Bug Summary

File:src/gnu/usr.bin/binutils/gdb/solib-svr4.c
Warning:line 820, column 55
Null pointer passed as 1st argument to string comparison function

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name solib-svr4.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -pic-is-pie -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/binutils/obj/gdb -resource-dir /usr/local/lib/clang/13.0.0 -D PIE_DEFAULT=1 -I . -I /usr/src/gnu/usr.bin/binutils/gdb -I /usr/src/gnu/usr.bin/binutils/gdb/config -D LOCALEDIR="/usr/share/locale" -D HAVE_CONFIG_H -I /usr/src/gnu/usr.bin/binutils/gdb/../include/opcode -I ../bfd -I /usr/src/gnu/usr.bin/binutils/gdb/../bfd -I /usr/src/gnu/usr.bin/binutils/gdb/../include -I ../intl -I /usr/src/gnu/usr.bin/binutils/gdb/../intl -D MI_OUT=1 -D TUI=1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -fdebug-compilation-dir=/usr/src/gnu/usr.bin/binutils/obj/gdb -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fgnuc-version=4.2.1 -fcommon -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c /usr/src/gnu/usr.bin/binutils/gdb/solib-svr4.c
1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999,
4 2000, 2001, 2003, 2004
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24#include "defs.h"
25
26#include "elf/external.h"
27#include "elf/common.h"
28#include "elf/mips.h"
29
30#include "auxv.h"
31#include "symtab.h"
32#include "bfd.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "gdbcore.h"
36#include "target.h"
37#include "inferior.h"
38#include "command.h"
39
40#include "solist.h"
41#include "solib-svr4.h"
42
43#include "bfd-target.h"
44#include "exec.h"
45
46#ifndef SVR4_FETCH_LINK_MAP_OFFSETS
47#define SVR4_FETCH_LINK_MAP_OFFSETS()svr4_fetch_link_map_offsets () svr4_fetch_link_map_offsets ()
48#endif
49
50static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
51static struct link_map_offsets *legacy_fetch_link_map_offsets (void);
52static int svr4_have_link_map_offsets (void);
53
54/* fetch_link_map_offsets_gdbarch_data is a handle used to obtain the
55 architecture specific link map offsets fetching function. */
56
57static struct gdbarch_data *fetch_link_map_offsets_gdbarch_data;
58
59/* legacy_svr4_fetch_link_map_offsets_hook is a pointer to a function
60 which is used to fetch link map offsets. It will only be set
61 by solib-legacy.c, if at all. */
62
63struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook)(void) = 0;
64
65/* Link map info to include in an allocated so_list entry */
66
67struct lm_info
68 {
69 /* Pointer to copy of link map from inferior. The type is char *
70 rather than void *, so that we may use byte offsets to find the
71 various fields without the need for a cast. */
72 char *lm;
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
83static char *solib_break_names[] =
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
89 "_rtld_debug_state",
90
91 /* On the 64-bit PowerPC, the linker symbol with the same name as
92 the C function points to a function descriptor, not to the entry
93 point. The linker symbol whose name is the C function name
94 prefixed with a '.' points to the function's entry point. So
95 when we look through this table, we ignore symbols that point
96 into the data section (thus skipping the descriptor's symbol),
97 and eventually try this one, giving us the real entry point
98 address. */
99 "._dl_debug_state",
100
101 NULL((void*)0)
102};
103
104#define BKPT_AT_SYMBOL1 1
105
106#if defined (BKPT_AT_SYMBOL1)
107static char *bkpt_names[] =
108{
109#ifdef SOLIB_BKPT_NAME
110 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
111#endif
112 "_start",
113 "__start",
114 "main",
115 NULL((void*)0)
116};
117#endif
118
119static char *main_name_list[] =
120{
121 "main_$main",
122 NULL((void*)0)
123};
124
125/* Macro to extract an address from a solib structure. When GDB is
126 configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is
127 configured to handle 64-bit targets, so CORE_ADDR is 64 bits. We
128 have to extract only the significant bits of addresses to get the
129 right address when accessing the core file BFD.
130
131 Assume that the address is unsigned. */
132
133#define SOLIB_EXTRACT_ADDRESS(MEMBER)extract_unsigned_integer (&(MEMBER), sizeof (MEMBER)) \
134 extract_unsigned_integer (&(MEMBER), sizeof (MEMBER))
135
136/* local data declarations */
137
138/* link map access functions */
139
140static CORE_ADDR
141LM_ADDR (struct so_list *so)
142{
143 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ()svr4_fetch_link_map_offsets ();
144
145 return (CORE_ADDR) extract_signed_integer (so->lm_info->lm + lmo->l_addr_offset,
146 lmo->l_addr_size);
147}
148
149static CORE_ADDR
150LM_NEXT (struct so_list *so)
151{
152 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ()svr4_fetch_link_map_offsets ();
153
154 /* Assume that the address is unsigned. */
155 return extract_unsigned_integer (so->lm_info->lm + lmo->l_next_offset,
156 lmo->l_next_size);
157}
158
159static CORE_ADDR
160LM_NAME (struct so_list *so)
161{
162 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ()svr4_fetch_link_map_offsets ();
163
164 /* Assume that the address is unsigned. */
165 return extract_unsigned_integer (so->lm_info->lm + lmo->l_name_offset,
166 lmo->l_name_size);
167}
168
169static int
170IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
171{
172 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ()svr4_fetch_link_map_offsets ();
173
174 /* Assume that the address is unsigned. */
175 return extract_unsigned_integer (so->lm_info->lm + lmo->l_prev_offset,
176 lmo->l_prev_size) == 0;
177}
178
179static CORE_ADDR debug_base; /* Base of dynamic linker structures */
180static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
181
182/* Local function prototypes */
183
184#if 0
185static int match_main (char *);
186#endif
187
188static CORE_ADDR bfd_lookup_symbol (bfd *, char *, flagword);
189
190/*
191
192 LOCAL FUNCTION
193
194 bfd_lookup_symbol -- lookup the value for a specific symbol
195
196 SYNOPSIS
197
198 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
199
200 DESCRIPTION
201
202 An expensive way to lookup the value of a single symbol for
203 bfd's that are only temporary anyway. This is used by the
204 shared library support to find the address of the debugger
205 interface structures in the shared library.
206
207 If SECT_FLAGS is non-zero, only match symbols in sections whose
208 flags include all those in SECT_FLAGS.
209
210 Note that 0 is specifically allowed as an error return (no
211 such symbol).
