Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCRegisterInfo.h
Warning:line 217, column 21
Dereference of null pointer

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name MachineSink.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -fhalf-no-semantic-interposition -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -D PIC -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -D_RET_PROTECTOR -ret-protector -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/CodeGen/MachineSink.cpp

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/CodeGen/MachineSink.cpp

1//===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass moves instructions into successor blocks when possible, so that
10// they aren't executed on paths where their results aren't needed.
11//
12// This pass is not intended to be a replacement or a complete alternative
13// for an LLVM-IR-level sinking pass. It is only designed to sink simple
14// constructs that are not exposed before lowering and instruction selection.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/MapVector.h"
20#include "llvm/ADT/PointerIntPair.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/SparseBitVector.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
30#include "llvm/CodeGen/MachineDominators.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/CodeGen/MachineInstr.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineOperand.h"
36#include "llvm/CodeGen/MachinePostDominators.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/RegisterClassInfo.h"
39#include "llvm/CodeGen/RegisterPressure.h"
40#include "llvm/CodeGen/TargetInstrInfo.h"
41#include "llvm/CodeGen/TargetRegisterInfo.h"
42#include "llvm/CodeGen/TargetSubtargetInfo.h"
43#include "llvm/IR/BasicBlock.h"
44#include "llvm/IR/DebugInfoMetadata.h"
45#include "llvm/IR/LLVMContext.h"
46#include "llvm/InitializePasses.h"
47#include "llvm/MC/MCRegisterInfo.h"
48#include "llvm/Pass.h"
49#include "llvm/Support/BranchProbability.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/raw_ostream.h"
53#include <algorithm>
54#include <cassert>
55#include <cstdint>
56#include <map>
57#include <utility>
58#include <vector>
59
60using namespace llvm;
61
62#define DEBUG_TYPE"machine-sink" "machine-sink"
63
64static cl::opt<bool>
65SplitEdges("machine-sink-split",
66 cl::desc("Split critical edges during machine sinking"),
67 cl::init(true), cl::Hidden);
68
69static cl::opt<bool>
70UseBlockFreqInfo("machine-sink-bfi",
71 cl::desc("Use block frequency info to find successors to sink"),
72 cl::init(true), cl::Hidden);
73
74static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
75 "machine-sink-split-probability-threshold",
76 cl::desc(
77 "Percentage threshold for splitting single-instruction critical edge. "
78 "If the branch threshold is higher than this threshold, we allow "
79 "speculative execution of up to 1 instruction to avoid branching to "
80 "splitted critical edge"),
81 cl::init(40), cl::Hidden);
82
83static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold(
84 "machine-sink-load-instrs-threshold",
85 cl::desc("Do not try to find alias store for a load if there is a in-path "
86 "block whose instruction number is higher than this threshold."),
87 cl::init(2000), cl::Hidden);
88
89static cl::opt<unsigned> SinkLoadBlocksThreshold(
90 "machine-sink-load-blocks-threshold",
91 cl::desc("Do not try to find alias store for a load if the block number in "
92 "the straight line is higher than this threshold."),
93 cl::init(20), cl::Hidden);
94
95static cl::opt<bool>
96SinkInstsIntoLoop("sink-insts-to-avoid-spills",
97 cl::desc("Sink instructions into loops to avoid "
98 "register spills"),
99 cl::init(false), cl::Hidden);
100
101static cl::opt<unsigned> SinkIntoLoopLimit(
102 "machine-sink-loop-limit",
103 cl::desc("The maximum number of instructions considered for loop sinking."),
104 cl::init(50), cl::Hidden);
105
106STATISTIC(NumSunk, "Number of machine instructions sunk")static llvm::Statistic NumSunk = {"machine-sink", "NumSunk", "Number of machine instructions sunk"
}
;
107STATISTIC(NumLoopSunk, "Number of machine instructions sunk into a loop")static llvm::Statistic NumLoopSunk = {"machine-sink", "NumLoopSunk"
, "Number of machine instructions sunk into a loop"}
;
108STATISTIC(NumSplit, "Number of critical edges split")static llvm::Statistic NumSplit = {"machine-sink", "NumSplit"
, "Number of critical edges split"}
;
109STATISTIC(NumCoalesces, "Number of copies coalesced")static llvm::Statistic NumCoalesces = {"machine-sink", "NumCoalesces"
, "Number of copies coalesced"}
;
110STATISTIC(NumPostRACopySink, "Number of copies sunk after RA")static llvm::Statistic NumPostRACopySink = {"machine-sink", "NumPostRACopySink"
, "Number of copies sunk after RA"}
;
111
112namespace {
113
114 class MachineSinking : public MachineFunctionPass {
115 const TargetInstrInfo *TII;
116 const TargetRegisterInfo *TRI;
117 MachineRegisterInfo *MRI; // Machine register information
118 MachineDominatorTree *DT; // Machine dominator tree
119 MachinePostDominatorTree *PDT; // Machine post dominator tree
120 MachineLoopInfo *LI;
121 MachineBlockFrequencyInfo *MBFI;
122 const MachineBranchProbabilityInfo *MBPI;
123 AliasAnalysis *AA;
124 RegisterClassInfo RegClassInfo;
125
126 // Remember which edges have been considered for breaking.
127 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
128 CEBCandidates;
129 // Remember which edges we are about to split.
130 // This is different from CEBCandidates since those edges
131 // will be split.
132 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
133
134 SparseBitVector<> RegsToClearKillFlags;
135
136 using AllSuccsCache =
137 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
138
139 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
140 /// post-dominated by another DBG_VALUE of the same variable location.
141 /// This is necessary to detect sequences such as:
142 /// %0 = someinst
143 /// DBG_VALUE %0, !123, !DIExpression()
144 /// %1 = anotherinst
145 /// DBG_VALUE %1, !123, !DIExpression()
146 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
147 /// would re-order assignments.
148 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
149
150 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
151 /// debug instructions to sink.
152 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
153
154 /// Record of debug variables that have had their locations set in the
155 /// current block.
156 DenseSet<DebugVariable> SeenDbgVars;
157
158 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool>
159 HasStoreCache;
160 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>,
161 std::vector<MachineInstr *>>
162 StoreInstrCache;
163
164 /// Cached BB's register pressure.
165 std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure;
166
167 public:
168 static char ID; // Pass identification
169
170 MachineSinking() : MachineFunctionPass(ID) {
171 initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
172 }
173
174 bool runOnMachineFunction(MachineFunction &MF) override;
175
176 void getAnalysisUsage(AnalysisUsage &AU) const override {
177 MachineFunctionPass::getAnalysisUsage(AU);
178 AU.addRequired<AAResultsWrapperPass>();
179 AU.addRequired<MachineDominatorTree>();
180 AU.addRequired<MachinePostDominatorTree>();
181 AU.addRequired<MachineLoopInfo>();
182 AU.addRequired<MachineBranchProbabilityInfo>();
183 AU.addPreserved<MachineLoopInfo>();
184 if (UseBlockFreqInfo)
185 AU.addRequired<MachineBlockFrequencyInfo>();
186 }
187
188 void releaseMemory() override {
189 CEBCandidates.clear();
190 }
191
192 private:
193 bool ProcessBlock(MachineBasicBlock &MBB);
194 void ProcessDbgInst(MachineInstr &MI);
195 bool isWorthBreakingCriticalEdge(MachineInstr &MI,
196 MachineBasicBlock *From,
197 MachineBasicBlock *To);
198
199 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To,
200 MachineInstr &MI);
201
202 /// Postpone the splitting of the given critical
203 /// edge (\p From, \p To).
204 ///
205 /// We do not split the edges on the fly. Indeed, this invalidates
206 /// the dominance information and thus triggers a lot of updates
207 /// of that information underneath.
208 /// Instead, we postpone all the splits after each iteration of
209 /// the main loop. That way, the information is at least valid
210 /// for the lifetime of an iteration.
211 ///
212 /// \return True if the edge is marked as toSplit, false otherwise.
213 /// False can be returned if, for instance, this is not profitable.
214 bool PostponeSplitCriticalEdge(MachineInstr &MI,
215 MachineBasicBlock *From,
216 MachineBasicBlock *To,
217 bool BreakPHIEdge);
218 bool SinkInstruction(MachineInstr &MI, bool &SawStore,
219 AllSuccsCache &AllSuccessors);
220
221 /// If we sink a COPY inst, some debug users of it's destination may no
222 /// longer be dominated by the COPY, and will eventually be dropped.
223 /// This is easily rectified by forwarding the non-dominated debug uses
224 /// to the copy source.
225 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
226 MachineBasicBlock *TargetBlock);
227 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB,
228 MachineBasicBlock *DefMBB, bool &BreakPHIEdge,
229 bool &LocalUse) const;
230 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
231 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
232
233 void FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB,
234 SmallVectorImpl<MachineInstr *> &Candidates);
235 bool SinkIntoLoop(MachineLoop *L, MachineInstr &I);
236
237 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI,
238 MachineBasicBlock *MBB,
239 MachineBasicBlock *SuccToSinkTo,
240 AllSuccsCache &AllSuccessors);
241
242 bool PerformTrivialForwardCoalescing(MachineInstr &MI,
243 MachineBasicBlock *MBB);
244
245 SmallVector<MachineBasicBlock *, 4> &
246 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
247 AllSuccsCache &AllSuccessors) const;
248
249 std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB);
250 };
251
252} // end anonymous namespace
253
254char MachineSinking::ID = 0;
255
256char &llvm::MachineSinkingID = MachineSinking::ID;
257
258INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,static void *initializeMachineSinkingPassOnce(PassRegistry &
Registry) {
259 "Machine code sinking", false, false)static void *initializeMachineSinkingPassOnce(PassRegistry &
Registry) {
260INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)initializeMachineBranchProbabilityInfoPass(Registry);
261INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)initializeMachineDominatorTreePass(Registry);
262INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)initializeMachineLoopInfoPass(Registry);
263INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
264INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,PassInfo *PI = new PassInfo( "Machine code sinking", "machine-sink"
, &MachineSinking::ID, PassInfo::NormalCtor_t(callDefaultCtor
<MachineSinking>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeMachineSinkingPassFlag
; void llvm::initializeMachineSinkingPass(PassRegistry &Registry
) { llvm::call_once(InitializeMachineSinkingPassFlag, initializeMachineSinkingPassOnce
, std::ref(Registry)); }
265 "Machine code sinking", false, false)PassInfo *PI = new PassInfo( "Machine code sinking", "machine-sink"
, &MachineSinking::ID, PassInfo::NormalCtor_t(callDefaultCtor
<MachineSinking>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeMachineSinkingPassFlag
; void llvm::initializeMachineSinkingPass(PassRegistry &Registry
) { llvm::call_once(InitializeMachineSinkingPassFlag, initializeMachineSinkingPassOnce
, std::ref(Registry)); }
266
267bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
268 MachineBasicBlock *MBB) {
269 if (!MI.isCopy())
270 return false;
271
272 Register SrcReg = MI.getOperand(1).getReg();
273 Register DstReg = MI.getOperand(0).getReg();
274 if (!Register::isVirtualRegister(SrcReg) ||
275 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
276 return false;
277
278 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
279 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
280 if (SRC != DRC)
281 return false;
282
283 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
284 if (DefMI->isCopyLike())
285 return false;
286 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI)do { } while (false);
287 LLVM_DEBUG(dbgs() << "*** to: " << MI)do { } while (false);
288 MRI->replaceRegWith(DstReg, SrcReg);
289 MI.eraseFromParent();
290
291 // Conservatively, clear any kill flags, since it's possible that they are no
292 // longer correct.
293 MRI->clearKillFlags(SrcReg);
294
295 ++NumCoalesces;
296 return true;
297}
298
299/// AllUsesDominatedByBlock - Return true if all uses of the specified register
300/// occur in blocks dominated by the specified block. If any use is in the
301/// definition block, then return false since it is never legal to move def
302/// after uses.
303bool MachineSinking::AllUsesDominatedByBlock(Register Reg,
304 MachineBasicBlock *MBB,
305 MachineBasicBlock *DefMBB,
306 bool &BreakPHIEdge,
307 bool &LocalUse) const {
308 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs")((void)0);
309
310 // Ignore debug uses because debug info doesn't affect the code.
311 if (MRI->use_nodbg_empty(Reg))
312 return true;
313
314 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
315 // into and they are all PHI nodes. In this case, machine-sink must break
316 // the critical edge first. e.g.
317 //
318 // %bb.1:
319 // Predecessors according to CFG: %bb.0
320 // ...
