Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h
Warning:line 85, column 47
The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name AsmWriter.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/IR/AsmWriter.cpp

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/IR/AsmWriter.cpp

1//===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This library implements `print` family of functions in classes like
10// Module, Function, Value, etc. In-memory representation of those classes is
11// converted to IR strings.
12//
13// Note that these routines must be extremely tolerant of various errors in the
14// LLVM code, because it can be used for debugging transformations.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/APFloat.h"
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/None.h"
23#include "llvm/ADT/Optional.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SetVector.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/ADT/iterator_range.h"
31#include "llvm/BinaryFormat/Dwarf.h"
32#include "llvm/Config/llvm-config.h"
33#include "llvm/IR/Argument.h"
34#include "llvm/IR/AssemblyAnnotationWriter.h"
35#include "llvm/IR/Attributes.h"
36#include "llvm/IR/BasicBlock.h"
37#include "llvm/IR/CFG.h"
38#include "llvm/IR/CallingConv.h"
39#include "llvm/IR/Comdat.h"
40#include "llvm/IR/Constant.h"
41#include "llvm/IR/Constants.h"
42#include "llvm/IR/DebugInfoMetadata.h"
43#include "llvm/IR/DerivedTypes.h"
44#include "llvm/IR/Function.h"
45#include "llvm/IR/GlobalAlias.h"
46#include "llvm/IR/GlobalIFunc.h"
47#include "llvm/IR/GlobalIndirectSymbol.h"
48#include "llvm/IR/GlobalObject.h"
49#include "llvm/IR/GlobalValue.h"
50#include "llvm/IR/GlobalVariable.h"
51#include "llvm/IR/IRPrintingPasses.h"
52#include "llvm/IR/InlineAsm.h"
53#include "llvm/IR/InstrTypes.h"
54#include "llvm/IR/Instruction.h"
55#include "llvm/IR/Instructions.h"
56#include "llvm/IR/IntrinsicInst.h"
57#include "llvm/IR/LLVMContext.h"
58#include "llvm/IR/Metadata.h"
59#include "llvm/IR/Module.h"
60#include "llvm/IR/ModuleSlotTracker.h"
61#include "llvm/IR/ModuleSummaryIndex.h"
62#include "llvm/IR/Operator.h"
63#include "llvm/IR/Type.h"
64#include "llvm/IR/TypeFinder.h"
65#include "llvm/IR/Use.h"
66#include "llvm/IR/User.h"
67#include "llvm/IR/Value.h"
68#include "llvm/Support/AtomicOrdering.h"
69#include "llvm/Support/Casting.h"
70#include "llvm/Support/Compiler.h"
71#include "llvm/Support/Debug.h"
72#include "llvm/Support/ErrorHandling.h"
73#include "llvm/Support/Format.h"
74#include "llvm/Support/FormattedStream.h"
75#include "llvm/Support/raw_ostream.h"
76#include <algorithm>
77#include <cassert>
78#include <cctype>
79#include <cstddef>
80#include <cstdint>
81#include <iterator>
82#include <memory>
83#include <string>
84#include <tuple>
85#include <utility>
86#include <vector>
87
88using namespace llvm;
89
90// Make virtual table appear in this compilation unit.
91AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
92
93//===----------------------------------------------------------------------===//
94// Helper Functions
95//===----------------------------------------------------------------------===//
96
97using OrderMap = MapVector<const Value *, unsigned>;
98
99using UseListOrderMap =
100 DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>;
101
102/// Look for a value that might be wrapped as metadata, e.g. a value in a
103/// metadata operand. Returns the input value as-is if it is not wrapped.
104static const Value *skipMetadataWrapper(const Value *V) {
105 if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
106 if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
107 return VAM->getValue();
108 return V;
109}
110
111static void orderValue(const Value *V, OrderMap &OM) {
112 if (OM.lookup(V))
113 return;
114
115 if (const Constant *C = dyn_cast<Constant>(V))
116 if (C->getNumOperands() && !isa<GlobalValue>(C))
117 for (const Value *Op : C->operands())
118 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
119 orderValue(Op, OM);
120
121 // Note: we cannot cache this lookup above, since inserting into the map
122 // changes the map's size, and thus affects the other IDs.
123 unsigned ID = OM.size() + 1;
124 OM[V] = ID;
125}
126
127static OrderMap orderModule(const Module *M) {
128 OrderMap OM;
129
130 for (const GlobalVariable &G : M->globals()) {
131 if (G.hasInitializer())
132 if (!isa<GlobalValue>(G.getInitializer()))
133 orderValue(G.getInitializer(), OM);
134 orderValue(&G, OM);
135 }
136 for (const GlobalAlias &A : M->aliases()) {
137 if (!isa<GlobalValue>(A.getAliasee()))
138 orderValue(A.getAliasee(), OM);
139 orderValue(&A, OM);
140 }
141 for (const GlobalIFunc &I : M->ifuncs()) {
142 if (!isa<GlobalValue>(I.getResolver()))
143 orderValue(I.getResolver(), OM);
144 orderValue(&I, OM);
145 }
146 for (const Function &F : *M) {
147 for (const Use &U : F.operands())
148 if (!isa<GlobalValue>(U.get()))
149 orderValue(U.get(), OM);
150
151 orderValue(&F, OM);
152
153 if (F.isDeclaration())
154 continue;
155
156 for (const Argument &A : F.args())
157 orderValue(&A, OM);
158 for (const BasicBlock &BB : F) {
159 orderValue(&BB, OM);
160 for (const Instruction &I : BB) {
161 for (const Value *Op : I.operands()) {
162 Op = skipMetadataWrapper(Op);
163 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
164 isa<InlineAsm>(*Op))
165 orderValue(Op, OM);
166 }
167 orderValue(&I, OM);
168 }
169 }
170 }
171 return OM;
172}
173
174static std::vector<unsigned>
175predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) {
176 // Predict use-list order for this one.
177 using Entry = std::pair<const Use *, unsigned>;
178 SmallVector<Entry, 64> List;
179 for (const Use &U : V->uses())
180 // Check if this user will be serialized.
181 if (OM.lookup(U.getUser()))
182 List.push_back(std::make_pair(&U, List.size()));
183
184 if (List.size() < 2)
185 // We may have lost some users.
186 return {};
187
188 // When referencing a value before its declaration, a temporary value is
189 // created, which will later be RAUWed with the actual value. This reverses
190 // the use list. This happens for all values apart from basic blocks.
191 bool GetsReversed = !isa<BasicBlock>(V);
192 if (auto *BA = dyn_cast<BlockAddress>(V))
193 ID = OM.lookup(BA->getBasicBlock());
194 llvm::sort(List, [&](const Entry &L, const Entry &R) {
195 const Use *LU = L.first;
196 const Use *RU = R.first;
197 if (LU == RU)
198 return false;
199
200 auto LID = OM.lookup(LU->getUser());
201 auto RID = OM.lookup(RU->getUser());
202
203 // If ID is 4, then expect: 7 6 5 1 2 3.
204 if (LID < RID) {
205 if (GetsReversed)
206 if (RID <= ID)
207 return true;
208 return false;
209 }
210 if (RID < LID) {
211 if (GetsReversed)
212 if (LID <= ID)
213 return false;
214 return true;
215 }
216
217 // LID and RID are equal, so we have different operands of the same user.
218 // Assume operands are added in order for all instructions.
219 if (GetsReversed)
220 if (LID <= ID)
221 return LU->getOperandNo() < RU->getOperandNo();
222 return LU->getOperandNo() > RU->getOperandNo();
223 });
224
225 if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
226 return L.second < R.second;
227 }))
228 // Order is already correct.
229 return {};
230
231 // Store the shuffle.
232 std::vector<unsigned> Shuffle(List.size());
233 for (size_t I = 0, E = List.size(); I != E; ++I)
234 Shuffle[I] = List[I].second;
235 return Shuffle;
236}
237
238static UseListOrderMap predictUseListOrder(const Module *M) {
239 OrderMap OM = orderModule(M);
240 UseListOrderMap ULOM;
241 for (const auto &Pair : OM) {
242 const Value *V = Pair.first;
243 if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
244 continue;
245
246 std::vector<unsigned> Shuffle =
247 predictValueUseListOrder(V, Pair.second, OM);
248 if (Shuffle.empty())
249 continue;
250
251 const Function *F = nullptr;
252 if (auto *I = dyn_cast<Instruction>(V))
253 F = I->getFunction();
254 if (auto *A = dyn_cast<Argument>(V))
255 F = A->getParent();
256 if (auto *BB = dyn_cast<BasicBlock>(V))
257 F = BB->getParent();
258 ULOM[F][V] = std::move(Shuffle);
259 }
260 return ULOM;
261}
262
263static const Module *getModuleFromVal(const Value *V) {
264 if (const Argument *MA = dyn_cast<Argument>(V))
265 return MA->getParent() ? MA->getParent()->getParent() : nullptr;
266
267 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
268 return BB->getParent() ? BB->getParent()->getParent() : nullptr;
269
270 if (const Instruction *I = dyn_cast<Instruction>(V)) {
271 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
272 return M ? M->getParent() : nullptr;
273 }
274
275 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
276 return GV->getParent();
277
278 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
279 for (const User *U : MAV->users())
280 if (isa<Instruction>(U))
281 if (const Module *M = getModuleFromVal(U))
282 return M;
283 return nullptr;
284 }
285
286 return nullptr;
287}
288
289static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
290 switch (cc) {
291 default: Out << "cc" << cc; break;
292 case CallingConv::Fast: Out << "fastcc"; break;
293 case CallingConv::Cold: Out << "coldcc"; break;
294 case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
295 case CallingConv::AnyReg: Out << "anyregcc"; break;
296 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
297 case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
298 case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
299 case CallingConv::GHC: Out << "ghccc"; break;
300 case CallingConv::Tail: Out << "tailcc"; break;
301 case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
302 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
303 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
304 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
305 case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break;
306 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
307 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
308 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
309 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
310 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
311 case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
312 case CallingConv::AArch64_SVE_VectorCall:
313 Out << "aarch64_sve_vector_pcs";
314 break;
315 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
316 case CallingConv::AVR_INTR: Out << "avr_intrcc "; break;
317 case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break;
318 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
319 case CallingConv::PTX_Device: Out << "ptx_device"; break;
320 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
321 case CallingConv::Win64: Out << "win64cc"; break;
322 case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
323 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
324 case CallingConv::Swift: Out << "swiftcc"; break;
325 case CallingConv::SwiftTail: Out << "swifttailcc"; break;
326 case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
327 case CallingConv::HHVM: Out << "hhvmcc"; break;
328 case CallingConv::HHVM_C: Out << "hhvm_ccc"; break;
329 case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break;
330 case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break;
331 case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break;
332 case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break;
333 case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break;
334 case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break;
335 case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break;
336 case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
337 case CallingConv::AMDGPU_Gfx: Out << "amdgpu_gfx"; break;
338 }
339}
340
341enum PrefixType {
342 GlobalPrefix,
343 ComdatPrefix,
344 LabelPrefix,
345 LocalPrefix,
346 NoPrefix
347};
348
349void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
350 assert(!Name.empty() && "Cannot get empty name!")((void)0);
351
352 // Scan the name to see if it needs quotes first.
353 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
354 if (!NeedsQuotes) {
355 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
356 // By making this unsigned, the value passed in to isalnum will always be
357 // in the range 0-255. This is important when building with MSVC because
358 // its implementation will assert. This situation can arise when dealing
359 // with UTF-8 multibyte characters.
360 unsigned char C = Name[i];
361 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
362 C != '_') {
363 NeedsQuotes = true;
364 break;
365 }
366 }
367 }
368
369 // If we didn't need any quotes, just write out the name in one blast.
370 if (!NeedsQuotes) {
371 OS << Name;
372 return;
373 }
374
375 // Okay, we need quotes. Output the quotes and escape any scary characters as
376 // needed.
377 OS << '"';
378 printEscapedString(Name, OS);
379 OS << '"';
380}
381
382/// Turn the specified name into an 'LLVM name', which is either prefixed with %
383/// (if the string only contains simple characters) or is surrounded with ""'s
384/// (if it has special chars in it). Print it out.
385static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
386 switch (Prefix) {
387 case NoPrefix:
388 break;
389 case GlobalPrefix:
390 OS << '@';
391 break;
392 case ComdatPrefix:
393 OS << '$';
394 break;
395 case LabelPrefix:
396 break;
397 case LocalPrefix:
398 OS << '%';
399 break;
400 }
401 printLLVMNameWithoutPrefix(OS, Name);
402}
403
404/// Turn the specified name into an 'LLVM name', which is either prefixed with %
405/// (if the string only contains simple characters) or is surrounded with ""'s
406/// (if it has special chars in it). Print it out.
407static void PrintLLVMName(raw_ostream &OS, const Value *V) {
408 PrintLLVMName(OS, V->getName(),
409 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
410}
411
412static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
413 Out << ", <";
414 if (isa<ScalableVectorType>(Ty))
415 Out << "vscale x ";
416 Out << Mask.size() << " x i32> ";
417 bool FirstElt = true;
418 if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
419 Out << "zeroinitializer";
420 } else if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
421 Out << "undef";
422 } else {
423 Out << "<";
424 for (int Elt : Mask) {
425 if (FirstElt)
426 FirstElt = false;
427 else
428 Out << ", ";
429 Out << "i32 ";
430 if (Elt == UndefMaskElem)
431 Out << "undef";
432 else
433 Out << Elt;
434 }
435 Out << ">";
436 }
437}
438
439namespace {
440
441class TypePrinting {
442public:
443 TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
444
445 TypePrinting(const TypePrinting &) = delete;
446 TypePrinting &operator=(const TypePrinting &) = delete;
447
448 /// The named types that are used by the current module.
449 TypeFinder &getNamedTypes();
450
451 /// The numbered types, number to type mapping.
452 std::vector<StructType *> &getNumberedTypes();
453
454 bool empty();
455
456 void print(Type *Ty, raw_ostream &OS);
457
458 void printStructBody(StructType *Ty, raw_ostream &OS);
459
460private:
461 void incorporateTypes();
462
463 /// A module to process lazily when needed. Set to nullptr as soon as used.
464 const Module *DeferredM;
465
466 TypeFinder NamedTypes;
467
468 // The numbered types, along with their value.
469 DenseMap<StructType *, unsigned> Type2Number;
470
471 std::vector<StructType *> NumberedTypes;
472};
473
474} // end anonymous namespace
475
476TypeFinder &TypePrinting::getNamedTypes() {
477 incorporateTypes();
478 return NamedTypes;
479}
480
481std::vector<StructType *> &TypePrinting::getNumberedTypes() {
482 incorporateTypes();
483
484 // We know all the numbers that each type is used and we know that it is a
485 // dense assignment. Convert the map to an index table, if it's not done
486 // already (judging from the sizes):
487 if (NumberedTypes.size() == Type2Number.size())
488 return NumberedTypes;
489
490 NumberedTypes.resize(Type2Number.size());
491 for (const auto &P : Type2Number) {
492 assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?")((void)0);
493 assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?")((void)0);
494 NumberedTypes[P.second] = P.first;
495 }
496 return NumberedTypes;
497}
498
499bool TypePrinting::empty() {
500 incorporateTypes();
501 return NamedTypes.empty() && Type2Number.empty();
502}
503
504void TypePrinting::incorporateTypes() {
505 if (!DeferredM)
506 return;
507
508 NamedTypes.run(*DeferredM, false);
509 DeferredM = nullptr;
510
511 // The list of struct types we got back includes all the struct types, split
512 // the unnamed ones out to a numbering and remove the anonymous structs.
513 unsigned NextNumber = 0;
514
515 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
516 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
517 StructType *STy = *I;
518
519 // Ignore anonymous types.
520 if (STy->isLiteral())
521 continue;
522
523 if (STy->getName().empty())
524 Type2Number[STy] = NextNumber++;
525 else
526 *NextToUse++ = STy;
527 }
528
529 NamedTypes.erase(NextToUse, NamedTypes.end());
530}
531
532/// Write the specified type to the specified raw_ostream, making use of type
533/// names or up references to shorten the type name where possible.
534void TypePrinting::print(Type *Ty, raw_ostream &OS) {
535 switch (Ty->getTypeID()) {
536 case Type::VoidTyID: OS << "void"; return;
537 case Type::HalfTyID: OS << "half"; return;
538 case Type::BFloatTyID: OS << "bfloat"; return;
539 case Type::FloatTyID: OS << "float"; return;
540 case Type::DoubleTyID: OS << "double"; return;
541 case Type::X86_FP80TyID: OS << "x86_fp80"; return;
542 case Type::FP128TyID: OS << "fp128"; return;
543 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
544 case Type::LabelTyID: OS << "label"; return;
545 case Type::MetadataTyID: OS << "metadata"; return;
546 case Type::X86_MMXTyID: OS << "x86_mmx"; return;
547 case Type::X86_AMXTyID: OS << "x86_amx"; return;
548 case Type::TokenTyID: OS << "token"; return;
549 case Type::IntegerTyID:
550 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
551 return;
552
553 case Type::FunctionTyID: {
554 FunctionType *FTy = cast<FunctionType>(Ty);
555 print(FTy->getReturnType(), OS);
556 OS << " (";
557 for (FunctionType::param_iterator I = FTy->param_begin(),
558 E = FTy->param_end(); I != E; ++I) {
559 if (I != FTy->param_begin())
560 OS << ", ";
561 print(*I, OS);
562 }
563 if (FTy->isVarArg()) {
564 if (FTy->getNumParams()) OS << ", ";
565 OS << "...";
566 }
567 OS << ')';
568 return;
569 }
570 case Type::StructTyID: {
571 StructType *STy = cast<StructType>(Ty);
572
573 if (STy->isLiteral())
574 return printStructBody(STy, OS);
575
576 if (!STy->getName().empty())
577 return PrintLLVMName(OS, STy->getName(), LocalPrefix);
578
579 incorporateTypes();
580 const auto I = Type2Number.find(STy);
581 if (I != Type2Number.end())
582 OS << '%' << I->second;
583 else // Not enumerated, print the hex address.
584 OS << "%\"type " << STy << '\"';
585 return;
586 }
587 case Type::PointerTyID: {
588 PointerType *PTy = cast<PointerType>(Ty);
589 if (PTy->isOpaque()) {
590 OS << "ptr";
591 if (unsigned AddressSpace = PTy->getAddressSpace())
592 OS << " addrspace(" << AddressSpace << ')';
593 return;
594 }
595 print(PTy->getElementType(), OS);
596 if (unsigned AddressSpace = PTy->getAddressSpace())
597 OS << " addrspace(" << AddressSpace << ')';
598 OS << '*';
599 return;
600 }
601 case Type::ArrayTyID: {
602 ArrayType *ATy = cast<ArrayType>(Ty);
603 OS << '[' << ATy->getNumElements() << " x ";
604 print(ATy->getElementType(), OS);
605 OS << ']';
606 return;
607 }
608 case Type::FixedVectorTyID:
609 case Type::ScalableVectorTyID: {
610 VectorType *PTy = cast<VectorType>(Ty);
611 ElementCount EC = PTy->getElementCount();
612 OS << "<";
613 if (EC.isScalable())
614 OS << "vscale x ";
615 OS << EC.getKnownMinValue() << " x ";
616 print(PTy->getElementType(), OS);
617 OS << '>';
618 return;
619 }
620 }
621 llvm_unreachable("Invalid TypeID")__builtin_unreachable();
622}
623
624void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
625 if (STy->isOpaque()) {
626 OS << "opaque";
627 return;
628 }
629
630 if (STy->isPacked())
631 OS << '<';
632
633 if (STy->getNumElements() == 0) {
634 OS << "{}";
635 } else {
636 StructType::element_iterator I = STy->element_begin();
637 OS << "{ ";
638 print(*I++, OS);
639 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
640 OS << ", ";
641 print(*I, OS);
642 }
643
644 OS << " }";
645 }
646 if (STy->isPacked())
647 OS << '>';
648}
649
650AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() {}
651
652namespace llvm {
653
654//===----------------------------------------------------------------------===//
655// SlotTracker Class: Enumerate slot numbers for unnamed values
656//===----------------------------------------------------------------------===//
657/// This class provides computation of slot numbers for LLVM Assembly writing.
658///
659class SlotTracker : public AbstractSlotTrackerStorage {
660public:
661 /// ValueMap - A mapping of Values to slot numbers.
662 using ValueMap = DenseMap<const Value *, unsigned>;
663
664private:
665 /// TheModule - The module for which we are holding slot numbers.
666 const Module* TheModule;
667
668 /// TheFunction - The function for which we are holding slot numbers.
669 const Function* TheFunction = nullptr;
670 bool FunctionProcessed = false;
671 bool ShouldInitializeAllMetadata;
672
673 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
674 ProcessModuleHookFn;
675 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
676 ProcessFunctionHookFn;
677
678 /// The summary index for which we are holding slot numbers.
679 const ModuleSummaryIndex *TheIndex = nullptr;
680
681 /// mMap - The slot map for the module level data.
682 ValueMap mMap;
683 unsigned mNext = 0;
684
685 /// fMap - The slot map for the function level data.
686 ValueMap fMap;
687 unsigned fNext = 0;
688
689 /// mdnMap - Map for MDNodes.
690 DenseMap<const MDNode*, unsigned> mdnMap;
691 unsigned mdnNext = 0;
692
693 /// asMap - The slot map for attribute sets.
694 DenseMap<AttributeSet, unsigned> asMap;
695 unsigned asNext = 0;
696
697 /// ModulePathMap - The slot map for Module paths used in the summary index.
698 StringMap<unsigned> ModulePathMap;
699 unsigned ModulePathNext = 0;
700
701 /// GUIDMap - The slot map for GUIDs used in the summary index.
702 DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
703 unsigned GUIDNext = 0;
704
705 /// TypeIdMap - The slot map for type ids used in the summary index.
706 StringMap<unsigned> TypeIdMap;
707 unsigned TypeIdNext = 0;
708
709public:
710 /// Construct from a module.
711 ///
712 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
713 /// functions, giving correct numbering for metadata referenced only from
714 /// within a function (even if no functions have been initialized).
715 explicit SlotTracker(const Module *M,
716 bool ShouldInitializeAllMetadata = false);
717
718 /// Construct from a function, starting out in incorp state.
719 ///
720 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
721 /// functions, giving correct numbering for metadata referenced only from
722 /// within a function (even if no functions have been initialized).
723 explicit SlotTracker(const Function *F,
724 bool ShouldInitializeAllMetadata = false);
725
726 /// Construct from a module summary index.
727 explicit SlotTracker(const ModuleSummaryIndex *Index);
728
729 SlotTracker(const SlotTracker &) = delete;
730 SlotTracker &operator=(const SlotTracker &) = delete;
731
732 ~SlotTracker() = default;
733
734 void setProcessHook(
735 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>);
736 void setProcessHook(std::function<void(AbstractSlotTrackerStorage *,
737 const Function *, bool)>);
738
739 unsigned getNextMetadataSlot() override { return mdnNext; }
740
741 void createMetadataSlot(const MDNode *N) override;
742
743 /// Return the slot number of the specified value in it's type
744 /// plane. If something is not in the SlotTracker, return -1.
745 int getLocalSlot(const Value *V);
746 int getGlobalSlot(const GlobalValue *V);
747 int getMetadataSlot(const MDNode *N) override;
748 int getAttributeGroupSlot(AttributeSet AS);
749 int getModulePathSlot(StringRef Path);
750 int getGUIDSlot(GlobalValue::GUID GUID);
751 int getTypeIdSlot(StringRef Id);
752
753 /// If you'd like to deal with a function instead of just a module, use
754 /// this method to get its data into the SlotTracker.
755 void incorporateFunction(const Function *F) {
756 TheFunction = F;
757 FunctionProcessed = false;
758 }
759
760 const Function *getFunction() const { return TheFunction; }
761
762 /// After calling incorporateFunction, use this method to remove the
763 /// most recently incorporated function from the SlotTracker. This
764 /// will reset the state of the machine back to just the module contents.
765 void purgeFunction();
766
767 /// MDNode map iterators.
768 using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
769
770 mdn_iterator mdn_begin() { return mdnMap.begin(); }
771 mdn_iterator mdn_end() { return mdnMap.end(); }
772 unsigned mdn_size() const { return mdnMap.size(); }
773 bool mdn_empty() const { return mdnMap.empty(); }
774
775 /// AttributeSet map iterators.
776 using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
777
778 as_iterator as_begin() { return asMap.begin(); }
779 as_iterator as_end() { return asMap.end(); }
780 unsigned as_size() const { return asMap.size(); }
781 bool as_empty() const { return asMap.empty(); }
782
783 /// GUID map iterators.
784 using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
785
786 /// These functions do the actual initialization.
787 inline void initializeIfNeeded();
788 int initializeIndexIfNeeded();
789
790 // Implementation Details
791private:
792 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
793 void CreateModuleSlot(const GlobalValue *V);
794
795 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
796 void CreateMetadataSlot(const MDNode *N);
797
798 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
799 void CreateFunctionSlot(const Value *V);
800
801 /// Insert the specified AttributeSet into the slot table.
802 void CreateAttributeSetSlot(AttributeSet AS);
803
804 inline void CreateModulePathSlot(StringRef Path);
805 void CreateGUIDSlot(GlobalValue::GUID GUID);
806 void CreateTypeIdSlot(StringRef Id);
807
808 /// Add all of the module level global variables (and their initializers)
809 /// and function declarations, but not the contents of those functions.
810 void processModule();
811 // Returns number of allocated slots
812 int processIndex();
813
814 /// Add all of the functions arguments, basic blocks, and instructions.
815 void processFunction();
816
817 /// Add the metadata directly attached to a GlobalObject.
818 void processGlobalObjectMetadata(const GlobalObject &GO);
819
820 /// Add all of the metadata from a function.
821 void processFunctionMetadata(const Function &F);
822
823 /// Add all of the metadata from an instruction.
824 void processInstructionMetadata(const Instruction &I);
825};
826
827} // end namespace llvm
828
829ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
830 const Function *F)
831 : M(M), F(F), Machine(&Machine) {}
832
833ModuleSlotTracker::ModuleSlotTracker(const Module *M,
834 bool ShouldInitializeAllMetadata)
835 : ShouldCreateStorage(M),
836 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
837
838ModuleSlotTracker::~ModuleSlotTracker() = default;
839
840SlotTracker *ModuleSlotTracker::getMachine() {
841 if (!ShouldCreateStorage)
842 return Machine;
843
844 ShouldCreateStorage = false;
845 MachineStorage =
846 std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
847 Machine = MachineStorage.get();
848 if (ProcessModuleHookFn)
849 Machine->setProcessHook(ProcessModuleHookFn);
850 if (ProcessFunctionHookFn)
851 Machine->setProcessHook(ProcessFunctionHookFn);
852 return Machine;
853}
854
855void ModuleSlotTracker::incorporateFunction(const Function &F) {
856 // Using getMachine() may lazily create the slot tracker.
857 if (!getMachine())
858 return;
859
860 // Nothing to do if this is the right function already.
861 if (this->F == &F)
862 return;
863 if (this->F)
864 Machine->purgeFunction();
865 Machine->incorporateFunction(&F);
866 this->F = &F;
867}
868
869int ModuleSlotTracker::getLocalSlot(const Value *V) {
870 assert(F && "No function incorporated")((void)0);
871 return Machine->getLocalSlot(V);
872}
873
874void ModuleSlotTracker::setProcessHook(
875 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
876 Fn) {
877 ProcessModuleHookFn = Fn;
878}
879
880void ModuleSlotTracker::setProcessHook(
881 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
882 Fn) {
883 ProcessFunctionHookFn = Fn;
884}
885
886static SlotTracker *createSlotTracker(const Value *V) {
887 if (const Argument *FA = dyn_cast<Argument>(V))
888 return new SlotTracker(FA->getParent());
889
890 if (const Instruction *I = dyn_cast<Instruction>(V))
891 if (I->getParent())
892 return new SlotTracker(I->getParent()->getParent());
893
894 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
895 return new SlotTracker(BB->getParent());
896
897 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
898 return new SlotTracker(GV->getParent());
899
900 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
901 return new SlotTracker(GA->getParent());
902
903 if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
904 return new SlotTracker(GIF->getParent());
905
906 if (const Function *Func = dyn_cast<Function>(V))
907 return new SlotTracker(Func);
908
909 return nullptr;
910}
911
912#if 0
913#define ST_DEBUG(X) dbgs() << X
914#else
915#define ST_DEBUG(X)
916#endif
917
918// Module level constructor. Causes the contents of the Module (sans functions)
919// to be added to the slot table.
920SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
921 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
922
923// Function level constructor. Causes the contents of the Module and the one
924// function provided to be added to the slot table.
925SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
926 : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
927 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
928
929SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
930 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
931
932inline void SlotTracker::initializeIfNeeded() {
933 if (TheModule) {
934 processModule();
935 TheModule = nullptr; ///< Prevent re-processing next time we're called.
936 }
937
938 if (TheFunction && !FunctionProcessed)
939 processFunction();
940}
941
942int SlotTracker::initializeIndexIfNeeded() {
943 if (!TheIndex)
944 return 0;
945 int NumSlots = processIndex();
946 TheIndex = nullptr; ///< Prevent re-processing next time we're called.
947 return NumSlots;
948}
949
950// Iterate through all the global variables, functions, and global
951// variable initializers and create slots for them.
952void SlotTracker::processModule() {
953 ST_DEBUG("begin processModule!\n");
954
955 // Add all of the unnamed global variables to the value table.
956 for (const GlobalVariable &Var : TheModule->globals()) {
957 if (!Var.hasName())
958 CreateModuleSlot(&Var);
959 processGlobalObjectMetadata(Var);
960 auto Attrs = Var.getAttributes();
961 if (Attrs.hasAttributes())
962 CreateAttributeSetSlot(Attrs);
963 }
964
965 for (const GlobalAlias &A : TheModule->aliases()) {
966 if (!A.hasName())
967 CreateModuleSlot(&A);
968 }
969
970 for (const GlobalIFunc &I : TheModule->ifuncs()) {
971 if (!I.hasName())
972 CreateModuleSlot(&I);
973 }
974
975 // Add metadata used by named metadata.
976 for (const NamedMDNode &NMD : TheModule->named_metadata()) {
977 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
978 CreateMetadataSlot(NMD.getOperand(i));
979 }
980
981 for (const Function &F : *TheModule) {
982 if (!F.hasName())
983 // Add all the unnamed functions to the table.
984 CreateModuleSlot(&F);
985
986 if (ShouldInitializeAllMetadata)
987 processFunctionMetadata(F);
988
989 // Add all the function attributes to the table.
990 // FIXME: Add attributes of other objects?
991 AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
992 if (FnAttrs.hasAttributes())
993 CreateAttributeSetSlot(FnAttrs);
994 }
995
996 if (ProcessModuleHookFn)
997 ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
998
999 ST_DEBUG("end processModule!\n");
1000}
1001
1002// Process the arguments, basic blocks, and instructions of a function.
1003void SlotTracker::processFunction() {
1004 ST_DEBUG("begin processFunction!\n");
1005 fNext = 0;
1006
1007 // Process function metadata if it wasn't hit at the module-level.
1008 if (!ShouldInitializeAllMetadata)
1009 processFunctionMetadata(*TheFunction);
1010
1011 // Add all the function arguments with no names.
1012 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1013 AE = TheFunction->arg_end(); AI != AE; ++AI)
1014 if (!AI->hasName())
1015 CreateFunctionSlot(&*AI);
1016
1017 ST_DEBUG("Inserting Instructions:\n");
1018
1019 // Add all of the basic blocks and instructions with no names.