212 */
213
214static CORE_ADDR
215bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
216{
217 long storage_needed;
218 asymbol *sym;
219 asymbol **symbol_table;
220 unsigned int number_of_symbols;
221 unsigned int i;
222 struct cleanup *back_to;
223 CORE_ADDR symaddr = 0;
224
225 storage_needed = bfd_get_symtab_upper_bound (abfd)((*((abfd)->xvec->_bfd_get_symtab_upper_bound)) (abfd));
226
227 if (storage_needed > 0)
228 {
229 symbol_table = (asymbol **) xmalloc (storage_needed);
230 back_to = make_cleanup (xfree, symbol_table);
231 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table)((*((abfd)->xvec->_bfd_canonicalize_symtab)) (abfd, symbol_table
))
;
232
233 for (i = 0; i < number_of_symbols; i++)
234 {
235 sym = *symbol_table++;
236 if (strcmp (sym->name, symname) == 0
237 && (sym->section->flags & sect_flags) == sect_flags)
238 {
239 /* Bfd symbols are section relative. */
240 symaddr = sym->value + sym->section->vma;
241 break;
242 }
243 }
244 do_cleanups (back_to);
245 }
246
247 if (symaddr)
248 return symaddr;
249
250 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
251 have to check the dynamic string table too. */
252
253 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd)((*((abfd)->xvec->_bfd_get_dynamic_symtab_upper_bound))
(abfd))
;
254
255 if (storage_needed > 0)
256 {
257 symbol_table = (asymbol **) xmalloc (storage_needed);
258 back_to = make_cleanup (xfree, symbol_table);
259 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table)((*((abfd)->xvec->_bfd_canonicalize_dynamic_symtab)) (abfd
, symbol_table))
;
260
261 for (i = 0; i < number_of_symbols; i++)
262 {
263 sym = *symbol_table++;
264
265 if (strcmp (sym->name, symname) == 0
266 && (sym->section->flags & sect_flags) == sect_flags)
267 {
268 /* Bfd symbols are section relative. */
269 symaddr = sym->value + sym->section->vma;
270 break;
271 }
272 }
273 do_cleanups (back_to);
274 }
275
276 return symaddr;
277}
278
279/*
280
281 LOCAL FUNCTION
282
283 elf_locate_base -- locate the base address of dynamic linker structs
284 for SVR4 elf targets.
285
286 SYNOPSIS
287
288 CORE_ADDR elf_locate_base (void)
289
290 DESCRIPTION
291
292 For SVR4 elf targets the address of the dynamic linker's runtime
293 structure is contained within the dynamic info section in the
294 executable file. The dynamic section is also mapped into the
295 inferior address space. Because the runtime loader fills in the
296 real address before starting the inferior, we have to read in the
297 dynamic info section from the inferior address space.
298 If there are any errors while trying to find the address, we
299 silently return 0, otherwise the found address is returned.
300
301 */
302
303static CORE_ADDR
304elf_locate_base (void)
305{
306 struct bfd_section *dyninfo_sect;
307 int dyninfo_sect_size;
308 CORE_ADDR dyninfo_addr, relocated_dyninfo_addr, entry_addr;
309 char *buf;
310 char *bufend;
311 int arch_size;
312
313 /* Find the address of the entry point of the program from the
314 auxv vector. */
315 if (target_auxv_search (&current_target, AT_ENTRY9, &entry_addr) != 1)
316 {
317 /* No auxv info, maybe an older kernel. Fake our way through. */
318 entry_addr = bfd_get_start_address (exec_bfd)((exec_bfd)->start_address);
319 }
320
321 /* Find the start address of the .dynamic section. */
322 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
323 if (dyninfo_sect == NULL((void*)0))
324 return 0;
325 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect)((dyninfo_sect)->vma);
326
327 relocated_dyninfo_addr = dyninfo_addr
328 + entry_addr - bfd_get_start_address(exec_bfd)((exec_bfd)->start_address);
329
330 /* Read in .dynamic section, silently ignore errors. */
331 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect)((dyninfo_sect)->_raw_size);
332 buf = alloca (dyninfo_sect_size)__builtin_alloca(dyninfo_sect_size);
333 if (target_read_memory (relocated_dyninfo_addr, buf, dyninfo_sect_size))
334 return 0;
335
336 /* Find the DT_DEBUG entry in the the .dynamic section.
337 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
338 no DT_DEBUG entries. */
339
340 arch_size = bfd_get_arch_size (exec_bfd);
341 if (arch_size == -1) /* failure */
342 return 0;
343
344 if (arch_size == 32)
345 { /* 32-bit elf */
346 for (bufend = buf + dyninfo_sect_size;
347 buf < bufend;
348 buf += sizeof (Elf32_External_Dyn))
349 {
350 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
351 long dyn_tag;
352 CORE_ADDR dyn_ptr;
353
354 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag)((*((exec_bfd)->xvec->bfd_h_getx32)) ((bfd_byte *) x_dynp
->d_tag))
;
355 if (dyn_tag == DT_NULL0)
356 break;
357 else if (dyn_tag == DT_DEBUG21)
358 {
359 dyn_ptr = bfd_h_get_32 (exec_bfd,((*((exec_bfd)->xvec->bfd_h_getx32)) ((bfd_byte *) x_dynp
->d_un.d_ptr))
360 (bfd_byte *) x_dynp->d_un.d_ptr)((*((exec_bfd)->xvec->bfd_h_getx32)) ((bfd_byte *) x_dynp
->d_un.d_ptr))
;
361 return dyn_ptr;
362 }
363 else if (dyn_tag == DT_MIPS_RLD_MAP0x70000016)
364 {
365 char *pbuf;
366 int pbuf_size = TARGET_PTR_BIT(gdbarch_ptr_bit (current_gdbarch)) / HOST_CHAR_BIT8;
367
368 pbuf = alloca (pbuf_size)__builtin_alloca(pbuf_size);
369 /* DT_MIPS_RLD_MAP contains a pointer to the address
370 of the dynamic link structure. */
371 dyn_ptr = bfd_h_get_32 (exec_bfd,((*((exec_bfd)->xvec->bfd_h_getx32)) ((bfd_byte *) x_dynp
->d_un.d_ptr))
372 (bfd_byte *) x_dynp->d_un.d_ptr)((*((exec_bfd)->xvec->bfd_h_getx32)) ((bfd_byte *) x_dynp
->d_un.d_ptr))
;
373 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
374 return 0;
375 return extract_unsigned_integer (pbuf, pbuf_size);
376 }
377 }
378 }
379 else /* 64-bit elf */
380 {
381 for (bufend = buf + dyninfo_sect_size;
382 buf < bufend;
383 buf += sizeof (Elf64_External_Dyn))
384 {
385 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
386 long dyn_tag;
387 CORE_ADDR dyn_ptr;
388
389 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag)((*((exec_bfd)->xvec->bfd_h_getx64)) ((bfd_byte *) x_dynp
->d_tag))
;
390 if (dyn_tag == DT_NULL0)
391 break;
392 else if (dyn_tag == DT_DEBUG21)
393 {
394 dyn_ptr = bfd_h_get_64 (exec_bfd,((*((exec_bfd)->xvec->bfd_h_getx64)) ((bfd_byte *) x_dynp
->d_un.d_ptr))
395 (bfd_byte *) x_dynp->d_un.d_ptr)((*((exec_bfd)->xvec->bfd_h_getx64)) ((bfd_byte *) x_dynp
->d_un.d_ptr))
;
396 return dyn_ptr;
397 }
398 else if (dyn_tag == DT_MIPS_RLD_MAP0x70000016)
399 {
400 char *pbuf;
401 int pbuf_size = TARGET_PTR_BIT(gdbarch_ptr_bit (current_gdbarch)) / HOST_CHAR_BIT8;
402
403 pbuf = alloca (pbuf_size)__builtin_alloca(pbuf_size);
404 /* DT_MIPS_RLD_MAP contains a pointer to the address
405 of the dynamic link structure. */
406 dyn_ptr = bfd_h_get_64 (exec_bfd,((*((exec_bfd)->xvec->bfd_h_getx64)) ((bfd_byte *) x_dynp
->d_un.d_ptr))
407 (bfd_byte *) x_dynp->d_un.d_ptr)((*((exec_bfd)->xvec->bfd_h_getx64)) ((bfd_byte *) x_dynp
->d_un.d_ptr))
;
408 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
409 return 0;
410 return extract_unsigned_integer (pbuf, pbuf_size);
411 }
412 }
413 }
414
415 /* DT_DEBUG entry not found. */
416 return 0;
417}
418
419/*
420
421 LOCAL FUNCTION
422
423 locate_base -- locate the base address of dynamic linker structs
424
425 SYNOPSIS
426
427 CORE_ADDR locate_base (void)
428
429 DESCRIPTION
430
431 For both the SunOS and SVR4 shared library implementations, if the
432 inferior executable has been linked dynamically, there is a single
433 address somewhere in the inferior's data space which is the key to
434 locating all of the dynamic linker's runtime structures. This
435 address is the value of the debug base symbol. The job of this
436 function is to find and return that address, or to return 0 if there
437 is no such address (the executable is statically linked for example).
