>
2332struct OperandTraits<ShuffleVectorInst>
2333 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2334
2335DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<ShuffleVectorInst>::op_begin(const_cast
<ShuffleVectorInst*>(this))[i_nocapture].get()); } void
ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<ShuffleVectorInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned ShuffleVectorInst
::getNumOperands() const { return OperandTraits<ShuffleVectorInst
>::operands(this); } template <int Idx_nocapture> Use
&ShuffleVectorInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ShuffleVectorInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2336
2337//===----------------------------------------------------------------------===//
2338// ExtractValueInst Class
2339//===----------------------------------------------------------------------===//
2340
2341/// This instruction extracts a struct member or array
2342/// element value from an aggregate value.
2343///
2344class ExtractValueInst : public UnaryInstruction {
2345 SmallVector<unsigned, 4> Indices;
2346
2347 ExtractValueInst(const ExtractValueInst &EVI);
2348
2349 /// Constructors - Create a extractvalue instruction with a base aggregate
2350 /// value and a list of indices. The first ctor can optionally insert before
2351 /// an existing instruction, the second appends the new instruction to the
2352 /// specified BasicBlock.
2353 inline ExtractValueInst(Value *Agg,
2354 ArrayRef<unsigned> Idxs,
2355 const Twine &NameStr,
2356 Instruction *InsertBefore);
2357 inline ExtractValueInst(Value *Agg,
2358 ArrayRef<unsigned> Idxs,
2359 const Twine &NameStr, BasicBlock *InsertAtEnd);
2360
2361 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2362
2363protected:
2364 // Note: Instruction needs to be a friend here to call cloneImpl.
2365 friend class Instruction;
2366
2367 ExtractValueInst *cloneImpl() const;
2368
2369public:
2370 static ExtractValueInst *Create(Value *Agg,
2371 ArrayRef<unsigned> Idxs,
2372 const Twine &NameStr = "",
2373 Instruction *InsertBefore = nullptr) {
2374 return new
2375 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2376 }
2377
2378 static ExtractValueInst *Create(Value *Agg,
2379 ArrayRef<unsigned> Idxs,
2380 const Twine &NameStr,
2381 BasicBlock *InsertAtEnd) {
2382 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2383 }
2384
2385 /// Returns the type of the element that would be extracted
2386 /// with an extractvalue instruction with the specified parameters.
2387 ///
2388 /// Null is returned if the indices are invalid for the specified type.
2389 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2390
2391 using idx_iterator = const unsigned*;
2392
2393 inline idx_iterator idx_begin() const { return Indices.begin(); }
2394 inline idx_iterator idx_end() const { return Indices.end(); }
2395 inline iterator_range<idx_iterator> indices() const {
2396 return make_range(idx_begin(), idx_end());
2397 }
2398
2399 Value *getAggregateOperand() {
2400 return getOperand(0);
2401 }
2402 const Value *getAggregateOperand() const {
2403 return getOperand(0);
2404 }
2405 static unsigned getAggregateOperandIndex() {
2406 return 0U; // get index for modifying correct operand
2407 }
2408
2409 ArrayRef<unsigned> getIndices() const {
2410 return Indices;
2411 }
2412
2413 unsigned getNumIndices() const {
2414 return (unsigned)Indices.size();
2415 }
2416
2417 bool hasIndices() const {
2418 return true;
2419 }
2420
2421 // Methods for support type inquiry through isa, cast, and dyn_cast:
2422 static bool classof(const Instruction *I) {
2423 return I->getOpcode() == Instruction::ExtractValue;
2424 }
2425 static bool classof(const Value *V) {
2426 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2427 }
2428};
2429
2430ExtractValueInst::ExtractValueInst(Value *Agg,
2431 ArrayRef<unsigned> Idxs,
2432 const Twine &NameStr,
2433 Instruction *InsertBefore)
2434 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2435 ExtractValue, Agg, InsertBefore) {
2436 init(Idxs, NameStr);
2437}
2438
2439ExtractValueInst::ExtractValueInst(Value *Agg,
2440 ArrayRef<unsigned> Idxs,
2441 const Twine &NameStr,
2442 BasicBlock *InsertAtEnd)
2443 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2444 ExtractValue, Agg, InsertAtEnd) {
2445 init(Idxs, NameStr);
2446}
2447
2448//===----------------------------------------------------------------------===//
2449// InsertValueInst Class
2450//===----------------------------------------------------------------------===//
2451
2452/// This instruction inserts a struct field of array element
2453/// value into an aggregate value.
2454///
2455class InsertValueInst : public Instruction {
2456 SmallVector<unsigned, 4> Indices;
2457
2458 InsertValueInst(const InsertValueInst &IVI);
2459
2460 /// Constructors - Create a insertvalue instruction with a base aggregate
2461 /// value, a value to insert, and a list of indices. The first ctor can
2462 /// optionally insert before an existing instruction, the second appends
2463 /// the new instruction to the specified BasicBlock.
2464 inline InsertValueInst(Value *Agg, Value *Val,
2465 ArrayRef<unsigned> Idxs,
2466 const Twine &NameStr,
2467 Instruction *InsertBefore);
2468 inline InsertValueInst(Value *Agg, Value *Val,
2469 ArrayRef<unsigned> Idxs,
2470 const Twine &NameStr, BasicBlock *InsertAtEnd);
2471
2472 /// Constructors - These two constructors are convenience methods because one
2473 /// and two index insertvalue instructions are so common.
2474 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2475 const Twine &NameStr = "",
2476 Instruction *InsertBefore = nullptr);
2477 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2478 BasicBlock *InsertAtEnd);
2479
2480 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2481 const Twine &NameStr);
2482
2483protected:
2484 // Note: Instruction needs to be a friend here to call cloneImpl.
2485 friend class Instruction;
2486
2487 InsertValueInst *cloneImpl() const;
2488
2489public:
2490 // allocate space for exactly two operands
2491 void *operator new(size_t S) { return User::operator new(S, 2); }
2492 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2493
2494 static InsertValueInst *Create(Value *Agg, Value *Val,
2495 ArrayRef<unsigned> Idxs,
2496 const Twine &NameStr = "",
2497 Instruction *InsertBefore = nullptr) {
2498 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2499 }
2500
2501 static InsertValueInst *Create(Value *Agg, Value *Val,
2502 ArrayRef<unsigned> Idxs,
2503 const Twine &NameStr,
2504 BasicBlock *InsertAtEnd) {
2505 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2506 }
2507
2508 /// Transparently provide more efficient getOperand methods.
2509 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2510
2511 using idx_iterator = const unsigned*;
2512
2513 inline idx_iterator idx_begin() const { return Indices.begin(); }
2514 inline idx_iterator idx_end() const { return Indices.end(); }
2515 inline iterator_range<idx_iterator> indices() const {
2516 return make_range(idx_begin(), idx_end());
2517 }
2518
2519 Value *getAggregateOperand() {
2520 return getOperand(0);
2521 }
2522 const Value *getAggregateOperand() const {
2523 return getOperand(0);
2524 }
2525 static unsigned getAggregateOperandIndex() {
2526 return 0U; // get index for modifying correct operand
2527 }
2528
2529 Value *getInsertedValueOperand() {
2530 return getOperand(1);
2531 }
2532 const Value *getInsertedValueOperand() const {
2533 return getOperand(1);
2534 }
2535 static unsigned getInsertedValueOperandIndex() {
2536 return 1U; // get index for modifying correct operand
2537 }
2538
2539 ArrayRef<unsigned> getIndices() const {
2540 return Indices;
2541 }
2542
2543 unsigned getNumIndices() const {
2544 return (unsigned)Indices.size();
2545 }
2546
2547 bool hasIndices() const {
2548 return true;
2549 }
2550
2551 // Methods for support type inquiry through isa, cast, and dyn_cast:
2552 static bool classof(const Instruction *I) {
2553 return I->getOpcode() == Instruction::InsertValue;
2554 }
2555 static bool classof(const Value *V) {
2556 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2557 }
2558};
2559
2560template <>
2561struct OperandTraits<InsertValueInst> :
2562 public FixedNumOperandTraits<InsertValueInst, 2> {
2563};
2564
2565InsertValueInst::InsertValueInst(Value *Agg,
2566 Value *Val,
2567 ArrayRef<unsigned> Idxs,
2568 const Twine &NameStr,
2569 Instruction *InsertBefore)
2570 : Instruction(Agg->getType(), InsertValue,
2571 OperandTraits<InsertValueInst>::op_begin(this),
2572 2, InsertBefore) {
2573 init(Agg, Val, Idxs, NameStr);
2574}
2575
2576InsertValueInst::InsertValueInst(Value *Agg,
2577 Value *Val,
2578 ArrayRef<unsigned> Idxs,
2579 const Twine &NameStr,
2580 BasicBlock *InsertAtEnd)
2581 : Instruction(Agg->getType(), InsertValue,
2582 OperandTraits<InsertValueInst>::op_begin(this),
2583 2, InsertAtEnd) {
2584 init(Agg, Val, Idxs, NameStr);
2585}
2586
2587DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<InsertValueInst>::op_begin
(const_cast<InsertValueInst*>(this))[i_nocapture].get()
); } void InsertValueInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<InsertValueInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertValueInst::getNumOperands() const { return OperandTraits
<InsertValueInst>::operands(this); } template <int Idx_nocapture
> Use &InsertValueInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &InsertValueInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2588
2589//===----------------------------------------------------------------------===//
2590// PHINode Class
2591//===----------------------------------------------------------------------===//
2592
2593// PHINode - The PHINode class is used to represent the magical mystical PHI
2594// node, that can not exist in nature, but can be synthesized in a computer
2595// scientist's overactive imagination.
2596//
2597class PHINode : public Instruction {
2598 /// The number of operands actually allocated. NumOperands is
2599 /// the number actually in use.
2600 unsigned ReservedSpace;
2601
2602 PHINode(const PHINode &PN);
2603
2604 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2605 const Twine &NameStr = "",
2606 Instruction *InsertBefore = nullptr)
2607 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2608 ReservedSpace(NumReservedValues) {
2609 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0);
2610 setName(NameStr);
2611 allocHungoffUses(ReservedSpace);
2612 }
2613
2614 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2615 BasicBlock *InsertAtEnd)
2616 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2617 ReservedSpace(NumReservedValues) {
2618 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0);
2619 setName(NameStr);
2620 allocHungoffUses(ReservedSpace);
2621 }
2622
2623protected:
2624 // Note: Instruction needs to be a friend here to call cloneImpl.
2625 friend class Instruction;
2626
2627 PHINode *cloneImpl() const;
2628
2629 // allocHungoffUses - this is more complicated than the generic
2630 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2631 // values and pointers to the incoming blocks, all in one allocation.
2632 void allocHungoffUses(unsigned N) {
2633 User::allocHungoffUses(N, /* IsPhi */ true);
2634 }
2635
2636public:
2637 /// Constructors - NumReservedValues is a hint for the number of incoming
2638 /// edges that this phi node will have (use 0 if you really have no idea).
2639 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2640 const Twine &NameStr = "",
2641 Instruction *InsertBefore = nullptr) {
2642 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2643 }
2644
2645 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2646 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2647 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2648 }
2649
2650 /// Provide fast operand accessors
2651 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2652
2653 // Block iterator interface. This provides access to the list of incoming
2654 // basic blocks, which parallels the list of incoming values.
2655
2656 using block_iterator = BasicBlock **;
2657 using const_block_iterator = BasicBlock * const *;
2658
2659 block_iterator block_begin() {
2660 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2661 }
2662
2663 const_block_iterator block_begin() const {
2664 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2665 }
2666
2667 block_iterator block_end() {
2668 return block_begin() + getNumOperands();
2669 }
2670
2671 const_block_iterator block_end() const {
2672 return block_begin() + getNumOperands();
2673 }
2674
2675 iterator_range<block_iterator> blocks() {
2676 return make_range(block_begin(), block_end());
2677 }
2678
2679 iterator_range<const_block_iterator> blocks() const {
2680 return make_range(block_begin(), block_end());
2681 }
2682
2683 op_range incoming_values() { return operands(); }
2684
2685 const_op_range incoming_values() const { return operands(); }
2686
2687 /// Return the number of incoming edges
2688 ///
2689 unsigned getNumIncomingValues() const { return getNumOperands(); }
2690
2691 /// Return incoming value number x
2692 ///
2693 Value *getIncomingValue(unsigned i) const {
2694 return getOperand(i);
2695 }
2696 void setIncomingValue(unsigned i, Value *V) {
2697 assert(V && "PHI node got a null value!")((void)0);
2698 assert(getType() == V->getType() &&((void)0)
2699 "All operands to PHI node must be the same type as the PHI node!")((void)0);
2700 setOperand(i, V);
2701 }
2702
2703 static unsigned getOperandNumForIncomingValue(unsigned i) {
2704 return i;
2705 }
2706
2707 static unsigned getIncomingValueNumForOperand(unsigned i) {
2708 return i;
2709 }
2710
2711 /// Return incoming basic block number @p i.
2712 ///
2713 BasicBlock *getIncomingBlock(unsigned i) const {
2714 return block_begin()[i];
2715 }
2716
2717 /// Return incoming basic block corresponding
2718 /// to an operand of the PHI.
2719 ///
2720 BasicBlock *getIncomingBlock(const Use &U) const {
2721 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((void)0);
2722 return getIncomingBlock(unsigned(&U - op_begin()));
2723 }
2724
2725 /// Return incoming basic block corresponding
2726 /// to value use iterator.
2727 ///
2728 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2729 return getIncomingBlock(I.getUse());
2730 }
2731
2732 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2733 assert(BB && "PHI node got a null basic block!")((void)0);
2734 block_begin()[i] = BB;
2735 }
2736
2737 /// Replace every incoming basic block \p Old to basic block \p New.
2738 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2739 assert(New && Old && "PHI node got a null basic block!")((void)0);
2740 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2741 if (getIncomingBlock(Op) == Old)
2742 setIncomingBlock(Op, New);
2743 }
2744
2745 /// Add an incoming value to the end of the PHI list
2746 ///
2747 void addIncoming(Value *V, BasicBlock *BB) {
2748 if (getNumOperands() == ReservedSpace)
2749 growOperands(); // Get more space!
2750 // Initialize some new operands.
2751 setNumHungOffUseOperands(getNumOperands() + 1);
2752 setIncomingValue(getNumOperands() - 1, V);
2753 setIncomingBlock(getNumOperands() - 1, BB);
2754 }
2755
2756 /// Remove an incoming value. This is useful if a
2757 /// predecessor basic block is deleted. The value removed is returned.
2758 ///
2759 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2760 /// is true), the PHI node is destroyed and any uses of it are replaced with
2761 /// dummy values. The only time there should be zero incoming values to a PHI
2762 /// node is when the block is dead, so this strategy is sound.
2763 ///
2764 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2765
2766 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2767 int Idx = getBasicBlockIndex(BB);
2768 assert(Idx >= 0 && "Invalid basic block argument to remove!")((void)0);
2769 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2770 }
2771
2772 /// Return the first index of the specified basic
2773 /// block in the value list for this PHI. Returns -1 if no instance.
2774 ///
2775 int getBasicBlockIndex(const BasicBlock *BB) const {
2776 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2777 if (block_begin()[i] == BB)
2778 return i;
2779 return -1;
2780 }
2781
2782 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2783 int Idx = getBasicBlockIndex(BB);
2784 assert(Idx >= 0 && "Invalid basic block argument!")((void)0);
2785 return getIncomingValue(Idx);
2786 }
2787
2788 /// Set every incoming value(s) for block \p BB to \p V.
2789 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2790 assert(BB && "PHI node got a null basic block!")((void)0);
2791 bool Found = false;
2792 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2793 if (getIncomingBlock(Op) == BB) {
2794 Found = true;
2795 setIncomingValue(Op, V);
2796 }
2797 (void)Found;
2798 assert(Found && "Invalid basic block argument to set!")((void)0);
2799 }
2800
2801 /// If the specified PHI node always merges together the
2802 /// same value, return the value, otherwise return null.
2803 Value *hasConstantValue() const;
2804
2805 /// Whether the specified PHI node always merges
2806 /// together the same value, assuming undefs are equal to a unique
2807 /// non-undef value.
2808 bool hasConstantOrUndefValue() const;
2809
2810 /// If the PHI node is complete which means all of its parent's predecessors
2811 /// have incoming value in this PHI, return true, otherwise return false.
2812 bool isComplete() const {
2813 return llvm::all_of(predecessors(getParent()),
2814 [this](const BasicBlock *Pred) {
2815 return getBasicBlockIndex(Pred) >= 0;
2816 });
2817 }
2818
2819 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2820 static bool classof(const Instruction *I) {
2821 return I->getOpcode() == Instruction::PHI;
2822 }
2823 static bool classof(const Value *V) {
2824 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2825 }
2826
2827private:
2828 void growOperands();
2829};
2830
2831template <>
2832struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2833};
2834
2835DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { ((void)0); return cast_or_null<Value>( OperandTraits
<PHINode>::op_begin(const_cast<PHINode*>(this))[i_nocapture
].get()); } void PHINode::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<PHINode>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned PHINode::getNumOperands
() const { return OperandTraits<PHINode>::operands(this
); } template <int Idx_nocapture> Use &PHINode::Op(
) { return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &PHINode::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
2836
2837//===----------------------------------------------------------------------===//
2838// LandingPadInst Class
2839//===----------------------------------------------------------------------===//
2840
2841//===---------------------------------------------------------------------------
2842/// The landingpad instruction holds all of the information
2843/// necessary to generate correct exception handling. The landingpad instruction
2844/// cannot be moved from the top of a landing pad block, which itself is
2845/// accessible only from the 'unwind' edge of an invoke. This uses the
2846/// SubclassData field in Value to store whether or not the landingpad is a
2847/// cleanup.
2848///
2849class LandingPadInst : public Instruction {
2850 using CleanupField = BoolBitfieldElementT<0>;
2851
2852 /// The number of operands actually allocated. NumOperands is
2853 /// the number actually in use.
