File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h |
Warning: | line 85, column 47 The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- MachineFunction.cpp ------------------------------------------------===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // Collect native machine code information for a function. This allows | |||
10 | // target-specific information about the generated code to be stored with each | |||
11 | // function. | |||
12 | // | |||
13 | //===----------------------------------------------------------------------===// | |||
14 | ||||
15 | #include "llvm/CodeGen/MachineFunction.h" | |||
16 | #include "llvm/ADT/BitVector.h" | |||
17 | #include "llvm/ADT/DenseMap.h" | |||
18 | #include "llvm/ADT/DenseSet.h" | |||
19 | #include "llvm/ADT/STLExtras.h" | |||
20 | #include "llvm/ADT/SmallString.h" | |||
21 | #include "llvm/ADT/SmallVector.h" | |||
22 | #include "llvm/ADT/StringRef.h" | |||
23 | #include "llvm/ADT/Twine.h" | |||
24 | #include "llvm/Analysis/ConstantFolding.h" | |||
25 | #include "llvm/Analysis/EHPersonalities.h" | |||
26 | #include "llvm/CodeGen/MachineBasicBlock.h" | |||
27 | #include "llvm/CodeGen/MachineConstantPool.h" | |||
28 | #include "llvm/CodeGen/MachineFrameInfo.h" | |||
29 | #include "llvm/CodeGen/MachineInstr.h" | |||
30 | #include "llvm/CodeGen/MachineJumpTableInfo.h" | |||
31 | #include "llvm/CodeGen/MachineMemOperand.h" | |||
32 | #include "llvm/CodeGen/MachineModuleInfo.h" | |||
33 | #include "llvm/CodeGen/MachineRegisterInfo.h" | |||
34 | #include "llvm/CodeGen/PseudoSourceValue.h" | |||
35 | #include "llvm/CodeGen/TargetFrameLowering.h" | |||
36 | #include "llvm/CodeGen/TargetInstrInfo.h" | |||
37 | #include "llvm/CodeGen/TargetLowering.h" | |||
38 | #include "llvm/CodeGen/TargetRegisterInfo.h" | |||
39 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | |||
40 | #include "llvm/CodeGen/WasmEHFuncInfo.h" | |||
41 | #include "llvm/CodeGen/WinEHFuncInfo.h" | |||
42 | #include "llvm/Config/llvm-config.h" | |||
43 | #include "llvm/IR/Attributes.h" | |||
44 | #include "llvm/IR/BasicBlock.h" | |||
45 | #include "llvm/IR/Constant.h" | |||
46 | #include "llvm/IR/DataLayout.h" | |||
47 | #include "llvm/IR/DebugInfoMetadata.h" | |||
48 | #include "llvm/IR/DerivedTypes.h" | |||
49 | #include "llvm/IR/Function.h" | |||
50 | #include "llvm/IR/GlobalValue.h" | |||
51 | #include "llvm/IR/Instruction.h" | |||
52 | #include "llvm/IR/Instructions.h" | |||
53 | #include "llvm/IR/Metadata.h" | |||
54 | #include "llvm/IR/Module.h" | |||
55 | #include "llvm/IR/ModuleSlotTracker.h" | |||
56 | #include "llvm/IR/Value.h" | |||
57 | #include "llvm/MC/MCContext.h" | |||
58 | #include "llvm/MC/MCSymbol.h" | |||
59 | #include "llvm/MC/SectionKind.h" | |||
60 | #include "llvm/Support/Casting.h" | |||
61 | #include "llvm/Support/CommandLine.h" | |||
62 | #include "llvm/Support/Compiler.h" | |||
63 | #include "llvm/Support/DOTGraphTraits.h" | |||
64 | #include "llvm/Support/Debug.h" | |||
65 | #include "llvm/Support/ErrorHandling.h" | |||
66 | #include "llvm/Support/GraphWriter.h" | |||
67 | #include "llvm/Support/raw_ostream.h" | |||
68 | #include "llvm/Target/TargetMachine.h" | |||
69 | #include <algorithm> | |||
70 | #include <cassert> | |||
71 | #include <cstddef> | |||
72 | #include <cstdint> | |||
73 | #include <iterator> | |||
74 | #include <string> | |||
75 | #include <type_traits> | |||
76 | #include <utility> | |||
77 | #include <vector> | |||
78 | ||||
79 | using namespace llvm; | |||
80 | ||||
81 | #define DEBUG_TYPE"codegen" "codegen" | |||
82 | ||||
83 | static cl::opt<unsigned> AlignAllFunctions( | |||
84 | "align-all-functions", | |||
85 | cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " | |||
86 | "means align on 16B boundaries)."), | |||
87 | cl::init(0), cl::Hidden); | |||
88 | ||||
89 | static const char *getPropertyName(MachineFunctionProperties::Property Prop) { | |||
90 | using P = MachineFunctionProperties::Property; | |||
91 | ||||
92 | switch(Prop) { | |||
93 | case P::FailedISel: return "FailedISel"; | |||
94 | case P::IsSSA: return "IsSSA"; | |||
95 | case P::Legalized: return "Legalized"; | |||
96 | case P::NoPHIs: return "NoPHIs"; | |||
97 | case P::NoVRegs: return "NoVRegs"; | |||
98 | case P::RegBankSelected: return "RegBankSelected"; | |||
99 | case P::Selected: return "Selected"; | |||
100 | case P::TracksLiveness: return "TracksLiveness"; | |||
101 | case P::TiedOpsRewritten: return "TiedOpsRewritten"; | |||
102 | } | |||
103 | llvm_unreachable("Invalid machine function property")__builtin_unreachable(); | |||
104 | } | |||
105 | ||||
106 | // Pin the vtable to this file. | |||
107 | void MachineFunction::Delegate::anchor() {} | |||
108 | ||||
109 | void MachineFunctionProperties::print(raw_ostream &OS) const { | |||
110 | const char *Separator = ""; | |||
111 | for (BitVector::size_type I = 0; I < Properties.size(); ++I) { | |||
112 | if (!Properties[I]) | |||
113 | continue; | |||
114 | OS << Separator << getPropertyName(static_cast<Property>(I)); | |||
115 | Separator = ", "; | |||
116 | } | |||
117 | } | |||
118 | ||||
119 | //===----------------------------------------------------------------------===// | |||
120 | // MachineFunction implementation | |||
121 | //===----------------------------------------------------------------------===// | |||
122 | ||||
123 | // Out-of-line virtual method. | |||
124 | MachineFunctionInfo::~MachineFunctionInfo() = default; | |||
125 | ||||
126 | void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { | |||
127 | MBB->getParent()->DeleteMachineBasicBlock(MBB); | |||
128 | } | |||
129 | ||||
130 | static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, | |||
131 | const Function &F) { | |||
132 | if (F.hasFnAttribute(Attribute::StackAlignment)) | |||
133 | return F.getFnStackAlignment(); | |||
134 | return STI->getFrameLowering()->getStackAlign().value(); | |||
135 | } | |||
136 | ||||
137 | MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, | |||
138 | const TargetSubtargetInfo &STI, | |||
139 | unsigned FunctionNum, MachineModuleInfo &mmi) | |||
140 | : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { | |||
141 | FunctionNumber = FunctionNum; | |||
142 | init(); | |||
143 | } | |||
144 | ||||
145 | void MachineFunction::handleInsertion(MachineInstr &MI) { | |||
146 | if (TheDelegate) | |||
147 | TheDelegate->MF_HandleInsertion(MI); | |||
148 | } | |||
149 | ||||
150 | void MachineFunction::handleRemoval(MachineInstr &MI) { | |||
151 | if (TheDelegate) | |||
152 | TheDelegate->MF_HandleRemoval(MI); | |||
153 | } | |||
154 | ||||
155 | void MachineFunction::init() { | |||
156 | // Assume the function starts in SSA form with correct liveness. | |||
157 | Properties.set(MachineFunctionProperties::Property::IsSSA); | |||
158 | Properties.set(MachineFunctionProperties::Property::TracksLiveness); | |||
159 | if (STI->getRegisterInfo()) | |||
160 | RegInfo = new (Allocator) MachineRegisterInfo(this); | |||
161 | else | |||
162 | RegInfo = nullptr; | |||
163 | ||||
164 | MFInfo = nullptr; | |||
165 | // We can realign the stack if the target supports it and the user hasn't | |||
166 | // explicitly asked us not to. | |||
167 | bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && | |||
168 | !F.hasFnAttribute("no-realign-stack"); | |||
169 | FrameInfo = new (Allocator) MachineFrameInfo( | |||
170 | getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, | |||
171 | /*ForcedRealign=*/CanRealignSP && | |||
172 | F.hasFnAttribute(Attribute::StackAlignment)); | |||
173 | ||||
174 | if (F.hasFnAttribute(Attribute::StackAlignment)) | |||
175 | FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); | |||
176 | ||||
177 | ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); | |||
178 | Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); | |||
179 | ||||
180 | // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. | |||
181 | // FIXME: Use Function::hasOptSize(). | |||
182 | if (!F.hasFnAttribute(Attribute::OptimizeForSize)) | |||
183 | Alignment = std::max(Alignment, | |||
184 | STI->getTargetLowering()->getPrefFunctionAlignment()); | |||
185 | ||||
186 | if (AlignAllFunctions) | |||
187 | Alignment = Align(1ULL << AlignAllFunctions); | |||
188 | ||||
189 | JumpTableInfo = nullptr; | |||
190 | ||||
191 | if (isFuncletEHPersonality(classifyEHPersonality( | |||
192 | F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { | |||
193 | WinEHInfo = new (Allocator) WinEHFuncInfo(); | |||
194 | } | |||
195 | ||||
196 | if (isScopedEHPersonality(classifyEHPersonality( | |||
197 | F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { | |||
198 | WasmEHInfo = new (Allocator) WasmEHFuncInfo(); | |||
199 | } | |||
200 | ||||
201 | assert(Target.isCompatibleDataLayout(getDataLayout()) &&((void)0) | |||
202 | "Can't create a MachineFunction using a Module with a "((void)0) | |||
203 | "Target-incompatible DataLayout attached\n")((void)0); | |||
204 | ||||
205 | PSVManager = | |||
206 | std::make_unique<PseudoSourceValueManager>(*(getSubtarget(). | |||
207 | getInstrInfo())); | |||
208 | } | |||
209 | ||||
210 | MachineFunction::~MachineFunction() { | |||
211 | clear(); | |||
212 | } | |||
213 | ||||
214 | void MachineFunction::clear() { | |||
215 | Properties.reset(); | |||
216 | // Don't call destructors on MachineInstr and MachineOperand. All of their | |||
217 | // memory comes from the BumpPtrAllocator which is about to be purged. | |||
218 | // | |||
219 | // Do call MachineBasicBlock destructors, it contains std::vectors. | |||
220 | for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) | |||
221 | I->Insts.clearAndLeakNodesUnsafely(); | |||
222 | MBBNumbering.clear(); | |||
223 | ||||
224 | InstructionRecycler.clear(Allocator); | |||
225 | OperandRecycler.clear(Allocator); | |||
226 | BasicBlockRecycler.clear(Allocator); | |||
227 | CodeViewAnnotations.clear(); | |||
228 | VariableDbgInfos.clear(); | |||
229 | if (RegInfo) { | |||
230 | RegInfo->~MachineRegisterInfo(); | |||
231 | Allocator.Deallocate(RegInfo); | |||
232 | } | |||
233 | if (MFInfo) { | |||
234 | MFInfo->~MachineFunctionInfo(); | |||
235 | Allocator.Deallocate(MFInfo); | |||
236 | } | |||
237 | ||||
238 | FrameInfo->~MachineFrameInfo(); | |||
239 | Allocator.Deallocate(FrameInfo); | |||
240 | ||||
241 | ConstantPool->~MachineConstantPool(); | |||
242 | Allocator.Deallocate(ConstantPool); | |||
243 | ||||
244 | if (JumpTableInfo) { | |||
245 | JumpTableInfo->~MachineJumpTableInfo(); | |||
246 | Allocator.Deallocate(JumpTableInfo); | |||
247 | } | |||
248 | ||||
249 | if (WinEHInfo) { | |||
250 | WinEHInfo->~WinEHFuncInfo(); | |||
251 | Allocator.Deallocate(WinEHInfo); | |||
252 | } | |||
253 | ||||
254 | if (WasmEHInfo) { | |||
255 | WasmEHInfo->~WasmEHFuncInfo(); | |||
256 | Allocator.Deallocate(WasmEHInfo); | |||
257 | } | |||
258 | } | |||
259 | ||||
260 | const DataLayout &MachineFunction::getDataLayout() const { | |||
261 | return F.getParent()->getDataLayout(); | |||
262 | } | |||
263 | ||||
264 | /// Get the JumpTableInfo for this function. | |||
265 | /// If it does not already exist, allocate one. | |||
266 | MachineJumpTableInfo *MachineFunction:: | |||
267 | getOrCreateJumpTableInfo(unsigned EntryKind) { | |||
268 | if (JumpTableInfo) return JumpTableInfo; | |||
269 | ||||
270 | JumpTableInfo = new (Allocator) | |||
271 | MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); | |||
272 | return JumpTableInfo; | |||
273 | } | |||
274 | ||||
275 | DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { | |||
276 | return F.getDenormalMode(FPType); | |||
277 | } | |||
278 | ||||
279 | /// Should we be emitting segmented stack stuff for the function | |||
280 | bool MachineFunction::shouldSplitStack() const { | |||
281 | return getFunction().hasFnAttribute("split-stack"); | |||
282 | } | |||
283 | ||||
284 | LLVM_NODISCARD[[clang::warn_unused_result]] unsigned | |||
285 | MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { | |||
286 | FrameInstructions.push_back(Inst); | |||
287 | return FrameInstructions.size() - 1; | |||
288 | } | |||
289 | ||||
290 | /// This discards all of the MachineBasicBlock numbers and recomputes them. | |||
291 | /// This guarantees that the MBB numbers are sequential, dense, and match the | |||
292 | /// ordering of the blocks within the function. If a specific MachineBasicBlock | |||
293 | /// is specified, only that block and those after it are renumbered. | |||
294 | void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { | |||
295 | if (empty()) { MBBNumbering.clear(); return; } | |||