438
439 For SunOS, the job is almost trivial, since the dynamic linker and
440 all of it's structures are statically linked to the executable at
441 link time. Thus the symbol for the address we are looking for has
442 already been added to the minimal symbol table for the executable's
443 objfile at the time the symbol file's symbols were read, and all we
444 have to do is look it up there. Note that we explicitly do NOT want
445 to find the copies in the shared library.
446
447 The SVR4 version is a bit more complicated because the address
448 is contained somewhere in the dynamic info section. We have to go
449 to a lot more work to discover the address of the debug base symbol.
450 Because of this complexity, we cache the value we find and return that
451 value on subsequent invocations. Note there is no copy in the
452 executable symbol tables.
453
454 */
455
456static CORE_ADDR
457locate_base (void)
458{
459 /* Check to see if we have a currently valid address, and if so, avoid
460 doing all this work again and just return the cached address. If
461 we have no cached address, try to locate it in the dynamic info
462 section for ELF executables. There's no point in doing any of this
463 though if we don't have some link map offsets to work with. */
464
465 if (debug_base == 0 && svr4_have_link_map_offsets ())
466 {
467 if (exec_bfd != NULL((void*)0)
468 && bfd_get_flavour (exec_bfd)((exec_bfd)->xvec->flavour) == bfd_target_elf_flavour)
469 debug_base = elf_locate_base ();
470 }
471 return (debug_base);
472}
473
474/*
475
476 LOCAL FUNCTION
477
478 first_link_map_member -- locate first member in dynamic linker's map
479
480 SYNOPSIS
481
482 static CORE_ADDR first_link_map_member (void)
483
484 DESCRIPTION
485
486 Find the first element in the inferior's dynamic link map, and
487 return its address in the inferior. This function doesn't copy the
488 link map entry itself into our address space; current_sos actually
489 does the reading. */
490
491static CORE_ADDR
492first_link_map_member (void)
493{
494 CORE_ADDR lm = 0;
495 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ()svr4_fetch_link_map_offsets ();
496 char *r_map_buf = xmalloc (lmo->r_map_size);
497 struct cleanup *cleanups = make_cleanup (xfree, r_map_buf);
498
499 read_memory (debug_base + lmo->r_map_offset, r_map_buf, lmo->r_map_size);
500
501 /* Assume that the address is unsigned. */
502 lm = extract_unsigned_integer (r_map_buf, lmo->r_map_size);
503
504 /* FIXME: Perhaps we should validate the info somehow, perhaps by
505 checking r_version for a known version number, or r_state for
506 RT_CONSISTENT. */
507
508 do_cleanups (cleanups);
509
510 return (lm);
511}
512
513/*
514
515 LOCAL FUNCTION
516
517 open_symbol_file_object
518
519 SYNOPSIS
520
521 void open_symbol_file_object (void *from_tty)
522
523 DESCRIPTION
524
525 If no open symbol file, attempt to locate and open the main symbol
526 file. On SVR4 systems, this is the first link map entry. If its
527 name is here, we can open it. Useful when attaching to a process
528 without first loading its symbol file.
529
530 If FROM_TTYP dereferences to a non-zero integer, allow messages to
531 be printed. This parameter is a pointer rather than an int because
532 open_symbol_file_object() is called via catch_errors() and
533 catch_errors() requires a pointer argument. */
534
535static int
536open_symbol_file_object (void *from_ttyp)
537{
538 CORE_ADDR lm, l_name;
539 char *filename;
540 int errcode;
541 int from_tty = *(int *)from_ttyp;
542 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ()svr4_fetch_link_map_offsets ();
543 char *l_name_buf = xmalloc (lmo->l_name_size);
544 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
545
546 if (symfile_objfile)
547 if (!query ("Attempt to reload symbols from process? "))
548 return 0;
549
550 if ((debug_base = locate_base ()) == 0)
551 return 0; /* failed somehow... */
552
553 /* First link map member should be the executable. */
554 if ((lm = first_link_map_member ()) == 0)
555 return 0; /* failed somehow... */
556
557 /* Read address of name from target memory to GDB. */
558 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
559
560 /* Convert the address to host format. Assume that the address is
561 unsigned. */
562 l_name = extract_unsigned_integer (l_name_buf, lmo->l_name_size);
563
564 /* Free l_name_buf. */
565 do_cleanups (cleanups);
566
567 if (l_name == 0)
568 return 0; /* No filename. */
569
570 /* Now fetch the filename from target memory. */
571 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE512 - 1, &errcode);
572
573 if (errcode)
574 {
575 warning ("failed to read exec filename from attached file: %s",
576 safe_strerror (errcode));
577 return 0;
578 }
579
580 make_cleanup (xfree, filename);
581 /* Have a pathname: read the symbol file. */
582 symbol_file_add_main (filename, from_tty);
583
584 return 1;
585}
586
587/* LOCAL FUNCTION
588
589 current_sos -- build a list of currently loaded shared objects
590
591 SYNOPSIS
592
593 struct so_list *current_sos ()
594
595 DESCRIPTION
596
597 Build a list of `struct so_list' objects describing the shared
598 objects currently loaded in the inferior. This list does not
599 include an entry for the main executable file.