321 // %def = DEC64_32r %x, implicit-def dead %eflags
322 // ...
323 // JE_4 <%bb.37>, implicit %eflags
324 // Successors according to CFG: %bb.37 %bb.2
325 //
326 // %bb.2:
327 // %p = PHI %y, %bb.0, %def, %bb.1
328 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) {
329 MachineInstr *UseInst = MO.getParent();
330 unsigned OpNo = UseInst->getOperandNo(&MO);
331 MachineBasicBlock *UseBlock = UseInst->getParent();
332 return UseBlock == MBB && UseInst->isPHI() &&
333 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB;
334 })) {
335 BreakPHIEdge = true;
336 return true;
337 }
338
339 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
340 // Determine the block of the use.
341 MachineInstr *UseInst = MO.getParent();
342 unsigned OpNo = &MO - &UseInst->getOperand(0);
343 MachineBasicBlock *UseBlock = UseInst->getParent();
344 if (UseInst->isPHI()) {
345 // PHI nodes use the operand in the predecessor block, not the block with
346 // the PHI.
347 UseBlock = UseInst->getOperand(OpNo+1).getMBB();
348 } else if (UseBlock == DefMBB) {
349 LocalUse = true;
350 return false;
351 }
352
353 // Check that it dominates.
354 if (!DT->dominates(MBB, UseBlock))
355 return false;
356 }
357
358 return true;
359}
360
361/// Return true if this machine instruction loads from global offset table or
362/// constant pool.
363static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
364 assert(MI.mayLoad() && "Expected MI that loads!")((void)0);
365
366 // If we lost memory operands, conservatively assume that the instruction
367 // reads from everything..
368 if (MI.memoperands_empty())
369 return true;
370
371 for (MachineMemOperand *MemOp : MI.memoperands())
372 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
373 if (PSV->isGOT() || PSV->isConstantPool())
374 return true;
375
376 return false;
377}
378
379void MachineSinking::FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB,
380 SmallVectorImpl<MachineInstr *> &Candidates) {
381 for (auto &MI : *BB) {
382 LLVM_DEBUG(dbgs() << "LoopSink: Analysing candidate: " << MI)do { } while (false);
383 if (!TII->shouldSink(MI)) {
384 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not a candidate for this "do { } while (false)
385 "target\n")do { } while (false);
386 continue;
387 }
388 if (!L->isLoopInvariant(MI)) {
389 LLVM_DEBUG(dbgs() << "LoopSink: Instruction is not loop invariant\n")do { } while (false);
390 continue;
391 }
392 bool DontMoveAcrossStore = true;
393 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) {
394 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not safe to move.\n")do { } while (false);
395 continue;
396 }
397 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) {
398 LLVM_DEBUG(dbgs() << "LoopSink: Dont sink GOT or constant pool loads\n")do { } while (false);
399 continue;
400 }
401 if (MI.isConvergent())
402 continue;
403
404 const MachineOperand &MO = MI.getOperand(0);
405 if (!MO.isReg() || !MO.getReg() || !MO.isDef())
406 continue;
407 if (!MRI->hasOneDef(MO.getReg()))
408 continue;
409
410 LLVM_DEBUG(dbgs() << "LoopSink: Instruction added as candidate.\n")do { } while (false);
411 Candidates.push_back(&MI);
412 }
413}
414
415bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
416 if (skipFunction(MF.getFunction()))
417 return false;
418
419 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n")do { } while (false);
420
421 TII = MF.getSubtarget().getInstrInfo();
422 TRI = MF.getSubtarget().getRegisterInfo();
423 MRI = &MF.getRegInfo();
424 DT = &getAnalysis<MachineDominatorTree>();
425 PDT = &getAnalysis<MachinePostDominatorTree>();
426 LI = &getAnalysis<MachineLoopInfo>();
427 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
428 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
429 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
430 RegClassInfo.runOnMachineFunction(MF);
431
432 bool EverMadeChange = false;
433
434 while (true) {
435 bool MadeChange = false;
436
437 // Process all basic blocks.
438 CEBCandidates.clear();
439 ToSplit.clear();
440 for (auto &MBB: MF)
441 MadeChange |= ProcessBlock(MBB);
442
443 // If we have anything we marked as toSplit, split it now.
444 for (auto &Pair : ToSplit) {
445 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
446 if (NewSucc != nullptr) {
447 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "do { } while (false)
448 << printMBBReference(*Pair.first) << " -- "do { } while (false)
449 << printMBBReference(*NewSucc) << " -- "do { } while (false)
450 << printMBBReference(*Pair.second) << '\n')do { } while (false);
451 if (MBFI)
452 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI);
453
454 MadeChange = true;
455 ++NumSplit;
456 } else
457 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n")do { } while (false);
458 }
459 // If this iteration over the code changed anything, keep iterating.
460 if (!MadeChange) break;
461 EverMadeChange = true;
462 }
463
464 if (SinkInstsIntoLoop) {
465 SmallVector<MachineLoop *, 8> Loops(LI->begin(), LI->end());
466 for (auto *L : Loops) {
467 MachineBasicBlock *Preheader = LI->findLoopPreheader(L);
468 if (!Preheader) {
469 LLVM_DEBUG(dbgs() << "LoopSink: Can't find preheader\n")do { } while (false);
470 continue;
471 }
472 SmallVector<MachineInstr *, 8> Candidates;
473 FindLoopSinkCandidates(L, Preheader, Candidates);
474
475 // Walk the candidates in reverse order so that we start with the use
476 // of a def-use chain, if there is any.
477 // TODO: Sort the candidates using a cost-model.
478 unsigned i = 0;
479 for (auto It = Candidates.rbegin(); It != Candidates.rend(); ++It) {
480 if (i++ == SinkIntoLoopLimit) {
481 LLVM_DEBUG(dbgs() << "LoopSink: Limit reached of instructions to "do { } while (false)
482 "be analysed.")do { } while (false);
483 break;
484 }
485
486 MachineInstr *I = *It;
487 if (!SinkIntoLoop(L, *I))
488 break;
489 EverMadeChange = true;
490 ++NumLoopSunk;
491 }
492 }
493 }
494
495 HasStoreCache.clear();
496 StoreInstrCache.clear();
497
498 // Now clear any kill flags for recorded registers.
499 for (auto I : RegsToClearKillFlags)
500 MRI->clearKillFlags(I);
501 RegsToClearKillFlags.clear();
502
503 return EverMadeChange;
504}
505
506bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
507 // Can't sink anything out of a block that has less than two successors.
508 if (MBB.succ_size() <= 1 || MBB.empty()) return false;
509
510 // Don't bother sinking code out of unreachable blocks. In addition to being
511 // unprofitable, it can also lead to infinite looping, because in an
512 // unreachable loop there may be nowhere to stop.
513 if (!DT->isReachableFromEntry(&MBB)) return false;
514
515 bool MadeChange = false;
516
517 // Cache all successors, sorted by frequency info and loop depth.
518 AllSuccsCache AllSuccessors;
519
520 // Walk the basic block bottom-up. Remember if we saw a store.
521 MachineBasicBlock::iterator I = MBB.end();
522 --I;
523 bool ProcessedBegin, SawStore = false;
524 do {
525 MachineInstr &MI = *I; // The instruction to sink.
526
527 // Predecrement I (if it's not begin) so that it isn't invalidated by
528 // sinking.
529 ProcessedBegin = I == MBB.begin();
530 if (!ProcessedBegin)
531 --I;
532
533 if (MI.isDebugOrPseudoInstr()) {
534 if (MI.isDebugValue())
535 ProcessDbgInst(MI);
536 continue;
537 }
538
539 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
540 if (Joined) {
541 MadeChange = true;
542 continue;
543 }
544
545 if (SinkInstruction(MI, SawStore, AllSuccessors)) {
546 ++NumSunk;
547 MadeChange = true;
548 }
549
550 // If we just processed the first instruction in the block, we're done.
551 } while (!ProcessedBegin);
552
553 SeenDbgUsers.clear();
554 SeenDbgVars.clear();
555 // recalculate the bb register pressure after sinking one BB.
556 CachedRegisterPressure.clear();
557
558 return MadeChange;
559}
560
561void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
562 // When we see DBG_VALUEs for registers, record any vreg it reads, so that
563 // we know what to sink if the vreg def sinks.
564 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing")((void)0);
565
566 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
567 MI.getDebugLoc()->getInlinedAt());
568 bool SeenBefore = SeenDbgVars.contains(Var);
569
570 for (MachineOperand &MO : MI.debug_operands()) {
571 if (MO.isReg() && MO.getReg().isVirtual())
572 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
573 }
574
575 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
576 SeenDbgVars.insert(Var);
577}
578
579bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
580 MachineBasicBlock *From,
581 MachineBasicBlock *To) {
582 // FIXME: Need much better heuristics.
583
584 // If the pass has already considered breaking this edge (during this pass
585 // through the function), then let's go ahead and break it. This means
586 // sinking multiple "cheap" instructions into the same block.
587 if (!CEBCandidates.insert(std::make_pair(From, To)).second)
588 return true;
589
590 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
591 return true;
592
593 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
594 BranchProbability(SplitEdgeProbabilityThreshold, 100))
595 return true;
596
597 // MI is cheap, we probably don't want to break the critical edge for it.
598 // However, if this would allow some definitions of its source operands
599 // to be sunk then it's probably worth it.
600 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
601 const MachineOperand &MO = MI.getOperand(i);
602 if (!MO.isReg() || !MO.isUse())
603 continue;
604 Register Reg = MO.getReg();
605 if (Reg == 0)
606 continue;
607
608 // We don't move live definitions of physical registers,
609 // so sinking their uses won't enable any opportunities.
610 if (Register::isPhysicalRegister(Reg))
611 continue;
612
613 // If this instruction is the only user of a virtual register,
614 // check if breaking the edge will enable sinking
615 // both this instruction and the defining instruction.
616 if (MRI->hasOneNonDBGUse(Reg)) {
617 // If the definition resides in same MBB,
618 // claim it's likely we can sink these together.
619 // If definition resides elsewhere, we aren't
620 // blocking it from being sunk so don't break the edge.
621 MachineInstr *DefMI = MRI->getVRegDef(Reg);
622 if (DefMI->getParent() == MI.getParent())
623 return true;
624 }
625 }
626
627 return false;
628}
629
630bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
631 MachineBasicBlock *FromBB,
632 MachineBasicBlock *ToBB,
633 bool BreakPHIEdge) {
634 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
635 return false;
636
637 // Avoid breaking back edge. From == To means backedge for single BB loop.
638 if (!SplitEdges || FromBB == ToBB)
639 return false;
640
641 // Check for backedges of more "complex" loops.
642 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
643 LI->isLoopHeader(ToBB))
644 return false;
645
646 // It's not always legal to break critical edges and sink the computation
647 // to the edge.
648 //
649 // %bb.1:
650 // v1024
651 // Beq %bb.3
652 // <fallthrough>
653 // %bb.2:
654 // ... no uses of v1024
655 // <fallthrough>
656 // %bb.3:
657 // ...
658 // = v1024
659 //
660 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
661 //
662 // %bb.1:
663 // ...
664 // Bne %bb.2
665 // %bb.4:
666 // v1024 =
667 // B %bb.3
668 // %bb.2:
669 // ... no uses of v1024
670 // <fallthrough>
671 // %bb.3:
672 // ...
673 // = v1024
674 //
675 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
676 // flow. We need to ensure the new basic block where the computation is
677 // sunk to dominates all the uses.
678 // It's only legal to break critical edge and sink the computation to the
679 // new block if all the predecessors of "To", except for "From", are
680 // not dominated by "From". Given SSA property, this means these
681 // predecessors are dominated by "To".
682 //
683 // There is no need to do this check if all the uses are PHI nodes. PHI
684 // sources are only defined on the specific predecessor edges.
685 if (!BreakPHIEdge) {
686 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
687 E = ToBB->pred_end(); PI != E; ++PI) {
688 if (*PI == FromBB)
689 continue;
690 if (!DT->dominates(ToBB, *PI))
691 return false;
692 }
693 }
694
695 ToSplit.insert(std::make_pair(FromBB, ToBB));
696
697 return true;
698}
699
700std::vector<unsigned> &
701MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) {
702 // Currently to save compiling time, MBB's register pressure will not change
703 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's
704 // register pressure is changed after sinking any instructions into it.
705 // FIXME: need a accurate and cheap register pressure estiminate model here.
