File: | src/gnu/usr.bin/clang/libclangCodeGen/../../../llvm/clang/lib/CodeGen/CGException.cpp |
Warning: | line 1298, column 36 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- CGException.cpp - Emit LLVM Code for C++ exceptions ----*- C++ -*-===// | ||||||
2 | // | ||||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||
6 | // | ||||||
7 | //===----------------------------------------------------------------------===// | ||||||
8 | // | ||||||
9 | // This contains code dealing with C++ exception related code generation. | ||||||
10 | // | ||||||
11 | //===----------------------------------------------------------------------===// | ||||||
12 | |||||||
13 | #include "CGCXXABI.h" | ||||||
14 | #include "CGCleanup.h" | ||||||
15 | #include "CGObjCRuntime.h" | ||||||
16 | #include "CodeGenFunction.h" | ||||||
17 | #include "ConstantEmitter.h" | ||||||
18 | #include "TargetInfo.h" | ||||||
19 | #include "clang/AST/Mangle.h" | ||||||
20 | #include "clang/AST/StmtCXX.h" | ||||||
21 | #include "clang/AST/StmtObjC.h" | ||||||
22 | #include "clang/AST/StmtVisitor.h" | ||||||
23 | #include "clang/Basic/DiagnosticSema.h" | ||||||
24 | #include "clang/Basic/TargetBuiltins.h" | ||||||
25 | #include "llvm/IR/IntrinsicInst.h" | ||||||
26 | #include "llvm/IR/Intrinsics.h" | ||||||
27 | #include "llvm/IR/IntrinsicsWebAssembly.h" | ||||||
28 | #include "llvm/Support/SaveAndRestore.h" | ||||||
29 | |||||||
30 | using namespace clang; | ||||||
31 | using namespace CodeGen; | ||||||
32 | |||||||
33 | static llvm::FunctionCallee getFreeExceptionFn(CodeGenModule &CGM) { | ||||||
34 | // void __cxa_free_exception(void *thrown_exception); | ||||||
35 | |||||||
36 | llvm::FunctionType *FTy = | ||||||
37 | llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*isVarArg=*/false); | ||||||
38 | |||||||
39 | return CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception"); | ||||||
40 | } | ||||||
41 | |||||||
42 | static llvm::FunctionCallee getSehTryBeginFn(CodeGenModule &CGM) { | ||||||
43 | llvm::FunctionType *FTy = | ||||||
44 | llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); | ||||||
45 | return CGM.CreateRuntimeFunction(FTy, "llvm.seh.try.begin"); | ||||||
46 | } | ||||||
47 | |||||||
48 | static llvm::FunctionCallee getSehTryEndFn(CodeGenModule &CGM) { | ||||||
49 | llvm::FunctionType *FTy = | ||||||
50 | llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); | ||||||
51 | return CGM.CreateRuntimeFunction(FTy, "llvm.seh.try.end"); | ||||||
52 | } | ||||||
53 | |||||||
54 | static llvm::FunctionCallee getUnexpectedFn(CodeGenModule &CGM) { | ||||||
55 | // void __cxa_call_unexpected(void *thrown_exception); | ||||||
56 | |||||||
57 | llvm::FunctionType *FTy = | ||||||
58 | llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*isVarArg=*/false); | ||||||
59 | |||||||
60 | return CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected"); | ||||||
61 | } | ||||||
62 | |||||||
63 | llvm::FunctionCallee CodeGenModule::getTerminateFn() { | ||||||
64 | // void __terminate(); | ||||||
65 | |||||||
66 | llvm::FunctionType *FTy = | ||||||
67 | llvm::FunctionType::get(VoidTy, /*isVarArg=*/false); | ||||||
68 | |||||||
69 | StringRef name; | ||||||
70 | |||||||
71 | // In C++, use std::terminate(). | ||||||
72 | if (getLangOpts().CPlusPlus && | ||||||
73 | getTarget().getCXXABI().isItaniumFamily()) { | ||||||
74 | name = "_ZSt9terminatev"; | ||||||
75 | } else if (getLangOpts().CPlusPlus && | ||||||
76 | getTarget().getCXXABI().isMicrosoft()) { | ||||||
77 | if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) | ||||||
78 | name = "__std_terminate"; | ||||||
79 | else | ||||||
80 | name = "?terminate@@YAXXZ"; | ||||||
81 | } else if (getLangOpts().ObjC && | ||||||
82 | getLangOpts().ObjCRuntime.hasTerminate()) | ||||||
83 | name = "objc_terminate"; | ||||||
84 | else | ||||||
85 | name = "abort"; | ||||||
86 | return CreateRuntimeFunction(FTy, name); | ||||||
87 | } | ||||||
88 | |||||||
89 | static llvm::FunctionCallee getCatchallRethrowFn(CodeGenModule &CGM, | ||||||
90 | StringRef Name) { | ||||||
91 | llvm::FunctionType *FTy = | ||||||
92 | llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*isVarArg=*/false); | ||||||
93 | |||||||
94 | return CGM.CreateRuntimeFunction(FTy, Name); | ||||||
95 | } | ||||||
96 | |||||||
97 | const EHPersonality EHPersonality::GNU_C = { "__gcc_personality_v0", nullptr }; | ||||||
98 | const EHPersonality | ||||||
99 | EHPersonality::GNU_C_SJLJ = { "__gcc_personality_sj0", nullptr }; | ||||||
100 | const EHPersonality | ||||||
101 | EHPersonality::GNU_C_SEH = { "__gcc_personality_seh0", nullptr }; | ||||||
102 | const EHPersonality | ||||||
103 | EHPersonality::NeXT_ObjC = { "__objc_personality_v0", nullptr }; | ||||||
104 | const EHPersonality | ||||||
105 | EHPersonality::GNU_CPlusPlus = { "__gxx_personality_v0", nullptr }; | ||||||
106 | const EHPersonality | ||||||
107 | EHPersonality::GNU_CPlusPlus_SJLJ = { "__gxx_personality_sj0", nullptr }; | ||||||
108 | const EHPersonality | ||||||
109 | EHPersonality::GNU_CPlusPlus_SEH = { "__gxx_personality_seh0", nullptr }; | ||||||
110 | const EHPersonality | ||||||
111 | EHPersonality::GNU_ObjC = {"__gnu_objc_personality_v0", "objc_exception_throw"}; | ||||||
112 | const EHPersonality | ||||||
113 | EHPersonality::GNU_ObjC_SJLJ = {"__gnu_objc_personality_sj0", "objc_exception_throw"}; | ||||||
114 | const EHPersonality | ||||||
115 | EHPersonality::GNU_ObjC_SEH = {"__gnu_objc_personality_seh0", "objc_exception_throw"}; | ||||||
116 | const EHPersonality | ||||||
117 | EHPersonality::GNU_ObjCXX = { "__gnustep_objcxx_personality_v0", nullptr }; | ||||||
118 | const EHPersonality | ||||||
119 | EHPersonality::GNUstep_ObjC = { "__gnustep_objc_personality_v0", nullptr }; | ||||||
120 | const EHPersonality | ||||||
121 | EHPersonality::MSVC_except_handler = { "_except_handler3", nullptr }; | ||||||
122 | const EHPersonality | ||||||
123 | EHPersonality::MSVC_C_specific_handler = { "__C_specific_handler", nullptr }; | ||||||
124 | const EHPersonality | ||||||
125 | EHPersonality::MSVC_CxxFrameHandler3 = { "__CxxFrameHandler3", nullptr }; | ||||||
126 | const EHPersonality | ||||||
127 | EHPersonality::GNU_Wasm_CPlusPlus = { "__gxx_wasm_personality_v0", nullptr }; | ||||||
128 | const EHPersonality EHPersonality::XL_CPlusPlus = {"__xlcxx_personality_v1", | ||||||
129 | nullptr}; | ||||||
130 | |||||||
131 | static const EHPersonality &getCPersonality(const TargetInfo &Target, | ||||||
132 | const LangOptions &L) { | ||||||
133 | const llvm::Triple &T = Target.getTriple(); | ||||||
134 | if (T.isWindowsMSVCEnvironment()) | ||||||
135 | return EHPersonality::MSVC_CxxFrameHandler3; | ||||||
136 | if (L.hasSjLjExceptions()) | ||||||
137 | return EHPersonality::GNU_C_SJLJ; | ||||||
138 | if (L.hasDWARFExceptions()) | ||||||
139 | return EHPersonality::GNU_C; | ||||||
140 | if (L.hasSEHExceptions()) | ||||||
141 | return EHPersonality::GNU_C_SEH; | ||||||
142 | return EHPersonality::GNU_C; | ||||||
143 | } | ||||||
144 | |||||||
145 | static const EHPersonality &getObjCPersonality(const TargetInfo &Target, | ||||||
146 | const LangOptions &L) { | ||||||
147 | const llvm::Triple &T = Target.getTriple(); | ||||||
148 | if (T.isWindowsMSVCEnvironment()) | ||||||
149 | return EHPersonality::MSVC_CxxFrameHandler3; | ||||||
150 | |||||||
151 | switch (L.ObjCRuntime.getKind()) { | ||||||
152 | case ObjCRuntime::FragileMacOSX: | ||||||
153 | return getCPersonality(Target, L); | ||||||
154 | case ObjCRuntime::MacOSX: | ||||||
155 | case ObjCRuntime::iOS: | ||||||
156 | case ObjCRuntime::WatchOS: | ||||||
157 | return EHPersonality::NeXT_ObjC; | ||||||
158 | case ObjCRuntime::GNUstep: | ||||||
159 | if (L.ObjCRuntime.getVersion() >= VersionTuple(1, 7)) | ||||||
160 | return EHPersonality::GNUstep_ObjC; | ||||||
161 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||||
162 | case ObjCRuntime::GCC: | ||||||
163 | case ObjCRuntime::ObjFW: | ||||||
164 | if (L.hasSjLjExceptions()) | ||||||
165 | return EHPersonality::GNU_ObjC_SJLJ; | ||||||
166 | if (L.hasSEHExceptions()) | ||||||
167 | return EHPersonality::GNU_ObjC_SEH; | ||||||
168 | return EHPersonality::GNU_ObjC; | ||||||
169 | } | ||||||
170 | llvm_unreachable("bad runtime kind")__builtin_unreachable(); | ||||||
171 | } | ||||||
172 | |||||||
173 | static const EHPersonality &getCXXPersonality(const TargetInfo &Target, | ||||||
174 | const LangOptions &L) { | ||||||
175 | const llvm::Triple &T = Target.getTriple(); | ||||||
176 | if (T.isWindowsMSVCEnvironment()) | ||||||
177 | return EHPersonality::MSVC_CxxFrameHandler3; | ||||||
178 | if (T.isOSAIX()) | ||||||
179 | return EHPersonality::XL_CPlusPlus; | ||||||
180 | if (L.hasSjLjExceptions()) | ||||||
181 | return EHPersonality::GNU_CPlusPlus_SJLJ; | ||||||
182 | if (L.hasDWARFExceptions()) | ||||||
183 | return EHPersonality::GNU_CPlusPlus; | ||||||
184 | if (L.hasSEHExceptions()) | ||||||
185 | return EHPersonality::GNU_CPlusPlus_SEH; | ||||||
186 | if (L.hasWasmExceptions()) | ||||||
187 | return EHPersonality::GNU_Wasm_CPlusPlus; | ||||||
188 | return EHPersonality::GNU_CPlusPlus; | ||||||
189 | } | ||||||
190 | |||||||
191 | /// Determines the personality function to use when both C++ | ||||||
192 | /// and Objective-C exceptions are being caught. | ||||||
193 | static const EHPersonality &getObjCXXPersonality(const TargetInfo &Target, | ||||||
194 | const LangOptions &L) { | ||||||
195 | if (Target.getTriple().isWindowsMSVCEnvironment()) | ||||||
196 | return EHPersonality::MSVC_CxxFrameHandler3; | ||||||
197 | |||||||
198 | switch (L.ObjCRuntime.getKind()) { | ||||||
199 | // In the fragile ABI, just use C++ exception handling and hope | ||||||
200 | // they're not doing crazy exception mixing. | ||||||
201 | case ObjCRuntime::FragileMacOSX: | ||||||
202 | return getCXXPersonality(Target, L); | ||||||
203 | |||||||
204 | // The ObjC personality defers to the C++ personality for non-ObjC | ||||||
205 | // handlers. Unlike the C++ case, we use the same personality | ||||||
206 | // function on targets using (backend-driven) SJLJ EH. | ||||||
207 | case ObjCRuntime::MacOSX: | ||||||
208 | case ObjCRuntime::iOS: | ||||||
209 | case ObjCRuntime::WatchOS: | ||||||
210 | return getObjCPersonality(Target, L); | ||||||
211 | |||||||
212 | case ObjCRuntime::GNUstep: | ||||||
213 | return EHPersonality::GNU_ObjCXX; | ||||||
214 | |||||||
215 | // The GCC runtime's personality function inherently doesn't support | ||||||
216 | // mixed EH. Use the ObjC personality just to avoid returning null. | ||||||
217 | case ObjCRuntime::GCC: | ||||||
218 | case ObjCRuntime::ObjFW: | ||||||
219 | return getObjCPersonality(Target, L); | ||||||
220 | } | ||||||
221 | llvm_unreachable("bad runtime kind")__builtin_unreachable(); | ||||||
222 | } | ||||||
223 | |||||||
224 | static const EHPersonality &getSEHPersonalityMSVC(const llvm::Triple &T) { | ||||||
225 | if (T.getArch() == llvm::Triple::x86) | ||||||
226 | return EHPersonality::MSVC_except_handler; | ||||||
227 | return EHPersonality::MSVC_C_specific_handler; | ||||||
228 | } | ||||||
229 | |||||||
230 | const EHPersonality &EHPersonality::get(CodeGenModule &CGM, | ||||||
231 | const FunctionDecl *FD) { | ||||||
232 | const llvm::Triple &T = CGM.getTarget().getTriple(); | ||||||
233 | const LangOptions &L = CGM.getLangOpts(); | ||||||
234 | const TargetInfo &Target = CGM.getTarget(); | ||||||
235 | |||||||
236 | // Functions using SEH get an SEH personality. | ||||||
237 | if (FD && FD->usesSEHTry()) | ||||||
238 | return getSEHPersonalityMSVC(T); | ||||||
239 | |||||||
240 | if (L.ObjC) | ||||||
241 | return L.CPlusPlus ? getObjCXXPersonality(Target, L) | ||||||
242 | : getObjCPersonality(Target, L); | ||||||
243 | return L.CPlusPlus ? getCXXPersonality(Target, L) | ||||||
244 | : getCPersonality(Target, L); | ||||||
245 | } | ||||||
246 | |||||||
247 | const EHPersonality &EHPersonality::get(CodeGenFunction &CGF) { | ||||||
248 | const auto *FD = CGF.CurCodeDecl; | ||||||
249 | // For outlined finallys and filters, use the SEH personality in case they | ||||||
250 | // contain more SEH. This mostly only affects finallys. Filters could | ||||||
251 | // hypothetically use gnu statement expressions to sneak in nested SEH. | ||||||
252 | FD = FD ? FD : CGF.CurSEHParent; | ||||||
253 | return get(CGF.CGM, dyn_cast_or_null<FunctionDecl>(FD)); | ||||||
254 | } | ||||||
255 | |||||||
256 | static llvm::FunctionCallee getPersonalityFn(CodeGenModule &CGM, | ||||||
257 | const EHPersonality &Personality) { | ||||||
258 | return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, true), | ||||||
259 | Personality.PersonalityFn, | ||||||
260 | llvm::AttributeList(), /*Local=*/true); | ||||||
261 | } | ||||||
262 | |||||||
263 | static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM, | ||||||
264 | const EHPersonality &Personality) { | ||||||
265 | llvm::FunctionCallee Fn = getPersonalityFn(CGM, Personality); | ||||||
266 | llvm::PointerType* Int8PtrTy = llvm::PointerType::get( | ||||||
267 | llvm::Type::getInt8Ty(CGM.getLLVMContext()), | ||||||
268 | CGM.getDataLayout().getProgramAddressSpace()); | ||||||
269 | |||||||
270 | return llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(Fn.getCallee()), | ||||||
271 | Int8PtrTy); | ||||||
272 | } | ||||||
273 | |||||||
274 | /// Check whether a landingpad instruction only uses C++ features. | ||||||
275 | static bool LandingPadHasOnlyCXXUses(llvm::LandingPadInst *LPI) { | ||||||
276 | for (unsigned I = 0, E = LPI->getNumClauses(); I != E; ++I) { | ||||||
277 | // Look for something that would've been returned by the ObjC | ||||||
278 | // runtime's GetEHType() method. | ||||||
279 | llvm::Value *Val = LPI->getClause(I)->stripPointerCasts(); | ||||||
280 | if (LPI->isCatch(I)) { | ||||||
281 | // Check if the catch value has the ObjC prefix. | ||||||
282 | if (llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Val)) | ||||||
283 | // ObjC EH selector entries are always global variables with | ||||||
284 | // names starting like this. | ||||||
285 | if (GV->getName().startswith("OBJC_EHTYPE")) | ||||||
286 | return false; | ||||||
287 | } else { | ||||||
288 | // Check if any of the filter values have the ObjC prefix. | ||||||
289 | llvm::Constant *CVal = cast<llvm::Constant>(Val); | ||||||
290 | for (llvm::User::op_iterator | ||||||
291 | II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) { | ||||||
292 | if (llvm::GlobalVariable *GV = | ||||||
293 | cast<llvm::GlobalVariable>((*II)->stripPointerCasts())) | ||||||
294 | // ObjC EH selector entries are always global variables with | ||||||
295 | // names starting like this. | ||||||
296 | if (GV->getName().startswith("OBJC_EHTYPE")) | ||||||
297 | return false; | ||||||
298 | } | ||||||
299 | } | ||||||
300 | } | ||||||
301 | return true; | ||||||
302 | } | ||||||
303 | |||||||
304 | /// Check whether a personality function could reasonably be swapped | ||||||
305 | /// for a C++ personality function. | ||||||
306 | static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) { | ||||||
307 | for (llvm::User *U : Fn->users()) { | ||||||
308 | // Conditionally white-list bitcasts. | ||||||
309 | if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(U)) { | ||||||
310 | if (CE->getOpcode() != llvm::Instruction::BitCast) return false; | ||||||
311 | if (!PersonalityHasOnlyCXXUses(CE)) | ||||||
312 | return false; | ||||||
313 | continue; | ||||||
314 | } | ||||||
315 | |||||||
316 | // Otherwise it must be a function. | ||||||
317 | llvm::Function *F = dyn_cast<llvm::Function>(U); | ||||||
318 | if (!F) return false; | ||||||
319 | |||||||
320 | for (auto BB = F->begin(), E = F->end(); BB != E; ++BB) { | ||||||
321 | if (BB->isLandingPad()) | ||||||
322 | if (!LandingPadHasOnlyCXXUses(BB->getLandingPadInst())) | ||||||
323 | return false; | ||||||
324 | } | ||||||
325 | } | ||||||
326 | |||||||
327 | return true; | ||||||
328 | } | ||||||
329 | |||||||
330 | /// Try to use the C++ personality function in ObjC++. Not doing this | ||||||
331 | /// can cause some incompatibilities with gcc, which is more | ||||||
332 | /// aggressive about only using the ObjC++ personality in a function | ||||||
333 | /// when it really needs it. | ||||||
334 | void CodeGenModule::SimplifyPersonality() { | ||||||
335 | // If we're not in ObjC++ -fexceptions, there's nothing to do. | ||||||
336 | if (!LangOpts.CPlusPlus || !LangOpts.ObjC || !LangOpts.Exceptions) | ||||||
337 | return; | ||||||
338 | |||||||
339 | // Both the problem this endeavors to fix and the way the logic | ||||||
340 | // above works is specific to the NeXT runtime. | ||||||
341 | if (!LangOpts.ObjCRuntime.isNeXTFamily()) | ||||||
342 | return; | ||||||
343 | |||||||
344 | const EHPersonality &ObjCXX = EHPersonality::get(*this, /*FD=*/nullptr); | ||||||
345 | const EHPersonality &CXX = getCXXPersonality(getTarget(), LangOpts); | ||||||
346 | if (&ObjCXX == &CXX) | ||||||
347 | return; | ||||||
348 | |||||||
349 | assert(std::strcmp(ObjCXX.PersonalityFn, CXX.PersonalityFn) != 0 &&((void)0) | ||||||
350 | "Different EHPersonalities using the same personality function.")((void)0); | ||||||
351 | |||||||
352 | llvm::Function *Fn = getModule().getFunction(ObjCXX.PersonalityFn); | ||||||
353 | |||||||
354 | // Nothing to do if it's unused. | ||||||
355 | if (!Fn || Fn->use_empty()) return; | ||||||
356 | |||||||
357 | // Can't do the optimization if it has non-C++ uses. | ||||||
358 | if (!PersonalityHasOnlyCXXUses(Fn)) return; | ||||||
359 | |||||||
360 | // Create the C++ personality function and kill off the old | ||||||
361 | // function. | ||||||
362 | llvm::FunctionCallee CXXFn = getPersonalityFn(*this, CXX); | ||||||
363 | |||||||
364 | // This can happen if the user is screwing with us. | ||||||
365 | if (Fn->getType() != CXXFn.getCallee()->getType()) | ||||||
366 | return; | ||||||
367 | |||||||
368 | Fn->replaceAllUsesWith(CXXFn.getCallee()); | ||||||
369 | Fn->eraseFromParent(); | ||||||
370 | } | ||||||
371 | |||||||
372 | /// Returns the value to inject into a selector to indicate the | ||||||
373 | /// presence of a catch-all. | ||||||
374 | static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) { | ||||||
375 | // Possibly we should use @llvm.eh.catch.all.value here. | ||||||
376 | return llvm::ConstantPointerNull::get(CGF.Int8PtrTy); | ||||||
377 | } | ||||||
378 | |||||||
379 | namespace { | ||||||
380 | /// A cleanup to free the exception object if its initialization | ||||||
381 | /// throws. | ||||||
382 | struct FreeException final : EHScopeStack::Cleanup { | ||||||
383 | llvm::Value *exn; | ||||||
384 | FreeException(llvm::Value *exn) : exn(exn) {} | ||||||
385 | void Emit(CodeGenFunction &CGF, Flags flags) override { | ||||||
386 | CGF.EmitNounwindRuntimeCall(getFreeExceptionFn(CGF.CGM), exn); | ||||||
387 | } | ||||||
388 | }; | ||||||
389 | } // end anonymous namespace | ||||||
390 | |||||||
391 | // Emits an exception expression into the given location. This | ||||||
392 | // differs from EmitAnyExprToMem only in that, if a final copy-ctor | ||||||
393 | // call is required, an exception within that copy ctor causes | ||||||
394 | // std::terminate to be invoked. | ||||||
395 | void CodeGenFunction::EmitAnyExprToExn(const Expr *e, Address addr) { | ||||||
396 | // Make sure the exception object is cleaned up if there's an | ||||||
397 | // exception during initialization. | ||||||
398 | pushFullExprCleanup<FreeException>(EHCleanup, addr.getPointer()); | ||||||
399 | EHScopeStack::stable_iterator cleanup = EHStack.stable_begin(); | ||||||
400 | |||||||
401 | // __cxa_allocate_exception returns a void*; we need to cast this | ||||||
402 | // to the appropriate type for the object. | ||||||
403 | llvm::Type *ty = ConvertTypeForMem(e->getType())->getPointerTo(); | ||||||
404 | Address typedAddr = Builder.CreateBitCast(addr, ty); | ||||||
405 | |||||||
406 | // FIXME: this isn't quite right! If there's a final unelided call | ||||||
407 | // to a copy constructor, then according to [except.terminate]p1 we | ||||||
408 | // must call std::terminate() if that constructor throws, because | ||||||
409 | // technically that copy occurs after the exception expression is | ||||||
410 | // evaluated but before the exception is caught. But the best way | ||||||
411 | // to handle that is to teach EmitAggExpr to do the final copy | ||||||
412 | // differently if it can't be elided. | ||||||
413 | EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers(), | ||||||
414 | /*IsInit*/ true); | ||||||
415 | |||||||
416 | // Deactivate the cleanup block. | ||||||
417 | DeactivateCleanupBlock(cleanup, | ||||||
418 | cast<llvm::Instruction>(typedAddr.getPointer())); | ||||||
419 | } | ||||||
420 | |||||||
421 | Address CodeGenFunction::getExceptionSlot() { | ||||||
422 | if (!ExceptionSlot) | ||||||
423 | ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot"); | ||||||
424 | return Address(ExceptionSlot, getPointerAlign()); | ||||||
425 | } | ||||||
426 | |||||||
427 | Address CodeGenFunction::getEHSelectorSlot() { | ||||||
428 | if (!EHSelectorSlot) | ||||||
429 | EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot"); | ||||||
430 | return Address(EHSelectorSlot, CharUnits::fromQuantity(4)); | ||||||
431 | } | ||||||
432 | |||||||
433 | llvm::Value *CodeGenFunction::getExceptionFromSlot() { | ||||||
434 | return Builder.CreateLoad(getExceptionSlot(), "exn"); | ||||||
435 | } | ||||||
436 | |||||||
437 | llvm::Value *CodeGenFunction::getSelectorFromSlot() { | ||||||
438 | return Builder.CreateLoad(getEHSelectorSlot(), "sel"); | ||||||
439 | } | ||||||
440 | |||||||
441 | void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E, | ||||||
442 | bool KeepInsertionPoint) { | ||||||
443 | if (const Expr *SubExpr = E->getSubExpr()) { | ||||||
444 | QualType ThrowType = SubExpr->getType(); | ||||||
445 | if (ThrowType->isObjCObjectPointerType()) { | ||||||
446 | const Stmt *ThrowStmt = E->getSubExpr(); | ||||||
447 | const ObjCAtThrowStmt S(E->getExprLoc(), const_cast<Stmt *>(ThrowStmt)); | ||||||
448 | CGM.getObjCRuntime().EmitThrowStmt(*this, S, false); | ||||||
449 | } else { | ||||||
