Bug Summary

File:src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c
Warning:line 2667, column 12
Access to field 'output_section' results in a dereference of a null pointer (loaded from field 'srelplt')

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name elf64-x86-64.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -pic-is-pie -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/binutils/obj/bfd -resource-dir /usr/local/lib/clang/13.0.0 -D HAVE_CONFIG_H -I . -I /usr/src/gnu/usr.bin/binutils/bfd -I . -D _GNU_SOURCE -D NETBSD_CORE -I . -I /usr/src/gnu/usr.bin/binutils/bfd -I /usr/src/gnu/usr.bin/binutils/bfd/../include -I /usr/src/gnu/usr.bin/binutils/bfd/../intl -I ../intl -D PIE_DEFAULT=1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -fdebug-compilation-dir=/usr/src/gnu/usr.bin/binutils/obj/bfd -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c /usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c
1/* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "bfdlink.h"
24#include "libbfd.h"
25#include "elf-bfd.h"
26
27#include "elf/x86-64.h"
28
29/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30#define MINUS_ONE(~ (bfd_vma) 0) (~ (bfd_vma) 0)
31
32/* The relocation "howto" table. Order of fields:
33 type, size, bitsize, pc_relative, complain_on_overflow,
34 special_function, name, partial_inplace, src_mask, dst_pack, pcrel_offset. */
35static reloc_howto_type x86_64_elf_howto_table[] =
36{
37 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,{ (unsigned) R_X86_64_NONE, 0, 0, 0, 0, 0, complain_overflow_dont
, bfd_elf_generic_reloc, "R_X86_64_NONE", 0, 0x00000000, 0x00000000
, 0 }
38 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,{ (unsigned) R_X86_64_NONE, 0, 0, 0, 0, 0, complain_overflow_dont
, bfd_elf_generic_reloc, "R_X86_64_NONE", 0, 0x00000000, 0x00000000
, 0 }
39 FALSE){ (unsigned) R_X86_64_NONE, 0, 0, 0, 0, 0, complain_overflow_dont
, bfd_elf_generic_reloc, "R_X86_64_NONE", 0, 0x00000000, 0x00000000
, 0 }
,
40 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,{ (unsigned) R_X86_64_64, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_64", 0, (~ (bfd_vma) 0), (
~ (bfd_vma) 0), 0 }
41 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,{ (unsigned) R_X86_64_64, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_64", 0, (~ (bfd_vma) 0), (
~ (bfd_vma) 0), 0 }
42 FALSE){ (unsigned) R_X86_64_64, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_64", 0, (~ (bfd_vma) 0), (
~ (bfd_vma) 0), 0 }
,
43 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,{ (unsigned) R_X86_64_PC32, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_PC32", 0, 0xffffffff, 0xffffffff
, 1 }
44 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,{ (unsigned) R_X86_64_PC32, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_PC32", 0, 0xffffffff, 0xffffffff
, 1 }
45 TRUE){ (unsigned) R_X86_64_PC32, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_PC32", 0, 0xffffffff, 0xffffffff
, 1 }
,
46 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,{ (unsigned) R_X86_64_GOT32, 0, 2, 32, 0, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_GOT32", 0, 0xffffffff, 0xffffffff
, 0 }
47 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,{ (unsigned) R_X86_64_GOT32, 0, 2, 32, 0, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_GOT32", 0, 0xffffffff, 0xffffffff
, 0 }
48 FALSE){ (unsigned) R_X86_64_GOT32, 0, 2, 32, 0, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_GOT32", 0, 0xffffffff, 0xffffffff
, 0 }
,
49 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,{ (unsigned) R_X86_64_PLT32, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_PLT32", 0, 0xffffffff, 0xffffffff
, 1 }
50 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,{ (unsigned) R_X86_64_PLT32, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_PLT32", 0, 0xffffffff, 0xffffffff
, 1 }
51 TRUE){ (unsigned) R_X86_64_PLT32, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_PLT32", 0, 0xffffffff, 0xffffffff
, 1 }
,
52 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,{ (unsigned) R_X86_64_COPY, 0, 2, 32, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_COPY", 0, 0xffffffff, 0xffffffff
, 0 }
53 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,{ (unsigned) R_X86_64_COPY, 0, 2, 32, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_COPY", 0, 0xffffffff, 0xffffffff
, 0 }
54 FALSE){ (unsigned) R_X86_64_COPY, 0, 2, 32, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_COPY", 0, 0xffffffff, 0xffffffff
, 0 }
,
55 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,{ (unsigned) R_X86_64_GLOB_DAT, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", 0, (~ (bfd_vma)
0), (~ (bfd_vma) 0), 0 }
56 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,{ (unsigned) R_X86_64_GLOB_DAT, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", 0, (~ (bfd_vma)
0), (~ (bfd_vma) 0), 0 }
57 MINUS_ONE, FALSE){ (unsigned) R_X86_64_GLOB_DAT, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", 0, (~ (bfd_vma)
0), (~ (bfd_vma) 0), 0 }
,
58 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,{ (unsigned) R_X86_64_JUMP_SLOT, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", 0, (~ (bfd_vma
) 0), (~ (bfd_vma) 0), 0 }
59 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,{ (unsigned) R_X86_64_JUMP_SLOT, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", 0, (~ (bfd_vma
) 0), (~ (bfd_vma) 0), 0 }
60 MINUS_ONE, FALSE){ (unsigned) R_X86_64_JUMP_SLOT, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", 0, (~ (bfd_vma
) 0), (~ (bfd_vma) 0), 0 }
,
61 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,{ (unsigned) R_X86_64_RELATIVE, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_RELATIVE", 0, (~ (bfd_vma)
0), (~ (bfd_vma) 0), 0 }
62 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,{ (unsigned) R_X86_64_RELATIVE, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_RELATIVE", 0, (~ (bfd_vma)
0), (~ (bfd_vma) 0), 0 }
63 MINUS_ONE, FALSE){ (unsigned) R_X86_64_RELATIVE, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_RELATIVE", 0, (~ (bfd_vma)
0), (~ (bfd_vma) 0), 0 }
,
64 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,{ (unsigned) R_X86_64_GOTPCREL, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", 0, 0xffffffff, 0xffffffff
, 1 }
65 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,{ (unsigned) R_X86_64_GOTPCREL, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", 0, 0xffffffff, 0xffffffff
, 1 }
66 0xffffffff, TRUE){ (unsigned) R_X86_64_GOTPCREL, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", 0, 0xffffffff, 0xffffffff
, 1 }
,
67 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,{ (unsigned) R_X86_64_32, 0, 2, 32, 0, 0, complain_overflow_unsigned
, bfd_elf_generic_reloc, "R_X86_64_32", 0, 0xffffffff, 0xffffffff
, 0 }
68 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,{ (unsigned) R_X86_64_32, 0, 2, 32, 0, 0, complain_overflow_unsigned
, bfd_elf_generic_reloc, "R_X86_64_32", 0, 0xffffffff, 0xffffffff
, 0 }
69 FALSE){ (unsigned) R_X86_64_32, 0, 2, 32, 0, 0, complain_overflow_unsigned
, bfd_elf_generic_reloc, "R_X86_64_32", 0, 0xffffffff, 0xffffffff
, 0 }
,
70 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,{ (unsigned) R_X86_64_32S, 0, 2, 32, 0, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_32S", 0, 0xffffffff, 0xffffffff
, 0 }
71 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,{ (unsigned) R_X86_64_32S, 0, 2, 32, 0, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_32S", 0, 0xffffffff, 0xffffffff
, 0 }
72 FALSE){ (unsigned) R_X86_64_32S, 0, 2, 32, 0, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_32S", 0, 0xffffffff, 0xffffffff
, 0 }
,
73 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,{ (unsigned) R_X86_64_16, 0, 1, 16, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_16", 0, 0xffff, 0xffff, 0 }
74 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE){ (unsigned) R_X86_64_16, 0, 1, 16, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_16", 0, 0xffff, 0xffff, 0 }
,
75 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,{ (unsigned) R_X86_64_PC16, 0, 1, 16, 1, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_PC16", 0, 0xffff, 0xffff, 1
}
76 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE){ (unsigned) R_X86_64_PC16, 0, 1, 16, 1, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_PC16", 0, 0xffff, 0xffff, 1
}
,
77 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_signed,{ (unsigned) R_X86_64_8, 0, 0, 8, 0, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_8", 0, 0xff, 0xff, 0 }
78 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE){ (unsigned) R_X86_64_8, 0, 0, 8, 0, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_8", 0, 0xff, 0xff, 0 }
,
79 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,{ (unsigned) R_X86_64_PC8, 0, 0, 8, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_PC8", 0, 0xff, 0xff, 1 }
80 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE){ (unsigned) R_X86_64_PC8, 0, 0, 8, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_PC8", 0, 0xff, 0xff, 1 }
,
81 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,{ (unsigned) R_X86_64_DTPMOD64, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", 0, (~ (bfd_vma)
0), (~ (bfd_vma) 0), 0 }
82 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,{ (unsigned) R_X86_64_DTPMOD64, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", 0, (~ (bfd_vma)
0), (~ (bfd_vma) 0), 0 }
83 MINUS_ONE, FALSE){ (unsigned) R_X86_64_DTPMOD64, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", 0, (~ (bfd_vma)
0), (~ (bfd_vma) 0), 0 }
,
84 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,{ (unsigned) R_X86_64_DTPOFF64, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", 0, (~ (bfd_vma)
0), (~ (bfd_vma) 0), 0 }
85 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,{ (unsigned) R_X86_64_DTPOFF64, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", 0, (~ (bfd_vma)
0), (~ (bfd_vma) 0), 0 }
86 MINUS_ONE, FALSE){ (unsigned) R_X86_64_DTPOFF64, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", 0, (~ (bfd_vma)
0), (~ (bfd_vma) 0), 0 }
,
87 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,{ (unsigned) R_X86_64_TPOFF64, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_TPOFF64", 0, (~ (bfd_vma) 0
), (~ (bfd_vma) 0), 0 }
88 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,{ (unsigned) R_X86_64_TPOFF64, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_TPOFF64", 0, (~ (bfd_vma) 0
), (~ (bfd_vma) 0), 0 }
89 MINUS_ONE, FALSE){ (unsigned) R_X86_64_TPOFF64, 0, 4, 64, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_TPOFF64", 0, (~ (bfd_vma) 0
), (~ (bfd_vma) 0), 0 }
,
90 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,{ (unsigned) R_X86_64_TLSGD, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_TLSGD", 0, 0xffffffff, 0xffffffff
, 1 }
91 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,{ (unsigned) R_X86_64_TLSGD, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_TLSGD", 0, 0xffffffff, 0xffffffff
, 1 }
92 0xffffffff, TRUE){ (unsigned) R_X86_64_TLSGD, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_TLSGD", 0, 0xffffffff, 0xffffffff
, 1 }
,
93 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,{ (unsigned) R_X86_64_TLSLD, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_TLSLD", 0, 0xffffffff, 0xffffffff
, 1 }
94 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,{ (unsigned) R_X86_64_TLSLD, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_TLSLD", 0, 0xffffffff, 0xffffffff
, 1 }
95 0xffffffff, TRUE){ (unsigned) R_X86_64_TLSLD, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_TLSLD", 0, 0xffffffff, 0xffffffff
, 1 }
,
96 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,{ (unsigned) R_X86_64_DTPOFF32, 0, 2, 32, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", 0, 0xffffffff, 0xffffffff
, 0 }
97 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,{ (unsigned) R_X86_64_DTPOFF32, 0, 2, 32, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", 0, 0xffffffff, 0xffffffff
, 0 }
98 0xffffffff, FALSE){ (unsigned) R_X86_64_DTPOFF32, 0, 2, 32, 0, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", 0, 0xffffffff, 0xffffffff
, 0 }
,
99 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,{ (unsigned) R_X86_64_GOTTPOFF, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", 0, 0xffffffff, 0xffffffff
, 1 }
100 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,{ (unsigned) R_X86_64_GOTTPOFF, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", 0, 0xffffffff, 0xffffffff
, 1 }
101 0xffffffff, TRUE){ (unsigned) R_X86_64_GOTTPOFF, 0, 2, 32, 1, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", 0, 0xffffffff, 0xffffffff
, 1 }
,
102 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,{ (unsigned) R_X86_64_TPOFF32, 0, 2, 32, 0, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_TPOFF32", 0, 0xffffffff, 0xffffffff
, 0 }
103 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,{ (unsigned) R_X86_64_TPOFF32, 0, 2, 32, 0, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_TPOFF32", 0, 0xffffffff, 0xffffffff
, 0 }
104 0xffffffff, FALSE){ (unsigned) R_X86_64_TPOFF32, 0, 2, 32, 0, 0, complain_overflow_signed
, bfd_elf_generic_reloc, "R_X86_64_TPOFF32", 0, 0xffffffff, 0xffffffff
, 0 }
,
105
106/* GNU extension to record C++ vtable hierarchy. */
107 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,{ (unsigned) R_X86_64_GNU_VTINHERIT, 0, 4, 0, 0, 0, complain_overflow_dont
, ((void*)0), "R_X86_64_GNU_VTINHERIT", 0, 0, 0, 0 }
108 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE){ (unsigned) R_X86_64_GNU_VTINHERIT, 0, 4, 0, 0, 0, complain_overflow_dont
, ((void*)0), "R_X86_64_GNU_VTINHERIT", 0, 0, 0, 0 }
,
109
110/* GNU extension to record C++ vtable member usage. */
111 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,{ (unsigned) R_X86_64_GNU_VTENTRY, 0, 4, 0, 0, 0, complain_overflow_dont
, _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", 0, 0,
0, 0 }
112 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,{ (unsigned) R_X86_64_GNU_VTENTRY, 0, 4, 0, 0, 0, complain_overflow_dont
, _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", 0, 0,
0, 0 }
113 FALSE){ (unsigned) R_X86_64_GNU_VTENTRY, 0, 4, 0, 0, 0, complain_overflow_dont
, _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", 0, 0,
0, 0 }
114};
115
116/* Map BFD relocs to the x86_64 elf relocs. */
117struct elf_reloc_map
118{
119 bfd_reloc_code_real_type bfd_reloc_val;
120 unsigned char elf_reloc_val;
121};
122
123static const struct elf_reloc_map x86_64_reloc_map[] =
124{
125 { BFD_RELOC_NONE, R_X86_64_NONE, },
126 { BFD_RELOC_64, R_X86_64_64, },
127 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
128 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
129 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
130 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
131 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
132 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
133 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
134 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
135 { BFD_RELOC_32, R_X86_64_32, },
136 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
137 { BFD_RELOC_16, R_X86_64_16, },
138 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
139 { BFD_RELOC_8, R_X86_64_8, },
140 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
141 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
142 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
143 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
144 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
145 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
146 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
147 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
148 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
149 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
150 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
151};
152
153
154/* Given a BFD reloc type, return a HOWTO structure. */
155static reloc_howto_type *
156elf64_x86_64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED__attribute__ ((__unused__)),
157 bfd_reloc_code_real_type code)
158{
159 unsigned int i;
160
161 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
162 i++)
163 {
164 if (x86_64_reloc_map[i].bfd_reloc_val == code)
165 return &x86_64_elf_howto_table[i];
166 }
167 return 0;
168}
169
170/* Given an x86_64 ELF reloc type, fill in an arelent structure. */
171
172static void
173elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED__attribute__ ((__unused__)), arelent *cache_ptr,
174 Elf_Internal_Rela *dst)
175{
176 unsigned r_type, i;
177
178 r_type = ELF64_R_TYPE (dst->r_info)((dst->r_info) & 0xffffffff);
179 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT)
180 {
181 BFD_ASSERT (r_type <= (unsigned int) R_X86_64_TPOFF32){ if (!(r_type <= (unsigned int) R_X86_64_TPOFF32)) bfd_assert
("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c",181); }
;
182 i = r_type;
183 }
184 else
185 {
186 BFD_ASSERT (r_type < (unsigned int) R_X86_64_max){ if (!(r_type < (unsigned int) R_X86_64_max)) bfd_assert(
"/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c",186); }
;
187 i = r_type - ((unsigned int) R_X86_64_GNU_VTINHERIT - R_X86_64_TPOFF32 - 1);
188 }
189 cache_ptr->howto = &x86_64_elf_howto_table[i];
190 BFD_ASSERT (r_type == cache_ptr->howto->type){ if (!(r_type == cache_ptr->howto->type)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,190); }
;
191}
192
193/* Support for core dump NOTE sections. */
194static bfd_boolean
195elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
196{
197 int offset;
198 size_t raw_size;
199
200 switch (note->descsz)
201 {
202 default:
203 return FALSE0;
204
205 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
206 /* pr_cursig */
207 elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->core_signal
208 = bfd_get_16 (abfd, note->descdata + 12)((*((abfd)->xvec->bfd_getx16)) (note->descdata + 12)
)
;
209
210 /* pr_pid */
211 elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->core_pid
212 = bfd_get_32 (abfd, note->descdata + 32)((*((abfd)->xvec->bfd_getx32)) (note->descdata + 32)
)
;
213
214 /* pr_reg */
215 offset = 112;
216 raw_size = 216;
217
218 break;
219 }
220
221 /* Make a ".reg/999" section. */
222 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
223 raw_size, note->descpos + offset);
224}
225
226static bfd_boolean
227elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
228{
229 switch (note->descsz)
230 {
231 default:
232 return FALSE0;
233
234 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
235 elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->core_program
236 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
237 elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->core_command
238 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
239 }
240
241 /* Note that for some reason, a spurious space is tacked
242 onto the end of the args in some (at least one anyway)
243 implementations, so strip it off if it exists. */
244
245 {
246 char *command = elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->core_command;
247 int n = strlen (command);
248
249 if (0 < n && command[n - 1] == ' ')
250 command[n - 1] = '\0';
251 }
252
253 return TRUE1;
254}
255
256/* Functions for the x86-64 ELF linker. */
257
258/* The name of the dynamic interpreter. This is put in the .interp
259 section. */
260
261#define ELF_DYNAMIC_INTERPRETER"/lib/ld64.so.1" "/lib/ld64.so.1"
262
263/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
264 copying dynamic variables from a shared lib into an app's dynbss
265 section, and instead use a dynamic relocation to point into the
266 shared lib. */
267#define ELIMINATE_COPY_RELOCS1 1
268
269/* The size in bytes of an entry in the global offset table. */
270
271#define GOT_ENTRY_SIZE8 8
272
273/* The size in bytes of an entry in the procedure linkage table. */
274
275#define PLT_ENTRY_SIZE16 16
276
277/* The first entry in a procedure linkage table looks like this. See the
278 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
279
280static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE16] =
281{
282 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
283 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
284 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
285};
286
287/* Subsequent entries in a procedure linkage table look like this. */
288
289static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE16] =
290{
291 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
292 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
293 0x68, /* pushq immediate */
294 0, 0, 0, 0, /* replaced with index into relocation table. */
295 0xe9, /* jmp relative */
296 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
297};
298
299/* The x86-64 linker needs to keep track of the number of relocs that
300 it decides to copy as dynamic relocs in check_relocs for each symbol.