706 auto RP = CachedRegisterPressure.find(&MBB);
707 if (RP != CachedRegisterPressure.end())
708 return RP->second;
709
710 RegionPressure Pressure;
711 RegPressureTracker RPTracker(Pressure);
712
713 // Initialize the register pressure tracker.
714 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(),
715 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
716
717 for (MachineBasicBlock::iterator MII = MBB.instr_end(),
718 MIE = MBB.instr_begin();
719 MII != MIE; --MII) {
720 MachineInstr &MI = *std::prev(MII);
721 if (MI.isDebugInstr() || MI.isPseudoProbe())
722 continue;
723 RegisterOperands RegOpers;
724 RegOpers.collect(MI, *TRI, *MRI, false, false);
725 RPTracker.recedeSkipDebugValues();
726 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!")((void)0);
727 RPTracker.recede(RegOpers);
728 }
729
730 RPTracker.closeRegion();
731 auto It = CachedRegisterPressure.insert(
732 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure));
733 return It.first->second;
734}
735
736/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
737bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI,
738 MachineBasicBlock *MBB,
739 MachineBasicBlock *SuccToSinkTo,
740 AllSuccsCache &AllSuccessors) {
741 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB")((void)0);
742
743 if (MBB == SuccToSinkTo)
744 return false;
745
746 // It is profitable if SuccToSinkTo does not post dominate current block.
747 if (!PDT->dominates(SuccToSinkTo, MBB))
748 return true;
749
750 // It is profitable to sink an instruction from a deeper loop to a shallower
751 // loop, even if the latter post-dominates the former (PR21115).
752 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
753 return true;
754
755 // Check if only use in post dominated block is PHI instruction.
756 bool NonPHIUse = false;
757 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
758 MachineBasicBlock *UseBlock = UseInst.getParent();
759 if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
760 NonPHIUse = true;
761 }
762 if (!NonPHIUse)
763 return true;
764
765 // If SuccToSinkTo post dominates then also it may be profitable if MI
766 // can further profitably sinked into another block in next round.
767 bool BreakPHIEdge = false;
768 // FIXME - If finding successor is compile time expensive then cache results.
769 if (MachineBasicBlock *MBB2 =
770 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
771 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
772
773 MachineLoop *ML = LI->getLoopFor(MBB);
774
775 // If the instruction is not inside a loop, it is not profitable to sink MI to
776 // a post dominate block SuccToSinkTo.
777 if (!ML)
778 return false;
779
780 auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) {
781 unsigned Weight = TRI->getRegClassWeight(RC).RegWeight;
782 const int *PS = TRI->getRegClassPressureSets(RC);
783 // Get register pressure for block SuccToSinkTo.
784 std::vector<unsigned> BBRegisterPressure =
785 getBBRegisterPressure(*SuccToSinkTo);
786 for (; *PS != -1; PS++)
787 // check if any register pressure set exceeds limit in block SuccToSinkTo
788 // after sinking.
789 if (Weight + BBRegisterPressure[*PS] >=
790 TRI->getRegPressureSetLimit(*MBB->getParent(), *PS))
791 return true;
792 return false;
793 };
794
795 // If this instruction is inside a loop and sinking this instruction can make
796 // more registers live range shorten, it is still prifitable.
797 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
798 const MachineOperand &MO = MI.getOperand(i);
799 // Ignore non-register operands.
800 if (!MO.isReg())
801 continue;
802 Register Reg = MO.getReg();
803 if (Reg == 0)
804 continue;
805
806 // Don't handle physical register.
807 if (Register::isPhysicalRegister(Reg))
808 return false;
809
810 // Users for the defs are all dominated by SuccToSinkTo.
811 if (MO.isDef()) {
812 // This def register's live range is shortened after sinking.
813 bool LocalUse = false;
814 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge,
815 LocalUse))
816 return false;
817 } else {
818 MachineInstr *DefMI = MRI->getVRegDef(Reg);
819 // DefMI is defined outside of loop. There should be no live range
820 // impact for this operand. Defination outside of loop means:
821 // 1: defination is outside of loop.
822 // 2: defination is in this loop, but it is a PHI in the loop header.
823 if (LI->getLoopFor(DefMI->getParent()) != ML ||
824 (DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent())))
825 continue;
826 // The DefMI is defined inside the loop.
827 // If sinking this operand makes some register pressure set exceed limit,
828 // it is not profitable.
829 if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) {
830 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable.")do { } while (false);
831 return false;
832 }
833 }
834 }
835
836 // If MI is in loop and all its operands are alive across the whole loop or if
837 // no operand sinking make register pressure set exceed limit, it is
838 // profitable to sink MI.
839 return true;
840}
841
842/// Get the sorted sequence of successors for this MachineBasicBlock, possibly
843/// computing it if it was not already cached.
844SmallVector<MachineBasicBlock *, 4> &
845MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
846 AllSuccsCache &AllSuccessors) const {
847 // Do we have the sorted successors in cache ?
848 auto Succs = AllSuccessors.find(MBB);
849 if (Succs != AllSuccessors.end())
850 return Succs->second;
851
852 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors());
853
854 // Handle cases where sinking can happen but where the sink point isn't a
855 // successor. For example:
856 //
857 // x = computation
858 // if () {} else {}
859 // use x
860 //
861 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) {
862 // DomTree children of MBB that have MBB as immediate dominator are added.
863 if (DTChild->getIDom()->getBlock() == MI.getParent() &&
864 // Skip MBBs already added to the AllSuccs vector above.
865 !MBB->isSuccessor(DTChild->getBlock()))
866 AllSuccs.push_back(DTChild->getBlock());
867 }
868
869 // Sort Successors according to their loop depth or block frequency info.
870 llvm::stable_sort(
871 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
872 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
873 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
874 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
875 return HasBlockFreq ? LHSFreq < RHSFreq
876 : LI->getLoopDepth(L) < LI->getLoopDepth(R);
877 });
878
879 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
880
881 return it.first->second;
882}
883
884/// FindSuccToSinkTo - Find a successor to sink this instruction to.
885MachineBasicBlock *
886MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
887 bool &BreakPHIEdge,
888 AllSuccsCache &AllSuccessors) {
889 assert (MBB && "Invalid MachineBasicBlock!")((void)0);
890
891 // Loop over all the operands of the specified instruction. If there is
892 // anything we can't handle, bail out.
893
894 // SuccToSinkTo - This is the successor to sink this instruction to, once we
895 // decide.
896 MachineBasicBlock *SuccToSinkTo = nullptr;
897 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
898 const MachineOperand &MO = MI.getOperand(i);
899 if (!MO.isReg()) continue; // Ignore non-register operands.
900
901 Register Reg = MO.getReg();
902 if (Reg == 0) continue;
903
904 if (Register::isPhysicalRegister(Reg)) {
905 if (MO.isUse()) {
906 // If the physreg has no defs anywhere, it's just an ambient register
907 // and we can freely move its uses. Alternatively, if it's allocatable,
908 // it could get allocated to something with a def during allocation.
909 if (!MRI->isConstantPhysReg(Reg))
910 return nullptr;
911 } else if (!MO.isDead()) {
912 // A def that isn't dead. We can't move it.
913 return nullptr;
914 }
915 } else {
916 // Virtual register uses are always safe to sink.
917 if (MO.isUse()) continue;
918
919 // If it's not safe to move defs of the register class, then abort.
920 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
921 return nullptr;
922
923 // Virtual register defs can only be sunk if all their uses are in blocks
924 // dominated by one of the successors.
925 if (SuccToSinkTo) {
926 // If a previous operand picked a block to sink to, then this operand
927 // must be sinkable to the same block.
928 bool LocalUse = false;
929 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
930 BreakPHIEdge, LocalUse))
931 return nullptr;
932
933 continue;
934 }
935
936 // Otherwise, we should look at all the successors and decide which one
937 // we should sink to. If we have reliable block frequency information
938 // (frequency != 0) available, give successors with smaller frequencies
939 // higher priority, otherwise prioritize smaller loop depths.
940 for (MachineBasicBlock *SuccBlock :
941 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
942 bool LocalUse = false;
943 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
944 BreakPHIEdge, LocalUse)) {
945 SuccToSinkTo = SuccBlock;
946 break;
947 }
948 if (LocalUse)
949 // Def is used locally, it's never safe to move this def.
950 return nullptr;
951 }
952
953 // If we couldn't find a block to sink to, ignore this instruction.
954 if (!SuccToSinkTo)
955 return nullptr;
956 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
957 return nullptr;
958 }
959 }
960
961 // It is not possible to sink an instruction into its own block. This can
962 // happen with loops.
963 if (MBB == SuccToSinkTo)
964 return nullptr;
965
966 // It's not safe to sink instructions to EH landing pad. Control flow into
967 // landing pad is implicitly defined.
968 if (SuccToSinkTo && SuccToSinkTo->isEHPad())
969 return nullptr;
970
971 // It ought to be okay to sink instructions into an INLINEASM_BR target, but
972 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in
973 // the source block (which this code does not yet do). So for now, forbid
974 // doing so.
975 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget())
976 return nullptr;
977
978 return SuccToSinkTo;
979}
980
981/// Return true if MI is likely to be usable as a memory operation by the
982/// implicit null check optimization.
983///
984/// This is a "best effort" heuristic, and should not be relied upon for
985/// correctness. This returning true does not guarantee that the implicit null
986/// check optimization is legal over MI, and this returning false does not
987/// guarantee MI cannot possibly be used to do a null check.
988static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
989 const TargetInstrInfo *TII,
990 const TargetRegisterInfo *TRI) {
991 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
992
993 auto *MBB = MI.getParent();
994 if (MBB->pred_size() != 1)
995 return false;
996
997 auto *PredMBB = *MBB->pred_begin();
998 auto *PredBB = PredMBB->getBasicBlock();
999
1000 // Frontends that don't use implicit null checks have no reason to emit
1001 // branches with make.implicit metadata, and this function should always
1002 // return false for them.
1003 if (!PredBB ||
1004 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
1005 return false;
1006
1007 const MachineOperand *BaseOp;
1008 int64_t Offset;
1009 bool OffsetIsScalable;
1010 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
1011 return false;
1012
1013 if (!BaseOp->isReg())
1014 return false;
1015
1016 if (!(MI.mayLoad() && !MI.isPredicable()))
1017 return false;
1018
1019 MachineBranchPredicate MBP;
1020 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
1021 return false;
1022
1023 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
1024 (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
1025 MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
1026 MBP.LHS.getReg() == BaseOp->getReg();
1027}
1028
1029/// If the sunk instruction is a copy, try to forward the copy instead of
1030/// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
1031/// there's any subregister weirdness involved. Returns true if copy
1032/// propagation occurred.
1033static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI,
1034 Register Reg) {
1035 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
1036 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
1037
1038 // Copy DBG_VALUE operand and set the original to undef. We then check to
1039 // see whether this is something that can be copy-forwarded. If it isn't,
1040 // continue around the loop.
1041
1042 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
1043 auto CopyOperands = TII.isCopyInstr(SinkInst);
1044 if (!CopyOperands)
1045 return false;
1046 SrcMO = CopyOperands->Source;
1047 DstMO = CopyOperands->Destination;
1048
1049 // Check validity of forwarding this copy.
1050 bool PostRA = MRI.getNumVirtRegs() == 0;
1051
1052 // Trying to forward between physical and virtual registers is too hard.
1053 if (Reg.isVirtual() != SrcMO->getReg().isVirtual())
1054 return false;
1055
1056 // Only try virtual register copy-forwarding before regalloc, and physical
1057 // register copy-forwarding after regalloc.
1058 bool arePhysRegs = !Reg.isVirtual();
1059 if (arePhysRegs != PostRA)
1060 return false;
1061
1062 // Pre-regalloc, only forward if all subregisters agree (or there are no
1063 // subregs at all). More analysis might recover some forwardable copies.
1064 if (!PostRA)
1065 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg))
1066 if (DbgMO.getSubReg() != SrcMO->getSubReg() ||
1067 DbgMO.getSubReg() != DstMO->getSubReg())
1068 return false;
1069
1070 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
1071 // of this copy. Only forward the copy if the DBG_VALUE operand exactly
1072 // matches the copy destination.
1073 if (PostRA && Reg != DstMO->getReg())
1074 return false;
1075
1076 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) {
1077 DbgMO.setReg(SrcMO->getReg());
1078 DbgMO.setSubReg(SrcMO->getSubReg());
1079 }
1080 return true;
1081}
1082
1083using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>;
1084/// Sink an instruction and its associated debug instructions.