450 | CGM.getCXXABI().emitThrow(*this, E); | ||||||
451 | } | ||||||
452 | } else { | ||||||
453 | CGM.getCXXABI().emitRethrow(*this, /*isNoReturn=*/true); | ||||||
454 | } | ||||||
455 | |||||||
456 | // throw is an expression, and the expression emitters expect us | ||||||
457 | // to leave ourselves at a valid insertion point. | ||||||
458 | if (KeepInsertionPoint) | ||||||
459 | EmitBlock(createBasicBlock("throw.cont")); | ||||||
460 | } | ||||||
461 | |||||||
462 | void CodeGenFunction::EmitStartEHSpec(const Decl *D) { | ||||||
463 | if (!CGM.getLangOpts().CXXExceptions) | ||||||
464 | return; | ||||||
465 | |||||||
466 | const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); | ||||||
467 | if (!FD) { | ||||||
468 | // Check if CapturedDecl is nothrow and create terminate scope for it. | ||||||
469 | if (const CapturedDecl* CD = dyn_cast_or_null<CapturedDecl>(D)) { | ||||||
470 | if (CD->isNothrow()) | ||||||
471 | EHStack.pushTerminate(); | ||||||
472 | } | ||||||
473 | return; | ||||||
474 | } | ||||||
475 | const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); | ||||||
476 | if (!Proto) | ||||||
477 | return; | ||||||
478 | |||||||
479 | ExceptionSpecificationType EST = Proto->getExceptionSpecType(); | ||||||
480 | if (isNoexceptExceptionSpec(EST) && Proto->canThrow() == CT_Cannot) { | ||||||
481 | // noexcept functions are simple terminate scopes. | ||||||
482 | if (!getLangOpts().EHAsynch) // -EHa: HW exception still can occur | ||||||
483 | EHStack.pushTerminate(); | ||||||
484 | } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { | ||||||
485 | // TODO: Revisit exception specifications for the MS ABI. There is a way to | ||||||
486 | // encode these in an object file but MSVC doesn't do anything with it. | ||||||
487 | if (getTarget().getCXXABI().isMicrosoft()) | ||||||
488 | return; | ||||||
489 | // In Wasm EH we currently treat 'throw()' in the same way as 'noexcept'. In | ||||||
490 | // case of throw with types, we ignore it and print a warning for now. | ||||||
491 | // TODO Correctly handle exception specification in Wasm EH | ||||||
492 | if (CGM.getLangOpts().hasWasmExceptions()) { | ||||||
493 | if (EST == EST_DynamicNone) | ||||||
494 | EHStack.pushTerminate(); | ||||||
495 | else | ||||||
496 | CGM.getDiags().Report(D->getLocation(), | ||||||
497 | diag::warn_wasm_dynamic_exception_spec_ignored) | ||||||
498 | << FD->getExceptionSpecSourceRange(); | ||||||
499 | return; | ||||||
500 | } | ||||||
501 | // Currently Emscripten EH only handles 'throw()' but not 'throw' with | ||||||
502 | // types. 'throw()' handling will be done in JS glue code so we don't need | ||||||
503 | // to do anything in that case. Just print a warning message in case of | ||||||
504 | // throw with types. | ||||||
505 | // TODO Correctly handle exception specification in Emscripten EH | ||||||
506 | if (getTarget().getCXXABI() == TargetCXXABI::WebAssembly && | ||||||
507 | CGM.getLangOpts().getExceptionHandling() == | ||||||
508 | LangOptions::ExceptionHandlingKind::None && | ||||||
509 | EST == EST_Dynamic) | ||||||
510 | CGM.getDiags().Report(D->getLocation(), | ||||||
511 | diag::warn_wasm_dynamic_exception_spec_ignored) | ||||||
512 | << FD->getExceptionSpecSourceRange(); | ||||||
513 | |||||||
514 | unsigned NumExceptions = Proto->getNumExceptions(); | ||||||
515 | EHFilterScope *Filter = EHStack.pushFilter(NumExceptions); | ||||||
516 | |||||||
517 | for (unsigned I = 0; I != NumExceptions; ++I) { | ||||||
518 | QualType Ty = Proto->getExceptionType(I); | ||||||
519 | QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType(); | ||||||
520 | llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType, | ||||||
521 | /*ForEH=*/true); | ||||||
522 | Filter->setFilter(I, EHType); | ||||||
523 | } | ||||||
524 | } | ||||||
525 | } | ||||||
526 | |||||||
527 | /// Emit the dispatch block for a filter scope if necessary. | ||||||
528 | static void emitFilterDispatchBlock(CodeGenFunction &CGF, | ||||||
529 | EHFilterScope &filterScope) { | ||||||
530 | llvm::BasicBlock *dispatchBlock = filterScope.getCachedEHDispatchBlock(); | ||||||
531 | if (!dispatchBlock) return; | ||||||
532 | if (dispatchBlock->use_empty()) { | ||||||
533 | delete dispatchBlock; | ||||||
534 | return; | ||||||
535 | } | ||||||
536 | |||||||
537 | CGF.EmitBlockAfterUses(dispatchBlock); | ||||||
538 | |||||||
539 | // If this isn't a catch-all filter, we need to check whether we got | ||||||
540 | // here because the filter triggered. | ||||||
541 | if (filterScope.getNumFilters()) { | ||||||
542 | // Load the selector value. | ||||||
543 | llvm::Value *selector = CGF.getSelectorFromSlot(); | ||||||
544 | llvm::BasicBlock *unexpectedBB = CGF.createBasicBlock("ehspec.unexpected"); | ||||||
545 | |||||||
546 | llvm::Value *zero = CGF.Builder.getInt32(0); | ||||||
547 | llvm::Value *failsFilter = | ||||||
548 | CGF.Builder.CreateICmpSLT(selector, zero, "ehspec.fails"); | ||||||
549 | CGF.Builder.CreateCondBr(failsFilter, unexpectedBB, | ||||||
550 | CGF.getEHResumeBlock(false)); | ||||||
551 | |||||||
552 | CGF.EmitBlock(unexpectedBB); | ||||||
553 | } | ||||||
554 | |||||||
555 | // Call __cxa_call_unexpected. This doesn't need to be an invoke | ||||||
556 | // because __cxa_call_unexpected magically filters exceptions | ||||||
557 | // according to the last landing pad the exception was thrown | ||||||
558 | // into. Seriously. | ||||||
559 | llvm::Value *exn = CGF.getExceptionFromSlot(); | ||||||
560 | CGF.EmitRuntimeCall(getUnexpectedFn(CGF.CGM), exn) | ||||||
561 | ->setDoesNotReturn(); | ||||||
562 | CGF.Builder.CreateUnreachable(); | ||||||
563 | } | ||||||
564 | |||||||
565 | void CodeGenFunction::EmitEndEHSpec(const Decl *D) { | ||||||
566 | if (!CGM.getLangOpts().CXXExceptions) | ||||||
567 | return; | ||||||
568 | |||||||
569 | const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); | ||||||
570 | if (!FD) { | ||||||
571 | // Check if CapturedDecl is nothrow and pop terminate scope for it. | ||||||
572 | if (const CapturedDecl* CD = dyn_cast_or_null<CapturedDecl>(D)) { | ||||||
573 | if (CD->isNothrow() && !EHStack.empty()) | ||||||
574 | EHStack.popTerminate(); | ||||||
575 | } | ||||||
576 | return; | ||||||
577 | } | ||||||
578 | const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); | ||||||
579 | if (!Proto) | ||||||
580 | return; | ||||||
581 | |||||||
582 | ExceptionSpecificationType EST = Proto->getExceptionSpecType(); | ||||||
583 | if (isNoexceptExceptionSpec(EST) && Proto->canThrow() == CT_Cannot && | ||||||
584 | !EHStack.empty() /* possible empty when under async exceptions */) { | ||||||
585 | EHStack.popTerminate(); | ||||||
586 | } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { | ||||||
587 | // TODO: Revisit exception specifications for the MS ABI. There is a way to | ||||||
588 | // encode these in an object file but MSVC doesn't do anything with it. | ||||||
589 | if (getTarget().getCXXABI().isMicrosoft()) | ||||||
590 | return; | ||||||
591 | // In wasm we currently treat 'throw()' in the same way as 'noexcept'. In | ||||||
592 | // case of throw with types, we ignore it and print a warning for now. | ||||||
593 | // TODO Correctly handle exception specification in wasm | ||||||
594 | if (CGM.getLangOpts().hasWasmExceptions()) { | ||||||
595 | if (EST == EST_DynamicNone) | ||||||
596 | EHStack.popTerminate(); | ||||||
597 | return; | ||||||
598 | } | ||||||
599 | EHFilterScope &filterScope = cast<EHFilterScope>(*EHStack.begin()); | ||||||
600 | emitFilterDispatchBlock(*this, filterScope); | ||||||
601 | EHStack.popFilter(); | ||||||
602 | } | ||||||
603 | } | ||||||
604 | |||||||
605 | void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) { | ||||||
606 | EnterCXXTryStmt(S); | ||||||
607 | EmitStmt(S.getTryBlock()); | ||||||
608 | ExitCXXTryStmt(S); | ||||||
| |||||||
609 | } | ||||||
610 | |||||||
611 | void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { | ||||||
612 | unsigned NumHandlers = S.getNumHandlers(); | ||||||
613 | EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers); | ||||||
614 | |||||||
615 | for (unsigned I = 0; I != NumHandlers; ++I) { | ||||||
616 | const CXXCatchStmt *C = S.getHandler(I); | ||||||
617 | |||||||
618 | llvm::BasicBlock *Handler = createBasicBlock("catch"); | ||||||
619 | if (C->getExceptionDecl()) { | ||||||
620 | // FIXME: Dropping the reference type on the type into makes it | ||||||
621 | // impossible to correctly implement catch-by-reference | ||||||
622 | // semantics for pointers. Unfortunately, this is what all | ||||||
623 | // existing compilers do, and it's not clear that the standard | ||||||
624 | // personality routine is capable of doing this right. See C++ DR 388: | ||||||
625 | // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388 | ||||||
626 | Qualifiers CaughtTypeQuals; | ||||||
627 | QualType CaughtType = CGM.getContext().getUnqualifiedArrayType( | ||||||
628 | C->getCaughtType().getNonReferenceType(), CaughtTypeQuals); | ||||||
629 | |||||||
630 | CatchTypeInfo TypeInfo{nullptr, 0}; | ||||||
631 | if (CaughtType->isObjCObjectPointerType()) | ||||||
632 | TypeInfo.RTTI = CGM.getObjCRuntime().GetEHType(CaughtType); | ||||||
633 | else | ||||||
634 | TypeInfo = CGM.getCXXABI().getAddrOfCXXCatchHandlerType( | ||||||
635 | CaughtType, C->getCaughtType()); | ||||||
636 | CatchScope->setHandler(I, TypeInfo, Handler); | ||||||
637 | } else { | ||||||
638 | // No exception decl indicates '...', a catch-all. | ||||||
639 | CatchScope->setHandler(I, CGM.getCXXABI().getCatchAllTypeInfo(), Handler); | ||||||
640 | // Under async exceptions, catch(...) need to catch HW exception too | ||||||
641 | // Mark scope with SehTryBegin as a SEH __try scope | ||||||
642 | if (getLangOpts().EHAsynch) | ||||||
643 | EmitRuntimeCallOrInvoke(getSehTryBeginFn(CGM)); | ||||||
644 | } | ||||||
645 | } | ||||||
646 | } | ||||||
647 | |||||||
648 | llvm::BasicBlock * | ||||||
649 | CodeGenFunction::getEHDispatchBlock(EHScopeStack::stable_iterator si) { | ||||||
650 | if (EHPersonality::get(*this).usesFuncletPads()) | ||||||
651 | return getFuncletEHDispatchBlock(si); | ||||||
652 | |||||||
653 | // The dispatch block for the end of the scope chain is a block that | ||||||
654 | // just resumes unwinding. | ||||||
655 | if (si == EHStack.stable_end()) | ||||||
656 | return getEHResumeBlock(true); | ||||||
657 | |||||||
658 | // Otherwise, we should look at the actual scope. | ||||||
659 | EHScope &scope = *EHStack.find(si); | ||||||
660 | |||||||
661 | llvm::BasicBlock *dispatchBlock = scope.getCachedEHDispatchBlock(); | ||||||
662 | if (!dispatchBlock) { | ||||||
663 | switch (scope.getKind()) { | ||||||
664 | case EHScope::Catch: { | ||||||
665 | // Apply a special case to a single catch-all. | ||||||
666 | EHCatchScope &catchScope = cast<EHCatchScope>(scope); | ||||||
667 | if (catchScope.getNumHandlers() == 1 && | ||||||
668 | catchScope.getHandler(0).isCatchAll()) { | ||||||
669 | dispatchBlock = catchScope.getHandler(0).Block; | ||||||
670 | |||||||
671 | // Otherwise, make a dispatch block. | ||||||
672 | } else { | ||||||
673 | dispatchBlock = createBasicBlock("catch.dispatch"); | ||||||
674 | } | ||||||
675 | break; | ||||||
676 | } | ||||||
677 | |||||||
678 | case EHScope::Cleanup: | ||||||
679 | dispatchBlock = createBasicBlock("ehcleanup"); | ||||||
680 | break; | ||||||
681 | |||||||
682 | case EHScope::Filter: | ||||||
683 | dispatchBlock = createBasicBlock("filter.dispatch"); | ||||||
684 | break; | ||||||
685 | |||||||
686 | case EHScope::Terminate: | ||||||
687 | dispatchBlock = getTerminateHandler(); | ||||||
688 | break; | ||||||
689 | } | ||||||
690 | scope.setCachedEHDispatchBlock(dispatchBlock); | ||||||
691 | } | ||||||
692 | return dispatchBlock; | ||||||
693 | } | ||||||
694 | |||||||
695 | llvm::BasicBlock * | ||||||
696 | CodeGenFunction::getFuncletEHDispatchBlock(EHScopeStack::stable_iterator SI) { | ||||||
697 | // Returning nullptr indicates that the previous dispatch block should unwind | ||||||
698 | // to caller. | ||||||
699 | if (SI == EHStack.stable_end()) | ||||||
700 | return nullptr; | ||||||
701 | |||||||
702 | // Otherwise, we should look at the actual scope. | ||||||
703 | EHScope &EHS = *EHStack.find(SI); | ||||||
704 | |||||||
705 | llvm::BasicBlock *DispatchBlock = EHS.getCachedEHDispatchBlock(); | ||||||
706 | if (DispatchBlock) | ||||||
707 | return DispatchBlock; | ||||||
708 | |||||||
709 | if (EHS.getKind() == EHScope::Terminate) | ||||||
710 | DispatchBlock = getTerminateFunclet(); | ||||||
711 | else | ||||||
712 | DispatchBlock = createBasicBlock(); | ||||||
713 | CGBuilderTy Builder(*this, DispatchBlock); | ||||||
714 | |||||||
715 | switch (EHS.getKind()) { | ||||||
716 | case EHScope::Catch: | ||||||
717 | DispatchBlock->setName("catch.dispatch"); | ||||||
718 | break; | ||||||
719 | |||||||
720 | case EHScope::Cleanup: | ||||||
721 | DispatchBlock->setName("ehcleanup"); | ||||||
722 | break; | ||||||
723 | |||||||
724 | case EHScope::Filter: | ||||||
725 | llvm_unreachable("exception specifications not handled yet!")__builtin_unreachable(); | ||||||
726 | |||||||
727 | case EHScope::Terminate: | ||||||
728 | DispatchBlock->setName("terminate"); | ||||||
729 | break; | ||||||
730 | } | ||||||
731 | EHS.setCachedEHDispatchBlock(DispatchBlock); | ||||||
732 | return DispatchBlock; | ||||||
733 | } | ||||||
734 | |||||||
735 | /// Check whether this is a non-EH scope, i.e. a scope which doesn't | ||||||
736 | /// affect exception handling. Currently, the only non-EH scopes are | ||||||
737 | /// normal-only cleanup scopes. | ||||||
738 | static bool isNonEHScope(const EHScope &S) { | ||||||
739 | switch (S.getKind()) { | ||||||
740 | case EHScope::Cleanup: | ||||||
741 | return !cast<EHCleanupScope>(S).isEHCleanup(); | ||||||
742 | case EHScope::Filter: | ||||||
743 | case EHScope::Catch: | ||||||
744 | case EHScope::Terminate: | ||||||
745 | return false; | ||||||
746 | } | ||||||
747 | |||||||
748 | llvm_unreachable("Invalid EHScope Kind!")__builtin_unreachable(); | ||||||
749 | } | ||||||
750 | |||||||
751 | llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() { | ||||||
752 | assert(EHStack.requiresLandingPad())((void)0); | ||||||
753 | assert(!EHStack.empty())((void)0); | ||||||
754 | |||||||
755 | // If exceptions are disabled/ignored and SEH is not in use, then there is no | ||||||
756 | // invoke destination. SEH "works" even if exceptions are off. In practice, | ||||||
757 | // this means that C++ destructors and other EH cleanups don't run, which is | ||||||
758 | // consistent with MSVC's behavior, except in the presence of -EHa | ||||||
759 | const LangOptions &LO = CGM.getLangOpts(); | ||||||
760 | if (!LO.Exceptions || LO.IgnoreExceptions) { | ||||||
761 | if (!LO.Borland && !LO.MicrosoftExt) | ||||||
762 | return nullptr; | ||||||
763 | if (!currentFunctionUsesSEHTry()) | ||||||
764 | return nullptr; | ||||||
765 | } | ||||||
766 | |||||||
767 | // CUDA device code doesn't have exceptions. | ||||||
768 | if (LO.CUDA && LO.CUDAIsDevice) | ||||||
769 | return nullptr; | ||||||
770 | |||||||
771 | // Check the innermost scope for a cached landing pad. If this is | ||||||
772 | // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad. | ||||||
773 | llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad(); | ||||||
774 | if (LP) return LP; | ||||||
775 | |||||||
776 | const EHPersonality &Personality = EHPersonality::get(*this); | ||||||
777 | |||||||
778 | if (!CurFn->hasPersonalityFn()) | ||||||
779 | CurFn->setPersonalityFn(getOpaquePersonalityFn(CGM, Personality)); | ||||||
780 | |||||||
781 | if (Personality.usesFuncletPads()) { | ||||||
782 | // We don't need separate landing pads in the funclet model. | ||||||
783 | LP = getEHDispatchBlock(EHStack.getInnermostEHScope()); | ||||||
784 | } else { | ||||||
785 | // Build the landing pad for this scope. | ||||||
786 | LP = EmitLandingPad(); | ||||||
787 | } | ||||||
788 | |||||||
789 | assert(LP)((void)0); | ||||||
790 | |||||||
791 | // Cache the landing pad on the innermost scope. If this is a | ||||||
792 | // non-EH scope, cache the landing pad on the enclosing scope, too. | ||||||
793 | for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) { | ||||||
794 | ir->setCachedLandingPad(LP); | ||||||
795 | if (!isNonEHScope(*ir)) break; | ||||||
796 | } | ||||||
797 | |||||||
798 | return LP; | ||||||
799 | } | ||||||
800 | |||||||
801 | llvm::BasicBlock *CodeGenFunction::EmitLandingPad() { | ||||||
802 | assert(EHStack.requiresLandingPad())((void)0); | ||||||
803 | assert(!CGM.getLangOpts().IgnoreExceptions &&((void)0) | ||||||
804 | "LandingPad should not be emitted when -fignore-exceptions are in "((void)0) | ||||||
805 | "effect.")((void)0); | ||||||
806 | EHScope &innermostEHScope = *EHStack.find(EHStack.getInnermostEHScope()); | ||||||
807 | switch (innermostEHScope.getKind()) { | ||||||
808 | case EHScope::Terminate: | ||||||
809 | return getTerminateLandingPad(); | ||||||
810 | |||||||
811 | case EHScope::Catch: | ||||||
812 | case EHScope::Cleanup: | ||||||
813 | case EHScope::Filter: | ||||||
814 | if (llvm::BasicBlock *lpad = innermostEHScope.getCachedLandingPad()) | ||||||
815 | return lpad; | ||||||
816 | } | ||||||
817 | |||||||
818 | // Save the current IR generation state. | ||||||
819 | CGBuilderTy::InsertPoint savedIP = Builder.saveAndClearIP(); | ||||||
820 | auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, CurEHLocation); | ||||||
821 | |||||||
822 | // Create and configure the landing pad. | ||||||
823 | llvm::BasicBlock *lpad = createBasicBlock("lpad"); | ||||||
824 | EmitBlock(lpad); | ||||||
825 | |||||||
826 | llvm::LandingPadInst *LPadInst = | ||||||
827 | Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty), 0); | ||||||
828 | |||||||
829 | llvm::Value *LPadExn = Builder.CreateExtractValue(LPadInst, 0); | ||||||
830 | Builder.CreateStore(LPadExn, getExceptionSlot()); | ||||||
831 | llvm::Value *LPadSel = Builder.CreateExtractValue(LPadInst, 1); | ||||||
832 | Builder.CreateStore(LPadSel, getEHSelectorSlot()); | ||||||
833 | |||||||
834 | // Save the exception pointer. It's safe to use a single exception | ||||||
835 | // pointer per function because EH cleanups can never have nested | ||||||
836 | // try/catches. | ||||||
837 | // Build the landingpad instruction. | ||||||
838 | |||||||
839 | // Accumulate all the handlers in scope. | ||||||
840 | bool hasCatchAll = false; | ||||||
841 | bool hasCleanup = false; | ||||||
842 | bool hasFilter = false; | ||||||
843 | SmallVector<llvm::Value*, 4> filterTypes; | ||||||
844 | llvm::SmallPtrSet<llvm::Value*, 4> catchTypes; | ||||||
845 | for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end(); I != E; | ||||||
846 | ++I) { | ||||||
847 | |||||||
848 | switch (I->getKind()) { | ||||||
849 | case EHScope::Cleanup: | ||||||
850 | // If we have a cleanup, remember that. | ||||||
851 | hasCleanup = (hasCleanup || cast<EHCleanupScope>(*I).isEHCleanup()); | ||||||
852 | continue; | ||||||
853 | |||||||
854 | case EHScope::Filter: { | ||||||
855 | assert(I.next() == EHStack.end() && "EH filter is not end of EH stack")((void)0); | ||||||
856 | assert(!hasCatchAll && "EH filter reached after catch-all")((void)0); | ||||||
857 | |||||||
858 | // Filter scopes get added to the landingpad in weird ways. | ||||||
859 | EHFilterScope &filter = cast<EHFilterScope>(*I); | ||||||
860 | hasFilter = true; | ||||||
861 | |||||||
862 | // Add all the filter values. | ||||||
863 | for (unsigned i = 0, e = filter.getNumFilters(); i != e; ++i) | ||||||
864 | filterTypes.push_back(filter.getFilter(i)); | ||||||
865 | goto done; | ||||||
866 | } | ||||||
867 | |||||||
868 | case EHScope::Terminate: | ||||||
869 | // Terminate scopes are basically catch-alls. | ||||||
870 | assert(!hasCatchAll)((void)0); | ||||||
871 | hasCatchAll = true; | ||||||
872 | goto done; | ||||||
873 | |||||||
874 | case EHScope::Catch: | ||||||
875 | break; | ||||||
876 | } | ||||||
877 | |||||||
878 | EHCatchScope &catchScope = cast<EHCatchScope>(*I); | ||||||
879 | for (unsigned hi = 0, he = catchScope.getNumHandlers(); hi != he; ++hi) { | ||||||
880 | EHCatchScope::Handler handler = catchScope.getHandler(hi); | ||||||
881 | assert(handler.Type.Flags == 0 &&((void)0) | ||||||
882 | "landingpads do not support catch handler flags")((void)0); | ||||||
883 | |||||||
884 | // If this is a catch-all, register that and abort. | ||||||
885 | if (!handler.Type.RTTI) { | ||||||
886 | assert(!hasCatchAll)((void)0); | ||||||
887 | hasCatchAll = true; | ||||||
888 | goto done; | ||||||
889 | } | ||||||
890 | |||||||
891 | // Check whether we already have a handler for this type. | ||||||
892 | if (catchTypes.insert(handler.Type.RTTI).second) | ||||||
893 | // If not, add it directly to the landingpad. | ||||||
894 | LPadInst->addClause(handler.Type.RTTI); | ||||||
895 | } | ||||||
896 | } | ||||||
897 | |||||||
898 | done: | ||||||
899 | // If we have a catch-all, add null to the landingpad. | ||||||
900 | assert(!(hasCatchAll && hasFilter))((void)0); | ||||||
901 | if (hasCatchAll) { | ||||||
902 | LPadInst->addClause(getCatchAllValue(*this)); | ||||||
903 | |||||||
904 | // If we have an EH filter, we need to add those handlers in the | ||||||
905 | // right place in the landingpad, which is to say, at the end. | ||||||
906 | } else if (hasFilter) { | ||||||
907 | // Create a filter expression: a constant array indicating which filter | ||||||
908 | // types there are. The personality routine only lands here if the filter | ||||||
909 | // doesn't match. | ||||||
910 | SmallVector<llvm::Constant*, 8> Filters; | ||||||
911 | llvm::ArrayType *AType = | ||||||
912 | llvm::ArrayType::get(!filterTypes.empty() ? | ||||||
913 | filterTypes[0]->getType() : Int8PtrTy, | ||||||
914 | filterTypes.size()); | ||||||
915 | |||||||
916 | for (unsigned i = 0, e = filterTypes.size(); i != e; ++i) | ||||||
917 | Filters.push_back(cast<llvm::Constant>(filterTypes[i])); | ||||||
918 | llvm::Constant *FilterArray = llvm::ConstantArray::get(AType, Filters); | ||||||
919 | LPadInst->addClause(FilterArray); | ||||||
920 | |||||||
921 | // Also check whether we need a cleanup. | ||||||