301 This is so that it can later discard them if they are found to be
302 unnecessary. We store the information in a field extending the
303 regular ELF linker hash table. */
304
305struct elf64_x86_64_dyn_relocs
306{
307 /* Next section. */
308 struct elf64_x86_64_dyn_relocs *next;
309
310 /* The input section of the reloc. */
311 asection *sec;
312
313 /* Total number of relocs copied for the input section. */
314 bfd_size_type count;
315
316 /* Number of pc-relative relocs copied for the input section. */
317 bfd_size_type pc_count;
318};
319
320/* x86-64 ELF linker hash entry. */
321
322struct elf64_x86_64_link_hash_entry
323{
324 struct elf_link_hash_entry elf;
325
326 /* Track dynamic relocs copied for this symbol. */
327 struct elf64_x86_64_dyn_relocs *dyn_relocs;
328
329#define GOT_UNKNOWN0 0
330#define GOT_NORMAL1 1
331#define GOT_TLS_GD2 2
332#define GOT_TLS_IE3 3
333 unsigned char tls_type;
334};
335
336#define elf64_x86_64_hash_entry(ent)((struct elf64_x86_64_link_hash_entry *)(ent)) \
337 ((struct elf64_x86_64_link_hash_entry *)(ent))
338
339struct elf64_x86_64_obj_tdata
340{
341 struct elf_obj_tdata root;
342
343 /* tls_type for each local got entry. */
344 char *local_got_tls_type;
345};
346
347#define elf64_x86_64_tdata(abfd)((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any) \
348 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
349
350#define elf64_x86_64_local_got_tls_type(abfd)(((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)->
local_got_tls_type)
\
351 (elf64_x86_64_tdata (abfd)((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)->local_got_tls_type)
352
353
354/* x86-64 ELF linker hash table. */
355
356struct elf64_x86_64_link_hash_table
357{
358 struct elf_link_hash_table elf;
359
360 /* Short-cuts to get to dynamic linker sections. */
361 asection *sgot;
362 asection *sgotplt;
363 asection *srelgot;
364 asection *splt;
365 asection *srelplt;
366 asection *sdynbss;
367 asection *srelbss;
368
369 union {
370 bfd_signed_vma refcount;
371 bfd_vma offset;
372 } tls_ld_got;
373
374 /* Small local sym to section mapping cache. */
375 struct sym_sec_cache sym_sec;
376};
377
378/* Get the x86-64 ELF linker hash table from a link_info structure. */
379
380#define elf64_x86_64_hash_table(p)((struct elf64_x86_64_link_hash_table *) ((p)->hash)) \
381 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
382
383/* Create an entry in an x86-64 ELF linker hash table. */
384
385static struct bfd_hash_entry *
386link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
387 const char *string)
388{
389 /* Allocate the structure if it has not already been allocated by a
390 subclass. */
391 if (entry == NULL((void*)0))
392 {
393 entry = bfd_hash_allocate (table,
394 sizeof (struct elf64_x86_64_link_hash_entry));
395 if (entry == NULL((void*)0))
396 return entry;
397 }
398
399 /* Call the allocation method of the superclass. */
400 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
401 if (entry != NULL((void*)0))
402 {
403 struct elf64_x86_64_link_hash_entry *eh;
404
405 eh = (struct elf64_x86_64_link_hash_entry *) entry;
406 eh->dyn_relocs = NULL((void*)0);
407 eh->tls_type = GOT_UNKNOWN0;
408 }
409
410 return entry;
411}
412
413/* Create an X86-64 ELF linker hash table. */
414
415static struct bfd_link_hash_table *
416elf64_x86_64_link_hash_table_create (bfd *abfd)
417{
418 struct elf64_x86_64_link_hash_table *ret;
419 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
420
421 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
422 if (ret == NULL((void*)0))
423 return NULL((void*)0);
424
425 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
426 {
427 free (ret);
428 return NULL((void*)0);
429 }
430
431 ret->sgot = NULL((void*)0);
432 ret->sgotplt = NULL((void*)0);
433 ret->srelgot = NULL((void*)0);
434 ret->splt = NULL((void*)0);
435 ret->srelplt = NULL((void*)0);
436 ret->sdynbss = NULL((void*)0);
437 ret->srelbss = NULL((void*)0);
438 ret->sym_sec.abfd = NULL((void*)0);
439 ret->tls_ld_got.refcount = 0;
440
441 return &ret->elf.root;
442}
443
444/* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
445 shortcuts to them in our hash table. */
446
447static bfd_boolean
448create_got_section (bfd *dynobj, struct bfd_link_info *info)
449{
450 struct elf64_x86_64_link_hash_table *htab;
451
452 if (! _bfd_elf_create_got_section (dynobj, info))
453 return FALSE0;
454
455 htab = elf64_x86_64_hash_table (info)((struct elf64_x86_64_link_hash_table *) ((info)->hash));
456 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
457 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
458 if (!htab->sgot || !htab->sgotplt)
459 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 459, __PRETTY_FUNCTION__)
;
460
461 htab->srelgot = bfd_make_section (dynobj, ".rela.got");
462 if (htab->srelgot == NULL((void*)0)
463 || ! bfd_set_section_flags (dynobj, htab->srelgot,
464 (SEC_ALLOC0x001 | SEC_LOAD0x002 | SEC_HAS_CONTENTS0x200
465 | SEC_IN_MEMORY0x20000 | SEC_LINKER_CREATED0x800000
466 | SEC_READONLY0x010))
467 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3)(((htab->srelgot)->alignment_power = (3)),1))
468 return FALSE0;
469 return TRUE1;
470}
471
472/* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
473 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
474 hash table. */
475
476static bfd_boolean
477elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
478{
479 struct elf64_x86_64_link_hash_table *htab;
480
481 htab = elf64_x86_64_hash_table (info)((struct elf64_x86_64_link_hash_table *) ((info)->hash));
482 if (!htab->sgot && !create_got_section (dynobj, info))
483 return FALSE0;
484
485 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
486 return FALSE0;
487
488 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
489 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
490 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
491 if (!info->shared)
492 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
493
494 if (!htab->splt || !htab->srelplt || !htab->sdynbss
495 || (!info->shared && !htab->srelbss))
496 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 496, __PRETTY_FUNCTION__)
;
497
498 return TRUE1;
499}
500
501/* Copy the extra info we tack onto an elf_link_hash_entry. */
502
503static void
504elf64_x86_64_copy_indirect_symbol (const struct elf_backend_data *bed,
505 struct elf_link_hash_entry *dir,
506 struct elf_link_hash_entry *ind)
507{
508 struct elf64_x86_64_link_hash_entry *edir, *eind;
509
510 edir = (struct elf64_x86_64_link_hash_entry *) dir;
511 eind = (struct elf64_x86_64_link_hash_entry *) ind;
512
513 if (eind->dyn_relocs != NULL((void*)0))
514 {
515 if (edir->dyn_relocs != NULL((void*)0))
516 {
517 struct elf64_x86_64_dyn_relocs **pp;
518 struct elf64_x86_64_dyn_relocs *p;
519
520 if (ind->root.type == bfd_link_hash_indirect)
521 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 521, __PRETTY_FUNCTION__)
;
522
523 /* Add reloc counts against the weak sym to the strong sym
524 list. Merge any entries against the same section. */
525 for (pp = &eind->dyn_relocs; (p = *pp) != NULL((void*)0); )
526 {
527 struct elf64_x86_64_dyn_relocs *q;
528
529 for (q = edir->dyn_relocs; q != NULL((void*)0); q = q->next)
530 if (q->sec == p->sec)
531 {
532 q->pc_count += p->pc_count;
533 q->count += p->count;
534 *pp = p->next;
535 break;
536 }
537 if (q == NULL((void*)0))
538 pp = &p->next;
539 }
540 *pp = edir->dyn_relocs;
541 }
542
543 edir->dyn_relocs = eind->dyn_relocs;
544 eind->dyn_relocs = NULL((void*)0);
545 }
546
547 if (ind->root.type == bfd_link_hash_indirect
548 && dir->got.refcount <= 0)
549 {
550 edir->tls_type = eind->tls_type;
551 eind->tls_type = GOT_UNKNOWN0;
552 }
553
554 if (ELIMINATE_COPY_RELOCS1
555 && ind->root.type != bfd_link_hash_indirect
556 && (dir->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED040) != 0)
557 /* If called to transfer flags for a weakdef during processing
558 of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
559 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
560 dir->elf_link_hash_flags |=
561 (ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC04
562 | ELF_LINK_HASH_REF_REGULAR01
563 | ELF_LINK_HASH_REF_REGULAR_NONWEAK020
564 | ELF_LINK_HASH_NEEDS_PLT0200));
565 else
566 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
567}
568
569static bfd_boolean
570elf64_x86_64_mkobject (bfd *abfd)
571{
572 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
573 abfd->tdata.any = bfd_zalloc (abfd, amt);
574 if (abfd->tdata.any == NULL((void*)0))
575 return FALSE0;
576 return TRUE1;
577}
578
579static bfd_boolean
580elf64_x86_64_elf_object_p (bfd *abfd)
581{
582 /* Set the right machine number for an x86-64 elf64 file. */
583 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_6464);
584 return TRUE1;
585}
586
587static int
588elf64_x86_64_tls_transition (struct bfd_link_info *info, int r_type, int is_local)
589{
590 if (info->shared)
591 return r_type;
592
593 switch (r_type)
594 {
595 case R_X86_64_TLSGD:
596 case R_X86_64_GOTTPOFF:
597 if (is_local)
598 return R_X86_64_TPOFF32;
599 return R_X86_64_GOTTPOFF;
600 case R_X86_64_TLSLD:
601 return R_X86_64_TPOFF32;
602 }
603
604 return r_type;
605}
606
607/* Look through the relocs for a section during the first phase, and
608 calculate needed space in the global offset table, procedure
609 linkage table, and dynamic reloc sections. */
610
611static bfd_boolean
612elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec,
613 const Elf_Internal_Rela *relocs)
614{
615 struct elf64_x86_64_link_hash_table *htab;
616 Elf_Internal_Shdr *symtab_hdr;
617 struct elf_link_hash_entry **sym_hashes;
618 const Elf_Internal_Rela *rel;
619 const Elf_Internal_Rela *rel_end;
620 asection *sreloc;
621
622 if (info->relocatable)
623 return TRUE1;
624
625 htab = elf64_x86_64_hash_table (info)((struct elf64_x86_64_link_hash_table *) ((info)->hash));
626 symtab_hdr = &elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->symtab_hdr;
627 sym_hashes = elf_sym_hashes (abfd)(((abfd) -> tdata.elf_obj_data) -> sym_hashes);
628
629 sreloc = NULL((void*)0);
630
631 rel_end = relocs + sec->reloc_count;
632 for (rel = relocs; rel < rel_end; rel++)
633 {
634 unsigned int r_type;
635 unsigned long r_symndx;
636 struct elf_link_hash_entry *h;
637
638 r_symndx = ELF64_R_SYM (rel->r_info)((rel->r_info) >> 32);
639 r_type = ELF64_R_TYPE (rel->r_info)((rel->r_info) & 0xffffffff);
640
641 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)((symtab_hdr)->sh_size / (symtab_hdr)->sh_entsize))
642 {
643 (*_bfd_error_handler) (_("%s: bad symbol index: %d")("%s: bad symbol index: %d"),
644 bfd_archive_filename (abfd),
645 r_symndx);
646 return FALSE0;
647 }
648
649 if (r_symndx < symtab_hdr->sh_info)
650 h = NULL((void*)0);
651 else
652 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
653
654 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL((void*)0));
655 switch (r_type)
656 {
657 case R_X86_64_TLSLD:
658 htab->tls_ld_got.refcount += 1;
659 goto create_got;
660
661 case R_X86_64_TPOFF32:
662 if (info->shared)
663 {
664 (*_bfd_error_handler)
665 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC")("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"
)
,
666 bfd_archive_filename (abfd),
667 x86_64_elf_howto_table[r_type].name);
668 bfd_set_error (bfd_error_bad_value);
669 return FALSE0;
670 }
671 break;
672
673 case R_X86_64_GOTTPOFF:
674 if (info->shared)
675 info->flags |= DF_STATIC_TLS(1 << 4);
676 /* Fall through */
677
678 case R_X86_64_GOT32:
679 case R_X86_64_GOTPCREL:
680 case R_X86_64_TLSGD:
681 /* This symbol requires a global offset table entry. */
682 {
683 int tls_type, old_tls_type;
684
685 switch (r_type)
686 {
687 default: tls_type = GOT_NORMAL1; break;
688 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD2; break;
689 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE3; break;
690 }
691
692 if (h != NULL((void*)0))
693 {
694 h->got.refcount += 1;
695 old_tls_type = elf64_x86_64_hash_entry (h)((struct elf64_x86_64_link_hash_entry *)(h))->tls_type;
696 }
697 else
698 {
699 bfd_signed_vma *local_got_refcounts;
700
701 /* This is a global offset table entry for a local symbol. */
702 local_got_refcounts = elf_local_got_refcounts (abfd)(((abfd) -> tdata.elf_obj_data) -> local_got.refcounts);
703 if (local_got_refcounts == NULL((void*)0))
704 {
705 bfd_size_type size;
706
707 size = symtab_hdr->sh_info;
708 size *= sizeof (bfd_signed_vma) + sizeof (char);
709 local_got_refcounts = ((bfd_signed_vma *)
710 bfd_zalloc (abfd, size));
711 if (local_got_refcounts == NULL((void*)0))
712 return FALSE0;
713 elf_local_got_refcounts (abfd)(((abfd) -> tdata.elf_obj_data) -> local_got.refcounts) = local_got_refcounts;
714 elf64_x86_64_local_got_tls_type (abfd)(((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)->
local_got_tls_type)
715 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
716 }
717 local_got_refcounts[r_symndx] += 1;
718 old_tls_type
719 = elf64_x86_64_local_got_tls_type (abfd)(((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)->
local_got_tls_type)
[r_symndx];
720 }
721
722 /* If a TLS symbol is accessed using IE at least once,
723 there is no point to use dynamic model for it. */
724 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN0
725 && (old_tls_type != GOT_TLS_GD2 || tls_type != GOT_TLS_IE3))
726 {
727 if (old_tls_type == GOT_TLS_IE3 && tls_type == GOT_TLS_GD2)
728 tls_type = old_tls_type;
729 else
730 {
731 (*_bfd_error_handler)
732 (_("%s: %s' accessed both as normal and thread local symbol")("%s: %s' accessed both as normal and thread local symbol"),
733 bfd_archive_filename (abfd),
734 h ? h->root.root.string : "<local>");
735 return FALSE0;
736 }
737 }
738
739 if (old_tls_type != tls_type)
740 {
741 if (h != NULL((void*)0))
742 elf64_x86_64_hash_entry (h)((struct elf64_x86_64_link_hash_entry *)(h))->tls_type = tls_type;
743 else
744 elf64_x86_64_local_got_tls_type (abfd)(((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)->
local_got_tls_type)
[r_symndx] = tls_type;
745 }
746 }
747 /* Fall through */
748
749 //case R_X86_64_GOTPCREL:
750 create_got:
751 if (htab->sgot == NULL((void*)0))
752 {
753 if (htab->elf.dynobj == NULL((void*)0))
754 htab->elf.dynobj = abfd;
755 if (!create_got_section (htab->elf.dynobj, info))
756 return FALSE0;
757 }
758 break;
759
760 case R_X86_64_PLT32:
761 /* This symbol requires a procedure linkage table entry. We
762 actually build the entry in adjust_dynamic_symbol,
763 because this might be a case of linking PIC code which is
764 never referenced by a dynamic object, in which case we
765 don't need to generate a procedure linkage table entry
766 after all. */
767
768 /* If this is a local symbol, we resolve it directly without
769 creating a procedure linkage table entry. */
770 if (h == NULL((void*)0))
771 continue;
772
773 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT0200;
774 h->plt.refcount += 1;
775 break;
776
777 case R_X86_64_8:
778 case R_X86_64_16:
779 case R_X86_64_32:
780 case R_X86_64_32S:
781 /* Let's help debug shared library creation. These relocs
782 cannot be used in shared libs. Don't error out for
783 sections we don't care about, such as debug sections or
784 non-constant sections. */
785 if (info->shared
786 && (sec->flags & SEC_ALLOC0x001) != 0
787 && (sec->flags & SEC_READONLY0x010) != 0)
788 {
789 (*_bfd_error_handler)
790 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC")("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"
)
,
791 bfd_archive_filename (abfd),
792 x86_64_elf_howto_table[r_type].name);
793 bfd_set_error (bfd_error_bad_value);
794 return FALSE0;
795 }
796 /* Fall through. */
797
798 case R_X86_64_PC8:
799 case R_X86_64_PC16:
800 case R_X86_64_PC32:
801 case R_X86_64_64:
802 if (h != NULL((void*)0) && !info->shared)
803 {
804 /* If this reloc is in a read-only section, we might
805 need a copy reloc. We can't check reliably at this
806 stage whether the section is read-only, as input
807 sections have not yet been mapped to output sections.