1085static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
1086 MachineBasicBlock::iterator InsertPos,
1087 SmallVectorImpl<MIRegs> &DbgValuesToSink) {
1088
1089 // If we cannot find a location to use (merge with), then we erase the debug
1090 // location to prevent debug-info driven tools from potentially reporting
1091 // wrong location information.
1092 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
1093 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
1094 InsertPos->getDebugLoc()));
1095 else
1096 MI.setDebugLoc(DebugLoc());
1097
1098 // Move the instruction.
1099 MachineBasicBlock *ParentBlock = MI.getParent();
1100 SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
1101 ++MachineBasicBlock::iterator(MI));
1102
1103 // Sink a copy of debug users to the insert position. Mark the original
1104 // DBG_VALUE location as 'undef', indicating that any earlier variable
1105 // location should be terminated as we've optimised away the value at this
1106 // point.
1107 for (auto DbgValueToSink : DbgValuesToSink) {
1108 MachineInstr *DbgMI = DbgValueToSink.first;
1109 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI);
1110 SuccToSinkTo.insert(InsertPos, NewDbgMI);
1111
1112 bool PropagatedAllSunkOps = true;
1113 for (unsigned Reg : DbgValueToSink.second) {
1114 if (DbgMI->hasDebugOperandForReg(Reg)) {
1115 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) {
1116 PropagatedAllSunkOps = false;
1117 break;
1118 }
1119 }
1120 }
1121 if (!PropagatedAllSunkOps)
1122 DbgMI->setDebugValueUndef();
1123 }
1124}
1125
1126/// hasStoreBetween - check if there is store betweeen straight line blocks From
1127/// and To.
1128bool MachineSinking::hasStoreBetween(MachineBasicBlock *From,
1129 MachineBasicBlock *To, MachineInstr &MI) {
1130 // Make sure From and To are in straight line which means From dominates To
1131 // and To post dominates From.
1132 if (!DT->dominates(From, To) || !PDT->dominates(To, From))
1133 return true;
1134
1135 auto BlockPair = std::make_pair(From, To);
1136
1137 // Does these two blocks pair be queried before and have a definite cached
1138 // result?
1139 if (HasStoreCache.find(BlockPair) != HasStoreCache.end())
1140 return HasStoreCache[BlockPair];
1141
1142 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end())
1143 return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) {
1144 return I->mayAlias(AA, MI, false);
1145 });
1146
1147 bool SawStore = false;
1148 bool HasAliasedStore = false;
1149 DenseSet<MachineBasicBlock *> HandledBlocks;
1150 DenseSet<MachineBasicBlock *> HandledDomBlocks;
1151 // Go through all reachable blocks from From.
1152 for (MachineBasicBlock *BB : depth_first(From)) {
1153 // We insert the instruction at the start of block To, so no need to worry
1154 // about stores inside To.
1155 // Store in block From should be already considered when just enter function
1156 // SinkInstruction.
1157 if (BB == To || BB == From)
1158 continue;
1159
1160 // We already handle this BB in previous iteration.
1161 if (HandledBlocks.count(BB))
1162 continue;
1163
1164 HandledBlocks.insert(BB);
1165 // To post dominates BB, it must be a path from block From.
1166 if (PDT->dominates(To, BB)) {
1167 if (!HandledDomBlocks.count(BB))
1168 HandledDomBlocks.insert(BB);
1169
1170 // If this BB is too big or the block number in straight line between From
1171 // and To is too big, stop searching to save compiling time.
1172 if (BB->size() > SinkLoadInstsPerBlockThreshold ||
1173 HandledDomBlocks.size() > SinkLoadBlocksThreshold) {
1174 for (auto *DomBB : HandledDomBlocks) {
1175 if (DomBB != BB && DT->dominates(DomBB, BB))
1176 HasStoreCache[std::make_pair(DomBB, To)] = true;
1177 else if(DomBB != BB && DT->dominates(BB, DomBB))
1178 HasStoreCache[std::make_pair(From, DomBB)] = true;
1179 }
1180 HasStoreCache[BlockPair] = true;
1181 return true;
1182 }
1183
1184 for (MachineInstr &I : *BB) {
1185 // Treat as alias conservatively for a call or an ordered memory
1186 // operation.
1187 if (I.isCall() || I.hasOrderedMemoryRef()) {
1188 for (auto *DomBB : HandledDomBlocks) {
1189 if (DomBB != BB && DT->dominates(DomBB, BB))
1190 HasStoreCache[std::make_pair(DomBB, To)] = true;
1191 else if(DomBB != BB && DT->dominates(BB, DomBB))
1192 HasStoreCache[std::make_pair(From, DomBB)] = true;
1193 }
1194 HasStoreCache[BlockPair] = true;
1195 return true;
1196 }
1197
1198 if (I.mayStore()) {
1199 SawStore = true;
1200 // We still have chance to sink MI if all stores between are not
1201 // aliased to MI.
1202 // Cache all store instructions, so that we don't need to go through
1203 // all From reachable blocks for next load instruction.
1204 if (I.mayAlias(AA, MI, false))
1205 HasAliasedStore = true;
1206 StoreInstrCache[BlockPair].push_back(&I);
1207 }
1208 }
1209 }
1210 }
1211 // If there is no store at all, cache the result.
1212 if (!SawStore)
1213 HasStoreCache[BlockPair] = false;
1214 return HasAliasedStore;
1215}
1216
1217/// Sink instructions into loops if profitable. This especially tries to prevent
1218/// register spills caused by register pressure if there is little to no
1219/// overhead moving instructions into loops.
1220bool MachineSinking::SinkIntoLoop(MachineLoop *L, MachineInstr &I) {
1221 LLVM_DEBUG(dbgs() << "LoopSink: Finding sink block for: " << I)do { } while (false);
1222 MachineBasicBlock *Preheader = L->getLoopPreheader();
1223 assert(Preheader && "Loop sink needs a preheader block")((void)0);
1224 MachineBasicBlock *SinkBlock = nullptr;
1225 bool CanSink = true;
1226 const MachineOperand &MO = I.getOperand(0);
1227
1228 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
1229 LLVM_DEBUG(dbgs() << "LoopSink: Analysing use: " << MI)do { } while (false);
1230 if (!L->contains(&MI)) {
1231 LLVM_DEBUG(dbgs() << "LoopSink: Use not in loop, can't sink.\n")do { } while (false);
1232 CanSink = false;
1233 break;
1234 }
1235
1236 // FIXME: Come up with a proper cost model that estimates whether sinking
1237 // the instruction (and thus possibly executing it on every loop
1238 // iteration) is more expensive than a register.
1239 // For now assumes that copies are cheap and thus almost always worth it.
1240 if (!MI.isCopy()) {
1241 LLVM_DEBUG(dbgs() << "LoopSink: Use is not a copy\n")do { } while (false);
1242 CanSink = false;
1243 break;
1244 }
1245 if (!SinkBlock) {
1246 SinkBlock = MI.getParent();
1247 LLVM_DEBUG(dbgs() << "LoopSink: Setting sink block to: "do { } while (false)
1248 << printMBBReference(*SinkBlock) << "\n")do { } while (false);
1249 continue;
1250 }
1251 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent());
1252 if (!SinkBlock) {
1253 LLVM_DEBUG(dbgs() << "LoopSink: Can't find nearest dominator\n")do { } while (false);
1254 CanSink = false;
1255 break;
1256 }
1257 LLVM_DEBUG(dbgs() << "LoopSink: Setting nearest common dom block: " <<do { } while (false)
1258 printMBBReference(*SinkBlock) << "\n")do { } while (false);
1259 }
1260
1261 if (!CanSink) {
1262 LLVM_DEBUG(dbgs() << "LoopSink: Can't sink instruction.\n")do { } while (false);
1263 return false;
1264 }
1265 if (!SinkBlock) {
1266 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, can't find sink block.\n")do { } while (false);
1267 return false;
1268 }
1269 if (SinkBlock == Preheader) {
1270 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, sink block is the preheader\n")do { } while (false);
1271 return false;
1272 }
1273 if (SinkBlock->size() > SinkLoadInstsPerBlockThreshold) {
1274 LLVM_DEBUG(dbgs() << "LoopSink: Not Sinking, block too large to analyse.\n")do { } while (false);
1275 return false;
1276 }
1277
1278 LLVM_DEBUG(dbgs() << "LoopSink: Sinking instruction!\n")do { } while (false);
1279 SinkBlock->splice(SinkBlock->getFirstNonPHI(), Preheader, I);
1280
1281 // The instruction is moved from its basic block, so do not retain the
1282 // debug information.
1283 assert(!I.isDebugInstr() && "Should not sink debug inst")((void)0);
1284 I.setDebugLoc(DebugLoc());
1285 return true;
1286}
1287
1288/// SinkInstruction - Determine whether it is safe to sink the specified machine
1289/// instruction out of its current block into a successor.
1290bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
1291 AllSuccsCache &AllSuccessors) {
1292 // Don't sink instructions that the target prefers not to sink.
1293 if (!TII->shouldSink(MI))
1294 return false;
1295
1296 // Check if it's safe to move the instruction.
1297 if (!MI.isSafeToMove(AA, SawStore))
1298 return false;
1299
1300 // Convergent operations may not be made control-dependent on additional
1301 // values.
1302 if (MI.isConvergent())
1303 return false;
1304
1305 // Don't break implicit null checks. This is a performance heuristic, and not
1306 // required for correctness.
1307 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
1308 return false;
1309
1310 // FIXME: This should include support for sinking instructions within the
1311 // block they are currently in to shorten the live ranges. We often get
1312 // instructions sunk into the top of a large block, but it would be better to
1313 // also sink them down before their first use in the block. This xform has to
1314 // be careful not to *increase* register pressure though, e.g. sinking
1315 // "x = y + z" down if it kills y and z would increase the live ranges of y
1316 // and z and only shrink the live range of x.
1317
1318 bool BreakPHIEdge = false;
1319 MachineBasicBlock *ParentBlock = MI.getParent();
1320 MachineBasicBlock *SuccToSinkTo =
1321 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
1322
1323 // If there are no outputs, it must have side-effects.
1324 if (!SuccToSinkTo)
1325 return false;
1326
1327 // If the instruction to move defines a dead physical register which is live
1328 // when leaving the basic block, don't move it because it could turn into a
1329 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
1330 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1331 const MachineOperand &MO = MI.getOperand(I);
1332 if (!MO.isReg()) continue;
1333 Register Reg = MO.getReg();
1334 if (Reg == 0 || !Register::isPhysicalRegister(Reg))
1335 continue;
1336 if (SuccToSinkTo->isLiveIn(Reg))
1337 return false;
1338 }
1339
1340 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo)do { } while (false);
1341
1342 // If the block has multiple predecessors, this is a critical edge.
1343 // Decide if we can sink along it or need to break the edge.
1344 if (SuccToSinkTo->pred_size() > 1) {
1345 // We cannot sink a load across a critical edge - there may be stores in
1346 // other code paths.
1347 bool TryBreak = false;
1348 bool Store =
1349 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true;
1350 if (!MI.isSafeToMove(AA, Store)) {
1351 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n")do { } while (false);
1352 TryBreak = true;
1353 }
1354
1355 // We don't want to sink across a critical edge if we don't dominate the
1356 // successor. We could be introducing calculations to new code paths.
1357 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
1358 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n")do { } while (false);
1359 TryBreak = true;
1360 }
1361
1362 // Don't sink instructions into a loop.
1363 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
1364 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n")do { } while (false);
1365 TryBreak = true;
1366 }
1367
1368 // Otherwise we are OK with sinking along a critical edge.
1369 if (!TryBreak)
1370 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n")do { } while (false);
1371 else {
1372 // Mark this edge as to be split.
1373 // If the edge can actually be split, the next iteration of the main loop
1374 // will sink MI in the newly created block.
1375 bool Status =
1376 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
1377 if (!Status)
1378 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "do { } while (false)
1379 "break critical edge\n")do { } while (false);
1380 // The instruction will not be sunk this time.
1381 return false;
1382 }
1383 }
1384
1385 if (BreakPHIEdge) {
1386 // BreakPHIEdge is true if all the uses are in the successor MBB being
1387 // sunken into and they are all PHI nodes. In this case, machine-sink must
1388 // break the critical edge first.
1389 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
1390 SuccToSinkTo, BreakPHIEdge);
1391 if (!Status)
1392 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "do { } while (false)
1393 "break critical edge\n")do { } while (false);
1394 // The instruction will not be sunk this time.