600
601 Note that we only gather information directly available from the
602 inferior --- we don't examine any of the shared library files
603 themselves. The declaration of `struct so_list' says which fields
604 we provide values for. */
605
606static struct so_list *
607svr4_current_sos (void)
608{
609 CORE_ADDR lm;
610 struct so_list *head = 0;
611 struct so_list **link_ptr = &head;
612
613 /* Make sure we've looked up the inferior's dynamic linker's base
614 structure. */
615 if (! debug_base)
616 {
617 debug_base = locate_base ();
618
619 /* If we can't find the dynamic linker's base structure, this
620 must not be a dynamically linked executable. Hmm. */
621 if (! debug_base)
622 {
623 if (exec_bfd != NULL((void*)0) &&
624 bfd_get_section_by_name (exec_bfd, ".interp") == NULL((void*)0) &&
625 (bfd_get_file_flags (exec_bfd)((exec_bfd)->flags) & DYNAMIC0x40) != 0 &&
626 bfd_get_start_address (exec_bfd)((exec_bfd)->start_address) != entry_point_address ())
627 {
628 /* this is relocatable static link.
629 cf. svr4_relocate_main_executable() */
630 struct cleanup *old_chain;
631 struct section_offsets *new_offsets;
632 int i, changed;
633 CORE_ADDR displacement;
634
635 displacement = entry_point_address () - bfd_get_start_address (exec_bfd)((exec_bfd)->start_address);
636 changed = 0;
637
638 new_offsets = xcalloc (symfile_objfile->num_sections,
639 sizeof (struct section_offsets));
640 old_chain = make_cleanup (xfree, new_offsets);
641
642 for (i = 0; i < symfile_objfile->num_sections; i++)
643 {
644 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i)((i == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/solib-svr4.c"
, 644, "Section index is uninitialized"), -1) : symfile_objfile
->section_offsets->offsets[i])
)
645 changed = 1;
646 new_offsets->offsets[i] = displacement;
647 }
648
649 if (changed)
650 objfile_relocate (symfile_objfile, new_offsets);
651
652 do_cleanups (old_chain);
653 exec_set_section_offsets(displacement, displacement, displacement);
654 }
655 return 0;
656 }
657 }
658
659 /* Walk the inferior's link map list, and build our list of
660 `struct so_list' nodes. */
661 lm = first_link_map_member ();
662 while (lm)
663 {
664 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ()svr4_fetch_link_map_offsets ();
665 struct so_list *new
666 = (struct so_list *) xmalloc (sizeof (struct so_list));
667 struct cleanup *old_chain = make_cleanup (xfree, new);
668
669 memset (new, 0, sizeof (*new));
670
671 new->lm_info = xmalloc (sizeof (struct lm_info));
672 make_cleanup (xfree, new->lm_info);
673
674 new->lm_info->lm = xmalloc (lmo->link_map_size);
675 make_cleanup (xfree, new->lm_info->lm);
676 memset (new->lm_info->lm, 0, lmo->link_map_size);
677
678 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
679
680 lm = LM_NEXT (new);
681
682 /* For SVR4 versions, the first entry in the link map is for the
683 inferior executable, so we must ignore it. For some versions of
684 SVR4, it has no name. For others (Solaris 2.3 for example), it
685 does have a name, so we can no longer use a missing name to
686 decide when to ignore it. */
687 if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
688 {
689 /* It is the first link map entry, i.e. it is the main executable. */
690
691 if (bfd_get_start_address (exec_bfd)((exec_bfd)->start_address) == entry_point_address ())
692 {
693 /* Non-pie case, main executable has not been relocated. */
694 free_so (new);
695 }
696 else
697 {
698 /* Pie case, main executable has been relocated. */
699 struct so_list *gdb_solib;
700
701 strncpy (new->so_name, exec_bfd->filename,
702 SO_NAME_MAX_PATH_SIZE512 - 1);
703 new->so_name[SO_NAME_MAX_PATH_SIZE512 - 1] = '\0';
704 strcpy (new->so_original_name, new->so_name);
705 new->main_relocated = 0;
706
707 for (gdb_solib = master_so_list ();
708 gdb_solib;
709 gdb_solib = gdb_solib->next)
710 {
711 if (strcmp (gdb_solib->so_name, new->so_name) == 0)
712 if (gdb_solib->main_relocated)
713 break;
714 }
715
716 if ((gdb_solib && !gdb_solib->main_relocated) || (!gdb_solib))
717 {
718 add_to_target_sections (0 /*from_tty*/, &current_target, new);
719 new->main = 1;
720 }
721
722 /* We need this in the list of shared libs we return because
723 solib_add_stub will loop through it and add the symbol file. */
724 new->next = 0;
725 *link_ptr = new;
726 link_ptr = &new->next;
727 }
728 } /* End of IGNORE_FIRST_LINK_MAP_ENTRY */
729 else
730 {
731 int errcode;
732 char *buffer;
733
734 /* Extract this shared object's name. */
735 target_read_string (LM_NAME (new), &buffer,
736 SO_NAME_MAX_PATH_SIZE512 - 1, &errcode);
737 if (errcode != 0)
738 {
739 warning ("current_sos: Can't read pathname for load map: %s\n",
740 safe_strerror (errcode));
741 }
742 else
743 {
744 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE512 - 1);
745 new->so_name[SO_NAME_MAX_PATH_SIZE512 - 1] = '\0';
746 xfree (buffer);
747 strcpy (new->so_original_name, new->so_name);
748 }
749
750 new->next = 0;
751 *link_ptr = new;
752 link_ptr = &new->next;
753
754 }
755
756 discard_cleanups (old_chain);
757 }
758
759 return head;
760}
761
762/* Get the address of the link_map for a given OBJFILE. Loop through
763 the link maps, and return the address of the one corresponding to
764 the given objfile. Note that this function takes into account that
765 objfile can be the main executable, not just a shared library. The
766 main executable has always an empty name field in the linkmap. */
767
768CORE_ADDR
769svr4_fetch_objfile_link_map (struct objfile *objfile)
770{
771 CORE_ADDR lm;
772
773 if ((debug_base = locate_base ()) == 0)
1
Taking false branch
774 return 0; /* failed somehow... */
775
776 /* Position ourselves on the first link map. */
777 lm = first_link_map_member ();
778 while (lm)
2
Loop condition is true. Entering loop body
779 {
780 /* Get info on the layout of the r_debug and link_map structures. */
781 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ()svr4_fetch_link_map_offsets ();
782 int errcode;
783 char *buffer;
784 struct lm_info objfile_lm_info;
785 struct cleanup *old_chain;
786 CORE_ADDR name_address;
787 char *l_name_buf = xmalloc (lmo->l_name_size);
788 old_chain = make_cleanup (xfree, l_name_buf);
789
790 /* Set up the buffer to contain the portion of the link_map
791 structure that gdb cares about. Note that this is not the
792 whole link_map structure. */
793 objfile_lm_info.lm = xmalloc (lmo->link_map_size);
794 make_cleanup (xfree, objfile_lm_info.lm);
795 memset (objfile_lm_info.lm, 0, lmo->link_map_size);
796
797 /* Read the link map into our internal structure. */
798 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
799