2854 unsigned ReservedSpace;
2855
2856 LandingPadInst(const LandingPadInst &LP);
2857
2858public:
2859 enum ClauseType { Catch, Filter };
2860
2861private:
2862 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2863 const Twine &NameStr, Instruction *InsertBefore);
2864 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2865 const Twine &NameStr, BasicBlock *InsertAtEnd);
2866
2867 // Allocate space for exactly zero operands.
2868 void *operator new(size_t S) { return User::operator new(S); }
2869
2870 void growOperands(unsigned Size);
2871 void init(unsigned NumReservedValues, const Twine &NameStr);
2872
2873protected:
2874 // Note: Instruction needs to be a friend here to call cloneImpl.
2875 friend class Instruction;
2876
2877 LandingPadInst *cloneImpl() const;
2878
2879public:
2880 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2881
2882 /// Constructors - NumReservedClauses is a hint for the number of incoming
2883 /// clauses that this landingpad will have (use 0 if you really have no idea).
2884 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2885 const Twine &NameStr = "",
2886 Instruction *InsertBefore = nullptr);
2887 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2888 const Twine &NameStr, BasicBlock *InsertAtEnd);
2889
2890 /// Provide fast operand accessors
2891 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2892
2893 /// Return 'true' if this landingpad instruction is a
2894 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2895 /// doesn't catch the exception.
2896 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2897
2898 /// Indicate that this landingpad instruction is a cleanup.
2899 void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2900
2901 /// Add a catch or filter clause to the landing pad.
2902 void addClause(Constant *ClauseVal);
2903
2904 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2905 /// determine what type of clause this is.
2906 Constant *getClause(unsigned Idx) const {
2907 return cast<Constant>(getOperandList()[Idx]);
2908 }
2909
2910 /// Return 'true' if the clause and index Idx is a catch clause.
2911 bool isCatch(unsigned Idx) const {
2912 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2913 }
2914
2915 /// Return 'true' if the clause and index Idx is a filter clause.
2916 bool isFilter(unsigned Idx) const {
2917 return isa<ArrayType>(getOperandList()[Idx]->getType());
2918 }
2919
2920 /// Get the number of clauses for this landing pad.
2921 unsigned getNumClauses() const { return getNumOperands(); }
2922
2923 /// Grow the size of the operand list to accommodate the new
2924 /// number of clauses.
2925 void reserveClauses(unsigned Size) { growOperands(Size); }
2926
2927 // Methods for support type inquiry through isa, cast, and dyn_cast:
2928 static bool classof(const Instruction *I) {
2929 return I->getOpcode() == Instruction::LandingPad;
2930 }
2931 static bool classof(const Value *V) {
2932 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2933 }
2934};
2935
2936template <>
2937struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2938};
2939
2940DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<LandingPadInst>::op_begin(
const_cast<LandingPadInst*>(this))[i_nocapture].get());
} void LandingPadInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<LandingPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2941
2942//===----------------------------------------------------------------------===//
2943// ReturnInst Class
2944//===----------------------------------------------------------------------===//
2945
2946//===---------------------------------------------------------------------------
2947/// Return a value (possibly void), from a function. Execution
2948/// does not continue in this function any longer.
2949///
2950class ReturnInst : public Instruction {
2951 ReturnInst(const ReturnInst &RI);
2952
2953private:
2954 // ReturnInst constructors:
2955 // ReturnInst() - 'ret void' instruction
2956 // ReturnInst( null) - 'ret void' instruction
2957 // ReturnInst(Value* X) - 'ret X' instruction
2958 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2959 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2960 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2961 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2962 //
2963 // NOTE: If the Value* passed is of type void then the constructor behaves as
2964 // if it was passed NULL.
2965 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2966 Instruction *InsertBefore = nullptr);
2967 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2968 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2969
2970protected:
2971 // Note: Instruction needs to be a friend here to call cloneImpl.
2972 friend class Instruction;
2973
2974 ReturnInst *cloneImpl() const;
2975
2976public:
2977 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2978 Instruction *InsertBefore = nullptr) {
2979 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2980 }
2981
2982 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2983 BasicBlock *InsertAtEnd) {
2984 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2985 }
2986
2987 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2988 return new(0) ReturnInst(C, InsertAtEnd);
2989 }
2990
2991 /// Provide fast operand accessors
2992 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2993
2994 /// Convenience accessor. Returns null if there is no return value.
2995 Value *getReturnValue() const {
2996 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2997 }
2998
2999 unsigned getNumSuccessors() const { return 0; }
3000
3001 // Methods for support type inquiry through isa, cast, and dyn_cast:
3002 static bool classof(const Instruction *I) {
3003 return (I->getOpcode() == Instruction::Ret);
3004 }
3005 static bool classof(const Value *V) {
3006 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3007 }
3008
3009private:
3010 BasicBlock *getSuccessor(unsigned idx) const {
3011 llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable();
3012 }
3013
3014 void setSuccessor(unsigned idx, BasicBlock *B) {
3015 llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable();
3016 }
3017};
3018
3019template <>
3020struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
3021};
3022
3023DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<ReturnInst>::op_begin(const_cast
<ReturnInst*>(this))[i_nocapture].get()); } void ReturnInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<ReturnInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ReturnInst::getNumOperands() const
{ return OperandTraits<ReturnInst>::operands(this); } template
<int Idx_nocapture> Use &ReturnInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ReturnInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3024
3025//===----------------------------------------------------------------------===//
3026// BranchInst Class
3027//===----------------------------------------------------------------------===//
3028
3029//===---------------------------------------------------------------------------
3030/// Conditional or Unconditional Branch instruction.
3031///
3032class BranchInst : public Instruction {
3033 /// Ops list - Branches are strange. The operands are ordered:
3034 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3035 /// they don't have to check for cond/uncond branchness. These are mostly
3036 /// accessed relative from op_end().
3037 BranchInst(const BranchInst &BI);
3038 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3039 // BranchInst(BB *B) - 'br B'
3040 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3041 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3042 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3043 // BranchInst(BB* B, BB *I) - 'br B' insert at end
3044 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3045 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3046 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3047 Instruction *InsertBefore = nullptr);
3048 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3049 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3050 BasicBlock *InsertAtEnd);
3051
3052 void AssertOK();
3053
3054protected:
3055 // Note: Instruction needs to be a friend here to call cloneImpl.
3056 friend class Instruction;
3057
3058 BranchInst *cloneImpl() const;
3059
3060public:
3061 /// Iterator type that casts an operand to a basic block.
3062 ///
3063 /// This only makes sense because the successors are stored as adjacent
3064 /// operands for branch instructions.
3065 struct succ_op_iterator
3066 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3067 std::random_access_iterator_tag, BasicBlock *,
3068 ptrdiff_t, BasicBlock *, BasicBlock *> {
3069 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3070
3071 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3072 BasicBlock *operator->() const { return operator*(); }
3073 };
3074
3075 /// The const version of `succ_op_iterator`.
3076 struct const_succ_op_iterator
3077 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3078 std::random_access_iterator_tag,
3079 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3080 const BasicBlock *> {
3081 explicit const_succ_op_iterator(const_value_op_iterator I)
3082 : iterator_adaptor_base(I) {}
3083
3084 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3085 const BasicBlock *operator->() const { return operator*(); }
3086 };
3087
3088 static BranchInst *Create(BasicBlock *IfTrue,
3089 Instruction *InsertBefore = nullptr) {
3090 return new(1) BranchInst(IfTrue, InsertBefore);
3091 }
3092
3093 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3094 Value *Cond, Instruction *InsertBefore = nullptr) {
3095 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3096 }
3097
3098 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3099 return new(1) BranchInst(IfTrue, InsertAtEnd);
3100 }
3101
3102 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3103 Value *Cond, BasicBlock *InsertAtEnd) {
3104 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3105 }
3106
3107 /// Transparently provide more efficient getOperand methods.
3108 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3109
3110 bool isUnconditional() const { return getNumOperands() == 1; }
3111 bool isConditional() const { return getNumOperands() == 3; }
3112
3113 Value *getCondition() const {
3114 assert(isConditional() && "Cannot get condition of an uncond branch!")((void)0);
3115 return Op<-3>();
3116 }
3117
3118 void setCondition(Value *V) {
3119 assert(isConditional() && "Cannot set condition of unconditional branch!")((void)0);
3120 Op<-3>() = V;
3121 }
3122
3123 unsigned getNumSuccessors() const { return 1+isConditional(); }
3124
3125 BasicBlock *getSuccessor(unsigned i) const {
3126 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((void)0);
3127 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3128 }
3129
3130 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3131 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((void)0);
3132 *(&Op<-1>() - idx) = NewSucc;
3133 }
3134
3135 /// Swap the successors of this branch instruction.
3136 ///
3137 /// Swaps the successors of the branch instruction. This also swaps any
3138 /// branch weight metadata associated with the instruction so that it
3139 /// continues to map correctly to each operand.
3140 void swapSuccessors();
3141
3142 iterator_range<succ_op_iterator> successors() {
3143 return make_range(
3144 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3145 succ_op_iterator(value_op_end()));
3146 }
3147
3148 iterator_range<const_succ_op_iterator> successors() const {
3149 return make_range(const_succ_op_iterator(
3150 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3151 const_succ_op_iterator(value_op_end()));
3152 }
3153
3154 // Methods for support type inquiry through isa, cast, and dyn_cast:
3155 static bool classof(const Instruction *I) {
3156 return (I->getOpcode() == Instruction::Br);
3157 }
3158 static bool classof(const Value *V) {
3159 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3160 }
3161};
3162
3163template <>
3164struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3165};
3166
3167DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<BranchInst>::op_begin(const_cast
<BranchInst*>(this))[i_nocapture].get()); } void BranchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<BranchInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned BranchInst::getNumOperands() const
{ return OperandTraits<BranchInst>::operands(this); } template
<int Idx_nocapture> Use &BranchInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &BranchInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3168
3169//===----------------------------------------------------------------------===//
3170// SwitchInst Class
3171//===----------------------------------------------------------------------===//
3172
3173//===---------------------------------------------------------------------------
3174/// Multiway switch
3175///
3176class SwitchInst : public Instruction {
3177 unsigned ReservedSpace;
3178
3179 // Operand[0] = Value to switch on
3180 // Operand[1] = Default basic block destination
3181 // Operand[2n ] = Value to match
3182 // Operand[2n+1] = BasicBlock to go to on match
3183 SwitchInst(const SwitchInst &SI);
3184
3185 /// Create a new switch instruction, specifying a value to switch on and a
3186 /// default destination. The number of additional cases can be specified here
3187 /// to make memory allocation more efficient. This constructor can also
3188 /// auto-insert before another instruction.
3189 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3190 Instruction *InsertBefore);
3191
3192 /// Create a new switch instruction, specifying a value to switch on and a
3193 /// default destination. The number of additional cases can be specified here
3194 /// to make memory allocation more efficient. This constructor also
3195 /// auto-inserts at the end of the specified BasicBlock.
3196 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3197 BasicBlock *InsertAtEnd);
3198
3199 // allocate space for exactly zero operands
3200 void *operator new(size_t S) { return User::operator new(S); }
3201
3202 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3203 void growOperands();
3204
3205protected:
3206 // Note: Instruction needs to be a friend here to call cloneImpl.
3207 friend class Instruction;
3208
3209 SwitchInst *cloneImpl() const;
3210
3211public:
3212 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3213
3214 // -2
3215 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3216
3217 template <typename CaseHandleT> class CaseIteratorImpl;
3218
3219 /// A handle to a particular switch case. It exposes a convenient interface
3220 /// to both the case value and the successor block.
3221 ///
3222 /// We define this as a template and instantiate it to form both a const and
3223 /// non-const handle.
3224 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3225 class CaseHandleImpl {
3226 // Directly befriend both const and non-const iterators.
3227 friend class SwitchInst::CaseIteratorImpl<
3228 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3229
3230 protected:
3231 // Expose the switch type we're parameterized with to the iterator.
3232 using SwitchInstType = SwitchInstT;
3233
3234 SwitchInstT *SI;
3235 ptrdiff_t Index;
3236
3237 CaseHandleImpl() = default;
3238 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3239
3240 public:
3241 /// Resolves case value for current case.
3242 ConstantIntT *getCaseValue() const {
3243 assert((unsigned)Index < SI->getNumCases() &&((void)0)
3244 "Index out the number of cases.")((void)0);
3245 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3246 }
3247
3248 /// Resolves successor for current case.
3249 BasicBlockT *getCaseSuccessor() const {
3250 assert(((unsigned)Index < SI->getNumCases() ||((void)0)
3251 (unsigned)Index == DefaultPseudoIndex) &&((void)0)
3252 "Index out the number of cases.")((void)0);
3253 return SI->getSuccessor(getSuccessorIndex());
3254 }
3255
3256 /// Returns number of current case.
3257 unsigned getCaseIndex() const { return Index; }
3258
3259 /// Returns successor index for current case successor.
3260 unsigned getSuccessorIndex() const {
3261 assert(((unsigned)Index == DefaultPseudoIndex ||((void)0)
3262 (unsigned)Index < SI->getNumCases()) &&((void)0)
3263 "Index out the number of cases.")((void)0);
3264 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3265 }
3266
3267 bool operator==(const CaseHandleImpl &RHS) const {
3268 assert(SI == RHS.SI && "Incompatible operators.")((void)0);
3269 return Index == RHS.Index;
3270 }
3271 };
3272
3273 using ConstCaseHandle =
3274 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3275
3276 class CaseHandle
3277 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3278 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3279
3280 public:
3281 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3282
3283 /// Sets the new value for current case.
3284 void setValue(ConstantInt *V) {
3285 assert((unsigned)Index < SI->getNumCases() &&((void)0)
3286 "Index out the number of cases.")((void)0);
3287 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3288 }
3289
3290 /// Sets the new successor for current case.
3291 void setSuccessor(BasicBlock *S) {
3292 SI->setSuccessor(getSuccessorIndex(), S);
3293 }
3294 };
3295
3296 template <typename CaseHandleT>
3297 class CaseIteratorImpl
3298 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3299 std::random_access_iterator_tag,
3300 CaseHandleT> {
3301 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3302
3303 CaseHandleT Case;
3304
3305 public:
3306 /// Default constructed iterator is in an invalid state until assigned to
3307 /// a case for a particular switch.
3308 CaseIteratorImpl() = default;
3309
3310 /// Initializes case iterator for given SwitchInst and for given
3311 /// case number.
3312 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3313
3314 /// Initializes case iterator for given SwitchInst and for given
3315 /// successor index.
3316 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3317 unsigned SuccessorIndex) {
3318 assert(SuccessorIndex < SI->getNumSuccessors() &&((void)0)
3319 "Successor index # out of range!")((void)0);
3320 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3321 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3322 }
3323
3324 /// Support converting to the const variant. This will be a no-op for const
3325 /// variant.
3326 operator CaseIteratorImpl<ConstCaseHandle>() const {
3327 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3328 }
3329
3330 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3331 // Check index correctness after addition.
3332 // Note: Index == getNumCases() means end().
3333 assert(Case.Index + N >= 0 &&((void)0)
3334 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((void)0)
3335 "Case.Index out the number of cases.")((void)0);
3336 Case.Index += N;
3337 return *this;
3338 }
3339 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3340 // Check index correctness after subtraction.
3341 // Note: Case.Index == getNumCases() means end().
3342 assert(Case.Index - N >= 0 &&((void)0)
3343 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((void)0)
3344 "Case.Index out the number of cases.")((void)0);
3345 Case.Index -= N;
3346 return *this;
3347 }
3348 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3349 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0);
3350 return Case.Index - RHS.Case.Index;
3351 }
3352 bool operator==(const CaseIteratorImpl &RHS) const {
3353 return Case == RHS.Case;
3354 }
3355 bool operator<(const CaseIteratorImpl &RHS) const {
3356 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0);
3357 return Case.Index < RHS.Case.Index;
3358 }
3359 CaseHandleT &operator*() { return Case; }
3360 const CaseHandleT &operator*() const { return Case; }
3361 };
3362
3363 using CaseIt = CaseIteratorImpl<CaseHandle>;
3364 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3365
3366 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3367 unsigned NumCases,
3368 Instruction *InsertBefore = nullptr) {
3369 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3370 }
3371
3372 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3373 unsigned NumCases, BasicBlock *InsertAtEnd) {
3374 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3375 }
3376
3377 /// Provide fast operand accessors
3378 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3379
3380 // Accessor Methods for Switch stmt
3381 Value *getCondition() const { return getOperand(0); }
3382 void setCondition(Value *V) { setOperand(0, V); }
3383
3384 BasicBlock *getDefaultDest() const {
3385 return cast<BasicBlock>(getOperand(1));
3386 }
3387
3388 void setDefaultDest(BasicBlock *DefaultCase) {
3389 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3390 }
3391
3392 /// Return the number of 'cases' in this switch instruction, excluding the
3393 /// default case.
3394 unsigned getNumCases() const {
3395 return getNumOperands()/2 - 1;
3396 }
3397
3398 /// Returns a read/write iterator that points to the first case in the
3399 /// SwitchInst.
3400 CaseIt case_begin() {
3401 return CaseIt(this, 0);
3402 }
3403
3404 /// Returns a read-only iterator that points to the first case in the
3405 /// SwitchInst.
3406 ConstCaseIt case_begin() const {
3407 return ConstCaseIt(this, 0);
3408 }
3409
3410 /// Returns a read/write iterator that points one past the last in the
3411 /// SwitchInst.
3412 CaseIt case_end() {
3413 return CaseIt(this, getNumCases());
3414 }
3415
3416 /// Returns a read-only iterator that points one past the last in the
3417 /// SwitchInst.
3418 ConstCaseIt case_end() const {
3419 return ConstCaseIt(this, getNumCases());
3420 }
3421
3422 /// Iteration adapter for range-for loops.
3423 iterator_range<CaseIt> cases() {
3424 return make_range(case_begin(), case_end());
3425 }
3426
3427 /// Constant iteration adapter for range-for loops.