296 | MachineFunction::iterator MBBI, E = end(); | |||
297 | if (MBB == nullptr) | |||
298 | MBBI = begin(); | |||
299 | else | |||
300 | MBBI = MBB->getIterator(); | |||
301 | ||||
302 | // Figure out the block number this should have. | |||
303 | unsigned BlockNo = 0; | |||
304 | if (MBBI != begin()) | |||
305 | BlockNo = std::prev(MBBI)->getNumber() + 1; | |||
306 | ||||
307 | for (; MBBI != E; ++MBBI, ++BlockNo) { | |||
308 | if (MBBI->getNumber() != (int)BlockNo) { | |||
309 | // Remove use of the old number. | |||
310 | if (MBBI->getNumber() != -1) { | |||
311 | assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&((void)0) | |||
312 | "MBB number mismatch!")((void)0); | |||
313 | MBBNumbering[MBBI->getNumber()] = nullptr; | |||
314 | } | |||
315 | ||||
316 | // If BlockNo is already taken, set that block's number to -1. | |||
317 | if (MBBNumbering[BlockNo]) | |||
318 | MBBNumbering[BlockNo]->setNumber(-1); | |||
319 | ||||
320 | MBBNumbering[BlockNo] = &*MBBI; | |||
321 | MBBI->setNumber(BlockNo); | |||
322 | } | |||
323 | } | |||
324 | ||||
325 | // Okay, all the blocks are renumbered. If we have compactified the block | |||
326 | // numbering, shrink MBBNumbering now. | |||
327 | assert(BlockNo <= MBBNumbering.size() && "Mismatch!")((void)0); | |||
328 | MBBNumbering.resize(BlockNo); | |||
329 | } | |||
330 | ||||
331 | /// This method iterates over the basic blocks and assigns their IsBeginSection | |||
332 | /// and IsEndSection fields. This must be called after MBB layout is finalized | |||
333 | /// and the SectionID's are assigned to MBBs. | |||
334 | void MachineFunction::assignBeginEndSections() { | |||
335 | front().setIsBeginSection(); | |||
336 | auto CurrentSectionID = front().getSectionID(); | |||
337 | for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { | |||
338 | if (MBBI->getSectionID() == CurrentSectionID) | |||
339 | continue; | |||
340 | MBBI->setIsBeginSection(); | |||
341 | std::prev(MBBI)->setIsEndSection(); | |||
342 | CurrentSectionID = MBBI->getSectionID(); | |||
343 | } | |||
344 | back().setIsEndSection(); | |||
345 | } | |||
346 | ||||
347 | /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. | |||
348 | MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, | |||
349 | const DebugLoc &DL, | |||
350 | bool NoImplicit) { | |||
351 | return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) | |||
352 | MachineInstr(*this, MCID, DL, NoImplicit); | |||
353 | } | |||
354 | ||||
355 | /// Create a new MachineInstr which is a copy of the 'Orig' instruction, | |||
356 | /// identical in all ways except the instruction has no parent, prev, or next. | |||
357 | MachineInstr * | |||
358 | MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { | |||
359 | return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) | |||
360 | MachineInstr(*this, *Orig); | |||
361 | } | |||
362 | ||||
363 | MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, | |||
364 | MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { | |||
365 | MachineInstr *FirstClone = nullptr; | |||
366 | MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); | |||
367 | while (true) { | |||
368 | MachineInstr *Cloned = CloneMachineInstr(&*I); | |||
369 | MBB.insert(InsertBefore, Cloned); | |||
370 | if (FirstClone == nullptr) { | |||
371 | FirstClone = Cloned; | |||
372 | } else { | |||
373 | Cloned->bundleWithPred(); | |||
374 | } | |||
375 | ||||
376 | if (!I->isBundledWithSucc()) | |||
377 | break; | |||
378 | ++I; | |||
379 | } | |||
380 | // Copy over call site info to the cloned instruction if needed. If Orig is in | |||
381 | // a bundle, copyCallSiteInfo takes care of finding the call instruction in | |||
382 | // the bundle. | |||
383 | if (Orig.shouldUpdateCallSiteInfo()) | |||
384 | copyCallSiteInfo(&Orig, FirstClone); | |||
385 | return *FirstClone; | |||
386 | } | |||
387 | ||||
388 | /// Delete the given MachineInstr. | |||
389 | /// | |||
390 | /// This function also serves as the MachineInstr destructor - the real | |||
391 | /// ~MachineInstr() destructor must be empty. | |||
392 | void | |||
393 | MachineFunction::DeleteMachineInstr(MachineInstr *MI) { | |||
394 | // Verify that a call site info is at valid state. This assertion should | |||
395 | // be triggered during the implementation of support for the | |||
396 | // call site info of a new architecture. If the assertion is triggered, | |||
397 | // back trace will tell where to insert a call to updateCallSiteInfo(). | |||
398 | assert((!MI->isCandidateForCallSiteEntry() ||((void)0) | |||
399 | CallSitesInfo.find(MI) == CallSitesInfo.end()) &&((void)0) | |||
400 | "Call site info was not updated!")((void)0); | |||
401 | // Strip it for parts. The operand array and the MI object itself are | |||
402 | // independently recyclable. | |||
403 | if (MI->Operands) | |||
404 | deallocateOperandArray(MI->CapOperands, MI->Operands); | |||
405 | // Don't call ~MachineInstr() which must be trivial anyway because | |||
406 | // ~MachineFunction drops whole lists of MachineInstrs wihout calling their | |||
407 | // destructors. | |||
408 | InstructionRecycler.Deallocate(Allocator, MI); | |||
409 | } | |||
410 | ||||
411 | /// Allocate a new MachineBasicBlock. Use this instead of | |||
412 | /// `new MachineBasicBlock'. | |||
413 | MachineBasicBlock * | |||
414 | MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { | |||
415 | return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) | |||
416 | MachineBasicBlock(*this, bb); | |||
417 | } | |||
418 | ||||
419 | /// Delete the given MachineBasicBlock. | |||
420 | void | |||
421 | MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { | |||
422 | assert(MBB->getParent() == this && "MBB parent mismatch!")((void)0); | |||
423 | // Clean up any references to MBB in jump tables before deleting it. | |||
424 | if (JumpTableInfo) | |||
425 | JumpTableInfo->RemoveMBBFromJumpTables(MBB); | |||
426 | MBB->~MachineBasicBlock(); | |||
427 | BasicBlockRecycler.Deallocate(Allocator, MBB); | |||
428 | } | |||
429 | ||||
430 | MachineMemOperand *MachineFunction::getMachineMemOperand( | |||
431 | MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, | |||
432 | Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, | |||
433 | SyncScope::ID SSID, AtomicOrdering Ordering, | |||
434 | AtomicOrdering FailureOrdering) { | |||
435 | return new (Allocator) | |||
436 | MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, | |||
437 | SSID, Ordering, FailureOrdering); | |||
438 | } | |||
439 | ||||
440 | MachineMemOperand *MachineFunction::getMachineMemOperand( | |||
441 | MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, | |||
442 | Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, | |||
443 | SyncScope::ID SSID, AtomicOrdering Ordering, | |||
444 | AtomicOrdering FailureOrdering) { | |||
445 | return new (Allocator) | |||
446 | MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, | |||
447 | Ordering, FailureOrdering); | |||
448 | } | |||
449 | ||||
450 | MachineMemOperand *MachineFunction::getMachineMemOperand( | |||
451 | const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) { | |||
452 | return new (Allocator) | |||
453 | MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), | |||
454 | AAMDNodes(), nullptr, MMO->getSyncScopeID(), | |||
455 | MMO->getSuccessOrdering(), MMO->getFailureOrdering()); | |||
456 | } | |||
457 | ||||
458 | MachineMemOperand *MachineFunction::getMachineMemOperand( | |||
459 | const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { | |||
460 | return new (Allocator) | |||
461 | MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), | |||
462 | AAMDNodes(), nullptr, MMO->getSyncScopeID(), | |||
463 | MMO->getSuccessOrdering(), MMO->getFailureOrdering()); | |||
464 | } | |||
465 | ||||
466 | MachineMemOperand * | |||
467 | MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, | |||
468 | int64_t Offset, LLT Ty) { | |||
469 | const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); | |||
470 | ||||
471 | // If there is no pointer value, the offset isn't tracked so we need to adjust | |||
472 | // the base alignment. | |||
473 | Align Alignment = PtrInfo.V.isNull() | |||
474 | ? commonAlignment(MMO->getBaseAlign(), Offset) | |||
475 | : MMO->getBaseAlign(); | |||
476 | ||||
477 | // Do not preserve ranges, since we don't necessarily know what the high bits | |||
478 | // are anymore. | |||
479 | return new (Allocator) MachineMemOperand( | |||
480 | PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, | |||
481 | MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), | |||
482 | MMO->getSuccessOrdering(), MMO->getFailureOrdering()); | |||
483 | } | |||
484 | ||||
485 | MachineMemOperand * | |||
486 | MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, | |||
487 | const AAMDNodes &AAInfo) { | |||
488 | MachinePointerInfo MPI = MMO->getValue() ? | |||
489 | MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : | |||
490 | MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); | |||
491 | ||||
492 | return new (Allocator) MachineMemOperand( | |||
493 | MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, | |||
494 | MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), | |||
495 | MMO->getFailureOrdering()); | |||
496 | } | |||
497 | ||||
498 | MachineMemOperand * | |||
499 | MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, | |||
500 | MachineMemOperand::Flags Flags) { | |||
501 | return new (Allocator) MachineMemOperand( | |||
| ||||
502 | MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), | |||
503 | MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), | |||
504 | MMO->getSuccessOrdering(), MMO->getFailureOrdering()); | |||
505 | } | |||
506 | ||||
507 | MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( | |||
508 | ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, | |||
509 | MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) { | |||
510 | return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, | |||
511 | PostInstrSymbol, HeapAllocMarker); | |||
512 | } | |||
513 | ||||
514 | const char *MachineFunction::createExternalSymbolName(StringRef Name) { | |||
515 | char *Dest = Allocator.Allocate<char>(Name.size() + 1); | |||
516 | llvm::copy(Name, Dest); | |||
517 | Dest[Name.size()] = 0; | |||
518 | return Dest; | |||
519 | } | |||
520 | ||||
521 | uint32_t *MachineFunction::allocateRegMask() { | |||
522 | unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); | |||
523 | unsigned Size = MachineOperand::getRegMaskSize(NumRegs); | |||
524 | uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); | |||
525 | memset(Mask, 0, Size * sizeof(Mask[0])); | |||
526 | return Mask; | |||
527 | } | |||
528 | ||||
529 | ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { | |||
530 | int* AllocMask = Allocator.Allocate<int>(Mask.size()); | |||
531 | copy(Mask, AllocMask); | |||
532 | return {AllocMask, Mask.size()}; | |||
533 | } | |||
534 | ||||
535 | #if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP) | |||
536 | LLVM_DUMP_METHOD__attribute__((noinline)) void MachineFunction::dump() const { | |||
537 | print(dbgs()); | |||
538 | } | |||
539 | #endif | |||
540 | ||||
541 | StringRef MachineFunction::getName() const { | |||
542 | return getFunction().getName(); | |||
543 | } | |||
544 | ||||
545 | void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { | |||
546 | OS << "# Machine code for function " << getName() << ": "; | |||
547 | getProperties().print(OS); | |||
548 | OS << '\n'; | |||
549 | ||||
550 | // Print Frame Information | |||
551 | FrameInfo->print(*this, OS); | |||
552 | ||||
553 | // Print JumpTable Information | |||
554 | if (JumpTableInfo) | |||
555 | JumpTableInfo->print(OS); | |||
556 | ||||
557 | // Print Constant Pool | |||
558 | ConstantPool->print(OS); | |||
559 | ||||
560 | const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); | |||
561 | ||||
562 | if (RegInfo && !RegInfo->livein_empty()) { | |||
563 | OS << "Function Live Ins: "; | |||
564 | for (MachineRegisterInfo::livein_iterator | |||
565 | I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { | |||
566 | OS << printReg(I->first, TRI); | |||
567 | if (I->second) | |||
568 | OS << " in " << printReg(I->second, TRI); | |||
569 | if (std::next(I) != E) | |||
570 | OS << ", "; | |||
571 | } | |||
572 | OS << '\n'; | |||
573 | } | |||
574 | ||||
575 | ModuleSlotTracker MST(getFunction().getParent()); | |||
576 | MST.incorporateFunction(getFunction()); | |||
577 | for (const auto &BB : *this) { | |||
578 | OS << '\n'; | |||