800 /* Read address of name from target memory to GDB. */
801 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
802
803 /* Extract this object's name. Assume that the address is
804 unsigned. */
805 name_address = extract_unsigned_integer (l_name_buf, lmo->l_name_size);
806 target_read_string (name_address, &buffer,
3
Value assigned to 'buffer'
807 SO_NAME_MAX_PATH_SIZE512 - 1, &errcode);
808 make_cleanup (xfree, buffer);
809 if (errcode != 0)
4
Assuming 'errcode' is equal to 0
5
Taking false branch
810 {
811 warning ("svr4_fetch_objfile_link_map: Can't read pathname for load map: %s\n",
812 safe_strerror (errcode));
813 }
814 else
815 {
816 /* Is this the linkmap for the file we want? */
817 /* If the file is not a shared library and has no name,
818 we are sure it is the main executable, so we return that. */
819 if ((buffer && strcmp (buffer, objfile->name) == 0)
6
Assuming 'buffer' is null
820 || (!(objfile->flags & OBJF_SHARED(1 << 3)) && (strcmp (buffer, "") == 0)))
7
Assuming the condition is true
8
Null pointer passed as 1st argument to string comparison function
821 {
822 do_cleanups (old_chain);
823 return lm;
824 }
825 }
826 /* Not the file we wanted, continue checking. Assume that the
827 address is unsigned. */
828 lm = extract_unsigned_integer (objfile_lm_info.lm + lmo->l_next_offset,
829 lmo->l_next_size);
830 do_cleanups (old_chain);
831 }
832 return 0;
833}
834
835/* On some systems, the only way to recognize the link map entry for
836 the main executable file is by looking at its name. Return
837 non-zero iff SONAME matches one of the known main executable names. */
838
839#if 0
840static int
841match_main (char *soname)
842{
843 char **mainp;
844
845 for (mainp = main_name_list; *mainp != NULL((void*)0); mainp++)
846 {
847 if (strcmp (soname, *mainp) == 0)
848 return (1);
849 }
850
851 return (0);
852}
853#endif
854
855/* Return 1 if PC lies in the dynamic symbol resolution code of the
856 SVR4 run time loader. */
857static CORE_ADDR interp_text_sect_low;
858static CORE_ADDR interp_text_sect_high;
859static CORE_ADDR interp_plt_sect_low;
860static CORE_ADDR interp_plt_sect_high;
861
862static int
863svr4_in_dynsym_resolve_code (CORE_ADDR pc)
864{
865 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
866 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
867 || in_plt_section (pc, NULL((void*)0)));
868}
869
870/* Given an executable's ABFD and target, compute the entry-point
871 address. */
872
873static CORE_ADDR
874exec_entry_point (struct bfd *abfd, struct target_ops *targ)
875{
876 /* KevinB wrote ... for most targets, the address returned by
877 bfd_get_start_address() is the entry point for the start
878 function. But, for some targets, bfd_get_start_address() returns
879 the address of a function descriptor from which the entry point
880 address may be extracted. This address is extracted by
881 gdbarch_convert_from_func_ptr_addr(). The method
882 gdbarch_convert_from_func_ptr_addr() is the merely the identify
883 function for targets which don't use function descriptors. */
884 return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
885 bfd_get_start_address (abfd)((abfd)->start_address),
886 targ);
887}
888
889/*
890
891 LOCAL FUNCTION
892
893 enable_break -- arrange for dynamic linker to hit breakpoint
894
895 SYNOPSIS
896
897 int enable_break (void)
898
899 DESCRIPTION
900
901 Both the SunOS and the SVR4 dynamic linkers have, as part of their
902 debugger interface, support for arranging for the inferior to hit
903 a breakpoint after mapping in the shared libraries. This function
904 enables that breakpoint.
905
906 For SunOS, there is a special flag location (in_debugger) which we
907 set to 1. When the dynamic linker sees this flag set, it will set
908 a breakpoint at a location known only to itself, after saving the
909 original contents of that place and the breakpoint address itself,
910 in it's own internal structures. When we resume the inferior, it
911 will eventually take a SIGTRAP when it runs into the breakpoint.
912 We handle this (in a different place) by restoring the contents of
913 the breakpointed location (which is only known after it stops),
914 chasing around to locate the shared libraries that have been
915 loaded, then resuming.
916
917 For SVR4, the debugger interface structure contains a member (r_brk)
918 which is statically initialized at the time the shared library is
919 built, to the offset of a function (_r_debug_state) which is guaran-
920 teed to be called once before mapping in a library, and again when
921 the mapping is complete. At the time we are examining this member,
922 it contains only the unrelocated offset of the function, so we have
923 to do our own relocation. Later, when the dynamic linker actually
924 runs, it relocates r_brk to be the actual address of _r_debug_state().
925
926 The debugger interface structure also contains an enumeration which
927 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
928 depending upon whether or not the library is being mapped or unmapped,
929 and then set to RT_CONSISTENT after the library is mapped/unmapped.
930 */
931
932static int
933enable_break (void)
934{
935 int success = 0;
936
937#ifdef BKPT_AT_SYMBOL1
938
939 struct minimal_symbol *msymbol;
940 char **bkpt_namep;
941 asection *interp_sect;
942
943 /* First, remove all the solib event breakpoints. Their addresses
944 may have changed since the last time we ran the program. */
945 remove_solib_event_breakpoints ();
946
947 interp_text_sect_low = interp_text_sect_high = 0;
948 interp_plt_sect_low = interp_plt_sect_high = 0;
949
950 /* Find the .interp section; if not found, warn the user and drop
951 into the old breakpoint at symbol code. */
952 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
953 if (interp_sect)
954 {
955 unsigned int interp_sect_size;
956 char *buf;
957 CORE_ADDR load_addr = 0;
958 int load_addr_found = 0;
959 struct so_list *so;
960 bfd *tmp_bfd = NULL((void*)0);
961 struct target_ops *tmp_bfd_target;
962 int tmp_fd = -1;
963 char *tmp_pathname = NULL((void*)0);
964 CORE_ADDR sym_addr = 0;
965
966 /* Read the contents of the .interp section into a local buffer;
967 the contents specify the dynamic linker this program uses. */
968 interp_sect_size = bfd_section_size (exec_bfd, interp_sect)((interp_sect)->_raw_size);
969 buf = alloca (interp_sect_size)__builtin_alloca(interp_sect_size);
970 bfd_get_section_contents (exec_bfd, interp_sect,
971 buf, 0, interp_sect_size);
972
973 /* Now we need to figure out where the dynamic linker was
974 loaded so that we can load its symbols and place a breakpoint
975 in the dynamic linker itself.