1020 for (auto &BB : *TheFunction) {
1021 if (!BB.hasName())
1022 CreateFunctionSlot(&BB);
1023
1024 for (auto &I : BB) {
1025 if (!I.getType()->isVoidTy() && !I.hasName())
1026 CreateFunctionSlot(&I);
1027
1028 // We allow direct calls to any llvm.foo function here, because the
1029 // target may not be linked into the optimizer.
1030 if (const auto *Call = dyn_cast<CallBase>(&I)) {
1031 // Add all the call attributes to the table.
1032 AttributeSet Attrs = Call->getAttributes().getFnAttributes();
1033 if (Attrs.hasAttributes())
1034 CreateAttributeSetSlot(Attrs);
1035 }
1036 }
1037 }
1038
1039 if (ProcessFunctionHookFn)
1040 ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
1041
1042 FunctionProcessed = true;
1043
1044 ST_DEBUG("end processFunction!\n");
1045}
1046
1047// Iterate through all the GUID in the index and create slots for them.
1048int SlotTracker::processIndex() {
1049 ST_DEBUG("begin processIndex!\n");
1050 assert(TheIndex)((void)0);
1051
1052 // The first block of slots are just the module ids, which start at 0 and are
1053 // assigned consecutively. Since the StringMap iteration order isn't
1054 // guaranteed, use a std::map to order by module ID before assigning slots.
1055 std::map<uint64_t, StringRef> ModuleIdToPathMap;
1056 for (auto &ModPath : TheIndex->modulePaths())
1057 ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1058 for (auto &ModPair : ModuleIdToPathMap)
1059 CreateModulePathSlot(ModPair.second);
1060
1061 // Start numbering the GUIDs after the module ids.
1062 GUIDNext = ModulePathNext;
1063
1064 for (auto &GlobalList : *TheIndex)
1065 CreateGUIDSlot(GlobalList.first);
1066
1067 for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1068 CreateGUIDSlot(GlobalValue::getGUID(TId.first));
1069
1070 // Start numbering the TypeIds after the GUIDs.
1071 TypeIdNext = GUIDNext;
1072 for (const auto &TID : TheIndex->typeIds())
1073 CreateTypeIdSlot(TID.second.first);
1074
1075 ST_DEBUG("end processIndex!\n");
1076 return TypeIdNext;
1077}
1078
1079void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1080 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1081 GO.getAllMetadata(MDs);
1082 for (auto &MD : MDs)
1083 CreateMetadataSlot(MD.second);
1084}
1085
1086void SlotTracker::processFunctionMetadata(const Function &F) {
1087 processGlobalObjectMetadata(F);
1088 for (auto &BB : F) {
1089 for (auto &I : BB)
1090 processInstructionMetadata(I);
1091 }
1092}
1093
1094void SlotTracker::processInstructionMetadata(const Instruction &I) {
1095 // Process metadata used directly by intrinsics.
1096 if (const CallInst *CI = dyn_cast<CallInst>(&I))
1097 if (Function *F = CI->getCalledFunction())
1098 if (F->isIntrinsic())
1099 for (auto &Op : I.operands())
1100 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1101 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1102 CreateMetadataSlot(N);
1103
1104 // Process metadata attached to this instruction.
1105 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1106 I.getAllMetadata(MDs);
1107 for (auto &MD : MDs)
1108 CreateMetadataSlot(MD.second);
1109}
1110
1111/// Clean up after incorporating a function. This is the only way to get out of
1112/// the function incorporation state that affects get*Slot/Create*Slot. Function
1113/// incorporation state is indicated by TheFunction != 0.
1114void SlotTracker::purgeFunction() {
1115 ST_DEBUG("begin purgeFunction!\n");
1116 fMap.clear(); // Simply discard the function level map
1117 TheFunction = nullptr;
1118 FunctionProcessed = false;
1119 ST_DEBUG("end purgeFunction!\n");
1120}
1121
1122/// getGlobalSlot - Get the slot number of a global value.
1123int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1124 // Check for uninitialized state and do lazy initialization.
1125 initializeIfNeeded();
1126
1127 // Find the value in the module map
1128 ValueMap::iterator MI = mMap.find(V);
1129 return MI == mMap.end() ? -1 : (int)MI->second;
1130}
1131
1132void SlotTracker::setProcessHook(
1133 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
1134 Fn) {
1135 ProcessModuleHookFn = Fn;
1136}
1137
1138void SlotTracker::setProcessHook(
1139 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
1140 Fn) {
1141 ProcessFunctionHookFn = Fn;
1142}
1143
1144/// getMetadataSlot - Get the slot number of a MDNode.
1145void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); }
1146
1147/// getMetadataSlot - Get the slot number of a MDNode.
1148int SlotTracker::getMetadataSlot(const MDNode *N) {
1149 // Check for uninitialized state and do lazy initialization.
1150 initializeIfNeeded();
1151
1152 // Find the MDNode in the module map
1153 mdn_iterator MI = mdnMap.find(N);
1154 return MI == mdnMap.end() ? -1 : (int)MI->second;
1155}
1156
1157/// getLocalSlot - Get the slot number for a value that is local to a function.
1158int SlotTracker::getLocalSlot(const Value *V) {
1159 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!")((void)0);
1160
1161 // Check for uninitialized state and do lazy initialization.
1162 initializeIfNeeded();
1163
1164 ValueMap::iterator FI = fMap.find(V);
1165 return FI == fMap.end() ? -1 : (int)FI->second;
1166}
1167
1168int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1169 // Check for uninitialized state and do lazy initialization.
1170 initializeIfNeeded();
1171
1172 // Find the AttributeSet in the module map.
1173 as_iterator AI = asMap.find(AS);
1174 return AI == asMap.end() ? -1 : (int)AI->second;
1175}
1176
1177int SlotTracker::getModulePathSlot(StringRef Path) {
1178 // Check for uninitialized state and do lazy initialization.
1179 initializeIndexIfNeeded();
1180
1181 // Find the Module path in the map
1182 auto I = ModulePathMap.find(Path);
1183 return I == ModulePathMap.end() ? -1 : (int)I->second;
1184}
1185
1186int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1187 // Check for uninitialized state and do lazy initialization.
1188 initializeIndexIfNeeded();
1189
1190 // Find the GUID in the map
1191 guid_iterator I = GUIDMap.find(GUID);
1192 return I == GUIDMap.end() ? -1 : (int)I->second;
1193}
1194
1195int SlotTracker::getTypeIdSlot(StringRef Id) {
1196 // Check for uninitialized state and do lazy initialization.
1197 initializeIndexIfNeeded();
1198
1199 // Find the TypeId string in the map
1200 auto I = TypeIdMap.find(Id);
1201 return I == TypeIdMap.end() ? -1 : (int)I->second;
1202}
1203
1204/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1205void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1206 assert(V && "Can't insert a null Value into SlotTracker!")((void)0);
1207 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!")((void)0);
1208 assert(!V->hasName() && "Doesn't need a slot!")((void)0);
1209
1210 unsigned DestSlot = mNext++;
1211 mMap[V] = DestSlot;
1212
1213 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1214 DestSlot << " [");
1215 // G = Global, F = Function, A = Alias, I = IFunc, o = other
1216 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1217 (isa<Function>(V) ? 'F' :
1218 (isa<GlobalAlias>(V) ? 'A' :
1219 (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1220}
1221
1222/// CreateSlot - Create a new slot for the specified value if it has no name.
1223void SlotTracker::CreateFunctionSlot(const Value *V) {
1224 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!")((void)0);
1225
1226 unsigned DestSlot = fNext++;
1227 fMap[V] = DestSlot;
1228
1229 // G = Global, F = Function, o = other
1230 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1231 DestSlot << " [o]\n");
1232}
1233
1234/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1235void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1236 assert(N && "Can't insert a null Value into SlotTracker!")((void)0);
1237
1238 // Don't make slots for DIExpressions or DIArgLists. We just print them inline
1239 // everywhere.
1240 if (isa<DIExpression>(N) || isa<DIArgList>(N))
1241 return;
1242
1243 unsigned DestSlot = mdnNext;
1244 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1245 return;
1246 ++mdnNext;
1247
1248 // Recursively add any MDNodes referenced by operands.
1249 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1250 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1251 CreateMetadataSlot(Op);
1252}
1253
1254void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1255 assert(AS.hasAttributes() && "Doesn't need a slot!")((void)0);
1256
1257 as_iterator I = asMap.find(AS);
1258 if (I != asMap.end())
1259 return;
1260
1261 unsigned DestSlot = asNext++;
1262 asMap[AS] = DestSlot;
1263}
1264
1265/// Create a new slot for the specified Module
1266void SlotTracker::CreateModulePathSlot(StringRef Path) {
1267 ModulePathMap[Path] = ModulePathNext++;
1268}
1269
1270/// Create a new slot for the specified GUID
1271void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1272 GUIDMap[GUID] = GUIDNext++;
1273}
1274
1275/// Create a new slot for the specified Id
1276void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1277 TypeIdMap[Id] = TypeIdNext++;
1278}
1279
1280//===----------------------------------------------------------------------===//
1281// AsmWriter Implementation
1282//===----------------------------------------------------------------------===//
1283
1284static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1285 TypePrinting *TypePrinter,
1286 SlotTracker *Machine,
1287 const Module *Context);
1288
1289static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1290 TypePrinting *TypePrinter,
1291 SlotTracker *Machine, const Module *Context,
1292 bool FromValue = false);
1293
1294static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1295 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1296 // 'Fast' is an abbreviation for all fast-math-flags.
1297 if (FPO->isFast())
1298 Out << " fast";
1299 else {
1300 if (FPO->hasAllowReassoc())
1301 Out << " reassoc";
1302 if (FPO->hasNoNaNs())
1303 Out << " nnan";
1304 if (FPO->hasNoInfs())
1305 Out << " ninf";
1306 if (FPO->hasNoSignedZeros())
1307 Out << " nsz";
1308 if (FPO->hasAllowReciprocal())
1309 Out << " arcp";
1310 if (FPO->hasAllowContract())
1311 Out << " contract";
1312 if (FPO->hasApproxFunc())
1313 Out << " afn";
1314 }
1315 }
1316
1317 if (const OverflowingBinaryOperator *OBO =
1318 dyn_cast<OverflowingBinaryOperator>(U)) {
1319 if (OBO->hasNoUnsignedWrap())
1320 Out << " nuw";
1321 if (OBO->hasNoSignedWrap())
1322 Out << " nsw";
1323 } else if (const PossiblyExactOperator *Div =
1324 dyn_cast<PossiblyExactOperator>(U)) {
1325 if (Div->isExact())
1326 Out << " exact";
1327 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1328 if (GEP->isInBounds())
1329 Out << " inbounds";
1330 }
1331}
1332
1333static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1334 TypePrinting &TypePrinter,
1335 SlotTracker *Machine,
1336 const Module *Context) {
1337 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1338 if (CI->getType()->isIntegerTy(1)) {
1339 Out << (CI->getZExtValue() ? "true" : "false");
1340 return;
1341 }
1342 Out << CI->getValue();
1343 return;
1344 }
1345
1346 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1347 const APFloat &APF = CFP->getValueAPF();
1348 if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1349 &APF.getSemantics() == &APFloat::IEEEdouble()) {
1350 // We would like to output the FP constant value in exponential notation,
1351 // but we cannot do this if doing so will lose precision. Check here to
1352 // make sure that we only output it in exponential format if we can parse
1353 // the value back and get the same value.
1354 //
1355 bool ignored;
1356 bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1357 bool isInf = APF.isInfinity();
1358 bool isNaN = APF.isNaN();
1359 if (!isInf && !isNaN) {
1360 double Val = APF.convertToDouble();
1361 SmallString<128> StrVal;
1362 APF.toString(StrVal, 6, 0, false);
1363 // Check to make sure that the stringized number is not some string like
1364 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1365 // that the string matches the "[-+]?[0-9]" regex.
1366 //
1367 assert((isDigit(StrVal[0]) || ((StrVal[0] == '-' || StrVal[0] == '+') &&((void)0)
1368 isDigit(StrVal[1]))) &&((void)0)
1369 "[-+]?[0-9] regex does not match!")((void)0);
1370 // Reparse stringized version!
1371 if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1372 Out << StrVal;
1373 return;
1374 }
1375 }
1376 // Otherwise we could not reparse it to exactly the same value, so we must
1377 // output the string in hexadecimal format! Note that loading and storing
1378 // floating point types changes the bits of NaNs on some hosts, notably
1379 // x86, so we must not use these types.
1380 static_assert(sizeof(double) == sizeof(uint64_t),
1381 "assuming that double is 64 bits!");
1382 APFloat apf = APF;
1383 // Floats are represented in ASCII IR as double, convert.
1384 // FIXME: We should allow 32-bit hex float and remove this.
1385 if (!isDouble) {
1386 // A signaling NaN is quieted on conversion, so we need to recreate the
1387 // expected value after convert (quiet bit of the payload is clear).
1388 bool IsSNAN = apf.isSignaling();
1389 apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1390 &ignored);
1391 if (IsSNAN) {
1392 APInt Payload = apf.bitcastToAPInt();
1393 apf = APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(),
1394 &Payload);
1395 }
1396 }
1397 Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1398 return;
1399 }
1400
1401 // Either half, bfloat or some form of long double.
1402 // These appear as a magic letter identifying the type, then a
1403 // fixed number of hex digits.
1404 Out << "0x";
1405 APInt API = APF.bitcastToAPInt();
1406 if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1407 Out << 'K';
1408 Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1409 /*Upper=*/true);
1410 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1411 /*Upper=*/true);
1412 return;
1413 } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1414 Out << 'L';
1415 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1416 /*Upper=*/true);
1417 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1418 /*Upper=*/true);
1419 } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1420 Out << 'M';
1421 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1422 /*Upper=*/true);
1423 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1424 /*Upper=*/true);
1425 } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1426 Out << 'H';
1427 Out << format_hex_no_prefix(API.getZExtValue(), 4,
1428 /*Upper=*/true);
1429 } else if (&APF.getSemantics() == &APFloat::BFloat()) {
1430 Out << 'R';
1431 Out << format_hex_no_prefix(API.getZExtValue(), 4,
1432 /*Upper=*/true);
1433 } else
1434 llvm_unreachable("Unsupported floating point type")__builtin_unreachable();
1435 return;
1436 }
1437
1438 if (isa<ConstantAggregateZero>(CV)) {
1439 Out << "zeroinitializer";
1440 return;
1441 }
1442
1443 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1444 Out << "blockaddress(";
1445 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1446 Context);
1447 Out << ", ";
1448 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1449 Context);
1450 Out << ")";
1451 return;
1452 }
1453
1454 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
1455 Out << "dso_local_equivalent ";
1456 WriteAsOperandInternal(Out, Equiv->getGlobalValue(), &TypePrinter, Machine,
1457 Context);
1458 return;
1459 }
1460
1461 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1462 Type *ETy = CA->getType()->getElementType();
1463 Out << '[';
1464 TypePrinter.print(ETy, Out);
1465 Out << ' ';
1466 WriteAsOperandInternal(Out, CA->getOperand(0),
1467 &TypePrinter, Machine,
1468 Context);
1469 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1470 Out << ", ";
1471 TypePrinter.print(ETy, Out);
1472 Out << ' ';
1473 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1474 Context);
1475 }
1476 Out << ']';
1477 return;
1478 }
1479
1480 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1481 // As a special case, print the array as a string if it is an array of
1482 // i8 with ConstantInt values.
1483 if (CA->isString()) {
1484 Out << "c\"";
1485 printEscapedString(CA->getAsString(), Out);
1486 Out << '"';
1487 return;
1488 }
1489
1490 Type *ETy = CA->getType()->getElementType();
1491 Out << '[';
1492 TypePrinter.print(ETy, Out);
1493 Out << ' ';
1494 WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1495 &TypePrinter, Machine,
1496 Context);
1497 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1498 Out << ", ";
1499 TypePrinter.print(ETy, Out);
1500 Out << ' ';
1501 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1502 Machine, Context);
1503 }
1504 Out << ']';
1505 return;
1506 }
1507
1508 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1509 if (CS->getType()->isPacked())
1510 Out << '<';
1511 Out << '{';
1512 unsigned N = CS->getNumOperands();
1513 if (N) {
1514 Out << ' ';
1515 TypePrinter.print(CS->getOperand(0)->getType(), Out);
1516 Out << ' ';
1517
1518 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1519 Context);
1520
1521 for (unsigned i = 1; i < N; i++) {
1522 Out << ", ";
1523 TypePrinter.print(CS->getOperand(i)->getType(), Out);
1524 Out << ' ';
1525
1526 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1527 Context);
1528 }
1529 Out << ' ';
1530 }
1531
1532 Out << '}';
1533 if (CS->getType()->isPacked())
1534 Out << '>';
1535 return;
1536 }
1537
1538 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1539 auto *CVVTy = cast<FixedVectorType>(CV->getType());
1540 Type *ETy = CVVTy->getElementType();
1541 Out << '<';
1542 TypePrinter.print(ETy, Out);
1543 Out << ' ';
1544 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1545 Machine, Context);
1546 for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1547 Out << ", ";
1548 TypePrinter.print(ETy, Out);
1549 Out << ' ';
1550 WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1551 Machine, Context);
1552 }
1553 Out << '>';
1554 return;
1555 }
1556
1557 if (isa<ConstantPointerNull>(CV)) {
1558 Out << "null";
1559 return;
1560 }
1561
1562 if (isa<ConstantTokenNone>(CV)) {
1563 Out << "none";
1564 return;
1565 }
1566
1567 if (isa<PoisonValue>(CV)) {
1568 Out << "poison";
1569 return;
1570 }
1571
1572 if (isa<UndefValue>(CV)) {
1573 Out << "undef";
1574 return;
1575 }
1576
1577 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1578 Out << CE->getOpcodeName();
1579 WriteOptimizationInfo(Out, CE);
1580 if (CE->isCompare())
1581 Out << ' ' << CmpInst::getPredicateName(
1582 static_cast<CmpInst::Predicate>(CE->getPredicate()));
1583 Out << " (";
1584
1585 Optional<unsigned> InRangeOp;
1586 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1587 TypePrinter.print(GEP->getSourceElementType(), Out);
1588 Out << ", ";
1589 InRangeOp = GEP->getInRangeIndex();
1590 if (InRangeOp)
1591 ++*InRangeOp;
1592 }
1593
1594 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1595 if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1596 Out << "inrange ";
1597 TypePrinter.print((*OI)->getType(), Out);
1598 Out << ' ';
1599 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1600 if (OI+1 != CE->op_end())
1601 Out << ", ";
1602 }
1603
1604 if (CE->hasIndices()) {
1605 ArrayRef<unsigned> Indices = CE->getIndices();
1606 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1607 Out << ", " << Indices[i];
1608 }
1609
1610 if (CE->isCast()) {
1611 Out << " to ";
1612 TypePrinter.print(CE->getType(), Out);
1613 }
1614
1615 if (CE->getOpcode() == Instruction::ShuffleVector)
1616 PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1617
1618 Out << ')';
1619 return;
1620 }
1621
1622 Out << "<placeholder or erroneous Constant>";
1623}
1624
1625static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1626 TypePrinting *TypePrinter, SlotTracker *Machine,
1627 const Module *Context) {
1628 Out << "!{";
1629 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1630 const Metadata *MD = Node->getOperand(mi);
1631 if (!MD)
1632 Out << "null";
1633 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1634 Value *V = MDV->getValue();
1635 TypePrinter->print(V->getType(), Out);
1636 Out << ' ';
1637 WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1638 } else {
1639 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1640 }
1641 if (mi + 1 != me)
1642 Out << ", ";
1643 }
1644
1645 Out << "}";
1646}
1647
1648namespace {
1649
1650struct FieldSeparator {
1651 bool Skip = true;
1652 const char *Sep;
1653
1654 FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1655};
1656
1657raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1658 if (FS.Skip) {
1659 FS.Skip = false;
1660 return OS;
1661 }
1662 return OS << FS.Sep;
1663}
1664
1665struct MDFieldPrinter {
1666 raw_ostream &Out;
1667 FieldSeparator FS;
1668 TypePrinting *TypePrinter = nullptr;
1669 SlotTracker *Machine = nullptr;
1670 const Module *Context = nullptr;
1671
1672 explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
1673 MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1674 SlotTracker *Machine, const Module *Context)
1675 : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1676 }
1677
1678 void printTag(const DINode *N);
1679 void printMacinfoType(const DIMacroNode *N);
1680 void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1681 void printString(StringRef Name, StringRef Value,
1682 bool ShouldSkipEmpty = true);
1683 void printMetadata(StringRef Name, const Metadata *MD,
1684 bool ShouldSkipNull = true);
1685 template <class IntTy>
1686 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1687 void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1688 bool ShouldSkipZero);
1689 void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1690 void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1691 void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1692 template <class IntTy, class Stringifier>
1693 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1694 bool ShouldSkipZero = true);
1695 void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1696 void printNameTableKind(StringRef Name,
1697 DICompileUnit::DebugNameTableKind NTK);
1698};
1699
1700} // end anonymous namespace
1701
1702void MDFieldPrinter::printTag(const DINode *N) {
1703 Out << FS << "tag: ";
1704 auto Tag = dwarf::TagString(N->getTag());
1705 if (!Tag.empty())
1706 Out << Tag;
1707 else
1708 Out << N->getTag();
1709}
1710
1711void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1712 Out << FS << "type: ";
1713 auto Type = dwarf::MacinfoString(N->getMacinfoType());
1714 if (!Type.empty())
1715 Out << Type;
1716 else
1717 Out << N->getMacinfoType();
1718}
1719
1720void MDFieldPrinter::printChecksum(
1721 const DIFile::ChecksumInfo<StringRef> &Checksum) {
1722 Out << FS << "checksumkind: " << Checksum.getKindAsString();
1723 printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1724}
1725
1726void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1727 bool ShouldSkipEmpty) {
1728 if (ShouldSkipEmpty && Value.empty())
1729 return;
1730
1731 Out << FS << Name << ": \"";
1732 printEscapedString(Value, Out);
1733 Out << "\"";
1734}
1735
1736static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1737 TypePrinting *TypePrinter,
1738 SlotTracker *Machine,
1739 const Module *Context) {
1740 if (!MD) {
1741 Out << "null";
1742 return;
1743 }
1744 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1745}
1746
1747void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1748 bool ShouldSkipNull) {
1749 if (ShouldSkipNull && !MD)
1750 return;
1751
1752 Out << FS << Name << ": ";
1753 writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1754}
1755
1756template <class IntTy>
1757void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1758 if (ShouldSkipZero && !Int)
1759 return;
1760
1761 Out << FS << Name << ": " << Int;
1762}
1763
1764void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1765 bool IsUnsigned, bool ShouldSkipZero) {
1766 if (ShouldSkipZero && Int.isNullValue())
1767 return;
1768
1769 Out << FS << Name << ": ";
1770 Int.print(Out, !IsUnsigned);
1771}
1772
1773void MDFieldPrinter::printBool(StringRef Name, bool Value,
1774 Optional<bool> Default) {
1775 if (Default && Value == *Default)
1776 return;
1777 Out << FS << Name << ": " << (Value ? "true" : "false");
1778}
1779
1780void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1781 if (!Flags)
1782 return;
1783
1784 Out << FS << Name << ": ";
1785
1786 SmallVector<DINode::DIFlags, 8> SplitFlags;
1787 auto Extra = DINode::splitFlags(Flags, SplitFlags);
1788
1789 FieldSeparator FlagsFS(" | ");
1790 for (auto F : SplitFlags) {
1791 auto StringF = DINode::getFlagString(F);
1792 assert(!StringF.empty() && "Expected valid flag")((void)0);
1793 Out << FlagsFS << StringF;
1794 }
1795 if (Extra || SplitFlags.empty())
1796 Out << FlagsFS << Extra;
1797}
1798
1799void MDFieldPrinter::printDISPFlags(StringRef Name,
1800 DISubprogram::DISPFlags Flags) {
1801 // Always print this field, because no flags in the IR at all will be
1802 // interpreted as old-style isDefinition: true.
1803 Out << FS << Name << ": ";
1804
1805 if (!Flags) {
1806 Out << 0;
1807 return;
1808 }
1809
1810 SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1811 auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1812
1813 FieldSeparator FlagsFS(" | ");
1814 for (auto F : SplitFlags) {
1815 auto StringF = DISubprogram::getFlagString(F);
1816 assert(!StringF.empty() && "Expected valid flag")((void)0);
1817 Out << FlagsFS << StringF;
1818 }
1819 if (Extra || SplitFlags.empty())
1820 Out << FlagsFS << Extra;
1821}
1822
1823void MDFieldPrinter::printEmissionKind(StringRef Name,
1824 DICompileUnit::DebugEmissionKind EK) {
1825 Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1826}
1827
1828void MDFieldPrinter::printNameTableKind(StringRef Name,
1829 DICompileUnit::DebugNameTableKind NTK) {
1830 if (NTK == DICompileUnit::DebugNameTableKind::Default)
1831 return;
1832 Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1833}
1834
1835template <class IntTy, class Stringifier>
1836void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1837 Stringifier toString, bool ShouldSkipZero) {
1838 if (!Value)
1839 return;
1840
1841 Out << FS << Name << ": ";
1842 auto S = toString(Value);
1843 if (!S.empty())
1844 Out << S;
1845 else
1846 Out << Value;
1847}
1848
1849static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1850 TypePrinting *TypePrinter, SlotTracker *Machine,
1851 const Module *Context) {
1852 Out << "!GenericDINode(";
1853 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1854 Printer.printTag(N);
1855 Printer.printString("header", N->getHeader());
1856 if (N->getNumDwarfOperands()) {
1857 Out << Printer.FS << "operands: {";
1858 FieldSeparator IFS;
1859 for (auto &I : N->dwarf_operands()) {
1860 Out << IFS;
1861 writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1862 }
1863 Out << "}";
1864 }
1865 Out << ")";
1866}
1867
1868static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1869 TypePrinting *TypePrinter, SlotTracker *Machine,
1870 const Module *Context) {
1871 Out << "!DILocation(";
1872 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1873 // Always output the line, since 0 is a relevant and important value for it.
1874 Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1875 Printer.printInt("column", DL->getColumn());
1876 Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1877 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1878 Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1879 /* Default */ false);
1880 Out << ")";
1881}
1882
1883static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1884 TypePrinting *TypePrinter, SlotTracker *Machine,
1885 const Module *Context) {
1886 Out << "!DISubrange(";
1887 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1888
1889 auto *Count = N->getRawCountNode();
1890 if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
1891 auto *CV = cast<ConstantInt>(CE->getValue());
1892 Printer.printInt("count", CV->getSExtValue(),
1893 /* ShouldSkipZero */ false);
1894 } else
1895 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1896
1897 // A lowerBound of constant 0 should not be skipped, since it is different
1898 // from an unspecified lower bound (= nullptr).
1899 auto *LBound = N->getRawLowerBound();
1900 if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
1901 auto *LV = cast<ConstantInt>(LE->getValue());
1902 Printer.printInt("lowerBound", LV->getSExtValue(),
1903 /* ShouldSkipZero */ false);
1904 } else
1905 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1906
1907 auto *UBound = N->getRawUpperBound();
1908 if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
1909 auto *UV = cast<ConstantInt>(UE->getValue());
1910 Printer.printInt("upperBound", UV->getSExtValue(),
1911 /* ShouldSkipZero */ false);
1912 } else
1913 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1914
1915 auto *Stride = N->getRawStride();
1916 if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
1917 auto *SV = cast<ConstantInt>(SE->getValue());
1918 Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
1919 } else
1920 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1921
1922 Out << ")";
1923}
1924
1925static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N,
1926 TypePrinting *TypePrinter,
1927 SlotTracker *Machine,
1928 const Module *Context) {
1929 Out << "!DIGenericSubrange(";
1930 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1931
1932 auto IsConstant = [&](Metadata *Bound) -> bool {
1933 if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
1934 return BE->isConstant()
1935 ? DIExpression::SignedOrUnsignedConstant::SignedConstant ==
1936 *BE->isConstant()
1937 : false;
1938 }
1939 return false;
1940 };
1941
1942 auto GetConstant = [&](Metadata *Bound) -> int64_t {
1943 assert(IsConstant(Bound) && "Expected constant")((void)0);
1944 auto *BE = dyn_cast_or_null<DIExpression>(Bound);
1945 return static_cast<int64_t>(BE->getElement(1));
1946 };
1947
1948 auto *Count = N->getRawCountNode();
1949 if (IsConstant(Count))
1950 Printer.printInt("count", GetConstant(Count),
1951 /* ShouldSkipZero */ false);
1952 else
1953 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1954
1955 auto *LBound = N->getRawLowerBound();
1956 if (IsConstant(LBound))
1957 Printer.printInt("lowerBound", GetConstant(LBound),
1958 /* ShouldSkipZero */ false);
1959 else
1960 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1961
1962 auto *UBound = N->getRawUpperBound();
1963 if (IsConstant(UBound))
1964 Printer.printInt("upperBound", GetConstant(UBound),
1965 /* ShouldSkipZero */ false);
1966 else
1967 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1968
1969 auto *Stride = N->getRawStride();
1970 if (IsConstant(Stride))
1971 Printer.printInt("stride", GetConstant(Stride),
1972 /* ShouldSkipZero */ false);
1973 else
1974 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1975
1976 Out << ")";
1977}
1978
1979static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1980 TypePrinting *, SlotTracker *, const Module *) {
1981 Out << "!DIEnumerator(";
1982 MDFieldPrinter Printer(Out);
1983 Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1984 Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
1985 /*ShouldSkipZero=*/false);
1986 if (N->isUnsigned())
1987 Printer.printBool("isUnsigned", true);
1988 Out << ")";
1989}
1990
1991static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1992 TypePrinting *, SlotTracker *, const Module *) {
1993 Out << "!DIBasicType(";
1994 MDFieldPrinter Printer(Out);
1995 if (N->getTag() != dwarf::DW_TAG_base_type)
1996 Printer.printTag(N);
1997 Printer.printString("name", N->getName());
1998 Printer.printInt("size", N->getSizeInBits());
1999 Printer.printInt("align", N->getAlignInBits());
2000 Printer.printDwarfEnum("encoding", N->getEncoding(),
2001 dwarf::AttributeEncodingString);
2002 Printer.printDIFlags("flags", N->getFlags());
2003 Out << ")";
2004}
2005
2006static void writeDIStringType(raw_ostream &Out, const DIStringType *N,
2007 TypePrinting *TypePrinter, SlotTracker *Machine,
2008 const Module *Context) {
2009 Out << "!DIStringType(";
2010 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2011 if (N->getTag() != dwarf::DW_TAG_string_type)
2012 Printer.printTag(N);
2013 Printer.printString("name", N->getName());
2014 Printer.printMetadata("stringLength", N->getRawStringLength());
2015 Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
2016 Printer.printInt("size", N->getSizeInBits());
2017 Printer.printInt("align", N->getAlignInBits());
2018 Printer.printDwarfEnum("encoding", N->getEncoding(),
2019 dwarf::AttributeEncodingString);
2020 Out << ")";
2021}
2022
2023static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
2024 TypePrinting *TypePrinter, SlotTracker *Machine,
2025 const Module *Context) {
2026 Out << "!DIDerivedType(";
2027 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2028 Printer.printTag(N);
2029 Printer.printString("name", N->getName());
2030 Printer.printMetadata("scope", N->getRawScope());
2031 Printer.printMetadata("file", N->getRawFile());
2032 Printer.printInt("line", N->getLine());
2033 Printer.printMetadata("baseType", N->getRawBaseType(),
2034 /* ShouldSkipNull */ false);
2035 Printer.printInt("size", N->getSizeInBits());
2036 Printer.printInt("align", N->getAlignInBits());
2037 Printer.printInt("offset", N->getOffsetInBits());
2038 Printer.printDIFlags("flags", N->getFlags());
2039 Printer.printMetadata("extraData", N->getRawExtraData());
2040 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2041 Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2042 /* ShouldSkipZero */ false);
2043 Out << ")";
2044}
2045
2046static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
2047 TypePrinting *TypePrinter,
2048 SlotTracker *Machine, const Module *Context) {
2049 Out << "!DICompositeType(";
2050 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2051 Printer.printTag(N);
2052 Printer.printString("name", N->getName());
2053 Printer.printMetadata("scope", N->getRawScope());
2054 Printer.printMetadata("file", N->getRawFile());
2055 Printer.printInt("line", N->getLine());
2056 Printer.printMetadata("baseType", N->getRawBaseType());
2057 Printer.printInt("size", N->getSizeInBits());
2058 Printer.printInt("align", N->getAlignInBits());
2059 Printer.printInt("offset", N->getOffsetInBits());
2060 Printer.printDIFlags("flags", N->getFlags());
2061 Printer.printMetadata("elements", N->getRawElements());
2062 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2063 dwarf::LanguageString);
2064 Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2065 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2066 Printer.printString("identifier", N->getIdentifier());
2067 Printer.printMetadata("discriminator", N->getRawDiscriminator());
2068 Printer.printMetadata("dataLocation", N->getRawDataLocation());
2069 Printer.printMetadata("associated", N->getRawAssociated());
2070 Printer.printMetadata("allocated", N->getRawAllocated());
2071 if (auto *RankConst = N->getRankConst())
2072 Printer.printInt("rank", RankConst->getSExtValue(),
2073 /* ShouldSkipZero */ false);
2074 else
2075 Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
2076 Out << ")";
2077}
2078
2079static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
2080 TypePrinting *TypePrinter,
2081 SlotTracker *Machine, const Module *Context) {
2082 Out << "!DISubroutineType(";
2083 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2084 Printer.printDIFlags("flags", N->getFlags());
2085 Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
2086 Printer.printMetadata("types", N->getRawTypeArray(),
2087 /* ShouldSkipNull */ false);
2088 Out << ")";
2089}
2090
2091static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
2092 SlotTracker *, const Module *) {
2093 Out << "!DIFile(";
2094 MDFieldPrinter Printer(Out);
2095 Printer.printString("filename", N->getFilename(),
2096 /* ShouldSkipEmpty */ false);
2097 Printer.printString("directory", N->getDirectory(),
2098 /* ShouldSkipEmpty */ false);
2099 // Print all values for checksum together, or not at all.