1395 return false;
1396 }
1397
1398 // Determine where to insert into. Skip phi nodes.
1399 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
1400 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
1401 ++InsertPos;
1402
1403 // Collect debug users of any vreg that this inst defines.
1404 SmallVector<MIRegs, 4> DbgUsersToSink;
1405 for (auto &MO : MI.operands()) {
1406 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1407 continue;
1408 if (!SeenDbgUsers.count(MO.getReg()))
1409 continue;
1410
1411 // Sink any users that don't pass any other DBG_VALUEs for this variable.
1412 auto &Users = SeenDbgUsers[MO.getReg()];
1413 for (auto &User : Users) {
1414 MachineInstr *DbgMI = User.getPointer();
1415 if (User.getInt()) {
1416 // This DBG_VALUE would re-order assignments. If we can't copy-propagate
1417 // it, it can't be recovered. Set it undef.
1418 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg()))
1419 DbgMI->setDebugValueUndef();
1420 } else {
1421 DbgUsersToSink.push_back(
1422 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())});
1423 }
1424 }
1425 }
1426
1427 // After sinking, some debug users may not be dominated any more. If possible,
1428 // copy-propagate their operands. As it's expensive, don't do this if there's
1429 // no debuginfo in the program.
1430 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
1431 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
1432
1433 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
1434
1435 // Conservatively, clear any kill flags, since it's possible that they are no
1436 // longer correct.
1437 // Note that we have to clear the kill flags for any register this instruction
1438 // uses as we may sink over another instruction which currently kills the
1439 // used registers.
1440 for (MachineOperand &MO : MI.operands()) {
1441 if (MO.isReg() && MO.isUse())
1442 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
1443 }
1444
1445 return true;
1446}
1447
1448void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
1449 MachineInstr &MI, MachineBasicBlock *TargetBlock) {
1450 assert(MI.isCopy())((void)0);
1451 assert(MI.getOperand(1).isReg())((void)0);
1452
1453 // Enumerate all users of vreg operands that are def'd. Skip those that will
1454 // be sunk. For the rest, if they are not dominated by the block we will sink
1455 // MI into, propagate the copy source to them.
1456 SmallVector<MachineInstr *, 4> DbgDefUsers;
1457 SmallVector<Register, 4> DbgUseRegs;
1458 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1459 for (auto &MO : MI.operands()) {
1460 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1461 continue;
1462 DbgUseRegs.push_back(MO.getReg());
1463 for (auto &User : MRI.use_instructions(MO.getReg())) {
1464 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
1465 continue;
1466
1467 // If is in same block, will either sink or be use-before-def.
1468 if (User.getParent() == MI.getParent())
1469 continue;
1470
1471 assert(User.hasDebugOperandForReg(MO.getReg()) &&((void)0)
1472 "DBG_VALUE user of vreg, but has no operand for it?")((void)0);
1473 DbgDefUsers.push_back(&User);
1474 }
1475 }
1476
1477 // Point the users of this copy that are no longer dominated, at the source
1478 // of the copy.
1479 for (auto *User : DbgDefUsers) {
1480 for (auto &Reg : DbgUseRegs) {
1481 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) {
1482 DbgOp.setReg(MI.getOperand(1).getReg());
1483 DbgOp.setSubReg(MI.getOperand(1).getSubReg());
1484 }
1485 }
1486 }
1487}
1488
1489//===----------------------------------------------------------------------===//
1490// This pass is not intended to be a replacement or a complete alternative
1491// for the pre-ra machine sink pass. It is only designed to sink COPY
1492// instructions which should be handled after RA.
1493//
1494// This pass sinks COPY instructions into a successor block, if the COPY is not
1495// used in the current block and the COPY is live-in to a single successor
1496// (i.e., doesn't require the COPY to be duplicated). This avoids executing the
1497// copy on paths where their results aren't needed. This also exposes
1498// additional opportunites for dead copy elimination and shrink wrapping.
1499//
1500// These copies were either not handled by or are inserted after the MachineSink
1501// pass. As an example of the former case, the MachineSink pass cannot sink
1502// COPY instructions with allocatable source registers; for AArch64 these type
1503// of copy instructions are frequently used to move function parameters (PhyReg)
1504// into virtual registers in the entry block.
1505//
1506// For the machine IR below, this pass will sink %w19 in the entry into its
1507// successor (%bb.1) because %w19 is only live-in in %bb.1.
1508// %bb.0:
1509// %wzr = SUBSWri %w1, 1
1510// %w19 = COPY %w0
1511// Bcc 11, %bb.2
1512// %bb.1:
1513// Live Ins: %w19
1514// BL @fun
1515// %w0 = ADDWrr %w0, %w19
1516// RET %w0
1517// %bb.2:
1518// %w0 = COPY %wzr
1519// RET %w0
1520// As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
1521// able to see %bb.0 as a candidate.
1522//===----------------------------------------------------------------------===//
1523namespace {
1524
1525class PostRAMachineSinking : public MachineFunctionPass {
1526public:
1527 bool runOnMachineFunction(MachineFunction &MF) override;
1528
1529 static char ID;
1530 PostRAMachineSinking() : MachineFunctionPass(ID) {}
1531 StringRef getPassName() const override { return "PostRA Machine Sink"; }
1532
1533 void getAnalysisUsage(AnalysisUsage &AU) const override {
1534 AU.setPreservesCFG();
1535 MachineFunctionPass::getAnalysisUsage(AU);
1536 }
1537
1538 MachineFunctionProperties getRequiredProperties() const override {
1539 return MachineFunctionProperties().set(
1540 MachineFunctionProperties::Property::NoVRegs);
1541 }
1542
1543private:
1544 /// Track which register units have been modified and used.
1545 LiveRegUnits ModifiedRegUnits, UsedRegUnits;
1546
1547 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
1548 /// entry in this map for each unit it touches. The DBG_VALUE's entry
1549 /// consists of a pointer to the instruction itself, and a vector of registers
1550 /// referred to by the instruction that overlap the key register unit.
1551 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs;
1552
1553 /// Sink Copy instructions unused in the same block close to their uses in
1554 /// successors.
1555 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
1556 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
1557};
1558} // namespace
1559
1560char PostRAMachineSinking::ID = 0;
1561char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
1562
1563INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",static void *initializePostRAMachineSinkingPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "PostRA Machine Sink"
, "postra-machine-sink", &PostRAMachineSinking::ID, PassInfo
::NormalCtor_t(callDefaultCtor<PostRAMachineSinking>), false
, false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializePostRAMachineSinkingPassFlag; void
llvm::initializePostRAMachineSinkingPass(PassRegistry &Registry
) { llvm::call_once(InitializePostRAMachineSinkingPassFlag, initializePostRAMachineSinkingPassOnce
, std::ref(Registry)); }
1564 "PostRA Machine Sink", false, false)static void *initializePostRAMachineSinkingPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "PostRA Machine Sink"
, "postra-machine-sink", &PostRAMachineSinking::ID, PassInfo
::NormalCtor_t(callDefaultCtor<PostRAMachineSinking>), false
, false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializePostRAMachineSinkingPassFlag; void
llvm::initializePostRAMachineSinkingPass(PassRegistry &Registry
) { llvm::call_once(InitializePostRAMachineSinkingPassFlag, initializePostRAMachineSinkingPassOnce
, std::ref(Registry)); }
1565
1566static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
1567 const TargetRegisterInfo *TRI) {
1568 LiveRegUnits LiveInRegUnits(*TRI);
1569 LiveInRegUnits.addLiveIns(MBB);
1570 return !LiveInRegUnits.available(Reg);
1571}
1572
1573static MachineBasicBlock *
1574getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1575 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1576 unsigned Reg, const TargetRegisterInfo *TRI) {
1577 // Try to find a single sinkable successor in which Reg is live-in.
1578 MachineBasicBlock *BB = nullptr;
1579 for (auto *SI : SinkableBBs) {
1580 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
1581 // If BB is set here, Reg is live-in to at least two sinkable successors,
1582 // so quit.
1583 if (BB)
1584 return nullptr;
1585 BB = SI;
1586 }
1587 }
1588 // Reg is not live-in to any sinkable successors.
1589 if (!BB)
1590 return nullptr;
1591
1592 // Check if any register aliased with Reg is live-in in other successors.
1593 for (auto *SI : CurBB.successors()) {
1594 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1595 return nullptr;
1596 }
1597 return BB;
1598}
1599
1600static MachineBasicBlock *
1601getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1602 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1603 ArrayRef<unsigned> DefedRegsInCopy,
1604 const TargetRegisterInfo *TRI) {
1605 MachineBasicBlock *SingleBB = nullptr;
1606 for (auto DefReg : DefedRegsInCopy) {
1607 MachineBasicBlock *BB =
1608 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1609 if (!BB || (SingleBB && SingleBB != BB))
1610 return nullptr;
1611 SingleBB = BB;
1612 }
1613 return SingleBB;
1614}
1615
1616static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1617 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1618 LiveRegUnits &UsedRegUnits,
1619 const TargetRegisterInfo *TRI) {
1620 for (auto U : UsedOpsInCopy) {
1621 MachineOperand &MO = MI->getOperand(U);
1622 Register SrcReg = MO.getReg();
1623 if (!UsedRegUnits.available(SrcReg)) {
1624 MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1625 for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1626 if (UI.killsRegister(SrcReg, TRI)) {
1627 UI.clearRegisterKills(SrcReg, TRI);
1628 MO.setIsKill(true);
1629 break;
1630 }
1631 }
1632 }
1633 }
1634}
1635
1636static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1637 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1638 SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1639 MachineFunction &MF = *SuccBB->getParent();
1640 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1641 for (unsigned DefReg : DefedRegsInCopy)
16
Assuming '__begin1' is not equal to '__end1'
1642 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
17
Loop condition is false. Execution continues on line 1641
1643 SuccBB->removeLiveIn(*S);
1644 for (auto U : UsedOpsInCopy) {
18
Assuming '__begin1' is not equal to '__end1'
1645 Register SrcReg = MI->getOperand(U).getReg();
1646 LaneBitmask Mask;
1647 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) {
19
Calling constructor for 'MCRegUnitMaskIterator'
1648 Mask |= (*S).second;
1649 }
1650 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll());
1651 }
1652 SuccBB->sortUniqueLiveIns();
1653}
1654
1655static bool hasRegisterDependency(MachineInstr *MI,
1656 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1657 SmallVectorImpl<unsigned> &DefedRegsInCopy,
1658 LiveRegUnits &ModifiedRegUnits,
1659 LiveRegUnits &UsedRegUnits) {
1660 bool HasRegDependency = false;
1661 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1662 MachineOperand &MO = MI->getOperand(i);
1663 if (!MO.isReg())
1664 continue;
1665 Register Reg = MO.getReg();
1666 if (!Reg)
1667 continue;
1668 if (MO.isDef()) {
1669 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1670 HasRegDependency = true;
1671 break;
1672 }
1673 DefedRegsInCopy.push_back(Reg);
1674
1675 // FIXME: instead of isUse(), readsReg() would be a better fix here,
1676 // For example, we can ignore modifications in reg with undef. However,
1677 // it's not perfectly clear if skipping the internal read is safe in all
1678 // other targets.
1679 } else if (MO.isUse()) {
1680 if (!ModifiedRegUnits.available(Reg)) {
1681 HasRegDependency = true;
1682 break;
1683 }
1684 UsedOpsInCopy.push_back(i);
1685 }
1686 }
1687 return HasRegDependency;
1688}
1689
1690static SmallSet<MCRegister, 4> getRegUnits(MCRegister Reg,
1691 const TargetRegisterInfo *TRI) {
1692 SmallSet<MCRegister, 4> RegUnits;
1693 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
1694 RegUnits.insert(*RI);
1695 return RegUnits;
1696}
1697
1698bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1699 MachineFunction &MF,
1700 const TargetRegisterInfo *TRI,
1701 const TargetInstrInfo *TII) {
1702 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1703 // FIXME: For now, we sink only to a successor which has a single predecessor
1704 // so that we can directly sink COPY instructions to the successor without
1705 // adding any new block or branch instruction.
1706 for (MachineBasicBlock *SI : CurBB.successors())
1707 if (!SI->livein_empty() && SI->pred_size() == 1)
1708 SinkableBBs.insert(SI);
1709
1710 if (SinkableBBs.empty())
4
Taking false branch
1711 return false;
1712
1713 bool Changed = false;
1714
1715 // Track which registers have been modified and used between the end of the
1716 // block and the current instruction.