976
977 This address is stored on the stack. However, I've been unable
978 to find any magic formula to find it for Solaris (appears to
979 be trivial on GNU/Linux). Therefore, we have to try an alternate
980 mechanism to find the dynamic linker's base address. */
981
982 tmp_fd = solib_open (buf, &tmp_pathname);
983 if (tmp_fd >= 0)
984 tmp_bfd = bfd_fdopenr (tmp_pathname, gnutarget, tmp_fd);
985
986 if (tmp_bfd == NULL((void*)0))
987 goto bkpt_at_symbol;
988
989 /* Make sure the dynamic linker's really a useful object. */
990 if (!bfd_check_format (tmp_bfd, bfd_object))
991 {
992 warning ("Unable to grok dynamic linker %s as an object file", buf);
993 bfd_close (tmp_bfd);
994 goto bkpt_at_symbol;
995 }
996
997 /* Now convert the TMP_BFD into a target. That way target, as
998 well as BFD operations can be used. Note that closing the
999 target will also close the underlying bfd. */
1000 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1001
1002 /* On a running target, we can get the dynamic linker's base
1003 address from the shared library table. */
1004 solib_add (NULL((void*)0), 0, NULL((void*)0), auto_solib_add);
1005 so = master_so_list ();
1006 while (so)
1007 {
1008 if (strcmp (buf, so->so_original_name) == 0)
1009 {
1010 load_addr_found = 1;
1011 load_addr = LM_ADDR (so);
1012 break;
1013 }
1014 so = so->next;
1015 }
1016
1017 /* Otherwise we find the dynamic linker's base address by examining
1018 the current pc (which should point at the entry point for the
1019 dynamic linker) and subtracting the offset of the entry point. */
1020 if (!load_addr_found)
1021 load_addr = (read_pc ()
1022 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1023
1024 /* Record the relocated start and end address of the dynamic linker
1025 text and plt section for svr4_in_dynsym_resolve_code. */
1026 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1027 if (interp_sect)
1028 {
1029 interp_text_sect_low =
1030 bfd_section_vma (tmp_bfd, interp_sect)((interp_sect)->vma) + load_addr;
1031 interp_text_sect_high =
1032 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect)((interp_sect)->_raw_size);
1033 }
1034 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1035 if (interp_sect)
1036 {
1037 interp_plt_sect_low =
1038 bfd_section_vma (tmp_bfd, interp_sect)((interp_sect)->vma) + load_addr;
1039 interp_plt_sect_high =
1040 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect)((interp_sect)->_raw_size);
1041 }
1042
1043 /* Now try to set a breakpoint in the dynamic linker. */
1044 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL((void*)0); bkpt_namep++)
1045 {
1046 /* On ABI's that use function descriptors, there are usually
1047 two linker symbols associated with each C function: one
1048 pointing at the actual entry point of the machine code,
1049 and one pointing at the function's descriptor. The
1050 latter symbol has the same name as the C function.
1051
1052 What we're looking for here is the machine code entry
1053 point, so we are only interested in symbols in code
1054 sections. */
1055 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep, SEC_CODE0x020);
1056 if (sym_addr != 0)
1057 break;
1058 }
1059
1060 /* We're done with both the temporary bfd and target. Remember,
1061 closing the target closes the underlying bfd. */
1062 target_close (tmp_bfd_target, 0);
1063
1064 if (sym_addr != 0)
1065 {
1066 create_solib_event_breakpoint (load_addr + sym_addr);
1067 return 1;
1068 }
1069
1070 /* For whatever reason we couldn't set a breakpoint in the dynamic
1071 linker. Warn and drop into the old code. */
1072 bkpt_at_symbol:
1073 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1074 }
1075
1076 /* Scan through the list of symbols, trying to look up the symbol and
1077 set a breakpoint there. Terminate loop when we/if we succeed. */
1078
1079 breakpoint_addr = 0;
1080 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL((void*)0); bkpt_namep++)
1081 {
1082 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL((void*)0), symfile_objfile);
1083 if ((msymbol != NULL((void*)0)) && (SYMBOL_VALUE_ADDRESS (msymbol)(msymbol)->ginfo.value.address != 0))
1084 {
1085 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol)(msymbol)->ginfo.value.address);
1086 return 1;
1087 }
1088 }
1089
1090 /* Nothing good happened. */
1091 success = 0;
1092
1093#endif /* BKPT_AT_SYMBOL */
1094
1095 return (success);
1096}
1097
1098/*
1099
1100 LOCAL FUNCTION
1101
1102 special_symbol_handling -- additional shared library symbol handling
1103
1104 SYNOPSIS
1105
1106 void special_symbol_handling ()
1107
1108 DESCRIPTION
1109
1110 Once the symbols from a shared object have been loaded in the usual
1111 way, we are called to do any system specific symbol handling that
1112 is needed.
1113
1114 For SunOS4, this consisted of grunging around in the dynamic
1115 linkers structures to find symbol definitions for "common" symbols
1116 and adding them to the minimal symbol table for the runtime common
1117 objfile.
1118
1119 However, for SVR4, there's nothing to do.
1120
1121 */
1122
1123static void
1124svr4_special_symbol_handling (void)
1125{
1126}
1127
1128/* Relocate the main executable. This function should be called upon
1129 stopping the inferior process at the entry point to the program.
1130 The entry point from BFD is compared to the PC and if they are
1131 different, the main executable is relocated by the proper amount.
1132
1133 As written it will only attempt to relocate executables which
1134 lack interpreter sections. It seems likely that only dynamic
1135 linker executables will get relocated, though it should work
1136 properly for a position-independent static executable as well. */
1137
1138static void
1139svr4_relocate_main_executable (void)
1140{
1141 asection *interp_sect;
1142 CORE_ADDR pc = read_pc ();
1143
1144 /* Decide if the objfile needs to be relocated. As indicated above,
1145 we will only be here when execution is stopped at the beginning
1146 of the program. Relocation is necessary if the address at which
1147 we are presently stopped differs from the start address stored in
1148 the executable AND there's no interpreter section. The condition
1149 regarding the interpreter section is very important because if
1150 there *is* an interpreter section, execution will begin there
1151 instead. When there is an interpreter section, the start address
1152 is (presumably) used by the interpreter at some point to start
1153 execution of the program.
1154
1155 If there is an interpreter, it is normal for it to be set to an
1156 arbitrary address at the outset. The job of finding it is
1157 handled in enable_break().
1158
1159 So, to summarize, relocations are necessary when there is no
1160 interpreter section and the start address obtained from the
1161 executable is different from the address at which GDB is
1162 currently stopped.
1163
1164 [ The astute reader will note that we also test to make sure that
1165 the executable in question has the DYNAMIC flag set. It is my
1166 opinion that this test is unnecessary (undesirable even). It
1167 was added to avoid inadvertent relocation of an executable
1168 whose e_type member in the ELF header is not ET_DYN. There may
1169 be a time in the future when it is desirable to do relocations
1170 on other types of files as well in which case this condition
1171 should either be removed or modified to accomodate the new file
1172 type. (E.g, an ET_EXEC executable which has been built to be
1173 position-independent could safely be relocated by the OS if
1174 desired. It is true that this violates the ABI, but the ABI
1175 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1176 */
1177
1178 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1179 if (interp_sect == NULL((void*)0)
1180 && (bfd_get_file_flags (exec_bfd)((exec_bfd)->flags) & DYNAMIC0x40) != 0
1181 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1182 {
1183 struct cleanup *old_chain;
1184 struct section_offsets *new_offsets;
1185 int i, changed;
1186 CORE_ADDR displacement;
1187
1188 /* It is necessary to relocate the objfile. The amount to
1189 relocate by is simply the address at which we are stopped
1190 minus the starting address from the executable.