808 Tentatively set the flag for now, and correct in
809 adjust_dynamic_symbol. */
810 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF010000;
811
812 /* We may need a .plt entry if the function this reloc
813 refers to is in a shared lib. */
814 h->plt.refcount += 1;
815 }
816
817 /* If we are creating a shared library, and this is a reloc
818 against a global symbol, or a non PC relative reloc
819 against a local symbol, then we need to copy the reloc
820 into the shared library. However, if we are linking with
821 -Bsymbolic, we do not need to copy a reloc against a
822 global symbol which is defined in an object we are
823 including in the link (i.e., DEF_REGULAR is set). At
824 this point we have not seen all the input files, so it is
825 possible that DEF_REGULAR is not set now but will be set
826 later (it is never cleared). In case of a weak definition,
827 DEF_REGULAR may be cleared later by a strong definition in
828 a shared library. We account for that possibility below by
829 storing information in the relocs_copied field of the hash
830 table entry. A similar situation occurs when creating
831 shared libraries and symbol visibility changes render the
832 symbol local.
833
834 If on the other hand, we are creating an executable, we
835 may need to keep relocations for symbols satisfied by a
836 dynamic library if we manage to avoid copy relocs for the
837 symbol. */
838 if ((info->shared
839 && (sec->flags & SEC_ALLOC0x001) != 0
840 && (((r_type != R_X86_64_PC8)
841 && (r_type != R_X86_64_PC16)
842 && (r_type != R_X86_64_PC32))
843 || (h != NULL((void*)0)
844 && (! info->symbolic
845 || h->root.type == bfd_link_hash_defweak
846 || (h->elf_link_hash_flags
847 & ELF_LINK_HASH_DEF_REGULAR02) == 0))))
848 || (ELIMINATE_COPY_RELOCS1
849 && !info->shared
850 && (sec->flags & SEC_ALLOC0x001) != 0
851 && h != NULL((void*)0)
852 && (h->root.type == bfd_link_hash_defweak
853 || (h->elf_link_hash_flags
854 & ELF_LINK_HASH_DEF_REGULAR02) == 0)))
855 {
856 struct elf64_x86_64_dyn_relocs *p;
857 struct elf64_x86_64_dyn_relocs **head;
858
859 /* We must copy these reloc types into the output file.
860 Create a reloc section in dynobj and make room for
861 this reloc. */
862 if (sreloc == NULL((void*)0))
863 {
864 const char *name;
865 bfd *dynobj;
866
867 name = (bfd_elf_string_from_elf_section
868 (abfd,
869 elf_elfheader (abfd)(((abfd) -> tdata.elf_obj_data) -> elf_header)->e_shstrndx,
870 elf_section_data (sec)((struct bfd_elf_section_data*)sec->used_by_bfd)->rel_hdr.sh_name));
871 if (name == NULL((void*)0))
872 return FALSE0;
873
874 if (strncmp (name, ".rela", 5) != 0
875 || strcmp (bfd_get_section_name (abfd, sec)((sec)->name + 0),
876 name + 5) != 0)
877 {
878 (*_bfd_error_handler)
879 (_("%s: bad relocation section name `%s\'")("%s: bad relocation section name `%s\'"),
880 bfd_archive_filename (abfd), name);
881 }
882
883 if (htab->elf.dynobj == NULL((void*)0))
884 htab->elf.dynobj = abfd;
885
886 dynobj = htab->elf.dynobj;
887
888 sreloc = bfd_get_section_by_name (dynobj, name);
889 if (sreloc == NULL((void*)0))
890 {
891 flagword flags;
892
893 sreloc = bfd_make_section (dynobj, name);
894 flags = (SEC_HAS_CONTENTS0x200 | SEC_READONLY0x010
895 | SEC_IN_MEMORY0x20000 | SEC_LINKER_CREATED0x800000);
896 if ((sec->flags & SEC_ALLOC0x001) != 0)
897 flags |= SEC_ALLOC0x001 | SEC_LOAD0x002;
898 if (sreloc == NULL((void*)0)
899 || ! bfd_set_section_flags (dynobj, sreloc, flags)
900 || ! bfd_set_section_alignment (dynobj, sreloc, 3)(((sreloc)->alignment_power = (3)),1))
901 return FALSE0;
902 }
903 elf_section_data (sec)((struct bfd_elf_section_data*)sec->used_by_bfd)->sreloc = sreloc;
904 }
905
906 /* If this is a global symbol, we count the number of
907 relocations we need for this symbol. */
908 if (h != NULL((void*)0))
909 {
910 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
911 }
912 else
913 {
914 /* Track dynamic relocs needed for local syms too.
915 We really need local syms available to do this
916 easily. Oh well. */
917
918 asection *s;
919 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
920 sec, r_symndx);
921 if (s == NULL((void*)0))
922 return FALSE0;
923
924 head = ((struct elf64_x86_64_dyn_relocs **)
925 &elf_section_data (s)((struct bfd_elf_section_data*)s->used_by_bfd)->local_dynrel);
926 }
927
928 p = *head;
929 if (p == NULL((void*)0) || p->sec != sec)
930 {
931 bfd_size_type amt = sizeof *p;
932 p = ((struct elf64_x86_64_dyn_relocs *)
933 bfd_alloc (htab->elf.dynobj, amt));
934 if (p == NULL((void*)0))
935 return FALSE0;
936 p->next = *head;
937 *head = p;
938 p->sec = sec;
939 p->count = 0;
940 p->pc_count = 0;
941 }
942
943 p->count += 1;
944 if (r_type == R_X86_64_PC8
945 || r_type == R_X86_64_PC16
946 || r_type == R_X86_64_PC32)
947 p->pc_count += 1;
948 }
949 break;
950
951 /* This relocation describes the C++ object vtable hierarchy.
952 Reconstruct it for later use during GC. */
953 case R_X86_64_GNU_VTINHERIT:
954 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
955 return FALSE0;
956 break;
957
958 /* This relocation describes which C++ vtable entries are actually
959 used. Record for later use during GC. */
960 case R_X86_64_GNU_VTENTRY:
961 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
962 return FALSE0;
963 break;
964
965 default:
966 break;
967 }
968 }
969
970 return TRUE1;
971}
972
973/* Return the section that should be marked against GC for a given
974 relocation. */
975
976static asection *
977elf64_x86_64_gc_mark_hook (asection *sec,
978 struct bfd_link_info *info ATTRIBUTE_UNUSED__attribute__ ((__unused__)),
979 Elf_Internal_Rela *rel,
980 struct elf_link_hash_entry *h,
981 Elf_Internal_Sym *sym)
982{
983 if (h != NULL((void*)0))
984 {
985 switch (ELF64_R_TYPE (rel->r_info)((rel->r_info) & 0xffffffff))
986 {
987 case R_X86_64_GNU_VTINHERIT:
988 case R_X86_64_GNU_VTENTRY:
989 break;
990
991 default:
992 switch (h->root.type)
993 {
994 case bfd_link_hash_defined:
995 case bfd_link_hash_defweak:
996 return h->root.u.def.section;
997
998 case bfd_link_hash_common:
999 return h->root.u.c.p->section;
1000
1001 default:
1002 break;
1003 }
1004 }
1005 }
1006 else
1007 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1008
1009 return NULL((void*)0);
1010}
1011
1012/* Update the got entry reference counts for the section being removed. */
1013
1014static bfd_boolean
1015elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1016 asection *sec, const Elf_Internal_Rela *relocs)
1017{
1018 Elf_Internal_Shdr *symtab_hdr;
1019 struct elf_link_hash_entry **sym_hashes;
1020 bfd_signed_vma *local_got_refcounts;
1021 const Elf_Internal_Rela *rel, *relend;
1022
1023 elf_section_data (sec)((struct bfd_elf_section_data*)sec->used_by_bfd)->local_dynrel = NULL((void*)0);
1024
1025 symtab_hdr = &elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->symtab_hdr;
1026 sym_hashes = elf_sym_hashes (abfd)(((abfd) -> tdata.elf_obj_data) -> sym_hashes);
1027 local_got_refcounts = elf_local_got_refcounts (abfd)(((abfd) -> tdata.elf_obj_data) -> local_got.refcounts);
1028
1029 relend = relocs + sec->reloc_count;
1030 for (rel = relocs; rel < relend; rel++)
1031 {
1032 unsigned long r_symndx;
1033 unsigned int r_type;
1034 struct elf_link_hash_entry *h = NULL((void*)0);
1035
1036 r_symndx = ELF64_R_SYM (rel->r_info)((rel->r_info) >> 32);
1037 if (r_symndx >= symtab_hdr->sh_info)
1038 {
1039 struct elf64_x86_64_link_hash_entry *eh;
1040 struct elf64_x86_64_dyn_relocs **pp;
1041 struct elf64_x86_64_dyn_relocs *p;
1042
1043 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1044 eh = (struct elf64_x86_64_link_hash_entry *) h;
1045
1046 for (pp = &eh->dyn_relocs; (p = *pp) != NULL((void*)0); pp = &p->next)
1047 if (p->sec == sec)
1048 {
1049 /* Everything must go for SEC. */
1050 *pp = p->next;
1051 break;
1052 }
1053 }
1054
1055 r_type = ELF64_R_TYPE (rel->r_info)((rel->r_info) & 0xffffffff);
1056 r_type = elf64_x86_64_tls_transition (info, r_type, h != NULL((void*)0));
1057 switch (r_type)
1058 {
1059 case R_X86_64_TLSLD:
1060 if (elf64_x86_64_hash_table (info)((struct elf64_x86_64_link_hash_table *) ((info)->hash))->tls_ld_got.refcount > 0)
1061 elf64_x86_64_hash_table (info)((struct elf64_x86_64_link_hash_table *) ((info)->hash))->tls_ld_got.refcount -= 1;
1062 break;
1063
1064 case R_X86_64_TLSGD:
1065 case R_X86_64_GOTTPOFF:
1066 case R_X86_64_GOT32:
1067 case R_X86_64_GOTPCREL:
1068 if (h != NULL((void*)0))
1069 {
1070 if (h->got.refcount > 0)
1071 h->got.refcount -= 1;
1072 }
1073 else if (local_got_refcounts != NULL((void*)0))
1074 {
1075 if (local_got_refcounts[r_symndx] > 0)
1076 local_got_refcounts[r_symndx] -= 1;
1077 }
1078 break;
1079
1080 case R_X86_64_8:
1081 case R_X86_64_16:
1082 case R_X86_64_32:
1083 case R_X86_64_64:
1084 case R_X86_64_32S:
1085 case R_X86_64_PC8:
1086 case R_X86_64_PC16:
1087 case R_X86_64_PC32:
1088 if (info->shared)
1089 break;
1090 /* Fall thru */
1091
1092 case R_X86_64_PLT32:
1093 if (h != NULL((void*)0))
1094 {
1095 if (h->plt.refcount > 0)
1096 h->plt.refcount -= 1;
1097 }
1098 break;
1099
1100 default:
1101 break;
1102 }
1103 }
1104
1105 return TRUE1;
1106}
1107
1108/* Adjust a symbol defined by a dynamic object and referenced by a
1109 regular object. The current definition is in some section of the
1110 dynamic object, but we're not including those sections. We have to
1111 change the definition to something the rest of the link can
1112 understand. */
1113
1114static bfd_boolean
1115elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1116 struct elf_link_hash_entry *h)
1117{
1118 struct elf64_x86_64_link_hash_table *htab;
1119 asection *s;
1120 unsigned int power_of_two;
1121
1122 /* If this is a function, put it in the procedure linkage table. We
1123 will fill in the contents of the procedure linkage table later,
1124 when we know the address of the .got section. */
1125 if (h->type == STT_FUNC2
1126 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT0200) != 0)
1127 {
1128 if (h->plt.refcount <= 0
1129 || SYMBOL_CALLS_LOCAL (info, h)_bfd_elf_symbol_refs_local_p (h, info, 1)
1130 || (ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) != STV_DEFAULT0
1131 && h->root.type == bfd_link_hash_undefweak))
1132 {
1133 /* This case can occur if we saw a PLT32 reloc in an input
1134 file, but the symbol was never referred to by a dynamic
1135 object, or if all references were garbage collected. In
1136 such a case, we don't actually need to build a procedure
1137 linkage table, and we can just do a PC32 reloc instead. */
1138 h->plt.offset = (bfd_vma) -1;
1139 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT0200;
1140 }
1141
1142 return TRUE1;
1143 }
1144 else
1145 /* It's possible that we incorrectly decided a .plt reloc was
1146 needed for an R_X86_64_PC32 reloc to a non-function sym in
1147 check_relocs. We can't decide accurately between function and
1148 non-function syms in check-relocs; Objects loaded later in
1149 the link may change h->type. So fix it now. */
1150 h->plt.offset = (bfd_vma) -1;
1151
1152 /* If this is a weak symbol, and there is a real definition, the
1153 processor independent code will have arranged for us to see the
1154 real definition first, and we can just use the same value. */
1155 if (h->weakdef != NULL((void*)0))
1156 {
1157 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined{ if (!(h->weakdef->root.type == bfd_link_hash_defined ||
h->weakdef->root.type == bfd_link_hash_defweak)) bfd_assert
("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c",1158); }
1158 || h->weakdef->root.type == bfd_link_hash_defweak){ if (!(h->weakdef->root.type == bfd_link_hash_defined ||
h->weakdef->root.type == bfd_link_hash_defweak)) bfd_assert
("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c",1158); }
;
1159 h->root.u.def.section = h->weakdef->root.u.def.section;
1160 h->root.u.def.value = h->weakdef->root.u.def.value;
1161 if (ELIMINATE_COPY_RELOCS1 || info->nocopyreloc)
1162 h->elf_link_hash_flags
1163 = ((h->elf_link_hash_flags & ~ELF_LINK_NON_GOT_REF010000)
1164 | (h->weakdef->elf_link_hash_flags & ELF_LINK_NON_GOT_REF010000));
1165 return TRUE1;
1166 }
1167
1168 /* This is a reference to a symbol defined by a dynamic object which
1169 is not a function. */
1170
1171 /* If we are creating a shared library, we must presume that the
1172 only references to the symbol are via the global offset table.