579 | // If we print the whole function, print it at its most verbose level. | |||
580 | BB.print(OS, MST, Indexes, /*IsStandalone=*/true); | |||
581 | } | |||
582 | ||||
583 | OS << "\n# End machine code for function " << getName() << ".\n\n"; | |||
584 | } | |||
585 | ||||
586 | /// True if this function needs frame moves for debug or exceptions. | |||
587 | bool MachineFunction::needsFrameMoves() const { | |||
588 | return getMMI().hasDebugInfo() || | |||
589 | getTarget().Options.ForceDwarfFrameSection || | |||
590 | F.needsUnwindTableEntry(); | |||
591 | } | |||
592 | ||||
593 | namespace llvm { | |||
594 | ||||
595 | template<> | |||
596 | struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { | |||
597 | DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} | |||
598 | ||||
599 | static std::string getGraphName(const MachineFunction *F) { | |||
600 | return ("CFG for '" + F->getName() + "' function").str(); | |||
601 | } | |||
602 | ||||
603 | std::string getNodeLabel(const MachineBasicBlock *Node, | |||
604 | const MachineFunction *Graph) { | |||
605 | std::string OutStr; | |||
606 | { | |||
607 | raw_string_ostream OSS(OutStr); | |||
608 | ||||
609 | if (isSimple()) { | |||
610 | OSS << printMBBReference(*Node); | |||
611 | if (const BasicBlock *BB = Node->getBasicBlock()) | |||
612 | OSS << ": " << BB->getName(); | |||
613 | } else | |||
614 | Node->print(OSS); | |||
615 | } | |||
616 | ||||
617 | if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); | |||
618 | ||||
619 | // Process string output to make it nicer... | |||
620 | for (unsigned i = 0; i != OutStr.length(); ++i) | |||
621 | if (OutStr[i] == '\n') { // Left justify | |||
622 | OutStr[i] = '\\'; | |||
623 | OutStr.insert(OutStr.begin()+i+1, 'l'); | |||
624 | } | |||
625 | return OutStr; | |||
626 | } | |||
627 | }; | |||
628 | ||||
629 | } // end namespace llvm | |||
630 | ||||
631 | void MachineFunction::viewCFG() const | |||
632 | { | |||
633 | #ifndef NDEBUG1 | |||
634 | ViewGraph(this, "mf" + getName()); | |||
635 | #else | |||
636 | errs() << "MachineFunction::viewCFG is only available in debug builds on " | |||
637 | << "systems with Graphviz or gv!\n"; | |||
638 | #endif // NDEBUG | |||
639 | } | |||
640 | ||||
641 | void MachineFunction::viewCFGOnly() const | |||
642 | { | |||
643 | #ifndef NDEBUG1 | |||
644 | ViewGraph(this, "mf" + getName(), true); | |||
645 | #else | |||
646 | errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " | |||
647 | << "systems with Graphviz or gv!\n"; | |||
648 | #endif // NDEBUG | |||
649 | } | |||
650 | ||||
651 | /// Add the specified physical register as a live-in value and | |||
652 | /// create a corresponding virtual register for it. | |||
653 | Register MachineFunction::addLiveIn(MCRegister PReg, | |||
654 | const TargetRegisterClass *RC) { | |||
655 | MachineRegisterInfo &MRI = getRegInfo(); | |||
656 | Register VReg = MRI.getLiveInVirtReg(PReg); | |||
657 | if (VReg) { | |||
658 | const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); | |||
659 | (void)VRegRC; | |||
660 | // A physical register can be added several times. | |||
661 | // Between two calls, the register class of the related virtual register | |||
662 | // may have been constrained to match some operation constraints. | |||
663 | // In that case, check that the current register class includes the | |||
664 | // physical register and is a sub class of the specified RC. | |||
665 | assert((VRegRC == RC || (VRegRC->contains(PReg) &&((void)0) | |||
666 | RC->hasSubClassEq(VRegRC))) &&((void)0) | |||
667 | "Register class mismatch!")((void)0); | |||
668 | return VReg; | |||
669 | } | |||
670 | VReg = MRI.createVirtualRegister(RC); | |||
671 | MRI.addLiveIn(PReg, VReg); | |||
672 | return VReg; | |||
673 | } | |||
674 | ||||
675 | /// Return the MCSymbol for the specified non-empty jump table. | |||
676 | /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a | |||
677 | /// normal 'L' label is returned. | |||
678 | MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, | |||
679 | bool isLinkerPrivate) const { | |||
680 | const DataLayout &DL = getDataLayout(); | |||
681 | assert(JumpTableInfo && "No jump tables")((void)0); | |||
682 | assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!")((void)0); | |||
683 | ||||
684 | StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() | |||
685 | : DL.getPrivateGlobalPrefix(); | |||
686 | SmallString<60> Name; | |||
687 | raw_svector_ostream(Name) | |||
688 | << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; | |||
689 | return Ctx.getOrCreateSymbol(Name); | |||
690 | } | |||
691 | ||||
692 | /// Return a function-local symbol to represent the PIC base. | |||
693 | MCSymbol *MachineFunction::getPICBaseSymbol() const { | |||
694 | const DataLayout &DL = getDataLayout(); | |||
695 | return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + | |||
696 | Twine(getFunctionNumber()) + "$pb"); | |||
697 | } | |||
698 | ||||
699 | /// \name Exception Handling | |||
700 | /// \{ | |||
701 | ||||
702 | LandingPadInfo & | |||
703 | MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { | |||
704 | unsigned N = LandingPads.size(); | |||
705 | for (unsigned i = 0; i < N; ++i) { | |||
706 | LandingPadInfo &LP = LandingPads[i]; | |||
707 | if (LP.LandingPadBlock == LandingPad) | |||
708 | return LP; | |||
709 | } | |||
710 | ||||
711 | LandingPads.push_back(LandingPadInfo(LandingPad)); | |||
712 | return LandingPads[N]; | |||
713 | } | |||
714 | ||||
715 | void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, | |||
716 | MCSymbol *BeginLabel, MCSymbol *EndLabel) { | |||
717 | LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); | |||
718 | LP.BeginLabels.push_back(BeginLabel); | |||
719 | LP.EndLabels.push_back(EndLabel); | |||
720 | } | |||
721 | ||||
722 | MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { | |||
723 | MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); | |||
724 | LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); | |||
725 | LP.LandingPadLabel = LandingPadLabel; | |||
726 | ||||
727 | const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); | |||
728 | if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { | |||
729 | if (const auto *PF = | |||
730 | dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) | |||
731 | getMMI().addPersonality(PF); | |||
732 | ||||
733 | if (LPI->isCleanup()) | |||
734 | addCleanup(LandingPad); | |||
735 | ||||
736 | // FIXME: New EH - Add the clauses in reverse order. This isn't 100% | |||
737 | // correct, but we need to do it this way because of how the DWARF EH | |||
738 | // emitter processes the clauses. | |||
739 | for (unsigned I = LPI->getNumClauses(); I != 0; --I) { | |||
740 | Value *Val = LPI->getClause(I - 1); | |||
741 | if (LPI->isCatch(I - 1)) { | |||
742 | addCatchTypeInfo(LandingPad, | |||
743 | dyn_cast<GlobalValue>(Val->stripPointerCasts())); | |||
744 | } else { | |||
745 | // Add filters in a list. | |||
746 | auto *CVal = cast<Constant>(Val); | |||
747 | SmallVector<const GlobalValue *, 4> FilterList; | |||
748 | for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); | |||
749 | II != IE; ++II) | |||
750 | FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); | |||
751 | ||||
752 | addFilterTypeInfo(LandingPad, FilterList); | |||
753 | } | |||
754 | } | |||
755 | ||||
756 | } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { | |||
757 | for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { | |||
758 | Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); | |||
759 | addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); | |||
760 | } | |||
761 | ||||
762 | } else { | |||
763 | assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!")((void)0); | |||
764 | } | |||
765 | ||||
766 | return LandingPadLabel; | |||
767 | } | |||
768 | ||||
769 | void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, | |||
770 | ArrayRef<const GlobalValue *> TyInfo) { | |||
771 | LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); | |||
772 | for (unsigned N = TyInfo.size(); N; --N) | |||
773 | LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); | |||
774 | } | |||
775 | ||||
776 | void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, | |||
777 | ArrayRef<const GlobalValue *> TyInfo) { | |||
778 | LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); | |||
779 | std::vector<unsigned> IdsInFilter(TyInfo.size()); | |||
780 | for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) | |||
781 | IdsInFilter[I] = getTypeIDFor(TyInfo[I]); | |||
782 | LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); | |||
783 | } | |||
784 | ||||
785 | void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, | |||
786 | bool TidyIfNoBeginLabels) { | |||
787 | for (unsigned i = 0; i != LandingPads.size(); ) { | |||
788 | LandingPadInfo &LandingPad = LandingPads[i]; | |||
789 | if (LandingPad.LandingPadLabel && | |||
790 | !LandingPad.LandingPadLabel->isDefined() && | |||
791 | (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) | |||
792 | LandingPad.LandingPadLabel = nullptr; | |||
793 | ||||
794 | // Special case: we *should* emit LPs with null LP MBB. This indicates | |||
795 | // "nounwind" case. | |||
796 | if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { | |||
797 | LandingPads.erase(LandingPads.begin() + i); | |||
798 | continue; | |||
799 | } | |||
800 | ||||
801 | if (TidyIfNoBeginLabels) { | |||
802 | for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { | |||
803 | MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; | |||
804 | MCSymbol *EndLabel = LandingPad.EndLabels[j]; | |||
805 | if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && | |||
806 | (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) | |||
807 | continue; | |||
808 | ||||
809 | LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); | |||
810 | LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); | |||
811 | --j; | |||
812 | --e; | |||
813 | } | |||
814 | ||||
815 | // Remove landing pads with no try-ranges. | |||
816 | if (LandingPads[i].BeginLabels.empty()) { | |||
817 | LandingPads.erase(LandingPads.begin() + i); | |||
818 | continue; | |||
819 | } | |||
820 | } | |||
821 | ||||
822 | // If there is no landing pad, ensure that the list of typeids is empty. | |||
823 | // If the only typeid is a cleanup, this is the same as having no typeids. | |||
824 | if (!LandingPad.LandingPadBlock || | |||
825 | (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) | |||
826 | LandingPad.TypeIds.clear(); | |||
827 | ++i; | |||
828 | } | |||
829 | } | |||
830 | ||||
831 | void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { | |||
832 | LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); | |||
833 | LP.TypeIds.push_back(0); | |||
834 | } | |||
835 | ||||
836 | void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, | |||
837 | const Function *Filter, | |||
838 | const BlockAddress *RecoverBA) { | |||
839 | LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); | |||
840 | SEHHandler Handler; | |||
841 | Handler.FilterOrFinally = Filter; | |||
842 | Handler.RecoverBA = RecoverBA; | |||
843 | LP.SEHHandlers.push_back(Handler); | |||
844 | } | |||
845 | ||||
846 | void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, | |||
847 | const Function *Cleanup) { | |||
848 | LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); | |||
849 | SEHHandler Handler; | |||
850 | Handler.FilterOrFinally = Cleanup; | |||
851 | Handler.RecoverBA = nullptr; | |||
852 | LP.SEHHandlers.push_back(Handler); | |||
853 | } | |||
854 | ||||
855 | void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, | |||
856 | ArrayRef<unsigned> Sites) { | |||
857 | LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); | |||
858 | } | |||
859 | ||||
860 | unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { | |||
861 | for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) | |||
862 | if (TypeInfos[i] == TI) return i + 1; | |||
863 | ||||
864 | TypeInfos.push_back(TI); | |||
865 | return TypeInfos.size(); | |||
866 | } | |||
867 | ||||
868 | int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { | |||
869 | // If the new filter coincides with the tail of an existing filter, then | |||
870 | // re-use the existing filter. Folding filters more than this requires | |||
871 | // re-ordering filters and/or their elements - probably not worth it. | |||
872 | for (unsigned i : FilterEnds) { | |||
873 | unsigned j = TyIds.size(); | |||
874 | ||||
875 | while (i && j) | |||
876 | if (FilterIds[--i] != TyIds[--j]) | |||