922 | if (hasCleanup) | ||||||
923 | LPadInst->setCleanup(true); | ||||||
924 | |||||||
925 | // Otherwise, signal that we at least have cleanups. | ||||||
926 | } else if (hasCleanup) { | ||||||
927 | LPadInst->setCleanup(true); | ||||||
928 | } | ||||||
929 | |||||||
930 | assert((LPadInst->getNumClauses() > 0 || LPadInst->isCleanup()) &&((void)0) | ||||||
931 | "landingpad instruction has no clauses!")((void)0); | ||||||
932 | |||||||
933 | // Tell the backend how to generate the landing pad. | ||||||
934 | Builder.CreateBr(getEHDispatchBlock(EHStack.getInnermostEHScope())); | ||||||
935 | |||||||
936 | // Restore the old IR generation state. | ||||||
937 | Builder.restoreIP(savedIP); | ||||||
938 | |||||||
939 | return lpad; | ||||||
940 | } | ||||||
941 | |||||||
942 | static void emitCatchPadBlock(CodeGenFunction &CGF, EHCatchScope &CatchScope) { | ||||||
943 | llvm::BasicBlock *DispatchBlock = CatchScope.getCachedEHDispatchBlock(); | ||||||
944 | assert(DispatchBlock)((void)0); | ||||||
945 | |||||||
946 | CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveIP(); | ||||||
947 | CGF.EmitBlockAfterUses(DispatchBlock); | ||||||
948 | |||||||
949 | llvm::Value *ParentPad = CGF.CurrentFuncletPad; | ||||||
950 | if (!ParentPad) | ||||||
951 | ParentPad = llvm::ConstantTokenNone::get(CGF.getLLVMContext()); | ||||||
952 | llvm::BasicBlock *UnwindBB = | ||||||
953 | CGF.getEHDispatchBlock(CatchScope.getEnclosingEHScope()); | ||||||
954 | |||||||
955 | unsigned NumHandlers = CatchScope.getNumHandlers(); | ||||||
956 | llvm::CatchSwitchInst *CatchSwitch = | ||||||
957 | CGF.Builder.CreateCatchSwitch(ParentPad, UnwindBB, NumHandlers); | ||||||
958 | |||||||
959 | // Test against each of the exception types we claim to catch. | ||||||
960 | for (unsigned I = 0; I < NumHandlers; ++I) { | ||||||
961 | const EHCatchScope::Handler &Handler = CatchScope.getHandler(I); | ||||||
962 | |||||||
963 | CatchTypeInfo TypeInfo = Handler.Type; | ||||||
964 | if (!TypeInfo.RTTI) | ||||||
965 | TypeInfo.RTTI = llvm::Constant::getNullValue(CGF.VoidPtrTy); | ||||||
966 | |||||||
967 | CGF.Builder.SetInsertPoint(Handler.Block); | ||||||
968 | |||||||
969 | if (EHPersonality::get(CGF).isMSVCXXPersonality()) { | ||||||
970 | CGF.Builder.CreateCatchPad( | ||||||
971 | CatchSwitch, {TypeInfo.RTTI, CGF.Builder.getInt32(TypeInfo.Flags), | ||||||
972 | llvm::Constant::getNullValue(CGF.VoidPtrTy)}); | ||||||
973 | } else { | ||||||
974 | CGF.Builder.CreateCatchPad(CatchSwitch, {TypeInfo.RTTI}); | ||||||
975 | } | ||||||
976 | |||||||
977 | CatchSwitch->addHandler(Handler.Block); | ||||||
978 | } | ||||||
979 | CGF.Builder.restoreIP(SavedIP); | ||||||
980 | } | ||||||
981 | |||||||
982 | // Wasm uses Windows-style EH instructions, but it merges all catch clauses into | ||||||
983 | // one big catchpad, within which we use Itanium's landingpad-style selector | ||||||
984 | // comparison instructions. | ||||||
985 | static void emitWasmCatchPadBlock(CodeGenFunction &CGF, | ||||||
986 | EHCatchScope &CatchScope) { | ||||||
987 | llvm::BasicBlock *DispatchBlock = CatchScope.getCachedEHDispatchBlock(); | ||||||
988 | assert(DispatchBlock)((void)0); | ||||||
989 | |||||||
990 | CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveIP(); | ||||||
991 | CGF.EmitBlockAfterUses(DispatchBlock); | ||||||
992 | |||||||
993 | llvm::Value *ParentPad = CGF.CurrentFuncletPad; | ||||||
994 | if (!ParentPad) | ||||||
995 | ParentPad = llvm::ConstantTokenNone::get(CGF.getLLVMContext()); | ||||||
996 | llvm::BasicBlock *UnwindBB = | ||||||
997 | CGF.getEHDispatchBlock(CatchScope.getEnclosingEHScope()); | ||||||
998 | |||||||
999 | unsigned NumHandlers = CatchScope.getNumHandlers(); | ||||||
1000 | llvm::CatchSwitchInst *CatchSwitch = | ||||||
1001 | CGF.Builder.CreateCatchSwitch(ParentPad, UnwindBB, NumHandlers); | ||||||
1002 | |||||||
1003 | // We don't use a landingpad instruction, so generate intrinsic calls to | ||||||
1004 | // provide exception and selector values. | ||||||
1005 | llvm::BasicBlock *WasmCatchStartBlock = CGF.createBasicBlock("catch.start"); | ||||||
1006 | CatchSwitch->addHandler(WasmCatchStartBlock); | ||||||
1007 | CGF.EmitBlockAfterUses(WasmCatchStartBlock); | ||||||
1008 | |||||||
1009 | // Create a catchpad instruction. | ||||||
1010 | SmallVector<llvm::Value *, 4> CatchTypes; | ||||||
1011 | for (unsigned I = 0, E = NumHandlers; I < E; ++I) { | ||||||
1012 | const EHCatchScope::Handler &Handler = CatchScope.getHandler(I); | ||||||
1013 | CatchTypeInfo TypeInfo = Handler.Type; | ||||||
1014 | if (!TypeInfo.RTTI) | ||||||
1015 | TypeInfo.RTTI = llvm::Constant::getNullValue(CGF.VoidPtrTy); | ||||||
1016 | CatchTypes.push_back(TypeInfo.RTTI); | ||||||
1017 | } | ||||||
1018 | auto *CPI = CGF.Builder.CreateCatchPad(CatchSwitch, CatchTypes); | ||||||
1019 | |||||||
1020 | // Create calls to wasm.get.exception and wasm.get.ehselector intrinsics. | ||||||
1021 | // Before they are lowered appropriately later, they provide values for the | ||||||
1022 | // exception and selector. | ||||||
1023 | llvm::Function *GetExnFn = | ||||||
1024 | CGF.CGM.getIntrinsic(llvm::Intrinsic::wasm_get_exception); | ||||||
1025 | llvm::Function *GetSelectorFn = | ||||||
1026 | CGF.CGM.getIntrinsic(llvm::Intrinsic::wasm_get_ehselector); | ||||||
1027 | llvm::CallInst *Exn = CGF.Builder.CreateCall(GetExnFn, CPI); | ||||||
1028 | CGF.Builder.CreateStore(Exn, CGF.getExceptionSlot()); | ||||||
1029 | llvm::CallInst *Selector = CGF.Builder.CreateCall(GetSelectorFn, CPI); | ||||||
1030 | |||||||
1031 | llvm::Function *TypeIDFn = CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for); | ||||||
1032 | |||||||
1033 | // If there's only a single catch-all, branch directly to its handler. | ||||||
1034 | if (CatchScope.getNumHandlers() == 1 && | ||||||
1035 | CatchScope.getHandler(0).isCatchAll()) { | ||||||
1036 | CGF.Builder.CreateBr(CatchScope.getHandler(0).Block); | ||||||
1037 | CGF.Builder.restoreIP(SavedIP); | ||||||
1038 | return; | ||||||
1039 | } | ||||||
1040 | |||||||
1041 | // Test against each of the exception types we claim to catch. | ||||||
1042 | for (unsigned I = 0, E = NumHandlers;; ++I) { | ||||||
1043 | assert(I < E && "ran off end of handlers!")((void)0); | ||||||
1044 | const EHCatchScope::Handler &Handler = CatchScope.getHandler(I); | ||||||
1045 | CatchTypeInfo TypeInfo = Handler.Type; | ||||||
1046 | if (!TypeInfo.RTTI) | ||||||
1047 | TypeInfo.RTTI = llvm::Constant::getNullValue(CGF.VoidPtrTy); | ||||||
1048 | |||||||
1049 | // Figure out the next block. | ||||||
1050 | llvm::BasicBlock *NextBlock; | ||||||
1051 | |||||||
1052 | bool EmitNextBlock = false, NextIsEnd = false; | ||||||
1053 | |||||||
1054 | // If this is the last handler, we're at the end, and the next block is a | ||||||
1055 | // block that contains a call to the rethrow function, so we can unwind to | ||||||
1056 | // the enclosing EH scope. The call itself will be generated later. | ||||||
1057 | if (I + 1 == E) { | ||||||
1058 | NextBlock = CGF.createBasicBlock("rethrow"); | ||||||
1059 | EmitNextBlock = true; | ||||||
1060 | NextIsEnd = true; | ||||||
1061 | |||||||
1062 | // If the next handler is a catch-all, we're at the end, and the | ||||||
1063 | // next block is that handler. | ||||||
1064 | } else if (CatchScope.getHandler(I + 1).isCatchAll()) { | ||||||
1065 | NextBlock = CatchScope.getHandler(I + 1).Block; | ||||||
1066 | NextIsEnd = true; | ||||||
1067 | |||||||
1068 | // Otherwise, we're not at the end and we need a new block. | ||||||
1069 | } else { | ||||||
1070 | NextBlock = CGF.createBasicBlock("catch.fallthrough"); | ||||||
1071 | EmitNextBlock = true; | ||||||
1072 | } | ||||||
1073 | |||||||
1074 | // Figure out the catch type's index in the LSDA's type table. | ||||||
1075 | llvm::CallInst *TypeIndex = CGF.Builder.CreateCall(TypeIDFn, TypeInfo.RTTI); | ||||||
1076 | TypeIndex->setDoesNotThrow(); | ||||||
1077 | |||||||
1078 | llvm::Value *MatchesTypeIndex = | ||||||
1079 | CGF.Builder.CreateICmpEQ(Selector, TypeIndex, "matches"); | ||||||
1080 | CGF.Builder.CreateCondBr(MatchesTypeIndex, Handler.Block, NextBlock); | ||||||
1081 | |||||||
1082 | if (EmitNextBlock) | ||||||
1083 | CGF.EmitBlock(NextBlock); | ||||||
1084 | if (NextIsEnd) | ||||||
1085 | break; | ||||||
1086 | } | ||||||
1087 | |||||||
1088 | CGF.Builder.restoreIP(SavedIP); | ||||||
1089 | } | ||||||
1090 | |||||||
1091 | /// Emit the structure of the dispatch block for the given catch scope. | ||||||
1092 | /// It is an invariant that the dispatch block already exists. | ||||||
1093 | static void emitCatchDispatchBlock(CodeGenFunction &CGF, | ||||||
1094 | EHCatchScope &catchScope) { | ||||||
1095 | if (EHPersonality::get(CGF).isWasmPersonality()) | ||||||
1096 | return emitWasmCatchPadBlock(CGF, catchScope); | ||||||
1097 | if (EHPersonality::get(CGF).usesFuncletPads()) | ||||||
1098 | return emitCatchPadBlock(CGF, catchScope); | ||||||
1099 | |||||||
1100 | llvm::BasicBlock *dispatchBlock = catchScope.getCachedEHDispatchBlock(); | ||||||
1101 | assert(dispatchBlock)((void)0); | ||||||
1102 | |||||||
1103 | // If there's only a single catch-all, getEHDispatchBlock returned | ||||||
1104 | // that catch-all as the dispatch block. | ||||||
1105 | if (catchScope.getNumHandlers() == 1 && | ||||||
1106 | catchScope.getHandler(0).isCatchAll()) { | ||||||
1107 | assert(dispatchBlock == catchScope.getHandler(0).Block)((void)0); | ||||||
1108 | return; | ||||||
1109 | } | ||||||
1110 | |||||||
1111 | CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveIP(); | ||||||
1112 | CGF.EmitBlockAfterUses(dispatchBlock); | ||||||
1113 | |||||||
1114 | // Select the right handler. | ||||||
1115 | llvm::Function *llvm_eh_typeid_for = | ||||||
1116 | CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for); | ||||||
1117 | |||||||
1118 | // Load the selector value. | ||||||
1119 | llvm::Value *selector = CGF.getSelectorFromSlot(); | ||||||
1120 | |||||||
1121 | // Test against each of the exception types we claim to catch. | ||||||
1122 | for (unsigned i = 0, e = catchScope.getNumHandlers(); ; ++i) { | ||||||
1123 | assert(i < e && "ran off end of handlers!")((void)0); | ||||||
1124 | const EHCatchScope::Handler &handler = catchScope.getHandler(i); | ||||||
1125 | |||||||
1126 | llvm::Value *typeValue = handler.Type.RTTI; | ||||||
1127 | assert(handler.Type.Flags == 0 &&((void)0) | ||||||
1128 | "landingpads do not support catch handler flags")((void)0); | ||||||
1129 | assert(typeValue && "fell into catch-all case!")((void)0); | ||||||
1130 | typeValue = CGF.Builder.CreateBitCast(typeValue, CGF.Int8PtrTy); | ||||||
1131 | |||||||
1132 | // Figure out the next block. | ||||||
1133 | bool nextIsEnd; | ||||||
1134 | llvm::BasicBlock *nextBlock; | ||||||
1135 | |||||||
1136 | // If this is the last handler, we're at the end, and the next | ||||||
1137 | // block is the block for the enclosing EH scope. | ||||||
1138 | if (i + 1 == e) { | ||||||
1139 | nextBlock = CGF.getEHDispatchBlock(catchScope.getEnclosingEHScope()); | ||||||
1140 | nextIsEnd = true; | ||||||
1141 | |||||||
1142 | // If the next handler is a catch-all, we're at the end, and the | ||||||
1143 | // next block is that handler. | ||||||
1144 | } else if (catchScope.getHandler(i+1).isCatchAll()) { | ||||||
1145 | nextBlock = catchScope.getHandler(i+1).Block; | ||||||
1146 | nextIsEnd = true; | ||||||
1147 | |||||||
1148 | // Otherwise, we're not at the end and we need a new block. | ||||||
1149 | } else { | ||||||
1150 | nextBlock = CGF.createBasicBlock("catch.fallthrough"); | ||||||
1151 | nextIsEnd = false; | ||||||
1152 | } | ||||||
1153 | |||||||
1154 | // Figure out the catch type's index in the LSDA's type table. | ||||||
1155 | llvm::CallInst *typeIndex = | ||||||
1156 | CGF.Builder.CreateCall(llvm_eh_typeid_for, typeValue); | ||||||
1157 | typeIndex->setDoesNotThrow(); | ||||||
1158 | |||||||
1159 | llvm::Value *matchesTypeIndex = | ||||||
1160 | CGF.Builder.CreateICmpEQ(selector, typeIndex, "matches"); | ||||||
1161 | CGF.Builder.CreateCondBr(matchesTypeIndex, handler.Block, nextBlock); | ||||||
1162 | |||||||
1163 | // If the next handler is a catch-all, we're completely done. | ||||||
1164 | if (nextIsEnd) { | ||||||
1165 | CGF.Builder.restoreIP(savedIP); | ||||||
1166 | return; | ||||||
1167 | } | ||||||
1168 | // Otherwise we need to emit and continue at that block. | ||||||
1169 | CGF.EmitBlock(nextBlock); | ||||||
1170 | } | ||||||
1171 | } | ||||||
1172 | |||||||
1173 | void CodeGenFunction::popCatchScope() { | ||||||
1174 | EHCatchScope &catchScope = cast<EHCatchScope>(*EHStack.begin()); | ||||||
1175 | if (catchScope.hasEHBranches()) | ||||||
1176 | emitCatchDispatchBlock(*this, catchScope); | ||||||
1177 | EHStack.popCatch(); | ||||||
1178 | } | ||||||
1179 | |||||||
1180 | void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { | ||||||
1181 | unsigned NumHandlers = S.getNumHandlers(); | ||||||
1182 | EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin()); | ||||||
1183 | assert(CatchScope.getNumHandlers() == NumHandlers)((void)0); | ||||||
1184 | llvm::BasicBlock *DispatchBlock = CatchScope.getCachedEHDispatchBlock(); | ||||||
1185 | |||||||
1186 | // If the catch was not required, bail out now. | ||||||
1187 | if (!CatchScope.hasEHBranches()) { | ||||||
1188 | CatchScope.clearHandlerBlocks(); | ||||||
1189 | EHStack.popCatch(); | ||||||
1190 | return; | ||||||
1191 | } | ||||||
1192 | |||||||
1193 | // Emit the structure of the EH dispatch for this catch. | ||||||
1194 | emitCatchDispatchBlock(*this, CatchScope); | ||||||
1195 | |||||||
1196 | // Copy the handler blocks off before we pop the EH stack. Emitting | ||||||
1197 | // the handlers might scribble on this memory. | ||||||
1198 | SmallVector<EHCatchScope::Handler, 8> Handlers( | ||||||
1199 | CatchScope.begin(), CatchScope.begin() + NumHandlers); | ||||||
1200 | |||||||
1201 | EHStack.popCatch(); | ||||||
1202 | |||||||
1203 | // The fall-through block. | ||||||
1204 | llvm::BasicBlock *ContBB = createBasicBlock("try.cont"); | ||||||
1205 | |||||||
1206 | // We just emitted the body of the try; jump to the continue block. | ||||||
1207 | if (HaveInsertPoint()) | ||||||
1208 | Builder.CreateBr(ContBB); | ||||||
1209 | |||||||
1210 | // Determine if we need an implicit rethrow for all these catch handlers; | ||||||
1211 | // see the comment below. | ||||||
1212 | bool doImplicitRethrow = false; | ||||||
1213 | if (IsFnTryBlock
| ||||||
1214 | doImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) || | ||||||
1215 | isa<CXXConstructorDecl>(CurCodeDecl); | ||||||
1216 | |||||||
1217 | // Wasm uses Windows-style EH instructions, but merges all catch clauses into | ||||||
1218 | // one big catchpad. So we save the old funclet pad here before we traverse | ||||||
1219 | // each catch handler. | ||||||
1220 | SaveAndRestore<llvm::Instruction *> RestoreCurrentFuncletPad( | ||||||
1221 | CurrentFuncletPad); | ||||||
1222 | llvm::BasicBlock *WasmCatchStartBlock = nullptr; | ||||||
1223 | if (EHPersonality::get(*this).isWasmPersonality()) { | ||||||
1224 | auto *CatchSwitch = | ||||||
1225 | cast<llvm::CatchSwitchInst>(DispatchBlock->getFirstNonPHI()); | ||||||
1226 | WasmCatchStartBlock = CatchSwitch->hasUnwindDest() | ||||||
1227 | ? CatchSwitch->getSuccessor(1) | ||||||
1228 | : CatchSwitch->getSuccessor(0); | ||||||
1229 | auto *CPI = cast<llvm::CatchPadInst>(WasmCatchStartBlock->getFirstNonPHI()); | ||||||
1230 | CurrentFuncletPad = CPI; | ||||||
1231 | } | ||||||
1232 | |||||||
1233 | // Perversely, we emit the handlers backwards precisely because we | ||||||
1234 | // want them to appear in source order. In all of these cases, the | ||||||
1235 | // catch block will have exactly one predecessor, which will be a | ||||||
1236 | // particular block in the catch dispatch. However, in the case of | ||||||
1237 | // a catch-all, one of the dispatch blocks will branch to two | ||||||
1238 | // different handlers, and EmitBlockAfterUses will cause the second | ||||||
1239 | // handler to be moved before the first. | ||||||
1240 | bool HasCatchAll = false; | ||||||
1241 | for (unsigned I = NumHandlers; I != 0; --I) { | ||||||
1242 | HasCatchAll |= Handlers[I - 1].isCatchAll(); | ||||||
1243 | llvm::BasicBlock *CatchBlock = Handlers[I-1].Block; | ||||||
1244 | EmitBlockAfterUses(CatchBlock); | ||||||
1245 | |||||||
1246 | // Catch the exception if this isn't a catch-all. | ||||||
1247 | const CXXCatchStmt *C = S.getHandler(I-1); | ||||||
1248 | |||||||
1249 | // Enter a cleanup scope, including the catch variable and the | ||||||
1250 | // end-catch. | ||||||
1251 | RunCleanupsScope CatchScope(*this); | ||||||
1252 | |||||||
1253 | // Initialize the catch variable and set up the cleanups. | ||||||
1254 | SaveAndRestore<llvm::Instruction *> RestoreCurrentFuncletPad( | ||||||
1255 | CurrentFuncletPad); | ||||||
1256 | CGM.getCXXABI().emitBeginCatch(*this, C); | ||||||
1257 | |||||||
1258 | // Emit the PGO counter increment. | ||||||
1259 | incrementProfileCounter(C); | ||||||
1260 | |||||||
1261 | // Perform the body of the catch. | ||||||
1262 | EmitStmt(C->getHandlerBlock()); | ||||||
1263 | |||||||
1264 | // [except.handle]p11: | ||||||
1265 | // The currently handled exception is rethrown if control | ||||||
1266 | // reaches the end of a handler of the function-try-block of a | ||||||
1267 | // constructor or destructor. | ||||||
1268 | |||||||
1269 | // It is important that we only do this on fallthrough and not on | ||||||
1270 | // return. Note that it's illegal to put a return in a | ||||||
1271 | // constructor function-try-block's catch handler (p14), so this | ||||||
1272 | // really only applies to destructors. | ||||||
1273 | if (doImplicitRethrow && HaveInsertPoint()) { | ||||||
1274 | CGM.getCXXABI().emitRethrow(*this, /*isNoReturn*/false); | ||||||
1275 | Builder.CreateUnreachable(); | ||||||
1276 | Builder.ClearInsertionPoint(); | ||||||
1277 | } | ||||||
1278 | |||||||
1279 | // Fall out through the catch cleanups. | ||||||
1280 | CatchScope.ForceCleanup(); | ||||||
1281 | |||||||
1282 | // Branch out of the try. | ||||||
1283 | if (HaveInsertPoint()) | ||||||
1284 | Builder.CreateBr(ContBB); | ||||||
1285 | } | ||||||
1286 | |||||||
1287 | // Because in wasm we merge all catch clauses into one big catchpad, in case | ||||||
1288 | // none of the types in catch handlers matches after we test against each of | ||||||
1289 | // them, we should unwind to the next EH enclosing scope. We generate a call | ||||||
1290 | // to rethrow function here to do that. | ||||||
1291 | if (EHPersonality::get(*this).isWasmPersonality() && !HasCatchAll
| ||||||
1292 | assert(WasmCatchStartBlock)((void)0); | ||||||
1293 | // Navigate for the "rethrow" block we created in emitWasmCatchPadBlock(). | ||||||
1294 | // Wasm uses landingpad-style conditional branches to compare selectors, so | ||||||
1295 | // we follow the false destination for each of the cond branches to reach | ||||||
1296 | // the rethrow block. | ||||||
1297 | llvm::BasicBlock *RethrowBlock = WasmCatchStartBlock; | ||||||
1298 | while (llvm::Instruction *TI = RethrowBlock->getTerminator()) { | ||||||
| |||||||
1299 | auto *BI = cast<llvm::BranchInst>(TI); | ||||||
1300 | assert(BI->isConditional())((void)0); | ||||||
1301 | RethrowBlock = BI->getSuccessor(1); | ||||||
1302 | } | ||||||
1303 | assert(RethrowBlock != WasmCatchStartBlock && RethrowBlock->empty())((void)0); | ||||||
1304 | Builder.SetInsertPoint(RethrowBlock); | ||||||
1305 | llvm::Function *RethrowInCatchFn = | ||||||
1306 | CGM.getIntrinsic(llvm::Intrinsic::wasm_rethrow); | ||||||
1307 | EmitNoreturnRuntimeCallOrInvoke(RethrowInCatchFn, {}); | ||||||
1308 | } | ||||||
1309 | |||||||
1310 | EmitBlock(ContBB); | ||||||
1311 | incrementProfileCounter(&S); | ||||||
1312 | } | ||||||
1313 | |||||||
1314 | namespace { | ||||||
1315 | struct CallEndCatchForFinally final : EHScopeStack::Cleanup { | ||||||
1316 | llvm::Value *ForEHVar; | ||||||
1317 | llvm::FunctionCallee EndCatchFn; | ||||||
1318 | CallEndCatchForFinally(llvm::Value *ForEHVar, | ||||||
1319 | llvm::FunctionCallee EndCatchFn) | ||||||
1320 | : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {} | ||||||
1321 | |||||||
1322 | void Emit(CodeGenFunction &CGF, Flags flags) override { | ||||||
1323 | llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch"); | ||||||
1324 | llvm::BasicBlock *CleanupContBB = | ||||||
1325 | CGF.createBasicBlock("finally.cleanup.cont"); | ||||||
1326 | |||||||
1327 | llvm::Value *ShouldEndCatch = | ||||||
1328 | CGF.Builder.CreateFlagLoad(ForEHVar, "finally.endcatch"); | ||||||
1329 | CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB); | ||||||
1330 | CGF.EmitBlock(EndCatchBB); | ||||||
1331 | CGF.EmitRuntimeCallOrInvoke(EndCatchFn); // catch-all, so might throw | ||||||
1332 | CGF.EmitBlock(CleanupContBB); | ||||||
1333 | } | ||||||
1334 | }; | ||||||
1335 | |||||||
1336 | struct PerformFinally final : EHScopeStack::Cleanup { | ||||||
1337 | const Stmt *Body; | ||||||
1338 | llvm::Value *ForEHVar; | ||||||
1339 | llvm::FunctionCallee EndCatchFn; | ||||||
1340 | llvm::FunctionCallee RethrowFn; | ||||||
1341 | llvm::Value *SavedExnVar; | ||||||
1342 | |||||||
1343 | PerformFinally(const Stmt *Body, llvm::Value *ForEHVar, | ||||||
1344 | llvm::FunctionCallee EndCatchFn, | ||||||
1345 | llvm::FunctionCallee RethrowFn, llvm::Value *SavedExnVar) | ||||||
1346 | : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn), | ||||||
1347 | RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {} | ||||||
1348 | |||||||
1349 | void Emit(CodeGenFunction &CGF, Flags flags) override { | ||||||
1350 | // Enter a cleanup to call the end-catch function if one was provided. | ||||||
1351 | if (EndCatchFn) | ||||||
1352 | CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup, | ||||||
1353 | ForEHVar, EndCatchFn); | ||||||
1354 | |||||||
1355 | // Save the current cleanup destination in case there are | ||||||
1356 | // cleanups in the finally block. | ||||||
1357 | llvm::Value *SavedCleanupDest = | ||||||
1358 | CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(), | ||||||
1359 | "cleanup.dest.saved"); | ||||||