1173 For such cases we need not do anything here; the relocations will
1174 be handled correctly by relocate_section. */
1175 if (info->shared)
1176 return TRUE1;
1177
1178 /* If there are no references to this symbol that do not use the
1179 GOT, we don't need to generate a copy reloc. */
1180 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF010000) == 0)
1181 return TRUE1;
1182
1183 /* If -z nocopyreloc was given, we won't generate them either. */
1184 if (info->nocopyreloc)
1185 {
1186 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF010000;
1187 return TRUE1;
1188 }
1189
1190 if (ELIMINATE_COPY_RELOCS1)
1191 {
1192 struct elf64_x86_64_link_hash_entry * eh;
1193 struct elf64_x86_64_dyn_relocs *p;
1194
1195 eh = (struct elf64_x86_64_link_hash_entry *) h;
1196 for (p = eh->dyn_relocs; p != NULL((void*)0); p = p->next)
1197 {
1198 s = p->sec->output_section;
1199 if (s != NULL((void*)0) && (s->flags & SEC_READONLY0x010) != 0)
1200 break;
1201 }
1202
1203 /* If we didn't find any dynamic relocs in read-only sections, then
1204 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1205 if (p == NULL((void*)0))
1206 {
1207 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF010000;
1208 return TRUE1;
1209 }
1210 }
1211
1212 /* We must allocate the symbol in our .dynbss section, which will
1213 become part of the .bss section of the executable. There will be
1214 an entry for this symbol in the .dynsym section. The dynamic
1215 object will contain position independent code, so all references
1216 from the dynamic object to this symbol will go through the global
1217 offset table. The dynamic linker will use the .dynsym entry to
1218 determine the address it must put in the global offset table, so
1219 both the dynamic object and the regular object will refer to the
1220 same memory location for the variable. */
1221
1222 htab = elf64_x86_64_hash_table (info)((struct elf64_x86_64_link_hash_table *) ((info)->hash));
1223
1224 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1225 to copy the initial value out of the dynamic object and into the
1226 runtime process image. */
1227 if ((h->root.u.def.section->flags & SEC_ALLOC0x001) != 0)
1228 {
1229 htab->srelbss->_raw_size += sizeof (Elf64_External_Rela);
1230 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY0100;
1231 }
1232
1233 /* We need to figure out the alignment required for this symbol. I
1234 have no idea how ELF linkers handle this. 16-bytes is the size
1235 of the largest type that requires hard alignment -- long double. */
1236 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
1237 this construct. */
1238 power_of_two = bfd_log2 (h->size);
1239 if (power_of_two > 4)
1240 power_of_two = 4;
1241
1242 /* Apply the required alignment. */
1243 s = htab->sdynbss;
1244 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two))((((bfd_vma) (s->_raw_size) + ((bfd_size_type) (1 <<
power_of_two)) - 1) >= (bfd_vma) (s->_raw_size)) ? (((
bfd_vma) (s->_raw_size) + (((bfd_size_type) (1 << power_of_two
)) - 1)) & ~ (bfd_vma) (((bfd_size_type) (1 << power_of_two
))-1)) : ~ (bfd_vma) 0)
;
1245 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s)((s)->alignment_power + 0))
1246 {
1247 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two)(((s)->alignment_power = (power_of_two)),1))
1248 return FALSE0;
1249 }
1250
1251 /* Define the symbol as being at this point in the section. */
1252 h->root.u.def.section = s;
1253 h->root.u.def.value = s->_raw_size;
1254
1255 /* Increment the section size to make room for the symbol. */
1256 s->_raw_size += h->size;
1257
1258 return TRUE1;
1259}
1260
1261/* Allocate space in .plt, .got and associated reloc sections for
1262 dynamic relocs. */
1263
1264static bfd_boolean
1265allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1266{
1267 struct bfd_link_info *info;
1268 struct elf64_x86_64_link_hash_table *htab;
1269 struct elf64_x86_64_link_hash_entry *eh;
1270 struct elf64_x86_64_dyn_relocs *p;
1271
1272 if (h->root.type == bfd_link_hash_indirect)
1273 return TRUE1;
1274
1275 if (h->root.type == bfd_link_hash_warning)
1276 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1277
1278 info = (struct bfd_link_info *) inf;
1279 htab = elf64_x86_64_hash_table (info)((struct elf64_x86_64_link_hash_table *) ((info)->hash));
1280
1281 if (htab->elf.dynamic_sections_created
1282 && h->plt.refcount > 0)
1283 {
1284 /* Make sure this symbol is output as a dynamic symbol.
1285 Undefined weak syms won't yet be marked as dynamic. */
1286 if (h->dynindx == -1
1287 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL02000) == 0)
1288 {
1289 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1290 return FALSE0;
1291 }
1292
1293 if (info->shared
1294 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)((1) && ((0) || ((h)->elf_link_hash_flags & 02000
) == 0) && ((h)->dynindx != -1 || ((h)->elf_link_hash_flags
& 02000) != 0))
)
1295 {
1296 asection *s = htab->splt;
1297
1298 /* If this is the first .plt entry, make room for the special
1299 first entry. */
1300 if (s->_raw_size == 0)
1301 s->_raw_size += PLT_ENTRY_SIZE16;
1302
1303 h->plt.offset = s->_raw_size;
1304
1305 /* If this symbol is not defined in a regular file, and we are
1306 not generating a shared library, then set the symbol to this
1307 location in the .plt. This is required to make function
1308 pointers compare as equal between the normal executable and
1309 the shared library. */
1310 if (! info->shared
1311 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR02) == 0)
1312 {
1313 h->root.u.def.section = s;
1314 h->root.u.def.value = h->plt.offset;
1315 }
1316
1317 /* Make room for this entry. */
1318 s->_raw_size += PLT_ENTRY_SIZE16;
1319
1320 /* We also need to make an entry in the .got.plt section, which
1321 will be placed in the .got section by the linker script. */
1322 htab->sgotplt->_raw_size += GOT_ENTRY_SIZE8;
1323
1324 /* We also need to make an entry in the .rela.plt section. */
1325 htab->srelplt->_raw_size += sizeof (Elf64_External_Rela);
1326 }
1327 else
1328 {
1329 h->plt.offset = (bfd_vma) -1;
1330 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT0200;
1331 }
1332 }
1333 else
1334 {
1335 h->plt.offset = (bfd_vma) -1;
1336 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT0200;
1337 }
1338
1339 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1340 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1341 if (h->got.refcount > 0
1342 && !info->shared
1343 && h->dynindx == -1
1344 && elf64_x86_64_hash_entry (h)((struct elf64_x86_64_link_hash_entry *)(h))->tls_type == GOT_TLS_IE3)
1345 h->got.offset = (bfd_vma) -1;
1346 else if (h->got.refcount > 0)
1347 {
1348 asection *s;
1349 bfd_boolean dyn;
1350 int tls_type = elf64_x86_64_hash_entry (h)((struct elf64_x86_64_link_hash_entry *)(h))->tls_type;
1351
1352 /* Make sure this symbol is output as a dynamic symbol.
1353 Undefined weak syms won't yet be marked as dynamic. */
1354 if (h->dynindx == -1
1355 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL02000) == 0)
1356 {
1357 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1358 return FALSE0;
1359 }
1360
1361 s = htab->sgot;
1362 h->got.offset = s->_raw_size;
1363 s->_raw_size += GOT_ENTRY_SIZE8;
1364 /* R_X86_64_TLSGD needs 2 consecutive GOT slots. */
1365 if (tls_type == GOT_TLS_GD2)
1366 s->_raw_size += GOT_ENTRY_SIZE8;
1367 dyn = htab->elf.dynamic_sections_created;
1368 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1369 and two if global.
1370 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1371 if ((tls_type == GOT_TLS_GD2 && h->dynindx == -1)
1372 || tls_type == GOT_TLS_IE3)
1373 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1374 else if (tls_type == GOT_TLS_GD2)
1375 htab->srelgot->_raw_size += 2 * sizeof (Elf64_External_Rela);
1376 else if ((ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) == STV_DEFAULT0
1377 || h->root.type != bfd_link_hash_undefweak)
1378 && (info->shared
1379 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)((dyn) && ((0) || ((h)->elf_link_hash_flags & 02000
) == 0) && ((h)->dynindx != -1 || ((h)->elf_link_hash_flags
& 02000) != 0))
))
1380 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1381 }
1382 else
1383 h->got.offset = (bfd_vma) -1;
1384
1385 eh = (struct elf64_x86_64_link_hash_entry *) h;
1386 if (eh->dyn_relocs == NULL((void*)0))
1387 return TRUE1;
1388
1389 /* In the shared -Bsymbolic case, discard space allocated for
1390 dynamic pc-relative relocs against symbols which turn out to be
1391 defined in regular objects. For the normal shared case, discard
1392 space for pc-relative relocs that have become local due to symbol
1393 visibility changes. */
1394
1395 if (info->shared)
1396 {
1397 /* Relocs that use pc_count are those that appear on a call
1398 insn, or certain REL relocs that can generated via assembly.
1399 We want calls to protected symbols to resolve directly to the
1400 function rather than going via the plt. If people want
1401 function pointer comparisons to work as expected then they
1402 should avoid writing weird assembly. */
1403 if (SYMBOL_CALLS_LOCAL (info, h)_bfd_elf_symbol_refs_local_p (h, info, 1))
1404 {
1405 struct elf64_x86_64_dyn_relocs **pp;
1406
1407 for (pp = &eh->dyn_relocs; (p = *pp) != NULL((void*)0); )
1408 {
1409 p->count -= p->pc_count;
1410 p->pc_count = 0;
1411 if (p->count == 0)
1412 *pp = p->next;
1413 else
1414 pp = &p->next;
1415 }
1416 }
1417
1418 /* Also discard relocs on undefined weak syms with non-default
1419 visibility. */
1420 if (ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) != STV_DEFAULT0
1421 && h->root.type == bfd_link_hash_undefweak)
1422 eh->dyn_relocs = NULL((void*)0);
1423 }
1424 else if (ELIMINATE_COPY_RELOCS1)
1425 {
1426 /* For the non-shared case, discard space for relocs against
1427 symbols which turn out to need copy relocs or are not
1428 dynamic. */
1429
1430 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF010000) == 0
1431 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC010) != 0
1432 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR02) == 0)
1433 || (htab->elf.dynamic_sections_created
1434 && (h->root.type == bfd_link_hash_undefweak
1435 || h->root.type == bfd_link_hash_undefined))))
1436 {
1437 /* Make sure this symbol is output as a dynamic symbol.
1438 Undefined weak syms won't yet be marked as dynamic. */
1439 if (h->dynindx == -1
1440 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL02000) == 0)
1441 {
1442 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1443 return FALSE0;
1444 }
1445
1446 /* If that succeeded, we know we'll be keeping all the
1447 relocs. */
1448 if (h->dynindx != -1)
1449 goto keep;
1450 }
1451
1452 eh->dyn_relocs = NULL((void*)0);
1453
1454 keep: ;
1455 }
1456
1457 /* Finally, allocate space. */
1458 for (p = eh->dyn_relocs; p != NULL((void*)0); p = p->next)
1459 {
1460 asection *sreloc = elf_section_data (p->sec)((struct bfd_elf_section_data*)p->sec->used_by_bfd)->sreloc;
1461 sreloc->_raw_size += p->count * sizeof (Elf64_External_Rela);
1462 }
1463
1464 return TRUE1;
1465}
1466
1467/* Find any dynamic relocs that apply to read-only sections. */
1468
1469static bfd_boolean
1470readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1471{
1472 struct elf64_x86_64_link_hash_entry *eh;
1473 struct elf64_x86_64_dyn_relocs *p;
1474
1475 if (h->root.type == bfd_link_hash_warning)
1476 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1477
1478 eh = (struct elf64_x86_64_link_hash_entry *) h;
1479 for (p = eh->dyn_relocs; p != NULL((void*)0); p = p->next)
1480 {
1481 asection *s = p->sec->output_section;
1482
1483 if (s != NULL((void*)0) && (s->flags & SEC_READONLY0x010) != 0)
1484 {
1485 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1486
1487 info->flags |= DF_TEXTREL(1 << 2);
1488
1489 /* Not an error, just cut short the traversal. */
1490 return FALSE0;
1491 }
1492 }
1493 return TRUE1;
1494}
1495
1496/* Set the sizes of the dynamic sections. */
1497
1498static bfd_boolean
1499elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED__attribute__ ((__unused__)),
1500 struct bfd_link_info *info)
1501{
1502 struct elf64_x86_64_link_hash_table *htab;
1503 bfd *dynobj;
1504 asection *s;
1505 bfd_boolean relocs;
1506 bfd *ibfd;
1507
1508 htab = elf64_x86_64_hash_table (info)((struct elf64_x86_64_link_hash_table *) ((info)->hash));
1509 dynobj = htab->elf.dynobj;
1510 if (dynobj == NULL((void*)0))
1511 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 1511, __PRETTY_FUNCTION__)
;
1512
1513 if (htab->elf.dynamic_sections_created)
1514 {
1515 /* Set the contents of the .interp section to the interpreter. */
1516 if (info->executable && !info->static_link)
1517 {
1518 s = bfd_get_section_by_name (dynobj, ".interp");
1519 if (s == NULL((void*)0))
1520 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 1520, __PRETTY_FUNCTION__)
;
1521 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER"/lib/ld64.so.1";
1522 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER"/lib/ld64.so.1";
1523 }
1524 }
1525
1526 /* Set up .got offsets for local syms, and space for local dynamic
1527 relocs. */
1528 for (ibfd = info->input_bfds; ibfd != NULL((void*)0); ibfd = ibfd->link_next)
1529 {
1530 bfd_signed_vma *local_got;
1531 bfd_signed_vma *end_local_got;
1532 char *local_tls_type;
1533 bfd_size_type locsymcount;
1534 Elf_Internal_Shdr *symtab_hdr;
1535 asection *srel;
1536
1537 if (bfd_get_flavour (ibfd)((ibfd)->xvec->flavour) != bfd_target_elf_flavour)
1538 continue;
1539
1540 for (s = ibfd->sections; s != NULL((void*)0); s = s->next)
1541 {
1542 struct elf64_x86_64_dyn_relocs *p;
1543
1544 for (p = *((struct elf64_x86_64_dyn_relocs **)
1545 &elf_section_data (s)((struct bfd_elf_section_data*)s->used_by_bfd)->local_dynrel);
1546 p != NULL((void*)0);
1547 p = p->next)
1548 {
1549 if (!bfd_is_abs_section (p->sec)((p->sec) == ((asection *) &bfd_abs_section))
1550 && bfd_is_abs_section (p->sec->output_section)((p->sec->output_section) == ((asection *) &bfd_abs_section
))
)
1551 {
1552 /* Input section has been discarded, either because
1553 it is a copy of a linkonce section or due to
1554 linker script /DISCARD/, so we'll be discarding
1555 the relocs too. */
1556 }
1557 else if (p->count != 0)
1558 {
1559 srel = elf_section_data (p->sec)((struct bfd_elf_section_data*)p->sec->used_by_bfd)->sreloc;
1560 srel->_raw_size += p->count * sizeof (Elf64_External_Rela);
1561 if ((p->sec->output_section->flags & SEC_READONLY0x010) != 0)
1562 info->flags |= DF_TEXTREL(1 << 2);
1563
1564 }
1565 }
1566 }
1567
1568 local_got = elf_local_got_refcounts (ibfd)(((ibfd) -> tdata.elf_obj_data) -> local_got.refcounts);
1569 if (!local_got)
1570 continue;
1571
1572 symtab_hdr = &elf_tdata (ibfd)((ibfd) -> tdata.elf_obj_data)->symtab_hdr;
1573 locsymcount = symtab_hdr->sh_info;
1574 end_local_got = local_got + locsymcount;
1575 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd)(((struct elf64_x86_64_obj_tdata *) (ibfd)->tdata.any)->
local_got_tls_type)
;
1576 s = htab->sgot;
1577 srel = htab->srelgot;
1578 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1579 {
1580 if (*local_got > 0)
1581 {
1582 *local_got = s->_raw_size;
1583 s->_raw_size += GOT_ENTRY_SIZE8;
1584 if (*local_tls_type == GOT_TLS_GD2)
1585 s->_raw_size += GOT_ENTRY_SIZE8;
1586 if (info->shared
1587 || *local_tls_type == GOT_TLS_GD2
1588 || *local_tls_type == GOT_TLS_IE3)
1589 srel->_raw_size += sizeof (Elf64_External_Rela);
1590 }
1591 else
1592 *local_got = (bfd_vma) -1;
1593 }
1594 }
1595
1596 if (htab->tls_ld_got.refcount > 0)
1597 {
1598 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
1599 relocs. */
1600 htab->tls_ld_got.offset = htab->sgot->_raw_size;
1601 htab->sgot->_raw_size += 2 * GOT_ENTRY_SIZE8;
1602 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1603 }
1604 else
1605 htab->tls_ld_got.offset = -1;
1606
1607 /* Allocate global sym .plt and .got entries, and space for global
1608 sym dynamic relocs. */
1609 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info)(bfd_link_hash_traverse (&(&htab->elf)->root, (
bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (allocate_dynrelocs
), ((void *) info)))
;
1610
1611 /* We now have determined the sizes of the various dynamic sections.