877 | goto try_next; | |||
878 | ||||
879 | if (!j) | |||
880 | // The new filter coincides with range [i, end) of the existing filter. | |||
881 | return -(1 + i); | |||
882 | ||||
883 | try_next:; | |||
884 | } | |||
885 | ||||
886 | // Add the new filter. | |||
887 | int FilterID = -(1 + FilterIds.size()); | |||
888 | FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); | |||
889 | llvm::append_range(FilterIds, TyIds); | |||
890 | FilterEnds.push_back(FilterIds.size()); | |||
891 | FilterIds.push_back(0); // terminator | |||
892 | return FilterID; | |||
893 | } | |||
894 | ||||
895 | MachineFunction::CallSiteInfoMap::iterator | |||
896 | MachineFunction::getCallSiteInfo(const MachineInstr *MI) { | |||
897 | assert(MI->isCandidateForCallSiteEntry() &&((void)0) | |||
898 | "Call site info refers only to call (MI) candidates")((void)0); | |||
899 | ||||
900 | if (!Target.Options.EmitCallSiteInfo) | |||
901 | return CallSitesInfo.end(); | |||
902 | return CallSitesInfo.find(MI); | |||
903 | } | |||
904 | ||||
905 | /// Return the call machine instruction or find a call within bundle. | |||
906 | static const MachineInstr *getCallInstr(const MachineInstr *MI) { | |||
907 | if (!MI->isBundle()) | |||
908 | return MI; | |||
909 | ||||
910 | for (auto &BMI : make_range(getBundleStart(MI->getIterator()), | |||
911 | getBundleEnd(MI->getIterator()))) | |||
912 | if (BMI.isCandidateForCallSiteEntry()) | |||
913 | return &BMI; | |||
914 | ||||
915 | llvm_unreachable("Unexpected bundle without a call site candidate")__builtin_unreachable(); | |||
916 | } | |||
917 | ||||
918 | void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { | |||
919 | assert(MI->shouldUpdateCallSiteInfo() &&((void)0) | |||
920 | "Call site info refers only to call (MI) candidates or "((void)0) | |||
921 | "candidates inside bundles")((void)0); | |||
922 | ||||
923 | const MachineInstr *CallMI = getCallInstr(MI); | |||
924 | CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); | |||
925 | if (CSIt == CallSitesInfo.end()) | |||
926 | return; | |||
927 | CallSitesInfo.erase(CSIt); | |||
928 | } | |||
929 | ||||
930 | void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, | |||
931 | const MachineInstr *New) { | |||
932 | assert(Old->shouldUpdateCallSiteInfo() &&((void)0) | |||
933 | "Call site info refers only to call (MI) candidates or "((void)0) | |||
934 | "candidates inside bundles")((void)0); | |||
935 | ||||
936 | if (!New->isCandidateForCallSiteEntry()) | |||
937 | return eraseCallSiteInfo(Old); | |||
938 | ||||
939 | const MachineInstr *OldCallMI = getCallInstr(Old); | |||
940 | CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); | |||
941 | if (CSIt == CallSitesInfo.end()) | |||
942 | return; | |||
943 | ||||
944 | CallSiteInfo CSInfo = CSIt->second; | |||
945 | CallSitesInfo[New] = CSInfo; | |||
946 | } | |||
947 | ||||
948 | void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, | |||
949 | const MachineInstr *New) { | |||
950 | assert(Old->shouldUpdateCallSiteInfo() &&((void)0) | |||
951 | "Call site info refers only to call (MI) candidates or "((void)0) | |||
952 | "candidates inside bundles")((void)0); | |||
953 | ||||
954 | if (!New->isCandidateForCallSiteEntry()) | |||
955 | return eraseCallSiteInfo(Old); | |||
956 | ||||
957 | const MachineInstr *OldCallMI = getCallInstr(Old); | |||
958 | CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); | |||
959 | if (CSIt == CallSitesInfo.end()) | |||
960 | return; | |||
961 | ||||
962 | CallSiteInfo CSInfo = std::move(CSIt->second); | |||
963 | CallSitesInfo.erase(CSIt); | |||
964 | CallSitesInfo[New] = CSInfo; | |||
965 | } | |||
966 | ||||
967 | void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { | |||
968 | DebugInstrNumberingCount = Num; | |||
969 | } | |||
970 | ||||
971 | void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, | |||
972 | DebugInstrOperandPair B, | |||
973 | unsigned Subreg) { | |||
974 | // Catch any accidental self-loops. | |||
975 | assert(A.first != B.first)((void)0); | |||
976 | DebugValueSubstitutions.push_back({A, B, Subreg}); | |||
977 | } | |||
978 | ||||
979 | void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, | |||
980 | MachineInstr &New, | |||
981 | unsigned MaxOperand) { | |||
982 | // If the Old instruction wasn't tracked at all, there is no work to do. | |||
983 | unsigned OldInstrNum = Old.peekDebugInstrNum(); | |||
984 | if (!OldInstrNum) | |||
985 | return; | |||
986 | ||||
987 | // Iterate over all operands looking for defs to create substitutions for. | |||
988 | // Avoid creating new instr numbers unless we create a new substitution. | |||
989 | // While this has no functional effect, it risks confusing someone reading | |||
990 | // MIR output. | |||
991 | // Examine all the operands, or the first N specified by the caller. | |||
992 | MaxOperand = std::min(MaxOperand, Old.getNumOperands()); | |||
993 | for (unsigned int I = 0; I < MaxOperand; ++I) { | |||
994 | const auto &OldMO = Old.getOperand(I); | |||
995 | auto &NewMO = New.getOperand(I); | |||
996 | (void)NewMO; | |||
997 | ||||
998 | if (!OldMO.isReg() || !OldMO.isDef()) | |||
999 | continue; | |||
1000 | assert(NewMO.isDef())((void)0); | |||
1001 | ||||
1002 | unsigned NewInstrNum = New.getDebugInstrNum(); | |||
1003 | makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), | |||
1004 | std::make_pair(NewInstrNum, I)); | |||
1005 | } | |||
1006 | } | |||
1007 | ||||
1008 | auto MachineFunction::salvageCopySSA(MachineInstr &MI) | |||
1009 | -> DebugInstrOperandPair { | |||
1010 | MachineRegisterInfo &MRI = getRegInfo(); | |||
1011 | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); | |||
1012 | const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); | |||
1013 | ||||
1014 | // Chase the value read by a copy-like instruction back to the instruction | |||
1015 | // that ultimately _defines_ that value. This may pass: | |||
1016 | // * Through multiple intermediate copies, including subregister moves / | |||
1017 | // copies, | |||
1018 | // * Copies from physical registers that must then be traced back to the | |||
1019 | // defining instruction, | |||
1020 | // * Or, physical registers may be live-in to (only) the entry block, which | |||
1021 | // requires a DBG_PHI to be created. | |||
1022 | // We can pursue this problem in that order: trace back through copies, | |||
1023 | // optionally through a physical register, to a defining instruction. We | |||
1024 | // should never move from physreg to vreg. As we're still in SSA form, no need | |||
1025 | // to worry about partial definitions of registers. | |||
1026 | ||||
1027 | // Helper lambda to interpret a copy-like instruction. Takes instruction, | |||
1028 | // returns the register read and any subregister identifying which part is | |||
1029 | // read. | |||
1030 | auto GetRegAndSubreg = | |||
1031 | [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { | |||
1032 | Register NewReg, OldReg; | |||
1033 | unsigned SubReg; | |||
1034 | if (Cpy.isCopy()) { | |||
1035 | OldReg = Cpy.getOperand(0).getReg(); | |||
1036 | NewReg = Cpy.getOperand(1).getReg(); | |||
1037 | SubReg = Cpy.getOperand(1).getSubReg(); | |||
1038 | } else if (Cpy.isSubregToReg()) { | |||
1039 | OldReg = Cpy.getOperand(0).getReg(); | |||
1040 | NewReg = Cpy.getOperand(2).getReg(); | |||
1041 | SubReg = Cpy.getOperand(3).getImm(); | |||
1042 | } else { | |||
1043 | auto CopyDetails = *TII.isCopyInstr(Cpy); | |||
1044 | const MachineOperand &Src = *CopyDetails.Source; | |||
1045 | const MachineOperand &Dest = *CopyDetails.Destination; | |||
1046 | OldReg = Dest.getReg(); | |||
1047 | NewReg = Src.getReg(); | |||
1048 | SubReg = Src.getSubReg(); | |||
1049 | } | |||
1050 | ||||
1051 | return {NewReg, SubReg}; | |||
1052 | }; | |||
1053 | ||||
1054 | // First seek either the defining instruction, or a copy from a physreg. | |||
1055 | // During search, the current state is the current copy instruction, and which | |||
1056 | // register we've read. Accumulate qualifying subregisters into SubregsSeen; | |||
1057 | // deal with those later. | |||
1058 | auto State = GetRegAndSubreg(MI); | |||
1059 | auto CurInst = MI.getIterator(); | |||
1060 | SmallVector<unsigned, 4> SubregsSeen; | |||
1061 | while (true) { | |||
1062 | // If we've found a copy from a physreg, first portion of search is over. | |||
1063 | if (!State.first.isVirtual()) | |||
1064 | break; | |||
1065 | ||||
1066 | // Record any subregister qualifier. | |||
1067 | if (State.second) | |||
1068 | SubregsSeen.push_back(State.second); | |||
1069 | ||||
1070 | assert(MRI.hasOneDef(State.first))((void)0); | |||
1071 | MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); | |||
1072 | CurInst = Inst.getIterator(); | |||
1073 | ||||
1074 | // Any non-copy instruction is the defining instruction we're seeking. | |||
1075 | if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) | |||
1076 | break; | |||
1077 | State = GetRegAndSubreg(Inst); | |||
1078 | }; | |||
1079 | ||||
1080 | // Helper lambda to apply additional subregister substitutions to a known | |||
1081 | // instruction/operand pair. Adds new (fake) substitutions so that we can | |||
1082 | // record the subregister. FIXME: this isn't very space efficient if multiple | |||
1083 | // values are tracked back through the same copies; cache something later. | |||
1084 | auto ApplySubregisters = | |||
1085 | [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { | |||
1086 | for (unsigned Subreg : reverse(SubregsSeen)) { | |||
1087 | // Fetch a new instruction number, not attached to an actual instruction. | |||
1088 | unsigned NewInstrNumber = getNewDebugInstrNum(); | |||
1089 | // Add a substitution from the "new" number to the known one, with a | |||
1090 | // qualifying subreg. | |||
1091 | makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); | |||
1092 | // Return the new number; to find the underlying value, consumers need to | |||
1093 | // deal with the qualifying subreg. | |||
1094 | P = {NewInstrNumber, 0}; | |||
1095 | } | |||
1096 | return P; | |||
1097 | }; | |||
1098 | ||||
1099 | // If we managed to find the defining instruction after COPYs, return an | |||
1100 | // instruction / operand pair after adding subregister qualifiers. | |||
1101 | if (State.first.isVirtual()) { | |||
1102 | // Virtual register def -- we can just look up where this happens. | |||
1103 | MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); | |||
1104 | for (auto &MO : Inst->operands()) { | |||
1105 | if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first) | |||
1106 | continue; | |||
1107 | return ApplySubregisters( | |||
1108 | {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)}); | |||
1109 | } | |||
1110 | ||||
1111 | llvm_unreachable("Vreg def with no corresponding operand?")__builtin_unreachable(); | |||
1112 | } | |||
1113 | ||||
1114 | // Our search ended in a copy from a physreg: walk back up the function | |||
1115 | // looking for whatever defines the physreg. | |||
1116 | assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst))((void)0); | |||
1117 | State = GetRegAndSubreg(*CurInst); | |||
1118 | Register RegToSeek = State.first; | |||
1119 | ||||
1120 | auto RMII = CurInst->getReverseIterator(); | |||
1121 | auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); | |||
1122 | for (auto &ToExamine : PrevInstrs) { | |||
1123 | for (auto &MO : ToExamine.operands()) { | |||
1124 | // Test for operand that defines something aliasing RegToSeek. | |||
1125 | if (!MO.isReg() || !MO.isDef() || | |||
1126 | !TRI.regsOverlap(RegToSeek, MO.getReg())) | |||
1127 | continue; | |||
1128 | ||||
1129 | return ApplySubregisters( | |||
1130 | {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)}); | |||
1131 | } | |||
1132 | } | |||
1133 | ||||
1134 | MachineBasicBlock &InsertBB = *CurInst->getParent(); | |||
1135 | ||||
1136 | // We reached the start of the block before finding a defining instruction. | |||
1137 | // It could be from a constant register, otherwise it must be an argument. | |||
1138 | if (TRI.isConstantPhysReg(State.first)) { | |||
1139 | // We can produce a DBG_PHI that identifies the constant physreg. Doesn't | |||
1140 | // matter where we put it, as it's constant valued. | |||
1141 | assert(CurInst->isCopy())((void)0); | |||
1142 | } else if (State.first == TRI.getFrameRegister(*this)) { | |||
1143 | // LLVM IR is allowed to read the framepointer by calling a | |||
1144 | // llvm.frameaddress.* intrinsic. We can support this by emitting a | |||
1145 | // DBG_PHI $fp. This isn't ideal, because it extends the behaviours / | |||