1360 | |||||||
1361 | // Emit the finally block. | ||||||
1362 | CGF.EmitStmt(Body); | ||||||
1363 | |||||||
1364 | // If the end of the finally is reachable, check whether this was | ||||||
1365 | // for EH. If so, rethrow. | ||||||
1366 | if (CGF.HaveInsertPoint()) { | ||||||
1367 | llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow"); | ||||||
1368 | llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont"); | ||||||
1369 | |||||||
1370 | llvm::Value *ShouldRethrow = | ||||||
1371 | CGF.Builder.CreateFlagLoad(ForEHVar, "finally.shouldthrow"); | ||||||
1372 | CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB); | ||||||
1373 | |||||||
1374 | CGF.EmitBlock(RethrowBB); | ||||||
1375 | if (SavedExnVar) { | ||||||
1376 | CGF.EmitRuntimeCallOrInvoke(RethrowFn, | ||||||
1377 | CGF.Builder.CreateAlignedLoad(CGF.Int8PtrTy, SavedExnVar, | ||||||
1378 | CGF.getPointerAlign())); | ||||||
1379 | } else { | ||||||
1380 | CGF.EmitRuntimeCallOrInvoke(RethrowFn); | ||||||
1381 | } | ||||||
1382 | CGF.Builder.CreateUnreachable(); | ||||||
1383 | |||||||
1384 | CGF.EmitBlock(ContBB); | ||||||
1385 | |||||||
1386 | // Restore the cleanup destination. | ||||||
1387 | CGF.Builder.CreateStore(SavedCleanupDest, | ||||||
1388 | CGF.getNormalCleanupDestSlot()); | ||||||
1389 | } | ||||||
1390 | |||||||
1391 | // Leave the end-catch cleanup. As an optimization, pretend that | ||||||
1392 | // the fallthrough path was inaccessible; we've dynamically proven | ||||||
1393 | // that we're not in the EH case along that path. | ||||||
1394 | if (EndCatchFn) { | ||||||
1395 | CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); | ||||||
1396 | CGF.PopCleanupBlock(); | ||||||
1397 | CGF.Builder.restoreIP(SavedIP); | ||||||
1398 | } | ||||||
1399 | |||||||
1400 | // Now make sure we actually have an insertion point or the | ||||||
1401 | // cleanup gods will hate us. | ||||||
1402 | CGF.EnsureInsertPoint(); | ||||||
1403 | } | ||||||
1404 | }; | ||||||
1405 | } // end anonymous namespace | ||||||
1406 | |||||||
1407 | /// Enters a finally block for an implementation using zero-cost | ||||||
1408 | /// exceptions. This is mostly general, but hard-codes some | ||||||
1409 | /// language/ABI-specific behavior in the catch-all sections. | ||||||
1410 | void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF, const Stmt *body, | ||||||
1411 | llvm::FunctionCallee beginCatchFn, | ||||||
1412 | llvm::FunctionCallee endCatchFn, | ||||||
1413 | llvm::FunctionCallee rethrowFn) { | ||||||
1414 | assert((!!beginCatchFn) == (!!endCatchFn) &&((void)0) | ||||||
1415 | "begin/end catch functions not paired")((void)0); | ||||||
1416 | assert(rethrowFn && "rethrow function is required")((void)0); | ||||||
1417 | |||||||
1418 | BeginCatchFn = beginCatchFn; | ||||||
1419 | |||||||
1420 | // The rethrow function has one of the following two types: | ||||||
1421 | // void (*)() | ||||||
1422 | // void (*)(void*) | ||||||
1423 | // In the latter case we need to pass it the exception object. | ||||||
1424 | // But we can't use the exception slot because the @finally might | ||||||
1425 | // have a landing pad (which would overwrite the exception slot). | ||||||
1426 | llvm::FunctionType *rethrowFnTy = rethrowFn.getFunctionType(); | ||||||
1427 | SavedExnVar = nullptr; | ||||||
1428 | if (rethrowFnTy->getNumParams()) | ||||||
1429 | SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn"); | ||||||
1430 | |||||||
1431 | // A finally block is a statement which must be executed on any edge | ||||||
1432 | // out of a given scope. Unlike a cleanup, the finally block may | ||||||
1433 | // contain arbitrary control flow leading out of itself. In | ||||||
1434 | // addition, finally blocks should always be executed, even if there | ||||||
1435 | // are no catch handlers higher on the stack. Therefore, we | ||||||
1436 | // surround the protected scope with a combination of a normal | ||||||
1437 | // cleanup (to catch attempts to break out of the block via normal | ||||||
1438 | // control flow) and an EH catch-all (semantically "outside" any try | ||||||
1439 | // statement to which the finally block might have been attached). | ||||||
1440 | // The finally block itself is generated in the context of a cleanup | ||||||
1441 | // which conditionally leaves the catch-all. | ||||||
1442 | |||||||
1443 | // Jump destination for performing the finally block on an exception | ||||||
1444 | // edge. We'll never actually reach this block, so unreachable is | ||||||
1445 | // fine. | ||||||
1446 | RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock()); | ||||||
1447 | |||||||
1448 | // Whether the finally block is being executed for EH purposes. | ||||||
1449 | ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh"); | ||||||
1450 | CGF.Builder.CreateFlagStore(false, ForEHVar); | ||||||
1451 | |||||||
1452 | // Enter a normal cleanup which will perform the @finally block. | ||||||
1453 | CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body, | ||||||
1454 | ForEHVar, endCatchFn, | ||||||
1455 | rethrowFn, SavedExnVar); | ||||||
1456 | |||||||
1457 | // Enter a catch-all scope. | ||||||
1458 | llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall"); | ||||||
1459 | EHCatchScope *catchScope = CGF.EHStack.pushCatch(1); | ||||||
1460 | catchScope->setCatchAllHandler(0, catchBB); | ||||||
1461 | } | ||||||
1462 | |||||||
1463 | void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) { | ||||||
1464 | // Leave the finally catch-all. | ||||||
1465 | EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin()); | ||||||
1466 | llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block; | ||||||
1467 | |||||||
1468 | CGF.popCatchScope(); | ||||||
1469 | |||||||
1470 | // If there are any references to the catch-all block, emit it. | ||||||
1471 | if (catchBB->use_empty()) { | ||||||
1472 | delete catchBB; | ||||||
1473 | } else { | ||||||
1474 | CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP(); | ||||||
1475 | CGF.EmitBlock(catchBB); | ||||||
1476 | |||||||
1477 | llvm::Value *exn = nullptr; | ||||||
1478 | |||||||
1479 | // If there's a begin-catch function, call it. | ||||||
1480 | if (BeginCatchFn) { | ||||||
1481 | exn = CGF.getExceptionFromSlot(); | ||||||
1482 | CGF.EmitNounwindRuntimeCall(BeginCatchFn, exn); | ||||||
1483 | } | ||||||
1484 | |||||||
1485 | // If we need to remember the exception pointer to rethrow later, do so. | ||||||
1486 | if (SavedExnVar) { | ||||||
1487 | if (!exn) exn = CGF.getExceptionFromSlot(); | ||||||
1488 | CGF.Builder.CreateAlignedStore(exn, SavedExnVar, CGF.getPointerAlign()); | ||||||
1489 | } | ||||||
1490 | |||||||
1491 | // Tell the cleanups in the finally block that we're do this for EH. | ||||||
1492 | CGF.Builder.CreateFlagStore(true, ForEHVar); | ||||||
1493 | |||||||
1494 | // Thread a jump through the finally cleanup. | ||||||
1495 | CGF.EmitBranchThroughCleanup(RethrowDest); | ||||||
1496 | |||||||
1497 | CGF.Builder.restoreIP(savedIP); | ||||||
1498 | } | ||||||
1499 | |||||||
1500 | // Finally, leave the @finally cleanup. | ||||||
1501 | CGF.PopCleanupBlock(); | ||||||
1502 | } | ||||||
1503 | |||||||
1504 | llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() { | ||||||
1505 | if (TerminateLandingPad) | ||||||
1506 | return TerminateLandingPad; | ||||||
1507 | |||||||
1508 | CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); | ||||||
1509 | |||||||
1510 | // This will get inserted at the end of the function. | ||||||
1511 | TerminateLandingPad = createBasicBlock("terminate.lpad"); | ||||||
1512 | Builder.SetInsertPoint(TerminateLandingPad); | ||||||
1513 | |||||||
1514 | // Tell the backend that this is a landing pad. | ||||||
1515 | const EHPersonality &Personality = EHPersonality::get(*this); | ||||||
1516 | |||||||
1517 | if (!CurFn->hasPersonalityFn()) | ||||||
1518 | CurFn->setPersonalityFn(getOpaquePersonalityFn(CGM, Personality)); | ||||||
1519 | |||||||
1520 | llvm::LandingPadInst *LPadInst = | ||||||
1521 | Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty), 0); | ||||||
1522 | LPadInst->addClause(getCatchAllValue(*this)); | ||||||
1523 | |||||||
1524 | llvm::Value *Exn = nullptr; | ||||||
1525 | if (getLangOpts().CPlusPlus) | ||||||
1526 | Exn = Builder.CreateExtractValue(LPadInst, 0); | ||||||
1527 | llvm::CallInst *terminateCall = | ||||||
1528 | CGM.getCXXABI().emitTerminateForUnexpectedException(*this, Exn); | ||||||
1529 | terminateCall->setDoesNotReturn(); | ||||||
1530 | Builder.CreateUnreachable(); | ||||||
1531 | |||||||
1532 | // Restore the saved insertion state. | ||||||
1533 | Builder.restoreIP(SavedIP); | ||||||
1534 | |||||||
1535 | return TerminateLandingPad; | ||||||
1536 | } | ||||||
1537 | |||||||
1538 | llvm::BasicBlock *CodeGenFunction::getTerminateHandler() { | ||||||
1539 | if (TerminateHandler) | ||||||
1540 | return TerminateHandler; | ||||||
1541 | |||||||
1542 | // Set up the terminate handler. This block is inserted at the very | ||||||
1543 | // end of the function by FinishFunction. | ||||||
1544 | TerminateHandler = createBasicBlock("terminate.handler"); | ||||||
1545 | CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); | ||||||
1546 | Builder.SetInsertPoint(TerminateHandler); | ||||||
1547 | |||||||
1548 | llvm::Value *Exn = nullptr; | ||||||
1549 | if (getLangOpts().CPlusPlus) | ||||||
1550 | Exn = getExceptionFromSlot(); | ||||||
1551 | llvm::CallInst *terminateCall = | ||||||
1552 | CGM.getCXXABI().emitTerminateForUnexpectedException(*this, Exn); | ||||||
1553 | terminateCall->setDoesNotReturn(); | ||||||
1554 | Builder.CreateUnreachable(); | ||||||
1555 | |||||||
1556 | // Restore the saved insertion state. | ||||||
1557 | Builder.restoreIP(SavedIP); | ||||||
1558 | |||||||
1559 | return TerminateHandler; | ||||||
1560 | } | ||||||
1561 | |||||||
1562 | llvm::BasicBlock *CodeGenFunction::getTerminateFunclet() { | ||||||
1563 | assert(EHPersonality::get(*this).usesFuncletPads() &&((void)0) | ||||||
1564 | "use getTerminateLandingPad for non-funclet EH")((void)0); | ||||||
1565 | |||||||
1566 | llvm::BasicBlock *&TerminateFunclet = TerminateFunclets[CurrentFuncletPad]; | ||||||
1567 | if (TerminateFunclet) | ||||||
1568 | return TerminateFunclet; | ||||||
1569 | |||||||
1570 | CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); | ||||||
1571 | |||||||
1572 | // Set up the terminate handler. This block is inserted at the very | ||||||
1573 | // end of the function by FinishFunction. | ||||||
1574 | TerminateFunclet = createBasicBlock("terminate.handler"); | ||||||
1575 | Builder.SetInsertPoint(TerminateFunclet); | ||||||
1576 | |||||||
1577 | // Create the cleanuppad using the current parent pad as its token. Use 'none' | ||||||
1578 | // if this is a top-level terminate scope, which is the common case. | ||||||
1579 | SaveAndRestore<llvm::Instruction *> RestoreCurrentFuncletPad( | ||||||
1580 | CurrentFuncletPad); | ||||||
1581 | llvm::Value *ParentPad = CurrentFuncletPad; | ||||||
1582 | if (!ParentPad) | ||||||
1583 | ParentPad = llvm::ConstantTokenNone::get(CGM.getLLVMContext()); | ||||||
1584 | CurrentFuncletPad = Builder.CreateCleanupPad(ParentPad); | ||||||
1585 | |||||||
1586 | // Emit the __std_terminate call. | ||||||
1587 | llvm::CallInst *terminateCall = | ||||||
1588 | CGM.getCXXABI().emitTerminateForUnexpectedException(*this, nullptr); | ||||||
1589 | terminateCall->setDoesNotReturn(); | ||||||
1590 | Builder.CreateUnreachable(); | ||||||
1591 | |||||||
1592 | // Restore the saved insertion state. | ||||||
1593 | Builder.restoreIP(SavedIP); | ||||||
1594 | |||||||
1595 | return TerminateFunclet; | ||||||
1596 | } | ||||||
1597 | |||||||
1598 | llvm::BasicBlock *CodeGenFunction::getEHResumeBlock(bool isCleanup) { | ||||||
1599 | if (EHResumeBlock) return EHResumeBlock; | ||||||
1600 | |||||||
1601 | CGBuilderTy::InsertPoint SavedIP = Builder.saveIP(); | ||||||
1602 | |||||||
1603 | // We emit a jump to a notional label at the outermost unwind state. | ||||||
1604 | EHResumeBlock = createBasicBlock("eh.resume"); | ||||||
1605 | Builder.SetInsertPoint(EHResumeBlock); | ||||||
1606 | |||||||
1607 | const EHPersonality &Personality = EHPersonality::get(*this); | ||||||
1608 | |||||||
1609 | // This can always be a call because we necessarily didn't find | ||||||
1610 | // anything on the EH stack which needs our help. | ||||||
1611 | const char *RethrowName = Personality.CatchallRethrowFn; | ||||||
1612 | if (RethrowName != nullptr && !isCleanup) { | ||||||
1613 | EmitRuntimeCall(getCatchallRethrowFn(CGM, RethrowName), | ||||||
1614 | getExceptionFromSlot())->setDoesNotReturn(); | ||||||
1615 | Builder.CreateUnreachable(); | ||||||
1616 | Builder.restoreIP(SavedIP); | ||||||
1617 | return EHResumeBlock; | ||||||
1618 | } | ||||||
1619 | |||||||
1620 | // Recreate the landingpad's return value for the 'resume' instruction. | ||||||
1621 | llvm::Value *Exn = getExceptionFromSlot(); | ||||||
1622 | llvm::Value *Sel = getSelectorFromSlot(); | ||||||
1623 | |||||||
1624 | llvm::Type *LPadType = llvm::StructType::get(Exn->getType(), Sel->getType()); | ||||||
1625 | llvm::Value *LPadVal = llvm::UndefValue::get(LPadType); | ||||||
1626 | LPadVal = Builder.CreateInsertValue(LPadVal, Exn, 0, "lpad.val"); | ||||||
1627 | LPadVal = Builder.CreateInsertValue(LPadVal, Sel, 1, "lpad.val"); | ||||||
1628 | |||||||
1629 | Builder.CreateResume(LPadVal); | ||||||
1630 | Builder.restoreIP(SavedIP); | ||||||
1631 | return EHResumeBlock; | ||||||
1632 | } | ||||||
1633 | |||||||
1634 | void CodeGenFunction::EmitSEHTryStmt(const SEHTryStmt &S) { | ||||||
1635 | EnterSEHTryStmt(S); | ||||||
1636 | { | ||||||
1637 | JumpDest TryExit = getJumpDestInCurrentScope("__try.__leave"); | ||||||
1638 | |||||||
1639 | SEHTryEpilogueStack.push_back(&TryExit); | ||||||
1640 | |||||||
1641 | llvm::BasicBlock *TryBB = nullptr; | ||||||
1642 | // IsEHa: emit an invoke to _seh_try_begin() runtime for -EHa | ||||||
1643 | if (getLangOpts().EHAsynch) { | ||||||
1644 | EmitRuntimeCallOrInvoke(getSehTryBeginFn(CGM)); | ||||||
1645 | if (SEHTryEpilogueStack.size() == 1) // outermost only | ||||||
1646 | TryBB = Builder.GetInsertBlock(); | ||||||
1647 | } | ||||||
1648 | |||||||
1649 | EmitStmt(S.getTryBlock()); | ||||||
1650 | |||||||
1651 | // Volatilize all blocks in Try, till current insert point | ||||||
1652 | if (TryBB) { | ||||||
1653 | llvm::SmallPtrSet<llvm::BasicBlock *, 10> Visited; | ||||||
1654 | VolatilizeTryBlocks(TryBB, Visited); | ||||||
1655 | } | ||||||
1656 | |||||||
1657 | SEHTryEpilogueStack.pop_back(); | ||||||
1658 | |||||||
1659 | if (!TryExit.getBlock()->use_empty()) | ||||||
1660 | EmitBlock(TryExit.getBlock(), /*IsFinished=*/true); | ||||||
1661 | else | ||||||
1662 | delete TryExit.getBlock(); | ||||||
1663 | } | ||||||
1664 | ExitSEHTryStmt(S); | ||||||
1665 | } | ||||||
1666 | |||||||
1667 | // Recursively walk through blocks in a _try | ||||||
1668 | // and make all memory instructions volatile | ||||||
1669 | void CodeGenFunction::VolatilizeTryBlocks( | ||||||
1670 | llvm::BasicBlock *BB, llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V) { | ||||||
1671 | if (BB == SEHTryEpilogueStack.back()->getBlock() /* end of Try */ || | ||||||
1672 | !V.insert(BB).second /* already visited */ || | ||||||
1673 | !BB->getParent() /* not emitted */ || BB->empty()) | ||||||
1674 | return; | ||||||
1675 | |||||||
1676 | if (!BB->isEHPad()) { | ||||||
1677 | for (llvm::BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; | ||||||
1678 | ++J) { | ||||||
1679 | if (auto LI = dyn_cast<llvm::LoadInst>(J)) { | ||||||
1680 | LI->setVolatile(true); | ||||||
1681 | } else if (auto SI = dyn_cast<llvm::StoreInst>(J)) { | ||||||
1682 | SI->setVolatile(true); | ||||||
1683 | } else if (auto* MCI = dyn_cast<llvm::MemIntrinsic>(J)) { | ||||||
1684 | MCI->setVolatile(llvm::ConstantInt::get(Builder.getInt1Ty(), 1)); | ||||||
1685 | } | ||||||
1686 | } | ||||||
1687 | } | ||||||
1688 | const llvm::Instruction *TI = BB->getTerminator(); | ||||||
1689 | if (TI) { | ||||||
1690 | unsigned N = TI->getNumSuccessors(); | ||||||
1691 | for (unsigned I = 0; I < N; I++) | ||||||
1692 | VolatilizeTryBlocks(TI->getSuccessor(I), V); | ||||||
1693 | } | ||||||
1694 | } | ||||||
1695 | |||||||
1696 | namespace { | ||||||
1697 | struct PerformSEHFinally final : EHScopeStack::Cleanup { | ||||||
1698 | llvm::Function *OutlinedFinally; | ||||||
1699 | PerformSEHFinally(llvm::Function *OutlinedFinally) | ||||||
1700 | : OutlinedFinally(OutlinedFinally) {} | ||||||
1701 | |||||||
1702 | void Emit(CodeGenFunction &CGF, Flags F) override { | ||||||
1703 | ASTContext &Context = CGF.getContext(); | ||||||
1704 | CodeGenModule &CGM = CGF.CGM; | ||||||
1705 | |||||||
1706 | CallArgList Args; | ||||||
1707 | |||||||
1708 | // Compute the two argument values. | ||||||
1709 | QualType ArgTys[2] = {Context.UnsignedCharTy, Context.VoidPtrTy}; | ||||||
1710 | llvm::Value *FP = nullptr; | ||||||
1711 | // If CFG.IsOutlinedSEHHelper is true, then we are within a finally block. | ||||||
1712 | if (CGF.IsOutlinedSEHHelper) { | ||||||
1713 | FP = &CGF.CurFn->arg_begin()[1]; | ||||||
1714 | } else { | ||||||
1715 | llvm::Function *LocalAddrFn = | ||||||
1716 | CGM.getIntrinsic(llvm::Intrinsic::localaddress); | ||||||
1717 | FP = CGF.Builder.CreateCall(LocalAddrFn); | ||||||
1718 | } | ||||||
1719 | |||||||
1720 | llvm::Value *IsForEH = | ||||||
1721 | llvm::ConstantInt::get(CGF.ConvertType(ArgTys[0]), F.isForEHCleanup()); | ||||||
1722 | |||||||
1723 | // Except _leave and fall-through at the end, all other exits in a _try | ||||||
1724 | // (return/goto/continue/break) are considered as abnormal terminations | ||||||
1725 | // since _leave/fall-through is always Indexed 0, | ||||||
1726 | // just use NormalCleanupDestSlot (>= 1 for goto/return/..), | ||||||
1727 | // as 1st Arg to indicate abnormal termination | ||||||
1728 | if (!F.isForEHCleanup() && F.hasExitSwitch()) { | ||||||
1729 | Address Addr = CGF.getNormalCleanupDestSlot(); | ||||||
1730 | llvm::Value *Load = CGF.Builder.CreateLoad(Addr, "cleanup.dest"); | ||||||
1731 | llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int32Ty); | ||||||
1732 | IsForEH = CGF.Builder.CreateICmpNE(Load, Zero); | ||||||
1733 | } | ||||||
1734 | |||||||
1735 | Args.add(RValue::get(IsForEH), ArgTys[0]); | ||||||
1736 | Args.add(RValue::get(FP), ArgTys[1]); | ||||||
1737 | |||||||
1738 | // Arrange a two-arg function info and type. | ||||||
1739 | const CGFunctionInfo &FnInfo = | ||||||
1740 | CGM.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, Args); | ||||||
1741 | |||||||
1742 | auto Callee = CGCallee::forDirect(OutlinedFinally); | ||||||
1743 | CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); | ||||||
1744 | } | ||||||
1745 | }; | ||||||
1746 | } // end anonymous namespace | ||||||
1747 | |||||||
1748 | namespace { | ||||||
1749 | /// Find all local variable captures in the statement. | ||||||
1750 | struct CaptureFinder : ConstStmtVisitor<CaptureFinder> { | ||||||
1751 | CodeGenFunction &ParentCGF; | ||||||
1752 | const VarDecl *ParentThis; | ||||||
1753 | llvm::SmallSetVector<const VarDecl *, 4> Captures; | ||||||
1754 | Address SEHCodeSlot = Address::invalid(); | ||||||
1755 | CaptureFinder(CodeGenFunction &ParentCGF, const VarDecl *ParentThis) | ||||||
1756 | : ParentCGF(ParentCGF), ParentThis(ParentThis) {} | ||||||
1757 | |||||||
1758 | // Return true if we need to do any capturing work. | ||||||
1759 | bool foundCaptures() { | ||||||
1760 | return !Captures.empty() || SEHCodeSlot.isValid(); | ||||||
1761 | } | ||||||
1762 | |||||||
1763 | void Visit(const Stmt *S) { | ||||||
1764 | // See if this is a capture, then recurse. | ||||||
1765 | ConstStmtVisitor<CaptureFinder>::Visit(S); | ||||||
1766 | for (const Stmt *Child : S->children()) | ||||||
1767 | if (Child) | ||||||
1768 | Visit(Child); | ||||||
1769 | } | ||||||
1770 | |||||||
1771 | void VisitDeclRefExpr(const DeclRefExpr *E) { | ||||||
1772 | // If this is already a capture, just make sure we capture 'this'. | ||||||
1773 | if (E->refersToEnclosingVariableOrCapture()) | ||||||
1774 | Captures.insert(ParentThis); | ||||||
1775 | |||||||
1776 | const auto *D = dyn_cast<VarDecl>(E->getDecl()); | ||||||
1777 | if (D && D->isLocalVarDeclOrParm() && D->hasLocalStorage()) | ||||||
1778 | Captures.insert(D); | ||||||
1779 | } | ||||||
1780 | |||||||
1781 | void VisitCXXThisExpr(const CXXThisExpr *E) { | ||||||
1782 | Captures.insert(ParentThis); | ||||||
1783 | } | ||||||
1784 | |||||||
1785 | void VisitCallExpr(const CallExpr *E) { | ||||||
1786 | // We only need to add parent frame allocations for these builtins in x86. | ||||||
1787 | if (ParentCGF.getTarget().getTriple().getArch() != llvm::Triple::x86) | ||||||
1788 | return; | ||||||
1789 | |||||||
1790 | unsigned ID = E->getBuiltinCallee(); | ||||||
1791 | switch (ID) { | ||||||
1792 | case Builtin::BI__exception_code: | ||||||
1793 | case Builtin::BI_exception_code: | ||||||
1794 | // This is the simple case where we are the outermost finally. All we | ||||||
1795 | // have to do here is make sure we escape this and recover it in the | ||||||
1796 | // outlined handler. | ||||||
1797 | if (!SEHCodeSlot.isValid()) | ||||||
1798 | SEHCodeSlot = ParentCGF.SEHCodeSlotStack.back(); | ||||||
1799 | break; | ||||||
1800 | } | ||||||
1801 | } | ||||||
1802 | }; | ||||||
1803 | } // end anonymous namespace | ||||||
1804 | |||||||
1805 | Address CodeGenFunction::recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, | ||||||
1806 | Address ParentVar, | ||||||
1807 | llvm::Value *ParentFP) { | ||||||
1808 | llvm::CallInst *RecoverCall = nullptr; | ||||||
1809 | CGBuilderTy Builder(*this, AllocaInsertPt); | ||||||
1810 | if (auto *ParentAlloca = dyn_cast<llvm::AllocaInst>(ParentVar.getPointer())) { | ||||||
1811 | // Mark the variable escaped if nobody else referenced it and compute the | ||||||
1812 | // localescape index. | ||||||
1813 | auto InsertPair = ParentCGF.EscapedLocals.insert( | ||||||
1814 | std::make_pair(ParentAlloca, ParentCGF.EscapedLocals.size())); | ||||||
1815 | int FrameEscapeIdx = InsertPair.first->second; | ||||||