1612 Allocate memory for them. */
1613 relocs = FALSE0;
1614 for (s = dynobj->sections; s != NULL((void*)0); s = s->next)
1615 {
1616 if ((s->flags & SEC_LINKER_CREATED0x800000) == 0)
1617 continue;
1618
1619 if (s == htab->splt
1620 || s == htab->sgot
1621 || s == htab->sgotplt)
1622 {
1623 /* Strip this section if we don't need it; see the
1624 comment below. */
1625 }
1626 else if (strncmp (bfd_get_section_name (dynobj, s)((s)->name + 0), ".rela", 5) == 0)
1627 {
1628 if (s->_raw_size != 0 && s != htab->srelplt)
1629 relocs = TRUE1;
1630
1631 /* We use the reloc_count field as a counter if we need
1632 to copy relocs into the output file. */
1633 s->reloc_count = 0;
1634 }
1635 else
1636 {
1637 /* It's not one of our sections, so don't allocate space. */
1638 continue;
1639 }
1640
1641 if (s->_raw_size == 0)
1642 {
1643 /* If we don't need this section, strip it from the
1644 output file. This is mostly to handle .rela.bss and
1645 .rela.plt. We must create both sections in
1646 create_dynamic_sections, because they must be created
1647 before the linker maps input sections to output
1648 sections. The linker does that before
1649 adjust_dynamic_symbol is called, and it is that
1650 function which decides whether anything needs to go
1651 into these sections. */
1652
1653 _bfd_strip_section_from_output (info, s);
1654 continue;
1655 }
1656
1657 /* Allocate memory for the section contents. We use bfd_zalloc
1658 here in case unused entries are not reclaimed before the
1659 section's contents are written out. This should not happen,
1660 but this way if it does, we get a R_X86_64_NONE reloc instead
1661 of garbage. */
1662 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1663 if (s->contents == NULL((void*)0))
1664 return FALSE0;
1665 }
1666
1667 if (htab->elf.dynamic_sections_created)
1668 {
1669 /* Add some entries to the .dynamic section. We fill in the
1670 values later, in elf64_x86_64_finish_dynamic_sections, but we
1671 must add the entries now so that we get the correct size for
1672 the .dynamic section. The DT_DEBUG entry is filled in by the
1673 dynamic linker and used by the debugger. */
1674#define add_dynamic_entry(TAG, VAL) \
1675 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1676
1677 if (info->executable)
1678 {
1679 if (!add_dynamic_entry (DT_DEBUG21, 0))
1680 return FALSE0;
1681 }
1682
1683 if (htab->splt->_raw_size != 0)
1684 {
1685 if (!add_dynamic_entry (DT_PLTGOT3, 0)
1686 || !add_dynamic_entry (DT_PLTRELSZ2, 0)
1687 || !add_dynamic_entry (DT_PLTREL20, DT_RELA7)
1688 || !add_dynamic_entry (DT_JMPREL23, 0))
1689 return FALSE0;
1690 }
1691
1692 if (relocs)
1693 {
1694 if (!add_dynamic_entry (DT_RELA7, 0)
1695 || !add_dynamic_entry (DT_RELASZ8, 0)
1696 || !add_dynamic_entry (DT_RELAENT9, sizeof (Elf64_External_Rela)))
1697 return FALSE0;
1698
1699 /* If any dynamic relocs apply to a read-only section,
1700 then we need a DT_TEXTREL entry. */
1701 if ((info->flags & DF_TEXTREL(1 << 2)) == 0)
1702 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,(bfd_link_hash_traverse (&(&htab->elf)->root, (
bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (readonly_dynrelocs
), ((void *) info)))
1703 (PTR) info)(bfd_link_hash_traverse (&(&htab->elf)->root, (
bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (readonly_dynrelocs
), ((void *) info)))
;
1704
1705 if ((info->flags & DF_TEXTREL(1 << 2)) != 0)
1706 {
1707 if (!add_dynamic_entry (DT_TEXTREL22, 0))
1708 return FALSE0;
1709 }
1710 }
1711 }
1712#undef add_dynamic_entry
1713
1714 return TRUE1;
1715}
1716
1717/* Return the base VMA address which should be subtracted from real addresses
1718 when resolving @dtpoff relocation.
1719 This is PT_TLS segment p_vaddr. */
1720
1721static bfd_vma
1722dtpoff_base (struct bfd_link_info *info)
1723{
1724 /* If tls_sec is NULL, we should have signalled an error already. */
1725 if (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->tls_sec == NULL((void*)0))
1726 return 0;
1727 return elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->tls_sec->vma;
1728}
1729
1730/* Return the relocation value for @tpoff relocation
1731 if STT_TLS virtual address is ADDRESS. */
1732
1733static bfd_vma
1734tpoff (struct bfd_link_info *info, bfd_vma address)
1735{
1736 struct elf_link_hash_table *htab = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash));
1737
1738 /* If tls_segment is NULL, we should have signalled an error already. */
1739 if (htab->tls_sec == NULL((void*)0))
1740 return 0;
1741 return address - htab->tls_size - htab->tls_sec->vma;
1742}
1743
1744/* Relocate an x86_64 ELF section. */
1745
1746static bfd_boolean
1747elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
1748 bfd *input_bfd, asection *input_section,
1749 bfd_byte *contents, Elf_Internal_Rela *relocs,
1750 Elf_Internal_Sym *local_syms,
1751 asection **local_sections)
1752{
1753 struct elf64_x86_64_link_hash_table *htab;
1754 Elf_Internal_Shdr *symtab_hdr;
1755 struct elf_link_hash_entry **sym_hashes;
1756 bfd_vma *local_got_offsets;
1757 Elf_Internal_Rela *rel;
1758 Elf_Internal_Rela *relend;
1759
1760 if (info->relocatable)
1761 return TRUE1;
1762
1763 htab = elf64_x86_64_hash_table (info)((struct elf64_x86_64_link_hash_table *) ((info)->hash));
1764 symtab_hdr = &elf_tdata (input_bfd)((input_bfd) -> tdata.elf_obj_data)->symtab_hdr;
1765 sym_hashes = elf_sym_hashes (input_bfd)(((input_bfd) -> tdata.elf_obj_data) -> sym_hashes);
1766 local_got_offsets = elf_local_got_offsets (input_bfd)(((input_bfd) -> tdata.elf_obj_data) -> local_got.offsets
)
;
1767
1768 rel = relocs;
1769 relend = relocs + input_section->reloc_count;
1770 for (; rel < relend; rel++)
1771 {
1772 unsigned int r_type;
1773 reloc_howto_type *howto;
1774 unsigned long r_symndx;
1775 struct elf_link_hash_entry *h;
1776 Elf_Internal_Sym *sym;
1777 asection *sec;
1778 bfd_vma off;
1779 bfd_vma relocation;
1780 bfd_boolean unresolved_reloc;
1781 bfd_reloc_status_type r;
1782 int tls_type;
1783
1784 r_type = ELF64_R_TYPE (rel->r_info)((rel->r_info) & 0xffffffff);
1785 if (r_type == (int) R_X86_64_GNU_VTINHERIT
1786 || r_type == (int) R_X86_64_GNU_VTENTRY)
1787 continue;
1788
1789 if (r_type >= R_X86_64_max)
1790 {
1791 bfd_set_error (bfd_error_bad_value);
1792 return FALSE0;
1793 }
1794
1795 howto = x86_64_elf_howto_table + r_type;
1796 r_symndx = ELF64_R_SYM (rel->r_info)((rel->r_info) >> 32);
1797 h = NULL((void*)0);
1798 sym = NULL((void*)0);
1799 sec = NULL((void*)0);
1800 unresolved_reloc = FALSE0;
1801 if (r_symndx < symtab_hdr->sh_info)
1802 {
1803 sym = local_syms + r_symndx;
1804 sec = local_sections[r_symndx];
1805
1806 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1807 }
1808 else
1809 {
1810 bfd_boolean warned;
1811
1812 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,do { if (sym_hashes == ((void*)0)) return 0; h = sym_hashes[r_symndx
- symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry
*) h->root.u.i.link; warned = 0; unresolved_reloc = 0; relocation
= 0; if (h->root.type == bfd_link_hash_defined || h->root
.type == bfd_link_hash_defweak) { sec = h->root.u.def.section
; if (sec == ((void*)0) || sec->output_section == ((void*)
0)) unresolved_reloc = 1; else relocation = (h->root.u.def
.value + sec->output_section->vma + sec->output_offset
); } else if (h->root.type == bfd_link_hash_undefweak) ; else
if (info->unresolved_syms_in_objects == RM_IGNORE &&
((h->other) & 0x3) == 0) ; else { bfd_boolean err; err
= (info->unresolved_syms_in_objects == RM_GENERATE_ERROR ||
((h->other) & 0x3) != 0); if (!info->callbacks->
undefined_symbol (info, h->root.root.string, input_bfd, input_section
, rel->r_offset, err)) return 0; warned = 1; } } while (0)
1813 r_symndx, symtab_hdr, sym_hashes,do { if (sym_hashes == ((void*)0)) return 0; h = sym_hashes[r_symndx
- symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry
*) h->root.u.i.link; warned = 0; unresolved_reloc = 0; relocation
= 0; if (h->root.type == bfd_link_hash_defined || h->root
.type == bfd_link_hash_defweak) { sec = h->root.u.def.section
; if (sec == ((void*)0) || sec->output_section == ((void*)
0)) unresolved_reloc = 1; else relocation = (h->root.u.def
.value + sec->output_section->vma + sec->output_offset
); } else if (h->root.type == bfd_link_hash_undefweak) ; else
if (info->unresolved_syms_in_objects == RM_IGNORE &&
((h->other) & 0x3) == 0) ; else { bfd_boolean err; err
= (info->unresolved_syms_in_objects == RM_GENERATE_ERROR ||
((h->other) & 0x3) != 0); if (!info->callbacks->
undefined_symbol (info, h->root.root.string, input_bfd, input_section
, rel->r_offset, err)) return 0; warned = 1; } } while (0)
1814 h, sec, relocation,do { if (sym_hashes == ((void*)0)) return 0; h = sym_hashes[r_symndx
- symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry
*) h->root.u.i.link; warned = 0; unresolved_reloc = 0; relocation
= 0; if (h->root.type == bfd_link_hash_defined || h->root
.type == bfd_link_hash_defweak) { sec = h->root.u.def.section
; if (sec == ((void*)0) || sec->output_section == ((void*)
0)) unresolved_reloc = 1; else relocation = (h->root.u.def
.value + sec->output_section->vma + sec->output_offset
); } else if (h->root.type == bfd_link_hash_undefweak) ; else
if (info->unresolved_syms_in_objects == RM_IGNORE &&
((h->other) & 0x3) == 0) ; else { bfd_boolean err; err
= (info->unresolved_syms_in_objects == RM_GENERATE_ERROR ||
((h->other) & 0x3) != 0); if (!info->callbacks->
undefined_symbol (info, h->root.root.string, input_bfd, input_section
, rel->r_offset, err)) return 0; warned = 1; } } while (0)
1815 unresolved_reloc, warned)do { if (sym_hashes == ((void*)0)) return 0; h = sym_hashes[r_symndx
- symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry
*) h->root.u.i.link; warned = 0; unresolved_reloc = 0; relocation
= 0; if (h->root.type == bfd_link_hash_defined || h->root
.type == bfd_link_hash_defweak) { sec = h->root.u.def.section
; if (sec == ((void*)0) || sec->output_section == ((void*)
0)) unresolved_reloc = 1; else relocation = (h->root.u.def
.value + sec->output_section->vma + sec->output_offset
); } else if (h->root.type == bfd_link_hash_undefweak) ; else
if (info->unresolved_syms_in_objects == RM_IGNORE &&
((h->other) & 0x3) == 0) ; else { bfd_boolean err; err
= (info->unresolved_syms_in_objects == RM_GENERATE_ERROR ||
((h->other) & 0x3) != 0); if (!info->callbacks->
undefined_symbol (info, h->root.root.string, input_bfd, input_section
, rel->r_offset, err)) return 0; warned = 1; } } while (0)
;
1816 }
1817 /* When generating a shared object, the relocations handled here are
1818 copied into the output file to be resolved at run time. */
1819 switch (r_type)
1820 {
1821 case R_X86_64_GOT32:
1822 /* Relocation is to the entry for this symbol in the global
1823 offset table. */
1824 case R_X86_64_GOTPCREL:
1825 /* Use global offset table as symbol value. */
1826 if (htab->sgot == NULL((void*)0))
1827 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 1827, __PRETTY_FUNCTION__)
;
1828
1829 if (h != NULL((void*)0))
1830 {
1831 bfd_boolean dyn;
1832
1833 off = h->got.offset;
1834 dyn = htab->elf.dynamic_sections_created;
1835
1836 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)((dyn) && ((info->shared) || ((h)->elf_link_hash_flags
& 02000) == 0) && ((h)->dynindx != -1 || ((h)
->elf_link_hash_flags & 02000) != 0))
1837 || (info->shared
1838 && SYMBOL_REFERENCES_LOCAL (info, h)_bfd_elf_symbol_refs_local_p (h, info, 0))
1839 || (ELF_ST_VISIBILITY (h->other)((h->other) & 0x3)
1840 && h->root.type == bfd_link_hash_undefweak))
1841 {
1842 /* This is actually a static link, or it is a -Bsymbolic
1843 link and the symbol is defined locally, or the symbol
1844 was forced to be local because of a version file. We
1845 must initialize this entry in the global offset table.
1846 Since the offset must always be a multiple of 8, we
1847 use the least significant bit to record whether we
1848 have initialized it already.