1146 | // position that DBG_PHIs appear at, limiting what can be done later. | |||
1147 | // TODO: see if there's a better way of expressing these variable | |||
1148 | // locations. | |||
1149 | ; | |||
1150 | } else { | |||
1151 | // Assert that this is the entry block. If it isn't, then there is some | |||
1152 | // code construct we don't recognise that deals with physregs across | |||
1153 | // blocks. | |||
1154 | assert(!State.first.isVirtual())((void)0); | |||
1155 | assert(&*InsertBB.getParent()->begin() == &InsertBB)((void)0); | |||
1156 | } | |||
1157 | ||||
1158 | // Create DBG_PHI for specified physreg. | |||
1159 | auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), | |||
1160 | TII.get(TargetOpcode::DBG_PHI)); | |||
1161 | Builder.addReg(State.first, RegState::Debug); | |||
1162 | unsigned NewNum = getNewDebugInstrNum(); | |||
1163 | Builder.addImm(NewNum); | |||
1164 | return ApplySubregisters({NewNum, 0u}); | |||
1165 | } | |||
1166 | ||||
1167 | void MachineFunction::finalizeDebugInstrRefs() { | |||
1168 | auto *TII = getSubtarget().getInstrInfo(); | |||
1169 | ||||
1170 | auto MakeDbgValue = [&](MachineInstr &MI) { | |||
1171 | const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE); | |||
1172 | MI.setDesc(RefII); | |||
1173 | MI.getOperand(1).ChangeToRegister(0, false); | |||
1174 | MI.getOperand(0).setIsDebug(); | |||
1175 | }; | |||
1176 | ||||
1177 | if (!getTarget().Options.ValueTrackingVariableLocations) | |||
1178 | return; | |||
1179 | ||||
1180 | for (auto &MBB : *this) { | |||
1181 | for (auto &MI : MBB) { | |||
1182 | if (!MI.isDebugRef() || !MI.getOperand(0).isReg()) | |||
1183 | continue; | |||
1184 | ||||
1185 | Register Reg = MI.getOperand(0).getReg(); | |||
1186 | ||||
1187 | // Some vregs can be deleted as redundant in the meantime. Mark those | |||
1188 | // as DBG_VALUE $noreg. | |||
1189 | if (Reg == 0) { | |||
1190 | MakeDbgValue(MI); | |||
1191 | continue; | |||
1192 | } | |||
1193 | ||||
1194 | assert(Reg.isVirtual())((void)0); | |||
1195 | MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); | |||
1196 | assert(RegInfo->hasOneDef(Reg))((void)0); | |||
1197 | ||||
1198 | // If we've found a copy-like instruction, follow it back to the | |||
1199 | // instruction that defines the source value, see salvageCopySSA docs | |||
1200 | // for why this is important. | |||
1201 | if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { | |||
1202 | auto Result = salvageCopySSA(DefMI); | |||
1203 | MI.getOperand(0).ChangeToImmediate(Result.first); | |||
1204 | MI.getOperand(1).setImm(Result.second); | |||
1205 | } else { | |||
1206 | // Otherwise, identify the operand number that the VReg refers to. | |||
1207 | unsigned OperandIdx = 0; | |||
1208 | for (const auto &MO : DefMI.operands()) { | |||
1209 | if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) | |||
1210 | break; | |||
1211 | ++OperandIdx; | |||
1212 | } | |||
1213 | assert(OperandIdx < DefMI.getNumOperands())((void)0); | |||
1214 | ||||
1215 | // Morph this instr ref to point at the given instruction and operand. | |||
1216 | unsigned ID = DefMI.getDebugInstrNum(); | |||
1217 | MI.getOperand(0).ChangeToImmediate(ID); | |||
1218 | MI.getOperand(1).setImm(OperandIdx); | |||
1219 | } | |||
1220 | } | |||
1221 | } | |||
1222 | } | |||
1223 | ||||
1224 | /// \} | |||
1225 | ||||
1226 | //===----------------------------------------------------------------------===// | |||
1227 | // MachineJumpTableInfo implementation | |||
1228 | //===----------------------------------------------------------------------===// | |||
1229 | ||||
1230 | /// Return the size of each entry in the jump table. | |||
1231 | unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { | |||
1232 | // The size of a jump table entry is 4 bytes unless the entry is just the | |||
1233 | // address of a block, in which case it is the pointer size. | |||
1234 | switch (getEntryKind()) { | |||
1235 | case MachineJumpTableInfo::EK_BlockAddress: | |||
1236 | return TD.getPointerSize(); | |||
1237 | case MachineJumpTableInfo::EK_GPRel64BlockAddress: | |||
1238 | return 8; | |||
1239 | case MachineJumpTableInfo::EK_GPRel32BlockAddress: | |||
1240 | case MachineJumpTableInfo::EK_LabelDifference32: | |||
1241 | case MachineJumpTableInfo::EK_Custom32: | |||
1242 | return 4; | |||
1243 | case MachineJumpTableInfo::EK_Inline: | |||
1244 | return 0; | |||
1245 | } | |||
1246 | llvm_unreachable("Unknown jump table encoding!")__builtin_unreachable(); | |||
1247 | } | |||
1248 | ||||
1249 | /// Return the alignment of each entry in the jump table. | |||
1250 | unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { | |||
1251 | // The alignment of a jump table entry is the alignment of int32 unless the | |||
1252 | // entry is just the address of a block, in which case it is the pointer | |||
1253 | // alignment. | |||
1254 | switch (getEntryKind()) { | |||
1255 | case MachineJumpTableInfo::EK_BlockAddress: | |||
1256 | return TD.getPointerABIAlignment(0).value(); | |||
1257 | case MachineJumpTableInfo::EK_GPRel64BlockAddress: | |||
1258 | return TD.getABIIntegerTypeAlignment(64).value(); | |||
1259 | case MachineJumpTableInfo::EK_GPRel32BlockAddress: | |||
1260 | case MachineJumpTableInfo::EK_LabelDifference32: | |||
1261 | case MachineJumpTableInfo::EK_Custom32: | |||
1262 | return TD.getABIIntegerTypeAlignment(32).value(); | |||
1263 | case MachineJumpTableInfo::EK_Inline: | |||
1264 | return 1; | |||
1265 | } | |||
1266 | llvm_unreachable("Unknown jump table encoding!")__builtin_unreachable(); | |||
1267 | } | |||
1268 | ||||
1269 | /// Create a new jump table entry in the jump table info. | |||
1270 | unsigned MachineJumpTableInfo::createJumpTableIndex( | |||
1271 | const std::vector<MachineBasicBlock*> &DestBBs) { | |||
1272 | assert(!DestBBs.empty() && "Cannot create an empty jump table!")((void)0); | |||
1273 | JumpTables.push_back(MachineJumpTableEntry(DestBBs)); | |||
1274 | return JumpTables.size()-1; | |||
1275 | } | |||
1276 | ||||
1277 | /// If Old is the target of any jump tables, update the jump tables to branch | |||
1278 | /// to New instead. | |||
1279 | bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, | |||
1280 | MachineBasicBlock *New) { | |||
1281 | assert(Old != New && "Not making a change?")((void)0); | |||
1282 | bool MadeChange = false; | |||
1283 | for (size_t i = 0, e = JumpTables.size(); i != e; ++i) | |||
1284 | ReplaceMBBInJumpTable(i, Old, New); | |||
1285 | return MadeChange; | |||
1286 | } | |||
1287 | ||||
1288 | /// If MBB is present in any jump tables, remove it. | |||
1289 | bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { | |||
1290 | bool MadeChange = false; | |||
1291 | for (MachineJumpTableEntry &JTE : JumpTables) { | |||
1292 | auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); | |||
1293 | MadeChange |= (removeBeginItr != JTE.MBBs.end()); | |||
1294 | JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); | |||
1295 | } | |||
1296 | return MadeChange; | |||
1297 | } | |||
1298 | ||||
1299 | /// If Old is a target of the jump tables, update the jump table to branch to | |||
1300 | /// New instead. | |||
1301 | bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, | |||
1302 | MachineBasicBlock *Old, | |||
1303 | MachineBasicBlock *New) { | |||
1304 | assert(Old != New && "Not making a change?")((void)0); | |||
1305 | bool MadeChange = false; | |||
1306 | MachineJumpTableEntry &JTE = JumpTables[Idx]; | |||
1307 | for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) | |||
1308 | if (JTE.MBBs[j] == Old) { | |||
1309 | JTE.MBBs[j] = New; | |||
1310 | MadeChange = true; | |||
1311 | } | |||
1312 | return MadeChange; | |||
1313 | } | |||
1314 | ||||
1315 | void MachineJumpTableInfo::print(raw_ostream &OS) const { | |||
1316 | if (JumpTables.empty()) return; | |||
1317 | ||||
1318 | OS << "Jump Tables:\n"; | |||
1319 | ||||
1320 | for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { | |||
1321 | OS << printJumpTableEntryReference(i) << ':'; | |||
1322 | for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) | |||
1323 | OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]); | |||
1324 | if (i != e) | |||
1325 | OS << '\n'; | |||
1326 | } | |||
1327 | ||||
1328 | OS << '\n'; | |||
1329 | } | |||
1330 | ||||
1331 | #if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP) | |||
1332 | LLVM_DUMP_METHOD__attribute__((noinline)) void MachineJumpTableInfo::dump() const { print(dbgs()); } | |||
1333 | #endif | |||
1334 | ||||
1335 | Printable llvm::printJumpTableEntryReference(unsigned Idx) { | |||
1336 | return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); | |||
1337 | } | |||
1338 | ||||
1339 | //===----------------------------------------------------------------------===// | |||
1340 | // MachineConstantPool implementation | |||
1341 | //===----------------------------------------------------------------------===// | |||
1342 | ||||
1343 | void MachineConstantPoolValue::anchor() {} | |||
1344 | ||||
1345 | unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { | |||
1346 | return DL.getTypeAllocSize(Ty); | |||
1347 | } | |||
1348 | ||||
1349 | unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { | |||
1350 | if (isMachineConstantPoolEntry()) | |||
1351 | return Val.MachineCPVal->getSizeInBytes(DL); | |||
1352 | return DL.getTypeAllocSize(Val.ConstVal->getType()); | |||
1353 | } | |||
1354 | ||||
1355 | bool MachineConstantPoolEntry::needsRelocation() const { | |||
1356 | if (isMachineConstantPoolEntry()) | |||
1357 | return true; | |||
1358 | return Val.ConstVal->needsDynamicRelocation(); | |||
1359 | } | |||
1360 | ||||
1361 | SectionKind | |||
1362 | MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { | |||
1363 | if (needsRelocation()) | |||
1364 | return SectionKind::getReadOnlyWithRel(); | |||
1365 | switch (getSizeInBytes(*DL)) { | |||
1366 | case 4: | |||
1367 | return SectionKind::getMergeableConst4(); | |||
1368 | case 8: | |||
1369 | return SectionKind::getMergeableConst8(); | |||
1370 | case 16: | |||
1371 | return SectionKind::getMergeableConst16(); | |||
1372 | case 32: | |||
1373 | return SectionKind::getMergeableConst32(); | |||
1374 | default: | |||
1375 | return SectionKind::getReadOnly(); | |||
1376 | } | |||
1377 | } | |||
1378 | ||||
1379 | MachineConstantPool::~MachineConstantPool() { | |||
1380 | // A constant may be a member of both Constants and MachineCPVsSharingEntries, | |||
1381 | // so keep track of which we've deleted to avoid double deletions. | |||
1382 | DenseSet<MachineConstantPoolValue*> Deleted; | |||
1383 | for (unsigned i = 0, e = Constants.size(); i != e; ++i) | |||
1384 | if (Constants[i].isMachineConstantPoolEntry()) { | |||
1385 | Deleted.insert(Constants[i].Val.MachineCPVal); | |||
1386 | delete Constants[i].Val.MachineCPVal; | |||
1387 | } | |||
1388 | for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { | |||
1389 | if (Deleted.count(CPV) == 0) | |||
1390 | delete CPV; | |||
1391 | } | |||
1392 | } | |||
1393 | ||||
1394 | /// Test whether the given two constants can be allocated the same constant pool | |||
1395 | /// entry. | |||
1396 | static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, | |||
1397 | const DataLayout &DL) { | |||
1398 | // Handle the trivial case quickly. | |||
1399 | if (A == B) return true; | |||
1400 | ||||
1401 | // If they have the same type but weren't the same constant, quickly | |||
1402 | // reject them. | |||
1403 | if (A->getType() == B->getType()) return false; | |||
1404 | ||||
1405 | // We can't handle structs or arrays. | |||
1406 | if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || | |||
1407 | isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) | |||
1408 | return false; | |||
1409 | ||||
1410 | // For now, only support constants with the same size. | |||
1411 | uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); | |||
1412 | if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) | |||
1413 | return false; | |||
1414 | ||||
1415 | Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); | |||
1416 | ||||
1417 | // Try constant folding a bitcast of both instructions to an integer. If we | |||
1418 | // get two identical ConstantInt's, then we are good to share them. We use | |||
1419 | // the constant folding APIs to do this so that we get the benefit of | |||
1420 | // DataLayout. | |||
1421 | if (isa<PointerType>(A->getType())) | |||
1422 | A = ConstantFoldCastOperand(Instruction::PtrToInt, | |||
1423 | const_cast<Constant *>(A), IntTy, DL); | |||