2100 if (N->getChecksum())
2101 Printer.printChecksum(*N->getChecksum());
2102 Printer.printString("source", N->getSource().getValueOr(StringRef()),
2103 /* ShouldSkipEmpty */ true);
2104 Out << ")";
2105}
2106
2107static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
2108 TypePrinting *TypePrinter, SlotTracker *Machine,
2109 const Module *Context) {
2110 Out << "!DICompileUnit(";
2111 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2112 Printer.printDwarfEnum("language", N->getSourceLanguage(),
2113 dwarf::LanguageString, /* ShouldSkipZero */ false);
2114 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2115 Printer.printString("producer", N->getProducer());
2116 Printer.printBool("isOptimized", N->isOptimized());
2117 Printer.printString("flags", N->getFlags());
2118 Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2119 /* ShouldSkipZero */ false);
2120 Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2121 Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2122 Printer.printMetadata("enums", N->getRawEnumTypes());
2123 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2124 Printer.printMetadata("globals", N->getRawGlobalVariables());
2125 Printer.printMetadata("imports", N->getRawImportedEntities());
2126 Printer.printMetadata("macros", N->getRawMacros());
2127 Printer.printInt("dwoId", N->getDWOId());
2128 Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2129 Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2130 false);
2131 Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2132 Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2133 Printer.printString("sysroot", N->getSysRoot());
2134 Printer.printString("sdk", N->getSDK());
2135 Out << ")";
2136}
2137
2138static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
2139 TypePrinting *TypePrinter, SlotTracker *Machine,
2140 const Module *Context) {
2141 Out << "!DISubprogram(";
2142 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2143 Printer.printString("name", N->getName());
2144 Printer.printString("linkageName", N->getLinkageName());
2145 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2146 Printer.printMetadata("file", N->getRawFile());
2147 Printer.printInt("line", N->getLine());
2148 Printer.printMetadata("type", N->getRawType());
2149 Printer.printInt("scopeLine", N->getScopeLine());
2150 Printer.printMetadata("containingType", N->getRawContainingType());
2151 if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2152 N->getVirtualIndex() != 0)
2153 Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2154 Printer.printInt("thisAdjustment", N->getThisAdjustment());
2155 Printer.printDIFlags("flags", N->getFlags());
2156 Printer.printDISPFlags("spFlags", N->getSPFlags());
2157 Printer.printMetadata("unit", N->getRawUnit());
2158 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2159 Printer.printMetadata("declaration", N->getRawDeclaration());
2160 Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2161 Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2162 Out << ")";
2163}
2164
2165static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
2166 TypePrinting *TypePrinter, SlotTracker *Machine,
2167 const Module *Context) {
2168 Out << "!DILexicalBlock(";
2169 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2170 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2171 Printer.printMetadata("file", N->getRawFile());
2172 Printer.printInt("line", N->getLine());
2173 Printer.printInt("column", N->getColumn());
2174 Out << ")";
2175}
2176
2177static void writeDILexicalBlockFile(raw_ostream &Out,
2178 const DILexicalBlockFile *N,
2179 TypePrinting *TypePrinter,
2180 SlotTracker *Machine,
2181 const Module *Context) {
2182 Out << "!DILexicalBlockFile(";
2183 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2184 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2185 Printer.printMetadata("file", N->getRawFile());
2186 Printer.printInt("discriminator", N->getDiscriminator(),
2187 /* ShouldSkipZero */ false);
2188 Out << ")";
2189}
2190
2191static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2192 TypePrinting *TypePrinter, SlotTracker *Machine,
2193 const Module *Context) {
2194 Out << "!DINamespace(";
2195 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2196 Printer.printString("name", N->getName());
2197 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2198 Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2199 Out << ")";
2200}
2201
2202static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2203 TypePrinting *TypePrinter, SlotTracker *Machine,
2204 const Module *Context) {
2205 Out << "!DICommonBlock(";
2206 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2207 Printer.printMetadata("scope", N->getRawScope(), false);
2208 Printer.printMetadata("declaration", N->getRawDecl(), false);
2209 Printer.printString("name", N->getName());
2210 Printer.printMetadata("file", N->getRawFile());
2211 Printer.printInt("line", N->getLineNo());
2212 Out << ")";
2213}
2214
2215static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2216 TypePrinting *TypePrinter, SlotTracker *Machine,
2217 const Module *Context) {
2218 Out << "!DIMacro(";
2219 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2220 Printer.printMacinfoType(N);
2221 Printer.printInt("line", N->getLine());
2222 Printer.printString("name", N->getName());
2223 Printer.printString("value", N->getValue());
2224 Out << ")";
2225}
2226
2227static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2228 TypePrinting *TypePrinter, SlotTracker *Machine,
2229 const Module *Context) {
2230 Out << "!DIMacroFile(";
2231 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2232 Printer.printInt("line", N->getLine());
2233 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2234 Printer.printMetadata("nodes", N->getRawElements());
2235 Out << ")";
2236}
2237
2238static void writeDIModule(raw_ostream &Out, const DIModule *N,
2239 TypePrinting *TypePrinter, SlotTracker *Machine,
2240 const Module *Context) {
2241 Out << "!DIModule(";
2242 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2243 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2244 Printer.printString("name", N->getName());
2245 Printer.printString("configMacros", N->getConfigurationMacros());
2246 Printer.printString("includePath", N->getIncludePath());
2247 Printer.printString("apinotes", N->getAPINotesFile());
2248 Printer.printMetadata("file", N->getRawFile());
2249 Printer.printInt("line", N->getLineNo());
2250 Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
2251 Out << ")";
2252}
2253
2254
2255static void writeDITemplateTypeParameter(raw_ostream &Out,
2256 const DITemplateTypeParameter *N,
2257 TypePrinting *TypePrinter,
2258 SlotTracker *Machine,
2259 const Module *Context) {
2260 Out << "!DITemplateTypeParameter(";
2261 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2262 Printer.printString("name", N->getName());
2263 Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2264 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2265 Out << ")";
2266}
2267
2268static void writeDITemplateValueParameter(raw_ostream &Out,
2269 const DITemplateValueParameter *N,
2270 TypePrinting *TypePrinter,
2271 SlotTracker *Machine,
2272 const Module *Context) {
2273 Out << "!DITemplateValueParameter(";
2274 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2275 if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2276 Printer.printTag(N);
2277 Printer.printString("name", N->getName());
2278 Printer.printMetadata("type", N->getRawType());
2279 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2280 Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2281 Out << ")";
2282}
2283
2284static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2285 TypePrinting *TypePrinter,
2286 SlotTracker *Machine, const Module *Context) {
2287 Out << "!DIGlobalVariable(";
2288 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2289 Printer.printString("name", N->getName());
2290 Printer.printString("linkageName", N->getLinkageName());
2291 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2292 Printer.printMetadata("file", N->getRawFile());
2293 Printer.printInt("line", N->getLine());
2294 Printer.printMetadata("type", N->getRawType());
2295 Printer.printBool("isLocal", N->isLocalToUnit());
2296 Printer.printBool("isDefinition", N->isDefinition());
2297 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2298 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2299 Printer.printInt("align", N->getAlignInBits());
2300 Out << ")";
2301}
2302
2303static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2304 TypePrinting *TypePrinter,
2305 SlotTracker *Machine, const Module *Context) {
2306 Out << "!DILocalVariable(";
2307 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2308 Printer.printString("name", N->getName());
2309 Printer.printInt("arg", N->getArg());
2310 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2311 Printer.printMetadata("file", N->getRawFile());
2312 Printer.printInt("line", N->getLine());
2313 Printer.printMetadata("type", N->getRawType());
2314 Printer.printDIFlags("flags", N->getFlags());
2315 Printer.printInt("align", N->getAlignInBits());
2316 Out << ")";
2317}
2318
2319static void writeDILabel(raw_ostream &Out, const DILabel *N,
2320 TypePrinting *TypePrinter,
2321 SlotTracker *Machine, const Module *Context) {
2322 Out << "!DILabel(";
2323 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2324 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2325 Printer.printString("name", N->getName());
2326 Printer.printMetadata("file", N->getRawFile());
2327 Printer.printInt("line", N->getLine());
2328 Out << ")";
2329}
2330
2331static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2332 TypePrinting *TypePrinter, SlotTracker *Machine,
2333 const Module *Context) {
2334 Out << "!DIExpression(";
2335 FieldSeparator FS;
2336 if (N->isValid()) {
2337 for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
2338 auto OpStr = dwarf::OperationEncodingString(Op.getOp());
2339 assert(!OpStr.empty() && "Expected valid opcode")((void)0);
2340
2341 Out << FS << OpStr;
2342 if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
2343 Out << FS << Op.getArg(0);
2344 Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
2345 } else {
2346 for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2347 Out << FS << Op.getArg(A);
2348 }
2349 }
2350 } else {
2351 for (const auto &I : N->getElements())
2352 Out << FS << I;
2353 }
2354 Out << ")";
2355}
2356
2357static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
2358 TypePrinting *TypePrinter, SlotTracker *Machine,
2359 const Module *Context, bool FromValue = false) {
2360 assert(FromValue &&((void)0)
2361 "Unexpected DIArgList metadata outside of value argument")((void)0);
2362 Out << "!DIArgList(";
2363 FieldSeparator FS;
2364 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2365 for (Metadata *Arg : N->getArgs()) {
2366 Out << FS;
2367 WriteAsOperandInternal(Out, Arg, TypePrinter, Machine, Context, true);
2368 }
2369 Out << ")";
2370}
2371
2372static void writeDIGlobalVariableExpression(raw_ostream &Out,
2373 const DIGlobalVariableExpression *N,
2374 TypePrinting *TypePrinter,
2375 SlotTracker *Machine,
2376 const Module *Context) {
2377 Out << "!DIGlobalVariableExpression(";
2378 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2379 Printer.printMetadata("var", N->getVariable());
2380 Printer.printMetadata("expr", N->getExpression());
2381 Out << ")";
2382}
2383
2384static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2385 TypePrinting *TypePrinter, SlotTracker *Machine,
2386 const Module *Context) {
2387 Out << "!DIObjCProperty(";
2388 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2389 Printer.printString("name", N->getName());
2390 Printer.printMetadata("file", N->getRawFile());
2391 Printer.printInt("line", N->getLine());
2392 Printer.printString("setter", N->getSetterName());
2393 Printer.printString("getter", N->getGetterName());
2394 Printer.printInt("attributes", N->getAttributes());
2395 Printer.printMetadata("type", N->getRawType());
2396 Out << ")";
2397}
2398
2399static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2400 TypePrinting *TypePrinter,
2401 SlotTracker *Machine, const Module *Context) {
2402 Out << "!DIImportedEntity(";
2403 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2404 Printer.printTag(N);
2405 Printer.printString("name", N->getName());
2406 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2407 Printer.printMetadata("entity", N->getRawEntity());
2408 Printer.printMetadata("file", N->getRawFile());
2409 Printer.printInt("line", N->getLine());
2410 Out << ")";
2411}
2412
2413static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2414 TypePrinting *TypePrinter,
2415 SlotTracker *Machine,
2416 const Module *Context) {
2417 if (Node->isDistinct())
2418 Out << "distinct ";
2419 else if (Node->isTemporary())
2420 Out << "<temporary!> "; // Handle broken code.
2421
2422 switch (Node->getMetadataID()) {
2423 default:
2424 llvm_unreachable("Expected uniquable MDNode")__builtin_unreachable();
2425#define HANDLE_MDNODE_LEAF(CLASS) \
2426 case Metadata::CLASS##Kind: \
2427 write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
2428 break;
2429#include "llvm/IR/Metadata.def"
2430 }
2431}
2432
2433// Full implementation of printing a Value as an operand with support for
2434// TypePrinting, etc.
2435static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2436 TypePrinting *TypePrinter,
2437 SlotTracker *Machine,
2438 const Module *Context) {
2439 if (V->hasName()) {
2440 PrintLLVMName(Out, V);
2441 return;
2442 }
2443
2444 const Constant *CV = dyn_cast<Constant>(V);
2445 if (CV && !isa<GlobalValue>(CV)) {
2446 assert(TypePrinter && "Constants require TypePrinting!")((void)0);
2447 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
2448 return;
2449 }
2450
2451 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2452 Out << "asm ";
2453 if (IA->hasSideEffects())
2454 Out << "sideeffect ";
2455 if (IA->isAlignStack())
2456 Out << "alignstack ";
2457 // We don't emit the AD_ATT dialect as it's the assumed default.
2458 if (IA->getDialect() == InlineAsm::AD_Intel)
2459 Out << "inteldialect ";
2460 if (IA->canThrow())
2461 Out << "unwind ";
2462 Out << '"';
2463 printEscapedString(IA->getAsmString(), Out);
2464 Out << "\", \"";
2465 printEscapedString(IA->getConstraintString(), Out);
2466 Out << '"';
2467 return;
2468 }
2469
2470 if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2471 WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
2472 Context, /* FromValue */ true);
2473 return;
2474 }
2475
2476 char Prefix = '%';
2477 int Slot;
2478 // If we have a SlotTracker, use it.
2479 if (Machine) {
2480 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2481 Slot = Machine->getGlobalSlot(GV);
2482 Prefix = '@';
2483 } else {
2484 Slot = Machine->getLocalSlot(V);
2485
2486 // If the local value didn't succeed, then we may be referring to a value
2487 // from a different function. Translate it, as this can happen when using
2488 // address of blocks.
2489 if (Slot == -1)
2490 if ((Machine = createSlotTracker(V))) {
2491 Slot = Machine->getLocalSlot(V);
2492 delete Machine;
2493 }
2494 }
2495 } else if ((Machine = createSlotTracker(V))) {
2496 // Otherwise, create one to get the # and then destroy it.
2497 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2498 Slot = Machine->getGlobalSlot(GV);
2499 Prefix = '@';
2500 } else {
2501 Slot = Machine->getLocalSlot(V);
2502 }
2503 delete Machine;
2504 Machine = nullptr;
2505 } else {
2506 Slot = -1;
2507 }
2508
2509 if (Slot != -1)
2510 Out << Prefix << Slot;
2511 else
2512 Out << "<badref>";
2513}
2514
2515static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2516 TypePrinting *TypePrinter,
2517 SlotTracker *Machine, const Module *Context,
2518 bool FromValue) {
2519 // Write DIExpressions and DIArgLists inline when used as a value. Improves
2520 // readability of debug info intrinsics.
2521 if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2522 writeDIExpression(Out, Expr, TypePrinter, Machine, Context);
2523 return;
2524 }
2525 if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
2526 writeDIArgList(Out, ArgList, TypePrinter, Machine, Context, FromValue);
2527 return;
2528 }
2529
2530 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2531 std::unique_ptr<SlotTracker> MachineStorage;
2532 if (!Machine) {
2533 MachineStorage = std::make_unique<SlotTracker>(Context);
2534 Machine = MachineStorage.get();
2535 }
2536 int Slot = Machine->getMetadataSlot(N);
2537 if (Slot == -1) {
2538 if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2539 writeDILocation(Out, Loc, TypePrinter, Machine, Context);
2540 return;
2541 }
2542 // Give the pointer value instead of "badref", since this comes up all
2543 // the time when debugging.
2544 Out << "<" << N << ">";
2545 } else
2546 Out << '!' << Slot;
2547 return;
2548 }
2549
2550 if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2551 Out << "!\"";
2552 printEscapedString(MDS->getString(), Out);
2553 Out << '"';
2554 return;
2555 }
2556
2557 auto *V = cast<ValueAsMetadata>(MD);
2558 assert(TypePrinter && "TypePrinter required for metadata values")((void)0);
2559 assert((FromValue || !isa<LocalAsMetadata>(V)) &&((void)0)
2560 "Unexpected function-local metadata outside of value argument")((void)0);
2561
2562 TypePrinter->print(V->getValue()->getType(), Out);
2563 Out << ' ';
2564 WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2565}
2566
2567namespace {
2568
2569class AssemblyWriter {
2570 formatted_raw_ostream &Out;
2571 const Module *TheModule = nullptr;
2572 const ModuleSummaryIndex *TheIndex = nullptr;
2573 std::unique_ptr<SlotTracker> SlotTrackerStorage;
2574 SlotTracker &Machine;
2575 TypePrinting TypePrinter;
2576 AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2577 SetVector<const Comdat *> Comdats;
2578 bool IsForDebug;
2579 bool ShouldPreserveUseListOrder;
2580 UseListOrderMap UseListOrders;
2581 SmallVector<StringRef, 8> MDNames;
2582 /// Synchronization scope names registered with LLVMContext.
2583 SmallVector<StringRef, 8> SSNs;
2584 DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2585
2586public:
2587 /// Construct an AssemblyWriter with an external SlotTracker
2588 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2589 AssemblyAnnotationWriter *AAW, bool IsForDebug,
2590 bool ShouldPreserveUseListOrder = false);
2591
2592 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2593 const ModuleSummaryIndex *Index, bool IsForDebug);
2594
2595 void printMDNodeBody(const MDNode *MD);
2596 void printNamedMDNode(const NamedMDNode *NMD);
2597
2598 void printModule(const Module *M);
2599
2600 void writeOperand(const Value *Op, bool PrintType);
2601 void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2602 void writeOperandBundles(const CallBase *Call);
2603 void writeSyncScope(const LLVMContext &Context,
2604 SyncScope::ID SSID);
2605 void writeAtomic(const LLVMContext &Context,
2606 AtomicOrdering Ordering,
2607 SyncScope::ID SSID);
2608 void writeAtomicCmpXchg(const LLVMContext &Context,
2609 AtomicOrdering SuccessOrdering,
2610 AtomicOrdering FailureOrdering,
2611 SyncScope::ID SSID);
2612
2613 void writeAllMDNodes();
2614 void writeMDNode(unsigned Slot, const MDNode *Node);
2615 void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2616 void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2617 void writeAllAttributeGroups();
2618
2619 void printTypeIdentities();
2620 void printGlobal(const GlobalVariable *GV);
2621 void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2622 void printComdat(const Comdat *C);
2623 void printFunction(const Function *F);
2624 void printArgument(const Argument *FA, AttributeSet Attrs);
2625 void printBasicBlock(const BasicBlock *BB);
2626 void printInstructionLine(const Instruction &I);
2627 void printInstruction(const Instruction &I);
2628
2629 void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle);
2630 void printUseLists(const Function *F);
2631
2632 void printModuleSummaryIndex();
2633 void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2634 void printSummary(const GlobalValueSummary &Summary);
2635 void printAliasSummary(const AliasSummary *AS);
2636 void printGlobalVarSummary(const GlobalVarSummary *GS);
2637 void printFunctionSummary(const FunctionSummary *FS);
2638 void printTypeIdSummary(const TypeIdSummary &TIS);
2639 void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2640 void printTypeTestResolution(const TypeTestResolution &TTRes);
2641 void printArgs(const std::vector<uint64_t> &Args);
2642 void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2643 void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2644 void printVFuncId(const FunctionSummary::VFuncId VFId);
2645 void
2646 printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
2647 const char *Tag);
2648 void
2649 printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
2650 const char *Tag);
2651
2652private:
2653 /// Print out metadata attachments.
2654 void printMetadataAttachments(
2655 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2656 StringRef Separator);
2657
2658 // printInfoComment - Print a little comment after the instruction indicating
2659 // which slot it occupies.
2660 void printInfoComment(const Value &V);
2661
2662 // printGCRelocateComment - print comment after call to the gc.relocate
2663 // intrinsic indicating base and derived pointer names.
2664 void printGCRelocateComment(const GCRelocateInst &Relocate);
2665};
2666
2667} // end anonymous namespace
2668
2669AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2670 const Module *M, AssemblyAnnotationWriter *AAW,
2671 bool IsForDebug, bool ShouldPreserveUseListOrder)
2672 : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2673 IsForDebug(IsForDebug),
2674 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2675 if (!TheModule)
2676 return;
2677 for (const GlobalObject &GO : TheModule->global_objects())
2678 if (const Comdat *C = GO.getComdat())
2679 Comdats.insert(C);
2680}
2681
2682AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2683 const ModuleSummaryIndex *Index, bool IsForDebug)
2684 : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2685 IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2686
2687void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2688 if (!Operand) {
2689 Out << "<null operand!>";
2690 return;
2691 }
2692 if (PrintType) {
2693 TypePrinter.print(Operand->getType(), Out);
2694 Out << ' ';
2695 }
2696 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2697}
2698
2699void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2700 SyncScope::ID SSID) {
2701 switch (SSID) {
2702 case SyncScope::System: {
2703 break;
2704 }
2705 default: {
2706 if (SSNs.empty())
2707 Context.getSyncScopeNames(SSNs);
2708
2709 Out << " syncscope(\"";
2710 printEscapedString(SSNs[SSID], Out);
2711 Out << "\")";
2712 break;
2713 }
2714 }
2715}
2716
2717void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2718 AtomicOrdering Ordering,
2719 SyncScope::ID SSID) {
2720 if (Ordering == AtomicOrdering::NotAtomic)
2721 return;
2722
2723 writeSyncScope(Context, SSID);
2724 Out << " " << toIRString(Ordering);
2725}
2726
2727void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2728 AtomicOrdering SuccessOrdering,
2729 AtomicOrdering FailureOrdering,
2730 SyncScope::ID SSID) {
2731 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&((void)0)
2732 FailureOrdering != AtomicOrdering::NotAtomic)((void)0);
2733
2734 writeSyncScope(Context, SSID);
2735 Out << " " << toIRString(SuccessOrdering);
2736 Out << " " << toIRString(FailureOrdering);
2737}
2738
2739void AssemblyWriter::writeParamOperand(const Value *Operand,
2740 AttributeSet Attrs) {
2741 if (!Operand) {
2742 Out << "<null operand!>";
2743 return;
2744 }
2745
2746 // Print the type
2747 TypePrinter.print(Operand->getType(), Out);
2748 // Print parameter attributes list
2749 if (Attrs.hasAttributes()) {
2750 Out << ' ';
2751 writeAttributeSet(Attrs);
2752 }
2753 Out << ' ';
2754 // Print the operand
2755 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2756}
2757
2758void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2759 if (!Call->hasOperandBundles())
2760 return;
2761
2762 Out << " [ ";
2763
2764 bool FirstBundle = true;
2765 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2766 OperandBundleUse BU = Call->getOperandBundleAt(i);
2767
2768 if (!FirstBundle)
2769 Out << ", ";
2770 FirstBundle = false;
2771
2772 Out << '"';
2773 printEscapedString(BU.getTagName(), Out);
2774 Out << '"';
2775
2776 Out << '(';
2777
2778 bool FirstInput = true;
2779 for (const auto &Input : BU.Inputs) {
2780 if (!FirstInput)
2781 Out << ", ";
2782 FirstInput = false;
2783
2784 TypePrinter.print(Input->getType(), Out);
2785 Out << " ";
2786 WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2787 }
2788
2789 Out << ')';
2790 }
2791
2792 Out << " ]";
2793}
2794
2795void AssemblyWriter::printModule(const Module *M) {
2796 Machine.initializeIfNeeded();
2797
2798 if (ShouldPreserveUseListOrder)
2799 UseListOrders = predictUseListOrder(M);
2800
2801 if (!M->getModuleIdentifier().empty() &&
2802 // Don't print the ID if it will start a new line (which would
2803 // require a comment char before it).
2804 M->getModuleIdentifier().find('\n') == std::string::npos)
2805 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2806
2807 if (!M->getSourceFileName().empty()) {
2808 Out << "source_filename = \"";
2809 printEscapedString(M->getSourceFileName(), Out);
2810 Out << "\"\n";
2811 }
2812
2813 const std::string &DL = M->getDataLayoutStr();
2814 if (!DL.empty())
2815 Out << "target datalayout = \"" << DL << "\"\n";
2816 if (!M->getTargetTriple().empty())
2817 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2818
2819 if (!M->getModuleInlineAsm().empty()) {
2820 Out << '\n';
2821
2822 // Split the string into lines, to make it easier to read the .ll file.
2823 StringRef Asm = M->getModuleInlineAsm();
2824 do {
2825 StringRef Front;
2826 std::tie(Front, Asm) = Asm.split('\n');
2827
2828 // We found a newline, print the portion of the asm string from the
2829 // last newline up to this newline.
2830 Out << "module asm \"";
2831 printEscapedString(Front, Out);
2832 Out << "\"\n";
2833 } while (!Asm.empty());
2834 }
2835
2836 printTypeIdentities();
2837
2838 // Output all comdats.
2839 if (!Comdats.empty())
2840 Out << '\n';
2841 for (const Comdat *C : Comdats) {
2842 printComdat(C);
2843 if (C != Comdats.back())
2844 Out << '\n';
2845 }
2846
2847 // Output all globals.
2848 if (!M->global_empty()) Out << '\n';
2849 for (const GlobalVariable &GV : M->globals()) {
2850 printGlobal(&GV); Out << '\n';
2851 }
2852
2853 // Output all aliases.
2854 if (!M->alias_empty()) Out << "\n";
2855 for (const GlobalAlias &GA : M->aliases())
2856 printIndirectSymbol(&GA);
2857
2858 // Output all ifuncs.
2859 if (!M->ifunc_empty()) Out << "\n";
2860 for (const GlobalIFunc &GI : M->ifuncs())
2861 printIndirectSymbol(&GI);
2862
2863 // Output all of the functions.
2864 for (const Function &F : *M) {
2865 Out << '\n';
2866 printFunction(&F);
2867 }
2868
2869 // Output global use-lists.
2870 printUseLists(nullptr);
2871
2872 // Output all attribute groups.
2873 if (!Machine.as_empty()) {
2874 Out << '\n';
2875 writeAllAttributeGroups();
2876 }
2877
2878 // Output named metadata.
2879 if (!M->named_metadata_empty()) Out << '\n';
2880
2881 for (const NamedMDNode &Node : M->named_metadata())
2882 printNamedMDNode(&Node);
2883
2884 // Output metadata.
2885 if (!Machine.mdn_empty()) {
2886 Out << '\n';
2887 writeAllMDNodes();
2888 }
2889}
2890
2891void AssemblyWriter::printModuleSummaryIndex() {
2892 assert(TheIndex)((void)0);
2893 int NumSlots = Machine.initializeIndexIfNeeded();
2894
2895 Out << "\n";
2896
2897 // Print module path entries. To print in order, add paths to a vector
2898 // indexed by module slot.
2899 std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2900 std::string RegularLTOModuleName =
2901 ModuleSummaryIndex::getRegularLTOModuleName();
2902 moduleVec.resize(TheIndex->modulePaths().size());
2903 for (auto &ModPath : TheIndex->modulePaths())
2904 moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2905 // A module id of -1 is a special entry for a regular LTO module created
2906 // during the thin link.
2907 ModPath.second.first == -1u ? RegularLTOModuleName
2908 : (std::string)std::string(ModPath.first()),
2909 ModPath.second.second);
2910
2911 unsigned i = 0;
2912 for (auto &ModPair : moduleVec) {
2913 Out << "^" << i++ << " = module: (";
2914 Out << "path: \"";
2915 printEscapedString(ModPair.first, Out);
2916 Out << "\", hash: (";
2917 FieldSeparator FS;
2918 for (auto Hash : ModPair.second)
2919 Out << FS << Hash;
2920 Out << "))\n";
2921 }
2922
2923 // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2924 // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2925 for (auto &GlobalList : *TheIndex) {
2926 auto GUID = GlobalList.first;
2927 for (auto &Summary : GlobalList.second.SummaryList)
2928 SummaryToGUIDMap[Summary.get()] = GUID;
2929 }
2930
2931 // Print the global value summary entries.
2932 for (auto &GlobalList : *TheIndex) {
2933 auto GUID = GlobalList.first;
2934 auto VI = TheIndex->getValueInfo(GlobalList);
2935 printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2936 }
2937
2938 // Print the TypeIdMap entries.
2939 for (const auto &TID : TheIndex->typeIds()) {
2940 Out << "^" << Machine.getTypeIdSlot(TID.second.first)
2941 << " = typeid: (name: \"" << TID.second.first << "\"";
2942 printTypeIdSummary(TID.second.second);
2943 Out << ") ; guid = " << TID.first << "\n";
2944 }
2945
2946 // Print the TypeIdCompatibleVtableMap entries.
2947 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
2948 auto GUID = GlobalValue::getGUID(TId.first);
2949 Out << "^" << Machine.getGUIDSlot(GUID)
2950 << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
2951 printTypeIdCompatibleVtableSummary(TId.second);
2952 Out << ") ; guid = " << GUID << "\n";
2953 }
2954
2955 // Don't emit flags when it's not really needed (value is zero by default).