3428 iterator_range<ConstCaseIt> cases() const {
3429 return make_range(case_begin(), case_end());
3430 }
3431
3432 /// Returns an iterator that points to the default case.
3433 /// Note: this iterator allows to resolve successor only. Attempt
3434 /// to resolve case value causes an assertion.
3435 /// Also note, that increment and decrement also causes an assertion and
3436 /// makes iterator invalid.
3437 CaseIt case_default() {
3438 return CaseIt(this, DefaultPseudoIndex);
3439 }
3440 ConstCaseIt case_default() const {
3441 return ConstCaseIt(this, DefaultPseudoIndex);
3442 }
3443
3444 /// Search all of the case values for the specified constant. If it is
3445 /// explicitly handled, return the case iterator of it, otherwise return
3446 /// default case iterator to indicate that it is handled by the default
3447 /// handler.
3448 CaseIt findCaseValue(const ConstantInt *C) {
3449 CaseIt I = llvm::find_if(
3450 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3451 if (I != case_end())
3452 return I;
3453
3454 return case_default();
3455 }
3456 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3457 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3458 return Case.getCaseValue() == C;
3459 });
3460 if (I != case_end())
3461 return I;
3462
3463 return case_default();
3464 }
3465
3466 /// Finds the unique case value for a given successor. Returns null if the
3467 /// successor is not found, not unique, or is the default case.
3468 ConstantInt *findCaseDest(BasicBlock *BB) {
3469 if (BB == getDefaultDest())
3470 return nullptr;
3471
3472 ConstantInt *CI = nullptr;
3473 for (auto Case : cases()) {
3474 if (Case.getCaseSuccessor() != BB)
3475 continue;
3476
3477 if (CI)
3478 return nullptr; // Multiple cases lead to BB.
3479
3480 CI = Case.getCaseValue();
3481 }
3482
3483 return CI;
3484 }
3485
3486 /// Add an entry to the switch instruction.
3487 /// Note:
3488 /// This action invalidates case_end(). Old case_end() iterator will
3489 /// point to the added case.
3490 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3491
3492 /// This method removes the specified case and its successor from the switch
3493 /// instruction. Note that this operation may reorder the remaining cases at
3494 /// index idx and above.
3495 /// Note:
3496 /// This action invalidates iterators for all cases following the one removed,
3497 /// including the case_end() iterator. It returns an iterator for the next
3498 /// case.
3499 CaseIt removeCase(CaseIt I);
3500
3501 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3502 BasicBlock *getSuccessor(unsigned idx) const {
3503 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((void)0);
3504 return cast<BasicBlock>(getOperand(idx*2+1));
3505 }
3506 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3507 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((void)0);
3508 setOperand(idx * 2 + 1, NewSucc);
3509 }
3510
3511 // Methods for support type inquiry through isa, cast, and dyn_cast:
3512 static bool classof(const Instruction *I) {
3513 return I->getOpcode() == Instruction::Switch;
3514 }
3515 static bool classof(const Value *V) {
3516 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3517 }
3518};
3519
3520/// A wrapper class to simplify modification of SwitchInst cases along with
3521/// their prof branch_weights metadata.
3522class SwitchInstProfUpdateWrapper {
3523 SwitchInst &SI;
3524 Optional<SmallVector<uint32_t, 8> > Weights = None;
3525 bool Changed = false;
3526
3527protected:
3528 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3529
3530 MDNode *buildProfBranchWeightsMD();
3531
3532 void init();
3533
3534public:
3535 using CaseWeightOpt = Optional<uint32_t>;
3536 SwitchInst *operator->() { return &SI; }
3537 SwitchInst &operator*() { return SI; }
3538 operator SwitchInst *() { return &SI; }
3539
3540 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3541
3542 ~SwitchInstProfUpdateWrapper() {
3543 if (Changed)
3544 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3545 }
3546
3547 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3548 /// correspondent branch weight.
3549 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3550
3551 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3552 /// specified branch weight for the added case.
3553 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3554
3555 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3556 /// this object to not touch the underlying SwitchInst in destructor.
3557 SymbolTableList<Instruction>::iterator eraseFromParent();
3558
3559 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3560 CaseWeightOpt getSuccessorWeight(unsigned idx);
3561
3562 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3563};
3564
3565template <>
3566struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3567};
3568
3569DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<SwitchInst>::op_begin(const_cast
<SwitchInst*>(this))[i_nocapture].get()); } void SwitchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<SwitchInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned SwitchInst::getNumOperands() const
{ return OperandTraits<SwitchInst>::operands(this); } template
<int Idx_nocapture> Use &SwitchInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &SwitchInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3570
3571//===----------------------------------------------------------------------===//
3572// IndirectBrInst Class
3573//===----------------------------------------------------------------------===//
3574
3575//===---------------------------------------------------------------------------
3576/// Indirect Branch Instruction.
3577///
3578class IndirectBrInst : public Instruction {
3579 unsigned ReservedSpace;
3580
3581 // Operand[0] = Address to jump to
3582 // Operand[n+1] = n-th destination
3583 IndirectBrInst(const IndirectBrInst &IBI);
3584
3585 /// Create a new indirectbr instruction, specifying an
3586 /// Address to jump to. The number of expected destinations can be specified
3587 /// here to make memory allocation more efficient. This constructor can also
3588 /// autoinsert before another instruction.
3589 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3590
3591 /// Create a new indirectbr instruction, specifying an
3592 /// Address to jump to. The number of expected destinations can be specified
3593 /// here to make memory allocation more efficient. This constructor also
3594 /// autoinserts at the end of the specified BasicBlock.
3595 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3596
3597 // allocate space for exactly zero operands
3598 void *operator new(size_t S) { return User::operator new(S); }
3599
3600 void init(Value *Address, unsigned NumDests);
3601 void growOperands();
3602
3603protected:
3604 // Note: Instruction needs to be a friend here to call cloneImpl.
3605 friend class Instruction;
3606
3607 IndirectBrInst *cloneImpl() const;
3608
3609public:
3610 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3611
3612 /// Iterator type that casts an operand to a basic block.
3613 ///
3614 /// This only makes sense because the successors are stored as adjacent
3615 /// operands for indirectbr instructions.
3616 struct succ_op_iterator
3617 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3618 std::random_access_iterator_tag, BasicBlock *,
3619 ptrdiff_t, BasicBlock *, BasicBlock *> {
3620 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3621
3622 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3623 BasicBlock *operator->() const { return operator*(); }
3624 };
3625
3626 /// The const version of `succ_op_iterator`.
3627 struct const_succ_op_iterator
3628 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3629 std::random_access_iterator_tag,
3630 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3631 const BasicBlock *> {
3632 explicit const_succ_op_iterator(const_value_op_iterator I)
3633 : iterator_adaptor_base(I) {}
3634
3635 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3636 const BasicBlock *operator->() const { return operator*(); }
3637 };
3638
3639 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3640 Instruction *InsertBefore = nullptr) {
3641 return new IndirectBrInst(Address, NumDests, InsertBefore);
3642 }
3643
3644 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3645 BasicBlock *InsertAtEnd) {
3646 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3647 }
3648
3649 /// Provide fast operand accessors.
3650 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3651
3652 // Accessor Methods for IndirectBrInst instruction.
3653 Value *getAddress() { return getOperand(0); }
3654 const Value *getAddress() const { return getOperand(0); }
3655 void setAddress(Value *V) { setOperand(0, V); }
3656
3657 /// return the number of possible destinations in this
3658 /// indirectbr instruction.
3659 unsigned getNumDestinations() const { return getNumOperands()-1; }
3660
3661 /// Return the specified destination.
3662 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3663 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3664
3665 /// Add a destination.
3666 ///
3667 void addDestination(BasicBlock *Dest);
3668
3669 /// This method removes the specified successor from the
3670 /// indirectbr instruction.
3671 void removeDestination(unsigned i);
3672
3673 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3674 BasicBlock *getSuccessor(unsigned i) const {
3675 return cast<BasicBlock>(getOperand(i+1));
3676 }
3677 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3678 setOperand(i + 1, NewSucc);
3679 }
3680
3681 iterator_range<succ_op_iterator> successors() {
3682 return make_range(succ_op_iterator(std::next(value_op_begin())),
3683 succ_op_iterator(value_op_end()));
3684 }
3685
3686 iterator_range<const_succ_op_iterator> successors() const {
3687 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3688 const_succ_op_iterator(value_op_end()));
3689 }
3690
3691 // Methods for support type inquiry through isa, cast, and dyn_cast:
3692 static bool classof(const Instruction *I) {
3693 return I->getOpcode() == Instruction::IndirectBr;
3694 }
3695 static bool classof(const Value *V) {
3696 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3697 }
3698};
3699
3700template <>
3701struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3702};
3703
3704DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<IndirectBrInst>::op_begin(
const_cast<IndirectBrInst*>(this))[i_nocapture].get());
} void IndirectBrInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<IndirectBrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
IndirectBrInst::getNumOperands() const { return OperandTraits
<IndirectBrInst>::operands(this); } template <int Idx_nocapture
> Use &IndirectBrInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &IndirectBrInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
3705
3706//===----------------------------------------------------------------------===//
3707// InvokeInst Class
3708//===----------------------------------------------------------------------===//
3709
3710/// Invoke instruction. The SubclassData field is used to hold the
3711/// calling convention of the call.
3712///
3713class InvokeInst : public CallBase {
3714 /// The number of operands for this call beyond the called function,
3715 /// arguments, and operand bundles.
3716 static constexpr int NumExtraOperands = 2;
3717
3718 /// The index from the end of the operand array to the normal destination.
3719 static constexpr int NormalDestOpEndIdx = -3;
3720
3721 /// The index from the end of the operand array to the unwind destination.
3722 static constexpr int UnwindDestOpEndIdx = -2;
3723
3724 InvokeInst(const InvokeInst &BI);
3725
3726 /// Construct an InvokeInst given a range of arguments.
3727 ///
3728 /// Construct an InvokeInst from a range of arguments
3729 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3730 BasicBlock *IfException, ArrayRef<Value *> Args,
3731 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3732 const Twine &NameStr, Instruction *InsertBefore);
3733
3734 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3735 BasicBlock *IfException, ArrayRef<Value *> Args,
3736 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3737 const Twine &NameStr, BasicBlock *InsertAtEnd);
3738
3739 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3740 BasicBlock *IfException, ArrayRef<Value *> Args,
3741 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3742
3743 /// Compute the number of operands to allocate.
3744 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3745 // We need one operand for the called function, plus our extra operands and
3746 // the input operand counts provided.
3747 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3748 }
3749
3750protected:
3751 // Note: Instruction needs to be a friend here to call cloneImpl.
3752 friend class Instruction;
3753
3754 InvokeInst *cloneImpl() const;
3755
3756public:
3757 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3758 BasicBlock *IfException, ArrayRef<Value *> Args,
3759 const Twine &NameStr,
3760 Instruction *InsertBefore = nullptr) {
3761 int NumOperands = ComputeNumOperands(Args.size());
3762 return new (NumOperands)
3763 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3764 NameStr, InsertBefore);
3765 }
3766
3767 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3768 BasicBlock *IfException, ArrayRef<Value *> Args,
3769 ArrayRef<OperandBundleDef> Bundles = None,
3770 const Twine &NameStr = "",
3771 Instruction *InsertBefore = nullptr) {
3772 int NumOperands =
3773 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3774 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3775
3776 return new (NumOperands, DescriptorBytes)
3777 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3778 NameStr, InsertBefore);
3779 }
3780
3781 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3782 BasicBlock *IfException, ArrayRef<Value *> Args,
3783 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3784 int NumOperands = ComputeNumOperands(Args.size());
3785 return new (NumOperands)
3786 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3787 NameStr, InsertAtEnd);
3788 }
3789
3790 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3791 BasicBlock *IfException, ArrayRef<Value *> Args,
3792 ArrayRef<OperandBundleDef> Bundles,
3793 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3794 int NumOperands =
3795 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3796 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3797
3798 return new (NumOperands, DescriptorBytes)
3799 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3800 NameStr, InsertAtEnd);
3801 }
3802
3803 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3804 BasicBlock *IfException, ArrayRef<Value *> Args,
3805 const Twine &NameStr,
3806 Instruction *InsertBefore = nullptr) {
3807 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3808 IfException, Args, None, NameStr, InsertBefore);
3809 }
3810
3811 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3812 BasicBlock *IfException, ArrayRef<Value *> Args,
3813 ArrayRef<OperandBundleDef> Bundles = None,
3814 const Twine &NameStr = "",
3815 Instruction *InsertBefore = nullptr) {
3816 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3817 IfException, Args, Bundles, NameStr, InsertBefore);
3818 }
3819
3820 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3821 BasicBlock *IfException, ArrayRef<Value *> Args,
3822 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3823 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3824 IfException, Args, NameStr, InsertAtEnd);
3825 }
3826
3827 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3828 BasicBlock *IfException, ArrayRef<Value *> Args,
3829 ArrayRef<OperandBundleDef> Bundles,
3830 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3831 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3832 IfException, Args, Bundles, NameStr, InsertAtEnd);
3833 }
3834
3835 /// Create a clone of \p II with a different set of operand bundles and
3836 /// insert it before \p InsertPt.
3837 ///
3838 /// The returned invoke instruction is identical to \p II in every way except
3839 /// that the operand bundles for the new instruction are set to the operand
3840 /// bundles in \p Bundles.
3841 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3842 Instruction *InsertPt = nullptr);
3843
3844 // get*Dest - Return the destination basic blocks...
3845 BasicBlock *getNormalDest() const {
3846 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3847 }
3848 BasicBlock *getUnwindDest() const {
3849 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3850 }
3851 void setNormalDest(BasicBlock *B) {
3852 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3853 }
3854 void setUnwindDest(BasicBlock *B) {
3855 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3856 }
3857
3858 /// Get the landingpad instruction from the landing pad
3859 /// block (the unwind destination).
3860 LandingPadInst *getLandingPadInst() const;
3861
3862 BasicBlock *getSuccessor(unsigned i) const {
3863 assert(i < 2 && "Successor # out of range for invoke!")((void)0);
3864 return i == 0 ? getNormalDest() : getUnwindDest();
3865 }
3866
3867 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3868 assert(i < 2 && "Successor # out of range for invoke!")((void)0);
3869 if (i == 0)
3870 setNormalDest(NewSucc);
3871 else
3872 setUnwindDest(NewSucc);
3873 }
3874
3875 unsigned getNumSuccessors() const { return 2; }
3876
3877 // Methods for support type inquiry through isa, cast, and dyn_cast:
3878 static bool classof(const Instruction *I) {
3879 return (I->getOpcode() == Instruction::Invoke);
3880 }
3881 static bool classof(const Value *V) {
3882 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3883 }
3884
3885private:
3886 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3887 // method so that subclasses cannot accidentally use it.
3888 template <typename Bitfield>
3889 void setSubclassData(typename Bitfield::Type Value) {
3890 Instruction::setSubclassData<Bitfield>(Value);
3891 }
3892};
3893
3894InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3895 BasicBlock *IfException, ArrayRef<Value *> Args,
3896 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3897 const Twine &NameStr, Instruction *InsertBefore)
3898 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3899 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3900 InsertBefore) {
3901 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3902}
3903
3904InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3905 BasicBlock *IfException, ArrayRef<Value *> Args,
3906 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3907 const Twine &NameStr, BasicBlock *InsertAtEnd)
3908 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3909 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3910 InsertAtEnd) {
3911 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3912}
3913
3914//===----------------------------------------------------------------------===//
3915// CallBrInst Class
3916//===----------------------------------------------------------------------===//
3917
3918/// CallBr instruction, tracking function calls that may not return control but
3919/// instead transfer it to a third location. The SubclassData field is used to
3920/// hold the calling convention of the call.
3921///
3922class CallBrInst : public CallBase {
3923
3924 unsigned NumIndirectDests;
3925
3926 CallBrInst(const CallBrInst &BI);
3927
3928 /// Construct a CallBrInst given a range of arguments.
3929 ///
3930 /// Construct a CallBrInst from a range of arguments
3931 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3932 ArrayRef<BasicBlock *> IndirectDests,
3933 ArrayRef<Value *> Args,
3934 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3935 const Twine &NameStr, Instruction *InsertBefore);
3936
3937 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3938 ArrayRef<BasicBlock *> IndirectDests,
3939 ArrayRef<Value *> Args,
3940 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3941 const Twine &NameStr, BasicBlock *InsertAtEnd);
3942
3943 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3944 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3945 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3946
3947 /// Should the Indirect Destinations change, scan + update the Arg list.
3948 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3949
3950 /// Compute the number of operands to allocate.
3951 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3952 int NumBundleInputs = 0) {
3953 // We need one operand for the called function, plus our extra operands and
3954 // the input operand counts provided.
3955 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3956 }
3957
3958protected:
3959 // Note: Instruction needs to be a friend here to call cloneImpl.