1424 | else if (A->getType() != IntTy) | |||
1425 | A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), | |||
1426 | IntTy, DL); | |||
1427 | if (isa<PointerType>(B->getType())) | |||
1428 | B = ConstantFoldCastOperand(Instruction::PtrToInt, | |||
1429 | const_cast<Constant *>(B), IntTy, DL); | |||
1430 | else if (B->getType() != IntTy) | |||
1431 | B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), | |||
1432 | IntTy, DL); | |||
1433 | ||||
1434 | return A == B; | |||
1435 | } | |||
1436 | ||||
1437 | /// Create a new entry in the constant pool or return an existing one. | |||
1438 | /// User must specify the log2 of the minimum required alignment for the object. | |||
1439 | unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, | |||
1440 | Align Alignment) { | |||
1441 | if (Alignment > PoolAlignment) PoolAlignment = Alignment; | |||
1442 | ||||
1443 | // Check to see if we already have this constant. | |||
1444 | // | |||
1445 | // FIXME, this could be made much more efficient for large constant pools. | |||
1446 | for (unsigned i = 0, e = Constants.size(); i != e; ++i) | |||
1447 | if (!Constants[i].isMachineConstantPoolEntry() && | |||
1448 | CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { | |||
1449 | if (Constants[i].getAlign() < Alignment) | |||
1450 | Constants[i].Alignment = Alignment; | |||
1451 | return i; | |||
1452 | } | |||
1453 | ||||
1454 | Constants.push_back(MachineConstantPoolEntry(C, Alignment)); | |||
1455 | return Constants.size()-1; | |||
1456 | } | |||
1457 | ||||
1458 | unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, | |||
1459 | Align Alignment) { | |||
1460 | if (Alignment > PoolAlignment) PoolAlignment = Alignment; | |||
1461 | ||||
1462 | // Check to see if we already have this constant. | |||
1463 | // | |||
1464 | // FIXME, this could be made much more efficient for large constant pools. | |||
1465 | int Idx = V->getExistingMachineCPValue(this, Alignment); | |||
1466 | if (Idx != -1) { | |||
1467 | MachineCPVsSharingEntries.insert(V); | |||
1468 | return (unsigned)Idx; | |||
1469 | } | |||
1470 | ||||
1471 | Constants.push_back(MachineConstantPoolEntry(V, Alignment)); | |||
1472 | return Constants.size()-1; | |||
1473 | } | |||
1474 | ||||
1475 | void MachineConstantPool::print(raw_ostream &OS) const { | |||
1476 | if (Constants.empty()) return; | |||
1477 | ||||
1478 | OS << "Constant Pool:\n"; | |||
1479 | for (unsigned i = 0, e = Constants.size(); i != e; ++i) { | |||
1480 | OS << " cp#" << i << ": "; | |||
1481 | if (Constants[i].isMachineConstantPoolEntry()) | |||
1482 | Constants[i].Val.MachineCPVal->print(OS); | |||
1483 | else | |||
1484 | Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); | |||
1485 | OS << ", align=" << Constants[i].getAlign().value(); | |||
1486 | OS << "\n"; | |||
1487 | } | |||
1488 | } | |||
1489 | ||||
1490 | #if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP) | |||
1491 | LLVM_DUMP_METHOD__attribute__((noinline)) void MachineConstantPool::dump() const { print(dbgs()); } | |||
1492 | #endif |
1 | //===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// \file |
9 | /// |
10 | /// This file defines the BumpPtrAllocator interface. BumpPtrAllocator conforms |
11 | /// to the LLVM "Allocator" concept and is similar to MallocAllocator, but |
12 | /// objects cannot be deallocated. Their lifetime is tied to the lifetime of the |
13 | /// allocator. |
14 | /// |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #ifndef LLVM_SUPPORT_ALLOCATOR_H |
18 | #define LLVM_SUPPORT_ALLOCATOR_H |
19 | |
20 | #include "llvm/ADT/Optional.h" |
21 | #include "llvm/ADT/SmallVector.h" |
22 | #include "llvm/Support/Alignment.h" |
23 | #include "llvm/Support/AllocatorBase.h" |
24 | #include "llvm/Support/Compiler.h" |
25 | #include "llvm/Support/ErrorHandling.h" |
26 | #include "llvm/Support/MathExtras.h" |
27 | #include "llvm/Support/MemAlloc.h" |
28 | #include <algorithm> |
29 | #include <cassert> |
30 | #include <cstddef> |
31 | #include <cstdint> |
32 | #include <cstdlib> |
33 | #include <iterator> |
34 | #include <type_traits> |
35 | #include <utility> |
36 | |
37 | namespace llvm { |
38 | |
39 | namespace detail { |
40 | |
41 | // We call out to an external function to actually print the message as the |
42 | // printing code uses Allocator.h in its implementation. |
43 | void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated, |
44 | size_t TotalMemory); |
45 | |
46 | } // end namespace detail |
47 | |
48 | /// Allocate memory in an ever growing pool, as if by bump-pointer. |
49 | /// |
50 | /// This isn't strictly a bump-pointer allocator as it uses backing slabs of |
51 | /// memory rather than relying on a boundless contiguous heap. However, it has |
52 | /// bump-pointer semantics in that it is a monotonically growing pool of memory |
53 | /// where every allocation is found by merely allocating the next N bytes in |
54 | /// the slab, or the next N bytes in the next slab. |
55 | /// |
56 | /// Note that this also has a threshold for forcing allocations above a certain |
57 | /// size into their own slab. |
58 | /// |
59 | /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator |
60 | /// object, which wraps malloc, to allocate memory, but it can be changed to |
61 | /// use a custom allocator. |
62 | /// |
63 | /// The GrowthDelay specifies after how many allocated slabs the allocator |
64 | /// increases the size of the slabs. |
65 | template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096, |
66 | size_t SizeThreshold = SlabSize, size_t GrowthDelay = 128> |
67 | class BumpPtrAllocatorImpl |
68 | : public AllocatorBase<BumpPtrAllocatorImpl<AllocatorT, SlabSize, |
69 | SizeThreshold, GrowthDelay>>, |
70 | private AllocatorT { |
71 | public: |
72 | static_assert(SizeThreshold <= SlabSize, |
73 | "The SizeThreshold must be at most the SlabSize to ensure " |
74 | "that objects larger than a slab go into their own memory " |
75 | "allocation."); |
76 | static_assert(GrowthDelay > 0, |
77 | "GrowthDelay must be at least 1 which already increases the" |
78 | "slab size after each allocated slab."); |
79 | |
80 | BumpPtrAllocatorImpl() = default; |
81 | |
82 | template <typename T> |
83 | BumpPtrAllocatorImpl(T &&Allocator) |
84 | : AllocatorT(std::forward<T &&>(Allocator)) {} |
85 | |
86 | // Manually implement a move constructor as we must clear the old allocator's |
87 | // slabs as a matter of correctness. |
88 | BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old) |
89 | : AllocatorT(static_cast<AllocatorT &&>(Old)), CurPtr(Old.CurPtr), |
90 | End(Old.End), Slabs(std::move(Old.Slabs)), |
91 | CustomSizedSlabs(std::move(Old.CustomSizedSlabs)), |
92 | BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize) { |
93 | Old.CurPtr = Old.End = nullptr; |
94 | Old.BytesAllocated = 0; |
95 | Old.Slabs.clear(); |
96 | Old.CustomSizedSlabs.clear(); |
97 | } |
98 | |
99 | ~BumpPtrAllocatorImpl() { |
100 | DeallocateSlabs(Slabs.begin(), Slabs.end()); |
101 | DeallocateCustomSizedSlabs(); |
102 | } |
103 | |
104 | BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) { |
105 | DeallocateSlabs(Slabs.begin(), Slabs.end()); |
106 | DeallocateCustomSizedSlabs(); |
107 | |
108 | CurPtr = RHS.CurPtr; |
109 | End = RHS.End; |
110 | BytesAllocated = RHS.BytesAllocated; |
111 | RedZoneSize = RHS.RedZoneSize; |
112 | Slabs = std::move(RHS.Slabs); |
113 | CustomSizedSlabs = std::move(RHS.CustomSizedSlabs); |
114 | AllocatorT::operator=(static_cast<AllocatorT &&>(RHS)); |
115 | |
116 | RHS.CurPtr = RHS.End = nullptr; |
117 | RHS.BytesAllocated = 0; |
118 | RHS.Slabs.clear(); |
119 | RHS.CustomSizedSlabs.clear(); |
120 | return *this; |
121 | } |
122 | |
123 | /// Deallocate all but the current slab and reset the current pointer |
124 | /// to the beginning of it, freeing all memory allocated so far. |
125 | void Reset() { |
126 | // Deallocate all but the first slab, and deallocate all custom-sized slabs. |
127 | DeallocateCustomSizedSlabs(); |
128 | CustomSizedSlabs.clear(); |
129 | |
130 | if (Slabs.empty()) |
131 | return; |
132 | |
133 | // Reset the state. |
134 | BytesAllocated = 0; |
135 | CurPtr = (char *)Slabs.front(); |
136 | End = CurPtr + SlabSize; |
137 | |
138 | __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0)); |
139 | DeallocateSlabs(std::next(Slabs.begin()), Slabs.end()); |
140 | Slabs.erase(std::next(Slabs.begin()), Slabs.end()); |
141 | } |
142 | |
143 | /// Allocate space at the specified alignment. |
144 | LLVM_ATTRIBUTE_RETURNS_NONNULL__attribute__((returns_nonnull)) LLVM_ATTRIBUTE_RETURNS_NOALIAS__attribute__((__malloc__)) void * |
145 | Allocate(size_t Size, Align Alignment) { |
146 | // Keep track of how many bytes we've allocated. |
147 | BytesAllocated += Size; |
148 | |
149 | size_t Adjustment = offsetToAlignedAddr(CurPtr, Alignment); |
150 | assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow")((void)0); |
151 | |
152 | size_t SizeToAllocate = Size; |
153 | #if LLVM_ADDRESS_SANITIZER_BUILD0 |
154 | // Add trailing bytes as a "red zone" under ASan. |
155 | SizeToAllocate += RedZoneSize; |
156 | #endif |
157 | |
158 | // Check if we have enough space. |
159 | if (Adjustment + SizeToAllocate <= size_t(End - CurPtr)) { |
160 | char *AlignedPtr = CurPtr + Adjustment; |
161 | CurPtr = AlignedPtr + SizeToAllocate; |
162 | // Update the allocation point of this memory block in MemorySanitizer. |
163 | // Without this, MemorySanitizer messages for values originated from here |
164 | // will point to the allocation of the entire slab. |
165 | __msan_allocated_memory(AlignedPtr, Size); |
166 | // Similarly, tell ASan about this space. |
167 | __asan_unpoison_memory_region(AlignedPtr, Size); |
168 | return AlignedPtr; |
169 | } |
170 | |
171 | // If Size is really big, allocate a separate slab for it. |
172 | size_t PaddedSize = SizeToAllocate + Alignment.value() - 1; |
173 | if (PaddedSize > SizeThreshold) { |
174 | void *NewSlab = |
175 | AllocatorT::Allocate(PaddedSize, alignof(std::max_align_t)); |
176 | // We own the new slab and don't want anyone reading anyting other than |
177 | // pieces returned from this method. So poison the whole slab. |
178 | __asan_poison_memory_region(NewSlab, PaddedSize); |
179 | CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize)); |
180 | |
181 | uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment); |
182 | assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize)((void)0); |
183 | char *AlignedPtr = (char*)AlignedAddr; |
184 | __msan_allocated_memory(AlignedPtr, Size); |
185 | __asan_unpoison_memory_region(AlignedPtr, Size); |
186 | return AlignedPtr; |
187 | } |
188 | |
189 | // Otherwise, start a new slab and try again. |
190 | StartNewSlab(); |
191 | uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment); |
192 | assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End &&((void)0) |
193 | "Unable to allocate memory!")((void)0); |
194 | char *AlignedPtr = (char*)AlignedAddr; |
195 | CurPtr = AlignedPtr + SizeToAllocate; |
196 | __msan_allocated_memory(AlignedPtr, Size); |
197 | __asan_unpoison_memory_region(AlignedPtr, Size); |
198 | return AlignedPtr; |
199 | } |
200 | |
201 | inline LLVM_ATTRIBUTE_RETURNS_NONNULL__attribute__((returns_nonnull)) LLVM_ATTRIBUTE_RETURNS_NOALIAS__attribute__((__malloc__)) void * |
202 | Allocate(size_t Size, size_t Alignment) { |
203 | assert(Alignment > 0 && "0-byte alignment is not allowed. Use 1 instead.")((void)0); |
204 | return Allocate(Size, Align(Alignment)); |
205 | } |
206 | |
207 | // Pull in base class overloads. |
208 | using AllocatorBase<BumpPtrAllocatorImpl>::Allocate; |
209 | |
210 | // Bump pointer allocators are expected to never free their storage; and |
211 | // clients expect pointers to remain valid for non-dereferencing uses even |
212 | // after deallocation. |
213 | void Deallocate(const void *Ptr, size_t Size, size_t /*Alignment*/) { |
214 | __asan_poison_memory_region(Ptr, Size); |
215 | } |
216 | |
217 | // Pull in base class overloads. |
218 | using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate; |
219 | |
220 | size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); } |
221 | |
222 | /// \return An index uniquely and reproducibly identifying |
223 | /// an input pointer \p Ptr in the given allocator. |
224 | /// The returned value is negative iff the object is inside a custom-size |
225 | /// slab. |
226 | /// Returns an empty optional if the pointer is not found in the allocator. |
227 | llvm::Optional<int64_t> identifyObject(const void *Ptr) { |