2956 if (TheIndex->getFlags()) {
2957 Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
2958 ++NumSlots;
2959 }
2960
2961 Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
2962 << "\n";
2963}
2964
2965static const char *
2966getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2967 switch (K) {
2968 case WholeProgramDevirtResolution::Indir:
2969 return "indir";
2970 case WholeProgramDevirtResolution::SingleImpl:
2971 return "singleImpl";
2972 case WholeProgramDevirtResolution::BranchFunnel:
2973 return "branchFunnel";
2974 }
2975 llvm_unreachable("invalid WholeProgramDevirtResolution kind")__builtin_unreachable();
2976}
2977
2978static const char *getWholeProgDevirtResByArgKindName(
2979 WholeProgramDevirtResolution::ByArg::Kind K) {
2980 switch (K) {
2981 case WholeProgramDevirtResolution::ByArg::Indir:
2982 return "indir";
2983 case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2984 return "uniformRetVal";
2985 case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2986 return "uniqueRetVal";
2987 case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2988 return "virtualConstProp";
2989 }
2990 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind")__builtin_unreachable();
2991}
2992
2993static const char *getTTResKindName(TypeTestResolution::Kind K) {
2994 switch (K) {
2995 case TypeTestResolution::Unknown:
2996 return "unknown";
2997 case TypeTestResolution::Unsat:
2998 return "unsat";
2999 case TypeTestResolution::ByteArray:
3000 return "byteArray";
3001 case TypeTestResolution::Inline:
3002 return "inline";
3003 case TypeTestResolution::Single:
3004 return "single";
3005 case TypeTestResolution::AllOnes:
3006 return "allOnes";
3007 }
3008 llvm_unreachable("invalid TypeTestResolution kind")__builtin_unreachable();
3009}
3010
3011void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
3012 Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
3013 << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
3014
3015 // The following fields are only used if the target does not support the use
3016 // of absolute symbols to store constants. Print only if non-zero.
3017 if (TTRes.AlignLog2)
3018 Out << ", alignLog2: " << TTRes.AlignLog2;
3019 if (TTRes.SizeM1)
3020 Out << ", sizeM1: " << TTRes.SizeM1;
3021 if (TTRes.BitMask)
3022 // BitMask is uint8_t which causes it to print the corresponding char.
3023 Out << ", bitMask: " << (unsigned)TTRes.BitMask;
3024 if (TTRes.InlineBits)
3025 Out << ", inlineBits: " << TTRes.InlineBits;
3026
3027 Out << ")";
3028}
3029
3030void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
3031 Out << ", summary: (";
3032 printTypeTestResolution(TIS.TTRes);
3033 if (!TIS.WPDRes.empty()) {
3034 Out << ", wpdResolutions: (";
3035 FieldSeparator FS;
3036 for (auto &WPDRes : TIS.WPDRes) {
3037 Out << FS;
3038 Out << "(offset: " << WPDRes.first << ", ";
3039 printWPDRes(WPDRes.second);
3040 Out << ")";
3041 }
3042 Out << ")";
3043 }
3044 Out << ")";
3045}
3046
3047void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3048 const TypeIdCompatibleVtableInfo &TI) {
3049 Out << ", summary: (";
3050 FieldSeparator FS;
3051 for (auto &P : TI) {
3052 Out << FS;
3053 Out << "(offset: " << P.AddressPointOffset << ", ";
3054 Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3055 Out << ")";
3056 }
3057 Out << ")";
3058}
3059
3060void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
3061 Out << "args: (";
3062 FieldSeparator FS;
3063 for (auto arg : Args) {
3064 Out << FS;
3065 Out << arg;
3066 }
3067 Out << ")";
3068}
3069
3070void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
3071 Out << "wpdRes: (kind: ";
3072 Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
3073
3074 if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
3075 Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3076
3077 if (!WPDRes.ResByArg.empty()) {
3078 Out << ", resByArg: (";
3079 FieldSeparator FS;
3080 for (auto &ResByArg : WPDRes.ResByArg) {
3081 Out << FS;
3082 printArgs(ResByArg.first);
3083 Out << ", byArg: (kind: ";
3084 Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
3085 if (ResByArg.second.TheKind ==
3086 WholeProgramDevirtResolution::ByArg::UniformRetVal ||
3087 ResByArg.second.TheKind ==
3088 WholeProgramDevirtResolution::ByArg::UniqueRetVal)
3089 Out << ", info: " << ResByArg.second.Info;
3090
3091 // The following fields are only used if the target does not support the
3092 // use of absolute symbols to store constants. Print only if non-zero.
3093 if (ResByArg.second.Byte || ResByArg.second.Bit)
3094 Out << ", byte: " << ResByArg.second.Byte
3095 << ", bit: " << ResByArg.second.Bit;
3096
3097 Out << ")";
3098 }
3099 Out << ")";
3100 }
3101 Out << ")";
3102}
3103
3104static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
3105 switch (SK) {
3106 case GlobalValueSummary::AliasKind:
3107 return "alias";
3108 case GlobalValueSummary::FunctionKind:
3109 return "function";
3110 case GlobalValueSummary::GlobalVarKind:
3111 return "variable";
3112 }
3113 llvm_unreachable("invalid summary kind")__builtin_unreachable();
3114}
3115
3116void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3117 Out << ", aliasee: ";
3118 // The indexes emitted for distributed backends may not include the
3119 // aliasee summary (only if it is being imported directly). Handle
3120 // that case by just emitting "null" as the aliasee.
3121 if (AS->hasAliasee())
3122 Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3123 else
3124 Out << "null";
3125}
3126
3127void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3128 auto VTableFuncs = GS->vTableFuncs();
3129 Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3130 << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3131 << "constant: " << GS->VarFlags.Constant;
3132 if (!VTableFuncs.empty())
3133 Out << ", "
3134 << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3135 Out << ")";
3136
3137 if (!VTableFuncs.empty()) {
3138 Out << ", vTableFuncs: (";
3139 FieldSeparator FS;
3140 for (auto &P : VTableFuncs) {
3141 Out << FS;
3142 Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3143 << ", offset: " << P.VTableOffset;
3144 Out << ")";
3145 }
3146 Out << ")";
3147 }
3148}
3149
3150static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
3151 switch (LT) {
3152 case GlobalValue::ExternalLinkage:
3153 return "external";
3154 case GlobalValue::PrivateLinkage:
3155 return "private";
3156 case GlobalValue::InternalLinkage:
3157 return "internal";
3158 case GlobalValue::LinkOnceAnyLinkage:
3159 return "linkonce";
3160 case GlobalValue::LinkOnceODRLinkage:
3161 return "linkonce_odr";
3162 case GlobalValue::WeakAnyLinkage:
3163 return "weak";
3164 case GlobalValue::WeakODRLinkage:
3165 return "weak_odr";
3166 case GlobalValue::CommonLinkage:
3167 return "common";
3168 case GlobalValue::AppendingLinkage:
3169 return "appending";
3170 case GlobalValue::ExternalWeakLinkage:
3171 return "extern_weak";
3172 case GlobalValue::AvailableExternallyLinkage:
3173 return "available_externally";
3174 }
3175 llvm_unreachable("invalid linkage")__builtin_unreachable();
3176}
3177
3178// When printing the linkage types in IR where the ExternalLinkage is
3179// not printed, and other linkage types are expected to be printed with
3180// a space after the name.
3181static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
3182 if (LT == GlobalValue::ExternalLinkage)
3183 return "";
3184 return getLinkageName(LT) + " ";
3185}
3186
3187static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) {
3188 switch (Vis) {
3189 case GlobalValue::DefaultVisibility:
3190 return "default";
3191 case GlobalValue::HiddenVisibility:
3192 return "hidden";
3193 case GlobalValue::ProtectedVisibility:
3194 return "protected";
3195 }
3196 llvm_unreachable("invalid visibility")__builtin_unreachable();
3197}
3198
3199void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3200 Out << ", insts: " << FS->instCount();
3201
3202 FunctionSummary::FFlags FFlags = FS->fflags();
3203 if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse |
3204 FFlags.ReturnDoesNotAlias | FFlags.NoInline | FFlags.AlwaysInline) {
3205 Out << ", funcFlags: (";
3206 Out << "readNone: " << FFlags.ReadNone;
3207 Out << ", readOnly: " << FFlags.ReadOnly;
3208 Out << ", noRecurse: " << FFlags.NoRecurse;
3209 Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias;
3210 Out << ", noInline: " << FFlags.NoInline;
3211 Out << ", alwaysInline: " << FFlags.AlwaysInline;
3212 Out << ")";
3213 }
3214 if (!FS->calls().empty()) {
3215 Out << ", calls: (";
3216 FieldSeparator IFS;
3217 for (auto &Call : FS->calls()) {
3218 Out << IFS;
3219 Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3220 if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3221 Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3222 else if (Call.second.RelBlockFreq)
3223 Out << ", relbf: " << Call.second.RelBlockFreq;
3224 Out << ")";
3225 }
3226 Out << ")";
3227 }
3228
3229 if (const auto *TIdInfo = FS->getTypeIdInfo())
3230 printTypeIdInfo(*TIdInfo);
3231
3232 auto PrintRange = [&](const ConstantRange &Range) {
3233 Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
3234 };
3235
3236 if (!FS->paramAccesses().empty()) {
3237 Out << ", params: (";
3238 FieldSeparator IFS;
3239 for (auto &PS : FS->paramAccesses()) {
3240 Out << IFS;
3241 Out << "(param: " << PS.ParamNo;
3242 Out << ", offset: ";
3243 PrintRange(PS.Use);
3244 if (!PS.Calls.empty()) {
3245 Out << ", calls: (";
3246 FieldSeparator IFS;
3247 for (auto &Call : PS.Calls) {
3248 Out << IFS;
3249 Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3250 Out << ", param: " << Call.ParamNo;
3251 Out << ", offset: ";
3252 PrintRange(Call.Offsets);
3253 Out << ")";
3254 }
3255 Out << ")";
3256 }
3257 Out << ")";
3258 }
3259 Out << ")";
3260 }
3261}
3262
3263void AssemblyWriter::printTypeIdInfo(
3264 const FunctionSummary::TypeIdInfo &TIDInfo) {
3265 Out << ", typeIdInfo: (";
3266 FieldSeparator TIDFS;
3267 if (!TIDInfo.TypeTests.empty()) {
3268 Out << TIDFS;
3269 Out << "typeTests: (";
3270 FieldSeparator FS;
3271 for (auto &GUID : TIDInfo.TypeTests) {
3272 auto TidIter = TheIndex->typeIds().equal_range(GUID);
3273 if (TidIter.first == TidIter.second) {
3274 Out << FS;
3275 Out << GUID;
3276 continue;
3277 }
3278 // Print all type id that correspond to this GUID.
3279 for (auto It = TidIter.first; It != TidIter.second; ++It) {
3280 Out << FS;
3281 auto Slot = Machine.getTypeIdSlot(It->second.first);
3282 assert(Slot != -1)((void)0);
3283 Out << "^" << Slot;
3284 }
3285 }
3286 Out << ")";
3287 }
3288 if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3289 Out << TIDFS;
3290 printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3291 }
3292 if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3293 Out << TIDFS;
3294 printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3295 }
3296 if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3297 Out << TIDFS;
3298 printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3299 "typeTestAssumeConstVCalls");
3300 }
3301 if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3302 Out << TIDFS;
3303 printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3304 "typeCheckedLoadConstVCalls");
3305 }
3306 Out << ")";
3307}
3308
3309void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3310 auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3311 if (TidIter.first == TidIter.second) {
3312 Out << "vFuncId: (";
3313 Out << "guid: " << VFId.GUID;
3314 Out << ", offset: " << VFId.Offset;
3315 Out << ")";
3316 return;
3317 }
3318 // Print all type id that correspond to this GUID.
3319 FieldSeparator FS;
3320 for (auto It = TidIter.first; It != TidIter.second; ++It) {
3321 Out << FS;
3322 Out << "vFuncId: (";
3323 auto Slot = Machine.getTypeIdSlot(It->second.first);
3324 assert(Slot != -1)((void)0);
3325 Out << "^" << Slot;
3326 Out << ", offset: " << VFId.Offset;
3327 Out << ")";
3328 }
3329}
3330
3331void AssemblyWriter::printNonConstVCalls(
3332 const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
3333 Out << Tag << ": (";
3334 FieldSeparator FS;
3335 for (auto &VFuncId : VCallList) {
3336 Out << FS;
3337 printVFuncId(VFuncId);
3338 }
3339 Out << ")";
3340}
3341
3342void AssemblyWriter::printConstVCalls(
3343 const std::vector<FunctionSummary::ConstVCall> &VCallList,
3344 const char *Tag) {
3345 Out << Tag << ": (";
3346 FieldSeparator FS;
3347 for (auto &ConstVCall : VCallList) {
3348 Out << FS;
3349 Out << "(";
3350 printVFuncId(ConstVCall.VFunc);
3351 if (!ConstVCall.Args.empty()) {
3352 Out << ", ";
3353 printArgs(ConstVCall.Args);
3354 }
3355 Out << ")";
3356 }
3357 Out << ")";
3358}
3359
3360void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3361 GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3362 GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3363 Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3364 Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3365 << ", flags: (";
3366 Out << "linkage: " << getLinkageName(LT);
3367 Out << ", visibility: "
3368 << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility);
3369 Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3370 Out << ", live: " << GVFlags.Live;
3371 Out << ", dsoLocal: " << GVFlags.DSOLocal;
3372 Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3373 Out << ")";
3374
3375 if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3376 printAliasSummary(cast<AliasSummary>(&Summary));
3377 else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3378 printFunctionSummary(cast<FunctionSummary>(&Summary));
3379 else
3380 printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3381
3382 auto RefList = Summary.refs();
3383 if (!RefList.empty()) {
3384 Out << ", refs: (";
3385 FieldSeparator FS;
3386 for (auto &Ref : RefList) {
3387 Out << FS;
3388 if (Ref.isReadOnly())
3389 Out << "readonly ";
3390 else if (Ref.isWriteOnly())
3391 Out << "writeonly ";
3392 Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3393 }
3394 Out << ")";
3395 }
3396
3397 Out << ")";
3398}
3399
3400void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3401 Out << "^" << Slot << " = gv: (";
3402 if (!VI.name().empty())
3403 Out << "name: \"" << VI.name() << "\"";
3404 else
3405 Out << "guid: " << VI.getGUID();
3406 if (!VI.getSummaryList().empty()) {
3407 Out << ", summaries: (";
3408 FieldSeparator FS;
3409 for (auto &Summary : VI.getSummaryList()) {
3410 Out << FS;
3411 printSummary(*Summary);
3412 }
3413 Out << ")";
3414 }
3415 Out << ")";
3416 if (!VI.name().empty())
3417 Out << " ; guid = " << VI.getGUID();
3418 Out << "\n";
3419}
3420
3421static void printMetadataIdentifier(StringRef Name,
3422 formatted_raw_ostream &Out) {
3423 if (Name.empty()) {
3424 Out << "<empty name> ";
3425 } else {
3426 if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3427 Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3428 Out << Name[0];
3429 else
3430 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3431 for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3432 unsigned char C = Name[i];
3433 if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3434 C == '.' || C == '_')
3435 Out << C;
3436 else
3437 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3438 }
3439 }
3440}
3441
3442void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3443 Out << '!';
3444 printMetadataIdentifier(NMD->getName(), Out);
3445 Out << " = !{";
3446 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3447 if (i)
3448 Out << ", ";
3449
3450 // Write DIExpressions inline.
3451 // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3452 MDNode *Op = NMD->getOperand(i);
3453 assert(!isa<DIArgList>(Op) &&((void)0)
3454 "DIArgLists should not appear in NamedMDNodes")((void)0);
3455 if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3456 writeDIExpression(Out, Expr, nullptr, nullptr, nullptr);
3457 continue;
3458 }
3459
3460 int Slot = Machine.getMetadataSlot(Op);
3461 if (Slot == -1)
3462 Out << "<badref>";
3463 else
3464 Out << '!' << Slot;
3465 }
3466 Out << "}\n";
3467}
3468
3469static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3470 formatted_raw_ostream &Out) {
3471 switch (Vis) {
3472 case GlobalValue::DefaultVisibility: break;
3473 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
3474 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3475 }
3476}
3477
3478static void PrintDSOLocation(const GlobalValue &GV,
3479 formatted_raw_ostream &Out) {
3480 if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3481 Out << "dso_local ";
3482}
3483
3484static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3485 formatted_raw_ostream &Out) {
3486 switch (SCT) {
3487 case GlobalValue::DefaultStorageClass: break;
3488 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3489 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3490 }
3491}
3492
3493static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3494 formatted_raw_ostream &Out) {
3495 switch (TLM) {
3496 case GlobalVariable::NotThreadLocal:
3497 break;
3498 case GlobalVariable::GeneralDynamicTLSModel:
3499 Out << "thread_local ";
3500 break;
3501 case GlobalVariable::LocalDynamicTLSModel:
3502 Out << "thread_local(localdynamic) ";
3503 break;
3504 case GlobalVariable::InitialExecTLSModel:
3505 Out << "thread_local(initialexec) ";
3506 break;
3507 case GlobalVariable::LocalExecTLSModel:
3508 Out << "thread_local(localexec) ";
3509 break;
3510 }
3511}
3512
3513static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3514 switch (UA) {
3515 case GlobalVariable::UnnamedAddr::None:
3516 return "";
3517 case GlobalVariable::UnnamedAddr::Local:
3518 return "local_unnamed_addr";
3519 case GlobalVariable::UnnamedAddr::Global:
3520 return "unnamed_addr";
3521 }
3522 llvm_unreachable("Unknown UnnamedAddr")__builtin_unreachable();
3523}
3524
3525static void maybePrintComdat(formatted_raw_ostream &Out,
3526 const GlobalObject &GO) {
3527 const Comdat *C = GO.getComdat();
3528 if (!C)
3529 return;
3530
3531 if (isa<GlobalVariable>(GO))
3532 Out << ',';
3533 Out << " comdat";
3534
3535 if (GO.getName() == C->getName())
3536 return;
3537
3538 Out << '(';
3539 PrintLLVMName(Out, C->getName(), ComdatPrefix);
3540 Out << ')';
3541}
3542
3543void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3544 if (GV->isMaterializable())
3545 Out << "; Materializable\n";
3546
3547 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
3548 Out << " = ";
3549
3550 if (!GV->hasInitializer() && GV->hasExternalLinkage())
3551 Out << "external ";
3552
3553 Out << getLinkageNameWithSpace(GV->getLinkage());
3554 PrintDSOLocation(*GV, Out);
3555 PrintVisibility(GV->getVisibility(), Out);
3556 PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3557 PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3558 StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3559 if (!UA.empty())
3560 Out << UA << ' ';
3561
3562 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3563 Out << "addrspace(" << AddressSpace << ") ";
3564 if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3565 Out << (GV->isConstant() ? "constant " : "global ");
3566 TypePrinter.print(GV->getValueType(), Out);
3567
3568 if (GV->hasInitializer()) {
3569 Out << ' ';
3570 writeOperand(GV->getInitializer(), false);
3571 }
3572
3573 if (GV->hasSection()) {
3574 Out << ", section \"";
3575 printEscapedString(GV->getSection(), Out);
3576 Out << '"';
3577 }
3578 if (GV->hasPartition()) {
3579 Out << ", partition \"";
3580 printEscapedString(GV->getPartition(), Out);
3581 Out << '"';
3582 }
3583
3584 maybePrintComdat(Out, *GV);
3585 if (GV->getAlignment())
3586 Out << ", align " << GV->getAlignment();
3587
3588 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3589 GV->getAllMetadata(MDs);
3590 printMetadataAttachments(MDs, ", ");
3591
3592 auto Attrs = GV->getAttributes();
3593 if (Attrs.hasAttributes())
3594 Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3595
3596 printInfoComment(*GV);
3597}
3598
3599void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
3600 if (GIS->isMaterializable())
3601 Out << "; Materializable\n";
3602
3603 WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
3604 Out << " = ";
3605
3606 Out << getLinkageNameWithSpace(GIS->getLinkage());
3607 PrintDSOLocation(*GIS, Out);
3608 PrintVisibility(GIS->getVisibility(), Out);
3609 PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
3610 PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
3611 StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
3612 if (!UA.empty())
3613 Out << UA << ' ';
3614
3615 if (isa<GlobalAlias>(GIS))
3616 Out << "alias ";
3617 else if (isa<GlobalIFunc>(GIS))
3618 Out << "ifunc ";
3619 else
3620 llvm_unreachable("Not an alias or ifunc!")__builtin_unreachable();
3621
3622 TypePrinter.print(GIS->getValueType(), Out);
3623
3624 Out << ", ";
3625
3626 const Constant *IS = GIS->getIndirectSymbol();
3627
3628 if (!IS) {
3629 TypePrinter.print(GIS->getType(), Out);
3630 Out << " <<NULL ALIASEE>>";
3631 } else {
3632 writeOperand(IS, !isa<ConstantExpr>(IS));
3633 }
3634
3635 if (GIS->hasPartition()) {
3636 Out << ", partition \"";
3637 printEscapedString(GIS->getPartition(), Out);
3638 Out << '"';
3639 }
3640
3641 printInfoComment(*GIS);
3642 Out << '\n';
3643}
3644
3645void AssemblyWriter::printComdat(const Comdat *C) {
3646 C->print(Out);
3647}
3648
3649void AssemblyWriter::printTypeIdentities() {
3650 if (TypePrinter.empty())
3651 return;
3652
3653 Out << '\n';
3654
3655 // Emit all numbered types.
3656 auto &NumberedTypes = TypePrinter.getNumberedTypes();
3657 for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3658 Out << '%' << I << " = type ";
3659
3660 // Make sure we print out at least one level of the type structure, so
3661 // that we do not get %2 = type %2
3662 TypePrinter.printStructBody(NumberedTypes[I], Out);
3663 Out << '\n';
3664 }
3665
3666 auto &NamedTypes = TypePrinter.getNamedTypes();
3667 for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
3668 PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
3669 Out << " = type ";
3670
3671 // Make sure we print out at least one level of the type structure, so
3672 // that we do not get %FILE = type %FILE
3673 TypePrinter.printStructBody(NamedTypes[I], Out);
3674 Out << '\n';
3675 }
3676}
3677
3678/// printFunction - Print all aspects of a function.
3679void AssemblyWriter::printFunction(const Function *F) {
3680 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3681
3682 if (F->isMaterializable())
3683 Out << "; Materializable\n";
3684
3685 const AttributeList &Attrs = F->getAttributes();
3686 if (Attrs.hasAttributes(AttributeList::FunctionIndex)) {
3687 AttributeSet AS = Attrs.getFnAttributes();
3688 std::string AttrStr;
3689
3690 for (const Attribute &Attr : AS) {
3691 if (!Attr.isStringAttribute()) {
3692 if (!AttrStr.empty()) AttrStr += ' ';
3693 AttrStr += Attr.getAsString();
3694 }
3695 }
3696
3697 if (!AttrStr.empty())
3698 Out << "; Function Attrs: " << AttrStr << '\n';
3699 }
3700
3701 Machine.incorporateFunction(F);
3702
3703 if (F->isDeclaration()) {
3704 Out << "declare";
3705 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3706 F->getAllMetadata(MDs);
3707 printMetadataAttachments(MDs, " ");
3708 Out << ' ';
3709 } else
3710 Out << "define ";
3711
3712 Out << getLinkageNameWithSpace(F->getLinkage());
3713 PrintDSOLocation(*F, Out);
3714 PrintVisibility(F->getVisibility(), Out);
3715 PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3716
3717 // Print the calling convention.
3718 if (F->getCallingConv() != CallingConv::C) {
3719 PrintCallingConv(F->getCallingConv(), Out);
3720 Out << " ";
3721 }
3722
3723 FunctionType *FT = F->getFunctionType();
3724 if (Attrs.hasAttributes(AttributeList::ReturnIndex))
3725 Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3726 TypePrinter.print(F->getReturnType(), Out);
3727 Out << ' ';
3728 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
3729 Out << '(';
3730
3731 // Loop over the arguments, printing them...
3732 if (F->isDeclaration() && !IsForDebug) {
3733 // We're only interested in the type here - don't print argument names.
3734 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3735 // Insert commas as we go... the first arg doesn't get a comma
3736 if (I)
3737 Out << ", ";
3738 // Output type...
3739 TypePrinter.print(FT->getParamType(I), Out);
3740
3741 AttributeSet ArgAttrs = Attrs.getParamAttributes(I);
3742 if (ArgAttrs.hasAttributes()) {
3743 Out << ' ';
3744 writeAttributeSet(ArgAttrs);
3745 }
3746 }
3747 } else {
3748 // The arguments are meaningful here, print them in detail.
3749 for (const Argument &Arg : F->args()) {
3750 // Insert commas as we go... the first arg doesn't get a comma
3751 if (Arg.getArgNo() != 0)
3752 Out << ", ";
3753 printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo()));
3754 }
3755 }
3756
3757 // Finish printing arguments...
3758 if (FT->isVarArg()) {
3759 if (FT->getNumParams()) Out << ", ";
3760 Out << "..."; // Output varargs portion of signature!
3761 }
3762 Out << ')';
3763 StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3764 if (!UA.empty())
3765 Out << ' ' << UA;
3766 // We print the function address space if it is non-zero or if we are writing
3767 // a module with a non-zero program address space or if there is no valid
3768 // Module* so that the file can be parsed without the datalayout string.
3769 const Module *Mod = F->getParent();
3770 if (F->getAddressSpace() != 0 || !Mod ||
3771 Mod->getDataLayout().getProgramAddressSpace() != 0)
3772 Out << " addrspace(" << F->getAddressSpace() << ")";
3773 if (Attrs.hasAttributes(AttributeList::FunctionIndex))
3774 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
3775 if (F->hasSection()) {
3776 Out << " section \"";
3777 printEscapedString(F->getSection(), Out);
3778 Out << '"';
3779 }
3780 if (F->hasPartition()) {
3781 Out << " partition \"";
3782 printEscapedString(F->getPartition(), Out);
3783 Out << '"';
3784 }
3785 maybePrintComdat(Out, *F);
3786 if (F->getAlignment())
3787 Out << " align " << F->getAlignment();
3788 if (F->hasGC())
3789 Out << " gc \"" << F->getGC() << '"';
3790 if (F->hasPrefixData()) {
3791 Out << " prefix ";
3792 writeOperand(F->getPrefixData(), true);
3793 }
3794 if (F->hasPrologueData()) {
3795 Out << " prologue ";
3796 writeOperand(F->getPrologueData(), true);
3797 }
3798 if (F->hasPersonalityFn()) {
3799 Out << " personality ";
3800 writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3801 }
3802
3803 if (F->isDeclaration()) {
3804 Out << '\n';
3805 } else {
3806 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3807 F->getAllMetadata(MDs);
3808 printMetadataAttachments(MDs, " ");
3809
3810 Out << " {";
3811 // Output all of the function's basic blocks.
3812 for (const BasicBlock &BB : *F)
3813 printBasicBlock(&BB);
3814
3815 // Output the function's use-lists.
3816 printUseLists(F);
3817
3818 Out << "}\n";
3819 }
3820
3821 Machine.purgeFunction();
3822}
3823
3824/// printArgument - This member is called for every argument that is passed into
3825/// the function. Simply print it out
3826void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3827 // Output type...
3828 TypePrinter.print(Arg->getType(), Out);
3829
3830 // Output parameter attributes list
3831 if (Attrs.hasAttributes()) {
3832 Out << ' ';
3833 writeAttributeSet(Attrs);
3834 }
3835
3836 // Output name, if available...
3837 if (Arg->hasName()) {
3838 Out << ' ';
3839 PrintLLVMName(Out, Arg);
3840 } else {
3841 int Slot = Machine.getLocalSlot(Arg);
3842 assert(Slot != -1 && "expect argument in function here")((void)0);
3843 Out << " %" << Slot;
3844 }
3845}
3846
3847/// printBasicBlock - This member is called for each basic block in a method.
3848void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3849 bool IsEntryBlock = BB->getParent() && BB->isEntryBlock();
3850 if (BB->hasName()) { // Print out the label if it exists...
3851 Out << "\n";
3852 PrintLLVMName(Out, BB->getName(), LabelPrefix);
3853 Out << ':';
3854 } else if (!IsEntryBlock) {
3855 Out << "\n";
3856 int Slot = Machine.getLocalSlot(BB);
3857 if (Slot != -1)
3858 Out << Slot << ":";
3859 else
3860 Out << "<badref>:";
3861 }
3862
3863 if (!IsEntryBlock) {
3864 // Output predecessors for the block.
3865 Out.PadToColumn(50);
3866 Out << ";";
3867 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3868
3869 if (PI == PE) {
3870 Out << " No predecessors!";
3871 } else {
3872 Out << " preds = ";
3873 writeOperand(*PI, false);
3874 for (++PI; PI != PE; ++PI) {
3875 Out << ", ";
3876 writeOperand(*PI, false);
3877 }
3878 }
3879 }
3880
3881 Out << "\n";
3882
3883 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3884
3885 // Output all of the instructions in the basic block...
3886 for (const Instruction &I : *BB) {
3887 printInstructionLine(I);
3888 }
3889
3890 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3891}
3892
3893/// printInstructionLine - Print an instruction and a newline character.
3894void AssemblyWriter::printInstructionLine(const Instruction &I) {
3895 printInstruction(I);
3896 Out << '\n';
3897}
3898
3899/// printGCRelocateComment - print comment after call to the gc.relocate
3900/// intrinsic indicating base and derived pointer names.
3901void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3902 Out << " ; (";
3903 writeOperand(Relocate.getBasePtr(), false);
3904 Out << ", ";
3905 writeOperand(Relocate.getDerivedPtr(), false);
3906 Out << ")";
3907}
3908
3909/// printInfoComment - Print a little comment after the instruction indicating
3910/// which slot it occupies.
3911void AssemblyWriter::printInfoComment(const Value &V) {
3912 if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3913 printGCRelocateComment(*Relocate);
3914
3915 if (AnnotationWriter)
3916 AnnotationWriter->printInfoComment(V, Out);
3917}
3918
3919static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
3920 raw_ostream &Out) {
3921 // We print the address space of the call if it is non-zero.
3922 unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
3923 bool PrintAddrSpace = CallAddrSpace != 0;
3924 if (!PrintAddrSpace) {
3925 const Module *Mod = getModuleFromVal(I);
3926 // We also print it if it is zero but not equal to the program address space
3927 // or if we can't find a valid Module* to make it possible to parse
3928 // the resulting file even without a datalayout string.
3929 if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
3930 PrintAddrSpace = true;
3931 }
3932 if (PrintAddrSpace)
3933 Out << " addrspace(" << CallAddrSpace << ")";
3934}
3935
3936// This member is called for each Instruction in a function..
3937void AssemblyWriter::printInstruction(const Instruction &I) {
3938 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1
Assuming field 'AnnotationWriter' is null
2
Taking false branch
3939
3940 // Print out indentation for an instruction.
3941 Out << " ";
3942
3943 // Print out name if it exists...
3944 if (I.hasName()) {
3
Assuming the condition is false
4
Taking false branch
3945 PrintLLVMName(Out, &I);
3946 Out << " = ";
3947 } else if (!I.getType()->isVoidTy()) {
5
Taking true branch
3948 // Print out the def slot taken.