1816 | // call i8* @llvm.localrecover(i8* bitcast(@parentFn), i8* %fp, i32 N) | ||||||
1817 | llvm::Function *FrameRecoverFn = llvm::Intrinsic::getDeclaration( | ||||||
1818 | &CGM.getModule(), llvm::Intrinsic::localrecover); | ||||||
1819 | llvm::Constant *ParentI8Fn = | ||||||
1820 | llvm::ConstantExpr::getBitCast(ParentCGF.CurFn, Int8PtrTy); | ||||||
1821 | RecoverCall = Builder.CreateCall( | ||||||
1822 | FrameRecoverFn, {ParentI8Fn, ParentFP, | ||||||
1823 | llvm::ConstantInt::get(Int32Ty, FrameEscapeIdx)}); | ||||||
1824 | |||||||
1825 | } else { | ||||||
1826 | // If the parent didn't have an alloca, we're doing some nested outlining. | ||||||
1827 | // Just clone the existing localrecover call, but tweak the FP argument to | ||||||
1828 | // use our FP value. All other arguments are constants. | ||||||
1829 | auto *ParentRecover = | ||||||
1830 | cast<llvm::IntrinsicInst>(ParentVar.getPointer()->stripPointerCasts()); | ||||||
1831 | assert(ParentRecover->getIntrinsicID() == llvm::Intrinsic::localrecover &&((void)0) | ||||||
1832 | "expected alloca or localrecover in parent LocalDeclMap")((void)0); | ||||||
1833 | RecoverCall = cast<llvm::CallInst>(ParentRecover->clone()); | ||||||
1834 | RecoverCall->setArgOperand(1, ParentFP); | ||||||
1835 | RecoverCall->insertBefore(AllocaInsertPt); | ||||||
1836 | } | ||||||
1837 | |||||||
1838 | // Bitcast the variable, rename it, and insert it in the local decl map. | ||||||
1839 | llvm::Value *ChildVar = | ||||||
1840 | Builder.CreateBitCast(RecoverCall, ParentVar.getType()); | ||||||
1841 | ChildVar->setName(ParentVar.getName()); | ||||||
1842 | return Address(ChildVar, ParentVar.getAlignment()); | ||||||
1843 | } | ||||||
1844 | |||||||
1845 | void CodeGenFunction::EmitCapturedLocals(CodeGenFunction &ParentCGF, | ||||||
1846 | const Stmt *OutlinedStmt, | ||||||
1847 | bool IsFilter) { | ||||||
1848 | // Find all captures in the Stmt. | ||||||
1849 | CaptureFinder Finder(ParentCGF, ParentCGF.CXXABIThisDecl); | ||||||
1850 | Finder.Visit(OutlinedStmt); | ||||||
1851 | |||||||
1852 | // We can exit early on x86_64 when there are no captures. We just have to | ||||||
1853 | // save the exception code in filters so that __exception_code() works. | ||||||
1854 | if (!Finder.foundCaptures() && | ||||||
1855 | CGM.getTarget().getTriple().getArch() != llvm::Triple::x86) { | ||||||
1856 | if (IsFilter) | ||||||
1857 | EmitSEHExceptionCodeSave(ParentCGF, nullptr, nullptr); | ||||||
1858 | return; | ||||||
1859 | } | ||||||
1860 | |||||||
1861 | llvm::Value *EntryFP = nullptr; | ||||||
1862 | CGBuilderTy Builder(CGM, AllocaInsertPt); | ||||||
1863 | if (IsFilter && CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) { | ||||||
1864 | // 32-bit SEH filters need to be careful about FP recovery. The end of the | ||||||
1865 | // EH registration is passed in as the EBP physical register. We can | ||||||
1866 | // recover that with llvm.frameaddress(1). | ||||||
1867 | EntryFP = Builder.CreateCall( | ||||||
1868 | CGM.getIntrinsic(llvm::Intrinsic::frameaddress, AllocaInt8PtrTy), | ||||||
1869 | {Builder.getInt32(1)}); | ||||||
1870 | } else { | ||||||
1871 | // Otherwise, for x64 and 32-bit finally functions, the parent FP is the | ||||||
1872 | // second parameter. | ||||||
1873 | auto AI = CurFn->arg_begin(); | ||||||
1874 | ++AI; | ||||||
1875 | EntryFP = &*AI; | ||||||
1876 | } | ||||||
1877 | |||||||
1878 | llvm::Value *ParentFP = EntryFP; | ||||||
1879 | if (IsFilter) { | ||||||
1880 | // Given whatever FP the runtime provided us in EntryFP, recover the true | ||||||
1881 | // frame pointer of the parent function. We only need to do this in filters, | ||||||
1882 | // since finally funclets recover the parent FP for us. | ||||||
1883 | llvm::Function *RecoverFPIntrin = | ||||||
1884 | CGM.getIntrinsic(llvm::Intrinsic::eh_recoverfp); | ||||||
1885 | llvm::Constant *ParentI8Fn = | ||||||
1886 | llvm::ConstantExpr::getBitCast(ParentCGF.CurFn, Int8PtrTy); | ||||||
1887 | ParentFP = Builder.CreateCall(RecoverFPIntrin, {ParentI8Fn, EntryFP}); | ||||||
1888 | |||||||
1889 | // if the parent is a _finally, the passed-in ParentFP is the FP | ||||||
1890 | // of parent _finally, not Establisher's FP (FP of outermost function). | ||||||
1891 | // Establkisher FP is 2nd paramenter passed into parent _finally. | ||||||
1892 | // Fortunately, it's always saved in parent's frame. The following | ||||||
1893 | // code retrieves it, and escapes it so that spill instruction won't be | ||||||
1894 | // optimized away. | ||||||
1895 | if (ParentCGF.ParentCGF != nullptr) { | ||||||
1896 | // Locate and escape Parent's frame_pointer.addr alloca | ||||||
1897 | // Depending on target, should be 1st/2nd one in LocalDeclMap. | ||||||
1898 | // Let's just scan for ImplicitParamDecl with VoidPtrTy. | ||||||
1899 | llvm::AllocaInst *FramePtrAddrAlloca = nullptr; | ||||||
1900 | for (auto &I : ParentCGF.LocalDeclMap) { | ||||||
1901 | const VarDecl *D = cast<VarDecl>(I.first); | ||||||
1902 | if (isa<ImplicitParamDecl>(D) && | ||||||
1903 | D->getType() == getContext().VoidPtrTy) { | ||||||
1904 | assert(D->getName().startswith("frame_pointer"))((void)0); | ||||||
1905 | FramePtrAddrAlloca = cast<llvm::AllocaInst>(I.second.getPointer()); | ||||||
1906 | break; | ||||||
1907 | } | ||||||
1908 | } | ||||||
1909 | assert(FramePtrAddrAlloca)((void)0); | ||||||
1910 | auto InsertPair = ParentCGF.EscapedLocals.insert( | ||||||
1911 | std::make_pair(FramePtrAddrAlloca, ParentCGF.EscapedLocals.size())); | ||||||
1912 | int FrameEscapeIdx = InsertPair.first->second; | ||||||
1913 | |||||||
1914 | // an example of a filter's prolog:: | ||||||
1915 | // %0 = call i8* @llvm.eh.recoverfp(bitcast(@"?fin$0@0@main@@"),..) | ||||||
1916 | // %1 = call i8* @llvm.localrecover(bitcast(@"?fin$0@0@main@@"),..) | ||||||
1917 | // %2 = bitcast i8* %1 to i8** | ||||||
1918 | // %3 = load i8*, i8* *%2, align 8 | ||||||
1919 | // ==> %3 is the frame-pointer of outermost host function | ||||||
1920 | llvm::Function *FrameRecoverFn = llvm::Intrinsic::getDeclaration( | ||||||
1921 | &CGM.getModule(), llvm::Intrinsic::localrecover); | ||||||
1922 | llvm::Constant *ParentI8Fn = | ||||||
1923 | llvm::ConstantExpr::getBitCast(ParentCGF.CurFn, Int8PtrTy); | ||||||
1924 | ParentFP = Builder.CreateCall( | ||||||
1925 | FrameRecoverFn, {ParentI8Fn, ParentFP, | ||||||
1926 | llvm::ConstantInt::get(Int32Ty, FrameEscapeIdx)}); | ||||||
1927 | ParentFP = Builder.CreateBitCast(ParentFP, CGM.VoidPtrPtrTy); | ||||||
1928 | ParentFP = Builder.CreateLoad(Address(ParentFP, getPointerAlign())); | ||||||
1929 | } | ||||||
1930 | } | ||||||
1931 | |||||||
1932 | // Create llvm.localrecover calls for all captures. | ||||||
1933 | for (const VarDecl *VD : Finder.Captures) { | ||||||
1934 | if (VD->getType()->isVariablyModifiedType()) { | ||||||
1935 | CGM.ErrorUnsupported(VD, "VLA captured by SEH"); | ||||||
1936 | continue; | ||||||
1937 | } | ||||||
1938 | assert((isa<ImplicitParamDecl>(VD) || VD->isLocalVarDeclOrParm()) &&((void)0) | ||||||
1939 | "captured non-local variable")((void)0); | ||||||
1940 | |||||||
1941 | auto L = ParentCGF.LambdaCaptureFields.find(VD); | ||||||
1942 | if (L != ParentCGF.LambdaCaptureFields.end()) { | ||||||
1943 | LambdaCaptureFields[VD] = L->second; | ||||||
1944 | continue; | ||||||
1945 | } | ||||||
1946 | |||||||
1947 | // If this decl hasn't been declared yet, it will be declared in the | ||||||
1948 | // OutlinedStmt. | ||||||
1949 | auto I = ParentCGF.LocalDeclMap.find(VD); | ||||||
1950 | if (I == ParentCGF.LocalDeclMap.end()) | ||||||
1951 | continue; | ||||||
1952 | |||||||
1953 | Address ParentVar = I->second; | ||||||
1954 | Address Recovered = | ||||||
1955 | recoverAddrOfEscapedLocal(ParentCGF, ParentVar, ParentFP); | ||||||
1956 | setAddrOfLocalVar(VD, Recovered); | ||||||
1957 | |||||||
1958 | if (isa<ImplicitParamDecl>(VD)) { | ||||||
1959 | CXXABIThisAlignment = ParentCGF.CXXABIThisAlignment; | ||||||
1960 | CXXThisAlignment = ParentCGF.CXXThisAlignment; | ||||||
1961 | CXXABIThisValue = Builder.CreateLoad(Recovered, "this"); | ||||||
1962 | if (ParentCGF.LambdaThisCaptureField) { | ||||||
1963 | LambdaThisCaptureField = ParentCGF.LambdaThisCaptureField; | ||||||
1964 | // We are in a lambda function where "this" is captured so the | ||||||
1965 | // CXXThisValue need to be loaded from the lambda capture | ||||||
1966 | LValue ThisFieldLValue = | ||||||
1967 | EmitLValueForLambdaField(LambdaThisCaptureField); | ||||||
1968 | if (!LambdaThisCaptureField->getType()->isPointerType()) { | ||||||
1969 | CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); | ||||||
1970 | } else { | ||||||
1971 | CXXThisValue = EmitLoadOfLValue(ThisFieldLValue, SourceLocation()) | ||||||
1972 | .getScalarVal(); | ||||||
1973 | } | ||||||
1974 | } else { | ||||||
1975 | CXXThisValue = CXXABIThisValue; | ||||||
1976 | } | ||||||
1977 | } | ||||||
1978 | } | ||||||
1979 | |||||||
1980 | if (Finder.SEHCodeSlot.isValid()) { | ||||||
1981 | SEHCodeSlotStack.push_back( | ||||||
1982 | recoverAddrOfEscapedLocal(ParentCGF, Finder.SEHCodeSlot, ParentFP)); | ||||||
1983 | } | ||||||
1984 | |||||||
1985 | if (IsFilter) | ||||||
1986 | EmitSEHExceptionCodeSave(ParentCGF, ParentFP, EntryFP); | ||||||
1987 | } | ||||||
1988 | |||||||
1989 | /// Arrange a function prototype that can be called by Windows exception | ||||||
1990 | /// handling personalities. On Win64, the prototype looks like: | ||||||
1991 | /// RetTy func(void *EHPtrs, void *ParentFP); | ||||||
1992 | void CodeGenFunction::startOutlinedSEHHelper(CodeGenFunction &ParentCGF, | ||||||
1993 | bool IsFilter, | ||||||
1994 | const Stmt *OutlinedStmt) { | ||||||
1995 | SourceLocation StartLoc = OutlinedStmt->getBeginLoc(); | ||||||
1996 | |||||||
1997 | // Get the mangled function name. | ||||||
1998 | SmallString<128> Name; | ||||||
1999 | { | ||||||
2000 | llvm::raw_svector_ostream OS(Name); | ||||||
2001 | const NamedDecl *ParentSEHFn = ParentCGF.CurSEHParent; | ||||||
2002 | assert(ParentSEHFn && "No CurSEHParent!")((void)0); | ||||||
2003 | MangleContext &Mangler = CGM.getCXXABI().getMangleContext(); | ||||||
2004 | if (IsFilter) | ||||||
2005 | Mangler.mangleSEHFilterExpression(ParentSEHFn, OS); | ||||||
2006 | else | ||||||
2007 | Mangler.mangleSEHFinallyBlock(ParentSEHFn, OS); | ||||||
2008 | } | ||||||
2009 | |||||||
2010 | FunctionArgList Args; | ||||||
2011 | if (CGM.getTarget().getTriple().getArch() != llvm::Triple::x86 || !IsFilter) { | ||||||
2012 | // All SEH finally functions take two parameters. Win64 filters take two | ||||||
2013 | // parameters. Win32 filters take no parameters. | ||||||
2014 | if (IsFilter) { | ||||||
2015 | Args.push_back(ImplicitParamDecl::Create( | ||||||
2016 | getContext(), /*DC=*/nullptr, StartLoc, | ||||||
2017 | &getContext().Idents.get("exception_pointers"), | ||||||
2018 | getContext().VoidPtrTy, ImplicitParamDecl::Other)); | ||||||
2019 | } else { | ||||||
2020 | Args.push_back(ImplicitParamDecl::Create( | ||||||
2021 | getContext(), /*DC=*/nullptr, StartLoc, | ||||||
2022 | &getContext().Idents.get("abnormal_termination"), | ||||||
2023 | getContext().UnsignedCharTy, ImplicitParamDecl::Other)); | ||||||
2024 | } | ||||||
2025 | Args.push_back(ImplicitParamDecl::Create( | ||||||
2026 | getContext(), /*DC=*/nullptr, StartLoc, | ||||||
2027 | &getContext().Idents.get("frame_pointer"), getContext().VoidPtrTy, | ||||||
2028 | ImplicitParamDecl::Other)); | ||||||
2029 | } | ||||||
2030 | |||||||
2031 | QualType RetTy = IsFilter ? getContext().LongTy : getContext().VoidTy; | ||||||
2032 | |||||||
2033 | const CGFunctionInfo &FnInfo = | ||||||
2034 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); | ||||||
2035 | |||||||
2036 | llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); | ||||||
2037 | llvm::Function *Fn = llvm::Function::Create( | ||||||
2038 | FnTy, llvm::GlobalValue::InternalLinkage, Name.str(), &CGM.getModule()); | ||||||
2039 | |||||||
2040 | IsOutlinedSEHHelper = true; | ||||||
2041 | |||||||
2042 | StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, | ||||||
2043 | OutlinedStmt->getBeginLoc(), OutlinedStmt->getBeginLoc()); | ||||||
2044 | CurSEHParent = ParentCGF.CurSEHParent; | ||||||
2045 | |||||||
2046 | CGM.SetInternalFunctionAttributes(GlobalDecl(), CurFn, FnInfo); | ||||||
2047 | EmitCapturedLocals(ParentCGF, OutlinedStmt, IsFilter); | ||||||
2048 | } | ||||||
2049 | |||||||
2050 | /// Create a stub filter function that will ultimately hold the code of the | ||||||
2051 | /// filter expression. The EH preparation passes in LLVM will outline the code | ||||||
2052 | /// from the main function body into this stub. | ||||||
2053 | llvm::Function * | ||||||
2054 | CodeGenFunction::GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, | ||||||
2055 | const SEHExceptStmt &Except) { | ||||||
2056 | const Expr *FilterExpr = Except.getFilterExpr(); | ||||||
2057 | startOutlinedSEHHelper(ParentCGF, true, FilterExpr); | ||||||
2058 | |||||||
2059 | // Emit the original filter expression, convert to i32, and return. | ||||||
2060 | llvm::Value *R = EmitScalarExpr(FilterExpr); | ||||||
2061 | R = Builder.CreateIntCast(R, ConvertType(getContext().LongTy), | ||||||
2062 | FilterExpr->getType()->isSignedIntegerType()); | ||||||
2063 | Builder.CreateStore(R, ReturnValue); | ||||||
2064 | |||||||
2065 | FinishFunction(FilterExpr->getEndLoc()); | ||||||
2066 | |||||||
2067 | return CurFn; | ||||||
2068 | } | ||||||
2069 | |||||||
2070 | llvm::Function * | ||||||
2071 | CodeGenFunction::GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, | ||||||
2072 | const SEHFinallyStmt &Finally) { | ||||||
2073 | const Stmt *FinallyBlock = Finally.getBlock(); | ||||||
2074 | startOutlinedSEHHelper(ParentCGF, false, FinallyBlock); | ||||||
2075 | |||||||
2076 | // Emit the original filter expression, convert to i32, and return. | ||||||
2077 | EmitStmt(FinallyBlock); | ||||||
2078 | |||||||
2079 | FinishFunction(FinallyBlock->getEndLoc()); | ||||||
2080 | |||||||
2081 | return CurFn; | ||||||
2082 | } | ||||||
2083 | |||||||
2084 | void CodeGenFunction::EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, | ||||||
2085 | llvm::Value *ParentFP, | ||||||
2086 | llvm::Value *EntryFP) { | ||||||
2087 | // Get the pointer to the EXCEPTION_POINTERS struct. This is returned by the | ||||||
2088 | // __exception_info intrinsic. | ||||||
2089 | if (CGM.getTarget().getTriple().getArch() != llvm::Triple::x86) { | ||||||
2090 | // On Win64, the info is passed as the first parameter to the filter. | ||||||
2091 | SEHInfo = &*CurFn->arg_begin(); | ||||||
2092 | SEHCodeSlotStack.push_back( | ||||||
2093 | CreateMemTemp(getContext().IntTy, "__exception_code")); | ||||||
2094 | } else { | ||||||
2095 | // On Win32, the EBP on entry to the filter points to the end of an | ||||||
2096 | // exception registration object. It contains 6 32-bit fields, and the info | ||||||
2097 | // pointer is stored in the second field. So, GEP 20 bytes backwards and | ||||||
2098 | // load the pointer. | ||||||
2099 | SEHInfo = Builder.CreateConstInBoundsGEP1_32(Int8Ty, EntryFP, -20); | ||||||
2100 | SEHInfo = Builder.CreateBitCast(SEHInfo, Int8PtrTy->getPointerTo()); | ||||||
2101 | SEHInfo = Builder.CreateAlignedLoad(Int8PtrTy, SEHInfo, getPointerAlign()); | ||||||
2102 | SEHCodeSlotStack.push_back(recoverAddrOfEscapedLocal( | ||||||
2103 | ParentCGF, ParentCGF.SEHCodeSlotStack.back(), ParentFP)); | ||||||
2104 | } | ||||||
2105 | |||||||
2106 | // Save the exception code in the exception slot to unify exception access in | ||||||
2107 | // the filter function and the landing pad. | ||||||
2108 | // struct EXCEPTION_POINTERS { | ||||||
2109 | // EXCEPTION_RECORD *ExceptionRecord; | ||||||
2110 | // CONTEXT *ContextRecord; | ||||||
2111 | // }; | ||||||
2112 | // int exceptioncode = exception_pointers->ExceptionRecord->ExceptionCode; | ||||||
2113 | llvm::Type *RecordTy = CGM.Int32Ty->getPointerTo(); | ||||||
2114 | llvm::Type *PtrsTy = llvm::StructType::get(RecordTy, CGM.VoidPtrTy); | ||||||
2115 | llvm::Value *Ptrs = Builder.CreateBitCast(SEHInfo, PtrsTy->getPointerTo()); | ||||||
2116 | llvm::Value *Rec = Builder.CreateStructGEP(PtrsTy, Ptrs, 0); | ||||||
2117 | Rec = Builder.CreateAlignedLoad(RecordTy, Rec, getPointerAlign()); | ||||||
2118 | llvm::Value *Code = Builder.CreateAlignedLoad(Int32Ty, Rec, getIntAlign()); | ||||||
2119 | assert(!SEHCodeSlotStack.empty() && "emitting EH code outside of __except")((void)0); | ||||||
2120 | Builder.CreateStore(Code, SEHCodeSlotStack.back()); | ||||||
2121 | } | ||||||
2122 | |||||||
2123 | llvm::Value *CodeGenFunction::EmitSEHExceptionInfo() { | ||||||
2124 | // Sema should diagnose calling this builtin outside of a filter context, but | ||||||
2125 | // don't crash if we screw up. | ||||||
2126 | if (!SEHInfo) | ||||||
2127 | return llvm::UndefValue::get(Int8PtrTy); | ||||||
2128 | assert(SEHInfo->getType() == Int8PtrTy)((void)0); | ||||||
2129 | return SEHInfo; | ||||||
2130 | } | ||||||
2131 | |||||||
2132 | llvm::Value *CodeGenFunction::EmitSEHExceptionCode() { | ||||||
2133 | assert(!SEHCodeSlotStack.empty() && "emitting EH code outside of __except")((void)0); | ||||||
2134 | return Builder.CreateLoad(SEHCodeSlotStack.back()); | ||||||
2135 | } | ||||||
2136 | |||||||
2137 | llvm::Value *CodeGenFunction::EmitSEHAbnormalTermination() { | ||||||
2138 | // Abnormal termination is just the first parameter to the outlined finally | ||||||
2139 | // helper. | ||||||
2140 | auto AI = CurFn->arg_begin(); | ||||||
2141 | return Builder.CreateZExt(&*AI, Int32Ty); | ||||||
2142 | } | ||||||
2143 | |||||||
2144 | void CodeGenFunction::pushSEHCleanup(CleanupKind Kind, | ||||||
2145 | llvm::Function *FinallyFunc) { | ||||||
2146 | EHStack.pushCleanup<PerformSEHFinally>(Kind, FinallyFunc); | ||||||
2147 | } | ||||||
2148 | |||||||
2149 | void CodeGenFunction::EnterSEHTryStmt(const SEHTryStmt &S) { | ||||||
2150 | CodeGenFunction HelperCGF(CGM, /*suppressNewContext=*/true); | ||||||
2151 | HelperCGF.ParentCGF = this; | ||||||
2152 | if (const SEHFinallyStmt *Finally = S.getFinallyHandler()) { | ||||||
2153 | // Outline the finally block. | ||||||
2154 | llvm::Function *FinallyFunc = | ||||||
2155 | HelperCGF.GenerateSEHFinallyFunction(*this, *Finally); | ||||||
2156 | |||||||
2157 | // Push a cleanup for __finally blocks. | ||||||
2158 | EHStack.pushCleanup<PerformSEHFinally>(NormalAndEHCleanup, FinallyFunc); | ||||||
2159 | return; | ||||||
2160 | } | ||||||
2161 | |||||||
2162 | // Otherwise, we must have an __except block. | ||||||
2163 | const SEHExceptStmt *Except = S.getExceptHandler(); | ||||||
2164 | assert(Except)((void)0); | ||||||
2165 | EHCatchScope *CatchScope = EHStack.pushCatch(1); | ||||||
2166 | SEHCodeSlotStack.push_back( | ||||||
2167 | CreateMemTemp(getContext().IntTy, "__exception_code")); | ||||||
2168 | |||||||
2169 | // If the filter is known to evaluate to 1, then we can use the clause | ||||||
2170 | // "catch i8* null". We can't do this on x86 because the filter has to save | ||||||
2171 | // the exception code. | ||||||
2172 | llvm::Constant *C = | ||||||
2173 | ConstantEmitter(*this).tryEmitAbstract(Except->getFilterExpr(), | ||||||
2174 | getContext().IntTy); | ||||||
2175 | if (CGM.getTarget().getTriple().getArch() != llvm::Triple::x86 && C && | ||||||
2176 | C->isOneValue()) { | ||||||
2177 | CatchScope->setCatchAllHandler(0, createBasicBlock("__except")); | ||||||
2178 | return; | ||||||
2179 | } | ||||||
2180 | |||||||
2181 | // In general, we have to emit an outlined filter function. Use the function | ||||||
2182 | // in place of the RTTI typeinfo global that C++ EH uses. | ||||||
2183 | llvm::Function *FilterFunc = | ||||||
2184 | HelperCGF.GenerateSEHFilterFunction(*this, *Except); | ||||||
2185 | llvm::Constant *OpaqueFunc = | ||||||
2186 | llvm::ConstantExpr::getBitCast(FilterFunc, Int8PtrTy); | ||||||
2187 | CatchScope->setHandler(0, OpaqueFunc, createBasicBlock("__except.ret")); | ||||||
2188 | } | ||||||
2189 | |||||||
2190 | void CodeGenFunction::ExitSEHTryStmt(const SEHTryStmt &S) { | ||||||
2191 | // Just pop the cleanup if it's a __finally block. | ||||||
2192 | if (S.getFinallyHandler()) { | ||||||
2193 | PopCleanupBlock(); | ||||||
2194 | return; | ||||||
2195 | } | ||||||
2196 | |||||||
2197 | // IsEHa: emit an invoke _seh_try_end() to mark end of FT flow | ||||||
2198 | if (getLangOpts().EHAsynch && Builder.GetInsertBlock()) { | ||||||
2199 | llvm::FunctionCallee SehTryEnd = getSehTryEndFn(CGM); | ||||||
2200 | EmitRuntimeCallOrInvoke(SehTryEnd); | ||||||
2201 | } | ||||||
2202 | |||||||
2203 | // Otherwise, we must have an __except block. | ||||||
2204 | const SEHExceptStmt *Except = S.getExceptHandler(); | ||||||
2205 | assert(Except && "__try must have __finally xor __except")((void)0); | ||||||
2206 | EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin()); | ||||||
2207 | |||||||
2208 | // Don't emit the __except block if the __try block lacked invokes. | ||||||
2209 | // TODO: Model unwind edges from instructions, either with iload / istore or | ||||||
2210 | // a try body function. | ||||||
2211 | if (!CatchScope.hasEHBranches()) { | ||||||
2212 | CatchScope.clearHandlerBlocks(); | ||||||
2213 | EHStack.popCatch(); | ||||||
2214 | SEHCodeSlotStack.pop_back(); | ||||||
2215 | return; | ||||||
2216 | } | ||||||
2217 | |||||||
2218 | // The fall-through block. | ||||||
2219 | llvm::BasicBlock *ContBB = createBasicBlock("__try.cont"); | ||||||
2220 | |||||||
2221 | // We just emitted the body of the __try; jump to the continue block. | ||||||
2222 | if (HaveInsertPoint()) | ||||||
2223 | Builder.CreateBr(ContBB); | ||||||
2224 | |||||||
2225 | // Check if our filter function returned true. | ||||||
2226 | emitCatchDispatchBlock(*this, CatchScope); | ||||||
2227 | |||||||
2228 | // Grab the block before we pop the handler. | ||||||
2229 | llvm::BasicBlock *CatchPadBB = CatchScope.getHandler(0).Block; | ||||||
2230 | EHStack.popCatch(); | ||||||
2231 | |||||||
2232 | EmitBlockAfterUses(CatchPadBB); | ||||||
2233 | |||||||
2234 | // __except blocks don't get outlined into funclets, so immediately do a | ||||||
2235 | // catchret. | ||||||
2236 | llvm::CatchPadInst *CPI = | ||||||