1717 ModifiedRegUnits.clear();
1718 UsedRegUnits.clear();
1719 SeenDbgInstrs.clear();
1720
1721 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
5
Loop condition is true. Entering loop body
1722 MachineInstr *MI = &*I;
1723 ++I;
1724
1725 // Track the operand index for use in Copy.
1726 SmallVector<unsigned, 2> UsedOpsInCopy;
1727 // Track the register number defed in Copy.
1728 SmallVector<unsigned, 2> DefedRegsInCopy;
1729
1730 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1731 // for DBG_VALUEs later, record them when they're encountered.
1732 if (MI->isDebugValue()) {
6
Taking false branch
1733 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits;
1734 bool IsValid = true;
1735 for (MachineOperand &MO : MI->debug_operands()) {
1736 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
1737 // Bail if we can already tell the sink would be rejected, rather
1738 // than needlessly accumulating lots of DBG_VALUEs.
1739 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1740 ModifiedRegUnits, UsedRegUnits)) {
1741 IsValid = false;
1742 break;
1743 }
1744
1745 // Record debug use of each reg unit.
1746 SmallSet<MCRegister, 4> RegUnits = getRegUnits(MO.getReg(), TRI);
1747 for (MCRegister Reg : RegUnits)
1748 MIUnits[Reg].push_back(MO.getReg());
1749 }
1750 }
1751 if (IsValid) {
1752 for (auto RegOps : MIUnits)
1753 SeenDbgInstrs[RegOps.first].push_back({MI, RegOps.second});
1754 }
1755 continue;
1756 }
1757
1758 if (MI->isDebugOrPseudoInstr())
7
Taking false branch
1759 continue;
1760
1761 // Do not move any instruction across function call.
1762 if (MI->isCall())
8
Assuming the condition is false
9
Taking false branch
1763 return false;
1764
1765 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
10
Assuming the condition is false
11
Taking false branch
1766 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1767 TRI);
1768 continue;
1769 }
1770
1771 // Don't sink the COPY if it would violate a register dependency.
1772 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
12
Taking false branch
1773 ModifiedRegUnits, UsedRegUnits)) {
1774 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1775 TRI);
1776 continue;
1777 }
1778 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&((void)0)
1779 "Unexpect SrcReg or DefReg")((void)0);
1780 MachineBasicBlock *SuccBB =
1781 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1782 // Don't sink if we cannot find a single sinkable successor in which Reg
1783 // is live-in.
1784 if (!SuccBB
12.1
'SuccBB' is non-null
12.1
'SuccBB' is non-null
) {
13
Taking false branch
1785 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1786 TRI);
1787 continue;
1788 }
1789 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&((void)0)
1790 "Unexpected predecessor")((void)0);
1791
1792 // Collect DBG_VALUEs that must sink with this copy. We've previously
1793 // recorded which reg units that DBG_VALUEs read, if this instruction
1794 // writes any of those units then the corresponding DBG_VALUEs must sink.
1795 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap;
1796 for (auto &MO : MI->operands()) {
14
Assuming '__begin2' is equal to '__end2'
1797 if (!MO.isReg() || !MO.isDef())
1798 continue;
1799
1800 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI);
1801 for (MCRegister Reg : Units) {
1802 for (auto MIRegs : SeenDbgInstrs.lookup(Reg)) {
1803 auto &Regs = DbgValsToSinkMap[MIRegs.first];
1804 for (unsigned Reg : MIRegs.second)
1805 Regs.push_back(Reg);
1806 }
1807 }
1808 }
1809 SmallVector<MIRegs, 4> DbgValsToSink(DbgValsToSinkMap.begin(),
1810 DbgValsToSinkMap.end());
1811
1812 // Clear the kill flag if SrcReg is killed between MI and the end of the
1813 // block.
1814 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1815 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1816 performSink(*MI, *SuccBB, InsertPos, DbgValsToSink);
1817 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
15
Calling 'updateLiveIn'
1818
1819 Changed = true;
1820 ++NumPostRACopySink;
1821 }
1822 return Changed;
1823}
1824
1825bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1826 if (skipFunction(MF.getFunction()))
1
Assuming the condition is false
2
Taking false branch
1827 return false;
1828
1829 bool Changed = false;
1830 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1831 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1832
1833 ModifiedRegUnits.init(*TRI);
1834 UsedRegUnits.init(*TRI);
1835 for (auto &BB : MF)
1836 Changed |= tryToSinkCopy(BB, MF, TRI, TII);
3
Calling 'PostRAMachineSinking::tryToSinkCopy'
1837
1838 return Changed;
1839}

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCRegisterInfo.h

1//===- MC/MCRegisterInfo.h - Target Register Description --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes an abstract interface used to get information about a
10// target machines register file. This information is used for a variety of
11// purposed, especially register allocation.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_MC_MCREGISTERINFO_H
16#define LLVM_MC_MCREGISTERINFO_H
17
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/iterator.h"
20#include "llvm/ADT/iterator_range.h"
21#include "llvm/MC/LaneBitmask.h"
22#include "llvm/MC/MCRegister.h"
23#include <cassert>
24#include <cstdint>
25#include <iterator>
26#include <utility>
27
28namespace llvm {
29
30/// MCRegisterClass - Base class of TargetRegisterClass.
31class MCRegisterClass {
32public:
33 using iterator = const MCPhysReg*;
34 using const_iterator = const MCPhysReg*;
35
36 const iterator RegsBegin;
37 const uint8_t *const RegSet;
38 const uint32_t NameIdx;
39 const uint16_t RegsSize;
40 const uint16_t RegSetSize;
41 const uint16_t ID;
42 const uint16_t RegSizeInBits;
43 const int8_t CopyCost;
44 const bool Allocatable;
45
46 /// getID() - Return the register class ID number.
47 ///
48 unsigned getID() const { return ID; }
49
50 /// begin/end - Return all of the registers in this class.
51 ///
52 iterator begin() const { return RegsBegin; }
53 iterator end() const { return RegsBegin + RegsSize; }
54
55 /// getNumRegs - Return the number of registers in this class.
56 ///
57 unsigned getNumRegs() const { return RegsSize; }
58
59 /// getRegister - Return the specified register in the class.
60 ///
61 unsigned getRegister(unsigned i) const {
62 assert(i < getNumRegs() && "Register number out of range!")((void)0);
63 return RegsBegin[i];
64 }
65
66 /// contains - Return true if the specified register is included in this
67 /// register class. This does not include virtual registers.
68 bool contains(MCRegister Reg) const {
69 unsigned RegNo = unsigned(Reg);
70 unsigned InByte = RegNo % 8;
71 unsigned Byte = RegNo / 8;
72 if (Byte >= RegSetSize)
73 return false;
74 return (RegSet[Byte] & (1 << InByte)) != 0;
75 }
76
77 /// contains - Return true if both registers are in this class.
78 bool contains(MCRegister Reg1, MCRegister Reg2) const {
79 return contains(Reg1) && contains(Reg2);
80 }
81
82 /// Return the size of the physical register in bits if we are able to
83 /// determine it. This always returns zero for registers of targets that use
84 /// HW modes, as we need more information to determine the size of registers
85 /// in such cases. Use TargetRegisterInfo to cover them.
86 unsigned getSizeInBits() const { return RegSizeInBits; }
87
88 /// getCopyCost - Return the cost of copying a value between two registers in
89 /// this class. A negative number means the register class is very expensive
90 /// to copy e.g. status flag register classes.
91 int getCopyCost() const { return CopyCost; }
92
93 /// isAllocatable - Return true if this register class may be used to create
94 /// virtual registers.
95 bool isAllocatable() const { return Allocatable; }
96};
97
98/// MCRegisterDesc - This record contains information about a particular
99/// register. The SubRegs field is a zero terminated array of registers that
100/// are sub-registers of the specific register, e.g. AL, AH are sub-registers
101/// of AX. The SuperRegs field is a zero terminated array of registers that are
102/// super-registers of the specific register, e.g. RAX, EAX, are
103/// super-registers of AX.
104///
105struct MCRegisterDesc {
106 uint32_t Name; // Printable name for the reg (for debugging)
107 uint32_t SubRegs; // Sub-register set, described above
108 uint32_t SuperRegs; // Super-register set, described above
109
110 // Offset into MCRI::SubRegIndices of a list of sub-register indices for each
111 // sub-register in SubRegs.
112 uint32_t SubRegIndices;
113
114 // RegUnits - Points to the list of register units. The low 4 bits holds the
115 // Scale, the high bits hold an offset into DiffLists. See MCRegUnitIterator.
116 uint32_t RegUnits;
117
118 /// Index into list with lane mask sequences. The sequence contains a lanemask
119 /// for every register unit.
120 uint16_t RegUnitLaneMasks;
121};
122
123/// MCRegisterInfo base class - We assume that the target defines a static
124/// array of MCRegisterDesc objects that represent all of the machine
125/// registers that the target has. As such, we simply have to track a pointer
126/// to this array so that we can turn register number into a register
127/// descriptor.
128///
129/// Note this class is designed to be a base class of TargetRegisterInfo, which
130/// is the interface used by codegen. However, specific targets *should never*
131/// specialize this class. MCRegisterInfo should only contain getters to access
132/// TableGen generated physical register data. It must not be extended with
133/// virtual methods.
134///
135class MCRegisterInfo {
136public:
137 using regclass_iterator = const MCRegisterClass *;
138
139 /// DwarfLLVMRegPair - Emitted by tablegen so Dwarf<->LLVM reg mappings can be
140 /// performed with a binary search.
141 struct DwarfLLVMRegPair {
142 unsigned FromReg;
143 unsigned ToReg;
144
145 bool operator<(DwarfLLVMRegPair RHS) const { return FromReg < RHS.FromReg; }
146 };
147
148 /// SubRegCoveredBits - Emitted by tablegen: bit range covered by a subreg
149 /// index, -1 in any being invalid.
150 struct SubRegCoveredBits {
151 uint16_t Offset;
152 uint16_t Size;
153 };
154
155private:
156 const MCRegisterDesc *Desc; // Pointer to the descriptor array
157 unsigned NumRegs; // Number of entries in the array
158 MCRegister RAReg; // Return address register
159 MCRegister PCReg; // Program counter register
160 const MCRegisterClass *Classes; // Pointer to the regclass array
161 unsigned NumClasses; // Number of entries in the array
162 unsigned NumRegUnits; // Number of regunits.
163 const MCPhysReg (*RegUnitRoots)[2]; // Pointer to regunit root table.
164 const MCPhysReg *DiffLists; // Pointer to the difflists array
165 const LaneBitmask *RegUnitMaskSequences; // Pointer to lane mask sequences
166 // for register units.
167 const char *RegStrings; // Pointer to the string table.
168 const char *RegClassStrings; // Pointer to the class strings.
169 const uint16_t *SubRegIndices; // Pointer to the subreg lookup
170 // array.
171 const SubRegCoveredBits *SubRegIdxRanges; // Pointer to the subreg covered
172 // bit ranges array.
173 unsigned NumSubRegIndices; // Number of subreg indices.
174 const uint16_t *RegEncodingTable; // Pointer to array of register
175 // encodings.
176
177 unsigned L2DwarfRegsSize;
178 unsigned EHL2DwarfRegsSize;
179 unsigned Dwarf2LRegsSize;
180 unsigned EHDwarf2LRegsSize;
181 const DwarfLLVMRegPair *L2DwarfRegs; // LLVM to Dwarf regs mapping
182 const DwarfLLVMRegPair *EHL2DwarfRegs; // LLVM to Dwarf regs mapping EH
183 const DwarfLLVMRegPair *Dwarf2LRegs; // Dwarf to LLVM regs mapping
184 const DwarfLLVMRegPair *EHDwarf2LRegs; // Dwarf to LLVM regs mapping EH
185 DenseMap<MCRegister, int> L2SEHRegs; // LLVM to SEH regs mapping
186 DenseMap<MCRegister, int> L2CVRegs; // LLVM to CV regs mapping
187
188public:
189 // Forward declaration to become a friend class of DiffListIterator.
190 template <class SubT> class mc_difflist_iterator;
191
192 /// DiffListIterator - Base iterator class that can traverse the
193 /// differentially encoded register and regunit lists in DiffLists.
194 /// Don't use this class directly, use one of the specialized sub-classes
195 /// defined below.
196 class DiffListIterator {
197 uint16_t Val = 0;
198 const MCPhysReg *List = nullptr;
199
200 protected:
201 /// Create an invalid iterator. Call init() to point to something useful.