3949 int SlotNum = Machine.getLocalSlot(&I);
3950 if (SlotNum == -1)
6
Assuming the condition is false
7
Taking false branch
3951 Out << "<badref> = ";
3952 else
3953 Out << '%' << SlotNum << " = ";
3954 }
3955
3956 if (const CallInst *CI
8.1
'CI' is null
8.1
'CI' is null
8.1
'CI' is null
8.1
'CI' is null
= dyn_cast<CallInst>(&I)) {
8
Assuming the object is not a 'CallInst'
9
Taking false branch
3957 if (CI->isMustTailCall())
3958 Out << "musttail ";
3959 else if (CI->isTailCall())
3960 Out << "tail ";
3961 else if (CI->isNoTailCall())
3962 Out << "notail ";
3963 }
3964
3965 // Print out the opcode...
3966 Out << I.getOpcodeName();
3967
3968 // If this is an atomic load or store, print out the atomic marker.
3969 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
10
Assuming 'I' is not a 'LoadInst'
3970 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
11
Assuming 'I' is not a 'StoreInst'
3971 Out << " atomic";
3972
3973 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
12
Assuming 'I' is not a 'AtomicCmpXchgInst'
3974 Out << " weak";
3975
3976 // If this is a volatile operation, print out the volatile marker.
3977 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
13
Assuming 'I' is not a 'LoadInst'
3978 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
14
Assuming 'I' is not a 'StoreInst'
3979 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
15
Assuming 'I' is not a 'AtomicCmpXchgInst'
3980 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
16
Assuming 'I' is not a 'AtomicRMWInst'
3981 Out << " volatile";
3982
3983 // Print out optimization information.
3984 WriteOptimizationInfo(Out, &I);
3985
3986 // Print out the compare instruction predicates
3987 if (const CmpInst *CI
17.1
'CI' is null
17.1
'CI' is null
17.1
'CI' is null
17.1
'CI' is null
= dyn_cast<CmpInst>(&I))
17
Assuming the object is not a 'CmpInst'
18
Taking false branch
3988 Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
3989
3990 // Print out the atomicrmw operation
3991 if (const AtomicRMWInst *RMWI
19.1
'RMWI' is null
19.1
'RMWI' is null
19.1
'RMWI' is null
19.1
'RMWI' is null
= dyn_cast<AtomicRMWInst>(&I))
19
Assuming the object is not a 'AtomicRMWInst'
20
Taking false branch
3992 Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
3993
3994 // Print out the type of the operands...
3995 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
21
Assuming the condition is false
22
'?' condition is false
3996
3997 // Special case conditional branches to swizzle the condition out to the front
3998 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
23
Assuming 'I' is not a 'BranchInst'
3999 const BranchInst &BI(cast<BranchInst>(I));
4000 Out << ' ';
4001 writeOperand(BI.getCondition(), true);
4002 Out << ", ";
4003 writeOperand(BI.getSuccessor(0), true);
4004 Out << ", ";
4005 writeOperand(BI.getSuccessor(1), true);
4006
4007 } else if (isa<SwitchInst>(I)) {
24
Assuming 'I' is not a 'SwitchInst'
25
Taking false branch
4008 const SwitchInst& SI(cast<SwitchInst>(I));
4009 // Special case switch instruction to get formatting nice and correct.
4010 Out << ' ';
4011 writeOperand(SI.getCondition(), true);
4012 Out << ", ";
4013 writeOperand(SI.getDefaultDest(), true);
4014 Out << " [";
4015 for (auto Case : SI.cases()) {
4016 Out << "\n ";
4017 writeOperand(Case.getCaseValue(), true);
4018 Out << ", ";
4019 writeOperand(Case.getCaseSuccessor(), true);
4020 }
4021 Out << "\n ]";
4022 } else if (isa<IndirectBrInst>(I)) {
26
Assuming 'I' is not a 'IndirectBrInst'
27
Taking false branch
4023 // Special case indirectbr instruction to get formatting nice and correct.
4024 Out << ' ';
4025 writeOperand(Operand, true);
4026 Out << ", [";
4027
4028 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4029 if (i != 1)
4030 Out << ", ";
4031 writeOperand(I.getOperand(i), true);
4032 }
4033 Out << ']';
4034 } else if (const PHINode *PN
28.1
'PN' is null
28.1
'PN' is null
28.1
'PN' is null
28.1
'PN' is null
= dyn_cast<PHINode>(&I)) {
28
Assuming the object is not a 'PHINode'
29
Taking false branch
4035 Out << ' ';
4036 TypePrinter.print(I.getType(), Out);
4037 Out << ' ';
4038
4039 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
4040 if (op) Out << ", ";
4041 Out << "[ ";
4042 writeOperand(PN->getIncomingValue(op), false); Out << ", ";
4043 writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
4044 }
4045 } else if (const ExtractValueInst *EVI
30.1
'EVI' is null
30.1
'EVI' is null
30.1
'EVI' is null
30.1
'EVI' is null
= dyn_cast<ExtractValueInst>(&I)) {
30
Assuming the object is not a 'ExtractValueInst'
31
Taking false branch
4046 Out << ' ';
4047 writeOperand(I.getOperand(0), true);
4048 for (unsigned i : EVI->indices())
4049 Out << ", " << i;
4050 } else if (const InsertValueInst *IVI
32.1
'IVI' is null
32.1
'IVI' is null
32.1
'IVI' is null
32.1
'IVI' is null
= dyn_cast<InsertValueInst>(&I)) {
32
Assuming the object is not a 'InsertValueInst'
33
Taking false branch
4051 Out << ' ';
4052 writeOperand(I.getOperand(0), true); Out << ", ";
4053 writeOperand(I.getOperand(1), true);
4054 for (unsigned i : IVI->indices())
4055 Out << ", " << i;
4056 } else if (const LandingPadInst *LPI
34.1
'LPI' is null
34.1
'LPI' is null
34.1
'LPI' is null
34.1
'LPI' is null
= dyn_cast<LandingPadInst>(&I)) {
34
Assuming the object is not a 'LandingPadInst'
35
Taking false branch
4057 Out << ' ';
4058 TypePrinter.print(I.getType(), Out);
4059 if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4060 Out << '\n';
4061
4062 if (LPI->isCleanup())
4063 Out << " cleanup";
4064
4065 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4066 if (i != 0 || LPI->isCleanup()) Out << "\n";
4067 if (LPI->isCatch(i))
4068 Out << " catch ";
4069 else
4070 Out << " filter ";
4071
4072 writeOperand(LPI->getClause(i), true);
4073 }
4074 } else if (const auto *CatchSwitch
36.1
'CatchSwitch' is null
36.1
'CatchSwitch' is null
36.1
'CatchSwitch' is null
36.1
'CatchSwitch' is null
= dyn_cast<CatchSwitchInst>(&I)) {
36
Assuming the object is not a 'CatchSwitchInst'
37
Taking false branch
4075 Out << " within ";
4076 writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
4077 Out << " [";
4078 unsigned Op = 0;
4079 for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4080 if (Op > 0)
4081 Out << ", ";
4082 writeOperand(PadBB, /*PrintType=*/true);
4083 ++Op;
4084 }
4085 Out << "] unwind ";
4086 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4087 writeOperand(UnwindDest, /*PrintType=*/true);
4088 else
4089 Out << "to caller";
4090 } else if (const auto *FPI
38.1
'FPI' is null
38.1
'FPI' is null
38.1
'FPI' is null
38.1
'FPI' is null
= dyn_cast<FuncletPadInst>(&I)) {
38
Assuming the object is not a 'FuncletPadInst'
39
Taking false branch
4091 Out << " within ";
4092 writeOperand(FPI->getParentPad(), /*PrintType=*/false);
4093 Out << " [";
4094 for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
4095 ++Op) {
4096 if (Op > 0)
4097 Out << ", ";
4098 writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
4099 }
4100 Out << ']';
4101 } else if (isa<ReturnInst>(I) && !Operand) {
40
Assuming 'I' is not a 'ReturnInst'
4102 Out << " void";
4103 } else if (const auto *CRI
41.1
'CRI' is null
41.1
'CRI' is null
41.1
'CRI' is null
41.1
'CRI' is null
= dyn_cast<CatchReturnInst>(&I)) {
41
Assuming the object is not a 'CatchReturnInst'
42
Taking false branch
4104 Out << " from ";
4105 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4106
4107 Out << " to ";
4108 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4109 } else if (const auto *CRI
43.1
'CRI' is null
43.1
'CRI' is null
43.1
'CRI' is null
43.1
'CRI' is null
= dyn_cast<CleanupReturnInst>(&I)) {
43
Assuming the object is not a 'CleanupReturnInst'
44
Taking false branch
4110 Out << " from ";
4111 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4112
4113 Out << " unwind ";
4114 if (CRI->hasUnwindDest())
4115 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4116 else
4117 Out << "to caller";
4118 } else if (const CallInst *CI
45.1
'CI' is null
45.1
'CI' is null
45.1
'CI' is null
45.1
'CI' is null
= dyn_cast<CallInst>(&I)) {
45
The object is not a 'CallInst'
46
Taking false branch
4119 // Print the calling convention being used.
4120 if (CI->getCallingConv() != CallingConv::C) {
4121 Out << " ";
4122 PrintCallingConv(CI->getCallingConv(), Out);
4123 }
4124
4125 Operand = CI->getCalledOperand();
4126 FunctionType *FTy = CI->getFunctionType();
4127 Type *RetTy = FTy->getReturnType();
4128 const AttributeList &PAL = CI->getAttributes();
4129
4130 if (PAL.hasAttributes(AttributeList::ReturnIndex))
4131 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4132
4133 // Only print addrspace(N) if necessary:
4134 maybePrintCallAddrSpace(Operand, &I, Out);
4135
4136 // If possible, print out the short form of the call instruction. We can
4137 // only do this if the first argument is a pointer to a nonvararg function,
4138 // and if the return type is not a pointer to a function.
4139 //
4140 Out << ' ';
4141 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4142 Out << ' ';
4143 writeOperand(Operand, false);
4144 Out << '(';
4145 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
4146 if (op > 0)
4147 Out << ", ";
4148 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op));
4149 }
4150
4151 // Emit an ellipsis if this is a musttail call in a vararg function. This
4152 // is only to aid readability, musttail calls forward varargs by default.
4153 if (CI->isMustTailCall() && CI->getParent() &&
4154 CI->getParent()->getParent() &&
4155 CI->getParent()->getParent()->isVarArg())
4156 Out << ", ...";
4157
4158 Out << ')';
4159 if (PAL.hasAttributes(AttributeList::FunctionIndex))
4160 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
4161
4162 writeOperandBundles(CI);
4163 } else if (const InvokeInst *II
47.1
'II' is null
47.1
'II' is null
47.1
'II' is null
47.1
'II' is null
= dyn_cast<InvokeInst>(&I)) {
47
Assuming the object is not a 'InvokeInst'
48
Taking false branch
4164 Operand = II->getCalledOperand();
4165 FunctionType *FTy = II->getFunctionType();
4166 Type *RetTy = FTy->getReturnType();
4167 const AttributeList &PAL = II->getAttributes();
4168
4169 // Print the calling convention being used.
4170 if (II->getCallingConv() != CallingConv::C) {
4171 Out << " ";
4172 PrintCallingConv(II->getCallingConv(), Out);
4173 }
4174
4175 if (PAL.hasAttributes(AttributeList::ReturnIndex))
4176 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4177
4178 // Only print addrspace(N) if necessary:
4179 maybePrintCallAddrSpace(Operand, &I, Out);
4180
4181 // If possible, print out the short form of the invoke instruction. We can
4182 // only do this if the first argument is a pointer to a nonvararg function,
4183 // and if the return type is not a pointer to a function.
4184 //
4185 Out << ' ';
4186 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4187 Out << ' ';
4188 writeOperand(Operand, false);
4189 Out << '(';
4190 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
4191 if (op)
4192 Out << ", ";
4193 writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op));
4194 }
4195
4196 Out << ')';
4197 if (PAL.hasAttributes(AttributeList::FunctionIndex))
4198 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
4199
4200 writeOperandBundles(II);
4201
4202 Out << "\n to ";
4203 writeOperand(II->getNormalDest(), true);
4204 Out << " unwind ";
4205 writeOperand(II->getUnwindDest(), true);
4206 } else if (const CallBrInst *CBI
49.1
'CBI' is null
49.1
'CBI' is null
49.1
'CBI' is null
49.1
'CBI' is null
= dyn_cast<CallBrInst>(&I)) {
49
Assuming the object is not a 'CallBrInst'
50
Taking false branch
4207 Operand = CBI->getCalledOperand();
4208 FunctionType *FTy = CBI->getFunctionType();
4209 Type *RetTy = FTy->getReturnType();
4210 const AttributeList &PAL = CBI->getAttributes();
4211
4212 // Print the calling convention being used.
4213 if (CBI->getCallingConv() != CallingConv::C) {
4214 Out << " ";
4215 PrintCallingConv(CBI->getCallingConv(), Out);
4216 }
4217
4218 if (PAL.hasAttributes(AttributeList::ReturnIndex))
4219 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4220
4221 // If possible, print out the short form of the callbr instruction. We can
4222 // only do this if the first argument is a pointer to a nonvararg function,
4223 // and if the return type is not a pointer to a function.
4224 //
4225 Out << ' ';
4226 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4227 Out << ' ';
4228 writeOperand(Operand, false);
4229 Out << '(';
4230 for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) {
4231 if (op)
4232 Out << ", ";
4233 writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttributes(op));
4234 }
4235
4236 Out << ')';
4237 if (PAL.hasAttributes(AttributeList::FunctionIndex))
4238 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
4239
4240 writeOperandBundles(CBI);
4241
4242 Out << "\n to ";
4243 writeOperand(CBI->getDefaultDest(), true);
4244 Out << " [";
4245 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4246 if (i != 0)
4247 Out << ", ";
4248 writeOperand(CBI->getIndirectDest(i), true);
4249 }
4250 Out << ']';
4251 } else if (const AllocaInst *AI
51.1
'AI' is null
51.1
'AI' is null
51.1
'AI' is null
51.1
'AI' is null
= dyn_cast<AllocaInst>(&I)) {
51
Assuming the object is not a 'AllocaInst'
52
Taking false branch
4252 Out << ' ';
4253 if (AI->isUsedWithInAlloca())
4254 Out << "inalloca ";
4255 if (AI->isSwiftError())
4256 Out << "swifterror ";
4257 TypePrinter.print(AI->getAllocatedType(), Out);
4258
4259 // Explicitly write the array size if the code is broken, if it's an array
4260 // allocation, or if the type is not canonical for scalar allocations. The
4261 // latter case prevents the type from mutating when round-tripping through
4262 // assembly.
4263 if (!AI->getArraySize() || AI->isArrayAllocation() ||
4264 !AI->getArraySize()->getType()->isIntegerTy(32)) {
4265 Out << ", ";
4266 writeOperand(AI->getArraySize(), true);
4267 }
4268 if (AI->getAlignment()) {
4269 Out << ", align " << AI->getAlignment();
4270 }
4271
4272 unsigned AddrSpace = AI->getType()->getAddressSpace();
4273 if (AddrSpace != 0) {
4274 Out << ", addrspace(" << AddrSpace << ')';
4275 }
4276 } else if (isa<CastInst>(I)) {
53
Assuming 'I' is not a 'CastInst'
54
Taking false branch
4277 if (Operand) {
4278 Out << ' ';
4279 writeOperand(Operand, true); // Work with broken code
4280 }
4281 Out << " to ";
4282 TypePrinter.print(I.getType(), Out);
4283 } else if (isa<VAArgInst>(I)) {
55
Assuming 'I' is not a 'VAArgInst'
56
Taking false branch
4284 if (Operand) {
4285 Out << ' ';
4286 writeOperand(Operand, true); // Work with broken code
4287 }
4288 Out << ", ";
4289 TypePrinter.print(I.getType(), Out);
4290 } else if (Operand
56.1
'Operand' is null
56.1
'Operand' is null
56.1
'Operand' is null
56.1
'Operand' is null
) { // Print the normal way.
57
Taking false branch
4291 if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4292 Out << ' ';
4293 TypePrinter.print(GEP->getSourceElementType(), Out);
4294 Out << ',';
4295 } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4296 Out << ' ';
4297 TypePrinter.print(LI->getType(), Out);
4298 Out << ',';
4299 }
4300
4301 // PrintAllTypes - Instructions who have operands of all the same type
4302 // omit the type from all but the first operand. If the instruction has
4303 // different type operands (for example br), then they are all printed.
4304 bool PrintAllTypes = false;
4305 Type *TheType = Operand->getType();
4306
4307 // Select, Store and ShuffleVector always print all types.
4308 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
4309 || isa<ReturnInst>(I)) {
4310 PrintAllTypes = true;
4311 } else {
4312 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4313 Operand = I.getOperand(i);
4314 // note that Operand shouldn't be null, but the test helps make dump()
4315 // more tolerant of malformed IR
4316 if (Operand && Operand->getType() != TheType) {
4317 PrintAllTypes = true; // We have differing types! Print them all!
4318 break;
4319 }
4320 }
4321 }
4322
4323 if (!PrintAllTypes) {
4324 Out << ' ';
4325 TypePrinter.print(TheType, Out);
4326 }
4327
4328 Out << ' ';
4329 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4330 if (i) Out << ", ";
4331 writeOperand(I.getOperand(i), PrintAllTypes);
4332 }
4333 }
4334
4335 // Print atomic ordering/alignment for memory operations
4336 if (const LoadInst *LI
58.1
'LI' is non-null
58.1
'LI' is non-null
58.1
'LI' is non-null
58.1
'LI' is non-null
= dyn_cast<LoadInst>(&I)) {
58
Assuming the object is a 'LoadInst'
59
Taking true branch
4337 if (LI->isAtomic())
60
Assuming the condition is false
61
Taking false branch
4338 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4339 if (LI->getAlignment())
62
Calling 'LoadInst::getAlignment'
4340 Out << ", align " << LI->getAlignment();
4341 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4342 if (SI->isAtomic())
4343 writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4344 if (SI->getAlignment())
4345 Out << ", align " << SI->getAlignment();
4346 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4347 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4348 CXI->getFailureOrdering(), CXI->getSyncScopeID());
4349 Out << ", align " << CXI->getAlign().value();
4350 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4351 writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4352 RMWI->getSyncScopeID());
4353 Out << ", align " << RMWI->getAlign().value();
4354 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4355 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4356 } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4357 PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4358 }
4359
4360 // Print Metadata info.
4361 SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4362 I.getAllMetadata(InstMD);
4363 printMetadataAttachments(InstMD, ", ");
4364
4365 // Print a nice comment.
4366 printInfoComment(I);
4367}
4368
4369void AssemblyWriter::printMetadataAttachments(
4370 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4371 StringRef Separator) {
4372 if (MDs.empty())
4373 return;
4374
4375 if (MDNames.empty())
4376 MDs[0].second->getContext().getMDKindNames(MDNames);
4377
4378 for (const auto &I : MDs) {
4379 unsigned Kind = I.first;
4380 Out << Separator;
4381 if (Kind < MDNames.size()) {
4382 Out << "!";
4383 printMetadataIdentifier(MDNames[Kind], Out);
4384 } else
4385 Out << "!<unknown kind #" << Kind << ">";
4386 Out << ' ';
4387 WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
4388 }
4389}
4390
4391void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4392 Out << '!' << Slot << " = ";
4393 printMDNodeBody(Node);
4394 Out << "\n";
4395}
4396
4397void AssemblyWriter::writeAllMDNodes() {
4398 SmallVector<const MDNode *, 16> Nodes;
4399 Nodes.resize(Machine.mdn_size());
4400 for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
4401 Nodes[I.second] = cast<MDNode>(I.first);
4402
4403 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4404 writeMDNode(i, Nodes[i]);
4405 }
4406}
4407
4408void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4409 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
4410}
4411
4412void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4413 if (!Attr.isTypeAttribute()) {
4414 Out << Attr.getAsString(InAttrGroup);
4415 return;
4416 }
4417
4418 Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
4419 if (Type *Ty = Attr.getValueAsType()) {
4420 Out << '(';
4421 TypePrinter.print(Ty, Out);
4422 Out << ')';
4423 }
4424}
4425
4426void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4427 bool InAttrGroup) {
4428 bool FirstAttr = true;
4429 for (const auto &Attr : AttrSet) {
4430 if (!FirstAttr)
4431 Out << ' ';
4432 writeAttribute(Attr, InAttrGroup);
4433 FirstAttr = false;
4434 }
4435}
4436
4437void AssemblyWriter::writeAllAttributeGroups() {
4438 std::vector<std::pair<AttributeSet, unsigned>> asVec;
4439 asVec.resize(Machine.as_size());
4440
4441 for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
4442 asVec[I.second] = I;
4443
4444 for (const auto &I : asVec)
4445 Out << "attributes #" << I.second << " = { "
4446 << I.first.getAsString(true) << " }\n";
4447}
4448
4449void AssemblyWriter::printUseListOrder(const Value *V,
4450 const std::vector<unsigned> &Shuffle) {
4451 bool IsInFunction = Machine.getFunction();
4452 if (IsInFunction)
4453 Out << " ";
4454
4455 Out << "uselistorder";
4456 if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) {
4457 Out << "_bb ";
4458 writeOperand(BB->getParent(), false);
4459 Out << ", ";
4460 writeOperand(BB, false);
4461 } else {
4462 Out << " ";
4463 writeOperand(V, true);
4464 }
4465 Out << ", { ";
4466
4467 assert(Shuffle.size() >= 2 && "Shuffle too small")((void)0);
4468 Out << Shuffle[0];
4469 for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
4470 Out << ", " << Shuffle[I];
4471 Out << " }\n";
4472}
4473
4474void AssemblyWriter::printUseLists(const Function *F) {
4475 auto It = UseListOrders.find(F);
4476 if (It == UseListOrders.end())
4477 return;
4478
4479 Out << "\n; uselistorder directives\n";
4480 for (const auto &Pair : It->second)
4481 printUseListOrder(Pair.first, Pair.second);
4482}
4483
4484//===----------------------------------------------------------------------===//
4485// External Interface declarations
4486//===----------------------------------------------------------------------===//
4487
4488void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4489 bool ShouldPreserveUseListOrder,
4490 bool IsForDebug) const {
4491 SlotTracker SlotTable(this->getParent());
4492 formatted_raw_ostream OS(ROS);
4493 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4494 IsForDebug,
4495 ShouldPreserveUseListOrder);
4496 W.printFunction(this);
4497}
4498
4499void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4500 bool ShouldPreserveUseListOrder,
4501 bool IsForDebug) const {
4502 SlotTracker SlotTable(this->getParent());
4503 formatted_raw_ostream OS(ROS);
4504 AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4505 IsForDebug,
4506 ShouldPreserveUseListOrder);
4507 W.printBasicBlock(this);
4508}
4509
4510void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4511 bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4512 SlotTracker SlotTable(this);
4513 formatted_raw_ostream OS(ROS);
4514 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4515 ShouldPreserveUseListOrder);
4516 W.printModule(this);
4517}
4518
4519void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4520 SlotTracker SlotTable(getParent());
4521 formatted_raw_ostream OS(ROS);
4522 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4523 W.printNamedMDNode(this);
4524}
4525
4526void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4527 bool IsForDebug) const {
4528 Optional<SlotTracker> LocalST;
4529 SlotTracker *SlotTable;
4530 if (auto *ST = MST.getMachine())
4531 SlotTable = ST;
4532 else {
4533 LocalST.emplace(getParent());
4534 SlotTable = &*LocalST;
4535 }
4536
4537 formatted_raw_ostream OS(ROS);
4538 AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4539 W.printNamedMDNode(this);
4540}
4541
4542void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4543 PrintLLVMName(ROS, getName(), ComdatPrefix);
4544 ROS << " = comdat ";
4545
4546 switch (getSelectionKind()) {
4547 case Comdat::Any:
4548 ROS << "any";
4549 break;
4550 case Comdat::ExactMatch:
4551 ROS << "exactmatch";
4552 break;
4553 case Comdat::Largest:
4554 ROS << "largest";
4555 break;
4556 case Comdat::NoDeduplicate:
4557 ROS << "nodeduplicate";
4558 break;
4559 case Comdat::SameSize:
4560 ROS << "samesize";
4561 break;
4562 }
4563
4564 ROS << '\n';
4565}
4566
4567void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4568 TypePrinting TP;
4569 TP.print(const_cast<Type*>(this), OS);
4570
4571 if (NoDetails)
4572 return;
4573
4574 // If the type is a named struct type, print the body as well.
4575 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4576 if (!STy->isLiteral()) {
4577 OS << " = type ";
4578 TP.printStructBody(STy, OS);
4579 }
4580}
4581
4582static bool isReferencingMDNode(const Instruction &I) {
4583 if (const auto *CI = dyn_cast<CallInst>(&I))
4584 if (Function *F = CI->getCalledFunction())
4585 if (F->isIntrinsic())
4586 for (auto &Op : I.operands())
4587 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4588 if (isa<MDNode>(V->getMetadata()))
4589 return true;
4590 return false;
4591}
4592
4593void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4594 bool ShouldInitializeAllMetadata = false;
4595 if (auto *I = dyn_cast<Instruction>(this))
4596 ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4597 else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4598 ShouldInitializeAllMetadata = true;
4599
4600 ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4601 print(ROS, MST, IsForDebug);
4602}
4603
4604void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4605 bool IsForDebug) const {
4606 formatted_raw_ostream OS(ROS);
4607 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4608 SlotTracker &SlotTable =
4609 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4610 auto incorporateFunction = [&](const Function *F) {
4611 if (F)
4612 MST.incorporateFunction(*F);
4613 };
4614
4615 if (const Instruction *I = dyn_cast<Instruction>(this)) {
4616 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4617 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4618 W.printInstruction(*I);
4619 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4620 incorporateFunction(BB->getParent());
4621 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4622 W.printBasicBlock(BB);
4623 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4624 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4625 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4626 W.printGlobal(V);
4627 else if (const Function *F = dyn_cast<Function>(GV))
4628 W.printFunction(F);
4629 else
4630 W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
4631 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4632 V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4633 } else if (const Constant *C = dyn_cast<Constant>(this)) {
4634 TypePrinting TypePrinter;
4635 TypePrinter.print(C->getType(), OS);
4636 OS << ' ';
4637 WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
4638 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4639 this->printAsOperand(OS, /* PrintType */ true, MST);
4640 } else {
4641 llvm_unreachable("Unknown value to print out!")__builtin_unreachable();
4642 }
4643}
4644
4645/// Print without a type, skipping the TypePrinting object.
4646///
4647/// \return \c true iff printing was successful.
4648static bool printWithoutType(const Value &V, raw_ostream &O,
4649 SlotTracker *Machine, const Module *M) {
4650 if (V.hasName() || isa<GlobalValue>(V) ||
4651 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4652 WriteAsOperandInternal(O, &V, nullptr, Machine, M);
4653 return true;
4654 }
4655 return false;
4656}
4657
4658static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4659 ModuleSlotTracker &MST) {
4660 TypePrinting TypePrinter(MST.getModule());
4661 if (PrintType) {
4662 TypePrinter.print(V.getType(), O);
4663 O << ' ';
4664 }
4665
4666 WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
4667 MST.getModule());
4668}
4669
4670void Value::printAsOperand(raw_ostream &O, bool PrintType,
4671 const Module *M) const {
4672 if (!M)
4673 M = getModuleFromVal(this);
4674
4675 if (!PrintType)
4676 if (printWithoutType(*this, O, nullptr, M))
4677 return;
4678
4679 SlotTracker Machine(
4680 M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4681 ModuleSlotTracker MST(Machine, M);
4682 printAsOperandImpl(*this, O, PrintType, MST);
4683}
4684
4685void Value::printAsOperand(raw_ostream &O, bool PrintType,
4686 ModuleSlotTracker &MST) const {
4687 if (!PrintType)
4688 if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4689 return;
4690
4691 printAsOperandImpl(*this, O, PrintType, MST);
4692}
4693
4694static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4695 ModuleSlotTracker &MST, const Module *M,
4696 bool OnlyAsOperand) {
4697 formatted_raw_ostream OS(ROS);
4698
4699 TypePrinting TypePrinter(M);
4700
4701 WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
4702 /* FromValue */ true);
4703
4704 auto *N = dyn_cast<MDNode>(&MD);
4705 if (OnlyAsOperand || !N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
4706 return;
4707
4708 OS << " = ";
4709 WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
4710}
4711
4712void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4713 ModuleSlotTracker MST(M, isa<MDNode>(this));
4714 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4715}
4716
4717void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4718 const Module *M) const {
4719 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4720}
4721
4722void Metadata::print(raw_ostream &OS, const Module *M,
4723 bool /*IsForDebug*/) const {
4724 ModuleSlotTracker MST(M, isa<MDNode>(this));
4725 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4726}
4727
4728void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4729 const Module *M, bool /*IsForDebug*/) const {
4730 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4731}
4732
4733void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4734 SlotTracker SlotTable(this);
4735 formatted_raw_ostream OS(ROS);
4736 AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4737 W.printModuleSummaryIndex();
4738}
4739
4740void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB,
4741 unsigned UB) const {
4742 SlotTracker *ST = MachineStorage.get();
4743 if (!ST)
4744 return;
4745
4746 for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
4747 if (I.second >= LB && I.second < UB)
4748 L.push_back(std::make_pair(I.second, I.first));
4749}
4750
4751#if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP)
4752// Value::dump - allow easy printing of Values from the debugger.
4753LLVM_DUMP_METHOD__attribute__((noinline))
4754void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4755
4756// Type::dump - allow easy printing of Types from the debugger.
4757LLVM_DUMP_METHOD__attribute__((noinline))
4758void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4759
4760// Module::dump() - Allow printing of Modules from the debugger.
4761LLVM_DUMP_METHOD__attribute__((noinline))
4762void Module::dump() const {
4763 print(dbgs(), nullptr,
4764 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4765}
4766
4767// Allow printing of Comdats from the debugger.
4768LLVM_DUMP_METHOD__attribute__((noinline))
4769void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4770
4771// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4772LLVM_DUMP_METHOD__attribute__((noinline))
4773void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4774
4775LLVM_DUMP_METHOD__attribute__((noinline))
4776void Metadata::dump() const { dump(nullptr); }
4777
4778LLVM_DUMP_METHOD__attribute__((noinline))
4779void Metadata::dump(const Module *M) const {
4780 print(dbgs(), M, /*IsForDebug=*/true);
4781 dbgs() << '\n';
4782}
4783
4784// Allow printing of ModuleSummaryIndex from the debugger.
4785LLVM_DUMP_METHOD__attribute__((noinline))
4786void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4787#endif

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/None.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringRef.h"
25#include "llvm/ADT/Twine.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/IR/Attributes.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/CFG.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/InstrTypes.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/OperandTraits.h"
38#include "llvm/IR/Type.h"
39#include "llvm/IR/Use.h"
40#include "llvm/IR/User.h"
41#include "llvm/IR/Value.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include <cassert>
46#include <cstddef>
47#include <cstdint>
48#include <iterator>
49
50namespace llvm {
51
52class APInt;
53class ConstantInt;
54class DataLayout;
55class LLVMContext;
56
57//===----------------------------------------------------------------------===//
58// AllocaInst Class
59//===----------------------------------------------------------------------===//
60
61/// an instruction to allocate memory on the stack
62class AllocaInst : public UnaryInstruction {
63 Type *AllocatedType;
64
65 using AlignmentField = AlignmentBitfieldElementT<0>;
66 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
67 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
68 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
69 SwiftErrorField>(),
70 "Bitfields must be contiguous");
71
72protected:
73 // Note: Instruction needs to be a friend here to call cloneImpl.