2237 | cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI()); | ||||||
2238 | llvm::BasicBlock *ExceptBB = createBasicBlock("__except"); | ||||||
2239 | Builder.CreateCatchRet(CPI, ExceptBB); | ||||||
2240 | EmitBlock(ExceptBB); | ||||||
2241 | |||||||
2242 | // On Win64, the exception code is returned in EAX. Copy it into the slot. | ||||||
2243 | if (CGM.getTarget().getTriple().getArch() != llvm::Triple::x86) { | ||||||
2244 | llvm::Function *SEHCodeIntrin = | ||||||
2245 | CGM.getIntrinsic(llvm::Intrinsic::eh_exceptioncode); | ||||||
2246 | llvm::Value *Code = Builder.CreateCall(SEHCodeIntrin, {CPI}); | ||||||
2247 | Builder.CreateStore(Code, SEHCodeSlotStack.back()); | ||||||
2248 | } | ||||||
2249 | |||||||
2250 | // Emit the __except body. | ||||||
2251 | EmitStmt(Except->getBlock()); | ||||||
2252 | |||||||
2253 | // End the lifetime of the exception code. | ||||||
2254 | SEHCodeSlotStack.pop_back(); | ||||||
2255 | |||||||
2256 | if (HaveInsertPoint()) | ||||||
2257 | Builder.CreateBr(ContBB); | ||||||
2258 | |||||||
2259 | EmitBlock(ContBB); | ||||||
2260 | } | ||||||
2261 | |||||||
2262 | void CodeGenFunction::EmitSEHLeaveStmt(const SEHLeaveStmt &S) { | ||||||
2263 | // If this code is reachable then emit a stop point (if generating | ||||||
2264 | // debug info). We have to do this ourselves because we are on the | ||||||
2265 | // "simple" statement path. | ||||||
2266 | if (HaveInsertPoint()) | ||||||
2267 | EmitStopPoint(&S); | ||||||
2268 | |||||||
2269 | // This must be a __leave from a __finally block, which we warn on and is UB. | ||||||
2270 | // Just emit unreachable. | ||||||
2271 | if (!isSEHTryScope()) { | ||||||
2272 | Builder.CreateUnreachable(); | ||||||
2273 | Builder.ClearInsertionPoint(); | ||||||
2274 | return; | ||||||
2275 | } | ||||||
2276 | |||||||
2277 | EmitBranchThroughCleanup(*SEHTryEpilogueStack.back()); | ||||||
2278 | } |
1 | //===-- CGCleanup.h - Classes for cleanups IR generation --------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // These classes support the generation of LLVM IR for cleanups. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_CLANG_LIB_CODEGEN_CGCLEANUP_H |
14 | #define LLVM_CLANG_LIB_CODEGEN_CGCLEANUP_H |
15 | |
16 | #include "EHScopeStack.h" |
17 | |
18 | #include "Address.h" |
19 | #include "llvm/ADT/SmallPtrSet.h" |
20 | #include "llvm/ADT/SmallVector.h" |
21 | |
22 | namespace llvm { |
23 | class BasicBlock; |
24 | class Value; |
25 | class ConstantInt; |
26 | class AllocaInst; |
27 | } |
28 | |
29 | namespace clang { |
30 | class FunctionDecl; |
31 | namespace CodeGen { |
32 | class CodeGenModule; |
33 | class CodeGenFunction; |
34 | |
35 | /// The MS C++ ABI needs a pointer to RTTI data plus some flags to describe the |
36 | /// type of a catch handler, so we use this wrapper. |
37 | struct CatchTypeInfo { |
38 | llvm::Constant *RTTI; |
39 | unsigned Flags; |
40 | }; |
41 | |
42 | /// A protected scope for zero-cost EH handling. |
43 | class EHScope { |
44 | llvm::BasicBlock *CachedLandingPad; |
45 | llvm::BasicBlock *CachedEHDispatchBlock; |
46 | |
47 | EHScopeStack::stable_iterator EnclosingEHScope; |
48 | |
49 | class CommonBitFields { |
50 | friend class EHScope; |
51 | unsigned Kind : 3; |
52 | }; |
53 | enum { NumCommonBits = 3 }; |
54 | |
55 | protected: |
56 | class CatchBitFields { |
57 | friend class EHCatchScope; |
58 | unsigned : NumCommonBits; |
59 | |
60 | unsigned NumHandlers : 32 - NumCommonBits; |
61 | }; |
62 | |
63 | class CleanupBitFields { |
64 | friend class EHCleanupScope; |
65 | unsigned : NumCommonBits; |
66 | |
67 | /// Whether this cleanup needs to be run along normal edges. |
68 | unsigned IsNormalCleanup : 1; |
69 | |
70 | /// Whether this cleanup needs to be run along exception edges. |
71 | unsigned IsEHCleanup : 1; |
72 | |
73 | /// Whether this cleanup is currently active. |
74 | unsigned IsActive : 1; |
75 | |
76 | /// Whether this cleanup is a lifetime marker |
77 | unsigned IsLifetimeMarker : 1; |
78 | |
79 | /// Whether the normal cleanup should test the activation flag. |
80 | unsigned TestFlagInNormalCleanup : 1; |
81 | |
82 | /// Whether the EH cleanup should test the activation flag. |
83 | unsigned TestFlagInEHCleanup : 1; |
84 | |
85 | /// The amount of extra storage needed by the Cleanup. |
86 | /// Always a multiple of the scope-stack alignment. |
87 | unsigned CleanupSize : 12; |
88 | }; |
89 | |
90 | class FilterBitFields { |
91 | friend class EHFilterScope; |
92 | unsigned : NumCommonBits; |
93 | |
94 | unsigned NumFilters : 32 - NumCommonBits; |
95 | }; |
96 | |
97 | union { |
98 | CommonBitFields CommonBits; |
99 | CatchBitFields CatchBits; |
100 | CleanupBitFields CleanupBits; |
101 | FilterBitFields FilterBits; |
102 | }; |
103 | |
104 | public: |
105 | enum Kind { Cleanup, Catch, Terminate, Filter }; |
106 | |
107 | EHScope(Kind kind, EHScopeStack::stable_iterator enclosingEHScope) |
108 | : CachedLandingPad(nullptr), CachedEHDispatchBlock(nullptr), |
109 | EnclosingEHScope(enclosingEHScope) { |
110 | CommonBits.Kind = kind; |
111 | } |
112 | |
113 | Kind getKind() const { return static_cast<Kind>(CommonBits.Kind); } |
114 | |
115 | llvm::BasicBlock *getCachedLandingPad() const { |
116 | return CachedLandingPad; |
117 | } |
118 | |
119 | void setCachedLandingPad(llvm::BasicBlock *block) { |
120 | CachedLandingPad = block; |
121 | } |
122 | |
123 | llvm::BasicBlock *getCachedEHDispatchBlock() const { |
124 | return CachedEHDispatchBlock; |
125 | } |
126 | |
127 | void setCachedEHDispatchBlock(llvm::BasicBlock *block) { |
128 | CachedEHDispatchBlock = block; |
129 | } |
130 | |
131 | bool hasEHBranches() const { |
132 | if (llvm::BasicBlock *block = getCachedEHDispatchBlock()) |
133 | return !block->use_empty(); |
134 | return false; |
135 | } |
136 | |
137 | EHScopeStack::stable_iterator getEnclosingEHScope() const { |
138 | return EnclosingEHScope; |
139 | } |
140 | }; |
141 | |
142 | /// A scope which attempts to handle some, possibly all, types of |
143 | /// exceptions. |
144 | /// |
145 | /// Objective C \@finally blocks are represented using a cleanup scope |
146 | /// after the catch scope. |
147 | class EHCatchScope : public EHScope { |
148 | // In effect, we have a flexible array member |
149 | // Handler Handlers[0]; |
150 | // But that's only standard in C99, not C++, so we have to do |
151 | // annoying pointer arithmetic instead. |
152 | |
153 | public: |
154 | struct Handler { |
155 | /// A type info value, or null (C++ null, not an LLVM null pointer) |
156 | /// for a catch-all. |
157 | CatchTypeInfo Type; |
158 | |
159 | /// The catch handler for this type. |
160 | llvm::BasicBlock *Block; |
161 | |
162 | bool isCatchAll() const { return Type.RTTI == nullptr; } |
163 | }; |
164 | |
165 | private: |
166 | friend class EHScopeStack; |
167 | |
168 | Handler *getHandlers() { |
169 | return reinterpret_cast<Handler*>(this+1); |
170 | } |
171 | |
172 | const Handler *getHandlers() const { |
173 | return reinterpret_cast<const Handler*>(this+1); |
174 | } |
175 | |
176 | public: |
177 | static size_t getSizeForNumHandlers(unsigned N) { |
178 | return sizeof(EHCatchScope) + N * sizeof(Handler); |
179 | } |
180 | |
181 | EHCatchScope(unsigned numHandlers, |
182 | EHScopeStack::stable_iterator enclosingEHScope) |
183 | : EHScope(Catch, enclosingEHScope) { |
184 | CatchBits.NumHandlers = numHandlers; |
185 | assert(CatchBits.NumHandlers == numHandlers && "NumHandlers overflow?")((void)0); |
186 | } |
187 | |
188 | unsigned getNumHandlers() const { |
189 | return CatchBits.NumHandlers; |
190 | } |
191 | |
192 | void setCatchAllHandler(unsigned I, llvm::BasicBlock *Block) { |
193 | setHandler(I, CatchTypeInfo{nullptr, 0}, Block); |
194 | } |
195 | |
196 | void setHandler(unsigned I, llvm::Constant *Type, llvm::BasicBlock *Block) { |
197 | assert(I < getNumHandlers())((void)0); |
198 | getHandlers()[I].Type = CatchTypeInfo{Type, 0}; |
199 | getHandlers()[I].Block = Block; |
200 | } |
201 | |
202 | void setHandler(unsigned I, CatchTypeInfo Type, llvm::BasicBlock *Block) { |
203 | assert(I < getNumHandlers())((void)0); |
204 | getHandlers()[I].Type = Type; |
205 | getHandlers()[I].Block = Block; |
206 | } |
207 | |
208 | const Handler &getHandler(unsigned I) const { |
209 | assert(I < getNumHandlers())((void)0); |
210 | return getHandlers()[I]; |
211 | } |
212 | |
213 | // Clear all handler blocks. |
214 | // FIXME: it's better to always call clearHandlerBlocks in DTOR and have a |
215 | // 'takeHandler' or some such function which removes ownership from the |
216 | // EHCatchScope object if the handlers should live longer than EHCatchScope. |
217 | void clearHandlerBlocks() { |
218 | for (unsigned I = 0, N = getNumHandlers(); I != N; ++I) |
219 | delete getHandler(I).Block; |
220 | } |
221 | |
222 | typedef const Handler *iterator; |
223 | iterator begin() const { return getHandlers(); } |
224 | iterator end() const { return getHandlers() + getNumHandlers(); } |
225 | |
226 | static bool classof(const EHScope *Scope) { |
227 | return Scope->getKind() == Catch; |
228 | } |
229 | }; |
230 | |
231 | /// A cleanup scope which generates the cleanup blocks lazily. |
232 | class alignas(8) EHCleanupScope : public EHScope { |
233 | /// The nearest normal cleanup scope enclosing this one. |
234 | EHScopeStack::stable_iterator EnclosingNormal; |
235 | |
236 | /// The nearest EH scope enclosing this one. |
237 | EHScopeStack::stable_iterator EnclosingEH; |
238 | |
239 | /// The dual entry/exit block along the normal edge. This is lazily |
240 | /// created if needed before the cleanup is popped. |
241 | llvm::BasicBlock *NormalBlock; |
242 | |
243 | /// An optional i1 variable indicating whether this cleanup has been |
244 | /// activated yet. |
245 | llvm::AllocaInst *ActiveFlag; |
246 | |
247 | /// Extra information required for cleanups that have resolved |
248 | /// branches through them. This has to be allocated on the side |
249 | /// because everything on the cleanup stack has be trivially |
250 | /// movable. |
251 | struct ExtInfo { |
252 | /// The destinations of normal branch-afters and branch-throughs. |
253 | llvm::SmallPtrSet<llvm::BasicBlock*, 4> Branches; |
254 | |
255 | /// Normal branch-afters. |
256 | SmallVector<std::pair<llvm::BasicBlock*,llvm::ConstantInt*>, 4> |
257 | BranchAfters; |
258 | }; |
259 | mutable struct ExtInfo *ExtInfo; |
260 | |
261 | /// The number of fixups required by enclosing scopes (not including |
262 | /// this one). If this is the top cleanup scope, all the fixups |
263 | /// from this index onwards belong to this scope. |
264 | unsigned FixupDepth; |
265 | |
266 | struct ExtInfo &getExtInfo() { |
267 | if (!ExtInfo) ExtInfo = new struct ExtInfo(); |
268 | return *ExtInfo; |
269 | } |
270 | |
271 | const struct ExtInfo &getExtInfo() const { |
272 | if (!ExtInfo) ExtInfo = new struct ExtInfo(); |
273 | return *ExtInfo; |
274 | } |
275 | |
276 | public: |
277 | /// Gets the size required for a lazy cleanup scope with the given |
278 | /// cleanup-data requirements. |
279 | static size_t getSizeForCleanupSize(size_t Size) { |
280 | return sizeof(EHCleanupScope) + Size; |
281 | } |
282 | |
283 | size_t getAllocatedSize() const { |
284 | return sizeof(EHCleanupScope) + CleanupBits.CleanupSize; |
285 | } |
286 | |
287 | EHCleanupScope(bool isNormal, bool isEH, unsigned cleanupSize, |
288 | unsigned fixupDepth, |
289 | EHScopeStack::stable_iterator enclosingNormal, |
290 | EHScopeStack::stable_iterator enclosingEH) |
291 | : EHScope(EHScope::Cleanup, enclosingEH), |
292 | EnclosingNormal(enclosingNormal), NormalBlock(nullptr), |
293 | ActiveFlag(nullptr), ExtInfo(nullptr), FixupDepth(fixupDepth) { |
294 | CleanupBits.IsNormalCleanup = isNormal; |
295 | CleanupBits.IsEHCleanup = isEH; |
296 | CleanupBits.IsActive = true; |
297 | CleanupBits.IsLifetimeMarker = false; |
298 | CleanupBits.TestFlagInNormalCleanup = false; |
299 | CleanupBits.TestFlagInEHCleanup = false; |
300 | CleanupBits.CleanupSize = cleanupSize; |
301 | |
302 | assert(CleanupBits.CleanupSize == cleanupSize && "cleanup size overflow")((void)0); |
303 | } |
304 | |
305 | void Destroy() { |
306 | delete ExtInfo; |
307 | } |
308 | // Objects of EHCleanupScope are not destructed. Use Destroy(). |
309 | ~EHCleanupScope() = delete; |
310 | |
311 | bool isNormalCleanup() const { return CleanupBits.IsNormalCleanup; } |
312 | llvm::BasicBlock *getNormalBlock() const { return NormalBlock; } |
313 | void setNormalBlock(llvm::BasicBlock *BB) { NormalBlock = BB; } |
314 | |
315 | bool isEHCleanup() const { return CleanupBits.IsEHCleanup; } |
316 | |
317 | bool isActive() const { return CleanupBits.IsActive; } |
318 | void setActive(bool A) { CleanupBits.IsActive = A; } |
319 | |
320 | bool isLifetimeMarker() const { return CleanupBits.IsLifetimeMarker; } |
321 | void setLifetimeMarker() { CleanupBits.IsLifetimeMarker = true; } |
322 | |
323 | bool hasActiveFlag() const { return ActiveFlag != nullptr; } |
324 | Address getActiveFlag() const { |
325 | return Address(ActiveFlag, CharUnits::One()); |
326 | } |
327 | void setActiveFlag(Address Var) { |
328 | assert(Var.getAlignment().isOne())((void)0); |
329 | ActiveFlag = cast<llvm::AllocaInst>(Var.getPointer()); |
330 | } |
331 | |
332 | void setTestFlagInNormalCleanup() { |
333 | CleanupBits.TestFlagInNormalCleanup = true; |
334 | } |
335 | bool shouldTestFlagInNormalCleanup() const { |
336 | return CleanupBits.TestFlagInNormalCleanup; |
337 | } |
338 | |
339 | void setTestFlagInEHCleanup() { |
340 | CleanupBits.TestFlagInEHCleanup = true; |
341 | } |
342 | bool shouldTestFlagInEHCleanup() const { |
343 | return CleanupBits.TestFlagInEHCleanup; |
344 | } |
345 | |
346 | unsigned getFixupDepth() const { return FixupDepth; } |
347 | EHScopeStack::stable_iterator getEnclosingNormalCleanup() const { |
348 | return EnclosingNormal; |
349 | } |
350 | |
351 | size_t getCleanupSize() const { return CleanupBits.CleanupSize; } |
352 | void *getCleanupBuffer() { return this + 1; } |
353 | |
354 | EHScopeStack::Cleanup *getCleanup() { |
355 | return reinterpret_cast<EHScopeStack::Cleanup*>(getCleanupBuffer()); |
356 | } |
357 | |
358 | /// True if this cleanup scope has any branch-afters or branch-throughs. |
359 | bool hasBranches() const { return ExtInfo && !ExtInfo->Branches.empty(); } |
360 | |
361 | /// Add a branch-after to this cleanup scope. A branch-after is a |
362 | /// branch from a point protected by this (normal) cleanup to a |
363 | /// point in the normal cleanup scope immediately containing it. |
364 | /// For example, |
365 | /// for (;;) { A a; break; } |
366 | /// contains a branch-after. |
367 | /// |
368 | /// Branch-afters each have their own destination out of the |
369 | /// cleanup, guaranteed distinct from anything else threaded through |
370 | /// it. Therefore branch-afters usually force a switch after the |
371 | /// cleanup. |
372 | void addBranchAfter(llvm::ConstantInt *Index, |
373 | llvm::BasicBlock *Block) { |
374 | struct ExtInfo &ExtInfo = getExtInfo(); |
375 | if (ExtInfo.Branches.insert(Block).second) |
376 | ExtInfo.BranchAfters.push_back(std::make_pair(Block, Index)); |
377 | } |
378 | |
379 | /// Return the number of unique branch-afters on this scope. |
380 | unsigned getNumBranchAfters() const { |
381 | return ExtInfo ? ExtInfo->BranchAfters.size() : 0; |
382 | } |
383 | |
384 | llvm::BasicBlock *getBranchAfterBlock(unsigned I) const { |
385 | assert(I < getNumBranchAfters())((void)0); |
386 | return ExtInfo->BranchAfters[I].first; |
387 | } |
388 | |
389 | llvm::ConstantInt *getBranchAfterIndex(unsigned I) const { |
390 | assert(I < getNumBranchAfters())((void)0); |
391 | return ExtInfo->BranchAfters[I].second; |
392 | } |
393 | |
394 | /// Add a branch-through to this cleanup scope. A branch-through is |
395 | /// a branch from a scope protected by this (normal) cleanup to an |
396 | /// enclosing scope other than the immediately-enclosing normal |
397 | /// cleanup scope. |
398 | /// |
399 | /// In the following example, the branch through B's scope is a |
400 | /// branch-through, while the branch through A's scope is a |
401 | /// branch-after: |
402 | /// for (;;) { A a; B b; break; } |
403 | /// |
404 | /// All branch-throughs have a common destination out of the |
405 | /// cleanup, one possibly shared with the fall-through. Therefore |
406 | /// branch-throughs usually don't force a switch after the cleanup. |
407 | /// |
408 | /// \return true if the branch-through was new to this scope |
409 | bool addBranchThrough(llvm::BasicBlock *Block) { |
410 | return getExtInfo().Branches.insert(Block).second; |
411 | } |
412 | |
413 | /// Determines if this cleanup scope has any branch throughs. |
414 | bool hasBranchThroughs() const { |
415 | if (!ExtInfo) return false; |
416 | return (ExtInfo->BranchAfters.size() != ExtInfo->Branches.size()); |
417 | } |
418 | |
419 | static bool classof(const EHScope *Scope) { |
420 | return (Scope->getKind() == Cleanup); |
421 | } |
422 | }; |
423 | // NOTE: there's a bunch of different data classes tacked on after an |
424 | // EHCleanupScope. It is asserted (in EHScopeStack::pushCleanup*) that |
425 | // they don't require greater alignment than ScopeStackAlignment. So, |
426 | // EHCleanupScope ought to have alignment equal to that -- not more |
427 | // (would be misaligned by the stack allocator), and not less (would |
428 | // break the appended classes). |
429 | static_assert(alignof(EHCleanupScope) == EHScopeStack::ScopeStackAlignment, |
430 | "EHCleanupScope expected alignment"); |
431 | |
432 | /// An exceptions scope which filters exceptions thrown through it. |
433 | /// Only exceptions matching the filter types will be permitted to be |
434 | /// thrown. |
435 | /// |
436 | /// This is used to implement C++ exception specifications. |
437 | class EHFilterScope : public EHScope { |
438 | // Essentially ends in a flexible array member: |
439 | // llvm::Value *FilterTypes[0]; |
440 | |
441 | llvm::Value **getFilters() { |
442 | return reinterpret_cast<llvm::Value**>(this+1); |
443 | } |
444 | |
445 | llvm::Value * const *getFilters() const { |
446 | return reinterpret_cast<llvm::Value* const *>(this+1); |
447 | } |
448 | |
449 | public: |
450 | EHFilterScope(unsigned numFilters) |
451 | : EHScope(Filter, EHScopeStack::stable_end()) { |
452 | FilterBits.NumFilters = numFilters; |
453 | assert(FilterBits.NumFilters == numFilters && "NumFilters overflow")((void)0); |
454 | } |
455 | |
456 | static size_t getSizeForNumFilters(unsigned numFilters) { |
457 | return sizeof(EHFilterScope) + numFilters * sizeof(llvm::Value*); |
458 | } |
459 | |
460 | unsigned getNumFilters() const { return FilterBits.NumFilters; } |
461 | |
462 | void setFilter(unsigned i, llvm::Value *filterValue) { |
463 | assert(i < getNumFilters())((void)0); |
464 | getFilters()[i] = filterValue; |
465 | } |
466 | |
467 | llvm::Value *getFilter(unsigned i) const { |
468 | assert(i < getNumFilters())((void)0); |
469 | return getFilters()[i]; |
470 | } |
471 | |
472 | static bool classof(const EHScope *scope) { |
473 | return scope->getKind() == Filter; |
474 | } |
475 | }; |
476 | |
477 | /// An exceptions scope which calls std::terminate if any exception |
478 | /// reaches it. |
479 | class EHTerminateScope : public EHScope { |
480 | public: |
481 | EHTerminateScope(EHScopeStack::stable_iterator enclosingEHScope) |
482 | : EHScope(Terminate, enclosingEHScope) {} |
483 | static size_t getSize() { return sizeof(EHTerminateScope); } |
484 | |
485 | static bool classof(const EHScope *scope) { |
486 | return scope->getKind() == Terminate; |
487 | } |
488 | }; |
489 | |
490 | /// A non-stable pointer into the scope stack. |
491 | class EHScopeStack::iterator { |
492 | char *Ptr; |
493 | |
494 | friend class EHScopeStack; |
495 | explicit iterator(char *Ptr) : Ptr(Ptr) {} |
496 | |
497 | public: |
498 | iterator() : Ptr(nullptr) {} |
499 | |
500 | EHScope *get() const { |
501 | return reinterpret_cast<EHScope*>(Ptr); |
502 | } |
503 | |
504 | EHScope *operator->() const { return get(); } |
505 | EHScope &operator*() const { return *get(); } |
506 | |
507 | iterator &operator++() { |
508 | size_t Size; |
509 | switch (get()->getKind()) { |
510 | case EHScope::Catch: |
511 | Size = EHCatchScope::getSizeForNumHandlers( |
512 | static_cast<const EHCatchScope *>(get())->getNumHandlers()); |
513 | break; |
514 | |
515 | case EHScope::Filter: |
516 | Size = EHFilterScope::getSizeForNumFilters( |
517 | static_cast<const EHFilterScope *>(get())->getNumFilters()); |
518 | break; |
519 | |
520 | case EHScope::Cleanup: |
521 | Size = static_cast<const EHCleanupScope *>(get())->getAllocatedSize(); |
522 | break; |
523 | |
524 | case EHScope::Terminate: |
525 | Size = EHTerminateScope::getSize(); |
526 | break; |
527 | } |
528 | Ptr += llvm::alignTo(Size, ScopeStackAlignment); |
529 | return *this; |
530 | } |
531 | |
532 | iterator next() { |
533 | iterator copy = *this; |
534 | ++copy; |
535 | return copy; |
536 | } |
537 | |
538 | iterator operator++(int) { |
539 | iterator copy = *this; |
540 | operator++(); |
541 | return copy; |
542 | } |
543 | |
544 | bool encloses(iterator other) const { return Ptr >= other.Ptr; } |
545 | bool strictlyEncloses(iterator other) const { return Ptr > other.Ptr; } |
546 | |
547 | bool operator==(iterator other) const { return Ptr == other.Ptr; } |
548 | bool operator!=(iterator other) const { return Ptr != other.Ptr; } |
549 | }; |
550 | |
551 | inline EHScopeStack::iterator EHScopeStack::begin() const { |
552 | return iterator(StartOfData); |
553 | } |
554 | |
555 | inline EHScopeStack::iterator EHScopeStack::end() const { |
556 | return iterator(EndOfBuffer); |
557 | } |
558 | |
559 | inline void EHScopeStack::popCatch() { |
560 | assert(!empty() && "popping exception stack when not empty")((void)0); |
561 | |
562 | EHCatchScope &scope = cast<EHCatchScope>(*begin()); |
563 | InnermostEHScope = scope.getEnclosingEHScope(); |
564 | deallocate(EHCatchScope::getSizeForNumHandlers(scope.getNumHandlers())); |
565 | } |
566 | |
567 | inline void EHScopeStack::popTerminate() { |
568 | assert(!empty() && "popping exception stack when not empty")((void)0); |