3960 friend class Instruction;
3961
3962 CallBrInst *cloneImpl() const;
3963
3964public:
3965 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3966 BasicBlock *DefaultDest,
3967 ArrayRef<BasicBlock *> IndirectDests,
3968 ArrayRef<Value *> Args, const Twine &NameStr,
3969 Instruction *InsertBefore = nullptr) {
3970 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3971 return new (NumOperands)
3972 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3973 NumOperands, NameStr, InsertBefore);
3974 }
3975
3976 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3977 BasicBlock *DefaultDest,
3978 ArrayRef<BasicBlock *> IndirectDests,
3979 ArrayRef<Value *> Args,
3980 ArrayRef<OperandBundleDef> Bundles = None,
3981 const Twine &NameStr = "",
3982 Instruction *InsertBefore = nullptr) {
3983 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3984 CountBundleInputs(Bundles));
3985 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3986
3987 return new (NumOperands, DescriptorBytes)
3988 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3989 NumOperands, NameStr, InsertBefore);
3990 }
3991
3992 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3993 BasicBlock *DefaultDest,
3994 ArrayRef<BasicBlock *> IndirectDests,
3995 ArrayRef<Value *> Args, const Twine &NameStr,
3996 BasicBlock *InsertAtEnd) {
3997 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3998 return new (NumOperands)
3999 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4000 NumOperands, NameStr, InsertAtEnd);
4001 }
4002
4003 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4004 BasicBlock *DefaultDest,
4005 ArrayRef<BasicBlock *> IndirectDests,
4006 ArrayRef<Value *> Args,
4007 ArrayRef<OperandBundleDef> Bundles,
4008 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4009 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4010 CountBundleInputs(Bundles));
4011 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4012
4013 return new (NumOperands, DescriptorBytes)
4014 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4015 NumOperands, NameStr, InsertAtEnd);
4016 }
4017
4018 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4019 ArrayRef<BasicBlock *> IndirectDests,
4020 ArrayRef<Value *> Args, const Twine &NameStr,
4021 Instruction *InsertBefore = nullptr) {
4022 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4023 IndirectDests, Args, NameStr, InsertBefore);
4024 }
4025
4026 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4027 ArrayRef<BasicBlock *> IndirectDests,
4028 ArrayRef<Value *> Args,
4029 ArrayRef<OperandBundleDef> Bundles = None,
4030 const Twine &NameStr = "",
4031 Instruction *InsertBefore = nullptr) {
4032 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4033 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4034 }
4035
4036 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4037 ArrayRef<BasicBlock *> IndirectDests,
4038 ArrayRef<Value *> Args, const Twine &NameStr,
4039 BasicBlock *InsertAtEnd) {
4040 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4041 IndirectDests, Args, NameStr, InsertAtEnd);
4042 }
4043
4044 static CallBrInst *Create(FunctionCallee Func,
4045 BasicBlock *DefaultDest,
4046 ArrayRef<BasicBlock *> IndirectDests,
4047 ArrayRef<Value *> Args,
4048 ArrayRef<OperandBundleDef> Bundles,
4049 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4050 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4051 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4052 }
4053
4054 /// Create a clone of \p CBI with a different set of operand bundles and
4055 /// insert it before \p InsertPt.
4056 ///
4057 /// The returned callbr instruction is identical to \p CBI in every way
4058 /// except that the operand bundles for the new instruction are set to the
4059 /// operand bundles in \p Bundles.
4060 static CallBrInst *Create(CallBrInst *CBI,
4061 ArrayRef<OperandBundleDef> Bundles,
4062 Instruction *InsertPt = nullptr);
4063
4064 /// Return the number of callbr indirect dest labels.
4065 ///
4066 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4067
4068 /// getIndirectDestLabel - Return the i-th indirect dest label.
4069 ///
4070 Value *getIndirectDestLabel(unsigned i) const {
4071 assert(i < getNumIndirectDests() && "Out of bounds!")((void)0);
4072 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4073 1);
4074 }
4075
4076 Value *getIndirectDestLabelUse(unsigned i) const {
4077 assert(i < getNumIndirectDests() && "Out of bounds!")((void)0);
4078 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4079 1);
4080 }
4081
4082 // Return the destination basic blocks...
4083 BasicBlock *getDefaultDest() const {
4084 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4085 }
4086 BasicBlock *getIndirectDest(unsigned i) const {
4087 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4088 }
4089 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4090 SmallVector<BasicBlock *, 16> IndirectDests;
4091 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4092 IndirectDests.push_back(getIndirectDest(i));
4093 return IndirectDests;
4094 }
4095 void setDefaultDest(BasicBlock *B) {
4096 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4097 }
4098 void setIndirectDest(unsigned i, BasicBlock *B) {
4099 updateArgBlockAddresses(i, B);
4100 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4101 }
4102
4103 BasicBlock *getSuccessor(unsigned i) const {
4104 assert(i < getNumSuccessors() + 1 &&((void)0)
4105 "Successor # out of range for callbr!")((void)0);
4106 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4107 }
4108
4109 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4110 assert(i < getNumIndirectDests() + 1 &&((void)0)
4111 "Successor # out of range for callbr!")((void)0);
4112 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4113 }
4114
4115 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4116
4117 // Methods for support type inquiry through isa, cast, and dyn_cast:
4118 static bool classof(const Instruction *I) {
4119 return (I->getOpcode() == Instruction::CallBr);
4120 }
4121 static bool classof(const Value *V) {
4122 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4123 }
4124
4125private:
4126 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4127 // method so that subclasses cannot accidentally use it.
4128 template <typename Bitfield>
4129 void setSubclassData(typename Bitfield::Type Value) {
4130 Instruction::setSubclassData<Bitfield>(Value);
4131 }
4132};
4133
4134CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4135 ArrayRef<BasicBlock *> IndirectDests,
4136 ArrayRef<Value *> Args,
4137 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4138 const Twine &NameStr, Instruction *InsertBefore)
4139 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4140 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4141 InsertBefore) {
4142 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4143}
4144
4145CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4146 ArrayRef<BasicBlock *> IndirectDests,
4147 ArrayRef<Value *> Args,
4148 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4149 const Twine &NameStr, BasicBlock *InsertAtEnd)
4150 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4151 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4152 InsertAtEnd) {
4153 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4154}
4155
4156//===----------------------------------------------------------------------===//
4157// ResumeInst Class
4158//===----------------------------------------------------------------------===//
4159
4160//===---------------------------------------------------------------------------
4161/// Resume the propagation of an exception.
4162///
4163class ResumeInst : public Instruction {
4164 ResumeInst(const ResumeInst &RI);
4165
4166 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4167 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4168
4169protected:
4170 // Note: Instruction needs to be a friend here to call cloneImpl.
4171 friend class Instruction;
4172
4173 ResumeInst *cloneImpl() const;
4174
4175public:
4176 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4177 return new(1) ResumeInst(Exn, InsertBefore);
4178 }
4179
4180 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4181 return new(1) ResumeInst(Exn, InsertAtEnd);
4182 }
4183
4184 /// Provide fast operand accessors
4185 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4186
4187 /// Convenience accessor.
4188 Value *getValue() const { return Op<0>(); }
4189
4190 unsigned getNumSuccessors() const { return 0; }
4191
4192 // Methods for support type inquiry through isa, cast, and dyn_cast:
4193 static bool classof(const Instruction *I) {
4194 return I->getOpcode() == Instruction::Resume;
4195 }
4196 static bool classof(const Value *V) {
4197 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4198 }
4199
4200private:
4201 BasicBlock *getSuccessor(unsigned idx) const {
4202 llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable();
4203 }
4204
4205 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4206 llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable();
4207 }
4208};
4209
4210template <>
4211struct OperandTraits<ResumeInst> :
4212 public FixedNumOperandTraits<ResumeInst, 1> {
4213};
4214
4215DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<ResumeInst>::op_begin(const_cast
<ResumeInst*>(this))[i_nocapture].get()); } void ResumeInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<ResumeInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ResumeInst::getNumOperands() const
{ return OperandTraits<ResumeInst>::operands(this); } template
<int Idx_nocapture> Use &ResumeInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ResumeInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
4216
4217//===----------------------------------------------------------------------===//
4218// CatchSwitchInst Class
4219//===----------------------------------------------------------------------===//
4220class CatchSwitchInst : public Instruction {
4221 using UnwindDestField = BoolBitfieldElementT<0>;
4222
4223 /// The number of operands actually allocated. NumOperands is
4224 /// the number actually in use.
4225 unsigned ReservedSpace;
4226
4227 // Operand[0] = Outer scope
4228 // Operand[1] = Unwind block destination
4229 // Operand[n] = BasicBlock to go to on match
4230 CatchSwitchInst(const CatchSwitchInst &CSI);
4231
4232 /// Create a new switch instruction, specifying a
4233 /// default destination. The number of additional handlers can be specified
4234 /// here to make memory allocation more efficient.
4235 /// This constructor can also autoinsert before another instruction.
4236 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4237 unsigned NumHandlers, const Twine &NameStr,
4238 Instruction *InsertBefore);
4239
4240 /// Create a new switch instruction, specifying a
4241 /// default destination. The number of additional handlers can be specified
4242 /// here to make memory allocation more efficient.
4243 /// This constructor also autoinserts at the end of the specified BasicBlock.
4244 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4245 unsigned NumHandlers, const Twine &NameStr,
4246 BasicBlock *InsertAtEnd);
4247
4248 // allocate space for exactly zero operands
4249 void *operator new(size_t S) { return User::operator new(S); }
4250
4251 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4252 void growOperands(unsigned Size);
4253
4254protected:
4255 // Note: Instruction needs to be a friend here to call cloneImpl.
4256 friend class Instruction;
4257
4258 CatchSwitchInst *cloneImpl() const;
4259
4260public:
4261 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
4262
4263 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4264 unsigned NumHandlers,
4265 const Twine &NameStr = "",
4266 Instruction *InsertBefore = nullptr) {
4267 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4268 InsertBefore);
4269 }
4270
4271 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4272 unsigned NumHandlers, const Twine &NameStr,
4273 BasicBlock *InsertAtEnd) {
4274 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4275 InsertAtEnd);
4276 }
4277
4278 /// Provide fast operand accessors
4279 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4280
4281 // Accessor Methods for CatchSwitch stmt
4282 Value *getParentPad() const { return getOperand(0); }
4283 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4284
4285 // Accessor Methods for CatchSwitch stmt
4286 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4287 bool unwindsToCaller() const { return !hasUnwindDest(); }
4288 BasicBlock *getUnwindDest() const {
4289 if (hasUnwindDest())
4290 return cast<BasicBlock>(getOperand(1));
4291 return nullptr;
4292 }
4293 void setUnwindDest(BasicBlock *UnwindDest) {
4294 assert(UnwindDest)((void)0);
4295 assert(hasUnwindDest())((void)0);
4296 setOperand(1, UnwindDest);
4297 }
4298
4299 /// return the number of 'handlers' in this catchswitch
4300 /// instruction, except the default handler
4301 unsigned getNumHandlers() const {
4302 if (hasUnwindDest())
4303 return getNumOperands() - 2;
4304 return getNumOperands() - 1;
4305 }
4306
4307private:
4308 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4309 static const BasicBlock *handler_helper(const Value *V) {
4310 return cast<BasicBlock>(V);
4311 }
4312
4313public:
4314 using DerefFnTy = BasicBlock *(*)(Value *);
4315 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4316 using handler_range = iterator_range<handler_iterator>;
4317 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4318 using const_handler_iterator =
4319 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4320 using const_handler_range = iterator_range<const_handler_iterator>;
4321
4322 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4323 handler_iterator handler_begin() {
4324 op_iterator It = op_begin() + 1;
4325 if (hasUnwindDest())
4326 ++It;
4327 return handler_iterator(It, DerefFnTy(handler_helper));
4328 }
4329
4330 /// Returns an iterator that points to the first handler in the
4331 /// CatchSwitchInst.
4332 const_handler_iterator handler_begin() const {
4333 const_op_iterator It = op_begin() + 1;
4334 if (hasUnwindDest())
4335 ++It;
4336 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4337 }
4338
4339 /// Returns a read-only iterator that points one past the last
4340 /// handler in the CatchSwitchInst.
4341 handler_iterator handler_end() {
4342 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4343 }
4344
4345 /// Returns an iterator that points one past the last handler in the
4346 /// CatchSwitchInst.
4347 const_handler_iterator handler_end() const {
4348 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4349 }
4350
4351 /// iteration adapter for range-for loops.
4352 handler_range handlers() {
4353 return make_range(handler_begin(), handler_end());
4354 }
4355
4356 /// iteration adapter for range-for loops.
4357 const_handler_range handlers() const {
4358 return make_range(handler_begin(), handler_end());
4359 }
4360
4361 /// Add an entry to the switch instruction...
4362 /// Note:
4363 /// This action invalidates handler_end(). Old handler_end() iterator will
4364 /// point to the added handler.
4365 void addHandler(BasicBlock *Dest);
4366
4367 void removeHandler(handler_iterator HI);
4368
4369 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4370 BasicBlock *getSuccessor(unsigned Idx) const {
4371 assert(Idx < getNumSuccessors() &&((void)0)
4372 "Successor # out of range for catchswitch!")((void)0);
4373 return cast<BasicBlock>(getOperand(Idx + 1));
4374 }
4375 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4376 assert(Idx < getNumSuccessors() &&((void)0)
4377 "Successor # out of range for catchswitch!")((void)0);
4378 setOperand(Idx + 1, NewSucc);
4379 }
4380
4381 // Methods for support type inquiry through isa, cast, and dyn_cast:
4382 static bool classof(const Instruction *I) {
4383 return I->getOpcode() == Instruction::CatchSwitch;
4384 }
4385 static bool classof(const Value *V) {
4386 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4387 }
4388};
4389
4390template <>
4391struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4392
4393DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return
OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst
::const_op_iterator CatchSwitchInst::op_begin() const { return
OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst
::op_end() { return OperandTraits<CatchSwitchInst>::op_end
(this); } CatchSwitchInst::const_op_iterator CatchSwitchInst::
op_end() const { return OperandTraits<CatchSwitchInst>::
op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<CatchSwitchInst>::op_begin
(const_cast<CatchSwitchInst*>(this))[i_nocapture].get()
); } void CatchSwitchInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<CatchSwitchInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchSwitchInst::getNumOperands() const { return OperandTraits
<CatchSwitchInst>::operands(this); } template <int Idx_nocapture
> Use &CatchSwitchInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchSwitchInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4394
4395//===----------------------------------------------------------------------===//
4396// CleanupPadInst Class
4397//===----------------------------------------------------------------------===//
4398class CleanupPadInst : public FuncletPadInst {
4399private:
4400 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4401 unsigned Values, const Twine &NameStr,
4402 Instruction *InsertBefore)
4403 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4404 NameStr, InsertBefore) {}
4405 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4406 unsigned Values, const Twine &NameStr,
4407 BasicBlock *InsertAtEnd)
4408 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4409 NameStr, InsertAtEnd) {}
4410
4411public:
4412 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4413 const Twine &NameStr = "",
4414 Instruction *InsertBefore = nullptr) {
4415 unsigned Values = 1 + Args.size();
4416 return new (Values)
4417 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4418 }
4419
4420 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4421 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4422 unsigned Values = 1 + Args.size();
4423 return new (Values)
4424 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4425 }
4426
4427 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4428 static bool classof(const Instruction *I) {
4429 return I->getOpcode() == Instruction::CleanupPad;
4430 }
4431 static bool classof(const Value *V) {
4432 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4433 }
4434};
4435
4436//===----------------------------------------------------------------------===//
4437// CatchPadInst Class
4438//===----------------------------------------------------------------------===//
4439class CatchPadInst : public FuncletPadInst {
4440private:
4441 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4442 unsigned Values, const Twine &NameStr,
4443 Instruction *InsertBefore)
4444 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4445 NameStr, InsertBefore) {}
4446 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4447 unsigned Values, const Twine &NameStr,
4448 BasicBlock *InsertAtEnd)
4449 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4450 NameStr, InsertAtEnd) {}
4451
4452public:
4453 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4454 const Twine &NameStr = "",
4455 Instruction *InsertBefore = nullptr) {
4456 unsigned Values = 1 + Args.size();
4457 return new (Values)
4458 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4459 }
4460
4461 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4462 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4463 unsigned Values = 1 + Args.size();
4464 return new (Values)
4465 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4466 }
4467
4468 /// Convenience accessors
4469 CatchSwitchInst *getCatchSwitch() const {
4470 return cast<CatchSwitchInst>(Op<-1>());
4471 }
4472 void setCatchSwitch(Value *CatchSwitch) {
4473 assert(CatchSwitch)((void)0);
4474 Op<-1>() = CatchSwitch;
4475 }
4476
4477 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4478 static bool classof(const Instruction *I) {
4479 return I->getOpcode() == Instruction::CatchPad;
4480 }
4481 static bool classof(const Value *V) {
4482 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4483 }
4484};
4485
4486//===----------------------------------------------------------------------===//
4487// CatchReturnInst Class
4488//===----------------------------------------------------------------------===//
4489
4490class CatchReturnInst : public Instruction {
4491 CatchReturnInst(const CatchReturnInst &RI);
4492 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4493 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4494
4495 void init(Value *CatchPad, BasicBlock *BB);
4496
4497protected:
4498 // Note: Instruction needs to be a friend here to call cloneImpl.
4499 friend class Instruction;
4500
4501 CatchReturnInst *cloneImpl() const;
4502
4503public:
4504 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4505 Instruction *InsertBefore = nullptr) {
4506 assert(CatchPad)((void)0);
4507 assert(BB)((void)0);
4508 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4509 }
4510
4511 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4512 BasicBlock *InsertAtEnd) {
4513 assert(CatchPad)((void)0);
4514 assert(BB)((void)0);
4515 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4516 }
4517
4518 /// Provide fast operand accessors
4519 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4520
4521 /// Convenience accessors.
4522 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4523 void setCatchPad(CatchPadInst *CatchPad) {
4524 assert(CatchPad)((void)0);
4525 Op<0>() = CatchPad;
4526 }
4527
4528 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4529 void setSuccessor(BasicBlock *NewSucc) {
4530 assert(NewSucc)((void)0);
4531 Op<1>() = NewSucc;
4532 }
4533 unsigned getNumSuccessors() const { return 1; }
4534
4535 /// Get the parentPad of this catchret's catchpad's catchswitch.
4536 /// The successor block is implicitly a member of this funclet.