1849
1850 When doing a dynamic link, we create a .rela.got
1851 relocation entry to initialize the value. This is
1852 done in the finish_dynamic_symbol routine. */
1853 if ((off & 1) != 0)
1854 off &= ~1;
1855 else
1856 {
1857 bfd_put_64 (output_bfd, relocation,((*((output_bfd)->xvec->bfd_putx64)) ((relocation), (htab
->sgot->contents + off)))
1858 htab->sgot->contents + off)((*((output_bfd)->xvec->bfd_putx64)) ((relocation), (htab
->sgot->contents + off)))
;
1859 h->got.offset |= 1;
1860 }
1861 }
1862 else
1863 unresolved_reloc = FALSE0;
1864 }
1865 else
1866 {
1867 if (local_got_offsets == NULL((void*)0))
1868 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 1868, __PRETTY_FUNCTION__)
;
1869
1870 off = local_got_offsets[r_symndx];
1871
1872 /* The offset must always be a multiple of 8. We use
1873 the least significant bit to record whether we have
1874 already generated the necessary reloc. */
1875 if ((off & 1) != 0)
1876 off &= ~1;
1877 else
1878 {
1879 bfd_put_64 (output_bfd, relocation,((*((output_bfd)->xvec->bfd_putx64)) ((relocation), (htab
->sgot->contents + off)))
1880 htab->sgot->contents + off)((*((output_bfd)->xvec->bfd_putx64)) ((relocation), (htab
->sgot->contents + off)))
;
1881
1882 if (info->shared)
1883 {
1884 asection *s;
1885 Elf_Internal_Rela outrel;
1886 bfd_byte *loc;
1887
1888 /* We need to generate a R_X86_64_RELATIVE reloc
1889 for the dynamic linker. */
1890 s = htab->srelgot;
1891 if (s == NULL((void*)0))
1892 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 1892, __PRETTY_FUNCTION__)
;
1893
1894 outrel.r_offset = (htab->sgot->output_section->vma
1895 + htab->sgot->output_offset
1896 + off);
1897 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE)(((bfd_vma) (0) << 32) + (bfd_vma) (R_X86_64_RELATIVE));
1898 outrel.r_addend = relocation;
1899 loc = s->contents;
1900 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
1901 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
1902 }
1903
1904 local_got_offsets[r_symndx] |= 1;
1905 }
1906 }
1907
1908 if (off >= (bfd_vma) -2)
1909 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 1909, __PRETTY_FUNCTION__)
;
1910
1911 relocation = htab->sgot->output_offset + off;
1912 if (r_type == R_X86_64_GOTPCREL)
1913 relocation += htab->sgot->output_section->vma;
1914
1915 break;
1916
1917 case R_X86_64_PLT32:
1918 /* Relocation is to the entry for this symbol in the
1919 procedure linkage table. */
1920
1921 /* Resolve a PLT32 reloc against a local symbol directly,
1922 without using the procedure linkage table. */
1923 if (h == NULL((void*)0))
1924 break;
1925
1926 if (h->plt.offset == (bfd_vma) -1
1927 || htab->splt == NULL((void*)0))
1928 {
1929 /* We didn't make a PLT entry for this symbol. This
1930 happens when statically linking PIC code, or when
1931 using -Bsymbolic. */
1932 break;
1933 }
1934
1935 relocation = (htab->splt->output_section->vma
1936 + htab->splt->output_offset
1937 + h->plt.offset);
1938 unresolved_reloc = FALSE0;
1939 break;
1940
1941 case R_X86_64_PC8:
1942 case R_X86_64_PC16:
1943 case R_X86_64_PC32:
1944 case R_X86_64_8:
1945 case R_X86_64_16:
1946 case R_X86_64_32:
1947 case R_X86_64_64:
1948 /* FIXME: The ABI says the linker should make sure the value is
1949 the same when it's zeroextended to 64 bit. */
1950
1951 /* r_symndx will be zero only for relocs against symbols
1952 from removed linkonce sections, or sections discarded by
1953 a linker script. */
1954 if (r_symndx == 0
1955 || (input_section->flags & SEC_ALLOC0x001) == 0)
1956 break;
1957
1958 if ((info->shared
1959 && (h == NULL((void*)0)
1960 || ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) == STV_DEFAULT0
1961 || h->root.type != bfd_link_hash_undefweak)
1962 && ((r_type != R_X86_64_PC8
1963 && r_type != R_X86_64_PC16
1964 && r_type != R_X86_64_PC32)
1965 || !SYMBOL_CALLS_LOCAL (info, h)_bfd_elf_symbol_refs_local_p (h, info, 1)))
1966 || (ELIMINATE_COPY_RELOCS1
1967 && !info->shared
1968 && h != NULL((void*)0)
1969 && h->dynindx != -1
1970 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF010000) == 0
1971 && (((h->elf_link_hash_flags
1972 & ELF_LINK_HASH_DEF_DYNAMIC010) != 0
1973 && (h->elf_link_hash_flags
1974 & ELF_LINK_HASH_DEF_REGULAR02) == 0)
1975 || h->root.type == bfd_link_hash_undefweak
1976 || h->root.type == bfd_link_hash_undefined)))
1977 {
1978 Elf_Internal_Rela outrel;
1979 bfd_byte *loc;
1980 bfd_boolean skip, relocate;
1981 asection *sreloc;
1982
1983 /* When generating a shared object, these relocations
1984 are copied into the output file to be resolved at run
1985 time. */
1986 skip = FALSE0;
1987 relocate = FALSE0;
1988
1989 outrel.r_offset =
1990 _bfd_elf_section_offset (output_bfd, info, input_section,
1991 rel->r_offset);
1992 if (outrel.r_offset == (bfd_vma) -1)
1993 skip = TRUE1;
1994 else if (outrel.r_offset == (bfd_vma) -2)
1995 skip = TRUE1, relocate = TRUE1;
1996
1997 outrel.r_offset += (input_section->output_section->vma
1998 + input_section->output_offset);
1999
2000 if (skip)
2001 memset (&outrel, 0, sizeof outrel);
2002
2003 /* h->dynindx may be -1 if this symbol was marked to
2004 become local. */
2005 else if (h != NULL((void*)0)
2006 && h->dynindx != -1
2007 && (r_type == R_X86_64_PC8
2008 || r_type == R_X86_64_PC16
2009 || r_type == R_X86_64_PC32
2010 || !info->shared
2011 || !info->symbolic
2012 || (h->elf_link_hash_flags
2013 & ELF_LINK_HASH_DEF_REGULAR02) == 0))
2014 {
2015 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type)(((bfd_vma) (h->dynindx) << 32) + (bfd_vma) (r_type)
)
;
2016 outrel.r_addend = rel->r_addend;
2017 }
2018 else
2019 {
2020 /* This symbol is local, or marked to become local. */
2021 if (r_type == R_X86_64_64)
2022 {
2023 relocate = TRUE1;
2024 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE)(((bfd_vma) (0) << 32) + (bfd_vma) (R_X86_64_RELATIVE));
2025 outrel.r_addend = relocation + rel->r_addend;
2026 }
2027 else
2028 {
2029 long sindx;
2030
2031 if (bfd_is_abs_section (sec)((sec) == ((asection *) &bfd_abs_section)))
2032 sindx = 0;
2033 else if (sec == NULL((void*)0) || sec->owner == NULL((void*)0))
2034 {
2035 bfd_set_error (bfd_error_bad_value);
2036 return FALSE0;
2037 }
2038 else
2039 {
2040 asection *osec;
2041
2042 osec = sec->output_section;
2043 sindx = elf_section_data (osec)((struct bfd_elf_section_data*)osec->used_by_bfd)->dynindx;
2044 BFD_ASSERT (sindx > 0){ if (!(sindx > 0)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2044); }
;
2045 }
2046
2047 outrel.r_info = ELF64_R_INFO (sindx, r_type)(((bfd_vma) (sindx) << 32) + (bfd_vma) (r_type));
2048 outrel.r_addend = relocation + rel->r_addend;
2049 }
2050 }
2051
2052 sreloc = elf_section_data (input_section)((struct bfd_elf_section_data*)input_section->used_by_bfd)->sreloc;
2053 if (sreloc == NULL((void*)0))
2054 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 2054, __PRETTY_FUNCTION__)
;
2055
2056 loc = sreloc->contents;
2057 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2058 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2059
2060 /* If this reloc is against an external symbol, we do
2061 not want to fiddle with the addend. Otherwise, we
2062 need to include the symbol value so that it becomes
2063 an addend for the dynamic reloc. */
2064 if (! relocate)
2065 continue;
2066 }
2067
2068 break;
2069
2070 case R_X86_64_TLSGD:
2071 case R_X86_64_GOTTPOFF:
2072 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL((void*)0));
2073 tls_type = GOT_UNKNOWN0;
2074 if (h == NULL((void*)0) && local_got_offsets)
2075 tls_type = elf64_x86_64_local_got_tls_type (input_bfd)(((struct elf64_x86_64_obj_tdata *) (input_bfd)->tdata.any
)->local_got_tls_type)
[r_symndx];
2076 else if (h != NULL((void*)0))
2077 {
2078 tls_type = elf64_x86_64_hash_entry (h)((struct elf64_x86_64_link_hash_entry *)(h))->tls_type;
2079 if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE3)
2080 r_type = R_X86_64_TPOFF32;
2081 }
2082 if (r_type == R_X86_64_TLSGD)
2083 {
2084 if (tls_type == GOT_TLS_IE3)
2085 r_type = R_X86_64_GOTTPOFF;
2086 }
2087
2088 if (r_type == R_X86_64_TPOFF32)
2089 {
2090 BFD_ASSERT (! unresolved_reloc){ if (!(! unresolved_reloc)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2090); }
;
2091 if (ELF64_R_TYPE (rel->r_info)((rel->r_info) & 0xffffffff) == R_X86_64_TLSGD)
2092 {
2093 unsigned int i;
2094 static unsigned char tlsgd[8]
2095 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2096
2097 /* GD->LE transition.
2098 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2099 .word 0x6666; rex64; call __tls_get_addr@plt
2100 Change it into:
2101 movq %fs:0, %rax
2102 leaq foo@tpoff(%rax), %rax */
2103 BFD_ASSERT (rel->r_offset >= 4){ if (!(rel->r_offset >= 4)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2103); }
;
2104 for (i = 0; i < 4; i++)
2105 BFD_ASSERT (bfd_get_8 (input_bfd,{ if (!((*(unsigned char *) (contents + rel->r_offset - 4 +
i) & 0xff) == tlsgd[i])) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2107); }
2106 contents + rel->r_offset - 4 + i){ if (!((*(unsigned char *) (contents + rel->r_offset - 4 +
i) & 0xff) == tlsgd[i])) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2107); }
2107 == tlsgd[i]){ if (!((*(unsigned char *) (contents + rel->r_offset - 4 +
i) & 0xff) == tlsgd[i])) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2107); }
;
2108 BFD_ASSERT (rel->r_offset + 12 <= input_section->_raw_size){ if (!(rel->r_offset + 12 <= input_section->_raw_size
)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2108); }
;
2109 for (i = 0; i < 4; i++)
2110 BFD_ASSERT (bfd_get_8 (input_bfd,{ if (!((*(unsigned char *) (contents + rel->r_offset + 4 +
i) & 0xff) == tlsgd[i+4])) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2112); }
2111 contents + rel->r_offset + 4 + i){ if (!((*(unsigned char *) (contents + rel->r_offset + 4 +
i) & 0xff) == tlsgd[i+4])) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2112); }
2112 == tlsgd[i+4]){ if (!((*(unsigned char *) (contents + rel->r_offset + 4 +
i) & 0xff) == tlsgd[i+4])) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2112); }
;
2113 BFD_ASSERT (rel + 1 < relend){ if (!(rel + 1 < relend)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2113); }
;
2114 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32){ if (!(((rel[1].r_info) & 0xffffffff) == R_X86_64_PLT32)
) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2114); }
;
2115 memcpy (contents + rel->r_offset - 4,
2116 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2117 16);
2118 bfd_put_32 (output_bfd, tpoff (info, relocation),((*((output_bfd)->xvec->bfd_putx32)) ((tpoff (info, relocation
)),(contents + rel->r_offset + 8)))
2119 contents + rel->r_offset + 8)((*((output_bfd)->xvec->bfd_putx32)) ((tpoff (info, relocation
)),(contents + rel->r_offset + 8)))
;
2120 /* Skip R_X86_64_PLT32. */
2121 rel++;
2122 continue;
2123 }
2124 else
2125 {
2126 unsigned int val, type, reg;
2127
2128 /* IE->LE transition:
2129 Originally it can be one of:
2130 movq foo@gottpoff(%rip), %reg
2131 addq foo@gottpoff(%rip), %reg
2132 We change it into:
2133 movq $foo, %reg
2134 leaq foo(%reg), %reg
2135 addq $foo, %reg. */
2136 BFD_ASSERT (rel->r_offset >= 3){ if (!(rel->r_offset >= 3)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2136); }
;
2137 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 3)(*(unsigned char *) (contents + rel->r_offset - 3) & 0xff
)
;
2138 BFD_ASSERT (val == 0x48 || val == 0x4c){ if (!(val == 0x48 || val == 0x4c)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2138); }
;
2139 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2)(*(unsigned char *) (contents + rel->r_offset - 2) & 0xff
)
;
2140 BFD_ASSERT (type == 0x8b || type == 0x03){ if (!(type == 0x8b || type == 0x03)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2140); }
;
2141 reg = bfd_get_8 (input_bfd, contents + rel->r_offset - 1)(*(unsigned char *) (contents + rel->r_offset - 1) & 0xff
)
;
2142 BFD_ASSERT ((reg & 0xc7) == 5){ if (!((reg & 0xc7) == 5)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2142); }
;
2143 reg >>= 3;
2144 BFD_ASSERT (rel->r_offset + 4 <= input_section->_raw_size){ if (!(rel->r_offset + 4 <= input_section->_raw_size
)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2144); }
;
2145 if (type == 0x8b)
2146 {
2147 /* movq */
2148 if (val == 0x4c)
2149 bfd_put_8 (output_bfd, 0x49,((void) (*((unsigned char *) (contents + rel->r_offset - 3
)) = (0x49) & 0xff))
2150 contents + rel->r_offset - 3)((void) (*((unsigned char *) (contents + rel->r_offset - 3
)) = (0x49) & 0xff))
;
2151 bfd_put_8 (output_bfd, 0xc7,((void) (*((unsigned char *) (contents + rel->r_offset - 2
)) = (0xc7) & 0xff))
2152 contents + rel->r_offset - 2)((void) (*((unsigned char *) (contents + rel->r_offset - 2
)) = (0xc7) & 0xff))
;
2153 bfd_put_8 (output_bfd, 0xc0 | reg,((void) (*((unsigned char *) (contents + rel->r_offset - 1
)) = (0xc0 | reg) & 0xff))
2154 contents + rel->r_offset - 1)((void) (*((unsigned char *) (contents + rel->r_offset - 1
)) = (0xc0 | reg) & 0xff))
;
2155 }
2156 else if (reg == 4)
2157 {
2158 /* addq -> addq - addressing with %rsp/%r12 is
2159 special */
2160 if (val == 0x4c)
2161 bfd_put_8 (output_bfd, 0x49,((void) (*((unsigned char *) (contents + rel->r_offset - 3
)) = (0x49) & 0xff))
2162 contents + rel->r_offset - 3)((void) (*((unsigned char *) (contents + rel->r_offset - 3
)) = (0x49) & 0xff))
;
2163 bfd_put_8 (output_bfd, 0x81,((void) (*((unsigned char *) (contents + rel->r_offset - 2
)) = (0x81) & 0xff))
2164 contents + rel->r_offset - 2)((void) (*((unsigned char *) (contents + rel->r_offset - 2
)) = (0x81) & 0xff))
;
2165 bfd_put_8 (output_bfd, 0xc0 | reg,((void) (*((unsigned char *) (contents + rel->r_offset - 1
)) = (0xc0 | reg) & 0xff))
2166 contents + rel->r_offset - 1)((void) (*((unsigned char *) (contents + rel->r_offset - 1
)) = (0xc0 | reg) & 0xff))
;
2167 }
2168 else
2169 {
2170 /* addq -> leaq */
2171 if (val == 0x4c)
2172 bfd_put_8 (output_bfd, 0x4d,((void) (*((unsigned char *) (contents + rel->r_offset - 3
)) = (0x4d) & 0xff))
2173 contents + rel->r_offset - 3)((void) (*((unsigned char *) (contents + rel->r_offset - 3
)) = (0x4d) & 0xff))
;
2174 bfd_put_8 (output_bfd, 0x8d,((void) (*((unsigned char *) (contents + rel->r_offset - 2
)) = (0x8d) & 0xff))
2175 contents + rel->r_offset - 2)((void) (*((unsigned char *) (contents + rel->r_offset - 2
)) = (0x8d) & 0xff))
;
2176 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),((void) (*((unsigned char *) (contents + rel->r_offset - 1
)) = (0x80 | reg | (reg << 3)) & 0xff))
2177 contents + rel->r_offset - 1)((void) (*((unsigned char *) (contents + rel->r_offset - 1
)) = (0x80 | reg | (reg << 3)) & 0xff))
;
2178 }
2179 bfd_put_32 (output_bfd, tpoff (info, relocation),((*((output_bfd)->xvec->bfd_putx32)) ((tpoff (info, relocation
)),(contents + rel->r_offset)))
2180 contents + rel->r_offset)((*((output_bfd)->xvec->bfd_putx32)) ((tpoff (info, relocation
)),(contents + rel->r_offset)))
;
2181 continue;
2182 }
2183 }
2184
2185 if (htab->sgot == NULL((void*)0))
2186 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 2186, __PRETTY_FUNCTION__)
;
2187
2188 if (h != NULL((void*)0))
2189 off = h->got.offset;
2190 else
2191 {
2192 if (local_got_offsets == NULL((void*)0))
2193 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 2193, __PRETTY_FUNCTION__)
;
2194
2195 off = local_got_offsets[r_symndx];
2196 }
2197
2198 if ((off & 1) != 0)
2199 off &= ~1;
2200 else
2201 {
2202 Elf_Internal_Rela outrel;
2203 bfd_byte *loc;
2204 int dr_type, indx;
2205
2206 if (htab->srelgot == NULL((void*)0))
2207 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 2207, __PRETTY_FUNCTION__)
;
2208
2209 outrel.r_offset = (htab->sgot->output_section->vma
2210 + htab->sgot->output_offset + off);
2211
2212 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2213 if (r_type == R_X86_64_TLSGD)
2214 dr_type = R_X86_64_DTPMOD64;
2215 else
2216 dr_type = R_X86_64_TPOFF64;
2217
2218 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off)((*((output_bfd)->xvec->bfd_putx64)) ((0), (htab->sgot
->contents + off)))
;
2219 outrel.r_addend = 0;
2220 if (dr_type == R_X86_64_TPOFF64 && indx == 0)
2221 outrel.r_addend = relocation - dtpoff_base (info);
2222 outrel.r_info = ELF64_R_INFO (indx, dr_type)(((bfd_vma) (indx) << 32) + (bfd_vma) (dr_type));
2223
2224 loc = htab->srelgot->contents;
2225 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2226 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2227
2228 if (r_type == R_X86_64_TLSGD)
2229 {
2230 if (indx == 0)
2231 {
2232 BFD_ASSERT (! unresolved_reloc){ if (!(! unresolved_reloc)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2232); }
;
2233 bfd_put_64 (output_bfd,((*((output_bfd)->xvec->bfd_putx64)) ((relocation - dtpoff_base
(info)), (htab->sgot->contents + off + 8)))
2234 relocation - dtpoff_base (info),((*((output_bfd)->xvec->bfd_putx64)) ((relocation - dtpoff_base
(info)), (htab->sgot->contents + off + 8)))
2235 htab->sgot->contents + off + GOT_ENTRY_SIZE)((*((output_bfd)->xvec->bfd_putx64)) ((relocation - dtpoff_base
(info)), (htab->sgot->contents + off + 8)))
;
2236 }
2237 else
2238 {
2239 bfd_put_64 (output_bfd, 0,((*((output_bfd)->xvec->bfd_putx64)) ((0), (htab->sgot
->contents + off + 8)))
2240 htab->sgot->contents + off + GOT_ENTRY_SIZE)((*((output_bfd)->xvec->bfd_putx64)) ((0), (htab->sgot
->contents + off + 8)))
;
2241 outrel.r_info = ELF64_R_INFO (indx,(((bfd_vma) (indx) << 32) + (bfd_vma) (R_X86_64_DTPOFF64
))
2242 R_X86_64_DTPOFF64)(((bfd_vma) (indx) << 32) + (bfd_vma) (R_X86_64_DTPOFF64
))
;
2243 outrel.r_offset += GOT_ENTRY_SIZE8;
2244 htab->srelgot->reloc_count++;
2245 loc += sizeof (Elf64_External_Rela);
2246 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2247 }
2248 }
2249
2250 if (h != NULL((void*)0))
2251 h->got.offset |= 1;
2252 else
2253 local_got_offsets[r_symndx] |= 1;
2254 }
2255
2256 if (off >= (bfd_vma) -2)
2257 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 2257, __PRETTY_FUNCTION__)
;
2258 if (r_type == ELF64_R_TYPE (rel->r_info)((rel->r_info) & 0xffffffff))
2259 {
2260 relocation = htab->sgot->output_section->vma
2261 + htab->sgot->output_offset + off;
2262 unresolved_reloc = FALSE0;
2263 }
2264 else
2265 {
2266 unsigned int i;
2267 static unsigned char tlsgd[8]
2268 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2269
2270 /* GD->IE transition.