202 DiffListIterator() = default;
203
204 /// init - Point the iterator to InitVal, decoding subsequent values from
205 /// DiffList. The iterator will initially point to InitVal, sub-classes are
206 /// responsible for skipping the seed value if it is not part of the list.
207 void init(MCPhysReg InitVal, const MCPhysReg *DiffList) {
208 Val = InitVal;
209 List = DiffList;
210 }
211
212 /// advance - Move to the next list position, return the applied
213 /// differential. This function does not detect the end of the list, that
214 /// is the caller's responsibility (by checking for a 0 return value).
215 MCRegister advance() {
216 assert(isValid() && "Cannot move off the end of the list.")((void)0);
217 MCPhysReg D = *List++;
22
Dereference of null pointer
218 Val += D;
219 return D;
220 }
221
222 public:
223 /// isValid - returns true if this iterator is not yet at the end.
224 bool isValid() const { return List; }
225
226 /// Dereference the iterator to get the value at the current position.
227 MCRegister operator*() const { return Val; }
228
229 /// Pre-increment to move to the next position.
230 void operator++() {
231 // The end of the list is encoded as a 0 differential.
232 if (!advance())
233 List = nullptr;
234 }
235
236 template <class SubT> friend class MCRegisterInfo::mc_difflist_iterator;
237 };
238
239 /// Forward iterator using DiffListIterator.
240 template <class SubT>
241 class mc_difflist_iterator
242 : public iterator_facade_base<mc_difflist_iterator<SubT>,
243 std::forward_iterator_tag, MCPhysReg> {
244 MCRegisterInfo::DiffListIterator Iter;
245 /// Current value as MCPhysReg, so we can return a reference to it.
246 MCPhysReg Val;
247
248 protected:
249 mc_difflist_iterator(MCRegisterInfo::DiffListIterator Iter) : Iter(Iter) {}
250
251 // Allow conversion between instantiations where valid.
252 mc_difflist_iterator(MCRegister Reg, const MCPhysReg *DiffList) {
253 Iter.init(Reg, DiffList);
254 Val = *Iter;
255 }
256
257 public:
258 // Allow default construction to build variables, but this doesn't build
259 // a useful iterator.
260 mc_difflist_iterator() = default;
261
262 /// Return an iterator past the last element.
263 static SubT end() {
264 SubT End;
265 End.Iter.List = nullptr;
266 return End;
267 }
268
269 bool operator==(const mc_difflist_iterator &Arg) const {
270 return Iter.List == Arg.Iter.List;
271 }
272
273 const MCPhysReg &operator*() const { return Val; }
274
275 using mc_difflist_iterator::iterator_facade_base::operator++;
276 void operator++() {
277 assert(Iter.List && "Cannot increment the end iterator!")((void)0);
278 ++Iter;
279 Val = *Iter;
280 }
281 };
282
283 /// Forward iterator over all sub-registers.
284 /// TODO: Replace remaining uses of MCSubRegIterator.
285 class mc_subreg_iterator : public mc_difflist_iterator<mc_subreg_iterator> {
286 public:
287 mc_subreg_iterator(MCRegisterInfo::DiffListIterator Iter)
288 : mc_difflist_iterator(Iter) {}
289 mc_subreg_iterator() = default;
290 mc_subreg_iterator(MCRegister Reg, const MCRegisterInfo *MCRI)
291 : mc_difflist_iterator(Reg, MCRI->DiffLists + MCRI->get(Reg).SubRegs) {}
292 };
293
294 /// Forward iterator over all super-registers.
295 /// TODO: Replace remaining uses of MCSuperRegIterator.
296 class mc_superreg_iterator
297 : public mc_difflist_iterator<mc_superreg_iterator> {
298 public:
299 mc_superreg_iterator(MCRegisterInfo::DiffListIterator Iter)
300 : mc_difflist_iterator(Iter) {}
301 mc_superreg_iterator() = default;
302 mc_superreg_iterator(MCRegister Reg, const MCRegisterInfo *MCRI)
303 : mc_difflist_iterator(Reg,
304 MCRI->DiffLists + MCRI->get(Reg).SuperRegs) {}
305 };
306
307 /// Return an iterator range over all sub-registers of \p Reg, excluding \p
308 /// Reg.
309 iterator_range<mc_subreg_iterator> subregs(MCRegister Reg) const {
310 return make_range(std::next(mc_subreg_iterator(Reg, this)),
311 mc_subreg_iterator::end());
312 }
313
314 /// Return an iterator range over all sub-registers of \p Reg, including \p
315 /// Reg.
316 iterator_range<mc_subreg_iterator> subregs_inclusive(MCRegister Reg) const {
317 return make_range({Reg, this}, mc_subreg_iterator::end());
318 }
319
320 /// Return an iterator range over all super-registers of \p Reg, excluding \p
321 /// Reg.
322 iterator_range<mc_superreg_iterator> superregs(MCRegister Reg) const {
323 return make_range(std::next(mc_superreg_iterator(Reg, this)),
324 mc_superreg_iterator::end());
325 }
326
327 /// Return an iterator range over all super-registers of \p Reg, including \p
328 /// Reg.
329 iterator_range<mc_superreg_iterator>
330 superregs_inclusive(MCRegister Reg) const {
331 return make_range({Reg, this}, mc_superreg_iterator::end());
332 }
333
334 /// Return an iterator range over all sub- and super-registers of \p Reg,
335 /// including \p Reg.
336 detail::concat_range<const MCPhysReg, iterator_range<mc_subreg_iterator>,
337 iterator_range<mc_superreg_iterator>>
338 sub_and_superregs_inclusive(MCRegister Reg) const {
339 return concat<const MCPhysReg>(subregs_inclusive(Reg), superregs(Reg));
340 }
341
342 // These iterators are allowed to sub-class DiffListIterator and access
343 // internal list pointers.
344 friend class MCSubRegIterator;
345 friend class MCSubRegIndexIterator;
346 friend class MCSuperRegIterator;
347 friend class MCRegUnitIterator;
348 friend class MCRegUnitMaskIterator;
349 friend class MCRegUnitRootIterator;
350
351 /// Initialize MCRegisterInfo, called by TableGen
352 /// auto-generated routines. *DO NOT USE*.
353 void InitMCRegisterInfo(const MCRegisterDesc *D, unsigned NR, unsigned RA,
354 unsigned PC,
355 const MCRegisterClass *C, unsigned NC,
356 const MCPhysReg (*RURoots)[2],
357 unsigned NRU,
358 const MCPhysReg *DL,
359 const LaneBitmask *RUMS,
360 const char *Strings,
361 const char *ClassStrings,
362 const uint16_t *SubIndices,
363 unsigned NumIndices,
364 const SubRegCoveredBits *SubIdxRanges,
365 const uint16_t *RET) {
366 Desc = D;
367 NumRegs = NR;
368 RAReg = RA;
369 PCReg = PC;
370 Classes = C;
371 DiffLists = DL;
372 RegUnitMaskSequences = RUMS;
373 RegStrings = Strings;
374 RegClassStrings = ClassStrings;
375 NumClasses = NC;
376 RegUnitRoots = RURoots;
377 NumRegUnits = NRU;
378 SubRegIndices = SubIndices;
379 NumSubRegIndices = NumIndices;
380 SubRegIdxRanges = SubIdxRanges;
381 RegEncodingTable = RET;
382
383 // Initialize DWARF register mapping variables
384 EHL2DwarfRegs = nullptr;
385 EHL2DwarfRegsSize = 0;
386 L2DwarfRegs = nullptr;
387 L2DwarfRegsSize = 0;
388 EHDwarf2LRegs = nullptr;
389 EHDwarf2LRegsSize = 0;
390 Dwarf2LRegs = nullptr;
391 Dwarf2LRegsSize = 0;
392 }
393
394 /// Used to initialize LLVM register to Dwarf
395 /// register number mapping. Called by TableGen auto-generated routines.
396 /// *DO NOT USE*.
397 void mapLLVMRegsToDwarfRegs(const DwarfLLVMRegPair *Map, unsigned Size,
398 bool isEH) {
399 if (isEH) {
400 EHL2DwarfRegs = Map;
401 EHL2DwarfRegsSize = Size;
402 } else {
403 L2DwarfRegs = Map;
404 L2DwarfRegsSize = Size;
405 }
406 }
407
408 /// Used to initialize Dwarf register to LLVM
409 /// register number mapping. Called by TableGen auto-generated routines.
410 /// *DO NOT USE*.
411 void mapDwarfRegsToLLVMRegs(const DwarfLLVMRegPair *Map, unsigned Size,
412 bool isEH) {
413 if (isEH) {
414 EHDwarf2LRegs = Map;
415 EHDwarf2LRegsSize = Size;
416 } else {
417 Dwarf2LRegs = Map;
418 Dwarf2LRegsSize = Size;
419 }
420 }
421
422 /// mapLLVMRegToSEHReg - Used to initialize LLVM register to SEH register
423 /// number mapping. By default the SEH register number is just the same
424 /// as the LLVM register number.
425 /// FIXME: TableGen these numbers. Currently this requires target specific
426 /// initialization code.
427 void mapLLVMRegToSEHReg(MCRegister LLVMReg, int SEHReg) {
428 L2SEHRegs[LLVMReg] = SEHReg;
429 }
430
431 void mapLLVMRegToCVReg(MCRegister LLVMReg, int CVReg) {
432 L2CVRegs[LLVMReg] = CVReg;
433 }
434
435 /// This method should return the register where the return
436 /// address can be found.
437 MCRegister getRARegister() const {
438 return RAReg;
439 }
440
441 /// Return the register which is the program counter.
442 MCRegister getProgramCounter() const {
443 return PCReg;
444 }
445
446 const MCRegisterDesc &operator[](MCRegister RegNo) const {
447 assert(RegNo < NumRegs &&((void)0)
448 "Attempting to access record for invalid register number!")((void)0);
449 return Desc[RegNo];
450 }
451
452 /// Provide a get method, equivalent to [], but more useful with a
453 /// pointer to this object.
454 const MCRegisterDesc &get(MCRegister RegNo) const {
455 return operator[](RegNo);
456 }
457
458 /// Returns the physical register number of sub-register "Index"
459 /// for physical register RegNo. Return zero if the sub-register does not
460 /// exist.
461 MCRegister getSubReg(MCRegister Reg, unsigned Idx) const;
462
463 /// Return a super-register of the specified register
464 /// Reg so its sub-register of index SubIdx is Reg.
465 MCRegister getMatchingSuperReg(MCRegister Reg, unsigned SubIdx,
466 const MCRegisterClass *RC) const;
467
468 /// For a given register pair, return the sub-register index
469 /// if the second register is a sub-register of the first. Return zero
470 /// otherwise.
471 unsigned getSubRegIndex(MCRegister RegNo, MCRegister SubRegNo) const;
472
473 /// Get the size of the bit range covered by a sub-register index.
474 /// If the index isn't continuous, return the sum of the sizes of its parts.
475 /// If the index is used to access subregisters of different sizes, return -1.
476 unsigned getSubRegIdxSize(unsigned Idx) const;
477
478 /// Get the offset of the bit range covered by a sub-register index.
479 /// If an Offset doesn't make sense (the index isn't continuous, or is used to
480 /// access sub-registers at different offsets), return -1.
481 unsigned getSubRegIdxOffset(unsigned Idx) const;
482
483 /// Return the human-readable symbolic target-specific name for the
484 /// specified physical register.
485 const char *getName(MCRegister RegNo) const {
486 return RegStrings + get(RegNo).Name;
487 }
488
489 /// Return the number of registers this target has (useful for
490 /// sizing arrays holding per register information)
491 unsigned getNumRegs() const {
492 return NumRegs;
493 }
494
495 /// Return the number of sub-register indices
496 /// understood by the target. Index 0 is reserved for the no-op sub-register,
497 /// while 1 to getNumSubRegIndices() - 1 represent real sub-registers.
498 unsigned getNumSubRegIndices() const {
499 return NumSubRegIndices;
500 }
501
502 /// Return the number of (native) register units in the
503 /// target. Register units are numbered from 0 to getNumRegUnits() - 1. They
504 /// can be accessed through MCRegUnitIterator defined below.
505 unsigned getNumRegUnits() const {
506 return NumRegUnits;
507 }
508
509 /// Map a target register to an equivalent dwarf register
510 /// number. Returns -1 if there is no equivalent value. The second
511 /// parameter allows targets to use different numberings for EH info and
512 /// debugging info.
513 int getDwarfRegNum(MCRegister RegNum, bool isEH) const;
514
515 /// Map a dwarf register back to a target register. Returns None is there is
516 /// no mapping.