74 friend class Instruction;
75
76 AllocaInst *cloneImpl() const;
77
78public:
79 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
80 const Twine &Name, Instruction *InsertBefore);
81 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
82 const Twine &Name, BasicBlock *InsertAtEnd);
83
84 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
85 Instruction *InsertBefore);
86 AllocaInst(Type *Ty, unsigned AddrSpace,
87 const Twine &Name, BasicBlock *InsertAtEnd);
88
89 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
90 const Twine &Name = "", Instruction *InsertBefore = nullptr);
91 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
92 const Twine &Name, BasicBlock *InsertAtEnd);
93
94 /// Return true if there is an allocation size parameter to the allocation
95 /// instruction that is not 1.
96 bool isArrayAllocation() const;
97
98 /// Get the number of elements allocated. For a simple allocation of a single
99 /// element, this will return a constant 1 value.
100 const Value *getArraySize() const { return getOperand(0); }
101 Value *getArraySize() { return getOperand(0); }
102
103 /// Overload to return most specific pointer type.
104 PointerType *getType() const {
105 return cast<PointerType>(Instruction::getType());
106 }
107
108 /// Get allocation size in bits. Returns None if size can't be determined,
109 /// e.g. in case of a VLA.
110 Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
111
112 /// Return the type that is being allocated by the instruction.
113 Type *getAllocatedType() const { return AllocatedType; }
114 /// for use only in special circumstances that need to generically
115 /// transform a whole instruction (eg: IR linking and vectorization).
116 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
117
118 /// Return the alignment of the memory that is being allocated by the
119 /// instruction.
120 Align getAlign() const {
121 return Align(1ULL << getSubclassData<AlignmentField>());
122 }
123
124 void setAlignment(Align Align) {
125 setSubclassData<AlignmentField>(Log2(Align));
126 }
127
128 // FIXME: Remove this one transition to Align is over.
129 unsigned getAlignment() const { return getAlign().value(); }
130
131 /// Return true if this alloca is in the entry block of the function and is a
132 /// constant size. If so, the code generator will fold it into the
133 /// prolog/epilog code, so it is basically free.
134 bool isStaticAlloca() const;
135
136 /// Return true if this alloca is used as an inalloca argument to a call. Such
137 /// allocas are never considered static even if they are in the entry block.
138 bool isUsedWithInAlloca() const {
139 return getSubclassData<UsedWithInAllocaField>();
140 }
141
142 /// Specify whether this alloca is used to represent the arguments to a call.
143 void setUsedWithInAlloca(bool V) {
144 setSubclassData<UsedWithInAllocaField>(V);
145 }
146
147 /// Return true if this alloca is used as a swifterror argument to a call.
148 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
149 /// Specify whether this alloca is used to represent a swifterror.
150 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
151
152 // Methods for support type inquiry through isa, cast, and dyn_cast:
153 static bool classof(const Instruction *I) {
154 return (I->getOpcode() == Instruction::Alloca);
155 }
156 static bool classof(const Value *V) {
157 return isa<Instruction>(V) && classof(cast<Instruction>(V));
158 }
159
160private:
161 // Shadow Instruction::setInstructionSubclassData with a private forwarding
162 // method so that subclasses cannot accidentally use it.
163 template <typename Bitfield>
164 void setSubclassData(typename Bitfield::Type Value) {
165 Instruction::setSubclassData<Bitfield>(Value);
166 }
167};
168
169//===----------------------------------------------------------------------===//
170// LoadInst Class
171//===----------------------------------------------------------------------===//
172
173/// An instruction for reading from memory. This uses the SubclassData field in
174/// Value to store whether or not the load is volatile.
175class LoadInst : public UnaryInstruction {
176 using VolatileField = BoolBitfieldElementT<0>;
177 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
178 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
179 static_assert(
180 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
181 "Bitfields must be contiguous");
182
183 void AssertOK();
184
185protected:
186 // Note: Instruction needs to be a friend here to call cloneImpl.
187 friend class Instruction;
188
189 LoadInst *cloneImpl() const;
190
191public:
192 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
193 Instruction *InsertBefore);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
195 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
196 Instruction *InsertBefore);
197 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
198 BasicBlock *InsertAtEnd);
199 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
200 Align Align, Instruction *InsertBefore = nullptr);
201 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
202 Align Align, BasicBlock *InsertAtEnd);
203 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
204 Align Align, AtomicOrdering Order,
205 SyncScope::ID SSID = SyncScope::System,
206 Instruction *InsertBefore = nullptr);
207 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
208 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
209 BasicBlock *InsertAtEnd);
210
211 /// Return true if this is a load from a volatile memory location.
212 bool isVolatile() const { return getSubclassData<VolatileField>(); }
213
214 /// Specify whether this is a volatile load or not.
215 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
216
217 /// Return the alignment of the access that is being performed.
218 /// FIXME: Remove this function once transition to Align is over.
219 /// Use getAlign() instead.
220 unsigned getAlignment() const { return getAlign().value(); }
63
Calling 'LoadInst::getAlign'
70
Returning from 'LoadInst::getAlign'
71
Calling 'Align::value'
221
222 /// Return the alignment of the access that is being performed.
223 Align getAlign() const {
224 return Align(1ULL << (getSubclassData<AlignmentField>()));
64
Calling constructor for 'Align'
69
Returning from constructor for 'Align'
225 }
226
227 void setAlignment(Align Align) {
228 setSubclassData<AlignmentField>(Log2(Align));
229 }
230
231 /// Returns the ordering constraint of this load instruction.
232 AtomicOrdering getOrdering() const {
233 return getSubclassData<OrderingField>();
234 }
235 /// Sets the ordering constraint of this load instruction. May not be Release
236 /// or AcquireRelease.
237 void setOrdering(AtomicOrdering Ordering) {
238 setSubclassData<OrderingField>(Ordering);
239 }
240
241 /// Returns the synchronization scope ID of this load instruction.
242 SyncScope::ID getSyncScopeID() const {
243 return SSID;
244 }
245
246 /// Sets the synchronization scope ID of this load instruction.
247 void setSyncScopeID(SyncScope::ID SSID) {
248 this->SSID = SSID;
249 }
250
251 /// Sets the ordering constraint and the synchronization scope ID of this load
252 /// instruction.
253 void setAtomic(AtomicOrdering Ordering,
254 SyncScope::ID SSID = SyncScope::System) {
255 setOrdering(Ordering);
256 setSyncScopeID(SSID);
257 }
258
259 bool isSimple() const { return !isAtomic() && !isVolatile(); }
260
261 bool isUnordered() const {
262 return (getOrdering() == AtomicOrdering::NotAtomic ||
263 getOrdering() == AtomicOrdering::Unordered) &&
264 !isVolatile();
265 }
266
267 Value *getPointerOperand() { return getOperand(0); }
268 const Value *getPointerOperand() const { return getOperand(0); }
269 static unsigned getPointerOperandIndex() { return 0U; }
270 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
271
272 /// Returns the address space of the pointer operand.
273 unsigned getPointerAddressSpace() const {
274 return getPointerOperandType()->getPointerAddressSpace();
275 }
276
277 // Methods for support type inquiry through isa, cast, and dyn_cast:
278 static bool classof(const Instruction *I) {
279 return I->getOpcode() == Instruction::Load;
280 }
281 static bool classof(const Value *V) {
282 return isa<Instruction>(V) && classof(cast<Instruction>(V));
283 }
284
285private:
286 // Shadow Instruction::setInstructionSubclassData with a private forwarding
287 // method so that subclasses cannot accidentally use it.
288 template <typename Bitfield>
289 void setSubclassData(typename Bitfield::Type Value) {
290 Instruction::setSubclassData<Bitfield>(Value);
291 }
292
293 /// The synchronization scope ID of this load instruction. Not quite enough
294 /// room in SubClassData for everything, so synchronization scope ID gets its
295 /// own field.
296 SyncScope::ID SSID;
297};
298
299//===----------------------------------------------------------------------===//
300// StoreInst Class
301//===----------------------------------------------------------------------===//
302
303/// An instruction for storing to memory.
304class StoreInst : public Instruction {
305 using VolatileField = BoolBitfieldElementT<0>;
306 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
307 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
308 static_assert(
309 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
310 "Bitfields must be contiguous");
311
312 void AssertOK();
313
314protected:
315 // Note: Instruction needs to be a friend here to call cloneImpl.
316 friend class Instruction;
317
318 StoreInst *cloneImpl() const;
319
320public:
321 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
322 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
323 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
325 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
326 Instruction *InsertBefore = nullptr);
327 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
328 BasicBlock *InsertAtEnd);
329 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
330 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
331 Instruction *InsertBefore = nullptr);
332 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
333 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
334
335 // allocate space for exactly two operands
336 void *operator new(size_t S) { return User::operator new(S, 2); }
337 void operator delete(void *Ptr) { User::operator delete(Ptr); }
338
339 /// Return true if this is a store to a volatile memory location.
340 bool isVolatile() const { return getSubclassData<VolatileField>(); }
341
342 /// Specify whether this is a volatile store or not.
343 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344
345 /// Transparently provide more efficient getOperand methods.
346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
347
348 /// Return the alignment of the access that is being performed
349 /// FIXME: Remove this function once transition to Align is over.
350 /// Use getAlign() instead.
351 unsigned getAlignment() const { return getAlign().value(); }
352
353 Align getAlign() const {
354 return Align(1ULL << (getSubclassData<AlignmentField>()));
355 }
356
357 void setAlignment(Align Align) {
358 setSubclassData<AlignmentField>(Log2(Align));
359 }
360
361 /// Returns the ordering constraint of this store instruction.
362 AtomicOrdering getOrdering() const {
363 return getSubclassData<OrderingField>();
364 }
365
366 /// Sets the ordering constraint of this store instruction. May not be
367 /// Acquire or AcquireRelease.
368 void setOrdering(AtomicOrdering Ordering) {
369 setSubclassData<OrderingField>(Ordering);
370 }
371
372 /// Returns the synchronization scope ID of this store instruction.
373 SyncScope::ID getSyncScopeID() const {
374 return SSID;
375 }
376
377 /// Sets the synchronization scope ID of this store instruction.
378 void setSyncScopeID(SyncScope::ID SSID) {
379 this->SSID = SSID;
380 }
381
382 /// Sets the ordering constraint and the synchronization scope ID of this
383 /// store instruction.
384 void setAtomic(AtomicOrdering Ordering,
385 SyncScope::ID SSID = SyncScope::System) {
386 setOrdering(Ordering);
387 setSyncScopeID(SSID);
388 }
389
390 bool isSimple() const { return !isAtomic() && !isVolatile(); }
391
392 bool isUnordered() const {
393 return (getOrdering() == AtomicOrdering::NotAtomic ||
394 getOrdering() == AtomicOrdering::Unordered) &&
395 !isVolatile();
396 }
397
398 Value *getValueOperand() { return getOperand(0); }
399 const Value *getValueOperand() const { return getOperand(0); }
400
401 Value *getPointerOperand() { return getOperand(1); }
402 const Value *getPointerOperand() const { return getOperand(1); }
403 static unsigned getPointerOperandIndex() { return 1U; }
404 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405
406 /// Returns the address space of the pointer operand.
407 unsigned getPointerAddressSpace() const {
408 return getPointerOperandType()->getPointerAddressSpace();
409 }
410
411 // Methods for support type inquiry through isa, cast, and dyn_cast:
412 static bool classof(const Instruction *I) {
413 return I->getOpcode() == Instruction::Store;
414 }
415 static bool classof(const Value *V) {
416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
417 }
418
419private:
420 // Shadow Instruction::setInstructionSubclassData with a private forwarding
421 // method so that subclasses cannot accidentally use it.
422 template <typename Bitfield>
423 void setSubclassData(typename Bitfield::Type Value) {
424 Instruction::setSubclassData<Bitfield>(Value);
425 }
426
427 /// The synchronization scope ID of this store instruction. Not quite enough
428 /// room in SubClassData for everything, so synchronization scope ID gets its
429 /// own field.
430 SyncScope::ID SSID;
431};
432
433template <>
434struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435};
436
437DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<StoreInst>::op_begin(const_cast
<StoreInst*>(this))[i_nocapture].get()); } void StoreInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<StoreInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned StoreInst::getNumOperands() const
{ return OperandTraits<StoreInst>::operands(this); } template
<int Idx_nocapture> Use &StoreInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &StoreInst::Op() const { return this->OpFrom
<Idx_nocapture>(this); }
438
439//===----------------------------------------------------------------------===//
440// FenceInst Class
441//===----------------------------------------------------------------------===//
442
443/// An instruction for ordering other memory operations.
444class FenceInst : public Instruction {
445 using OrderingField = AtomicOrderingBitfieldElementT<0>;
446
447 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448
449protected:
450 // Note: Instruction needs to be a friend here to call cloneImpl.
451 friend class Instruction;
452
453 FenceInst *cloneImpl() const;
454
455public:
456 // Ordering may only be Acquire, Release, AcquireRelease, or
457 // SequentiallyConsistent.
458 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459 SyncScope::ID SSID = SyncScope::System,
460 Instruction *InsertBefore = nullptr);
461 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462 BasicBlock *InsertAtEnd);
463
464 // allocate space for exactly zero operands
465 void *operator new(size_t S) { return User::operator new(S, 0); }
466 void operator delete(void *Ptr) { User::operator delete(Ptr); }
467
468 /// Returns the ordering constraint of this fence instruction.
469 AtomicOrdering getOrdering() const {
470 return getSubclassData<OrderingField>();
471 }
472
473 /// Sets the ordering constraint of this fence instruction. May only be
474 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
475 void setOrdering(AtomicOrdering Ordering) {
476 setSubclassData<OrderingField>(Ordering);
477 }
478
479 /// Returns the synchronization scope ID of this fence instruction.
480 SyncScope::ID getSyncScopeID() const {
481 return SSID;
482 }
483
484 /// Sets the synchronization scope ID of this fence instruction.
485 void setSyncScopeID(SyncScope::ID SSID) {
486 this->SSID = SSID;
487 }
488
489 // Methods for support type inquiry through isa, cast, and dyn_cast:
490 static bool classof(const Instruction *I) {
491 return I->getOpcode() == Instruction::Fence;
492 }
493 static bool classof(const Value *V) {
494 return isa<Instruction>(V) && classof(cast<Instruction>(V));
495 }
496
497private:
498 // Shadow Instruction::setInstructionSubclassData with a private forwarding
499 // method so that subclasses cannot accidentally use it.
500 template <typename Bitfield>
501 void setSubclassData(typename Bitfield::Type Value) {
502 Instruction::setSubclassData<Bitfield>(Value);
503 }
504
505 /// The synchronization scope ID of this fence instruction. Not quite enough
506 /// room in SubClassData for everything, so synchronization scope ID gets its
507 /// own field.
508 SyncScope::ID SSID;
509};
510
511//===----------------------------------------------------------------------===//
512// AtomicCmpXchgInst Class
513//===----------------------------------------------------------------------===//
514
515/// An instruction that atomically checks whether a
516/// specified value is in a memory location, and, if it is, stores a new value
517/// there. The value returned by this instruction is a pair containing the
518/// original value as first element, and an i1 indicating success (true) or
519/// failure (false) as second element.
520///
521class AtomicCmpXchgInst : public Instruction {
522 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
523 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
524 SyncScope::ID SSID);
525
526 template <unsigned Offset>
527 using AtomicOrderingBitfieldElement =
528 typename Bitfield::Element<AtomicOrdering, Offset, 3,
529 AtomicOrdering::LAST>;
530
531protected:
532 // Note: Instruction needs to be a friend here to call cloneImpl.
533 friend class Instruction;
534
535 AtomicCmpXchgInst *cloneImpl() const;
536
537public:
538 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
539 AtomicOrdering SuccessOrdering,
540 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
541 Instruction *InsertBefore = nullptr);
542 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
543 AtomicOrdering SuccessOrdering,
544 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
545 BasicBlock *InsertAtEnd);
546
547 // allocate space for exactly three operands
548 void *operator new(size_t S) { return User::operator new(S, 3); }
549 void operator delete(void *Ptr) { User::operator delete(Ptr); }
550
551 using VolatileField = BoolBitfieldElementT<0>;
552 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
553 using SuccessOrderingField =
554 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
555 using FailureOrderingField =
556 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
557 using AlignmentField =
558 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
559 static_assert(
560 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
561 FailureOrderingField, AlignmentField>(),
562 "Bitfields must be contiguous");
563
564 /// Return the alignment of the memory that is being allocated by the
565 /// instruction.
566 Align getAlign() const {
567 return Align(1ULL << getSubclassData<AlignmentField>());
568 }
569
570 void setAlignment(Align Align) {
571 setSubclassData<AlignmentField>(Log2(Align));
572 }
573
574 /// Return true if this is a cmpxchg from a volatile memory
575 /// location.
576 ///
577 bool isVolatile() const { return getSubclassData<VolatileField>(); }
578
579 /// Specify whether this is a volatile cmpxchg.
580 ///
581 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
582
583 /// Return true if this cmpxchg may spuriously fail.
584 bool isWeak() const { return getSubclassData<WeakField>(); }
585
586 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
587
588 /// Transparently provide more efficient getOperand methods.
589 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
590
591 static bool isValidSuccessOrdering(AtomicOrdering Ordering) {
592 return Ordering != AtomicOrdering::NotAtomic &&
593 Ordering != AtomicOrdering::Unordered;
594 }
595
596 static bool isValidFailureOrdering(AtomicOrdering Ordering) {
597 return Ordering != AtomicOrdering::NotAtomic &&
598 Ordering != AtomicOrdering::Unordered &&
599 Ordering != AtomicOrdering::AcquireRelease &&
600 Ordering != AtomicOrdering::Release;
601 }
602
603 /// Returns the success ordering constraint of this cmpxchg instruction.
604 AtomicOrdering getSuccessOrdering() const {
605 return getSubclassData<SuccessOrderingField>();
606 }
607
608 /// Sets the success ordering constraint of this cmpxchg instruction.
609 void setSuccessOrdering(AtomicOrdering Ordering) {
610 assert(isValidSuccessOrdering(Ordering) &&((void)0)
611 "invalid CmpXchg success ordering")((void)0);
612 setSubclassData<SuccessOrderingField>(Ordering);
613 }
614
615 /// Returns the failure ordering constraint of this cmpxchg instruction.
616 AtomicOrdering getFailureOrdering() const {
617 return getSubclassData<FailureOrderingField>();
618 }
619
620 /// Sets the failure ordering constraint of this cmpxchg instruction.
621 void setFailureOrdering(AtomicOrdering Ordering) {
622 assert(isValidFailureOrdering(Ordering) &&((void)0)
623 "invalid CmpXchg failure ordering")((void)0);
624 setSubclassData<FailureOrderingField>(Ordering);
625 }
626
627 /// Returns a single ordering which is at least as strong as both the
628 /// success and failure orderings for this cmpxchg.
629 AtomicOrdering getMergedOrdering() const {
630 if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent)
631 return AtomicOrdering::SequentiallyConsistent;
632 if (getFailureOrdering() == AtomicOrdering::Acquire) {
633 if (getSuccessOrdering() == AtomicOrdering::Monotonic)
634 return AtomicOrdering::Acquire;
635 if (getSuccessOrdering() == AtomicOrdering::Release)
636 return AtomicOrdering::AcquireRelease;
637 }
638 return getSuccessOrdering();
639 }
640
641 /// Returns the synchronization scope ID of this cmpxchg instruction.
642 SyncScope::ID getSyncScopeID() const {
643 return SSID;
644 }
645
646 /// Sets the synchronization scope ID of this cmpxchg instruction.
647 void setSyncScopeID(SyncScope::ID SSID) {
648 this->SSID = SSID;
649 }
650
651 Value *getPointerOperand() { return getOperand(0); }
652 const Value *getPointerOperand() const { return getOperand(0); }
653 static unsigned getPointerOperandIndex() { return 0U; }
654
655 Value *getCompareOperand() { return getOperand(1); }
656 const Value *getCompareOperand() const { return getOperand(1); }
657
658 Value *getNewValOperand() { return getOperand(2); }
659 const Value *getNewValOperand() const { return getOperand(2); }
660
661 /// Returns the address space of the pointer operand.
662 unsigned getPointerAddressSpace() const {
663 return getPointerOperand()->getType()->getPointerAddressSpace();
664 }
665
666 /// Returns the strongest permitted ordering on failure, given the
667 /// desired ordering on success.
668 ///
669 /// If the comparison in a cmpxchg operation fails, there is no atomic store
670 /// so release semantics cannot be provided. So this function drops explicit
671 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
672 /// operation would remain SequentiallyConsistent.
673 static AtomicOrdering
674 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
675 switch (SuccessOrdering) {
676 default:
677 llvm_unreachable("invalid cmpxchg success ordering")__builtin_unreachable();
678 case AtomicOrdering::Release:
679 case AtomicOrdering::Monotonic:
680 return AtomicOrdering::Monotonic;
681 case AtomicOrdering::AcquireRelease:
682 case AtomicOrdering::Acquire:
683 return AtomicOrdering::Acquire;
684 case AtomicOrdering::SequentiallyConsistent:
685 return AtomicOrdering::SequentiallyConsistent;
686 }
687 }
688
689 // Methods for support type inquiry through isa, cast, and dyn_cast:
690 static bool classof(const Instruction *I) {
691 return I->getOpcode() == Instruction::AtomicCmpXchg;
692 }
693 static bool classof(const Value *V) {
694 return isa<Instruction>(V) && classof(cast<Instruction>(V));
695 }
696
697private:
698 // Shadow Instruction::setInstructionSubclassData with a private forwarding
699 // method so that subclasses cannot accidentally use it.
700 template <typename Bitfield>
701 void setSubclassData(typename Bitfield::Type Value) {
702 Instruction::setSubclassData<Bitfield>(Value);
703 }
704
705 /// The synchronization scope ID of this cmpxchg instruction. Not quite
706 /// enough room in SubClassData for everything, so synchronization scope ID
707 /// gets its own field.
708 SyncScope::ID SSID;
709};
710
711template <>
712struct OperandTraits<AtomicCmpXchgInst> :
713 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
714};
715
716DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast
<AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void
AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<AtomicCmpXchgInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned AtomicCmpXchgInst
::getNumOperands() const { return OperandTraits<AtomicCmpXchgInst
>::operands(this); } template <int Idx_nocapture> Use
&AtomicCmpXchgInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
AtomicCmpXchgInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
717
718//===----------------------------------------------------------------------===//
719// AtomicRMWInst Class
720//===----------------------------------------------------------------------===//
721
722/// an instruction that atomically reads a memory location,
723/// combines it with another value, and then stores the result back. Returns
724/// the old value.
725///
726class AtomicRMWInst : public Instruction {
727protected:
728 // Note: Instruction needs to be a friend here to call cloneImpl.
729 friend class Instruction;
730
731 AtomicRMWInst *cloneImpl() const;
732
733public:
734 /// This enumeration lists the possible modifications atomicrmw can make. In
735 /// the descriptions, 'p' is the pointer to the instruction's memory location,
736 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
737 /// instruction. These instructions always return 'old'.
738 enum BinOp : unsigned {
739 /// *p = v
740 Xchg,
741 /// *p = old + v
742 Add,
743 /// *p = old - v
744 Sub,
745 /// *p = old & v
746 And,
747 /// *p = ~(old & v)
748 Nand,
749 /// *p = old | v
750 Or,
751 /// *p = old ^ v
752 Xor,
753 /// *p = old >signed v ? old : v
754 Max,
755 /// *p = old <signed v ? old : v
756 Min,
757 /// *p = old >unsigned v ? old : v
758 UMax,
759 /// *p = old <unsigned v ? old : v
760 UMin,
761
762 /// *p = old + v
763 FAdd,
764
765 /// *p = old - v
766 FSub,
767
768 FIRST_BINOP = Xchg,
769 LAST_BINOP = FSub,
770 BAD_BINOP
771 };
772
773private:
774 template <unsigned Offset>
775 using AtomicOrderingBitfieldElement =
776 typename Bitfield::Element<AtomicOrdering, Offset, 3,
777 AtomicOrdering::LAST>;
778
779 template <unsigned Offset>
780 using BinOpBitfieldElement =
781 typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
782
783public:
784 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
785 AtomicOrdering Ordering, SyncScope::ID SSID,
786 Instruction *InsertBefore = nullptr);
787 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
788 AtomicOrdering Ordering, SyncScope::ID SSID,
789 BasicBlock *InsertAtEnd);
790
791 // allocate space for exactly two operands
792 void *operator new(size_t S) { return User::operator new(S, 2); }
793 void operator delete(void *Ptr) { User::operator delete(Ptr); }
794
795 using VolatileField = BoolBitfieldElementT<0>;
796 using AtomicOrderingField =
797 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
798 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
799 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
800 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
801 OperationField, AlignmentField>(),
802 "Bitfields must be contiguous");
803
804 BinOp getOperation() const { return getSubclassData<OperationField>(); }
805
806 static StringRef getOperationName(BinOp Op);
807
808 static bool isFPOperation(BinOp Op) {
809 switch (Op) {
810 case AtomicRMWInst::FAdd:
811 case AtomicRMWInst::FSub:
812 return true;
813 default:
814 return false;
815 }
816 }
817
818 void setOperation(BinOp Operation) {
819 setSubclassData<OperationField>(Operation);
820 }
821
822 /// Return the alignment of the memory that is being allocated by the
823 /// instruction.
824 Align getAlign() const {
825 return Align(1ULL << getSubclassData<AlignmentField>());
826 }
827
828 void setAlignment(Align Align) {
829 setSubclassData<AlignmentField>(Log2(Align));
830 }
831
832 /// Return true if this is a RMW on a volatile memory location.
833 ///
834 bool isVolatile() const { return getSubclassData<VolatileField>(); }
835
836 /// Specify whether this is a volatile RMW or not.
837 ///
838 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
839
840 /// Transparently provide more efficient getOperand methods.
841 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
842
843 /// Returns the ordering constraint of this rmw instruction.
844 AtomicOrdering getOrdering() const {
845 return getSubclassData<AtomicOrderingField>();
846 }
847
848 /// Sets the ordering constraint of this rmw instruction.
849 void setOrdering(AtomicOrdering Ordering) {
850 assert(Ordering != AtomicOrdering::NotAtomic &&((void)0)
851 "atomicrmw instructions can only be atomic.")((void)0);
852 setSubclassData<AtomicOrderingField>(Ordering);
853 }
854
855 /// Returns the synchronization scope ID of this rmw instruction.
856 SyncScope::ID getSyncScopeID() const {
857 return SSID;
858 }
859
860 /// Sets the synchronization scope ID of this rmw instruction.
861 void setSyncScopeID(SyncScope::ID SSID) {
862 this->SSID = SSID;
863 }
864
865 Value *getPointerOperand() { return getOperand(0); }
866 const Value *getPointerOperand() const { return getOperand(0); }
867 static unsigned getPointerOperandIndex() { return 0U; }
868
869 Value *getValOperand() { return getOperand(1); }
870 const Value *getValOperand() const { return getOperand(1); }
871
872 /// Returns the address space of the pointer operand.
873 unsigned getPointerAddressSpace() const {
874 return getPointerOperand()->getType()->getPointerAddressSpace();
875 }
876
877 bool isFloatingPointOperation() const {
878 return isFPOperation(getOperation());
879 }
880
881 // Methods for support type inquiry through isa, cast, and dyn_cast:
882 static bool classof(const Instruction *I) {
883 return I->getOpcode() == Instruction::AtomicRMW;
884 }
885 static bool classof(const Value *V) {
886 return isa<Instruction>(V) && classof(cast<Instruction>(V));
887 }
888
889private:
890 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
891 AtomicOrdering Ordering, SyncScope::ID SSID);
892
893 // Shadow Instruction::setInstructionSubclassData with a private forwarding
894 // method so that subclasses cannot accidentally use it.
895 template <typename Bitfield>
896 void setSubclassData(typename Bitfield::Type Value) {
897 Instruction::setSubclassData<Bitfield>(Value);
898 }
899
900 /// The synchronization scope ID of this rmw instruction. Not quite enough
901 /// room in SubClassData for everything, so synchronization scope ID gets its
902 /// own field.
903 SyncScope::ID SSID;
904};
905
906template <>
907struct OperandTraits<AtomicRMWInst>
908 : public FixedNumOperandTraits<AtomicRMWInst,2> {
909};
910
911DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast
<AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<AtomicRMWInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned AtomicRMWInst::getNumOperands()
const { return OperandTraits<AtomicRMWInst>::operands(
this); } template <int Idx_nocapture> Use &AtomicRMWInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &AtomicRMWInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
912
913//===----------------------------------------------------------------------===//
914// GetElementPtrInst Class
915//===----------------------------------------------------------------------===//
916
917// checkGEPType - Simple wrapper function to give a better assertion failure
918// message on bad indexes for a gep instruction.
919//
920inline Type *checkGEPType(Type *Ty) {
921 assert(Ty && "Invalid GetElementPtrInst indices for type!")((void)0);
922 return Ty;
923}
924
925/// an instruction for type-safe pointer arithmetic to
926/// access elements of arrays and structs
927///
928class GetElementPtrInst : public Instruction {
929 Type *SourceElementType;
930 Type *ResultElementType;
931
932 GetElementPtrInst(const GetElementPtrInst &GEPI);
933
934 /// Constructors - Create a getelementptr instruction with a base pointer an
935 /// list of indices. The first ctor can optionally insert before an existing
936 /// instruction, the second appends the new instruction to the specified
937 /// BasicBlock.
938 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
939 ArrayRef<Value *> IdxList, unsigned Values,
940 const Twine &NameStr, Instruction *InsertBefore);
941 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
942 ArrayRef<Value *> IdxList, unsigned Values,
943 const Twine &NameStr, BasicBlock *InsertAtEnd);
944
945 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
946
947protected:
948 // Note: Instruction needs to be a friend here to call cloneImpl.
949 friend class Instruction;
950
951 GetElementPtrInst *cloneImpl() const;
952
953public:
954 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
955 ArrayRef<Value *> IdxList,
956 const Twine &NameStr = "",
957 Instruction *InsertBefore = nullptr) {
958 unsigned Values = 1 + unsigned(IdxList.size());
959 assert(PointeeType && "Must specify element type")((void)0);
960 assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0)
961 ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0);
962 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
963 NameStr, InsertBefore);
964 }
965
966 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
967 ArrayRef<Value *> IdxList,
968 const Twine &NameStr,
969 BasicBlock *InsertAtEnd) {
970 unsigned Values = 1 + unsigned(IdxList.size());
971 assert(PointeeType && "Must specify element type")((void)0);
972 assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0)
973 ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0);
974 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
975 NameStr, InsertAtEnd);
976 }
977
978 LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
979 Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
980 Instruction *InsertBefore = nullptr),[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
981 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
{
982 return CreateInBounds(
983 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
984 NameStr, InsertBefore);
985 }
986
987 /// Create an "inbounds" getelementptr. See the documentation for the
988 /// "inbounds" flag in LangRef.html for details.
989 static GetElementPtrInst *
990 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
991 const Twine &NameStr = "",
992 Instruction *InsertBefore = nullptr) {
993 GetElementPtrInst *GEP =
994 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
995 GEP->setIsInBounds(true);
996 return GEP;
997 }
998
999 LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1000 Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1001 BasicBlock *InsertAtEnd),[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1002 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
{
1003 return CreateInBounds(
1004 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
1005 NameStr, InsertAtEnd);
1006 }
1007
1008 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
1009 ArrayRef<Value *> IdxList,
1010 const Twine &NameStr,
1011 BasicBlock *InsertAtEnd) {
1012 GetElementPtrInst *GEP =
1013 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
1014 GEP->setIsInBounds(true);
1015 return GEP;
1016 }
1017
1018 /// Transparently provide more efficient getOperand methods.