228 | const char *P = static_cast<const char *>(Ptr); |
229 | int64_t InSlabIdx = 0; |
230 | for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) { |
231 | const char *S = static_cast<const char *>(Slabs[Idx]); |
232 | if (P >= S && P < S + computeSlabSize(Idx)) |
233 | return InSlabIdx + static_cast<int64_t>(P - S); |
234 | InSlabIdx += static_cast<int64_t>(computeSlabSize(Idx)); |
235 | } |
236 | |
237 | // Use negative index to denote custom sized slabs. |
238 | int64_t InCustomSizedSlabIdx = -1; |
239 | for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) { |
240 | const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first); |
241 | size_t Size = CustomSizedSlabs[Idx].second; |
242 | if (P >= S && P < S + Size) |
243 | return InCustomSizedSlabIdx - static_cast<int64_t>(P - S); |
244 | InCustomSizedSlabIdx -= static_cast<int64_t>(Size); |
245 | } |
246 | return None; |
247 | } |
248 | |
249 | /// A wrapper around identifyObject that additionally asserts that |
250 | /// the object is indeed within the allocator. |
251 | /// \return An index uniquely and reproducibly identifying |
252 | /// an input pointer \p Ptr in the given allocator. |
253 | int64_t identifyKnownObject(const void *Ptr) { |
254 | Optional<int64_t> Out = identifyObject(Ptr); |
255 | assert(Out && "Wrong allocator used")((void)0); |
256 | return *Out; |
257 | } |
258 | |
259 | /// A wrapper around identifyKnownObject. Accepts type information |
260 | /// about the object and produces a smaller identifier by relying on |
261 | /// the alignment information. Note that sub-classes may have different |
262 | /// alignment, so the most base class should be passed as template parameter |
263 | /// in order to obtain correct results. For that reason automatic template |
264 | /// parameter deduction is disabled. |
265 | /// \return An index uniquely and reproducibly identifying |
266 | /// an input pointer \p Ptr in the given allocator. This identifier is |
267 | /// different from the ones produced by identifyObject and |
268 | /// identifyAlignedObject. |
269 | template <typename T> |
270 | int64_t identifyKnownAlignedObject(const void *Ptr) { |
271 | int64_t Out = identifyKnownObject(Ptr); |
272 | assert(Out % alignof(T) == 0 && "Wrong alignment information")((void)0); |
273 | return Out / alignof(T); |
274 | } |
275 | |
276 | size_t getTotalMemory() const { |
277 | size_t TotalMemory = 0; |
278 | for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I) |
279 | TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I)); |
280 | for (auto &PtrAndSize : CustomSizedSlabs) |
281 | TotalMemory += PtrAndSize.second; |
282 | return TotalMemory; |
283 | } |
284 | |
285 | size_t getBytesAllocated() const { return BytesAllocated; } |
286 | |
287 | void setRedZoneSize(size_t NewSize) { |
288 | RedZoneSize = NewSize; |
289 | } |
290 | |
291 | void PrintStats() const { |
292 | detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated, |
293 | getTotalMemory()); |
294 | } |
295 | |
296 | private: |
297 | /// The current pointer into the current slab. |
298 | /// |
299 | /// This points to the next free byte in the slab. |
300 | char *CurPtr = nullptr; |
301 | |
302 | /// The end of the current slab. |
303 | char *End = nullptr; |
304 | |
305 | /// The slabs allocated so far. |
306 | SmallVector<void *, 4> Slabs; |
307 | |
308 | /// Custom-sized slabs allocated for too-large allocation requests. |
309 | SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs; |
310 | |
311 | /// How many bytes we've allocated. |
312 | /// |
313 | /// Used so that we can compute how much space was wasted. |
314 | size_t BytesAllocated = 0; |
315 | |
316 | /// The number of bytes to put between allocations when running under |
317 | /// a sanitizer. |
318 | size_t RedZoneSize = 1; |
319 | |
320 | static size_t computeSlabSize(unsigned SlabIdx) { |
321 | // Scale the actual allocated slab size based on the number of slabs |
322 | // allocated. Every GrowthDelay slabs allocated, we double |
323 | // the allocated size to reduce allocation frequency, but saturate at |
324 | // multiplying the slab size by 2^30. |
325 | return SlabSize * |
326 | ((size_t)1 << std::min<size_t>(30, SlabIdx / GrowthDelay)); |
327 | } |
328 | |
329 | /// Allocate a new slab and move the bump pointers over into the new |
330 | /// slab, modifying CurPtr and End. |
331 | void StartNewSlab() { |
332 | size_t AllocatedSlabSize = computeSlabSize(Slabs.size()); |
333 | |
334 | void *NewSlab = |
335 | AllocatorT::Allocate(AllocatedSlabSize, alignof(std::max_align_t)); |
336 | // We own the new slab and don't want anyone reading anything other than |
337 | // pieces returned from this method. So poison the whole slab. |
338 | __asan_poison_memory_region(NewSlab, AllocatedSlabSize); |
339 | |
340 | Slabs.push_back(NewSlab); |
341 | CurPtr = (char *)(NewSlab); |
342 | End = ((char *)NewSlab) + AllocatedSlabSize; |
343 | } |
344 | |
345 | /// Deallocate a sequence of slabs. |
346 | void DeallocateSlabs(SmallVectorImpl<void *>::iterator I, |
347 | SmallVectorImpl<void *>::iterator E) { |
348 | for (; I != E; ++I) { |
349 | size_t AllocatedSlabSize = |
350 | computeSlabSize(std::distance(Slabs.begin(), I)); |
351 | AllocatorT::Deallocate(*I, AllocatedSlabSize, alignof(std::max_align_t)); |
352 | } |
353 | } |
354 | |
355 | /// Deallocate all memory for custom sized slabs. |
356 | void DeallocateCustomSizedSlabs() { |
357 | for (auto &PtrAndSize : CustomSizedSlabs) { |
358 | void *Ptr = PtrAndSize.first; |
359 | size_t Size = PtrAndSize.second; |
360 | AllocatorT::Deallocate(Ptr, Size, alignof(std::max_align_t)); |
361 | } |
362 | } |
363 | |
364 | template <typename T> friend class SpecificBumpPtrAllocator; |
365 | }; |
366 | |
367 | /// The standard BumpPtrAllocator which just uses the default template |
368 | /// parameters. |
369 | typedef BumpPtrAllocatorImpl<> BumpPtrAllocator; |
370 | |
371 | /// A BumpPtrAllocator that allows only elements of a specific type to be |
372 | /// allocated. |
373 | /// |
374 | /// This allows calling the destructor in DestroyAll() and when the allocator is |
375 | /// destroyed. |
376 | template <typename T> class SpecificBumpPtrAllocator { |
377 | BumpPtrAllocator Allocator; |
378 | |
379 | public: |
380 | SpecificBumpPtrAllocator() { |
381 | // Because SpecificBumpPtrAllocator walks the memory to call destructors, |
382 | // it can't have red zones between allocations. |
383 | Allocator.setRedZoneSize(0); |
384 | } |
385 | SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old) |
386 | : Allocator(std::move(Old.Allocator)) {} |
387 | ~SpecificBumpPtrAllocator() { DestroyAll(); } |
388 | |
389 | SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) { |
390 | Allocator = std::move(RHS.Allocator); |
391 | return *this; |
392 | } |
393 | |
394 | /// Call the destructor of each allocated object and deallocate all but the |
395 | /// current slab and reset the current pointer to the beginning of it, freeing |
396 | /// all memory allocated so far. |
397 | void DestroyAll() { |
398 | auto DestroyElements = [](char *Begin, char *End) { |
399 | assert(Begin == (char *)alignAddr(Begin, Align::Of<T>()))((void)0); |
400 | for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T)) |
401 | reinterpret_cast<T *>(Ptr)->~T(); |
402 | }; |
403 | |
404 | for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E; |
405 | ++I) { |
406 | size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize( |
407 | std::distance(Allocator.Slabs.begin(), I)); |
408 | char *Begin = (char *)alignAddr(*I, Align::Of<T>()); |
409 | char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr |
410 | : (char *)*I + AllocatedSlabSize; |
411 | |
412 | DestroyElements(Begin, End); |
413 | } |
414 | |
415 | for (auto &PtrAndSize : Allocator.CustomSizedSlabs) { |
416 | void *Ptr = PtrAndSize.first; |
417 | size_t Size = PtrAndSize.second; |
418 | DestroyElements((char *)alignAddr(Ptr, Align::Of<T>()), |
419 | (char *)Ptr + Size); |
420 | } |
421 | |
422 | Allocator.Reset(); |
423 | } |
424 | |
425 | /// Allocate space for an array of objects without constructing them. |
426 | T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); } |
427 | }; |
428 | |
429 | } // end namespace llvm |
430 | |
431 | template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold, |
432 | size_t GrowthDelay> |
433 | void * |
434 | operator new(size_t Size, |
435 | llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold, |
436 | GrowthDelay> &Allocator) { |
437 | return Allocator.Allocate(Size, std::min((size_t)llvm::NextPowerOf2(Size), |
438 | alignof(std::max_align_t))); |
439 | } |
440 | |
441 | template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold, |
442 | size_t GrowthDelay> |
443 | void operator delete(void *, |
444 | llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, |
445 | SizeThreshold, GrowthDelay> &) { |
446 | } |
447 | |
448 | #endif // LLVM_SUPPORT_ALLOCATOR_H |
1 | //===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // This file contains types to represent alignments. | |||
10 | // They are instrumented to guarantee some invariants are preserved and prevent | |||
11 | // invalid manipulations. | |||
12 | // | |||
13 | // - Align represents an alignment in bytes, it is always set and always a valid | |||
14 | // power of two, its minimum value is 1 which means no alignment requirements. | |||
15 | // | |||
16 | // - MaybeAlign is an optional type, it may be undefined or set. When it's set | |||
17 | // you can get the underlying Align type by using the getValue() method. | |||
18 | // | |||
19 | //===----------------------------------------------------------------------===// | |||
20 | ||||
21 | #ifndef LLVM_SUPPORT_ALIGNMENT_H_ | |||
22 | #define LLVM_SUPPORT_ALIGNMENT_H_ | |||
23 | ||||
24 | #include "llvm/ADT/Optional.h" | |||
25 | #include "llvm/Support/MathExtras.h" | |||
26 | #include <cassert> | |||
27 | #ifndef NDEBUG1 | |||
28 | #include <string> | |||
29 | #endif // NDEBUG | |||
30 | ||||
31 | namespace llvm { | |||
32 | ||||
33 | #define ALIGN_CHECK_ISPOSITIVE(decl) \ | |||
34 | assert(decl > 0 && (#decl " should be defined"))((void)0) | |||
35 | ||||
36 | /// This struct is a compact representation of a valid (non-zero power of two) | |||
37 | /// alignment. | |||
38 | /// It is suitable for use as static global constants. | |||
39 | struct Align { | |||
40 | private: | |||
41 | uint8_t ShiftValue = 0; /// The log2 of the required alignment. | |||
42 | /// ShiftValue is less than 64 by construction. | |||
43 | ||||
44 | friend struct MaybeAlign; | |||
45 | friend unsigned Log2(Align); | |||
46 | friend bool operator==(Align Lhs, Align Rhs); | |||
47 | friend bool operator!=(Align Lhs, Align Rhs); | |||
48 | friend bool operator<=(Align Lhs, Align Rhs); | |||
49 | friend bool operator>=(Align Lhs, Align Rhs); | |||
50 | friend bool operator<(Align Lhs, Align Rhs); | |||
51 | friend bool operator>(Align Lhs, Align Rhs); | |||
52 | friend unsigned encode(struct MaybeAlign A); | |||
53 | friend struct MaybeAlign decodeMaybeAlign(unsigned Value); | |||
54 | ||||
55 | /// A trivial type to allow construction of constexpr Align. | |||
56 | /// This is currently needed to workaround a bug in GCC 5.3 which prevents | |||
57 | /// definition of constexpr assign operators. | |||
58 | /// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic | |||
59 | /// FIXME: Remove this, make all assign operators constexpr and introduce user | |||
60 | /// defined literals when we don't have to support GCC 5.3 anymore. | |||
61 | /// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain | |||
62 | struct LogValue { | |||
63 | uint8_t Log; | |||
64 | }; | |||
65 | ||||
66 | public: | |||
67 | /// Default is byte-aligned. | |||
68 | constexpr Align() = default; | |||
69 | /// Do not perform checks in case of copy/move construct/assign, because the | |||
70 | /// checks have been performed when building `Other`. | |||
71 | constexpr Align(const Align &Other) = default; | |||
72 | constexpr Align(Align &&Other) = default; | |||
73 | Align &operator=(const Align &Other) = default; | |||
74 | Align &operator=(Align &&Other) = default; | |||
75 | ||||
76 | explicit Align(uint64_t Value) { | |||
77 | assert(Value > 0 && "Value must not be 0")((void)0); | |||
78 | assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2")((void)0); | |||
79 | ShiftValue = Log2_64(Value); | |||
80 | assert(ShiftValue < 64 && "Broken invariant")((void)0); | |||
81 | } | |||
82 | ||||
83 | /// This is a hole in the type system and should not be abused. | |||