1191
1192 We relocate all of the sections by the same amount. This
1193 behavior is mandated by recent editions of the System V ABI.
1194 According to the System V Application Binary Interface,
1195 Edition 4.1, page 5-5:
1196
1197 ... Though the system chooses virtual addresses for
1198 individual processes, it maintains the segments' relative
1199 positions. Because position-independent code uses relative
1200 addressesing between segments, the difference between
1201 virtual addresses in memory must match the difference
1202 between virtual addresses in the file. The difference
1203 between the virtual address of any segment in memory and
1204 the corresponding virtual address in the file is thus a
1205 single constant value for any one executable or shared
1206 object in a given process. This difference is the base
1207 address. One use of the base address is to relocate the
1208 memory image of the program during dynamic linking.
1209
1210 The same language also appears in Edition 4.0 of the System V
1211 ABI and is left unspecified in some of the earlier editions. */
1212
1213 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
1214 changed = 0;
1215
1216 new_offsets = xcalloc (symfile_objfile->num_sections,
1217 sizeof (struct section_offsets));
1218 old_chain = make_cleanup (xfree, new_offsets);
1219
1220 for (i = 0; i < symfile_objfile->num_sections; i++)
1221 {
1222 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i)((i == -1) ? (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/solib-svr4.c"
, 1222, "Section index is uninitialized"), -1) : symfile_objfile
->section_offsets->offsets[i])
)
1223 changed = 1;
1224 new_offsets->offsets[i] = displacement;
1225 }
1226
1227 if (changed)
1228 objfile_relocate (symfile_objfile, new_offsets);
1229
1230 do_cleanups (old_chain);
1231 }
1232}
1233
1234/*
1235
1236 GLOBAL FUNCTION
1237
1238 svr4_solib_create_inferior_hook -- shared library startup support
1239
1240 SYNOPSIS
1241
1242 void svr4_solib_create_inferior_hook()
1243
1244 DESCRIPTION
1245
1246 When gdb starts up the inferior, it nurses it along (through the
1247 shell) until it is ready to execute it's first instruction. At this
1248 point, this function gets called via expansion of the macro
1249 SOLIB_CREATE_INFERIOR_HOOK.
1250
1251 For SunOS executables, this first instruction is typically the
1252 one at "_start", or a similar text label, regardless of whether
1253 the executable is statically or dynamically linked. The runtime
1254 startup code takes care of dynamically linking in any shared
1255 libraries, once gdb allows the inferior to continue.
1256
1257 For SVR4 executables, this first instruction is either the first
1258 instruction in the dynamic linker (for dynamically linked
1259 executables) or the instruction at "start" for statically linked
1260 executables. For dynamically linked executables, the system
1261 first exec's /lib/libc.so.N, which contains the dynamic linker,
1262 and starts it running. The dynamic linker maps in any needed
1263 shared libraries, maps in the actual user executable, and then
1264 jumps to "start" in the user executable.
1265
1266 For both SunOS shared libraries, and SVR4 shared libraries, we
1267 can arrange to cooperate with the dynamic linker to discover the
1268 names of shared libraries that are dynamically linked, and the
1269 base addresses to which they are linked.
1270
1271 This function is responsible for discovering those names and
1272 addresses, and saving sufficient information about them to allow
1273 their symbols to be read at a later time.
1274
1275 FIXME
1276
1277 Between enable_break() and disable_break(), this code does not
1278 properly handle hitting breakpoints which the user might have
1279 set in the startup code or in the dynamic linker itself. Proper
1280 handling will probably have to wait until the implementation is
1281 changed to use the "breakpoint handler function" method.
1282
1283 Also, what if child has exit()ed? Must exit loop somehow.
1284 */
1285
1286static void
1287svr4_solib_create_inferior_hook (void)
1288{
1289 /* Relocate the main executable if necessary. */
1290 svr4_relocate_main_executable ();
1291
1292 if (!svr4_have_link_map_offsets ())
1293 {
1294 warning ("no shared library support for this OS / ABI");
1295 return;
1296
1297 }
1298
1299 if (!enable_break ())
1300 {
1301 warning ("shared library handler failed to enable breakpoint");
1302 return;
1303 }
1304
1305#if defined(_SCO_DS)
1306 /* SCO needs the loop below, other systems should be using the
1307 special shared library breakpoints and the shared library breakpoint
1308 service routine.
1309
1310 Now run the target. It will eventually hit the breakpoint, at
1311 which point all of the libraries will have been mapped in and we
1312 can go groveling around in the dynamic linker structures to find
1313 out what we need to know about them. */
1314
1315 clear_proceed_status ();
1316 stop_soon = STOP_QUIETLY;
1317 stop_signal = TARGET_SIGNAL_0;
1318 do
1319 {
1320 target_resume (pid_to_ptid (-1), 0, stop_signal)do { dcache_invalidate(target_dcache); (*current_target.to_resume
) (pid_to_ptid (-1), 0, stop_signal); } while (0)
;
1321 wait_for_inferior ();
1322 }
1323 while (stop_signal != TARGET_SIGNAL_TRAP);
1324 stop_soon = NO_STOP_QUIETLY;
1325#endif /* defined(_SCO_DS) */
1326
1327 disable_breakpoints_at_startup (1);
1328}
1329
1330static void
1331svr4_clear_solib (void)
1332{
1333 debug_base = 0;
1334}
1335
1336static void
1337svr4_free_so (struct so_list *so)
1338{
1339 xfree (so->lm_info->lm);
1340 xfree (so->lm_info);
1341}
1342
1343
1344/* Clear any bits of ADDR that wouldn't fit in a target-format
1345 data pointer. "Data pointer" here refers to whatever sort of
1346 address the dynamic linker uses to manage its sections. At the
1347 moment, we don't support shared libraries on any processors where
1348 code and data pointers are different sizes.