2271 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2272 .word 0x6666; rex64; call __tls_get_addr@plt
2273 Change it into:
2274 movq %fs:0, %rax
2275 addq foo@gottpoff(%rip), %rax */
2276 BFD_ASSERT (rel->r_offset >= 4){ if (!(rel->r_offset >= 4)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2276); }
;
2277 for (i = 0; i < 4; i++)
2278 BFD_ASSERT (bfd_get_8 (input_bfd,{ if (!((*(unsigned char *) (contents + rel->r_offset - 4 +
i) & 0xff) == tlsgd[i])) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2280); }
2279 contents + rel->r_offset - 4 + i){ if (!((*(unsigned char *) (contents + rel->r_offset - 4 +
i) & 0xff) == tlsgd[i])) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2280); }
2280 == tlsgd[i]){ if (!((*(unsigned char *) (contents + rel->r_offset - 4 +
i) & 0xff) == tlsgd[i])) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2280); }
;
2281 BFD_ASSERT (rel->r_offset + 12 <= input_section->_raw_size){ if (!(rel->r_offset + 12 <= input_section->_raw_size
)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2281); }
;
2282 for (i = 0; i < 4; i++)
2283 BFD_ASSERT (bfd_get_8 (input_bfd,{ if (!((*(unsigned char *) (contents + rel->r_offset + 4 +
i) & 0xff) == tlsgd[i+4])) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2285); }
2284 contents + rel->r_offset + 4 + i){ if (!((*(unsigned char *) (contents + rel->r_offset + 4 +
i) & 0xff) == tlsgd[i+4])) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2285); }
2285 == tlsgd[i+4]){ if (!((*(unsigned char *) (contents + rel->r_offset + 4 +
i) & 0xff) == tlsgd[i+4])) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2285); }
;
2286 BFD_ASSERT (rel + 1 < relend){ if (!(rel + 1 < relend)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2286); }
;
2287 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32){ if (!(((rel[1].r_info) & 0xffffffff) == R_X86_64_PLT32)
) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2287); }
;
2288 memcpy (contents + rel->r_offset - 4,
2289 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
2290 16);
2291
2292 relocation = (htab->sgot->output_section->vma
2293 + htab->sgot->output_offset + off
2294 - rel->r_offset
2295 - input_section->output_section->vma
2296 - input_section->output_offset
2297 - 12);
2298 bfd_put_32 (output_bfd, relocation,((*((output_bfd)->xvec->bfd_putx32)) ((relocation),(contents
+ rel->r_offset + 8)))
2299 contents + rel->r_offset + 8)((*((output_bfd)->xvec->bfd_putx32)) ((relocation),(contents
+ rel->r_offset + 8)))
;
2300 /* Skip R_X86_64_PLT32. */
2301 rel++;
2302 continue;
2303 }
2304 break;
2305
2306 case R_X86_64_TLSLD:
2307 if (! info->shared)
2308 {
2309 /* LD->LE transition:
2310 Ensure it is:
2311 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr@plt.
2312 We change it into:
2313 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
2314 BFD_ASSERT (rel->r_offset >= 3){ if (!(rel->r_offset >= 3)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2314); }
;
2315 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3){ if (!((*(unsigned char *) (contents + rel->r_offset - 3)
& 0xff) == 0x48)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2316); }
2316 == 0x48){ if (!((*(unsigned char *) (contents + rel->r_offset - 3)
& 0xff) == 0x48)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2316); }
;
2317 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2){ if (!((*(unsigned char *) (contents + rel->r_offset - 2)
& 0xff) == 0x8d)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2318); }
2318 == 0x8d){ if (!((*(unsigned char *) (contents + rel->r_offset - 2)
& 0xff) == 0x8d)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2318); }
;
2319 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 1){ if (!((*(unsigned char *) (contents + rel->r_offset - 1)
& 0xff) == 0x3d)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2320); }
2320 == 0x3d){ if (!((*(unsigned char *) (contents + rel->r_offset - 1)
& 0xff) == 0x3d)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2320); }
;
2321 BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size){ if (!(rel->r_offset + 9 <= input_section->_raw_size
)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2321); }
;
2322 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4){ if (!((*(unsigned char *) (contents + rel->r_offset + 4)
& 0xff) == 0xe8)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2323); }
2323 == 0xe8){ if (!((*(unsigned char *) (contents + rel->r_offset + 4)
& 0xff) == 0xe8)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2323); }
;
2324 BFD_ASSERT (rel + 1 < relend){ if (!(rel + 1 < relend)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2324); }
;
2325 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32){ if (!(((rel[1].r_info) & 0xffffffff) == R_X86_64_PLT32)
) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2325); }
;
2326 memcpy (contents + rel->r_offset - 3,
2327 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
2328 /* Skip R_X86_64_PLT32. */
2329 rel++;
2330 continue;
2331 }
2332
2333 if (htab->sgot == NULL((void*)0))
2334 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 2334, __PRETTY_FUNCTION__)
;
2335
2336 off = htab->tls_ld_got.offset;
2337 if (off & 1)
2338 off &= ~1;
2339 else
2340 {
2341 Elf_Internal_Rela outrel;
2342 bfd_byte *loc;
2343
2344 if (htab->srelgot == NULL((void*)0))
2345 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 2345, __PRETTY_FUNCTION__)
;
2346
2347 outrel.r_offset = (htab->sgot->output_section->vma
2348 + htab->sgot->output_offset + off);
2349
2350 bfd_put_64 (output_bfd, 0,((*((output_bfd)->xvec->bfd_putx64)) ((0), (htab->sgot
->contents + off)))
2351 htab->sgot->contents + off)((*((output_bfd)->xvec->bfd_putx64)) ((0), (htab->sgot
->contents + off)))
;
2352 bfd_put_64 (output_bfd, 0,((*((output_bfd)->xvec->bfd_putx64)) ((0), (htab->sgot
->contents + off + 8)))
2353 htab->sgot->contents + off + GOT_ENTRY_SIZE)((*((output_bfd)->xvec->bfd_putx64)) ((0), (htab->sgot
->contents + off + 8)))
;
2354 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64)(((bfd_vma) (0) << 32) + (bfd_vma) (R_X86_64_DTPMOD64));
2355 outrel.r_addend = 0;
2356 loc = htab->srelgot->contents;
2357 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2358 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2359 htab->tls_ld_got.offset |= 1;
2360 }
2361 relocation = htab->sgot->output_section->vma
2362 + htab->sgot->output_offset + off;
2363 unresolved_reloc = FALSE0;
2364 break;
2365
2366 case R_X86_64_DTPOFF32:
2367 if (info->shared || (input_section->flags & SEC_CODE0x020) == 0)
2368 relocation -= dtpoff_base (info);
2369 else
2370 relocation = tpoff (info, relocation);
2371 break;
2372
2373 case R_X86_64_TPOFF32:
2374 BFD_ASSERT (! info->shared){ if (!(! info->shared)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2374); }
;
2375 relocation = tpoff (info, relocation);
2376 break;
2377
2378 default:
2379 break;
2380 }
2381
2382 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2383 because such sections are not SEC_ALLOC and thus ld.so will
2384 not process them. */
2385 if (unresolved_reloc
2386 && !((input_section->flags & SEC_DEBUGGING0x10000) != 0
2387 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC010) != 0))
2388 (*_bfd_error_handler)
2389 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'")("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2390 bfd_archive_filename (input_bfd),
2391 bfd_get_section_name (input_bfd, input_section)((input_section)->name + 0),
2392 (long) rel->r_offset,
2393 h->root.root.string);
2394
2395 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2396 contents, rel->r_offset,
2397 relocation, rel->r_addend);
2398
2399 if (r != bfd_reloc_ok)
2400 {
2401 const char *name;
2402
2403 if (h != NULL((void*)0))
2404 name = h->root.root.string;
2405 else
2406 {
2407 name = bfd_elf_string_from_elf_section (input_bfd,
2408 symtab_hdr->sh_link,
2409 sym->st_name);
2410 if (name == NULL((void*)0))
2411 return FALSE0;
2412 if (*name == '\0')
2413 name = bfd_section_name (input_bfd, sec)((sec)->name);
2414 }
2415
2416 if (r == bfd_reloc_overflow)
2417 {
2418
2419 if (! ((*info->callbacks->reloc_overflow)
2420 (info, name, howto->name, (bfd_vma) 0,
2421 input_bfd, input_section, rel->r_offset)))
2422 return FALSE0;
2423 }
2424 else
2425 {
2426 (*_bfd_error_handler)
2427 (_("%s(%s+0x%lx): reloc against `%s': error %d")("%s(%s+0x%lx): reloc against `%s': error %d"),
2428 bfd_archive_filename (input_bfd),
2429 bfd_get_section_name (input_bfd, input_section)((input_section)->name + 0),
2430 (long) rel->r_offset, name, (int) r);
2431 return FALSE0;
2432 }
2433 }
2434 }
2435
2436 return TRUE1;
2437}
2438
2439/* Finish up dynamic symbol handling. We set the contents of various
2440 dynamic sections here. */
2441
2442static bfd_boolean
2443elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
2444 struct bfd_link_info *info,
2445 struct elf_link_hash_entry *h,
2446 Elf_Internal_Sym *sym)
2447{
2448 struct elf64_x86_64_link_hash_table *htab;
2449
2450 htab = elf64_x86_64_hash_table (info)((struct elf64_x86_64_link_hash_table *) ((info)->hash));
2451
2452 if (h->plt.offset != (bfd_vma) -1)
2453 {
2454 bfd_vma plt_index;
2455 bfd_vma got_offset;
2456 Elf_Internal_Rela rela;
2457 bfd_byte *loc;
2458
2459 /* This symbol has an entry in the procedure linkage table. Set
2460 it up. */
2461 if (h->dynindx == -1
2462 || htab->splt == NULL((void*)0)
2463 || htab->sgotplt == NULL((void*)0)
2464 || htab->srelplt == NULL((void*)0))
2465 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 2465, __PRETTY_FUNCTION__)
;
2466
2467 /* Get the index in the procedure linkage table which
2468 corresponds to this symbol. This is the index of this symbol
2469 in all the symbols for which we are making plt entries. The
2470 first entry in the procedure linkage table is reserved. */
2471 plt_index = h->plt.offset / PLT_ENTRY_SIZE16 - 1;
2472
2473 /* Get the offset into the .got table of the entry that
2474 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
2475 bytes. The first three are reserved for the dynamic linker. */
2476 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE8;
2477
2478 /* Fill in the entry in the procedure linkage table. */
2479 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
2480 PLT_ENTRY_SIZE16);
2481
2482 /* Insert the relocation positions of the plt section. The magic
2483 numbers at the end of the statements are the positions of the
2484 relocations in the plt section. */
2485 /* Put offset for jmp *name@GOTPCREL(%rip), since the
2486 instruction uses 6 bytes, subtract this value. */
2487 bfd_put_32 (output_bfd,((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ got_offset - htab->splt->output_section->vma - htab
->splt->output_offset - h->plt.offset - 6)),(htab->
splt->contents + h->plt.offset + 2)))
2488 (htab->sgotplt->output_section->vma((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ got_offset - htab->splt->output_section->vma - htab
->splt->output_offset - h->plt.offset - 6)),(htab->
splt->contents + h->plt.offset + 2)))
2489 + htab->sgotplt->output_offset((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ got_offset - htab->splt->output_section->vma - htab
->splt->output_offset - h->plt.offset - 6)),(htab->
splt->contents + h->plt.offset + 2)))
2490 + got_offset((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ got_offset - htab->splt->output_section->vma - htab
->splt->output_offset - h->plt.offset - 6)),(htab->
splt->contents + h->plt.offset + 2)))
2491 - htab->splt->output_section->vma((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ got_offset - htab->splt->output_section->vma - htab
->splt->output_offset - h->plt.offset - 6)),(htab->
splt->contents + h->plt.offset + 2)))
2492 - htab->splt->output_offset((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ got_offset - htab->splt->output_section->vma - htab
->splt->output_offset - h->plt.offset - 6)),(htab->
splt->contents + h->plt.offset + 2)))
2493 - h->plt.offset((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ got_offset - htab->splt->output_section->vma - htab
->splt->output_offset - h->plt.offset - 6)),(htab->
splt->contents + h->plt.offset + 2)))
2494 - 6),((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ got_offset - htab->splt->output_section->vma - htab
->splt->output_offset - h->plt.offset - 6)),(htab->
splt->contents + h->plt.offset + 2)))
2495 htab->splt->contents + h->plt.offset + 2)((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ got_offset - htab->splt->output_section->vma - htab
->splt->output_offset - h->plt.offset - 6)),(htab->
splt->contents + h->plt.offset + 2)))
;
2496 /* Put relocation index. */
2497 bfd_put_32 (output_bfd, plt_index,((*((output_bfd)->xvec->bfd_putx32)) ((plt_index),(htab
->splt->contents + h->plt.offset + 7)))
2498 htab->splt->contents + h->plt.offset + 7)((*((output_bfd)->xvec->bfd_putx32)) ((plt_index),(htab
->splt->contents + h->plt.offset + 7)))
;
2499 /* Put offset for jmp .PLT0. */
2500 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),((*((output_bfd)->xvec->bfd_putx32)) ((- (h->plt.offset
+ 16)),(htab->splt->contents + h->plt.offset + 12))
)
2501 htab->splt->contents + h->plt.offset + 12)((*((output_bfd)->xvec->bfd_putx32)) ((- (h->plt.offset
+ 16)),(htab->splt->contents + h->plt.offset + 12))
)
;
2502
2503 /* Fill in the entry in the global offset table, initially this
2504 points to the pushq instruction in the PLT which is at offset 6. */
2505 bfd_put_64 (output_bfd, (htab->splt->output_section->vma((*((output_bfd)->xvec->bfd_putx64)) (((htab->splt->
output_section->vma + htab->splt->output_offset + h->
plt.offset + 6)), (htab->sgotplt->contents + got_offset
)))
2506 + htab->splt->output_offset((*((output_bfd)->xvec->bfd_putx64)) (((htab->splt->
output_section->vma + htab->splt->output_offset + h->
plt.offset + 6)), (htab->sgotplt->contents + got_offset
)))
2507 + h->plt.offset + 6),((*((output_bfd)->xvec->bfd_putx64)) (((htab->splt->
output_section->vma + htab->splt->output_offset + h->
plt.offset + 6)), (htab->sgotplt->contents + got_offset
)))
2508 htab->sgotplt->contents + got_offset)((*((output_bfd)->xvec->bfd_putx64)) (((htab->splt->
output_section->vma + htab->splt->output_offset + h->
plt.offset + 6)), (htab->sgotplt->contents + got_offset
)))
;
2509
2510 /* Fill in the entry in the .rela.plt section. */
2511 rela.r_offset = (htab->sgotplt->output_section->vma
2512 + htab->sgotplt->output_offset
2513 + got_offset);
2514 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT)(((bfd_vma) (h->dynindx) << 32) + (bfd_vma) (R_X86_64_JUMP_SLOT
))
;
2515 rela.r_addend = 0;
2516 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
2517 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2518
2519 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR02) == 0)
2520 {
2521 /* Mark the symbol as undefined, rather than as defined in
2522 the .plt section. Leave the value alone. This is a clue
2523 for the dynamic linker, to make function pointer
2524 comparisons work between an application and shared
2525 library. */
2526 sym->st_shndx = SHN_UNDEF0;
2527 }
2528 }
2529
2530 if (h->got.offset != (bfd_vma) -1
2531 && elf64_x86_64_hash_entry (h)((struct elf64_x86_64_link_hash_entry *)(h))->tls_type != GOT_TLS_GD2
2532 && elf64_x86_64_hash_entry (h)((struct elf64_x86_64_link_hash_entry *)(h))->tls_type != GOT_TLS_IE3)
2533 {
2534 Elf_Internal_Rela rela;
2535 bfd_byte *loc;
2536
2537 /* This symbol has an entry in the global offset table. Set it
2538 up. */
2539 if (htab->sgot == NULL((void*)0) || htab->srelgot == NULL((void*)0))
2540 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 2540, __PRETTY_FUNCTION__)
;
2541
2542 rela.r_offset = (htab->sgot->output_section->vma
2543 + htab->sgot->output_offset
2544 + (h->got.offset &~ (bfd_vma) 1));
2545
2546 /* If this is a static link, or it is a -Bsymbolic link and the
2547 symbol is defined locally or was forced to be local because
2548 of a version file, we just want to emit a RELATIVE reloc.