84 | /// Needed to interact with C for instance. | |||
85 | uint64_t value() const { return uint64_t(1) << ShiftValue; } | |||
| ||||
86 | ||||
87 | /// Allow constructions of constexpr Align. | |||
88 | template <size_t kValue> constexpr static LogValue Constant() { | |||
89 | return LogValue{static_cast<uint8_t>(CTLog2<kValue>())}; | |||
90 | } | |||
91 | ||||
92 | /// Allow constructions of constexpr Align from types. | |||
93 | /// Compile time equivalent to Align(alignof(T)). | |||
94 | template <typename T> constexpr static LogValue Of() { | |||
95 | return Constant<std::alignment_of<T>::value>(); | |||
96 | } | |||
97 | ||||
98 | /// Constexpr constructor from LogValue type. | |||
99 | constexpr Align(LogValue CA) : ShiftValue(CA.Log) {} | |||
100 | }; | |||
101 | ||||
102 | /// Treats the value 0 as a 1, so Align is always at least 1. | |||
103 | inline Align assumeAligned(uint64_t Value) { | |||
104 | return Value ? Align(Value) : Align(); | |||
105 | } | |||
106 | ||||
107 | /// This struct is a compact representation of a valid (power of two) or | |||
108 | /// undefined (0) alignment. | |||
109 | struct MaybeAlign : public llvm::Optional<Align> { | |||
110 | private: | |||
111 | using UP = llvm::Optional<Align>; | |||
112 | ||||
113 | public: | |||
114 | /// Default is undefined. | |||
115 | MaybeAlign() = default; | |||
116 | /// Do not perform checks in case of copy/move construct/assign, because the | |||
117 | /// checks have been performed when building `Other`. | |||
118 | MaybeAlign(const MaybeAlign &Other) = default; | |||
119 | MaybeAlign &operator=(const MaybeAlign &Other) = default; | |||
120 | MaybeAlign(MaybeAlign &&Other) = default; | |||
121 | MaybeAlign &operator=(MaybeAlign &&Other) = default; | |||
122 | ||||
123 | /// Use llvm::Optional<Align> constructor. | |||
124 | using UP::UP; | |||
125 | ||||
126 | explicit MaybeAlign(uint64_t Value) { | |||
127 | assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&((void)0) | |||
128 | "Alignment is neither 0 nor a power of 2")((void)0); | |||
129 | if (Value) | |||
130 | emplace(Value); | |||
131 | } | |||
132 | ||||
133 | /// For convenience, returns a valid alignment or 1 if undefined. | |||
134 | Align valueOrOne() const { return hasValue() ? getValue() : Align(); } | |||
135 | }; | |||
136 | ||||
137 | /// Checks that SizeInBytes is a multiple of the alignment. | |||
138 | inline bool isAligned(Align Lhs, uint64_t SizeInBytes) { | |||
139 | return SizeInBytes % Lhs.value() == 0; | |||
140 | } | |||
141 | ||||
142 | /// Checks that Addr is a multiple of the alignment. | |||
143 | inline bool isAddrAligned(Align Lhs, const void *Addr) { | |||
144 | return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr)); | |||
145 | } | |||
146 | ||||
147 | /// Returns a multiple of A needed to store `Size` bytes. | |||
148 | inline uint64_t alignTo(uint64_t Size, Align A) { | |||
149 | const uint64_t Value = A.value(); | |||
150 | // The following line is equivalent to `(Size + Value - 1) / Value * Value`. | |||
151 | ||||
152 | // The division followed by a multiplication can be thought of as a right | |||
153 | // shift followed by a left shift which zeros out the extra bits produced in | |||
154 | // the bump; `~(Value - 1)` is a mask where all those bits being zeroed out | |||
155 | // are just zero. | |||
156 | ||||
157 | // Most compilers can generate this code but the pattern may be missed when | |||
158 | // multiple functions gets inlined. | |||
159 | return (Size + Value - 1) & ~(Value - 1U); | |||
160 | } | |||
161 | ||||
162 | /// If non-zero \p Skew is specified, the return value will be a minimal integer | |||
163 | /// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for | |||
164 | /// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p | |||
165 | /// Skew mod \p A'. | |||
166 | /// | |||
167 | /// Examples: | |||
168 | /// \code | |||
169 | /// alignTo(5, Align(8), 7) = 7 | |||
170 | /// alignTo(17, Align(8), 1) = 17 | |||
171 | /// alignTo(~0LL, Align(8), 3) = 3 | |||
172 | /// \endcode | |||
173 | inline uint64_t alignTo(uint64_t Size, Align A, uint64_t Skew) { | |||
174 | const uint64_t Value = A.value(); | |||
175 | Skew %= Value; | |||
176 | return ((Size + Value - 1 - Skew) & ~(Value - 1U)) + Skew; | |||
177 | } | |||
178 | ||||
179 | /// Returns a multiple of A needed to store `Size` bytes. | |||
180 | /// Returns `Size` if current alignment is undefined. | |||
181 | inline uint64_t alignTo(uint64_t Size, MaybeAlign A) { | |||
182 | return A ? alignTo(Size, A.getValue()) : Size; | |||
183 | } | |||
184 | ||||
185 | /// Aligns `Addr` to `Alignment` bytes, rounding up. | |||
186 | inline uintptr_t alignAddr(const void *Addr, Align Alignment) { | |||
187 | uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr); | |||
188 | assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=((void)0) | |||
189 | ArithAddr &&((void)0) | |||
190 | "Overflow")((void)0); | |||
191 | return alignTo(ArithAddr, Alignment); | |||
192 | } | |||
193 | ||||
194 | /// Returns the offset to the next integer (mod 2**64) that is greater than | |||
195 | /// or equal to \p Value and is a multiple of \p Align. | |||
196 | inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) { | |||
197 | return alignTo(Value, Alignment) - Value; | |||
198 | } | |||
199 | ||||
200 | /// Returns the necessary adjustment for aligning `Addr` to `Alignment` | |||
201 | /// bytes, rounding up. | |||
202 | inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) { | |||
203 | return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment); | |||
204 | } | |||
205 | ||||
206 | /// Returns the log2 of the alignment. | |||
207 | inline unsigned Log2(Align A) { return A.ShiftValue; } | |||
208 | ||||
209 | /// Returns the alignment that satisfies both alignments. | |||
210 | /// Same semantic as MinAlign. | |||
211 | inline Align commonAlignment(Align A, Align B) { return std::min(A, B); } | |||
212 | ||||
213 | /// Returns the alignment that satisfies both alignments. | |||
214 | /// Same semantic as MinAlign. | |||
215 | inline Align commonAlignment(Align A, uint64_t Offset) { | |||
216 | return Align(MinAlign(A.value(), Offset)); | |||
217 | } | |||
218 | ||||
219 | /// Returns the alignment that satisfies both alignments. | |||
220 | /// Same semantic as MinAlign. | |||
221 | inline MaybeAlign commonAlignment(MaybeAlign A, MaybeAlign B) { | |||
222 | return A && B ? commonAlignment(*A, *B) : A ? A : B; | |||
223 | } | |||
224 | ||||
225 | /// Returns the alignment that satisfies both alignments. | |||
226 | /// Same semantic as MinAlign. | |||
227 | inline MaybeAlign commonAlignment(MaybeAlign A, uint64_t Offset) { | |||
228 | return MaybeAlign(MinAlign((*A).value(), Offset)); | |||
229 | } | |||
230 | ||||
231 | /// Returns a representation of the alignment that encodes undefined as 0. | |||
232 | inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; } | |||
233 | ||||
234 | /// Dual operation of the encode function above. | |||
235 | inline MaybeAlign decodeMaybeAlign(unsigned Value) { | |||
236 | if (Value == 0) | |||
237 | return MaybeAlign(); | |||
238 | Align Out; | |||
239 | Out.ShiftValue = Value - 1; | |||
240 | return Out; | |||
241 | } | |||
242 | ||||
243 | /// Returns a representation of the alignment, the encoded value is positive by | |||
244 | /// definition. | |||
245 | inline unsigned encode(Align A) { return encode(MaybeAlign(A)); } | |||
246 | ||||
247 | /// Comparisons between Align and scalars. Rhs must be positive. | |||
248 | inline bool operator==(Align Lhs, uint64_t Rhs) { | |||
249 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
250 | return Lhs.value() == Rhs; | |||
251 | } | |||
252 | inline bool operator!=(Align Lhs, uint64_t Rhs) { | |||
253 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
254 | return Lhs.value() != Rhs; | |||
255 | } | |||
256 | inline bool operator<=(Align Lhs, uint64_t Rhs) { | |||
257 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
258 | return Lhs.value() <= Rhs; | |||
259 | } | |||
260 | inline bool operator>=(Align Lhs, uint64_t Rhs) { | |||
261 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
262 | return Lhs.value() >= Rhs; | |||
263 | } | |||
264 | inline bool operator<(Align Lhs, uint64_t Rhs) { | |||
265 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
266 | return Lhs.value() < Rhs; | |||
267 | } | |||
268 | inline bool operator>(Align Lhs, uint64_t Rhs) { | |||
269 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
270 | return Lhs.value() > Rhs; | |||
271 | } | |||
272 | ||||
273 | /// Comparisons between MaybeAlign and scalars. | |||
274 | inline bool operator==(MaybeAlign Lhs, uint64_t Rhs) { | |||
275 | return Lhs ? (*Lhs).value() == Rhs : Rhs == 0; | |||
276 | } | |||
277 | inline bool operator!=(MaybeAlign Lhs, uint64_t Rhs) { | |||
278 | return Lhs ? (*Lhs).value() != Rhs : Rhs != 0; | |||
279 | } | |||
280 | ||||
281 | /// Comparisons operators between Align. | |||
282 | inline bool operator==(Align Lhs, Align Rhs) { | |||
283 | return Lhs.ShiftValue == Rhs.ShiftValue; | |||
284 | } | |||
285 | inline bool operator!=(Align Lhs, Align Rhs) { | |||
286 | return Lhs.ShiftValue != Rhs.ShiftValue; | |||
287 | } | |||
288 | inline bool operator<=(Align Lhs, Align Rhs) { | |||
289 | return Lhs.ShiftValue <= Rhs.ShiftValue; | |||
290 | } | |||
291 | inline bool operator>=(Align Lhs, Align Rhs) { | |||
292 | return Lhs.ShiftValue >= Rhs.ShiftValue; | |||
293 | } | |||
294 | inline bool operator<(Align Lhs, Align Rhs) { | |||
295 | return Lhs.ShiftValue < Rhs.ShiftValue; | |||
296 | } | |||
297 | inline bool operator>(Align Lhs, Align Rhs) { | |||
298 | return Lhs.ShiftValue > Rhs.ShiftValue; | |||
299 | } | |||
300 | ||||
301 | // Don't allow relational comparisons with MaybeAlign. | |||
302 | bool operator<=(Align Lhs, MaybeAlign Rhs) = delete; | |||
303 | bool operator>=(Align Lhs, MaybeAlign Rhs) = delete; | |||
304 | bool operator<(Align Lhs, MaybeAlign Rhs) = delete; | |||
305 | bool operator>(Align Lhs, MaybeAlign Rhs) = delete; | |||
306 | ||||
307 | bool operator<=(MaybeAlign Lhs, Align Rhs) = delete; | |||
308 | bool operator>=(MaybeAlign Lhs, Align Rhs) = delete; | |||
309 | bool operator<(MaybeAlign Lhs, Align Rhs) = delete; | |||
310 | bool operator>(MaybeAlign Lhs, Align Rhs) = delete; | |||
311 | ||||
312 | bool operator<=(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
313 | bool operator>=(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
314 | bool operator<(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
315 | bool operator>(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
316 | ||||
317 | inline Align operator*(Align Lhs, uint64_t Rhs) { | |||
318 | assert(Rhs > 0 && "Rhs must be positive")((void)0); | |||
319 | return Align(Lhs.value() * Rhs); | |||
320 | } | |||
321 | ||||
322 | inline MaybeAlign operator*(MaybeAlign Lhs, uint64_t Rhs) { | |||
323 | assert(Rhs > 0 && "Rhs must be positive")((void)0); | |||
324 | return Lhs ? Lhs.getValue() * Rhs : MaybeAlign(); | |||
325 | } | |||
326 | ||||
327 | inline Align operator/(Align Lhs, uint64_t Divisor) { | |||
328 | assert(llvm::isPowerOf2_64(Divisor) &&((void)0) | |||
329 | "Divisor must be positive and a power of 2")((void)0); | |||
330 | assert(Lhs != 1 && "Can't halve byte alignment")((void)0); | |||
331 | return Align(Lhs.value() / Divisor); | |||
332 | } | |||
333 | ||||
334 | inline MaybeAlign operator/(MaybeAlign Lhs, uint64_t Divisor) { | |||
335 | assert(llvm::isPowerOf2_64(Divisor) &&((void)0) | |||
336 | "Divisor must be positive and a power of 2")((void)0); | |||
337 | return Lhs ? Lhs.getValue() / Divisor : MaybeAlign(); | |||
338 | } | |||
339 | ||||
340 | inline Align max(MaybeAlign Lhs, Align Rhs) { | |||
341 | return Lhs && *Lhs > Rhs ? *Lhs : Rhs; | |||
342 | } | |||
343 | ||||
344 | inline Align max(Align Lhs, MaybeAlign Rhs) { | |||
345 | return Rhs && *Rhs > Lhs ? *Rhs : Lhs; | |||
346 | } | |||
347 | ||||
348 | #ifndef NDEBUG1 | |||
349 | // For usage in LLVM_DEBUG macros. | |||
350 | inline std::string DebugStr(const Align &A) { | |||
351 | return std::to_string(A.value()); | |||
352 | } | |||
353 | // For usage in LLVM_DEBUG macros. | |||
354 | inline std::string DebugStr(const MaybeAlign &MA) { | |||
355 | if (MA) | |||
356 | return std::to_string(MA->value()); | |||
357 | return "None"; | |||
358 | } | |||
359 | #endif // NDEBUG | |||
360 | ||||
361 | #undef ALIGN_CHECK_ISPOSITIVE | |||
362 | ||||
363 | } // namespace llvm | |||
364 | ||||
365 | #endif // LLVM_SUPPORT_ALIGNMENT_H_ |