4537 Value *getCatchSwitchParentPad() const {
4538 return getCatchPad()->getCatchSwitch()->getParentPad();
4539 }
4540
4541 // Methods for support type inquiry through isa, cast, and dyn_cast:
4542 static bool classof(const Instruction *I) {
4543 return (I->getOpcode() == Instruction::CatchRet);
4544 }
4545 static bool classof(const Value *V) {
4546 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4547 }
4548
4549private:
4550 BasicBlock *getSuccessor(unsigned Idx) const {
4551 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0);
4552 return getSuccessor();
4553 }
4554
4555 void setSuccessor(unsigned Idx, BasicBlock *B) {
4556 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0);
4557 setSuccessor(B);
4558 }
4559};
4560
4561template <>
4562struct OperandTraits<CatchReturnInst>
4563 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4564
4565DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return
OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst
::const_op_iterator CatchReturnInst::op_begin() const { return
OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst
::op_end() { return OperandTraits<CatchReturnInst>::op_end
(this); } CatchReturnInst::const_op_iterator CatchReturnInst::
op_end() const { return OperandTraits<CatchReturnInst>::
op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<CatchReturnInst>::op_begin
(const_cast<CatchReturnInst*>(this))[i_nocapture].get()
); } void CatchReturnInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<CatchReturnInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchReturnInst::getNumOperands() const { return OperandTraits
<CatchReturnInst>::operands(this); } template <int Idx_nocapture
> Use &CatchReturnInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchReturnInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4566
4567//===----------------------------------------------------------------------===//
4568// CleanupReturnInst Class
4569//===----------------------------------------------------------------------===//
4570
4571class CleanupReturnInst : public Instruction {
4572 using UnwindDestField = BoolBitfieldElementT<0>;
4573
4574private:
4575 CleanupReturnInst(const CleanupReturnInst &RI);
4576 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4577 Instruction *InsertBefore = nullptr);
4578 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4579 BasicBlock *InsertAtEnd);
4580
4581 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4582
4583protected:
4584 // Note: Instruction needs to be a friend here to call cloneImpl.
4585 friend class Instruction;
4586
4587 CleanupReturnInst *cloneImpl() const;
4588
4589public:
4590 static CleanupReturnInst *Create(Value *CleanupPad,
4591 BasicBlock *UnwindBB = nullptr,
4592 Instruction *InsertBefore = nullptr) {
4593 assert(CleanupPad)((void)0);
4594 unsigned Values = 1;
4595 if (UnwindBB)
4596 ++Values;
4597 return new (Values)
4598 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4599 }
4600
4601 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4602 BasicBlock *InsertAtEnd) {
4603 assert(CleanupPad)((void)0);
4604 unsigned Values = 1;
4605 if (UnwindBB)
4606 ++Values;
4607 return new (Values)
4608 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4609 }
4610
4611 /// Provide fast operand accessors
4612 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4613
4614 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4615 bool unwindsToCaller() const { return !hasUnwindDest(); }
4616
4617 /// Convenience accessor.
4618 CleanupPadInst *getCleanupPad() const {
4619 return cast<CleanupPadInst>(Op<0>());
4620 }
4621 void setCleanupPad(CleanupPadInst *CleanupPad) {
4622 assert(CleanupPad)((void)0);
4623 Op<0>() = CleanupPad;
4624 }
4625
4626 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4627
4628 BasicBlock *getUnwindDest() const {
4629 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4630 }
4631 void setUnwindDest(BasicBlock *NewDest) {
4632 assert(NewDest)((void)0);
4633 assert(hasUnwindDest())((void)0);
4634 Op<1>() = NewDest;
4635 }
4636
4637 // Methods for support type inquiry through isa, cast, and dyn_cast:
4638 static bool classof(const Instruction *I) {
4639 return (I->getOpcode() == Instruction::CleanupRet);
4640 }
4641 static bool classof(const Value *V) {
4642 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4643 }
4644
4645private:
4646 BasicBlock *getSuccessor(unsigned Idx) const {
4647 assert(Idx == 0)((void)0);
4648 return getUnwindDest();
4649 }
4650
4651 void setSuccessor(unsigned Idx, BasicBlock *B) {
4652 assert(Idx == 0)((void)0);
4653 setUnwindDest(B);
4654 }
4655
4656 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4657 // method so that subclasses cannot accidentally use it.
4658 template <typename Bitfield>
4659 void setSubclassData(typename Bitfield::Type Value) {
4660 Instruction::setSubclassData<Bitfield>(Value);
4661 }
4662};
4663
4664template <>
4665struct OperandTraits<CleanupReturnInst>
4666 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4667
4668DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() {
return OperandTraits<CleanupReturnInst>::op_begin(this
); } CleanupReturnInst::const_op_iterator CleanupReturnInst::
op_begin() const { return OperandTraits<CleanupReturnInst>
::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst
::op_iterator CleanupReturnInst::op_end() { return OperandTraits
<CleanupReturnInst>::op_end(this); } CleanupReturnInst::
const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits
<CleanupReturnInst>::op_end(const_cast<CleanupReturnInst
*>(this)); } Value *CleanupReturnInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<CleanupReturnInst>::op_begin(const_cast
<CleanupReturnInst*>(this))[i_nocapture].get()); } void
CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<CleanupReturnInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned CleanupReturnInst
::getNumOperands() const { return OperandTraits<CleanupReturnInst
>::operands(this); } template <int Idx_nocapture> Use
&CleanupReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
CleanupReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
4669
4670//===----------------------------------------------------------------------===//
4671// UnreachableInst Class
4672//===----------------------------------------------------------------------===//
4673
4674//===---------------------------------------------------------------------------
4675/// This function has undefined behavior. In particular, the
4676/// presence of this instruction indicates some higher level knowledge that the
4677/// end of the block cannot be reached.
4678///
4679class UnreachableInst : public Instruction {
4680protected:
4681 // Note: Instruction needs to be a friend here to call cloneImpl.
4682 friend class Instruction;
4683
4684 UnreachableInst *cloneImpl() const;
4685
4686public:
4687 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4688 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4689
4690 // allocate space for exactly zero operands
4691 void *operator new(size_t S) { return User::operator new(S, 0); }
4692 void operator delete(void *Ptr) { User::operator delete(Ptr); }
4693
4694 unsigned getNumSuccessors() const { return 0; }
4695
4696 // Methods for support type inquiry through isa, cast, and dyn_cast:
4697 static bool classof(const Instruction *I) {
4698 return I->getOpcode() == Instruction::Unreachable;
4699 }
4700 static bool classof(const Value *V) {
4701 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4702 }
4703
4704private:
4705 BasicBlock *getSuccessor(unsigned idx) const {
4706 llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable();
4707 }
4708
4709 void setSuccessor(unsigned idx, BasicBlock *B) {
4710 llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable();
4711 }
4712};
4713
4714//===----------------------------------------------------------------------===//
4715// TruncInst Class
4716//===----------------------------------------------------------------------===//
4717
4718/// This class represents a truncation of integer types.
4719class TruncInst : public CastInst {
4720protected:
4721 // Note: Instruction needs to be a friend here to call cloneImpl.
4722 friend class Instruction;
4723
4724 /// Clone an identical TruncInst
4725 TruncInst *cloneImpl() const;
4726
4727public:
4728 /// Constructor with insert-before-instruction semantics
4729 TruncInst(
4730 Value *S, ///< The value to be truncated
4731 Type *Ty, ///< The (smaller) type to truncate to
4732 const Twine &NameStr = "", ///< A name for the new instruction
4733 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4734 );
4735
4736 /// Constructor with insert-at-end-of-block semantics
4737 TruncInst(
4738 Value *S, ///< The value to be truncated
4739 Type *Ty, ///< The (smaller) type to truncate to
4740 const Twine &NameStr, ///< A name for the new instruction
4741 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4742 );
4743
4744 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4745 static bool classof(const Instruction *I) {
4746 return I->getOpcode() == Trunc;
4747 }
4748 static bool classof(const Value *V) {
4749 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4750 }
4751};
4752
4753//===----------------------------------------------------------------------===//
4754// ZExtInst Class
4755//===----------------------------------------------------------------------===//
4756
4757/// This class represents zero extension of integer types.
4758class ZExtInst : public CastInst {
4759protected:
4760 // Note: Instruction needs to be a friend here to call cloneImpl.
4761 friend class Instruction;
4762
4763 /// Clone an identical ZExtInst
4764 ZExtInst *cloneImpl() const;
4765
4766public:
4767 /// Constructor with insert-before-instruction semantics
4768 ZExtInst(
4769 Value *S, ///< The value to be zero extended
4770 Type *Ty, ///< The type to zero extend to
4771 const Twine &NameStr = "", ///< A name for the new instruction
4772 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4773 );
4774
4775 /// Constructor with insert-at-end semantics.
4776 ZExtInst(
4777 Value *S, ///< The value to be zero extended
4778 Type *Ty, ///< The type to zero extend to
4779 const Twine &NameStr, ///< A name for the new instruction
4780 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4781 );
4782
4783 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4784 static bool classof(const Instruction *I) {
4785 return I->getOpcode() == ZExt;
4786 }
4787 static bool classof(const Value *V) {
4788 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4789 }
4790};
4791
4792//===----------------------------------------------------------------------===//
4793// SExtInst Class
4794//===----------------------------------------------------------------------===//
4795
4796/// This class represents a sign extension of integer types.
4797class SExtInst : public CastInst {
4798protected:
4799 // Note: Instruction needs to be a friend here to call cloneImpl.
4800 friend class Instruction;
4801
4802 /// Clone an identical SExtInst
4803 SExtInst *cloneImpl() const;
4804
4805public:
4806 /// Constructor with insert-before-instruction semantics
4807 SExtInst(
4808 Value *S, ///< The value to be sign extended
4809 Type *Ty, ///< The type to sign extend to
4810 const Twine &NameStr = "", ///< A name for the new instruction
4811 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4812 );
4813
4814 /// Constructor with insert-at-end-of-block semantics
4815 SExtInst(
4816 Value *S, ///< The value to be sign extended
4817 Type *Ty, ///< The type to sign extend to
4818 const Twine &NameStr, ///< A name for the new instruction
4819 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4820 );
4821
4822 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4823 static bool classof(const Instruction *I) {
4824 return I->getOpcode() == SExt;
4825 }
4826 static bool classof(const Value *V) {
4827 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4828 }
4829};
4830
4831//===----------------------------------------------------------------------===//
4832// FPTruncInst Class
4833//===----------------------------------------------------------------------===//
4834
4835/// This class represents a truncation of floating point types.
4836class FPTruncInst : public CastInst {
4837protected:
4838 // Note: Instruction needs to be a friend here to call cloneImpl.
4839 friend class Instruction;
4840
4841 /// Clone an identical FPTruncInst
4842 FPTruncInst *cloneImpl() const;
4843
4844public:
4845 /// Constructor with insert-before-instruction semantics
4846 FPTruncInst(
4847 Value *S, ///< The value to be truncated
4848 Type *Ty, ///< The type to truncate to
4849 const Twine &NameStr = "", ///< A name for the new instruction
4850 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4851 );
4852
4853 /// Constructor with insert-before-instruction semantics
4854 FPTruncInst(
4855 Value *S, ///< The value to be truncated
4856 Type *Ty, ///< The type to truncate to
4857 const Twine &NameStr, ///< A name for the new instruction
4858 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4859 );
4860
4861 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4862 static bool classof(const Instruction *I) {
4863 return I->getOpcode() == FPTrunc;
4864 }
4865 static bool classof(const Value *V) {
4866 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4867 }
4868};
4869
4870//===----------------------------------------------------------------------===//
4871// FPExtInst Class
4872//===----------------------------------------------------------------------===//
4873
4874/// This class represents an extension of floating point types.
4875class FPExtInst : public CastInst {
4876protected:
4877 // Note: Instruction needs to be a friend here to call cloneImpl.
4878 friend class Instruction;
4879
4880 /// Clone an identical FPExtInst
4881 FPExtInst *cloneImpl() const;
4882
4883public:
4884 /// Constructor with insert-before-instruction semantics
4885 FPExtInst(
4886 Value *S, ///< The value to be extended
4887 Type *Ty, ///< The type to extend to
4888 const Twine &NameStr = "", ///< A name for the new instruction
4889 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4890 );
4891
4892 /// Constructor with insert-at-end-of-block semantics
4893 FPExtInst(
4894 Value *S, ///< The value to be extended
4895 Type *Ty, ///< The type to extend to
4896 const Twine &NameStr, ///< A name for the new instruction
4897 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4898 );
4899
4900 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4901 static bool classof(const Instruction *I) {
4902 return I->getOpcode() == FPExt;
4903 }
4904 static bool classof(const Value *V) {
4905 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4906 }
4907};
4908
4909//===----------------------------------------------------------------------===//
4910// UIToFPInst Class
4911//===----------------------------------------------------------------------===//
4912
4913/// This class represents a cast unsigned integer to floating point.
4914class UIToFPInst : public CastInst {
4915protected:
4916 // Note: Instruction needs to be a friend here to call cloneImpl.
4917 friend class Instruction;
4918
4919 /// Clone an identical UIToFPInst
4920 UIToFPInst *cloneImpl() const;
4921
4922public:
4923 /// Constructor with insert-before-instruction semantics
4924 UIToFPInst(
4925 Value *S, ///< The value to be converted
4926 Type *Ty, ///< The type to convert to
4927 const Twine &NameStr = "", ///< A name for the new instruction
4928 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4929 );
4930
4931 /// Constructor with insert-at-end-of-block semantics
4932 UIToFPInst(
4933 Value *S, ///< The value to be converted
4934 Type *Ty, ///< The type to convert to
4935 const Twine &NameStr, ///< A name for the new instruction
4936 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4937 );
4938
4939 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4940 static bool classof(const Instruction *I) {
4941 return I->getOpcode() == UIToFP;
4942 }
4943 static bool classof(const Value *V) {
4944 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4945 }
4946};
4947
4948//===----------------------------------------------------------------------===//
4949// SIToFPInst Class
4950//===----------------------------------------------------------------------===//
4951
4952/// This class represents a cast from signed integer to floating point.
4953class SIToFPInst : public CastInst {
4954protected:
4955 // Note: Instruction needs to be a friend here to call cloneImpl.
4956 friend class Instruction;
4957
4958 /// Clone an identical SIToFPInst
4959 SIToFPInst *cloneImpl() const;
4960
4961public:
4962 /// Constructor with insert-before-instruction semantics
4963 SIToFPInst(
4964 Value *S, ///< The value to be converted
4965 Type *Ty, ///< The type to convert to
4966 const Twine &NameStr = "", ///< A name for the new instruction
4967 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4968 );
4969
4970 /// Constructor with insert-at-end-of-block semantics
4971 SIToFPInst(
4972 Value *S, ///< The value to be converted
4973 Type *Ty, ///< The type to convert to
4974 const Twine &NameStr, ///< A name for the new instruction
4975 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4976 );
4977
4978 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4979 static bool classof(const Instruction *I) {
4980 return I->getOpcode() == SIToFP;
4981 }
4982 static bool classof(const Value *V) {
4983 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4984 }
4985};
4986
4987//===----------------------------------------------------------------------===//
4988// FPToUIInst Class
4989//===----------------------------------------------------------------------===//
4990
4991/// This class represents a cast from floating point to unsigned integer
4992class FPToUIInst : public CastInst {
4993protected:
4994 // Note: Instruction needs to be a friend here to call cloneImpl.
4995 friend class Instruction;
4996
4997 /// Clone an identical FPToUIInst
4998 FPToUIInst *cloneImpl() const;
4999
5000public:
5001 /// Constructor with insert-before-instruction semantics
5002 FPToUIInst(
5003 Value *S, ///< The value to be converted
5004 Type *Ty, ///< The type to convert to
5005 const Twine &NameStr = "", ///< A name for the new instruction
5006 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5007 );
5008
5009 /// Constructor with insert-at-end-of-block semantics
5010 FPToUIInst(
5011 Value *S, ///< The value to be converted
5012 Type *Ty, ///< The type to convert to
5013 const Twine &NameStr, ///< A name for the new instruction
5014 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
5015 );
5016
5017 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5018 static bool classof(const Instruction *I) {
5019 return I->getOpcode() == FPToUI;
5020 }
5021 static bool classof(const Value *V) {
5022 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5023 }
5024};
5025
5026//===----------------------------------------------------------------------===//
5027// FPToSIInst Class
5028//===----------------------------------------------------------------------===//
5029
5030/// This class represents a cast from floating point to signed integer.
5031class FPToSIInst : public CastInst {
5032protected:
5033 // Note: Instruction needs to be a friend here to call cloneImpl.
5034 friend class Instruction;
5035
5036 /// Clone an identical FPToSIInst
5037 FPToSIInst *cloneImpl() const;
5038
5039public:
5040 /// Constructor with insert-before-instruction semantics
5041 FPToSIInst(
5042 Value *S, ///< The value to be converted
5043 Type *Ty, ///< The type to convert to
5044 const Twine &NameStr = "", ///< A name for the new instruction
5045 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5046 );
5047
5048 /// Constructor with insert-at-end-of-block semantics
5049 FPToSIInst(
5050 Value *S, ///< The value to be converted
5051 Type *Ty, ///< The type to convert to
5052 const Twine &NameStr, ///< A name for the new instruction
5053 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5054 );
5055
5056 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5057 static bool classof(const Instruction *I) {
5058 return I->getOpcode() == FPToSI;
5059 }
5060 static bool classof(const Value *V) {
5061 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5062 }
5063};
5064
5065//===----------------------------------------------------------------------===//
5066// IntToPtrInst Class
5067//===----------------------------------------------------------------------===//
5068
5069/// This class represents a cast from an integer to a pointer.
5070class IntToPtrInst : public CastInst {
5071public:
5072 // Note: Instruction needs to be a friend here to call cloneImpl.
5073 friend class Instruction;
5074
5075 /// Constructor with insert-before-instruction semantics
5076 IntToPtrInst(
5077 Value *S, ///< The value to be converted
5078 Type *Ty, ///< The type to convert to
5079 const Twine &NameStr = "", ///< A name for the new instruction
5080 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5081 );
5082
5083 /// Constructor with insert-at-end-of-block semantics
5084 IntToPtrInst(
5085 Value *S, ///< The value to be converted
5086 Type *Ty, ///< The type to convert to
5087 const Twine &NameStr, ///< A name for the new instruction
5088 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5089 );
5090
5091 /// Clone an identical IntToPtrInst.