2549 The entry in the global offset table will already have been
2550 initialized in the relocate_section function. */
2551 if (info->shared
2552 && SYMBOL_REFERENCES_LOCAL (info, h)_bfd_elf_symbol_refs_local_p (h, info, 0))
2553 {
2554 BFD_ASSERT((h->got.offset & 1) != 0){ if (!((h->got.offset & 1) != 0)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2554); }
;
2555 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE)(((bfd_vma) (0) << 32) + (bfd_vma) (R_X86_64_RELATIVE));
2556 rela.r_addend = (h->root.u.def.value
2557 + h->root.u.def.section->output_section->vma
2558 + h->root.u.def.section->output_offset);
2559 }
2560 else
2561 {
2562 BFD_ASSERT((h->got.offset & 1) == 0){ if (!((h->got.offset & 1) == 0)) bfd_assert("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
,2562); }
;
2563 bfd_put_64 (output_bfd, (bfd_vma) 0,((*((output_bfd)->xvec->bfd_putx64)) (((bfd_vma) 0), (htab
->sgot->contents + h->got.offset)))
2564 htab->sgot->contents + h->got.offset)((*((output_bfd)->xvec->bfd_putx64)) (((bfd_vma) 0), (htab
->sgot->contents + h->got.offset)))
;
2565 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT)(((bfd_vma) (h->dynindx) << 32) + (bfd_vma) (R_X86_64_GLOB_DAT
))
;
2566 rela.r_addend = 0;
2567 }
2568
2569 loc = htab->srelgot->contents;
2570 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2571 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2572 }
2573
2574 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY0100) != 0)
2575 {
2576 Elf_Internal_Rela rela;
2577 bfd_byte *loc;
2578
2579 /* This symbol needs a copy reloc. Set it up. */
2580
2581 if (h->dynindx == -1
2582 || (h->root.type != bfd_link_hash_defined
2583 && h->root.type != bfd_link_hash_defweak)
2584 || htab->srelbss == NULL((void*)0))
2585 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 2585, __PRETTY_FUNCTION__)
;
2586
2587 rela.r_offset = (h->root.u.def.value
2588 + h->root.u.def.section->output_section->vma
2589 + h->root.u.def.section->output_offset);
2590 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY)(((bfd_vma) (h->dynindx) << 32) + (bfd_vma) (R_X86_64_COPY
))
;
2591 rela.r_addend = 0;
2592 loc = htab->srelbss->contents;
2593 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
2594 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2595 }
2596
2597 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2598 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2599 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2600 sym->st_shndx = SHN_ABS0xFFF1;
2601
2602 return TRUE1;
2603}
2604
2605/* Used to decide how to sort relocs in an optimal manner for the
2606 dynamic linker, before writing them out. */
2607
2608static enum elf_reloc_type_class
2609elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
2610{
2611 switch ((int) ELF64_R_TYPE (rela->r_info)((rela->r_info) & 0xffffffff))
2612 {
2613 case R_X86_64_RELATIVE:
2614 return reloc_class_relative;
2615 case R_X86_64_JUMP_SLOT:
2616 return reloc_class_plt;
2617 case R_X86_64_COPY:
2618 return reloc_class_copy;
2619 default:
2620 return reloc_class_normal;
2621 }
2622}
2623
2624/* Finish up the dynamic sections. */
2625
2626static bfd_boolean
2627elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
2628{
2629 struct elf64_x86_64_link_hash_table *htab;
2630 bfd *dynobj;
2631 asection *sdyn;
2632
2633 htab = elf64_x86_64_hash_table (info)((struct elf64_x86_64_link_hash_table *) ((info)->hash));
2634 dynobj = htab->elf.dynobj;
2635 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2636
2637 if (htab->elf.dynamic_sections_created)
1
Assuming field 'dynamic_sections_created' is not equal to 0
2
Taking true branch
2638 {
2639 Elf64_External_Dyn *dyncon, *dynconend;
2640
2641 if (sdyn == NULL((void*)0) || htab->sgot == NULL((void*)0))
3
Assuming 'sdyn' is not equal to NULL
4
Assuming field 'sgot' is not equal to NULL
5
Taking false branch
2642 abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils/bfd/elf64-x86-64.c"
, 2642, __PRETTY_FUNCTION__)
;
2643
2644 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2645 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2646 for (; dyncon < dynconend; dyncon++)
6
Assuming 'dyncon' is < 'dynconend'
7
Loop condition is true. Entering loop body
12
Loop condition is true. Entering loop body
2647 {
2648 Elf_Internal_Dyn dyn;
2649 asection *s;
2650
2651 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2652
2653 switch (dyn.d_tag)
8
Control jumps to 'case 8:' at line 2674
13
Control jumps to 'case 2:' at line 2666
2654 {
2655 default:
2656 continue;
2657
2658 case DT_PLTGOT3:
2659 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2660 break;
2661
2662 case DT_JMPREL23:
2663 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2664 break;
2665
2666 case DT_PLTRELSZ2:
2667 s = htab->srelplt->output_section;
14
Access to field 'output_section' results in a dereference of a null pointer (loaded from field 'srelplt')
2668 if (s->_cooked_size != 0)
2669 dyn.d_un.d_val = s->_cooked_size;
2670 else
2671 dyn.d_un.d_val = s->_raw_size;
2672 break;
2673
2674 case DT_RELASZ8:
2675 /* The procedure linkage table relocs (DT_JMPREL) should
2676 not be included in the overall relocs (DT_RELA).
2677 Therefore, we override the DT_RELASZ entry here to
2678 make it not include the JMPREL relocs. Since the
2679 linker script arranges for .rela.plt to follow all
2680 other relocation sections, we don't have to worry
2681 about changing the DT_RELA entry. */
2682 if (htab->srelplt != NULL((void*)0))
9
Assuming field 'srelplt' is equal to NULL
10
Taking false branch
2683 {
2684 s = htab->srelplt->output_section;
2685 if (s->_cooked_size != 0)
2686 dyn.d_un.d_val -= s->_cooked_size;
2687 else
2688 dyn.d_un.d_val -= s->_raw_size;
2689 }
2690 break;
11
Execution continues on line 2693
2691 }
2692
2693 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2694 }
2695
2696 /* Fill in the special first entry in the procedure linkage table. */
2697 if (htab->splt && htab->splt->_raw_size > 0)
2698 {
2699 /* Fill in the first entry in the procedure linkage table. */
2700 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
2701 PLT_ENTRY_SIZE16);
2702 /* Add offset for pushq GOT+8(%rip), since the instruction
2703 uses 6 bytes subtract this value. */
2704 bfd_put_32 (output_bfd,((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ 8 - htab->splt->output_section->vma - htab->splt
->output_offset - 6)),(htab->splt->contents + 2)))
2705 (htab->sgotplt->output_section->vma((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ 8 - htab->splt->output_section->vma - htab->splt
->output_offset - 6)),(htab->splt->contents + 2)))
2706 + htab->sgotplt->output_offset((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ 8 - htab->splt->output_section->vma - htab->splt
->output_offset - 6)),(htab->splt->contents + 2)))
2707 + 8((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ 8 - htab->splt->output_section->vma - htab->splt
->output_offset - 6)),(htab->splt->contents + 2)))
2708 - htab->splt->output_section->vma((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ 8 - htab->splt->output_section->vma - htab->splt
->output_offset - 6)),(htab->splt->contents + 2)))
2709 - htab->splt->output_offset((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ 8 - htab->splt->output_section->vma - htab->splt
->output_offset - 6)),(htab->splt->contents + 2)))
2710 - 6),((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ 8 - htab->splt->output_section->vma - htab->splt
->output_offset - 6)),(htab->splt->contents + 2)))
2711 htab->splt->contents + 2)((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ 8 - htab->splt->output_section->vma - htab->splt
->output_offset - 6)),(htab->splt->contents + 2)))
;
2712 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
2713 the end of the instruction. */
2714 bfd_put_32 (output_bfd,((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ 16 - htab->splt->output_section->vma - htab->splt
->output_offset - 12)),(htab->splt->contents + 8)))
2715 (htab->sgotplt->output_section->vma((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ 16 - htab->splt->output_section->vma - htab->splt
->output_offset - 12)),(htab->splt->contents + 8)))
2716 + htab->sgotplt->output_offset((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ 16 - htab->splt->output_section->vma - htab->splt
->output_offset - 12)),(htab->splt->contents + 8)))
2717 + 16((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ 16 - htab->splt->output_section->vma - htab->splt
->output_offset - 12)),(htab->splt->contents + 8)))
2718 - htab->splt->output_section->vma((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ 16 - htab->splt->output_section->vma - htab->splt
->output_offset - 12)),(htab->splt->contents + 8)))
2719 - htab->splt->output_offset((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ 16 - htab->splt->output_section->vma - htab->splt
->output_offset - 12)),(htab->splt->contents + 8)))
2720 - 12),((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ 16 - htab->splt->output_section->vma - htab->splt
->output_offset - 12)),(htab->splt->contents + 8)))
2721 htab->splt->contents + 8)((*((output_bfd)->xvec->bfd_putx32)) (((htab->sgotplt
->output_section->vma + htab->sgotplt->output_offset
+ 16 - htab->splt->output_section->vma - htab->splt
->output_offset - 12)),(htab->splt->contents + 8)))
;
2722
2723 elf_section_data (htab->splt->output_section)((struct bfd_elf_section_data*)htab->splt->output_section
->used_by_bfd)
->this_hdr.sh_entsize =
2724 PLT_ENTRY_SIZE16;
2725 }
2726 }
2727
2728 if (htab->sgotplt)
2729 {
2730 /* Fill in the first three entries in the global offset table. */
2731 if (htab->sgotplt->_raw_size > 0)
2732 {
2733 /* Set the first entry in the global offset table to the address of
2734 the dynamic section. */
2735 if (sdyn == NULL((void*)0))
2736 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents)((*((output_bfd)->xvec->bfd_putx64)) (((bfd_vma) 0), (htab
->sgotplt->contents)))
;
2737 else
2738 bfd_put_64 (output_bfd,((*((output_bfd)->xvec->bfd_putx64)) ((sdyn->output_section
->vma + sdyn->output_offset), (htab->sgotplt->contents
)))
2739 sdyn->output_section->vma + sdyn->output_offset,((*((output_bfd)->xvec->bfd_putx64)) ((sdyn->output_section
->vma + sdyn->output_offset), (htab->sgotplt->contents
)))
2740 htab->sgotplt->contents)((*((output_bfd)->xvec->bfd_putx64)) ((sdyn->output_section
->vma + sdyn->output_offset), (htab->sgotplt->contents
)))
;
2741 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
2742 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE)((*((output_bfd)->xvec->bfd_putx64)) (((bfd_vma) 0), (htab
->sgotplt->contents + 8)))
;
2743 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2)((*((output_bfd)->xvec->bfd_putx64)) (((bfd_vma) 0), (htab
->sgotplt->contents + 8*2)))
;
2744 }
2745
2746 elf_section_data (htab->sgotplt->output_section)((struct bfd_elf_section_data*)htab->sgotplt->output_section
->used_by_bfd)
->this_hdr.sh_entsize =
2747 GOT_ENTRY_SIZE8;
2748 }
2749
2750 return TRUE1;
2751}
2752
2753/* Handle an x86-64 specific section when reading an object file. This
2754 is called when elfcode.h finds a section with an unknown type. */
2755
2756static bfd_boolean
2757elf64_x86_64_section_from_shdr (bfd *abfd,
2758 Elf_Internal_Shdr *hdr,
2759 const char *name)
2760{
2761 if (hdr->sh_type != SHT_X86_64_UNWIND0x70000001)
2762 return FALSE0;
2763
2764 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2765 return FALSE0;
2766
2767 return TRUE1;
2768}
2769
2770
2771#define TARGET_LITTLE_SYMbfd_elf64_x86_64_vec bfd_elf64_x86_64_vec
2772#define TARGET_LITTLE_NAME"elf64-x86-64" "elf64-x86-64"
2773#define ELF_ARCHbfd_arch_i386 bfd_arch_i386
2774#define ELF_MACHINE_CODE62 EM_X86_6462
2775#define ELF_MAXPAGESIZE0x1000 0x1000
2776
2777#define elf_backend_can_gc_sections1 1
2778#define elf_backend_can_refcount1 1
2779#define elf_backend_want_got_plt1 1
2780#define elf_backend_plt_readonly1 1
2781#define elf_backend_want_plt_sym0 0
2782#define elf_backend_got_header_size(8*3) (GOT_ENTRY_SIZE8*3)
2783#define elf_backend_rela_normal1 1
2784
2785#define elf_info_to_howtoelf64_x86_64_info_to_howto elf64_x86_64_info_to_howto
2786
2787#define bfd_elf64_bfd_link_hash_table_createelf64_x86_64_link_hash_table_create \
2788 elf64_x86_64_link_hash_table_create
2789#define bfd_elf64_bfd_reloc_type_lookupelf64_x86_64_reloc_type_lookup elf64_x86_64_reloc_type_lookup
2790
2791#define elf_backend_adjust_dynamic_symbolelf64_x86_64_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
2792#define elf_backend_check_relocself64_x86_64_check_relocs elf64_x86_64_check_relocs
2793#define elf_backend_copy_indirect_symbolelf64_x86_64_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
2794#define elf_backend_create_dynamic_sectionself64_x86_64_create_dynamic_sections elf64_x86_64_create_dynamic_sections
2795#define elf_backend_finish_dynamic_sectionself64_x86_64_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
2796#define elf_backend_finish_dynamic_symbolelf64_x86_64_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
2797#define elf_backend_gc_mark_hookelf64_x86_64_gc_mark_hook elf64_x86_64_gc_mark_hook
2798#define elf_backend_gc_sweep_hookelf64_x86_64_gc_sweep_hook elf64_x86_64_gc_sweep_hook
2799#define elf_backend_grok_prstatuself64_x86_64_grok_prstatus elf64_x86_64_grok_prstatus
2800#define elf_backend_grok_psinfoelf64_x86_64_grok_psinfo elf64_x86_64_grok_psinfo
2801#define elf_backend_reloc_type_clasself64_x86_64_reloc_type_class elf64_x86_64_reloc_type_class
2802#define elf_backend_relocate_sectionelf64_x86_64_relocate_section elf64_x86_64_relocate_section
2803#define elf_backend_size_dynamic_sectionself64_x86_64_size_dynamic_sections elf64_x86_64_size_dynamic_sections
2804#define elf_backend_object_pelf64_x86_64_elf_object_p elf64_x86_64_elf_object_p
2805#define bfd_elf64_mkobjectelf64_x86_64_mkobject elf64_x86_64_mkobject
2806
2807#define elf_backend_section_from_shdrelf64_x86_64_section_from_shdr \
2808 elf64_x86_64_section_from_shdr
2809
2810#include "elf64-target.h"