1349
1350 This isn't really the right solution. What we really need here is
1351 a way to do arithmetic on CORE_ADDR values that respects the
1352 natural pointer/address correspondence. (For example, on the MIPS,
1353 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1354 sign-extend the value. There, simply truncating the bits above
1355 TARGET_PTR_BIT, as we do below, is no good.) This should probably
1356 be a new gdbarch method or something. */
1357static CORE_ADDR
1358svr4_truncate_ptr (CORE_ADDR addr)
1359{
1360 if (TARGET_PTR_BIT(gdbarch_ptr_bit (current_gdbarch)) == sizeof (CORE_ADDR) * 8)
1361 /* We don't need to truncate anything, and the bit twiddling below
1362 will fail due to overflow problems. */
1363 return addr;
1364 else
1365 return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT(gdbarch_ptr_bit (current_gdbarch))) - 1);
1366}
1367
1368
1369static void
1370svr4_relocate_section_addresses (struct so_list *so,
1371 struct section_table *sec)
1372{
1373 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR (so));
1374 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR (so));
1375}
1376
1377
1378/* Fetch a link_map_offsets structure for native targets using struct
1379 definitions from link.h. See solib-legacy.c for the function
1380 which does the actual work.
1381
1382 Note: For non-native targets (i.e. cross-debugging situations),
1383 a target specific fetch_link_map_offsets() function should be
1384 defined and registered via set_solib_svr4_fetch_link_map_offsets(). */
1385
1386static struct link_map_offsets *
1387legacy_fetch_link_map_offsets (void)
1388{
1389 if (legacy_svr4_fetch_link_map_offsets_hook)
1390 return legacy_svr4_fetch_link_map_offsets_hook ();
1391 else
1392 {
1393 internal_error (__FILE__"/usr/src/gnu/usr.bin/binutils/gdb/solib-svr4.c", __LINE__1393,
1394 "legacy_fetch_link_map_offsets called without legacy "
1395 "link_map support enabled.");
1396 return 0;
1397 }
1398}
1399
1400/* Fetch a link_map_offsets structure using the method registered in the
1401 architecture vector. */
1402
1403static struct link_map_offsets *
1404svr4_fetch_link_map_offsets (void)
1405{
1406 struct link_map_offsets *(*flmo)(void) =
1407 gdbarch_data (current_gdbarch, fetch_link_map_offsets_gdbarch_data);
1408
1409 if (flmo == NULL((void*)0))
1410 {
1411 internal_error (__FILE__"/usr/src/gnu/usr.bin/binutils/gdb/solib-svr4.c", __LINE__1411,
1412 "svr4_fetch_link_map_offsets: fetch_link_map_offsets "
1413 "method not defined for this architecture.");
1414 return 0;
1415 }
1416 else
1417 return (flmo ());
1418}
1419
1420/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1421static int
1422svr4_have_link_map_offsets (void)
1423{
1424 struct link_map_offsets *(*flmo)(void) =
1425 gdbarch_data (current_gdbarch, fetch_link_map_offsets_gdbarch_data);
1426 if (flmo == NULL((void*)0)
1427 || (flmo == legacy_fetch_link_map_offsets
1428 && legacy_svr4_fetch_link_map_offsets_hook == NULL((void*)0)))
1429 return 0;
1430 else
1431 return 1;
1432}
1433
1434/* set_solib_svr4_fetch_link_map_offsets() is intended to be called by
1435 a <arch>_gdbarch_init() function. It is used to establish an
1436 architecture specific link_map_offsets fetcher for the architecture
1437 being defined. */
1438
1439void
1440set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1441 struct link_map_offsets *(*flmo) (void))
1442{
1443 deprecated_set_gdbarch_data (gdbarch, fetch_link_map_offsets_gdbarch_data, flmo);
1444}
1445
1446/* Initialize the architecture-specific link_map_offsets fetcher.
1447 This is called after <arch>_gdbarch_init() has set up its `struct
1448 gdbarch' for the new architecture, and is only called if the
1449 link_map_offsets fetcher isn't already initialized (which is
1450 usually done by calling set_solib_svr4_fetch_link_map_offsets()
1451 above in <arch>_gdbarch_init()). Therefore we attempt to provide a
1452 reasonable alternative (for native targets anyway) if the
1453 <arch>_gdbarch_init() fails to call
1454 set_solib_svr4_fetch_link_map_offsets(). */
1455
1456static void *
1457init_fetch_link_map_offsets (struct gdbarch *gdbarch)
1458{
1459 return legacy_fetch_link_map_offsets;
1460}
1461
1462/* Most OS'es that have SVR4-style ELF dynamic libraries define a
1463 `struct r_debug' and a `struct link_map' that are binary compatible
1464 with the origional SVR4 implementation. */
1465
1466/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1467 for an ILP32 SVR4 system. */
1468
1469struct link_map_offsets *
1470svr4_ilp32_fetch_link_map_offsets (void)
1471{
1472 static struct link_map_offsets lmo;
1473 static struct link_map_offsets *lmp = NULL((void*)0);
1474
1475 if (lmp == NULL((void*)0))
1476 {
1477 lmp = &lmo;
1478
1479 /* Everything we need is in the first 8 bytes. */
1480 lmo.r_debug_size = 8;
1481 lmo.r_map_offset = 4;
1482 lmo.r_map_size = 4;
1483
1484 /* Everything we need is in the first 20 bytes. */
1485 lmo.link_map_size = 20;
1486 lmo.l_addr_offset = 0;
1487 lmo.l_addr_size = 4;
1488 lmo.l_name_offset = 4;
1489 lmo.l_name_size = 4;
1490 lmo.l_next_offset = 12;
1491 lmo.l_next_size = 4;
1492 lmo.l_prev_offset = 16;
1493 lmo.l_prev_size = 4;
1494 }
1495
1496 return lmp;
1497}
1498
1499/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1500 for an LP64 SVR4 system. */
1501
1502struct link_map_offsets *
1503svr4_lp64_fetch_link_map_offsets (void)
1504{
1505 static struct link_map_offsets lmo;
1506 static struct link_map_offsets *lmp = NULL((void*)0);
1507
1508 if (lmp == NULL((void*)0))
1509 {
1510 lmp = &lmo;
1511
1512 /* Everything we need is in the first 16 bytes. */
1513 lmo.r_debug_size = 16;
1514 lmo.r_map_offset = 8;
1515 lmo.r_map_size = 8;
1516
1517 /* Everything we need is in the first 40 bytes. */
1518 lmo.link_map_size = 40;
1519 lmo.l_addr_offset = 0;
1520 lmo.l_addr_size = 8;
1521 lmo.l_name_offset = 8;
1522 lmo.l_name_size = 8;
1523 lmo.l_next_offset = 24;
1524 lmo.l_next_size = 8;
1525 lmo.l_prev_offset = 32;
1526 lmo.l_prev_size = 8;
1527 }
1528
1529 return lmp;
1530}
1531
1532
1533static struct target_so_ops svr4_so_ops;
1534
1535extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1536
1537void
1538_initialize_svr4_solib (void)
1539{
1540 fetch_link_map_offsets_gdbarch_data =
1541 gdbarch_data_register_post_init (init_fetch_link_map_offsets);
1542
1543 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
1544 svr4_so_ops.free_so = svr4_free_so;
1545 svr4_so_ops.clear_solib = svr4_clear_solib;
1546 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1547 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1548 svr4_so_ops.current_sos = svr4_current_sos;
1549 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
1550 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
1551
1552 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1553 current_target_so_ops = &svr4_so_ops;
1554}