1019 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1020
1021 Type *getSourceElementType() const { return SourceElementType; }
1022
1023 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1024 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1025
1026 Type *getResultElementType() const {
1027 assert(cast<PointerType>(getType()->getScalarType())((void)0)
1028 ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0);
1029 return ResultElementType;
1030 }
1031
1032 /// Returns the address space of this instruction's pointer type.
1033 unsigned getAddressSpace() const {
1034 // Note that this is always the same as the pointer operand's address space
1035 // and that is cheaper to compute, so cheat here.
1036 return getPointerAddressSpace();
1037 }
1038
1039 /// Returns the result type of a getelementptr with the given source
1040 /// element type and indexes.
1041 ///
1042 /// Null is returned if the indices are invalid for the specified
1043 /// source element type.
1044 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1045 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1046 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1047
1048 /// Return the type of the element at the given index of an indexable
1049 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1050 ///
1051 /// Returns null if the type can't be indexed, or the given index is not
1052 /// legal for the given type.
1053 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1054 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1055
1056 inline op_iterator idx_begin() { return op_begin()+1; }
1057 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1058 inline op_iterator idx_end() { return op_end(); }
1059 inline const_op_iterator idx_end() const { return op_end(); }
1060
1061 inline iterator_range<op_iterator> indices() {
1062 return make_range(idx_begin(), idx_end());
1063 }
1064
1065 inline iterator_range<const_op_iterator> indices() const {
1066 return make_range(idx_begin(), idx_end());
1067 }
1068
1069 Value *getPointerOperand() {
1070 return getOperand(0);
1071 }
1072 const Value *getPointerOperand() const {
1073 return getOperand(0);
1074 }
1075 static unsigned getPointerOperandIndex() {
1076 return 0U; // get index for modifying correct operand.
1077 }
1078
1079 /// Method to return the pointer operand as a
1080 /// PointerType.
1081 Type *getPointerOperandType() const {
1082 return getPointerOperand()->getType();
1083 }
1084
1085 /// Returns the address space of the pointer operand.
1086 unsigned getPointerAddressSpace() const {
1087 return getPointerOperandType()->getPointerAddressSpace();
1088 }
1089
1090 /// Returns the pointer type returned by the GEP
1091 /// instruction, which may be a vector of pointers.
1092 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1093 ArrayRef<Value *> IdxList) {
1094 PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1095 unsigned AddrSpace = OrigPtrTy->getAddressSpace();
1096 Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList));
1097 Type *PtrTy = OrigPtrTy->isOpaque()
1098 ? PointerType::get(OrigPtrTy->getContext(), AddrSpace)
1099 : PointerType::get(ResultElemTy, AddrSpace);
1100 // Vector GEP
1101 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1102 ElementCount EltCount = PtrVTy->getElementCount();
1103 return VectorType::get(PtrTy, EltCount);
1104 }
1105 for (Value *Index : IdxList)
1106 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1107 ElementCount EltCount = IndexVTy->getElementCount();
1108 return VectorType::get(PtrTy, EltCount);
1109 }
1110 // Scalar GEP
1111 return PtrTy;
1112 }
1113
1114 unsigned getNumIndices() const { // Note: always non-negative
1115 return getNumOperands() - 1;
1116 }
1117
1118 bool hasIndices() const {
1119 return getNumOperands() > 1;
1120 }
1121
1122 /// Return true if all of the indices of this GEP are
1123 /// zeros. If so, the result pointer and the first operand have the same
1124 /// value, just potentially different types.
1125 bool hasAllZeroIndices() const;
1126
1127 /// Return true if all of the indices of this GEP are
1128 /// constant integers. If so, the result pointer and the first operand have
1129 /// a constant offset between them.
1130 bool hasAllConstantIndices() const;
1131
1132 /// Set or clear the inbounds flag on this GEP instruction.
1133 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1134 void setIsInBounds(bool b = true);
1135
1136 /// Determine whether the GEP has the inbounds flag.
1137 bool isInBounds() const;
1138
1139 /// Accumulate the constant address offset of this GEP if possible.
1140 ///
1141 /// This routine accepts an APInt into which it will accumulate the constant
1142 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1143 /// all-constant, it returns false and the value of the offset APInt is
1144 /// undefined (it is *not* preserved!). The APInt passed into this routine
1145 /// must be at least as wide as the IntPtr type for the address space of
1146 /// the base GEP pointer.
1147 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1148 bool collectOffset(const DataLayout &DL, unsigned BitWidth,
1149 MapVector<Value *, APInt> &VariableOffsets,
1150 APInt &ConstantOffset) const;
1151 // Methods for support type inquiry through isa, cast, and dyn_cast:
1152 static bool classof(const Instruction *I) {
1153 return (I->getOpcode() == Instruction::GetElementPtr);
1154 }
1155 static bool classof(const Value *V) {
1156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1157 }
1158};
1159
1160template <>
1161struct OperandTraits<GetElementPtrInst> :
1162 public VariadicOperandTraits<GetElementPtrInst, 1> {
1163};
1164
1165GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1166 ArrayRef<Value *> IdxList, unsigned Values,
1167 const Twine &NameStr,
1168 Instruction *InsertBefore)
1169 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1170 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1171 Values, InsertBefore),
1172 SourceElementType(PointeeType),
1173 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1174 assert(cast<PointerType>(getType()->getScalarType())((void)0)
1175 ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0);
1176 init(Ptr, IdxList, NameStr);
1177}
1178
1179GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1180 ArrayRef<Value *> IdxList, unsigned Values,
1181 const Twine &NameStr,
1182 BasicBlock *InsertAtEnd)
1183 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1184 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1185 Values, InsertAtEnd),
1186 SourceElementType(PointeeType),
1187 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1188 assert(cast<PointerType>(getType()->getScalarType())((void)0)
1189 ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0);
1190 init(Ptr, IdxList, NameStr);
1191}
1192
1193DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<GetElementPtrInst>::op_begin(const_cast
<GetElementPtrInst*>(this))[i_nocapture].get()); } void
GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<GetElementPtrInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned GetElementPtrInst
::getNumOperands() const { return OperandTraits<GetElementPtrInst
>::operands(this); } template <int Idx_nocapture> Use
&GetElementPtrInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
GetElementPtrInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1194
1195//===----------------------------------------------------------------------===//
1196// ICmpInst Class
1197//===----------------------------------------------------------------------===//
1198
1199/// This instruction compares its operands according to the predicate given
1200/// to the constructor. It only operates on integers or pointers. The operands
1201/// must be identical types.
1202/// Represent an integer comparison operator.
1203class ICmpInst: public CmpInst {
1204 void AssertOK() {
1205 assert(isIntPredicate() &&((void)0)
1206 "Invalid ICmp predicate value")((void)0);
1207 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0)
1208 "Both operands to ICmp instruction are not of the same type!")((void)0);
1209 // Check that the operands are the right type
1210 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||((void)0)
1211 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&((void)0)
1212 "Invalid operand types for ICmp instruction")((void)0);
1213 }
1214
1215protected:
1216 // Note: Instruction needs to be a friend here to call cloneImpl.
1217 friend class Instruction;
1218
1219 /// Clone an identical ICmpInst
1220 ICmpInst *cloneImpl() const;
1221
1222public:
1223 /// Constructor with insert-before-instruction semantics.
1224 ICmpInst(
1225 Instruction *InsertBefore, ///< Where to insert
1226 Predicate pred, ///< The predicate to use for the comparison
1227 Value *LHS, ///< The left-hand-side of the expression
1228 Value *RHS, ///< The right-hand-side of the expression
1229 const Twine &NameStr = "" ///< Name of the instruction
1230 ) : CmpInst(makeCmpResultType(LHS->getType()),
1231 Instruction::ICmp, pred, LHS, RHS, NameStr,
1232 InsertBefore) {
1233#ifndef NDEBUG1
1234 AssertOK();
1235#endif
1236 }
1237
1238 /// Constructor with insert-at-end semantics.
1239 ICmpInst(
1240 BasicBlock &InsertAtEnd, ///< Block to insert into.
1241 Predicate pred, ///< The predicate to use for the comparison
1242 Value *LHS, ///< The left-hand-side of the expression
1243 Value *RHS, ///< The right-hand-side of the expression
1244 const Twine &NameStr = "" ///< Name of the instruction
1245 ) : CmpInst(makeCmpResultType(LHS->getType()),
1246 Instruction::ICmp, pred, LHS, RHS, NameStr,
1247 &InsertAtEnd) {
1248#ifndef NDEBUG1
1249 AssertOK();
1250#endif
1251 }
1252
1253 /// Constructor with no-insertion semantics
1254 ICmpInst(
1255 Predicate pred, ///< The predicate to use for the comparison
1256 Value *LHS, ///< The left-hand-side of the expression
1257 Value *RHS, ///< The right-hand-side of the expression
1258 const Twine &NameStr = "" ///< Name of the instruction
1259 ) : CmpInst(makeCmpResultType(LHS->getType()),
1260 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1261#ifndef NDEBUG1
1262 AssertOK();
1263#endif
1264 }
1265
1266 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1267 /// @returns the predicate that would be the result if the operand were
1268 /// regarded as signed.
1269 /// Return the signed version of the predicate
1270 Predicate getSignedPredicate() const {
1271 return getSignedPredicate(getPredicate());
1272 }
1273
1274 /// This is a static version that you can use without an instruction.
1275 /// Return the signed version of the predicate.
1276 static Predicate getSignedPredicate(Predicate pred);
1277
1278 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1279 /// @returns the predicate that would be the result if the operand were
1280 /// regarded as unsigned.
1281 /// Return the unsigned version of the predicate
1282 Predicate getUnsignedPredicate() const {
1283 return getUnsignedPredicate(getPredicate());
1284 }
1285
1286 /// This is a static version that you can use without an instruction.
1287 /// Return the unsigned version of the predicate.
1288 static Predicate getUnsignedPredicate(Predicate pred);
1289
1290 /// Return true if this predicate is either EQ or NE. This also
1291 /// tests for commutativity.
1292 static bool isEquality(Predicate P) {
1293 return P == ICMP_EQ || P == ICMP_NE;
1294 }
1295
1296 /// Return true if this predicate is either EQ or NE. This also
1297 /// tests for commutativity.
1298 bool isEquality() const {
1299 return isEquality(getPredicate());
1300 }
1301
1302 /// @returns true if the predicate of this ICmpInst is commutative
1303 /// Determine if this relation is commutative.
1304 bool isCommutative() const { return isEquality(); }
1305
1306 /// Return true if the predicate is relational (not EQ or NE).
1307 ///
1308 bool isRelational() const {
1309 return !isEquality();
1310 }
1311
1312 /// Return true if the predicate is relational (not EQ or NE).
1313 ///
1314 static bool isRelational(Predicate P) {
1315 return !isEquality(P);
1316 }
1317
1318 /// Return true if the predicate is SGT or UGT.
1319 ///
1320 static bool isGT(Predicate P) {
1321 return P == ICMP_SGT || P == ICMP_UGT;
1322 }
1323
1324 /// Return true if the predicate is SLT or ULT.
1325 ///
1326 static bool isLT(Predicate P) {
1327 return P == ICMP_SLT || P == ICMP_ULT;
1328 }
1329
1330 /// Return true if the predicate is SGE or UGE.
1331 ///
1332 static bool isGE(Predicate P) {
1333 return P == ICMP_SGE || P == ICMP_UGE;
1334 }
1335
1336 /// Return true if the predicate is SLE or ULE.
1337 ///
1338 static bool isLE(Predicate P) {
1339 return P == ICMP_SLE || P == ICMP_ULE;
1340 }
1341
1342 /// Exchange the two operands to this instruction in such a way that it does
1343 /// not modify the semantics of the instruction. The predicate value may be
1344 /// changed to retain the same result if the predicate is order dependent
1345 /// (e.g. ult).
1346 /// Swap operands and adjust predicate.
1347 void swapOperands() {
1348 setPredicate(getSwappedPredicate());
1349 Op<0>().swap(Op<1>());
1350 }
1351
1352 // Methods for support type inquiry through isa, cast, and dyn_cast:
1353 static bool classof(const Instruction *I) {
1354 return I->getOpcode() == Instruction::ICmp;
1355 }
1356 static bool classof(const Value *V) {
1357 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1358 }
1359};
1360
1361//===----------------------------------------------------------------------===//
1362// FCmpInst Class
1363//===----------------------------------------------------------------------===//
1364
1365/// This instruction compares its operands according to the predicate given
1366/// to the constructor. It only operates on floating point values or packed
1367/// vectors of floating point values. The operands must be identical types.
1368/// Represents a floating point comparison operator.
1369class FCmpInst: public CmpInst {
1370 void AssertOK() {
1371 assert(isFPPredicate() && "Invalid FCmp predicate value")((void)0);
1372 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0)
1373 "Both operands to FCmp instruction are not of the same type!")((void)0);
1374 // Check that the operands are the right type
1375 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((void)0)
1376 "Invalid operand types for FCmp instruction")((void)0);
1377 }
1378
1379protected:
1380 // Note: Instruction needs to be a friend here to call cloneImpl.
1381 friend class Instruction;
1382
1383 /// Clone an identical FCmpInst
1384 FCmpInst *cloneImpl() const;
1385
1386public:
1387 /// Constructor with insert-before-instruction semantics.
1388 FCmpInst(
1389 Instruction *InsertBefore, ///< Where to insert
1390 Predicate pred, ///< The predicate to use for the comparison
1391 Value *LHS, ///< The left-hand-side of the expression
1392 Value *RHS, ///< The right-hand-side of the expression
1393 const Twine &NameStr = "" ///< Name of the instruction
1394 ) : CmpInst(makeCmpResultType(LHS->getType()),
1395 Instruction::FCmp, pred, LHS, RHS, NameStr,
1396 InsertBefore) {
1397 AssertOK();
1398 }
1399
1400 /// Constructor with insert-at-end semantics.
1401 FCmpInst(
1402 BasicBlock &InsertAtEnd, ///< Block to insert into.
1403 Predicate pred, ///< The predicate to use for the comparison
1404 Value *LHS, ///< The left-hand-side of the expression
1405 Value *RHS, ///< The right-hand-side of the expression
1406 const Twine &NameStr = "" ///< Name of the instruction
1407 ) : CmpInst(makeCmpResultType(LHS->getType()),
1408 Instruction::FCmp, pred, LHS, RHS, NameStr,
1409 &InsertAtEnd) {
1410 AssertOK();
1411 }
1412
1413 /// Constructor with no-insertion semantics
1414 FCmpInst(
1415 Predicate Pred, ///< The predicate to use for the comparison
1416 Value *LHS, ///< The left-hand-side of the expression
1417 Value *RHS, ///< The right-hand-side of the expression
1418 const Twine &NameStr = "", ///< Name of the instruction
1419 Instruction *FlagsSource = nullptr
1420 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1421 RHS, NameStr, nullptr, FlagsSource) {
1422 AssertOK();
1423 }
1424
1425 /// @returns true if the predicate of this instruction is EQ or NE.
1426 /// Determine if this is an equality predicate.
1427 static bool isEquality(Predicate Pred) {
1428 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1429 Pred == FCMP_UNE;
1430 }
1431
1432 /// @returns true if the predicate of this instruction is EQ or NE.
1433 /// Determine if this is an equality predicate.
1434 bool isEquality() const { return isEquality(getPredicate()); }
1435
1436 /// @returns true if the predicate of this instruction is commutative.
1437 /// Determine if this is a commutative predicate.
1438 bool isCommutative() const {
1439 return isEquality() ||
1440 getPredicate() == FCMP_FALSE ||
1441 getPredicate() == FCMP_TRUE ||
1442 getPredicate() == FCMP_ORD ||
1443 getPredicate() == FCMP_UNO;
1444 }
1445
1446 /// @returns true if the predicate is relational (not EQ or NE).
1447 /// Determine if this a relational predicate.
1448 bool isRelational() const { return !isEquality(); }
1449
1450 /// Exchange the two operands to this instruction in such a way that it does
1451 /// not modify the semantics of the instruction. The predicate value may be
1452 /// changed to retain the same result if the predicate is order dependent
1453 /// (e.g. ult).
1454 /// Swap operands and adjust predicate.
1455 void swapOperands() {
1456 setPredicate(getSwappedPredicate());
1457 Op<0>().swap(Op<1>());
1458 }
1459
1460 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1461 static bool classof(const Instruction *I) {
1462 return I->getOpcode() == Instruction::FCmp;
1463 }
1464 static bool classof(const Value *V) {
1465 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1466 }
1467};
1468
1469//===----------------------------------------------------------------------===//
1470/// This class represents a function call, abstracting a target
1471/// machine's calling convention. This class uses low bit of the SubClassData
1472/// field to indicate whether or not this is a tail call. The rest of the bits
1473/// hold the calling convention of the call.
1474///
1475class CallInst : public CallBase {
1476 CallInst(const CallInst &CI);
1477
1478 /// Construct a CallInst given a range of arguments.
1479 /// Construct a CallInst from a range of arguments
1480 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1481 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1482 Instruction *InsertBefore);
1483
1484 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1485 const Twine &NameStr, Instruction *InsertBefore)
1486 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1487
1488 /// Construct a CallInst given a range of arguments.
1489 /// Construct a CallInst from a range of arguments
1490 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1491 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1492 BasicBlock *InsertAtEnd);
1493
1494 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1495 Instruction *InsertBefore);
1496
1497 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1498 BasicBlock *InsertAtEnd);
1499
1500 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1501 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1502 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1503
1504 /// Compute the number of operands to allocate.
1505 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1506 // We need one operand for the called function, plus the input operand
1507 // counts provided.
1508 return 1 + NumArgs + NumBundleInputs;
1509 }
1510
1511protected:
1512 // Note: Instruction needs to be a friend here to call cloneImpl.
1513 friend class Instruction;
1514
1515 CallInst *cloneImpl() const;
1516
1517public:
1518 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1519 Instruction *InsertBefore = nullptr) {
1520 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1521 }
1522
1523 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1524 const Twine &NameStr,
1525 Instruction *InsertBefore = nullptr) {
1526 return new (ComputeNumOperands(Args.size()))
1527 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1528 }
1529
1530 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1531 ArrayRef<OperandBundleDef> Bundles = None,
1532 const Twine &NameStr = "",
1533 Instruction *InsertBefore = nullptr) {
1534 const int NumOperands =
1535 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1536 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1537
1538 return new (NumOperands, DescriptorBytes)
1539 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1540 }
1541
1542 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1543 BasicBlock *InsertAtEnd) {
1544 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1545 }
1546
1547 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1548 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1549 return new (ComputeNumOperands(Args.size()))
1550 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1551 }
1552
1553 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1554 ArrayRef<OperandBundleDef> Bundles,
1555 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1556 const int NumOperands =
1557 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1558 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1559
1560 return new (NumOperands, DescriptorBytes)
1561 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1562 }
1563
1564 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1565 Instruction *InsertBefore = nullptr) {
1566 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1567 InsertBefore);
1568 }
1569
1570 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1571 ArrayRef<OperandBundleDef> Bundles = None,
1572 const Twine &NameStr = "",
1573 Instruction *InsertBefore = nullptr) {
1574 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1575 NameStr, InsertBefore);
1576 }
1577
1578 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1579 const Twine &NameStr,
1580 Instruction *InsertBefore = nullptr) {
1581 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1582 InsertBefore);
1583 }
1584
1585 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1586 BasicBlock *InsertAtEnd) {
1587 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1588 InsertAtEnd);
1589 }
1590
1591 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1592 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1593 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1594 InsertAtEnd);
1595 }
1596
1597 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1598 ArrayRef<OperandBundleDef> Bundles,
1599 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1600 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1601 NameStr, InsertAtEnd);
1602 }
1603
1604 /// Create a clone of \p CI with a different set of operand bundles and
1605 /// insert it before \p InsertPt.
1606 ///
1607 /// The returned call instruction is identical \p CI in every way except that
1608 /// the operand bundles for the new instruction are set to the operand bundles
1609 /// in \p Bundles.
1610 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1611 Instruction *InsertPt = nullptr);
1612
1613 /// Generate the IR for a call to malloc:
1614 /// 1. Compute the malloc call's argument as the specified type's size,
1615 /// possibly multiplied by the array size if the array size is not
1616 /// constant 1.
1617 /// 2. Call malloc with that argument.
1618 /// 3. Bitcast the result of the malloc call to the specified type.
1619 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1620 Type *AllocTy, Value *AllocSize,
1621 Value *ArraySize = nullptr,
1622 Function *MallocF = nullptr,
1623 const Twine &Name = "");
1624 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1625 Type *AllocTy, Value *AllocSize,
1626 Value *ArraySize = nullptr,
1627 Function *MallocF = nullptr,
1628 const Twine &Name = "");
1629 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1630 Type *AllocTy, Value *AllocSize,
1631 Value *ArraySize = nullptr,
1632 ArrayRef<OperandBundleDef> Bundles = None,
1633 Function *MallocF = nullptr,
1634 const Twine &Name = "");
1635 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1636 Type *AllocTy, Value *AllocSize,
1637 Value *ArraySize = nullptr,
1638 ArrayRef<OperandBundleDef> Bundles = None,
1639 Function *MallocF = nullptr,
1640 const Twine &Name = "");
1641 /// Generate the IR for a call to the builtin free function.
1642 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1643 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1644 static Instruction *CreateFree(Value *Source,
1645 ArrayRef<OperandBundleDef> Bundles,
1646 Instruction *InsertBefore);
1647 static Instruction *CreateFree(Value *Source,
1648 ArrayRef<OperandBundleDef> Bundles,
1649 BasicBlock *InsertAtEnd);
1650
1651 // Note that 'musttail' implies 'tail'.
1652 enum TailCallKind : unsigned {
1653 TCK_None = 0,
1654 TCK_Tail = 1,
1655 TCK_MustTail = 2,
1656 TCK_NoTail = 3,
1657 TCK_LAST = TCK_NoTail
1658 };
1659
1660 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1661 static_assert(
1662 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1663 "Bitfields must be contiguous");
1664
1665 TailCallKind getTailCallKind() const {
1666 return getSubclassData<TailCallKindField>();
1667 }
1668
1669 bool isTailCall() const {
1670 TailCallKind Kind = getTailCallKind();
1671 return Kind == TCK_Tail || Kind == TCK_MustTail;
1672 }
1673
1674 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1675
1676 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1677
1678 void setTailCallKind(TailCallKind TCK) {
1679 setSubclassData<TailCallKindField>(TCK);
1680 }
1681
1682 void setTailCall(bool IsTc = true) {
1683 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1684 }
1685
1686 /// Return true if the call can return twice
1687 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1688 void setCanReturnTwice() {
1689 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1690 }
1691
1692 // Methods for support type inquiry through isa, cast, and dyn_cast:
1693 static bool classof(const Instruction *I) {
1694 return I->getOpcode() == Instruction::Call;
1695 }
1696 static bool classof(const Value *V) {
1697 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1698 }
1699
1700 /// Updates profile metadata by scaling it by \p S / \p T.
1701 void updateProfWeight(uint64_t S, uint64_t T);
1702
1703private:
1704 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1705 // method so that subclasses cannot accidentally use it.
1706 template <typename Bitfield>
1707 void setSubclassData(typename Bitfield::Type Value) {
1708 Instruction::setSubclassData<Bitfield>(Value);
1709 }
1710};
1711
1712CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1713 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1714 BasicBlock *InsertAtEnd)
1715 : CallBase(Ty->getReturnType(), Instruction::Call,
1716 OperandTraits<CallBase>::op_end(this) -
1717 (Args.size() + CountBundleInputs(Bundles) + 1),
1718 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1719 InsertAtEnd) {
1720 init(Ty, Func, Args, Bundles, NameStr);
1721}
1722
1723CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1724 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1725 Instruction *InsertBefore)
1726 : CallBase(Ty->getReturnType(), Instruction::Call,
1727 OperandTraits<CallBase>::op_end(this) -
1728 (Args.size() + CountBundleInputs(Bundles) + 1),
1729 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1730 InsertBefore) {
1731 init(Ty, Func, Args, Bundles, NameStr);
1732}
1733
1734//===----------------------------------------------------------------------===//
1735// SelectInst Class
1736//===----------------------------------------------------------------------===//
1737
1738/// This class represents the LLVM 'select' instruction.
1739///
1740class SelectInst : public Instruction {
1741 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1742 Instruction *InsertBefore)
1743 : Instruction(S1->getType(), Instruction::Select,
1744 &Op<0>(), 3, InsertBefore) {
1745 init(C, S1, S2);
1746 setName(NameStr);
1747 }
1748
1749 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1750 BasicBlock *InsertAtEnd)
1751 : Instruction(S1->getType(), Instruction::Select,
1752 &Op<0>(), 3, InsertAtEnd) {
1753 init(C, S1, S2);
1754 setName(NameStr);
1755 }
1756
1757 void init(Value *C, Value *S1, Value *S2) {
1758 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((void)0);
1759 Op<0>() = C;
1760 Op<1>() = S1;
1761 Op<2>() = S2;
1762 }
1763
1764protected:
1765 // Note: Instruction needs to be a friend here to call cloneImpl.
1766 friend class Instruction;
1767
1768 SelectInst *cloneImpl() const;
1769
1770public:
1771 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1772 const Twine &NameStr = "",
1773 Instruction *InsertBefore = nullptr,
1774 Instruction *MDFrom = nullptr) {
1775 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1776 if (MDFrom)
1777 Sel->copyMetadata(*MDFrom);
1778 return Sel;
1779 }
1780
1781 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1782 const Twine &NameStr,
1783 BasicBlock *InsertAtEnd) {
1784 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1785 }
1786
1787 const Value *getCondition() const { return Op<0>(); }
1788 const Value *getTrueValue() const { return Op<1>(); }
1789 const Value *getFalseValue() const { return Op<2>(); }
1790 Value *getCondition() { return Op<0>(); }
1791 Value *getTrueValue() { return Op<1>(); }
1792 Value *getFalseValue() { return Op<2>(); }
1793
1794 void setCondition(Value *V) { Op<0>() = V; }
1795 void setTrueValue(Value *V) { Op<1>() = V; }
1796 void setFalseValue(Value *V) { Op<2>() = V; }
1797
1798 /// Swap the true and false values of the select instruction.
1799 /// This doesn't swap prof metadata.
1800 void swapValues() { Op<1>().swap(Op<2>()); }
1801
1802 /// Return a string if the specified operands are invalid
1803 /// for a select operation, otherwise return null.
1804 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1805
1806 /// Transparently provide more efficient getOperand methods.
1807 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1808
1809 OtherOps getOpcode() const {
1810 return static_cast<OtherOps>(Instruction::getOpcode());
1811 }
1812
1813 // Methods for support type inquiry through isa, cast, and dyn_cast:
1814 static bool classof(const Instruction *I) {
1815 return I->getOpcode() == Instruction::Select;
1816 }
1817 static bool classof(const Value *V) {
1818 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1819 }
1820};
1821
1822template <>
1823struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1824};
1825
1826DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<SelectInst>::op_begin(const_cast
<SelectInst*>(this))[i_nocapture].get()); } void SelectInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<SelectInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned SelectInst::getNumOperands() const
{ return OperandTraits<SelectInst>::operands(this); } template
<int Idx_nocapture> Use &SelectInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &SelectInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
1827
1828//===----------------------------------------------------------------------===//
1829// VAArgInst Class
1830//===----------------------------------------------------------------------===//
1831
1832/// This class represents the va_arg llvm instruction, which returns
1833/// an argument of the specified type given a va_list and increments that list
1834///
1835class VAArgInst : public UnaryInstruction {
1836protected:
1837 // Note: Instruction needs to be a friend here to call cloneImpl.
1838 friend class Instruction;
1839
1840 VAArgInst *cloneImpl() const;
1841
1842public:
1843 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1844 Instruction *InsertBefore = nullptr)
1845 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1846 setName(NameStr);
1847 }
1848
1849 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1850 BasicBlock *InsertAtEnd)
1851 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1852 setName(NameStr);
1853 }
1854
1855 Value *getPointerOperand() { return getOperand(0); }
1856 const Value *getPointerOperand() const { return getOperand(0); }
1857 static unsigned getPointerOperandIndex() { return 0U; }
1858
1859 // Methods for support type inquiry through isa, cast, and dyn_cast:
1860 static bool classof(const Instruction *I) {
1861 return I->getOpcode() == VAArg;
1862 }
1863 static bool classof(const Value *V) {
1864 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1865 }
1866};
1867
1868//===----------------------------------------------------------------------===//
1869// ExtractElementInst Class
1870//===----------------------------------------------------------------------===//
1871
1872/// This instruction extracts a single (scalar)
1873/// element from a VectorType value
1874///
1875class ExtractElementInst : public Instruction {
1876 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1877 Instruction *InsertBefore = nullptr);
1878 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1879 BasicBlock *InsertAtEnd);
1880
1881protected:
1882 // Note: Instruction needs to be a friend here to call cloneImpl.
1883 friend class Instruction;
1884
1885 ExtractElementInst *cloneImpl() const;
1886
1887public:
1888 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1889 const Twine &NameStr = "",
1890 Instruction *InsertBefore = nullptr) {
1891 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1892 }
1893
1894 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1895 const Twine &NameStr,
1896 BasicBlock *InsertAtEnd) {
1897 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1898 }
1899
1900 /// Return true if an extractelement instruction can be
1901 /// formed with the specified operands.
1902 static bool isValidOperands(const Value *Vec, const Value *Idx);
1903
1904 Value *getVectorOperand() { return Op<0>(); }
1905 Value *getIndexOperand() { return Op<1>(); }
1906 const Value *getVectorOperand() const { return Op<0>(); }
1907 const Value *getIndexOperand() const { return Op<1>(); }
1908
1909 VectorType *getVectorOperandType() const {
1910 return cast<VectorType>(getVectorOperand()->getType());
1911 }
1912
1913 /// Transparently provide more efficient getOperand methods.
1914 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1915
1916 // Methods for support type inquiry through isa, cast, and dyn_cast:
1917 static bool classof(const Instruction *I) {
1918 return I->getOpcode() == Instruction::ExtractElement;
1919 }
1920 static bool classof(const Value *V) {
1921 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1922 }
1923};
1924
1925template <>
1926struct OperandTraits<ExtractElementInst> :
1927 public FixedNumOperandTraits<ExtractElementInst, 2> {
1928};
1929
1930DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
((void)0); return cast_or_null<Value>( OperandTraits<
ExtractElementInst>::op_begin(const_cast<ExtractElementInst
*>(this))[i_nocapture].get()); } void ExtractElementInst::
setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void
)0); OperandTraits<ExtractElementInst>::op_begin(this)[
i_nocapture] = Val_nocapture; } unsigned ExtractElementInst::
getNumOperands() const { return OperandTraits<ExtractElementInst
>::operands(this); } template <int Idx_nocapture> Use
&ExtractElementInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ExtractElementInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1931
1932//===----------------------------------------------------------------------===//
1933// InsertElementInst Class
1934//===----------------------------------------------------------------------===//
1935
1936/// This instruction inserts a single (scalar)
1937/// element into a VectorType value
1938///
1939class InsertElementInst : public Instruction {
1940 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1941 const Twine &NameStr = "",
1942 Instruction *InsertBefore = nullptr);
1943 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1944 BasicBlock *InsertAtEnd);
1945
1946protected:
1947 // Note: Instruction needs to be a friend here to call cloneImpl.