5092 IntToPtrInst *cloneImpl() const;
5093
5094 /// Returns the address space of this instruction's pointer type.
5095 unsigned getAddressSpace() const {
5096 return getType()->getPointerAddressSpace();
5097 }
5098
5099 // Methods for support type inquiry through isa, cast, and dyn_cast:
5100 static bool classof(const Instruction *I) {
5101 return I->getOpcode() == IntToPtr;
5102 }
5103 static bool classof(const Value *V) {
5104 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5105 }
5106};
5107
5108//===----------------------------------------------------------------------===//
5109// PtrToIntInst Class
5110//===----------------------------------------------------------------------===//
5111
5112/// This class represents a cast from a pointer to an integer.
5113class PtrToIntInst : public CastInst {
5114protected:
5115 // Note: Instruction needs to be a friend here to call cloneImpl.
5116 friend class Instruction;
5117
5118 /// Clone an identical PtrToIntInst.
5119 PtrToIntInst *cloneImpl() const;
5120
5121public:
5122 /// Constructor with insert-before-instruction semantics
5123 PtrToIntInst(
5124 Value *S, ///< The value to be converted
5125 Type *Ty, ///< The type to convert to
5126 const Twine &NameStr = "", ///< A name for the new instruction
5127 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5128 );
5129
5130 /// Constructor with insert-at-end-of-block semantics
5131 PtrToIntInst(
5132 Value *S, ///< The value to be converted
5133 Type *Ty, ///< The type to convert to
5134 const Twine &NameStr, ///< A name for the new instruction
5135 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5136 );
5137
5138 /// Gets the pointer operand.
5139 Value *getPointerOperand() { return getOperand(0); }
5140 /// Gets the pointer operand.
5141 const Value *getPointerOperand() const { return getOperand(0); }
5142 /// Gets the operand index of the pointer operand.
5143 static unsigned getPointerOperandIndex() { return 0U; }
5144
5145 /// Returns the address space of the pointer operand.
5146 unsigned getPointerAddressSpace() const {
5147 return getPointerOperand()->getType()->getPointerAddressSpace();
5148 }
5149
5150 // Methods for support type inquiry through isa, cast, and dyn_cast:
5151 static bool classof(const Instruction *I) {
5152 return I->getOpcode() == PtrToInt;
5153 }
5154 static bool classof(const Value *V) {
5155 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5156 }
5157};
5158
5159//===----------------------------------------------------------------------===//
5160// BitCastInst Class
5161//===----------------------------------------------------------------------===//
5162
5163/// This class represents a no-op cast from one type to another.
5164class BitCastInst : public CastInst {
5165protected:
5166 // Note: Instruction needs to be a friend here to call cloneImpl.
5167 friend class Instruction;
5168
5169 /// Clone an identical BitCastInst.
5170 BitCastInst *cloneImpl() const;
5171
5172public:
5173 /// Constructor with insert-before-instruction semantics
5174 BitCastInst(
5175 Value *S, ///< The value to be casted
5176 Type *Ty, ///< The type to casted to
5177 const Twine &NameStr = "", ///< A name for the new instruction
5178 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5179 );
5180
5181 /// Constructor with insert-at-end-of-block semantics
5182 BitCastInst(
5183 Value *S, ///< The value to be casted
5184 Type *Ty, ///< The type to casted to
5185 const Twine &NameStr, ///< A name for the new instruction
5186 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5187 );
5188
5189 // Methods for support type inquiry through isa, cast, and dyn_cast:
5190 static bool classof(const Instruction *I) {
5191 return I->getOpcode() == BitCast;
5192 }
5193 static bool classof(const Value *V) {
5194 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5195 }
5196};
5197
5198//===----------------------------------------------------------------------===//
5199// AddrSpaceCastInst Class
5200//===----------------------------------------------------------------------===//
5201
5202/// This class represents a conversion between pointers from one address space
5203/// to another.
5204class AddrSpaceCastInst : public CastInst {
5205protected:
5206 // Note: Instruction needs to be a friend here to call cloneImpl.
5207 friend class Instruction;
5208
5209 /// Clone an identical AddrSpaceCastInst.
5210 AddrSpaceCastInst *cloneImpl() const;
5211
5212public:
5213 /// Constructor with insert-before-instruction semantics
5214 AddrSpaceCastInst(
5215 Value *S, ///< The value to be casted
5216 Type *Ty, ///< The type to casted to
5217 const Twine &NameStr = "", ///< A name for the new instruction
5218 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5219 );
5220
5221 /// Constructor with insert-at-end-of-block semantics
5222 AddrSpaceCastInst(
5223 Value *S, ///< The value to be casted
5224 Type *Ty, ///< The type to casted to
5225 const Twine &NameStr, ///< A name for the new instruction
5226 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5227 );
5228
5229 // Methods for support type inquiry through isa, cast, and dyn_cast:
5230 static bool classof(const Instruction *I) {
5231 return I->getOpcode() == AddrSpaceCast;
5232 }
5233 static bool classof(const Value *V) {
5234 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5235 }
5236
5237 /// Gets the pointer operand.
5238 Value *getPointerOperand() {
5239 return getOperand(0);
5240 }
5241
5242 /// Gets the pointer operand.
5243 const Value *getPointerOperand() const {
5244 return getOperand(0);
5245 }
5246
5247 /// Gets the operand index of the pointer operand.
5248 static unsigned getPointerOperandIndex() {
5249 return 0U;
5250 }
5251
5252 /// Returns the address space of the pointer operand.
5253 unsigned getSrcAddressSpace() const {
5254 return getPointerOperand()->getType()->getPointerAddressSpace();
5255 }
5256
5257 /// Returns the address space of the result.
5258 unsigned getDestAddressSpace() const {
5259 return getType()->getPointerAddressSpace();
5260 }
5261};
5262
5263/// A helper function that returns the pointer operand of a load or store
5264/// instruction. Returns nullptr if not load or store.
5265inline const Value *getLoadStorePointerOperand(const Value *V) {
5266 if (auto *Load = dyn_cast<LoadInst>(V))
5267 return Load->getPointerOperand();
5268 if (auto *Store = dyn_cast<StoreInst>(V))
5269 return Store->getPointerOperand();
5270 return nullptr;
5271}
5272inline Value *getLoadStorePointerOperand(Value *V) {
5273 return const_cast<Value *>(
5274 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5275}
5276
5277/// A helper function that returns the pointer operand of a load, store
5278/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5279inline const Value *getPointerOperand(const Value *V) {
5280 if (auto *Ptr = getLoadStorePointerOperand(V))
5281 return Ptr;
5282 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5283 return Gep->getPointerOperand();
5284 return nullptr;
5285}
5286inline Value *getPointerOperand(Value *V) {
5287 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5288}
5289
5290/// A helper function that returns the alignment of load or store instruction.
5291inline Align getLoadStoreAlignment(Value *I) {
5292 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0)
5293 "Expected Load or Store instruction")((void)0);
5294 if (auto *LI = dyn_cast<LoadInst>(I))
5295 return LI->getAlign();
5296 return cast<StoreInst>(I)->getAlign();
5297}
5298
5299/// A helper function that returns the address space of the pointer operand of
5300/// load or store instruction.
5301inline unsigned getLoadStoreAddressSpace(Value *I) {
5302 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0)
5303 "Expected Load or Store instruction")((void)0);
5304 if (auto *LI = dyn_cast<LoadInst>(I))
5305 return LI->getPointerAddressSpace();
5306 return cast<StoreInst>(I)->getPointerAddressSpace();
5307}
5308
5309/// A helper function that returns the type of a load or store instruction.
5310inline Type *getLoadStoreType(Value *I) {
5311 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0)
5312 "Expected Load or Store instruction")((void)0);
5313 if (auto *LI = dyn_cast<LoadInst>(I))
5314 return LI->getType();
5315 return cast<StoreInst>(I)->getValueOperand()->getType();
5316}
5317
5318//===----------------------------------------------------------------------===//
5319// FreezeInst Class
5320//===----------------------------------------------------------------------===//
5321
5322/// This class represents a freeze function that returns random concrete
5323/// value if an operand is either a poison value or an undef value
5324class FreezeInst : public UnaryInstruction {
5325protected:
5326 // Note: Instruction needs to be a friend here to call cloneImpl.
5327 friend class Instruction;
5328
5329 /// Clone an identical FreezeInst
5330 FreezeInst *cloneImpl() const;
5331
5332public:
5333 explicit FreezeInst(Value *S,
5334 const Twine &NameStr = "",
5335 Instruction *InsertBefore = nullptr);
5336 FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5337
5338 // Methods for support type inquiry through isa, cast, and dyn_cast:
5339 static inline bool classof(const Instruction *I) {
5340 return I->getOpcode() == Freeze;
5341 }
5342 static inline bool classof(const Value *V) {
5343 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5344 }
5345};
5346
5347} // end namespace llvm
5348
5349#endif // LLVM_IR_INSTRUCTIONS_H

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h

1//===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains types to represent alignments.
10// They are instrumented to guarantee some invariants are preserved and prevent
11// invalid manipulations.
12//
13// - Align represents an alignment in bytes, it is always set and always a valid
14// power of two, its minimum value is 1 which means no alignment requirements.
15//
16// - MaybeAlign is an optional type, it may be undefined or set. When it's set
17// you can get the underlying Align type by using the getValue() method.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_SUPPORT_ALIGNMENT_H_
22#define LLVM_SUPPORT_ALIGNMENT_H_
23
24#include "llvm/ADT/Optional.h"
25#include "llvm/Support/MathExtras.h"
26#include <cassert>
27#ifndef NDEBUG1
28#include <string>
29#endif // NDEBUG
30
31namespace llvm {
32
33#define ALIGN_CHECK_ISPOSITIVE(decl) \
34 assert(decl > 0 && (#decl " should be defined"))((void)0)
35
36/// This struct is a compact representation of a valid (non-zero power of two)
37/// alignment.
38/// It is suitable for use as static global constants.
39struct Align {
40private:
41 uint8_t ShiftValue = 0; /// The log2 of the required alignment.
42 /// ShiftValue is less than 64 by construction.
43
44 friend struct MaybeAlign;
45 friend unsigned Log2(Align);
46 friend bool operator==(Align Lhs, Align Rhs);
47 friend bool operator!=(Align Lhs, Align Rhs);
48 friend bool operator<=(Align Lhs, Align Rhs);
49 friend bool operator>=(Align Lhs, Align Rhs);
50 friend bool operator<(Align Lhs, Align Rhs);
51 friend bool operator>(Align Lhs, Align Rhs);
52 friend unsigned encode(struct MaybeAlign A);
53 friend struct MaybeAlign decodeMaybeAlign(unsigned Value);
54
55 /// A trivial type to allow construction of constexpr Align.
56 /// This is currently needed to workaround a bug in GCC 5.3 which prevents
57 /// definition of constexpr assign operators.
58 /// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic
59 /// FIXME: Remove this, make all assign operators constexpr and introduce user
60 /// defined literals when we don't have to support GCC 5.3 anymore.
61 /// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain
62 struct LogValue {
63 uint8_t Log;
64 };
65
66public:
67 /// Default is byte-aligned.
68 constexpr Align() = default;
69 /// Do not perform checks in case of copy/move construct/assign, because the
70 /// checks have been performed when building `Other`.
71 constexpr Align(const Align &Other) = default;
72 constexpr Align(Align &&Other) = default;
73 Align &operator=(const Align &Other) = default;
74 Align &operator=(Align &&Other) = default;
75
76 explicit Align(uint64_t Value) {
77 assert(Value > 0 && "Value must not be 0")((void)0);
78 assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2")((void)0);
79 ShiftValue = Log2_64(Value);
8
Calling 'Log2_64'
10
Returning from 'Log2_64'
11
The value 255 is assigned to field 'ShiftValue'
80 assert(ShiftValue < 64 && "Broken invariant")((void)0);
81 }
82
83 /// This is a hole in the type system and should not be abused.
84 /// Needed to interact with C for instance.
85 uint64_t value() const { return uint64_t(1) << ShiftValue; }
15
The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t'
86
87 /// Allow constructions of constexpr Align.
88 template <size_t kValue> constexpr static LogValue Constant() {
89 return LogValue{static_cast<uint8_t>(CTLog2<kValue>())};
90 }
91
92 /// Allow constructions of constexpr Align from types.
93 /// Compile time equivalent to Align(alignof(T)).
94 template <typename T> constexpr static LogValue Of() {
95 return Constant<std::alignment_of<T>::value>();
96 }
97
98 /// Constexpr constructor from LogValue type.
99 constexpr Align(LogValue CA) : ShiftValue(CA.Log) {}
100};
101
102/// Treats the value 0 as a 1, so Align is always at least 1.
103inline Align assumeAligned(uint64_t Value) {
104 return Value ? Align(Value) : Align();
105}
106
107/// This struct is a compact representation of a valid (power of two) or
108/// undefined (0) alignment.
109struct MaybeAlign : public llvm::Optional<Align> {
110private:
111 using UP = llvm::Optional<Align>;
112
113public:
114 /// Default is undefined.
115 MaybeAlign() = default;
116 /// Do not perform checks in case of copy/move construct/assign, because the
117 /// checks have been performed when building `Other`.
118 MaybeAlign(const MaybeAlign &Other) = default;
119 MaybeAlign &operator=(const MaybeAlign &Other) = default;
120 MaybeAlign(MaybeAlign &&Other) = default;
121 MaybeAlign &operator=(MaybeAlign &&Other) = default;
122
123 /// Use llvm::Optional<Align> constructor.
124 using UP::UP;
125
126 explicit MaybeAlign(uint64_t Value) {
127 assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&((void)0)
128 "Alignment is neither 0 nor a power of 2")((void)0);
129 if (Value)
130 emplace(Value);
131 }
132
133 /// For convenience, returns a valid alignment or 1 if undefined.
134 Align valueOrOne() const { return hasValue() ? getValue() : Align(); }
135};
136
137/// Checks that SizeInBytes is a multiple of the alignment.
138inline bool isAligned(Align Lhs, uint64_t SizeInBytes) {
139 return SizeInBytes % Lhs.value() == 0;
140}
141
142/// Checks that Addr is a multiple of the alignment.
143inline bool isAddrAligned(Align Lhs, const void *Addr) {
144 return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr));
145}
146
147/// Returns a multiple of A needed to store `Size` bytes.
148inline uint64_t alignTo(uint64_t Size, Align A) {
149 const uint64_t Value = A.value();
150 // The following line is equivalent to `(Size + Value - 1) / Value * Value`.
151
152 // The division followed by a multiplication can be thought of as a right
153 // shift followed by a left shift which zeros out the extra bits produced in
154 // the bump; `~(Value - 1)` is a mask where all those bits being zeroed out
155 // are just zero.
156
157 // Most compilers can generate this code but the pattern may be missed when
158 // multiple functions gets inlined.
159 return (Size + Value - 1) & ~(Value - 1U);
160}
161
162/// If non-zero \p Skew is specified, the return value will be a minimal integer
163/// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for
164/// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p
165/// Skew mod \p A'.
166///
167/// Examples:
168/// \code
169/// alignTo(5, Align(8), 7) = 7
170/// alignTo(17, Align(8), 1) = 17
171/// alignTo(~0LL, Align(8), 3) = 3
172/// \endcode
173inline uint64_t alignTo(uint64_t Size, Align A, uint64_t Skew) {
174 const uint64_t Value = A.value();
175 Skew %= Value;
176 return ((Size + Value - 1 - Skew) & ~(Value - 1U)) + Skew;
177}
178
179/// Returns a multiple of A needed to store `Size` bytes.
180/// Returns `Size` if current alignment is undefined.
181inline uint64_t alignTo(uint64_t Size, MaybeAlign A) {
182 return A ? alignTo(Size, A.getValue()) : Size;
183}
184
185/// Aligns `Addr` to `Alignment` bytes, rounding up.
186inline uintptr_t alignAddr(const void *Addr, Align Alignment) {
187 uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr);
188 assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=((void)0)
189 ArithAddr &&((void)0)
190 "Overflow")((void)0);
191 return alignTo(ArithAddr, Alignment);
192}
193
194/// Returns the offset to the next integer (mod 2**64) that is greater than
195/// or equal to \p Value and is a multiple of \p Align.
196inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) {
197 return alignTo(Value, Alignment) - Value;
198}
199
200/// Returns the necessary adjustment for aligning `Addr` to `Alignment`
201/// bytes, rounding up.
202inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) {
203 return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment);
204}
205
206/// Returns the log2 of the alignment.
207inline unsigned Log2(Align A) { return A.ShiftValue; }
208
209/// Returns the alignment that satisfies both alignments.
210/// Same semantic as MinAlign.
211inline Align commonAlignment(Align A, Align B) { return std::min(A, B); }
212
213/// Returns the alignment that satisfies both alignments.
214/// Same semantic as MinAlign.
215inline Align commonAlignment(Align A, uint64_t Offset) {
216 return Align(MinAlign(A.value(), Offset));
217}
218
219/// Returns the alignment that satisfies both alignments.
220/// Same semantic as MinAlign.
221inline MaybeAlign commonAlignment(MaybeAlign A, MaybeAlign B) {
222 return A && B ? commonAlignment(*A, *B) : A ? A : B;
223}
224
225/// Returns the alignment that satisfies both alignments.
226/// Same semantic as MinAlign.
227inline MaybeAlign commonAlignment(MaybeAlign A, uint64_t Offset) {
228 return MaybeAlign(MinAlign((*A).value(), Offset));
229}
230
231/// Returns a representation of the alignment that encodes undefined as 0.
232inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; }
233
234/// Dual operation of the encode function above.
235inline MaybeAlign decodeMaybeAlign(unsigned Value) {
236 if (Value == 0)
237 return MaybeAlign();
238 Align Out;
239 Out.ShiftValue = Value - 1;
240 return Out;
241}
242
243/// Returns a representation of the alignment, the encoded value is positive by
244/// definition.
245inline unsigned encode(Align A) { return encode(MaybeAlign(A)); }
246
247/// Comparisons between Align and scalars. Rhs must be positive.