569 | |
570 | EHTerminateScope &scope = cast<EHTerminateScope>(*begin()); |
571 | InnermostEHScope = scope.getEnclosingEHScope(); |
572 | deallocate(EHTerminateScope::getSize()); |
573 | } |
574 | |
575 | inline EHScopeStack::iterator EHScopeStack::find(stable_iterator sp) const { |
576 | assert(sp.isValid() && "finding invalid savepoint")((void)0); |
577 | assert(sp.Size <= stable_begin().Size && "finding savepoint after pop")((void)0); |
578 | return iterator(EndOfBuffer - sp.Size); |
579 | } |
580 | |
581 | inline EHScopeStack::stable_iterator |
582 | EHScopeStack::stabilize(iterator ir) const { |
583 | assert(StartOfData <= ir.Ptr && ir.Ptr <= EndOfBuffer)((void)0); |
584 | return stable_iterator(EndOfBuffer - ir.Ptr); |
585 | } |
586 | |
587 | /// The exceptions personality for a function. |
588 | struct EHPersonality { |
589 | const char *PersonalityFn; |
590 | |
591 | // If this is non-null, this personality requires a non-standard |
592 | // function for rethrowing an exception after a catchall cleanup. |
593 | // This function must have prototype void(void*). |
594 | const char *CatchallRethrowFn; |
595 | |
596 | static const EHPersonality &get(CodeGenModule &CGM, const FunctionDecl *FD); |
597 | static const EHPersonality &get(CodeGenFunction &CGF); |
598 | |
599 | static const EHPersonality GNU_C; |
600 | static const EHPersonality GNU_C_SJLJ; |
601 | static const EHPersonality GNU_C_SEH; |
602 | static const EHPersonality GNU_ObjC; |
603 | static const EHPersonality GNU_ObjC_SJLJ; |
604 | static const EHPersonality GNU_ObjC_SEH; |
605 | static const EHPersonality GNUstep_ObjC; |
606 | static const EHPersonality GNU_ObjCXX; |
607 | static const EHPersonality NeXT_ObjC; |
608 | static const EHPersonality GNU_CPlusPlus; |
609 | static const EHPersonality GNU_CPlusPlus_SJLJ; |
610 | static const EHPersonality GNU_CPlusPlus_SEH; |
611 | static const EHPersonality MSVC_except_handler; |
612 | static const EHPersonality MSVC_C_specific_handler; |
613 | static const EHPersonality MSVC_CxxFrameHandler3; |
614 | static const EHPersonality GNU_Wasm_CPlusPlus; |
615 | static const EHPersonality XL_CPlusPlus; |
616 | |
617 | /// Does this personality use landingpads or the family of pad instructions |
618 | /// designed to form funclets? |
619 | bool usesFuncletPads() const { |
620 | return isMSVCPersonality() || isWasmPersonality(); |
621 | } |
622 | |
623 | bool isMSVCPersonality() const { |
624 | return this == &MSVC_except_handler || this == &MSVC_C_specific_handler || |
625 | this == &MSVC_CxxFrameHandler3; |
626 | } |
627 | |
628 | bool isWasmPersonality() const { return this == &GNU_Wasm_CPlusPlus; } |
629 | |
630 | bool isMSVCXXPersonality() const { return this == &MSVC_CxxFrameHandler3; } |
631 | }; |
632 | } |
633 | } |
634 | |
635 | #endif |
1 | //===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file declares the Value class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_IR_VALUE_H |
14 | #define LLVM_IR_VALUE_H |
15 | |
16 | #include "llvm-c/Types.h" |
17 | #include "llvm/ADT/STLExtras.h" |
18 | #include "llvm/ADT/StringRef.h" |
19 | #include "llvm/ADT/iterator_range.h" |
20 | #include "llvm/IR/Use.h" |
21 | #include "llvm/Support/Alignment.h" |
22 | #include "llvm/Support/CBindingWrapping.h" |
23 | #include "llvm/Support/Casting.h" |
24 | #include <cassert> |
25 | #include <iterator> |
26 | #include <memory> |
27 | |
28 | namespace llvm { |
29 | |
30 | class APInt; |
31 | class Argument; |
32 | class BasicBlock; |
33 | class Constant; |
34 | class ConstantData; |
35 | class ConstantAggregate; |
36 | class DataLayout; |
37 | class Function; |
38 | class GlobalAlias; |
39 | class GlobalIFunc; |
40 | class GlobalIndirectSymbol; |
41 | class GlobalObject; |
42 | class GlobalValue; |
43 | class GlobalVariable; |
44 | class InlineAsm; |
45 | class Instruction; |
46 | class LLVMContext; |
47 | class MDNode; |
48 | class Module; |
49 | class ModuleSlotTracker; |
50 | class raw_ostream; |
51 | template<typename ValueTy> class StringMapEntry; |
52 | class Twine; |
53 | class Type; |
54 | class User; |
55 | |
56 | using ValueName = StringMapEntry<Value *>; |
57 | |
58 | //===----------------------------------------------------------------------===// |
59 | // Value Class |
60 | //===----------------------------------------------------------------------===// |
61 | |
62 | /// LLVM Value Representation |
63 | /// |
64 | /// This is a very important LLVM class. It is the base class of all values |
65 | /// computed by a program that may be used as operands to other values. Value is |
66 | /// the super class of other important classes such as Instruction and Function. |
67 | /// All Values have a Type. Type is not a subclass of Value. Some values can |
68 | /// have a name and they belong to some Module. Setting the name on the Value |
69 | /// automatically updates the module's symbol table. |
70 | /// |
71 | /// Every value has a "use list" that keeps track of which other Values are |
72 | /// using this Value. A Value can also have an arbitrary number of ValueHandle |
73 | /// objects that watch it and listen to RAUW and Destroy events. See |
74 | /// llvm/IR/ValueHandle.h for details. |
75 | class Value { |
76 | Type *VTy; |
77 | Use *UseList; |
78 | |
79 | friend class ValueAsMetadata; // Allow access to IsUsedByMD. |
80 | friend class ValueHandleBase; |
81 | |
82 | const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast) |
83 | unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this? |
84 | |
85 | protected: |
86 | /// Hold subclass data that can be dropped. |
87 | /// |
88 | /// This member is similar to SubclassData, however it is for holding |
89 | /// information which may be used to aid optimization, but which may be |
90 | /// cleared to zero without affecting conservative interpretation. |
91 | unsigned char SubclassOptionalData : 7; |
92 | |
93 | private: |
94 | /// Hold arbitrary subclass data. |
95 | /// |
96 | /// This member is defined by this class, but is not used for anything. |
97 | /// Subclasses can use it to hold whatever state they find useful. This |
98 | /// field is initialized to zero by the ctor. |
99 | unsigned short SubclassData; |
100 | |
101 | protected: |
102 | /// The number of operands in the subclass. |
103 | /// |
104 | /// This member is defined by this class, but not used for anything. |
105 | /// Subclasses can use it to store their number of operands, if they have |
106 | /// any. |
107 | /// |
108 | /// This is stored here to save space in User on 64-bit hosts. Since most |
109 | /// instances of Value have operands, 32-bit hosts aren't significantly |
110 | /// affected. |
111 | /// |
112 | /// Note, this should *NOT* be used directly by any class other than User. |
113 | /// User uses this value to find the Use list. |
114 | enum : unsigned { NumUserOperandsBits = 27 }; |
115 | unsigned NumUserOperands : NumUserOperandsBits; |
116 | |
117 | // Use the same type as the bitfield above so that MSVC will pack them. |
118 | unsigned IsUsedByMD : 1; |
119 | unsigned HasName : 1; |
120 | unsigned HasMetadata : 1; // Has metadata attached to this? |
121 | unsigned HasHungOffUses : 1; |
122 | unsigned HasDescriptor : 1; |
123 | |
124 | private: |
125 | template <typename UseT> // UseT == 'Use' or 'const Use' |
126 | class use_iterator_impl { |
127 | friend class Value; |
128 | |
129 | UseT *U; |
130 | |
131 | explicit use_iterator_impl(UseT *u) : U(u) {} |
132 | |
133 | public: |
134 | using iterator_category = std::forward_iterator_tag; |
135 | using value_type = UseT *; |
136 | using difference_type = std::ptrdiff_t; |
137 | using pointer = value_type *; |
138 | using reference = value_type &; |
139 | |
140 | use_iterator_impl() : U() {} |
141 | |
142 | bool operator==(const use_iterator_impl &x) const { return U == x.U; } |
143 | bool operator!=(const use_iterator_impl &x) const { return !operator==(x); } |
144 | |
145 | use_iterator_impl &operator++() { // Preincrement |
146 | assert(U && "Cannot increment end iterator!")((void)0); |
147 | U = U->getNext(); |
148 | return *this; |
149 | } |
150 | |
151 | use_iterator_impl operator++(int) { // Postincrement |
152 | auto tmp = *this; |
153 | ++*this; |
154 | return tmp; |
155 | } |
156 | |
157 | UseT &operator*() const { |
158 | assert(U && "Cannot dereference end iterator!")((void)0); |
159 | return *U; |
160 | } |
161 | |
162 | UseT *operator->() const { return &operator*(); } |
163 | |
164 | operator use_iterator_impl<const UseT>() const { |
165 | return use_iterator_impl<const UseT>(U); |
166 | } |
167 | }; |
168 | |
169 | template <typename UserTy> // UserTy == 'User' or 'const User' |
170 | class user_iterator_impl { |
171 | use_iterator_impl<Use> UI; |
172 | explicit user_iterator_impl(Use *U) : UI(U) {} |
173 | friend class Value; |
174 | |
175 | public: |
176 | using iterator_category = std::forward_iterator_tag; |
177 | using value_type = UserTy *; |
178 | using difference_type = std::ptrdiff_t; |
179 | using pointer = value_type *; |
180 | using reference = value_type &; |
181 | |
182 | user_iterator_impl() = default; |
183 | |
184 | bool operator==(const user_iterator_impl &x) const { return UI == x.UI; } |
185 | bool operator!=(const user_iterator_impl &x) const { return !operator==(x); } |
186 | |
187 | /// Returns true if this iterator is equal to user_end() on the value. |
188 | bool atEnd() const { return *this == user_iterator_impl(); } |
189 | |
190 | user_iterator_impl &operator++() { // Preincrement |
191 | ++UI; |
192 | return *this; |
193 | } |
194 | |
195 | user_iterator_impl operator++(int) { // Postincrement |
196 | auto tmp = *this; |
197 | ++*this; |
198 | return tmp; |
199 | } |
200 | |
201 | // Retrieve a pointer to the current User. |
202 | UserTy *operator*() const { |
203 | return UI->getUser(); |
204 | } |
205 | |
206 | UserTy *operator->() const { return operator*(); } |
207 | |
208 | operator user_iterator_impl<const UserTy>() const { |
209 | return user_iterator_impl<const UserTy>(*UI); |
210 | } |
211 | |
212 | Use &getUse() const { return *UI; } |
213 | }; |
214 | |
215 | protected: |
216 | Value(Type *Ty, unsigned scid); |
217 | |
218 | /// Value's destructor should be virtual by design, but that would require |
219 | /// that Value and all of its subclasses have a vtable that effectively |
220 | /// duplicates the information in the value ID. As a size optimization, the |
221 | /// destructor has been protected, and the caller should manually call |
222 | /// deleteValue. |
223 | ~Value(); // Use deleteValue() to delete a generic Value. |
224 | |
225 | public: |
226 | Value(const Value &) = delete; |
227 | Value &operator=(const Value &) = delete; |
228 | |
229 | /// Delete a pointer to a generic Value. |
230 | void deleteValue(); |
231 | |
232 | /// Support for debugging, callable in GDB: V->dump() |
233 | void dump() const; |
234 | |
235 | /// Implement operator<< on Value. |
236 | /// @{ |
237 | void print(raw_ostream &O, bool IsForDebug = false) const; |
238 | void print(raw_ostream &O, ModuleSlotTracker &MST, |
239 | bool IsForDebug = false) const; |
240 | /// @} |
241 | |
242 | /// Print the name of this Value out to the specified raw_ostream. |
243 | /// |
244 | /// This is useful when you just want to print 'int %reg126', not the |
245 | /// instruction that generated it. If you specify a Module for context, then |
246 | /// even constanst get pretty-printed; for example, the type of a null |
247 | /// pointer is printed symbolically. |
248 | /// @{ |
249 | void printAsOperand(raw_ostream &O, bool PrintType = true, |
250 | const Module *M = nullptr) const; |
251 | void printAsOperand(raw_ostream &O, bool PrintType, |
252 | ModuleSlotTracker &MST) const; |
253 | /// @} |
254 | |
255 | /// All values are typed, get the type of this value. |
256 | Type *getType() const { return VTy; } |
257 | |
258 | /// All values hold a context through their type. |
259 | LLVMContext &getContext() const; |
260 | |
261 | // All values can potentially be named. |
262 | bool hasName() const { return HasName; } |
263 | ValueName *getValueName() const; |
264 | void setValueName(ValueName *VN); |
265 | |
266 | private: |
267 | void destroyValueName(); |
268 | enum class ReplaceMetadataUses { No, Yes }; |
269 | void doRAUW(Value *New, ReplaceMetadataUses); |
270 | void setNameImpl(const Twine &Name); |
271 | |
272 | public: |
273 | /// Return a constant reference to the value's name. |
274 | /// |
275 | /// This guaranteed to return the same reference as long as the value is not |
276 | /// modified. If the value has a name, this does a hashtable lookup, so it's |
277 | /// not free. |
278 | StringRef getName() const; |
279 | |
280 | /// Change the name of the value. |
281 | /// |
282 | /// Choose a new unique name if the provided name is taken. |
283 | /// |
284 | /// \param Name The new name; or "" if the value's name should be removed. |
285 | void setName(const Twine &Name); |
286 | |
287 | /// Transfer the name from V to this value. |
288 | /// |
289 | /// After taking V's name, sets V's name to empty. |
290 | /// |
291 | /// \note It is an error to call V->takeName(V). |
292 | void takeName(Value *V); |
293 | |
294 | #ifndef NDEBUG1 |
295 | std::string getNameOrAsOperand() const; |
296 | #endif |
297 | |
298 | /// Change all uses of this to point to a new Value. |
299 | /// |
300 | /// Go through the uses list for this definition and make each use point to |
301 | /// "V" instead of "this". After this completes, 'this's use list is |
302 | /// guaranteed to be empty. |
303 | void replaceAllUsesWith(Value *V); |
304 | |
305 | /// Change non-metadata uses of this to point to a new Value. |
306 | /// |
307 | /// Go through the uses list for this definition and make each use point to |
308 | /// "V" instead of "this". This function skips metadata entries in the list. |
309 | void replaceNonMetadataUsesWith(Value *V); |
310 | |
311 | /// Go through the uses list for this definition and make each use point |
312 | /// to "V" if the callback ShouldReplace returns true for the given Use. |
313 | /// Unlike replaceAllUsesWith() this function does not support basic block |
314 | /// values. |
315 | void replaceUsesWithIf(Value *New, |
316 | llvm::function_ref<bool(Use &U)> ShouldReplace); |
317 | |
318 | /// replaceUsesOutsideBlock - Go through the uses list for this definition and |
319 | /// make each use point to "V" instead of "this" when the use is outside the |
320 | /// block. 'This's use list is expected to have at least one element. |
321 | /// Unlike replaceAllUsesWith() this function does not support basic block |
322 | /// values. |
323 | void replaceUsesOutsideBlock(Value *V, BasicBlock *BB); |
324 | |
325 | //---------------------------------------------------------------------- |
326 | // Methods for handling the chain of uses of this Value. |
327 | // |
328 | // Materializing a function can introduce new uses, so these methods come in |
329 | // two variants: |
330 | // The methods that start with materialized_ check the uses that are |
331 | // currently known given which functions are materialized. Be very careful |
332 | // when using them since you might not get all uses. |
333 | // The methods that don't start with materialized_ assert that modules is |
334 | // fully materialized. |
335 | void assertModuleIsMaterializedImpl() const; |
336 | // This indirection exists so we can keep assertModuleIsMaterializedImpl() |
337 | // around in release builds of Value.cpp to be linked with other code built |
338 | // in debug mode. But this avoids calling it in any of the release built code. |
339 | void assertModuleIsMaterialized() const { |
340 | #ifndef NDEBUG1 |
341 | assertModuleIsMaterializedImpl(); |
342 | #endif |
343 | } |
344 | |
345 | bool use_empty() const { |
346 | assertModuleIsMaterialized(); |
347 | return UseList == nullptr; |
348 | } |
349 | |
350 | bool materialized_use_empty() const { |
351 | return UseList == nullptr; |
352 | } |
353 | |
354 | using use_iterator = use_iterator_impl<Use>; |
355 | using const_use_iterator = use_iterator_impl<const Use>; |
356 | |
357 | use_iterator materialized_use_begin() { return use_iterator(UseList); } |
358 | const_use_iterator materialized_use_begin() const { |
359 | return const_use_iterator(UseList); |
360 | } |
361 | use_iterator use_begin() { |
362 | assertModuleIsMaterialized(); |
363 | return materialized_use_begin(); |
364 | } |
365 | const_use_iterator use_begin() const { |
366 | assertModuleIsMaterialized(); |
367 | return materialized_use_begin(); |
368 | } |
369 | use_iterator use_end() { return use_iterator(); } |
370 | const_use_iterator use_end() const { return const_use_iterator(); } |
371 | iterator_range<use_iterator> materialized_uses() { |
372 | return make_range(materialized_use_begin(), use_end()); |
373 | } |
374 | iterator_range<const_use_iterator> materialized_uses() const { |
375 | return make_range(materialized_use_begin(), use_end()); |
376 | } |
377 | iterator_range<use_iterator> uses() { |
378 | assertModuleIsMaterialized(); |
379 | return materialized_uses(); |
380 | } |
381 | iterator_range<const_use_iterator> uses() const { |
382 | assertModuleIsMaterialized(); |
383 | return materialized_uses(); |
384 | } |
385 | |
386 | bool user_empty() const { |
387 | assertModuleIsMaterialized(); |
388 | return UseList == nullptr; |
389 | } |
390 | |
391 | using user_iterator = user_iterator_impl<User>; |
392 | using const_user_iterator = user_iterator_impl<const User>; |
393 | |
394 | user_iterator materialized_user_begin() { return user_iterator(UseList); } |
395 | const_user_iterator materialized_user_begin() const { |
396 | return const_user_iterator(UseList); |
397 | } |
398 | user_iterator user_begin() { |
399 | assertModuleIsMaterialized(); |
400 | return materialized_user_begin(); |
401 | } |
402 | const_user_iterator user_begin() const { |
403 | assertModuleIsMaterialized(); |
404 | return materialized_user_begin(); |
405 | } |
406 | user_iterator user_end() { return user_iterator(); } |
407 | const_user_iterator user_end() const { return const_user_iterator(); } |
408 | User *user_back() { |
409 | assertModuleIsMaterialized(); |
410 | return *materialized_user_begin(); |
411 | } |
412 | const User *user_back() const { |
413 | assertModuleIsMaterialized(); |
414 | return *materialized_user_begin(); |
415 | } |
416 | iterator_range<user_iterator> materialized_users() { |
417 | return make_range(materialized_user_begin(), user_end()); |
418 | } |
419 | iterator_range<const_user_iterator> materialized_users() const { |
420 | return make_range(materialized_user_begin(), user_end()); |
421 | } |
422 | iterator_range<user_iterator> users() { |
423 | assertModuleIsMaterialized(); |
424 | return materialized_users(); |
425 | } |
426 | iterator_range<const_user_iterator> users() const { |
427 | assertModuleIsMaterialized(); |
428 | return materialized_users(); |
429 | } |
430 | |
431 | /// Return true if there is exactly one use of this value. |
432 | /// |
433 | /// This is specialized because it is a common request and does not require |
434 | /// traversing the whole use list. |
435 | bool hasOneUse() const { return hasSingleElement(uses()); } |
436 | |
437 | /// Return true if this Value has exactly N uses. |
438 | bool hasNUses(unsigned N) const; |
439 | |
440 | /// Return true if this value has N uses or more. |
441 | /// |
442 | /// This is logically equivalent to getNumUses() >= N. |
443 | bool hasNUsesOrMore(unsigned N) const; |
444 | |
445 | /// Return true if there is exactly one user of this value. |
446 | /// |
447 | /// Note that this is not the same as "has one use". If a value has one use, |
448 | /// then there certainly is a single user. But if value has several uses, |
449 | /// it is possible that all uses are in a single user, or not. |
450 | /// |
451 | /// This check is potentially costly, since it requires traversing, |
452 | /// in the worst case, the whole use list of a value. |
453 | bool hasOneUser() const; |
454 | |
455 | /// Return true if there is exactly one use of this value that cannot be |
456 | /// dropped. |
457 | /// |
458 | /// This is specialized because it is a common request and does not require |
459 | /// traversing the whole use list. |
460 | Use *getSingleUndroppableUse(); |
461 | const Use *getSingleUndroppableUse() const { |
462 | return const_cast<Value *>(this)->getSingleUndroppableUse(); |
463 | } |
464 | |
465 | /// Return true if there this value. |
466 | /// |
467 | /// This is specialized because it is a common request and does not require |
468 | /// traversing the whole use list. |
469 | bool hasNUndroppableUses(unsigned N) const; |
470 | |
471 | /// Return true if this value has N uses or more. |
472 | /// |
473 | /// This is logically equivalent to getNumUses() >= N. |
474 | bool hasNUndroppableUsesOrMore(unsigned N) const; |
475 | |
476 | /// Remove every uses that can safely be removed. |
477 | /// |
478 | /// This will remove for example uses in llvm.assume. |
479 | /// This should be used when performing want to perform a tranformation but |
480 | /// some Droppable uses pervent it. |
481 | /// This function optionally takes a filter to only remove some droppable |
482 | /// uses. |
483 | void dropDroppableUses(llvm::function_ref<bool(const Use *)> ShouldDrop = |
484 | [](const Use *) { return true; }); |
485 | |
486 | /// Remove every use of this value in \p User that can safely be removed. |
487 | void dropDroppableUsesIn(User &Usr); |
488 | |
489 | /// Remove the droppable use \p U. |
490 | static void dropDroppableUse(Use &U); |
491 | |
492 | /// Check if this value is used in the specified basic block. |
493 | bool isUsedInBasicBlock(const BasicBlock *BB) const; |
494 | |
495 | /// This method computes the number of uses of this Value. |
496 | /// |
497 | /// This is a linear time operation. Use hasOneUse, hasNUses, or |
498 | /// hasNUsesOrMore to check for specific values. |
499 | unsigned getNumUses() const; |
500 | |
501 | /// This method should only be used by the Use class. |
502 | void addUse(Use &U) { U.addToList(&UseList); } |
503 | |
504 | /// Concrete subclass of this. |