517 Optional<unsigned> getLLVMRegNum(unsigned RegNum, bool isEH) const;
518
519 /// Map a target EH register number to an equivalent DWARF register
520 /// number.
521 int getDwarfRegNumFromDwarfEHRegNum(unsigned RegNum) const;
522
523 /// Map a target register to an equivalent SEH register
524 /// number. Returns LLVM register number if there is no equivalent value.
525 int getSEHRegNum(MCRegister RegNum) const;
526
527 /// Map a target register to an equivalent CodeView register
528 /// number.
529 int getCodeViewRegNum(MCRegister RegNum) const;
530
531 regclass_iterator regclass_begin() const { return Classes; }
532 regclass_iterator regclass_end() const { return Classes+NumClasses; }
533 iterator_range<regclass_iterator> regclasses() const {
534 return make_range(regclass_begin(), regclass_end());
535 }
536
537 unsigned getNumRegClasses() const {
538 return (unsigned)(regclass_end()-regclass_begin());
539 }
540
541 /// Returns the register class associated with the enumeration
542 /// value. See class MCOperandInfo.
543 const MCRegisterClass& getRegClass(unsigned i) const {
544 assert(i < getNumRegClasses() && "Register Class ID out of range")((void)0);
545 return Classes[i];
546 }
547
548 const char *getRegClassName(const MCRegisterClass *Class) const {
549 return RegClassStrings + Class->NameIdx;
550 }
551
552 /// Returns the encoding for RegNo
553 uint16_t getEncodingValue(MCRegister RegNo) const {
554 assert(RegNo < NumRegs &&((void)0)
555 "Attempting to get encoding for invalid register number!")((void)0);
556 return RegEncodingTable[RegNo];
557 }
558
559 /// Returns true if RegB is a sub-register of RegA.
560 bool isSubRegister(MCRegister RegA, MCRegister RegB) const {
561 return isSuperRegister(RegB, RegA);
562 }
563
564 /// Returns true if RegB is a super-register of RegA.
565 bool isSuperRegister(MCRegister RegA, MCRegister RegB) const;
566
567 /// Returns true if RegB is a sub-register of RegA or if RegB == RegA.
568 bool isSubRegisterEq(MCRegister RegA, MCRegister RegB) const {
569 return isSuperRegisterEq(RegB, RegA);
570 }
571
572 /// Returns true if RegB is a super-register of RegA or if
573 /// RegB == RegA.
574 bool isSuperRegisterEq(MCRegister RegA, MCRegister RegB) const {
575 return RegA == RegB || isSuperRegister(RegA, RegB);
576 }
577
578 /// Returns true if RegB is a super-register or sub-register of RegA
579 /// or if RegB == RegA.
580 bool isSuperOrSubRegisterEq(MCRegister RegA, MCRegister RegB) const {
581 return isSubRegisterEq(RegA, RegB) || isSuperRegister(RegA, RegB);
582 }
583};
584
585//===----------------------------------------------------------------------===//
586// Register List Iterators
587//===----------------------------------------------------------------------===//
588
589// MCRegisterInfo provides lists of super-registers, sub-registers, and
590// aliasing registers. Use these iterator classes to traverse the lists.
591
592/// MCSubRegIterator enumerates all sub-registers of Reg.
593/// If IncludeSelf is set, Reg itself is included in the list.
594class MCSubRegIterator : public MCRegisterInfo::DiffListIterator {
595public:
596 MCSubRegIterator(MCRegister Reg, const MCRegisterInfo *MCRI,
597 bool IncludeSelf = false) {
598 init(Reg, MCRI->DiffLists + MCRI->get(Reg).SubRegs);
599 // Initially, the iterator points to Reg itself.
600 if (!IncludeSelf)
601 ++*this;
602 }
603};
604
605/// Iterator that enumerates the sub-registers of a Reg and the associated
606/// sub-register indices.
607class MCSubRegIndexIterator {
608 MCSubRegIterator SRIter;
609 const uint16_t *SRIndex;
610
611public:
612 /// Constructs an iterator that traverses subregisters and their
613 /// associated subregister indices.
614 MCSubRegIndexIterator(MCRegister Reg, const MCRegisterInfo *MCRI)
615 : SRIter(Reg, MCRI) {
616 SRIndex = MCRI->SubRegIndices + MCRI->get(Reg).SubRegIndices;
617 }
618
619 /// Returns current sub-register.
620 MCRegister getSubReg() const {
621 return *SRIter;
622 }
623
624 /// Returns sub-register index of the current sub-register.
625 unsigned getSubRegIndex() const {
626 return *SRIndex;
627 }
628
629 /// Returns true if this iterator is not yet at the end.
630 bool isValid() const { return SRIter.isValid(); }
631
632 /// Moves to the next position.
633 void operator++() {
634 ++SRIter;
635 ++SRIndex;
636 }
637};
638
639/// MCSuperRegIterator enumerates all super-registers of Reg.
640/// If IncludeSelf is set, Reg itself is included in the list.
641class MCSuperRegIterator : public MCRegisterInfo::DiffListIterator {
642public:
643 MCSuperRegIterator() = default;
644
645 MCSuperRegIterator(MCRegister Reg, const MCRegisterInfo *MCRI,
646 bool IncludeSelf = false) {
647 init(Reg, MCRI->DiffLists + MCRI->get(Reg).SuperRegs);
648 // Initially, the iterator points to Reg itself.
649 if (!IncludeSelf)
650 ++*this;
651 }
652};
653
654// Definition for isSuperRegister. Put it down here since it needs the
655// iterator defined above in addition to the MCRegisterInfo class itself.
656inline bool MCRegisterInfo::isSuperRegister(MCRegister RegA, MCRegister RegB) const{
657 for (MCSuperRegIterator I(RegA, this); I.isValid(); ++I)
658 if (*I == RegB)
659 return true;
660 return false;
661}
662
663//===----------------------------------------------------------------------===//
664// Register Units
665//===----------------------------------------------------------------------===//
666
667// Register units are used to compute register aliasing. Every register has at
668// least one register unit, but it can have more. Two registers overlap if and
669// only if they have a common register unit.
670//
671// A target with a complicated sub-register structure will typically have many
672// fewer register units than actual registers. MCRI::getNumRegUnits() returns
673// the number of register units in the target.
674
675// MCRegUnitIterator enumerates a list of register units for Reg. The list is
676// in ascending numerical order.
677class MCRegUnitIterator : public MCRegisterInfo::DiffListIterator {
678public:
679 /// MCRegUnitIterator - Create an iterator that traverses the register units
680 /// in Reg.
681 MCRegUnitIterator() = default;
682
683 MCRegUnitIterator(MCRegister Reg, const MCRegisterInfo *MCRI) {
684 assert(Reg && "Null register has no regunits")((void)0);
685 assert(MCRegister::isPhysicalRegister(Reg.id()))((void)0);
686 // Decode the RegUnits MCRegisterDesc field.
687 unsigned RU = MCRI->get(Reg).RegUnits;
688 unsigned Scale = RU & 15;
689 unsigned Offset = RU >> 4;
690
691 // Initialize the iterator to Reg * Scale, and the List pointer to
692 // DiffLists + Offset.
693 init(Reg * Scale, MCRI->DiffLists + Offset);
694
695 // That may not be a valid unit, we need to advance by one to get the real
696 // unit number. The first differential can be 0 which would normally
697 // terminate the list, but since we know every register has at least one
698 // unit, we can allow a 0 differential here.
699 advance();
21
Calling 'DiffListIterator::advance'
700 }
701};
702
703/// MCRegUnitMaskIterator enumerates a list of register units and their
704/// associated lane masks for Reg. The register units are in ascending
705/// numerical order.
706class MCRegUnitMaskIterator {
707 MCRegUnitIterator RUIter;
708 const LaneBitmask *MaskListIter;
709
710public:
711 MCRegUnitMaskIterator() = default;
712
713 /// Constructs an iterator that traverses the register units and their
714 /// associated LaneMasks in Reg.
715 MCRegUnitMaskIterator(MCRegister Reg, const MCRegisterInfo *MCRI)
716 : RUIter(Reg, MCRI) {
20
Calling constructor for 'MCRegUnitIterator'
717 uint16_t Idx = MCRI->get(Reg).RegUnitLaneMasks;
718 MaskListIter = &MCRI->RegUnitMaskSequences[Idx];
719 }
720
721 /// Returns a (RegUnit, LaneMask) pair.
722 std::pair<unsigned,LaneBitmask> operator*() const {
723 return std::make_pair(*RUIter, *MaskListIter);
724 }
725
726 /// Returns true if this iterator is not yet at the end.
727 bool isValid() const { return RUIter.isValid(); }
728
729 /// Moves to the next position.
730 void operator++() {
731 ++MaskListIter;
732 ++RUIter;
733 }
734};
735
736// Each register unit has one or two root registers. The complete set of
737// registers containing a register unit is the union of the roots and their
738// super-registers. All registers aliasing Unit can be visited like this:
739//
740// for (MCRegUnitRootIterator RI(Unit, MCRI); RI.isValid(); ++RI) {
741// for (MCSuperRegIterator SI(*RI, MCRI, true); SI.isValid(); ++SI)
742// visit(*SI);
743// }
744
745/// MCRegUnitRootIterator enumerates the root registers of a register unit.
746class MCRegUnitRootIterator {
747 uint16_t Reg0 = 0;
748 uint16_t Reg1 = 0;
749
750public:
751 MCRegUnitRootIterator() = default;
752
753 MCRegUnitRootIterator(unsigned RegUnit, const MCRegisterInfo *MCRI) {
754 assert(RegUnit < MCRI->getNumRegUnits() && "Invalid register unit")((void)0);
755 Reg0 = MCRI->RegUnitRoots[RegUnit][0];
756 Reg1 = MCRI->RegUnitRoots[RegUnit][1];
757 }
758
759 /// Dereference to get the current root register.
760 unsigned operator*() const {
761 return Reg0;
762 }
763
764 /// Check if the iterator is at the end of the list.
765 bool isValid() const {
766 return Reg0;
767 }
768
769 /// Preincrement to move to the next root register.
770 void operator++() {
771 assert(isValid() && "Cannot move off the end of the list.")((void)0);
772 Reg0 = Reg1;
773 Reg1 = 0;
774 }
775};
776
777/// MCRegAliasIterator enumerates all registers aliasing Reg. If IncludeSelf is
778/// set, Reg itself is included in the list. This iterator does not guarantee
779/// any ordering or that entries are unique.
780class MCRegAliasIterator {
781private:
782 MCRegister Reg;
783 const MCRegisterInfo *MCRI;
784 bool IncludeSelf;
785
786 MCRegUnitIterator RI;
787 MCRegUnitRootIterator RRI;
788 MCSuperRegIterator SI;
789
790public:
791 MCRegAliasIterator(MCRegister Reg, const MCRegisterInfo *MCRI,
792 bool IncludeSelf)
793 : Reg(Reg), MCRI(MCRI), IncludeSelf(IncludeSelf) {
794 // Initialize the iterators.
795 for (RI = MCRegUnitIterator(Reg, MCRI); RI.isValid(); ++RI) {
796 for (RRI = MCRegUnitRootIterator(*RI, MCRI); RRI.isValid(); ++RRI) {
797 for (SI = MCSuperRegIterator(*RRI, MCRI, true); SI.isValid(); ++SI) {
798 if (!(!IncludeSelf && Reg == *SI))
799 return;
800 }
801 }
802 }
803 }
804
805 bool isValid() const { return RI.isValid(); }
806
807 MCRegister operator*() const {
808 assert(SI.isValid() && "Cannot dereference an invalid iterator.")((void)0);
809 return *SI;
810 }
811
812 void advance() {
813 // Assuming SI is valid.
814 ++SI;
815 if (SI.isValid()) return;
816
817 ++RRI;
818 if (RRI.isValid()) {
819 SI = MCSuperRegIterator(*RRI, MCRI, true);
820 return;
821 }
822
823 ++RI;
824 if (RI.isValid()) {
825 RRI = MCRegUnitRootIterator(*RI, MCRI);
826 SI = MCSuperRegIterator(*RRI, MCRI, true);
827 }
828 }
829
830 void operator++() {
831 assert(isValid() && "Cannot move off the end of the list.")((void)0);
832 do advance();
833 while (!IncludeSelf && isValid() && *SI == Reg);
834 }
835};
836
837} // end namespace llvm
838
839#endif // LLVM_MC_MCREGISTERINFO_H