248inline bool operator==(Align Lhs, uint64_t Rhs) {
249 ALIGN_CHECK_ISPOSITIVE(Rhs);
250 return Lhs.value() == Rhs;
251}
252inline bool operator!=(Align Lhs, uint64_t Rhs) {
253 ALIGN_CHECK_ISPOSITIVE(Rhs);
254 return Lhs.value() != Rhs;
255}
256inline bool operator<=(Align Lhs, uint64_t Rhs) {
257 ALIGN_CHECK_ISPOSITIVE(Rhs);
258 return Lhs.value() <= Rhs;
259}
260inline bool operator>=(Align Lhs, uint64_t Rhs) {
261 ALIGN_CHECK_ISPOSITIVE(Rhs);
262 return Lhs.value() >= Rhs;
263}
264inline bool operator<(Align Lhs, uint64_t Rhs) {
265 ALIGN_CHECK_ISPOSITIVE(Rhs);
266 return Lhs.value() < Rhs;
267}
268inline bool operator>(Align Lhs, uint64_t Rhs) {
269 ALIGN_CHECK_ISPOSITIVE(Rhs);
270 return Lhs.value() > Rhs;
271}
272
273/// Comparisons between MaybeAlign and scalars.
274inline bool operator==(MaybeAlign Lhs, uint64_t Rhs) {
275 return Lhs ? (*Lhs).value() == Rhs : Rhs == 0;
276}
277inline bool operator!=(MaybeAlign Lhs, uint64_t Rhs) {
278 return Lhs ? (*Lhs).value() != Rhs : Rhs != 0;
279}
280
281/// Comparisons operators between Align.
282inline bool operator==(Align Lhs, Align Rhs) {
283 return Lhs.ShiftValue == Rhs.ShiftValue;
284}
285inline bool operator!=(Align Lhs, Align Rhs) {
286 return Lhs.ShiftValue != Rhs.ShiftValue;
287}
288inline bool operator<=(Align Lhs, Align Rhs) {
289 return Lhs.ShiftValue <= Rhs.ShiftValue;
290}
291inline bool operator>=(Align Lhs, Align Rhs) {
292 return Lhs.ShiftValue >= Rhs.ShiftValue;
293}
294inline bool operator<(Align Lhs, Align Rhs) {
295 return Lhs.ShiftValue < Rhs.ShiftValue;
296}
297inline bool operator>(Align Lhs, Align Rhs) {
298 return Lhs.ShiftValue > Rhs.ShiftValue;
299}
300
301// Don't allow relational comparisons with MaybeAlign.
302bool operator<=(Align Lhs, MaybeAlign Rhs) = delete;
303bool operator>=(Align Lhs, MaybeAlign Rhs) = delete;
304bool operator<(Align Lhs, MaybeAlign Rhs) = delete;
305bool operator>(Align Lhs, MaybeAlign Rhs) = delete;
306
307bool operator<=(MaybeAlign Lhs, Align Rhs) = delete;
308bool operator>=(MaybeAlign Lhs, Align Rhs) = delete;
309bool operator<(MaybeAlign Lhs, Align Rhs) = delete;
310bool operator>(MaybeAlign Lhs, Align Rhs) = delete;
311
312bool operator<=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
313bool operator>=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
314bool operator<(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
315bool operator>(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
316
317inline Align operator*(Align Lhs, uint64_t Rhs) {
318 assert(Rhs > 0 && "Rhs must be positive")((void)0);
319 return Align(Lhs.value() * Rhs);
320}
321
322inline MaybeAlign operator*(MaybeAlign Lhs, uint64_t Rhs) {
323 assert(Rhs > 0 && "Rhs must be positive")((void)0);
324 return Lhs ? Lhs.getValue() * Rhs : MaybeAlign();
325}
326
327inline Align operator/(Align Lhs, uint64_t Divisor) {
328 assert(llvm::isPowerOf2_64(Divisor) &&((void)0)
329 "Divisor must be positive and a power of 2")((void)0);
330 assert(Lhs != 1 && "Can't halve byte alignment")((void)0);
331 return Align(Lhs.value() / Divisor);
332}
333
334inline MaybeAlign operator/(MaybeAlign Lhs, uint64_t Divisor) {
335 assert(llvm::isPowerOf2_64(Divisor) &&((void)0)
336 "Divisor must be positive and a power of 2")((void)0);
337 return Lhs ? Lhs.getValue() / Divisor : MaybeAlign();
338}
339
340inline Align max(MaybeAlign Lhs, Align Rhs) {
341 return Lhs && *Lhs > Rhs ? *Lhs : Rhs;
342}
343
344inline Align max(Align Lhs, MaybeAlign Rhs) {
345 return Rhs && *Rhs > Lhs ? *Rhs : Lhs;
346}
347
348#ifndef NDEBUG1
349// For usage in LLVM_DEBUG macros.
350inline std::string DebugStr(const Align &A) {
351 return std::to_string(A.value());
352}
353// For usage in LLVM_DEBUG macros.
354inline std::string DebugStr(const MaybeAlign &MA) {
355 if (MA)
356 return std::to_string(MA->value());
357 return "None";
358}
359#endif // NDEBUG
360
361#undef ALIGN_CHECK_ISPOSITIVE
362
363} // namespace llvm
364
365#endif // LLVM_SUPPORT_ALIGNMENT_H_

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/MathExtras.h

1//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains some functions that are useful for math stuff.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_MATHEXTRAS_H
14#define LLVM_SUPPORT_MATHEXTRAS_H
15
16#include "llvm/Support/Compiler.h"
17#include <cassert>
18#include <climits>
19#include <cmath>
20#include <cstdint>
21#include <cstring>
22#include <limits>
23#include <type_traits>
24
25#ifdef __ANDROID_NDK__
26#include <android/api-level.h>
27#endif
28
29#ifdef _MSC_VER
30// Declare these intrinsics manually rather including intrin.h. It's very
31// expensive, and MathExtras.h is popular.
32// #include <intrin.h>
33extern "C" {
34unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
35unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
36unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
37unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
38}
39#endif
40
41namespace llvm {
42
43/// The behavior an operation has on an input of 0.
44enum ZeroBehavior {
45 /// The returned value is undefined.
46 ZB_Undefined,
47 /// The returned value is numeric_limits<T>::max()
48 ZB_Max,
49 /// The returned value is numeric_limits<T>::digits
50 ZB_Width
51};
52
53/// Mathematical constants.
54namespace numbers {
55// TODO: Track C++20 std::numbers.
56// TODO: Favor using the hexadecimal FP constants (requires C++17).
57constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113
58 egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620
59 ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162
60 ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392
61 log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0)
62 log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2)
63 pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796
64 inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541
65 sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161
66 inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197
67 sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219
68 inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1)
69 sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194
70 inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1)
71 phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622
72constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113
73 egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620
74 ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162
75 ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392
76 log2ef = 1.44269504F, // (0x1.715476P+0)
77 log10ef = .434294482F, // (0x1.bcb7b2P-2)
78 pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796
79 inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541
80 sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161
81 inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197
82 sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193
83 inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1)
84 sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194
85 inv_sqrt3f = .577350269F, // (0x1.279a74P-1)
86 phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622
87} // namespace numbers
88
89namespace detail {
90template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
91 static unsigned count(T Val, ZeroBehavior) {
92 if (!Val)
93 return std::numeric_limits<T>::digits;
94 if (Val & 0x1)
95 return 0;
96
97 // Bisection method.
98 unsigned ZeroBits = 0;
99 T Shift = std::numeric_limits<T>::digits >> 1;
100 T Mask = std::numeric_limits<T>::max() >> Shift;
101 while (Shift) {
102 if ((Val & Mask) == 0) {
103 Val >>= Shift;
104 ZeroBits |= Shift;
105 }
106 Shift >>= 1;
107 Mask >>= Shift;
108 }
109 return ZeroBits;
110 }
111};
112
113#if defined(__GNUC__4) || defined(_MSC_VER)
114template <typename T> struct TrailingZerosCounter<T, 4> {
115 static unsigned count(T Val, ZeroBehavior ZB) {
116 if (ZB != ZB_Undefined && Val == 0)
117 return 32;
118
119#if __has_builtin(__builtin_ctz)1 || defined(__GNUC__4)
120 return __builtin_ctz(Val);
121#elif defined(_MSC_VER)
122 unsigned long Index;
123 _BitScanForward(&Index, Val);
124 return Index;
125#endif
126 }
127};
128
129#if !defined(_MSC_VER) || defined(_M_X64)
130template <typename T> struct TrailingZerosCounter<T, 8> {
131 static unsigned count(T Val, ZeroBehavior ZB) {
132 if (ZB != ZB_Undefined && Val == 0)
133 return 64;
134
135#if __has_builtin(__builtin_ctzll)1 || defined(__GNUC__4)
136 return __builtin_ctzll(Val);
137#elif defined(_MSC_VER)
138 unsigned long Index;
139 _BitScanForward64(&Index, Val);
140 return Index;
141#endif
142 }
143};
144#endif
145#endif
146} // namespace detail
147
148/// Count number of 0's from the least significant bit to the most
149/// stopping at the first 1.
150///
151/// Only unsigned integral types are allowed.
152///
153/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
154/// valid arguments.
155template <typename T>
156unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
157 static_assert(std::numeric_limits<T>::is_integer &&
158 !std::numeric_limits<T>::is_signed,
159 "Only unsigned integral types are allowed.");
160 return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
161}
162
163namespace detail {
164template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
165 static unsigned count(T Val, ZeroBehavior) {
166 if (!Val)
167 return std::numeric_limits<T>::digits;
168
169 // Bisection method.
170 unsigned ZeroBits = 0;
171 for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
172 T Tmp = Val >> Shift;
173 if (Tmp)
174 Val = Tmp;
175 else
176 ZeroBits |= Shift;
177 }
178 return ZeroBits;
179 }
180};
181
182#if defined(__GNUC__4) || defined(_MSC_VER)
183template <typename T> struct LeadingZerosCounter<T, 4> {
184 static unsigned count(T Val, ZeroBehavior ZB) {
185 if (ZB != ZB_Undefined && Val == 0)
186 return 32;
187
188#if __has_builtin(__builtin_clz)1 || defined(__GNUC__4)
189 return __builtin_clz(Val);
190#elif defined(_MSC_VER)
191 unsigned long Index;
192 _BitScanReverse(&Index, Val);
193 return Index ^ 31;
194#endif
195 }
196};
197
198#if !defined(_MSC_VER) || defined(_M_X64)
199template <typename T> struct LeadingZerosCounter<T, 8> {
200 static unsigned count(T Val, ZeroBehavior ZB) {
201 if (ZB != ZB_Undefined && Val == 0)
202 return 64;
203
204#if __has_builtin(__builtin_clzll)1 || defined(__GNUC__4)
205 return __builtin_clzll(Val);
206#elif defined(_MSC_VER)
207 unsigned long Index;
208 _BitScanReverse64(&Index, Val);
209 return Index ^ 63;
210#endif
211 }
212};
213#endif
214#endif
215} // namespace detail
216
217/// Count number of 0's from the most significant bit to the least
218/// stopping at the first 1.
219///
220/// Only unsigned integral types are allowed.
221///
222/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
223/// valid arguments.
224template <typename T>
225unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
226 static_assert(std::numeric_limits<T>::is_integer &&
227 !std::numeric_limits<T>::is_signed,
228 "Only unsigned integral types are allowed.");
229 return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
230}
231
232/// Get the index of the first set bit starting from the least
233/// significant bit.
234///
235/// Only unsigned integral types are allowed.
236///
237/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
238/// valid arguments.
239template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
240 if (ZB == ZB_Max && Val == 0)
241 return std::numeric_limits<T>::max();
242
243 return countTrailingZeros(Val, ZB_Undefined);
244}
245
246/// Create a bitmask with the N right-most bits set to 1, and all other
247/// bits set to 0. Only unsigned types are allowed.
248template <typename T> T maskTrailingOnes(unsigned N) {
249 static_assert(std::is_unsigned<T>::value, "Invalid type!");
250 const unsigned Bits = CHAR_BIT8 * sizeof(T);
251 assert(N <= Bits && "Invalid bit index")((void)0);
252 return N == 0 ? 0 : (T(-1) >> (Bits - N));
253}
254
255/// Create a bitmask with the N left-most bits set to 1, and all other
256/// bits set to 0. Only unsigned types are allowed.
257template <typename T> T maskLeadingOnes(unsigned N) {
258 return ~maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
259}
260
261/// Create a bitmask with the N right-most bits set to 0, and all other
262/// bits set to 1. Only unsigned types are allowed.
263template <typename T> T maskTrailingZeros(unsigned N) {
264 return maskLeadingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
265}
266
267/// Create a bitmask with the N left-most bits set to 0, and all other
268/// bits set to 1. Only unsigned types are allowed.
269template <typename T> T maskLeadingZeros(unsigned N) {
270 return maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
271}
272
273/// Get the index of the last set bit starting from the least
274/// significant bit.
275///
276/// Only unsigned integral types are allowed.
277///
278/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
279/// valid arguments.
280template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
281 if (ZB == ZB_Max && Val == 0)
282 return std::numeric_limits<T>::max();
283
284 // Use ^ instead of - because both gcc and llvm can remove the associated ^
285 // in the __builtin_clz intrinsic on x86.
286 return countLeadingZeros(Val, ZB_Undefined) ^
287 (std::numeric_limits<T>::digits - 1);
288}
289
290/// Macro compressed bit reversal table for 256 bits.
291///
292/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
293static const unsigned char BitReverseTable256[256] = {
294#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
295#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
296#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
297 R6(0), R6(2), R6(1), R6(3)
298#undef R2
299#undef R4
300#undef R6
301};
302
303/// Reverse the bits in \p Val.
304template <typename T>
305T reverseBits(T Val) {
306 unsigned char in[sizeof(Val)];
307 unsigned char out[sizeof(Val)];
308 std::memcpy(in, &Val, sizeof(Val));
309 for (unsigned i = 0; i < sizeof(Val); ++i)
310 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
311 std::memcpy(&Val, out, sizeof(Val));
312 return Val;
313}
314
315#if __has_builtin(__builtin_bitreverse8)1
316template<>
317inline uint8_t reverseBits<uint8_t>(uint8_t Val) {
318 return __builtin_bitreverse8(Val);
319}
320#endif
321
322#if __has_builtin(__builtin_bitreverse16)1
323template<>
324inline uint16_t reverseBits<uint16_t>(uint16_t Val) {
325 return __builtin_bitreverse16(Val);
326}
327#endif
328
329#if __has_builtin(__builtin_bitreverse32)1
330template<>
331inline uint32_t reverseBits<uint32_t>(uint32_t Val) {
332 return __builtin_bitreverse32(Val);
333}
334#endif
335
336#if __has_builtin(__builtin_bitreverse64)1
337template<>
338inline uint64_t reverseBits<uint64_t>(uint64_t Val) {
339 return __builtin_bitreverse64(Val);
340}
341#endif
342
343// NOTE: The following support functions use the _32/_64 extensions instead of
344// type overloading so that signed and unsigned integers can be used without
345// ambiguity.
346
347/// Return the high 32 bits of a 64 bit value.
348constexpr inline uint32_t Hi_32(uint64_t Value) {
349 return static_cast<uint32_t>(Value >> 32);
350}
351
352/// Return the low 32 bits of a 64 bit value.
353constexpr inline uint32_t Lo_32(uint64_t Value) {
354 return static_cast<uint32_t>(Value);
355}
356
357/// Make a 64-bit integer from a high / low pair of 32-bit integers.
358constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
359 return ((uint64_t)High << 32) | (uint64_t)Low;
360}
361
362/// Checks if an integer fits into the given bit width.
363template <unsigned N> constexpr inline bool isInt(int64_t x) {
364 return N >= 64 || (-(INT64_C(1)1LL<<(N-1)) <= x && x < (INT64_C(1)1LL<<(N-1)));
365}
366// Template specializations to get better code for common cases.
367template <> constexpr inline bool isInt<8>(int64_t x) {
368 return static_cast<int8_t>(x) == x;
369}
370template <> constexpr inline bool isInt<16>(int64_t x) {
371 return static_cast<int16_t>(x) == x;
372}
373template <> constexpr inline bool isInt<32>(int64_t x) {
374 return static_cast<int32_t>(x) == x;
375}
376
377/// Checks if a signed integer is an N bit number shifted left by S.
378template <unsigned N, unsigned S>
379constexpr inline bool isShiftedInt(int64_t x) {
380 static_assert(
381 N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
382 static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
383 return isInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0);
384}
385
386/// Checks if an unsigned integer fits into the given bit width.
387///
388/// This is written as two functions rather than as simply
389///
390/// return N >= 64 || X < (UINT64_C(1) << N);
391///
392/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
393/// left too many places.
394template <unsigned N>
395constexpr inline std::enable_if_t<(N < 64), bool> isUInt(uint64_t X) {
396 static_assert(N > 0, "isUInt<0> doesn't make sense");
397 return X < (UINT64_C(1)1ULL << (N));
398}
399template <unsigned N>
400constexpr inline std::enable_if_t<N >= 64, bool> isUInt(uint64_t) {
401 return true;
402}
403
404// Template specializations to get better code for common cases.
405template <> constexpr inline bool isUInt<8>(uint64_t x) {
406 return static_cast<uint8_t>(x) == x;
407}
408template <> constexpr inline bool isUInt<16>(uint64_t x) {
409 return static_cast<uint16_t>(x) == x;
410}
411template <> constexpr inline bool isUInt<32>(uint64_t x) {
412 return static_cast<uint32_t>(x) == x;
413}
414
415/// Checks if a unsigned integer is an N bit number shifted left by S.
416template <unsigned N, unsigned S>
417constexpr inline bool isShiftedUInt(uint64_t x) {
418 static_assert(
419 N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
420 static_assert(N + S <= 64,
421 "isShiftedUInt<N, S> with N + S > 64 is too wide.");
422 // Per the two static_asserts above, S must be strictly less than 64. So
423 // 1 << S is not undefined behavior.