505 | /// |
506 | /// An enumeration for keeping track of the concrete subclass of Value that |
507 | /// is actually instantiated. Values of this enumeration are kept in the |
508 | /// Value classes SubclassID field. They are used for concrete type |
509 | /// identification. |
510 | enum ValueTy { |
511 | #define HANDLE_VALUE(Name) Name##Val, |
512 | #include "llvm/IR/Value.def" |
513 | |
514 | // Markers: |
515 | #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val, |
516 | #include "llvm/IR/Value.def" |
517 | }; |
518 | |
519 | /// Return an ID for the concrete type of this object. |
520 | /// |
521 | /// This is used to implement the classof checks. This should not be used |
522 | /// for any other purpose, as the values may change as LLVM evolves. Also, |
523 | /// note that for instructions, the Instruction's opcode is added to |
524 | /// InstructionVal. So this means three things: |
525 | /// # there is no value with code InstructionVal (no opcode==0). |
526 | /// # there are more possible values for the value type than in ValueTy enum. |
527 | /// # the InstructionVal enumerator must be the highest valued enumerator in |
528 | /// the ValueTy enum. |
529 | unsigned getValueID() const { |
530 | return SubclassID; |
531 | } |
532 | |
533 | /// Return the raw optional flags value contained in this value. |
534 | /// |
535 | /// This should only be used when testing two Values for equivalence. |
536 | unsigned getRawSubclassOptionalData() const { |
537 | return SubclassOptionalData; |
538 | } |
539 | |
540 | /// Clear the optional flags contained in this value. |
541 | void clearSubclassOptionalData() { |
542 | SubclassOptionalData = 0; |
543 | } |
544 | |
545 | /// Check the optional flags for equality. |
546 | bool hasSameSubclassOptionalData(const Value *V) const { |
547 | return SubclassOptionalData == V->SubclassOptionalData; |
548 | } |
549 | |
550 | /// Return true if there is a value handle associated with this value. |
551 | bool hasValueHandle() const { return HasValueHandle; } |
552 | |
553 | /// Return true if there is metadata referencing this value. |
554 | bool isUsedByMetadata() const { return IsUsedByMD; } |
555 | |
556 | // Return true if this value is only transitively referenced by metadata. |
557 | bool isTransitiveUsedByMetadataOnly() const; |
558 | |
559 | protected: |
560 | /// Get the current metadata attachments for the given kind, if any. |
561 | /// |
562 | /// These functions require that the value have at most a single attachment |
563 | /// of the given kind, and return \c nullptr if such an attachment is missing. |
564 | /// @{ |
565 | MDNode *getMetadata(unsigned KindID) const; |
566 | MDNode *getMetadata(StringRef Kind) const; |
567 | /// @} |
568 | |
569 | /// Appends all attachments with the given ID to \c MDs in insertion order. |
570 | /// If the Value has no attachments with the given ID, or if ID is invalid, |
571 | /// leaves MDs unchanged. |
572 | /// @{ |
573 | void getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const; |
574 | void getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const; |
575 | /// @} |
576 | |
577 | /// Appends all metadata attached to this value to \c MDs, sorting by |
578 | /// KindID. The first element of each pair returned is the KindID, the second |
579 | /// element is the metadata value. Attachments with the same ID appear in |
580 | /// insertion order. |
581 | void |
582 | getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const; |
583 | |
584 | /// Return true if this value has any metadata attached to it. |
585 | bool hasMetadata() const { return (bool)HasMetadata; } |
586 | |
587 | /// Return true if this value has the given type of metadata attached. |
588 | /// @{ |
589 | bool hasMetadata(unsigned KindID) const { |
590 | return getMetadata(KindID) != nullptr; |
591 | } |
592 | bool hasMetadata(StringRef Kind) const { |
593 | return getMetadata(Kind) != nullptr; |
594 | } |
595 | /// @} |
596 | |
597 | /// Set a particular kind of metadata attachment. |
598 | /// |
599 | /// Sets the given attachment to \c MD, erasing it if \c MD is \c nullptr or |
600 | /// replacing it if it already exists. |
601 | /// @{ |
602 | void setMetadata(unsigned KindID, MDNode *Node); |
603 | void setMetadata(StringRef Kind, MDNode *Node); |
604 | /// @} |
605 | |
606 | /// Add a metadata attachment. |
607 | /// @{ |
608 | void addMetadata(unsigned KindID, MDNode &MD); |
609 | void addMetadata(StringRef Kind, MDNode &MD); |
610 | /// @} |
611 | |
612 | /// Erase all metadata attachments with the given kind. |
613 | /// |
614 | /// \returns true if any metadata was removed. |
615 | bool eraseMetadata(unsigned KindID); |
616 | |
617 | /// Erase all metadata attached to this Value. |
618 | void clearMetadata(); |
619 | |
620 | public: |
621 | /// Return true if this value is a swifterror value. |
622 | /// |
623 | /// swifterror values can be either a function argument or an alloca with a |
624 | /// swifterror attribute. |
625 | bool isSwiftError() const; |
626 | |
627 | /// Strip off pointer casts, all-zero GEPs and address space casts. |
628 | /// |
629 | /// Returns the original uncasted value. If this is called on a non-pointer |
630 | /// value, it returns 'this'. |
631 | const Value *stripPointerCasts() const; |
632 | Value *stripPointerCasts() { |
633 | return const_cast<Value *>( |
634 | static_cast<const Value *>(this)->stripPointerCasts()); |
635 | } |
636 | |
637 | /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases. |
638 | /// |
639 | /// Returns the original uncasted value. If this is called on a non-pointer |
640 | /// value, it returns 'this'. |
641 | const Value *stripPointerCastsAndAliases() const; |
642 | Value *stripPointerCastsAndAliases() { |
643 | return const_cast<Value *>( |
644 | static_cast<const Value *>(this)->stripPointerCastsAndAliases()); |
645 | } |
646 | |
647 | /// Strip off pointer casts, all-zero GEPs and address space casts |
648 | /// but ensures the representation of the result stays the same. |
649 | /// |
650 | /// Returns the original uncasted value with the same representation. If this |
651 | /// is called on a non-pointer value, it returns 'this'. |
652 | const Value *stripPointerCastsSameRepresentation() const; |
653 | Value *stripPointerCastsSameRepresentation() { |
654 | return const_cast<Value *>(static_cast<const Value *>(this) |
655 | ->stripPointerCastsSameRepresentation()); |
656 | } |
657 | |
658 | /// Strip off pointer casts, all-zero GEPs, single-argument phi nodes and |
659 | /// invariant group info. |
660 | /// |
661 | /// Returns the original uncasted value. If this is called on a non-pointer |
662 | /// value, it returns 'this'. This function should be used only in |
663 | /// Alias analysis. |
664 | const Value *stripPointerCastsForAliasAnalysis() const; |
665 | Value *stripPointerCastsForAliasAnalysis() { |
666 | return const_cast<Value *>(static_cast<const Value *>(this) |
667 | ->stripPointerCastsForAliasAnalysis()); |
668 | } |
669 | |
670 | /// Strip off pointer casts and all-constant inbounds GEPs. |
671 | /// |
672 | /// Returns the original pointer value. If this is called on a non-pointer |
673 | /// value, it returns 'this'. |
674 | const Value *stripInBoundsConstantOffsets() const; |
675 | Value *stripInBoundsConstantOffsets() { |
676 | return const_cast<Value *>( |
677 | static_cast<const Value *>(this)->stripInBoundsConstantOffsets()); |
678 | } |
679 | |
680 | /// Accumulate the constant offset this value has compared to a base pointer. |
681 | /// Only 'getelementptr' instructions (GEPs) are accumulated but other |
682 | /// instructions, e.g., casts, are stripped away as well. |
683 | /// The accumulated constant offset is added to \p Offset and the base |
684 | /// pointer is returned. |
685 | /// |
686 | /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for |
687 | /// the address space of 'this' pointer value, e.g., use |
688 | /// DataLayout::getIndexTypeSizeInBits(Ty). |
689 | /// |
690 | /// If \p AllowNonInbounds is true, offsets in GEPs are stripped and |
691 | /// accumulated even if the GEP is not "inbounds". |
692 | /// |
693 | /// If \p ExternalAnalysis is provided it will be used to calculate a offset |
694 | /// when a operand of GEP is not constant. |
695 | /// For example, for a value \p ExternalAnalysis might try to calculate a |
696 | /// lower bound. If \p ExternalAnalysis is successful, it should return true. |
697 | /// |
698 | /// If this is called on a non-pointer value, it returns 'this' and the |
699 | /// \p Offset is not modified. |
700 | /// |
701 | /// Note that this function will never return a nullptr. It will also never |
702 | /// manipulate the \p Offset in a way that would not match the difference |
703 | /// between the underlying value and the returned one. Thus, if no constant |
704 | /// offset was found, the returned value is the underlying one and \p Offset |
705 | /// is unchanged. |
706 | const Value *stripAndAccumulateConstantOffsets( |
707 | const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, |
708 | function_ref<bool(Value &Value, APInt &Offset)> ExternalAnalysis = |
709 | nullptr) const; |
710 | Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, |
711 | bool AllowNonInbounds) { |
712 | return const_cast<Value *>( |
713 | static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets( |
714 | DL, Offset, AllowNonInbounds)); |
715 | } |
716 | |
717 | /// This is a wrapper around stripAndAccumulateConstantOffsets with the |
718 | /// in-bounds requirement set to false. |
719 | const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, |
720 | APInt &Offset) const { |
721 | return stripAndAccumulateConstantOffsets(DL, Offset, |
722 | /* AllowNonInbounds */ false); |
723 | } |
724 | Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, |
725 | APInt &Offset) { |
726 | return stripAndAccumulateConstantOffsets(DL, Offset, |
727 | /* AllowNonInbounds */ false); |
728 | } |
729 | |
730 | /// Strip off pointer casts and inbounds GEPs. |
731 | /// |
732 | /// Returns the original pointer value. If this is called on a non-pointer |
733 | /// value, it returns 'this'. |
734 | const Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func = |
735 | [](const Value *) {}) const; |
736 | inline Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func = |
737 | [](const Value *) {}) { |
738 | return const_cast<Value *>( |
739 | static_cast<const Value *>(this)->stripInBoundsOffsets(Func)); |
740 | } |
741 | |
742 | /// Return true if the memory object referred to by V can by freed in the |
743 | /// scope for which the SSA value defining the allocation is statically |
744 | /// defined. E.g. deallocation after the static scope of a value does not |
745 | /// count, but a deallocation before that does. |
746 | bool canBeFreed() const; |
747 | |
748 | /// Returns the number of bytes known to be dereferenceable for the |
749 | /// pointer value. |
750 | /// |
751 | /// If CanBeNull is set by this function the pointer can either be null or be |
752 | /// dereferenceable up to the returned number of bytes. |
753 | /// |
754 | /// IF CanBeFreed is true, the pointer is known to be dereferenceable at |
755 | /// point of definition only. Caller must prove that allocation is not |
756 | /// deallocated between point of definition and use. |
757 | uint64_t getPointerDereferenceableBytes(const DataLayout &DL, |
758 | bool &CanBeNull, |
759 | bool &CanBeFreed) const; |
760 | |
761 | /// Returns an alignment of the pointer value. |
762 | /// |
763 | /// Returns an alignment which is either specified explicitly, e.g. via |
764 | /// align attribute of a function argument, or guaranteed by DataLayout. |
765 | Align getPointerAlignment(const DataLayout &DL) const; |
766 | |
767 | /// Translate PHI node to its predecessor from the given basic block. |
768 | /// |
769 | /// If this value is a PHI node with CurBB as its parent, return the value in |
770 | /// the PHI node corresponding to PredBB. If not, return ourself. This is |
771 | /// useful if you want to know the value something has in a predecessor |
772 | /// block. |
773 | const Value *DoPHITranslation(const BasicBlock *CurBB, |
774 | const BasicBlock *PredBB) const; |
775 | Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) { |
776 | return const_cast<Value *>( |
777 | static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB)); |
778 | } |
779 | |
780 | /// The maximum alignment for instructions. |
781 | /// |
782 | /// This is the greatest alignment value supported by load, store, and alloca |
783 | /// instructions, and global values. |
784 | static const unsigned MaxAlignmentExponent = 29; |
785 | static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent; |
786 | |
787 | /// Mutate the type of this Value to be of the specified type. |
788 | /// |
789 | /// Note that this is an extremely dangerous operation which can create |
790 | /// completely invalid IR very easily. It is strongly recommended that you |
791 | /// recreate IR objects with the right types instead of mutating them in |
792 | /// place. |
793 | void mutateType(Type *Ty) { |
794 | VTy = Ty; |
795 | } |
796 | |
797 | /// Sort the use-list. |
798 | /// |
799 | /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is |
800 | /// expected to compare two \a Use references. |
801 | template <class Compare> void sortUseList(Compare Cmp); |
802 | |
803 | /// Reverse the use-list. |
804 | void reverseUseList(); |
805 | |
806 | private: |
807 | /// Merge two lists together. |
808 | /// |
809 | /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes |
810 | /// "equal" items from L before items from R. |
811 | /// |
812 | /// \return the first element in the list. |
813 | /// |
814 | /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update). |
815 | template <class Compare> |
816 | static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) { |
817 | Use *Merged; |
818 | Use **Next = &Merged; |
819 | |
820 | while (true) { |
821 | if (!L) { |
822 | *Next = R; |
823 | break; |
824 | } |
825 | if (!R) { |
826 | *Next = L; |
827 | break; |
828 | } |
829 | if (Cmp(*R, *L)) { |
830 | *Next = R; |
831 | Next = &R->Next; |
832 | R = R->Next; |
833 | } else { |
834 | *Next = L; |
835 | Next = &L->Next; |
836 | L = L->Next; |
837 | } |
838 | } |
839 | |
840 | return Merged; |
841 | } |
842 | |
843 | protected: |
844 | unsigned short getSubclassDataFromValue() const { return SubclassData; } |
845 | void setValueSubclassData(unsigned short D) { SubclassData = D; } |
846 | }; |
847 | |
848 | struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } }; |
849 | |
850 | /// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>. |
851 | /// Those don't work because Value and Instruction's destructors are protected, |
852 | /// aren't virtual, and won't destroy the complete object. |
853 | using unique_value = std::unique_ptr<Value, ValueDeleter>; |
854 | |
855 | inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) { |
856 | V.print(OS); |
857 | return OS; |
858 | } |
859 | |
860 | void Use::set(Value *V) { |
861 | if (Val) removeFromList(); |
862 | Val = V; |
863 | if (V) V->addUse(*this); |
864 | } |
865 | |
866 | Value *Use::operator=(Value *RHS) { |
867 | set(RHS); |
868 | return RHS; |
869 | } |
870 | |
871 | const Use &Use::operator=(const Use &RHS) { |
872 | set(RHS.Val); |
873 | return *this; |
874 | } |
875 | |
876 | template <class Compare> void Value::sortUseList(Compare Cmp) { |
877 | if (!UseList || !UseList->Next) |
878 | // No need to sort 0 or 1 uses. |
879 | return; |
880 | |
881 | // Note: this function completely ignores Prev pointers until the end when |
882 | // they're fixed en masse. |
883 | |
884 | // Create a binomial vector of sorted lists, visiting uses one at a time and |
885 | // merging lists as necessary. |
886 | const unsigned MaxSlots = 32; |
887 | Use *Slots[MaxSlots]; |
888 | |
889 | // Collect the first use, turning it into a single-item list. |
890 | Use *Next = UseList->Next; |
891 | UseList->Next = nullptr; |
892 | unsigned NumSlots = 1; |
893 | Slots[0] = UseList; |
894 | |
895 | // Collect all but the last use. |
896 | while (Next->Next) { |
897 | Use *Current = Next; |
898 | Next = Current->Next; |
899 | |
900 | // Turn Current into a single-item list. |
901 | Current->Next = nullptr; |
902 | |
903 | // Save Current in the first available slot, merging on collisions. |
904 | unsigned I; |
905 | for (I = 0; I < NumSlots; ++I) { |
906 | if (!Slots[I]) |
907 | break; |
908 | |
909 | // Merge two lists, doubling the size of Current and emptying slot I. |
910 | // |
911 | // Since the uses in Slots[I] originally preceded those in Current, send |
912 | // Slots[I] in as the left parameter to maintain a stable sort. |
913 | Current = mergeUseLists(Slots[I], Current, Cmp); |
914 | Slots[I] = nullptr; |
915 | } |
916 | // Check if this is a new slot. |
917 | if (I == NumSlots) { |
918 | ++NumSlots; |
919 | assert(NumSlots <= MaxSlots && "Use list bigger than 2^32")((void)0); |
920 | } |
921 | |
922 | // Found an open slot. |
923 | Slots[I] = Current; |
924 | } |
925 | |
926 | // Merge all the lists together. |
927 | assert(Next && "Expected one more Use")((void)0); |
928 | assert(!Next->Next && "Expected only one Use")((void)0); |
929 | UseList = Next; |
930 | for (unsigned I = 0; I < NumSlots; ++I) |
931 | if (Slots[I]) |
932 | // Since the uses in Slots[I] originally preceded those in UseList, send |
933 | // Slots[I] in as the left parameter to maintain a stable sort. |
934 | UseList = mergeUseLists(Slots[I], UseList, Cmp); |
935 | |
936 | // Fix the Prev pointers. |
937 | for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) { |
938 | I->Prev = Prev; |
939 | Prev = &I->Next; |
940 | } |
941 | } |
942 | |
943 | // isa - Provide some specializations of isa so that we don't have to include |
944 | // the subtype header files to test to see if the value is a subclass... |
945 | // |
946 | template <> struct isa_impl<Constant, Value> { |
947 | static inline bool doit(const Value &Val) { |
948 | static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal"); |
949 | return Val.getValueID() <= Value::ConstantLastVal; |
950 | } |
951 | }; |
952 | |
953 | template <> struct isa_impl<ConstantData, Value> { |
954 | static inline bool doit(const Value &Val) { |
955 | return Val.getValueID() >= Value::ConstantDataFirstVal && |
956 | Val.getValueID() <= Value::ConstantDataLastVal; |
957 | } |
958 | }; |
959 | |
960 | template <> struct isa_impl<ConstantAggregate, Value> { |
961 | static inline bool doit(const Value &Val) { |
962 | return Val.getValueID() >= Value::ConstantAggregateFirstVal && |
963 | Val.getValueID() <= Value::ConstantAggregateLastVal; |
964 | } |
965 | }; |
966 | |
967 | template <> struct isa_impl<Argument, Value> { |
968 | static inline bool doit (const Value &Val) { |
969 | return Val.getValueID() == Value::ArgumentVal; |
970 | } |
971 | }; |
972 | |
973 | template <> struct isa_impl<InlineAsm, Value> { |
974 | static inline bool doit(const Value &Val) { |
975 | return Val.getValueID() == Value::InlineAsmVal; |
976 | } |
977 | }; |
978 | |
979 | template <> struct isa_impl<Instruction, Value> { |
980 | static inline bool doit(const Value &Val) { |
981 | return Val.getValueID() >= Value::InstructionVal; |
982 | } |
983 | }; |
984 | |
985 | template <> struct isa_impl<BasicBlock, Value> { |
986 | static inline bool doit(const Value &Val) { |
987 | return Val.getValueID() == Value::BasicBlockVal; |
988 | } |
989 | }; |
990 | |
991 | template <> struct isa_impl<Function, Value> { |
992 | static inline bool doit(const Value &Val) { |
993 | return Val.getValueID() == Value::FunctionVal; |
994 | } |
995 | }; |
996 | |
997 | template <> struct isa_impl<GlobalVariable, Value> { |
998 | static inline bool doit(const Value &Val) { |
999 | return Val.getValueID() == Value::GlobalVariableVal; |
1000 | } |
1001 | }; |
1002 | |
1003 | template <> struct isa_impl<GlobalAlias, Value> { |
1004 | static inline bool doit(const Value &Val) { |
1005 | return Val.getValueID() == Value::GlobalAliasVal; |
1006 | } |
1007 | }; |
1008 | |
1009 | template <> struct isa_impl<GlobalIFunc, Value> { |
1010 | static inline bool doit(const Value &Val) { |
1011 | return Val.getValueID() == Value::GlobalIFuncVal; |
1012 | } |
1013 | }; |
1014 | |
1015 | template <> struct isa_impl<GlobalIndirectSymbol, Value> { |
1016 | static inline bool doit(const Value &Val) { |
1017 | return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val); |
1018 | } |
1019 | }; |
1020 | |
1021 | template <> struct isa_impl<GlobalValue, Value> { |
1022 | static inline bool doit(const Value &Val) { |
1023 | return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val); |
1024 | } |
1025 | }; |
1026 | |
1027 | template <> struct isa_impl<GlobalObject, Value> { |
1028 | static inline bool doit(const Value &Val) { |
1029 | return isa<GlobalVariable>(Val) || isa<Function>(Val); |
1030 | } |
1031 | }; |
1032 | |
1033 | // Create wrappers for C Binding types (see CBindingWrapping.h). |
1034 | DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)inline Value *unwrap(LLVMValueRef P) { return reinterpret_cast <Value*>(P); } inline LLVMValueRef wrap(const Value *P) { return reinterpret_cast<LLVMValueRef>(const_cast< Value*>(P)); } template<typename T> inline T *unwrap (LLVMValueRef P) { return cast<T>(unwrap(P)); } |
1035 | |
1036 | // Specialized opaque value conversions. |
1037 | inline Value **unwrap(LLVMValueRef *Vals) { |
1038 | return reinterpret_cast<Value**>(Vals); |
1039 | } |
1040 | |
1041 | template<typename T> |
1042 | inline T **unwrap(LLVMValueRef *Vals, unsigned Length) { |
1043 | #ifndef NDEBUG1 |
1044 | for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I) |
1045 | unwrap<T>(*I); // For side effect of calling assert on invalid usage. |
1046 | #endif |
1047 | (void)Length; |
1048 | return reinterpret_cast<T**>(Vals); |
1049 | } |
1050 | |
1051 | inline LLVMValueRef *wrap(const Value **Vals) { |
1052 | return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals)); |
1053 | } |
1054 | |
1055 | } // end namespace llvm |
1056 | |
1057 | #endif // LLVM_IR_VALUE_H |