424 return isUInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0);
425}
426
427/// Gets the maximum value for a N-bit unsigned integer.
428inline uint64_t maxUIntN(uint64_t N) {
429 assert(N > 0 && N <= 64 && "integer width out of range")((void)0);
430
431 // uint64_t(1) << 64 is undefined behavior, so we can't do
432 // (uint64_t(1) << N) - 1
433 // without checking first that N != 64. But this works and doesn't have a
434 // branch.
435 return UINT64_MAX0xffffffffffffffffULL >> (64 - N);
436}
437
438/// Gets the minimum value for a N-bit signed integer.
439inline int64_t minIntN(int64_t N) {
440 assert(N > 0 && N <= 64 && "integer width out of range")((void)0);
441
442 return UINT64_C(1)1ULL + ~(UINT64_C(1)1ULL << (N - 1));
443}
444
445/// Gets the maximum value for a N-bit signed integer.
446inline int64_t maxIntN(int64_t N) {
447 assert(N > 0 && N <= 64 && "integer width out of range")((void)0);
448
449 // This relies on two's complement wraparound when N == 64, so we convert to
450 // int64_t only at the very end to avoid UB.
451 return (UINT64_C(1)1ULL << (N - 1)) - 1;
452}
453
454/// Checks if an unsigned integer fits into the given (dynamic) bit width.
455inline bool isUIntN(unsigned N, uint64_t x) {
456 return N >= 64 || x <= maxUIntN(N);
457}
458
459/// Checks if an signed integer fits into the given (dynamic) bit width.
460inline bool isIntN(unsigned N, int64_t x) {
461 return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
462}
463
464/// Return true if the argument is a non-empty sequence of ones starting at the
465/// least significant bit with the remainder zero (32 bit version).
466/// Ex. isMask_32(0x0000FFFFU) == true.
467constexpr inline bool isMask_32(uint32_t Value) {
468 return Value && ((Value + 1) & Value) == 0;
469}
470
471/// Return true if the argument is a non-empty sequence of ones starting at the
472/// least significant bit with the remainder zero (64 bit version).
473constexpr inline bool isMask_64(uint64_t Value) {
474 return Value && ((Value + 1) & Value) == 0;
475}
476
477/// Return true if the argument contains a non-empty sequence of ones with the
478/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
479constexpr inline bool isShiftedMask_32(uint32_t Value) {
480 return Value && isMask_32((Value - 1) | Value);
481}
482
483/// Return true if the argument contains a non-empty sequence of ones with the
484/// remainder zero (64 bit version.)
485constexpr inline bool isShiftedMask_64(uint64_t Value) {
486 return Value && isMask_64((Value - 1) | Value);
487}
488
489/// Return true if the argument is a power of two > 0.
490/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
491constexpr inline bool isPowerOf2_32(uint32_t Value) {
492 return Value && !(Value & (Value - 1));
493}
494
495/// Return true if the argument is a power of two > 0 (64 bit edition.)
496constexpr inline bool isPowerOf2_64(uint64_t Value) {
497 return Value && !(Value & (Value - 1));
498}
499
500/// Count the number of ones from the most significant bit to the first
501/// zero bit.
502///
503/// Ex. countLeadingOnes(0xFF0FFF00) == 8.
504/// Only unsigned integral types are allowed.
505///
506/// \param ZB the behavior on an input of all ones. Only ZB_Width and
507/// ZB_Undefined are valid arguments.
508template <typename T>
509unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
510 static_assert(std::numeric_limits<T>::is_integer &&
511 !std::numeric_limits<T>::is_signed,
512 "Only unsigned integral types are allowed.");
513 return countLeadingZeros<T>(~Value, ZB);
514}
515
516/// Count the number of ones from the least significant bit to the first
517/// zero bit.
518///
519/// Ex. countTrailingOnes(0x00FF00FF) == 8.
520/// Only unsigned integral types are allowed.
521///
522/// \param ZB the behavior on an input of all ones. Only ZB_Width and
523/// ZB_Undefined are valid arguments.
524template <typename T>
525unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
526 static_assert(std::numeric_limits<T>::is_integer &&
527 !std::numeric_limits<T>::is_signed,
528 "Only unsigned integral types are allowed.");
529 return countTrailingZeros<T>(~Value, ZB);
530}
531
532namespace detail {
533template <typename T, std::size_t SizeOfT> struct PopulationCounter {
534 static unsigned count(T Value) {
535 // Generic version, forward to 32 bits.
536 static_assert(SizeOfT <= 4, "Not implemented!");
537#if defined(__GNUC__4)
538 return __builtin_popcount(Value);
539#else
540 uint32_t v = Value;
541 v = v - ((v >> 1) & 0x55555555);
542 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
543 return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
544#endif
545 }
546};
547
548template <typename T> struct PopulationCounter<T, 8> {
549 static unsigned count(T Value) {
550#if defined(__GNUC__4)
551 return __builtin_popcountll(Value);
552#else
553 uint64_t v = Value;
554 v = v - ((v >> 1) & 0x5555555555555555ULL);
555 v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
556 v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
557 return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
558#endif
559 }
560};
561} // namespace detail
562
563/// Count the number of set bits in a value.
564/// Ex. countPopulation(0xF000F000) = 8
565/// Returns 0 if the word is zero.
566template <typename T>
567inline unsigned countPopulation(T Value) {
568 static_assert(std::numeric_limits<T>::is_integer &&
569 !std::numeric_limits<T>::is_signed,
570 "Only unsigned integral types are allowed.");
571 return detail::PopulationCounter<T, sizeof(T)>::count(Value);
572}
573
574/// Compile time Log2.
575/// Valid only for positive powers of two.
576template <size_t kValue> constexpr inline size_t CTLog2() {
577 static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue),
578 "Value is not a valid power of 2");
579 return 1 + CTLog2<kValue / 2>();
580}
581
582template <> constexpr inline size_t CTLog2<1>() { return 0; }
583
584/// Return the log base 2 of the specified value.
585inline double Log2(double Value) {
586#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
587 return __builtin_log(Value) / __builtin_log(2.0);
588#else
589 return log2(Value);
590#endif
591}
592
593/// Return the floor log base 2 of the specified value, -1 if the value is zero.
594/// (32 bit edition.)
595/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
596inline unsigned Log2_32(uint32_t Value) {
597 return 31 - countLeadingZeros(Value);
598}
599
600/// Return the floor log base 2 of the specified value, -1 if the value is zero.
601/// (64 bit edition.)
602inline unsigned Log2_64(uint64_t Value) {
603 return 63 - countLeadingZeros(Value);
9
Returning the value 4294967295
604}
605
606/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
607/// (32 bit edition).
608/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
609inline unsigned Log2_32_Ceil(uint32_t Value) {
610 return 32 - countLeadingZeros(Value - 1);
611}
612
613/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
614/// (64 bit edition.)
615inline unsigned Log2_64_Ceil(uint64_t Value) {
616 return 64 - countLeadingZeros(Value - 1);
617}
618
619/// Return the greatest common divisor of the values using Euclid's algorithm.
620template <typename T>
621inline T greatestCommonDivisor(T A, T B) {
622 while (B) {
623 T Tmp = B;
624 B = A % B;
625 A = Tmp;
626 }
627 return A;
628}
629
630inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
631 return greatestCommonDivisor<uint64_t>(A, B);
632}
633
634/// This function takes a 64-bit integer and returns the bit equivalent double.
635inline double BitsToDouble(uint64_t Bits) {
636 double D;
637 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
638 memcpy(&D, &Bits, sizeof(Bits));
639 return D;
640}
641
642/// This function takes a 32-bit integer and returns the bit equivalent float.
643inline float BitsToFloat(uint32_t Bits) {
644 float F;
645 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
646 memcpy(&F, &Bits, sizeof(Bits));
647 return F;
648}
649
650/// This function takes a double and returns the bit equivalent 64-bit integer.
651/// Note that copying doubles around changes the bits of NaNs on some hosts,
652/// notably x86, so this routine cannot be used if these bits are needed.
653inline uint64_t DoubleToBits(double Double) {
654 uint64_t Bits;
655 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
656 memcpy(&Bits, &Double, sizeof(Double));
657 return Bits;
658}
659
660/// This function takes a float and returns the bit equivalent 32-bit integer.
661/// Note that copying floats around changes the bits of NaNs on some hosts,
662/// notably x86, so this routine cannot be used if these bits are needed.
663inline uint32_t FloatToBits(float Float) {
664 uint32_t Bits;
665 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
666 memcpy(&Bits, &Float, sizeof(Float));
667 return Bits;
668}
669
670/// A and B are either alignments or offsets. Return the minimum alignment that
671/// may be assumed after adding the two together.
672constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
673 // The largest power of 2 that divides both A and B.
674 //
675 // Replace "-Value" by "1+~Value" in the following commented code to avoid
676 // MSVC warning C4146
677 // return (A | B) & -(A | B);
678 return (A | B) & (1 + ~(A | B));
679}
680
681/// Returns the next power of two (in 64-bits) that is strictly greater than A.
682/// Returns zero on overflow.
683inline uint64_t NextPowerOf2(uint64_t A) {
684 A |= (A >> 1);
685 A |= (A >> 2);
686 A |= (A >> 4);
687 A |= (A >> 8);
688 A |= (A >> 16);
689 A |= (A >> 32);
690 return A + 1;
691}
692
693/// Returns the power of two which is less than or equal to the given value.
694/// Essentially, it is a floor operation across the domain of powers of two.
695inline uint64_t PowerOf2Floor(uint64_t A) {
696 if (!A) return 0;
697 return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
698}
699
700/// Returns the power of two which is greater than or equal to the given value.
701/// Essentially, it is a ceil operation across the domain of powers of two.
702inline uint64_t PowerOf2Ceil(uint64_t A) {
703 if (!A)
704 return 0;
705 return NextPowerOf2(A - 1);
706}
707
708/// Returns the next integer (mod 2**64) that is greater than or equal to
709/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
710///
711/// If non-zero \p Skew is specified, the return value will be a minimal
712/// integer that is greater than or equal to \p Value and equal to
713/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
714/// \p Align, its value is adjusted to '\p Skew mod \p Align'.
715///
716/// Examples:
717/// \code
718/// alignTo(5, 8) = 8
719/// alignTo(17, 8) = 24
720/// alignTo(~0LL, 8) = 0
721/// alignTo(321, 255) = 510
722///
723/// alignTo(5, 8, 7) = 7
724/// alignTo(17, 8, 1) = 17
725/// alignTo(~0LL, 8, 3) = 3
726/// alignTo(321, 255, 42) = 552
727/// \endcode
728inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
729 assert(Align != 0u && "Align can't be 0.")((void)0);
730 Skew %= Align;
731 return (Value + Align - 1 - Skew) / Align * Align + Skew;
732}
733
734/// Returns the next integer (mod 2**64) that is greater than or equal to
735/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
736template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
737 static_assert(Align != 0u, "Align must be non-zero");
738 return (Value + Align - 1) / Align * Align;
739}
740
741/// Returns the integer ceil(Numerator / Denominator).
742inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
743 return alignTo(Numerator, Denominator) / Denominator;
744}
745
746/// Returns the integer nearest(Numerator / Denominator).
747inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) {
748 return (Numerator + (Denominator / 2)) / Denominator;
749}
750
751/// Returns the largest uint64_t less than or equal to \p Value and is
752/// \p Skew mod \p Align. \p Align must be non-zero
753inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
754 assert(Align != 0u && "Align can't be 0.")((void)0);
755 Skew %= Align;
756 return (Value - Skew) / Align * Align + Skew;
757}
758
759/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
760/// Requires 0 < B <= 32.
761template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
762 static_assert(B > 0, "Bit width can't be 0.");
763 static_assert(B <= 32, "Bit width out of range.");
764 return int32_t(X << (32 - B)) >> (32 - B);
765}
766
767/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
768/// Requires 0 < B <= 32.
769inline int32_t SignExtend32(uint32_t X, unsigned B) {
770 assert(B > 0 && "Bit width can't be 0.")((void)0);
771 assert(B <= 32 && "Bit width out of range.")((void)0);
772 return int32_t(X << (32 - B)) >> (32 - B);
773}
774
775/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
776/// Requires 0 < B <= 64.
777template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
778 static_assert(B > 0, "Bit width can't be 0.");
779 static_assert(B <= 64, "Bit width out of range.");
780 return int64_t(x << (64 - B)) >> (64 - B);
781}
782
783/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
784/// Requires 0 < B <= 64.
785inline int64_t SignExtend64(uint64_t X, unsigned B) {
786 assert(B > 0 && "Bit width can't be 0.")((void)0);
787 assert(B <= 64 && "Bit width out of range.")((void)0);
788 return int64_t(X << (64 - B)) >> (64 - B);
789}
790
791/// Subtract two unsigned integers, X and Y, of type T and return the absolute
792/// value of the result.
793template <typename T>
794std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) {
795 return X > Y ? (X - Y) : (Y - X);
796}
797
798/// Add two unsigned integers, X and Y, of type T. Clamp the result to the
799/// maximum representable value of T on overflow. ResultOverflowed indicates if
800/// the result is larger than the maximum representable value of type T.
801template <typename T>
802std::enable_if_t<std::is_unsigned<T>::value, T>
803SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
804 bool Dummy;
805 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
806 // Hacker's Delight, p. 29
807 T Z = X + Y;
808 Overflowed = (Z < X || Z < Y);
809 if (Overflowed)
810 return std::numeric_limits<T>::max();
811 else
812 return Z;
813}
814
815/// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
816/// maximum representable value of T on overflow. ResultOverflowed indicates if
817/// the result is larger than the maximum representable value of type T.
818template <typename T>
819std::enable_if_t<std::is_unsigned<T>::value, T>
820SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
821 bool Dummy;
822 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
823
824 // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
825 // because it fails for uint16_t (where multiplication can have undefined
826 // behavior due to promotion to int), and requires a division in addition
827 // to the multiplication.
828
829 Overflowed = false;
830
831 // Log2(Z) would be either Log2Z or Log2Z + 1.
832 // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
833 // will necessarily be less than Log2Max as desired.
834 int Log2Z = Log2_64(X) + Log2_64(Y);
835 const T Max = std::numeric_limits<T>::max();
836 int Log2Max = Log2_64(Max);
837 if (Log2Z < Log2Max) {
838 return X * Y;
839 }
840 if (Log2Z > Log2Max) {
841 Overflowed = true;
842 return Max;
843 }
844
845 // We're going to use the top bit, and maybe overflow one
846 // bit past it. Multiply all but the bottom bit then add
847 // that on at the end.
848 T Z = (X >> 1) * Y;
849 if (Z & ~(Max >> 1)) {
850 Overflowed = true;
851 return Max;
852 }
853 Z <<= 1;
854 if (X & 1)
855 return SaturatingAdd(Z, Y, ResultOverflowed);
856
857 return Z;
858}
859
860/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
861/// the product. Clamp the result to the maximum representable value of T on
862/// overflow. ResultOverflowed indicates if the result is larger than the
863/// maximum representable value of type T.
864template <typename T>
865std::enable_if_t<std::is_unsigned<T>::value, T>
866SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
867 bool Dummy;
868 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
869
870 T Product = SaturatingMultiply(X, Y, &Overflowed);
871 if (Overflowed)
872 return Product;
873
874 return SaturatingAdd(A, Product, &Overflowed);
875}
876
877/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
878extern const float huge_valf;
879
880
881/// Add two signed integers, computing the two's complement truncated result,
882/// returning true if overflow occured.
883template <typename T>
884std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) {
885#if __has_builtin(__builtin_add_overflow)1
886 return __builtin_add_overflow(X, Y, &Result);
887#else
888 // Perform the unsigned addition.
889 using U = std::make_unsigned_t<T>;
890 const U UX = static_cast<U>(X);
891 const U UY = static_cast<U>(Y);
892 const U UResult = UX + UY;
893
894 // Convert to signed.
895 Result = static_cast<T>(UResult);
896
897 // Adding two positive numbers should result in a positive number.
898 if (X > 0 && Y > 0)
899 return Result <= 0;
900 // Adding two negatives should result in a negative number.
901 if (X < 0 && Y < 0)
902 return Result >= 0;
903 return false;
904#endif
905}
906
907/// Subtract two signed integers, computing the two's complement truncated
908/// result, returning true if an overflow ocurred.
909template <typename T>
910std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) {
911#if __has_builtin(__builtin_sub_overflow)1
912 return __builtin_sub_overflow(X, Y, &Result);
913#else
914 // Perform the unsigned addition.
915 using U = std::make_unsigned_t<T>;
916 const U UX = static_cast<U>(X);
917 const U UY = static_cast<U>(Y);
918 const U UResult = UX - UY;
919
920 // Convert to signed.
921 Result = static_cast<T>(UResult);
922
923 // Subtracting a positive number from a negative results in a negative number.
924 if (X <= 0 && Y > 0)
925 return Result >= 0;
926 // Subtracting a negative number from a positive results in a positive number.
927 if (X >= 0 && Y < 0)
928 return Result <= 0;
929 return false;
930#endif
931}
932
933/// Multiply two signed integers, computing the two's complement truncated
934/// result, returning true if an overflow ocurred.
935template <typename T>
936std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) {
937 // Perform the unsigned multiplication on absolute values.
938 using U = std::make_unsigned_t<T>;
939 const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
940 const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
941 const U UResult = UX * UY;
942
943 // Convert to signed.
944 const bool IsNegative = (X < 0) ^ (Y < 0);
945 Result = IsNegative ? (0 - UResult) : UResult;
946
947 // If any of the args was 0, result is 0 and no overflow occurs.
948 if (UX == 0 || UY == 0)
949 return false;
950
951 // UX and UY are in [1, 2^n], where n is the number of digits.
952 // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
953 // positive) divided by an argument compares to the other.
954 if (IsNegative)
955 return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY;
956 else
957 return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY;
958}
959
960} // End llvm namespace
961
962#endif