1948 friend class Instruction;
1949
1950 InsertElementInst *cloneImpl() const;
1951
1952public:
1953 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1954 const Twine &NameStr = "",
1955 Instruction *InsertBefore = nullptr) {
1956 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1957 }
1958
1959 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1960 const Twine &NameStr,
1961 BasicBlock *InsertAtEnd) {
1962 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1963 }
1964
1965 /// Return true if an insertelement instruction can be
1966 /// formed with the specified operands.
1967 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1968 const Value *Idx);
1969
1970 /// Overload to return most specific vector type.
1971 ///
1972 VectorType *getType() const {
1973 return cast<VectorType>(Instruction::getType());
1974 }
1975
1976 /// Transparently provide more efficient getOperand methods.
1977 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1978
1979 // Methods for support type inquiry through isa, cast, and dyn_cast:
1980 static bool classof(const Instruction *I) {
1981 return I->getOpcode() == Instruction::InsertElement;
1982 }
1983 static bool classof(const Value *V) {
1984 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1985 }
1986};
1987
1988template <>
1989struct OperandTraits<InsertElementInst> :
1990 public FixedNumOperandTraits<InsertElementInst, 3> {
1991};
1992
1993DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<InsertElementInst>::op_begin(const_cast
<InsertElementInst*>(this))[i_nocapture].get()); } void
InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<InsertElementInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned InsertElementInst
::getNumOperands() const { return OperandTraits<InsertElementInst
>::operands(this); } template <int Idx_nocapture> Use
&InsertElementInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
InsertElementInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1994
1995//===----------------------------------------------------------------------===//
1996// ShuffleVectorInst Class
1997//===----------------------------------------------------------------------===//
1998
1999constexpr int UndefMaskElem = -1;
2000
2001/// This instruction constructs a fixed permutation of two
2002/// input vectors.
2003///
2004/// For each element of the result vector, the shuffle mask selects an element
2005/// from one of the input vectors to copy to the result. Non-negative elements
2006/// in the mask represent an index into the concatenated pair of input vectors.
2007/// UndefMaskElem (-1) specifies that the result element is undefined.
2008///
2009/// For scalable vectors, all the elements of the mask must be 0 or -1. This
2010/// requirement may be relaxed in the future.
2011class ShuffleVectorInst : public Instruction {
2012 SmallVector<int, 4> ShuffleMask;
2013 Constant *ShuffleMaskForBitcode;
2014
2015protected:
2016 // Note: Instruction needs to be a friend here to call cloneImpl.
2017 friend class Instruction;
2018
2019 ShuffleVectorInst *cloneImpl() const;
2020
2021public:
2022 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2023 const Twine &NameStr = "",
2024 Instruction *InsertBefor = nullptr);
2025 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2026 const Twine &NameStr, BasicBlock *InsertAtEnd);
2027 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2028 const Twine &NameStr = "",
2029 Instruction *InsertBefor = nullptr);
2030 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2031 const Twine &NameStr, BasicBlock *InsertAtEnd);
2032
2033 void *operator new(size_t S) { return User::operator new(S, 2); }
2034 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
2035
2036 /// Swap the operands and adjust the mask to preserve the semantics
2037 /// of the instruction.
2038 void commute();
2039
2040 /// Return true if a shufflevector instruction can be
2041 /// formed with the specified operands.
2042 static bool isValidOperands(const Value *V1, const Value *V2,
2043 const Value *Mask);
2044 static bool isValidOperands(const Value *V1, const Value *V2,
2045 ArrayRef<int> Mask);
2046
2047 /// Overload to return most specific vector type.
2048 ///
2049 VectorType *getType() const {
2050 return cast<VectorType>(Instruction::getType());
2051 }
2052
2053 /// Transparently provide more efficient getOperand methods.
2054 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2055
2056 /// Return the shuffle mask value of this instruction for the given element
2057 /// index. Return UndefMaskElem if the element is undef.
2058 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2059
2060 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2061 /// elements of the mask are returned as UndefMaskElem.
2062 static void getShuffleMask(const Constant *Mask,
2063 SmallVectorImpl<int> &Result);
2064
2065 /// Return the mask for this instruction as a vector of integers. Undefined
2066 /// elements of the mask are returned as UndefMaskElem.
2067 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2068 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2069 }
2070
2071 /// Return the mask for this instruction, for use in bitcode.
2072 ///
2073 /// TODO: This is temporary until we decide a new bitcode encoding for
2074 /// shufflevector.
2075 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2076
2077 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2078 Type *ResultTy);
2079
2080 void setShuffleMask(ArrayRef<int> Mask);
2081
2082 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2083
2084 /// Return true if this shuffle returns a vector with a different number of
2085 /// elements than its source vectors.
2086 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2087 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2088 bool changesLength() const {
2089 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2090 ->getElementCount()
2091 .getKnownMinValue();
2092 unsigned NumMaskElts = ShuffleMask.size();
2093 return NumSourceElts != NumMaskElts;
2094 }
2095
2096 /// Return true if this shuffle returns a vector with a greater number of
2097 /// elements than its source vectors.
2098 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2099 bool increasesLength() const {
2100 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2101 ->getElementCount()
2102 .getKnownMinValue();
2103 unsigned NumMaskElts = ShuffleMask.size();
2104 return NumSourceElts < NumMaskElts;
2105 }
2106
2107 /// Return true if this shuffle mask chooses elements from exactly one source
2108 /// vector.
2109 /// Example: <7,5,undef,7>
2110 /// This assumes that vector operands are the same length as the mask.
2111 static bool isSingleSourceMask(ArrayRef<int> Mask);
2112 static bool isSingleSourceMask(const Constant *Mask) {
2113 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2114 SmallVector<int, 16> MaskAsInts;
2115 getShuffleMask(Mask, MaskAsInts);
2116 return isSingleSourceMask(MaskAsInts);
2117 }
2118
2119 /// Return true if this shuffle chooses elements from exactly one source
2120 /// vector without changing the length of that vector.
2121 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2122 /// TODO: Optionally allow length-changing shuffles.
2123 bool isSingleSource() const {
2124 return !changesLength() && isSingleSourceMask(ShuffleMask);
2125 }
2126
2127 /// Return true if this shuffle mask chooses elements from exactly one source
2128 /// vector without lane crossings. A shuffle using this mask is not
2129 /// necessarily a no-op because it may change the number of elements from its
2130 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2131 /// Example: <undef,undef,2,3>
2132 static bool isIdentityMask(ArrayRef<int> Mask);
2133 static bool isIdentityMask(const Constant *Mask) {
2134 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2135 SmallVector<int, 16> MaskAsInts;
2136 getShuffleMask(Mask, MaskAsInts);
2137 return isIdentityMask(MaskAsInts);
2138 }
2139
2140 /// Return true if this shuffle chooses elements from exactly one source
2141 /// vector without lane crossings and does not change the number of elements
2142 /// from its input vectors.
2143 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2144 bool isIdentity() const {
2145 return !changesLength() && isIdentityMask(ShuffleMask);
2146 }
2147
2148 /// Return true if this shuffle lengthens exactly one source vector with
2149 /// undefs in the high elements.
2150 bool isIdentityWithPadding() const;
2151
2152 /// Return true if this shuffle extracts the first N elements of exactly one
2153 /// source vector.
2154 bool isIdentityWithExtract() const;
2155
2156 /// Return true if this shuffle concatenates its 2 source vectors. This
2157 /// returns false if either input is undefined. In that case, the shuffle is
2158 /// is better classified as an identity with padding operation.
2159 bool isConcat() const;
2160
2161 /// Return true if this shuffle mask chooses elements from its source vectors
2162 /// without lane crossings. A shuffle using this mask would be
2163 /// equivalent to a vector select with a constant condition operand.
2164 /// Example: <4,1,6,undef>
2165 /// This returns false if the mask does not choose from both input vectors.
2166 /// In that case, the shuffle is better classified as an identity shuffle.
2167 /// This assumes that vector operands are the same length as the mask
2168 /// (a length-changing shuffle can never be equivalent to a vector select).
2169 static bool isSelectMask(ArrayRef<int> Mask);
2170 static bool isSelectMask(const Constant *Mask) {
2171 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2172 SmallVector<int, 16> MaskAsInts;
2173 getShuffleMask(Mask, MaskAsInts);
2174 return isSelectMask(MaskAsInts);
2175 }
2176
2177 /// Return true if this shuffle chooses elements from its source vectors
2178 /// without lane crossings and all operands have the same number of elements.
2179 /// In other words, this shuffle is equivalent to a vector select with a
2180 /// constant condition operand.
2181 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2182 /// This returns false if the mask does not choose from both input vectors.
2183 /// In that case, the shuffle is better classified as an identity shuffle.
2184 /// TODO: Optionally allow length-changing shuffles.
2185 bool isSelect() const {
2186 return !changesLength() && isSelectMask(ShuffleMask);
2187 }
2188
2189 /// Return true if this shuffle mask swaps the order of elements from exactly
2190 /// one source vector.
2191 /// Example: <7,6,undef,4>
2192 /// This assumes that vector operands are the same length as the mask.
2193 static bool isReverseMask(ArrayRef<int> Mask);
2194 static bool isReverseMask(const Constant *Mask) {
2195 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2196 SmallVector<int, 16> MaskAsInts;
2197 getShuffleMask(Mask, MaskAsInts);
2198 return isReverseMask(MaskAsInts);
2199 }
2200
2201 /// Return true if this shuffle swaps the order of elements from exactly
2202 /// one source vector.
2203 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2204 /// TODO: Optionally allow length-changing shuffles.
2205 bool isReverse() const {
2206 return !changesLength() && isReverseMask(ShuffleMask);
2207 }
2208
2209 /// Return true if this shuffle mask chooses all elements with the same value
2210 /// as the first element of exactly one source vector.
2211 /// Example: <4,undef,undef,4>
2212 /// This assumes that vector operands are the same length as the mask.
2213 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2214 static bool isZeroEltSplatMask(const Constant *Mask) {
2215 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2216 SmallVector<int, 16> MaskAsInts;
2217 getShuffleMask(Mask, MaskAsInts);
2218 return isZeroEltSplatMask(MaskAsInts);
2219 }
2220
2221 /// Return true if all elements of this shuffle are the same value as the
2222 /// first element of exactly one source vector without changing the length
2223 /// of that vector.
2224 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2225 /// TODO: Optionally allow length-changing shuffles.
2226 /// TODO: Optionally allow splats from other elements.
2227 bool isZeroEltSplat() const {
2228 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2229 }
2230
2231 /// Return true if this shuffle mask is a transpose mask.
2232 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2233 /// even- or odd-numbered vector elements from two n-dimensional source
2234 /// vectors and write each result into consecutive elements of an
2235 /// n-dimensional destination vector. Two shuffles are necessary to complete
2236 /// the transpose, one for the even elements and another for the odd elements.
2237 /// This description closely follows how the TRN1 and TRN2 AArch64
2238 /// instructions operate.
2239 ///
2240 /// For example, a simple 2x2 matrix can be transposed with:
2241 ///
2242 /// ; Original matrix
2243 /// m0 = < a, b >
2244 /// m1 = < c, d >
2245 ///
2246 /// ; Transposed matrix
2247 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2248 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2249 ///
2250 /// For matrices having greater than n columns, the resulting nx2 transposed
2251 /// matrix is stored in two result vectors such that one vector contains
2252 /// interleaved elements from all the even-numbered rows and the other vector
2253 /// contains interleaved elements from all the odd-numbered rows. For example,
2254 /// a 2x4 matrix can be transposed with:
2255 ///
2256 /// ; Original matrix
2257 /// m0 = < a, b, c, d >
2258 /// m1 = < e, f, g, h >
2259 ///
2260 /// ; Transposed matrix
2261 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2262 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2263 static bool isTransposeMask(ArrayRef<int> Mask);
2264 static bool isTransposeMask(const Constant *Mask) {
2265 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2266 SmallVector<int, 16> MaskAsInts;
2267 getShuffleMask(Mask, MaskAsInts);
2268 return isTransposeMask(MaskAsInts);
2269 }
2270
2271 /// Return true if this shuffle transposes the elements of its inputs without
2272 /// changing the length of the vectors. This operation may also be known as a
2273 /// merge or interleave. See the description for isTransposeMask() for the
2274 /// exact specification.
2275 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2276 bool isTranspose() const {
2277 return !changesLength() && isTransposeMask(ShuffleMask);
2278 }
2279
2280 /// Return true if this shuffle mask is an extract subvector mask.
2281 /// A valid extract subvector mask returns a smaller vector from a single
2282 /// source operand. The base extraction index is returned as well.
2283 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2284 int &Index);
2285 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2286 int &Index) {
2287 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2288 // Not possible to express a shuffle mask for a scalable vector for this
2289 // case.
2290 if (isa<ScalableVectorType>(Mask->getType()))
2291 return false;
2292 SmallVector<int, 16> MaskAsInts;
2293 getShuffleMask(Mask, MaskAsInts);
2294 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2295 }
2296
2297 /// Return true if this shuffle mask is an extract subvector mask.
2298 bool isExtractSubvectorMask(int &Index) const {
2299 // Not possible to express a shuffle mask for a scalable vector for this
2300 // case.
2301 if (isa<ScalableVectorType>(getType()))
2302 return false;
2303
2304 int NumSrcElts =
2305 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2306 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2307 }
2308
2309 /// Change values in a shuffle permute mask assuming the two vector operands
2310 /// of length InVecNumElts have swapped position.
2311 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2312 unsigned InVecNumElts) {
2313 for (int &Idx : Mask) {
2314 if (Idx == -1)
2315 continue;
2316 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2317 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((void)0)
2318 "shufflevector mask index out of range")((void)0);
2319 }
2320 }
2321
2322 // Methods for support type inquiry through isa, cast, and dyn_cast:
2323 static bool classof(const Instruction *I) {
2324 return I->getOpcode() == Instruction::ShuffleVector;
2325 }
2326 static bool classof(const Value *V) {
2327 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2328 }
2329};
2330
2331template <>
2332struct OperandTraits<ShuffleVectorInst>
2333 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2334
2335DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<ShuffleVectorInst>::op_begin(const_cast
<ShuffleVectorInst*>(this))[i_nocapture].get()); } void
ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<ShuffleVectorInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned ShuffleVectorInst
::getNumOperands() const { return OperandTraits<ShuffleVectorInst
>::operands(this); } template <int Idx_nocapture> Use
&ShuffleVectorInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ShuffleVectorInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2336
2337//===----------------------------------------------------------------------===//
2338// ExtractValueInst Class
2339//===----------------------------------------------------------------------===//
2340
2341/// This instruction extracts a struct member or array
2342/// element value from an aggregate value.
2343///
2344class ExtractValueInst : public UnaryInstruction {
2345 SmallVector<unsigned, 4> Indices;
2346
2347 ExtractValueInst(const ExtractValueInst &EVI);
2348
2349 /// Constructors - Create a extractvalue instruction with a base aggregate
2350 /// value and a list of indices. The first ctor can optionally insert before
2351 /// an existing instruction, the second appends the new instruction to the
2352 /// specified BasicBlock.
2353 inline ExtractValueInst(Value *Agg,
2354 ArrayRef<unsigned> Idxs,
2355 const Twine &NameStr,
2356 Instruction *InsertBefore);
2357 inline ExtractValueInst(Value *Agg,
2358 ArrayRef<unsigned> Idxs,
2359 const Twine &NameStr, BasicBlock *InsertAtEnd);
2360
2361 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2362
2363protected:
2364 // Note: Instruction needs to be a friend here to call cloneImpl.
2365 friend class Instruction;
2366
2367 ExtractValueInst *cloneImpl() const;
2368
2369public:
2370 static ExtractValueInst *Create(Value *Agg,
2371 ArrayRef<unsigned> Idxs,
2372 const Twine &NameStr = "",
2373 Instruction *InsertBefore = nullptr) {
2374 return new
2375 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2376 }
2377
2378 static ExtractValueInst *Create(Value *Agg,
2379 ArrayRef<unsigned> Idxs,
2380 const Twine &NameStr,
2381 BasicBlock *InsertAtEnd) {
2382 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2383 }
2384
2385 /// Returns the type of the element that would be extracted
2386 /// with an extractvalue instruction with the specified parameters.
2387 ///
2388 /// Null is returned if the indices are invalid for the specified type.
2389 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2390
2391 using idx_iterator = const unsigned*;
2392
2393 inline idx_iterator idx_begin() const { return Indices.begin(); }
2394 inline idx_iterator idx_end() const { return Indices.end(); }
2395 inline iterator_range<idx_iterator> indices() const {
2396 return make_range(idx_begin(), idx_end());
2397 }
2398
2399 Value *getAggregateOperand() {
2400 return getOperand(0);
2401 }
2402 const Value *getAggregateOperand() const {
2403 return getOperand(0);
2404 }
2405 static unsigned getAggregateOperandIndex() {
2406 return 0U; // get index for modifying correct operand
2407 }
2408
2409 ArrayRef<unsigned> getIndices() const {
2410 return Indices;
2411 }
2412
2413 unsigned getNumIndices() const {
2414 return (unsigned)Indices.size();
2415 }
2416
2417 bool hasIndices() const {
2418 return true;
2419 }
2420
2421 // Methods for support type inquiry through isa, cast, and dyn_cast:
2422 static bool classof(const Instruction *I) {
2423 return I->getOpcode() == Instruction::ExtractValue;
2424 }
2425 static bool classof(const Value *V) {
2426 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2427 }
2428};
2429
2430ExtractValueInst::ExtractValueInst(Value *Agg,
2431 ArrayRef<unsigned> Idxs,
2432 const Twine &NameStr,
2433 Instruction *InsertBefore)
2434 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2435 ExtractValue, Agg, InsertBefore) {
2436 init(Idxs, NameStr);
2437}
2438
2439ExtractValueInst::ExtractValueInst(Value *Agg,
2440 ArrayRef<unsigned> Idxs,
2441 const Twine &NameStr,
2442 BasicBlock *InsertAtEnd)
2443 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2444 ExtractValue, Agg, InsertAtEnd) {
2445 init(Idxs, NameStr);
2446}
2447
2448//===----------------------------------------------------------------------===//
2449// InsertValueInst Class
2450//===----------------------------------------------------------------------===//
2451
2452/// This instruction inserts a struct field of array element
2453/// value into an aggregate value.
2454///
2455class InsertValueInst : public Instruction {
2456 SmallVector<unsigned, 4> Indices;
2457
2458 InsertValueInst(const InsertValueInst &IVI);
2459
2460 /// Constructors - Create a insertvalue instruction with a base aggregate
2461 /// value, a value to insert, and a list of indices. The first ctor can
2462 /// optionally insert before an existing instruction, the second appends
2463 /// the new instruction to the specified BasicBlock.
2464 inline InsertValueInst(Value *Agg, Value *Val,
2465 ArrayRef<unsigned> Idxs,
2466 const Twine &NameStr,
2467 Instruction *InsertBefore);
2468 inline InsertValueInst(Value *Agg, Value *Val,
2469 ArrayRef<unsigned> Idxs,
2470 const Twine &NameStr, BasicBlock *InsertAtEnd);
2471
2472 /// Constructors - These two constructors are convenience methods because one
2473 /// and two index insertvalue instructions are so common.
2474 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2475 const Twine &NameStr = "",
2476 Instruction *InsertBefore = nullptr);
2477 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2478 BasicBlock *InsertAtEnd);
2479
2480 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2481 const Twine &NameStr);
2482
2483protected:
2484 // Note: Instruction needs to be a friend here to call cloneImpl.
2485 friend class Instruction;
2486
2487 InsertValueInst *cloneImpl() const;
2488
2489public:
2490 // allocate space for exactly two operands
2491 void *operator new(size_t S) { return User::operator new(S, 2); }
2492 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2493
2494 static InsertValueInst *Create(Value *Agg, Value *Val,
2495 ArrayRef<unsigned> Idxs,
2496 const Twine &NameStr = "",
2497 Instruction *InsertBefore = nullptr) {
2498 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2499 }
2500
2501 static InsertValueInst *Create(Value *Agg, Value *Val,
2502 ArrayRef<unsigned> Idxs,
2503 const Twine &NameStr,
2504 BasicBlock *InsertAtEnd) {
2505 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2506 }
2507
2508 /// Transparently provide more efficient getOperand methods.
2509 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2510
2511 using idx_iterator = const unsigned*;
2512
2513 inline idx_iterator idx_begin() const { return Indices.begin(); }
2514 inline idx_iterator idx_end() const { return Indices.end(); }
2515 inline iterator_range<idx_iterator> indices() const {
2516 return make_range(idx_begin(), idx_end());
2517 }
2518
2519 Value *getAggregateOperand() {
2520 return getOperand(0);
2521 }
2522 const Value *getAggregateOperand() const {
2523 return getOperand(0);
2524 }
2525 static unsigned getAggregateOperandIndex() {
2526 return 0U; // get index for modifying correct operand
2527 }
2528
2529 Value *getInsertedValueOperand() {
2530 return getOperand(1);
2531 }
2532 const Value *getInsertedValueOperand() const {
2533 return getOperand(1);
2534 }
2535 static unsigned getInsertedValueOperandIndex() {
2536 return 1U; // get index for modifying correct operand
2537 }
2538
2539 ArrayRef<unsigned> getIndices() const {
2540 return Indices;
2541 }
2542
2543 unsigned getNumIndices() const {
2544 return (unsigned)Indices.size();
2545 }
2546
2547 bool hasIndices() const {
2548 return true;
2549 }
2550
2551 // Methods for support type inquiry through isa, cast, and dyn_cast:
2552 static bool classof(const Instruction *I) {
2553 return I->getOpcode() == Instruction::InsertValue;
2554 }
2555 static bool classof(const Value *V) {
2556 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2557 }
2558};
2559
2560template <>
2561struct OperandTraits<InsertValueInst> :
2562 public FixedNumOperandTraits<InsertValueInst, 2> {
2563};
2564
2565InsertValueInst::InsertValueInst(Value *Agg,
2566 Value *Val,
2567 ArrayRef<unsigned> Idxs,
2568 const Twine &NameStr,
2569 Instruction *InsertBefore)
2570 : Instruction(Agg->getType(), InsertValue,
2571 OperandTraits<InsertValueInst>::op_begin(this),
2572 2, InsertBefore) {
2573 init(Agg, Val, Idxs, NameStr);
2574}
2575
2576InsertValueInst::InsertValueInst(Value *Agg,
2577 Value *Val,
2578 ArrayRef<unsigned> Idxs,
2579 const Twine &NameStr,
2580 BasicBlock *InsertAtEnd)
2581 : Instruction(Agg->getType(), InsertValue,
2582 OperandTraits<InsertValueInst>::op_begin(this),
2583 2, InsertAtEnd) {
2584 init(Agg, Val, Idxs, NameStr);
2585}
2586
2587DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<InsertValueInst>::op_begin
(const_cast<InsertValueInst*>(this))[i_nocapture].get()
); } void InsertValueInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<InsertValueInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertValueInst::getNumOperands() const { return OperandTraits
<InsertValueInst>::operands(this); } template <int Idx_nocapture
> Use &InsertValueInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &InsertValueInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2588
2589//===----------------------------------------------------------------------===//
2590// PHINode Class
2591//===----------------------------------------------------------------------===//
2592
2593// PHINode - The PHINode class is used to represent the magical mystical PHI
2594// node, that can not exist in nature, but can be synthesized in a computer
2595// scientist's overactive imagination.
2596//
2597class PHINode : public Instruction {
2598 /// The number of operands actually allocated. NumOperands is
2599 /// the number actually in use.
2600 unsigned ReservedSpace;
2601
2602 PHINode(const PHINode &PN);
2603
2604 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2605 const Twine &NameStr = "",
2606 Instruction *InsertBefore = nullptr)
2607 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2608 ReservedSpace(NumReservedValues) {
2609 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0);
2610 setName(NameStr);
2611 allocHungoffUses(ReservedSpace);
2612 }
2613
2614 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2615 BasicBlock *InsertAtEnd)
2616 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2617 ReservedSpace(NumReservedValues) {
2618 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0);
2619 setName(NameStr);
2620 allocHungoffUses(ReservedSpace);
2621 }
2622
2623protected:
2624 // Note: Instruction needs to be a friend here to call cloneImpl.
2625 friend class Instruction;
2626
2627 PHINode *cloneImpl() const;
2628
2629 // allocHungoffUses - this is more complicated than the generic
2630 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2631 // values and pointers to the incoming blocks, all in one allocation.
2632 void allocHungoffUses(unsigned N) {
2633 User::allocHungoffUses(N, /* IsPhi */ true);
2634 }
2635
2636public:
2637 /// Constructors - NumReservedValues is a hint for the number of incoming
2638 /// edges that this phi node will have (use 0 if you really have no idea).
2639 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2640 const Twine &NameStr = "",
2641 Instruction *InsertBefore = nullptr) {
2642 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2643 }
2644
2645 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2646 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2647 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2648 }
2649
2650 /// Provide fast operand accessors
2651 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2652
2653 // Block iterator interface. This provides access to the list of incoming
2654 // basic blocks, which parallels the list of incoming values.
2655
2656 using block_iterator = BasicBlock **;
2657 using const_block_iterator = BasicBlock * const *;
2658
2659 block_iterator block_begin() {
2660 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2661 }
2662
2663 const_block_iterator block_begin() const {
2664 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2665 }
2666
2667 block_iterator block_end() {
2668 return block_begin() + getNumOperands();
2669 }
2670
2671 const_block_iterator block_end() const {
2672 return block_begin() + getNumOperands();
2673 }
2674
2675 iterator_range<block_iterator> blocks() {
2676 return make_range(block_begin(), block_end());
2677 }
2678
2679 iterator_range<const_block_iterator> blocks() const {
2680 return make_range(block_begin(), block_end());
2681 }
2682
2683 op_range incoming_values() { return operands(); }
2684
2685 const_op_range incoming_values() const { return operands(); }
2686
2687 /// Return the number of incoming edges
2688 ///
2689 unsigned getNumIncomingValues() const { return getNumOperands(); }
2690
2691 /// Return incoming value number x
2692 ///
2693 Value *getIncomingValue(unsigned i) const {
2694 return getOperand(i);
2695 }
2696 void setIncomingValue(unsigned i, Value *V) {
2697 assert(V && "PHI node got a null value!")((void)0);
2698 assert(getType() == V->getType() &&((void)0)
2699 "All operands to PHI node must be the same type as the PHI node!")((void)0);
2700 setOperand(i, V);
2701 }
2702
2703 static unsigned getOperandNumForIncomingValue(unsigned i) {
2704 return i;
2705 }
2706
2707 static unsigned getIncomingValueNumForOperand(unsigned i) {
2708 return i;
2709 }
2710
2711 /// Return incoming basic block number @p i.
2712 ///
2713 BasicBlock *getIncomingBlock(unsigned i) const {
2714 return block_begin()[i];
2715 }
2716
2717 /// Return incoming basic block corresponding
2718 /// to an operand of the PHI.
2719 ///
2720 BasicBlock *getIncomingBlock(const Use &U) const {
2721 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((void)0);
2722 return getIncomingBlock(unsigned(&U - op_begin()));
2723 }
2724
2725 /// Return incoming basic block corresponding
2726 /// to value use iterator.
2727 ///
2728 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2729 return getIncomingBlock(I.getUse());
2730 }
2731
2732 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2733 assert(BB && "PHI node got a null basic block!")((void)0);
2734 block_begin()[i] = BB;
2735 }
2736
2737 /// Replace every incoming basic block \p Old to basic block \p New.
2738 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2739 assert(New && Old && "PHI node got a null basic block!")((void)0);
2740 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2741 if (getIncomingBlock(Op) == Old)
2742 setIncomingBlock(Op, New);
2743 }
2744
2745 /// Add an incoming value to the end of the PHI list
2746 ///
2747 void addIncoming(Value *V, BasicBlock *BB) {
2748 if (getNumOperands() == ReservedSpace)
2749 growOperands(); // Get more space!
2750 // Initialize some new operands.
2751 setNumHungOffUseOperands(getNumOperands() + 1);
2752 setIncomingValue(getNumOperands() - 1, V);
2753 setIncomingBlock(getNumOperands() - 1, BB);
2754 }
2755
2756 /// Remove an incoming value. This is useful if a
2757 /// predecessor basic block is deleted. The value removed is returned.
2758 ///
2759 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2760 /// is true), the PHI node is destroyed and any uses of it are replaced with
2761 /// dummy values. The only time there should be zero incoming values to a PHI
2762 /// node is when the block is dead, so this strategy is sound.
2763 ///
2764 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2765
2766 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2767 int Idx = getBasicBlockIndex(BB);
2768 assert(Idx >= 0 && "Invalid basic block argument to remove!")((void)0);
2769 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2770 }
2771
2772 /// Return the first index of the specified basic
2773 /// block in the value list for this PHI. Returns -1 if no instance.
2774 ///
2775 int getBasicBlockIndex(const BasicBlock *BB) const {
2776 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2777 if (block_begin()[i] == BB)
2778 return i;
2779 return -1;
2780 }
2781
2782 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2783 int Idx = getBasicBlockIndex(BB);
2784 assert(Idx >= 0 && "Invalid basic block argument!")((void)0);
2785 return getIncomingValue(Idx);
2786 }
2787
2788 /// Set every incoming value(s) for block \p BB to \p V.
2789 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2790 assert(BB && "PHI node got a null basic block!")((void)0);
2791 bool Found = false;
2792 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2793 if (getIncomingBlock(Op) == BB) {
2794 Found = true;
2795 setIncomingValue(Op, V);
2796 }
2797 (void)Found;
2798 assert(Found && "Invalid basic block argument to set!")((void)0);
2799 }
2800
2801 /// If the specified PHI node always merges together the
2802 /// same value, return the value, otherwise return null.
2803 Value *hasConstantValue() const;
2804
2805 /// Whether the specified PHI node always merges
2806 /// together the same value, assuming undefs are equal to a unique
2807 /// non-undef value.
2808 bool hasConstantOrUndefValue() const;
2809
2810 /// If the PHI node is complete which means all of its parent's predecessors
2811 /// have incoming value in this PHI, return true, otherwise return false.
2812 bool isComplete() const {
2813 return llvm::all_of(predecessors(getParent()),
2814 [this](const BasicBlock *Pred) {
2815 return getBasicBlockIndex(Pred) >= 0;
2816 });
2817 }
2818
2819 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2820 static bool classof(const Instruction *I) {
2821 return I->getOpcode() == Instruction::PHI;
2822 }
2823 static bool classof(const Value *V) {
2824 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2825 }
2826
2827private:
2828 void growOperands();
2829};
2830
2831template <>
2832struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2833};
2834
2835DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { ((void)0); return cast_or_null<Value>( OperandTraits
<PHINode>::op_begin(const_cast<PHINode*>(this))[i_nocapture
].get()); } void PHINode::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<PHINode>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned PHINode::getNumOperands
() const { return OperandTraits<PHINode>::operands(this
); } template <int Idx_nocapture> Use &PHINode::Op(
) { return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &PHINode::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
2836
2837//===----------------------------------------------------------------------===//
2838// LandingPadInst Class
2839//===----------------------------------------------------------------------===//
2840
2841//===---------------------------------------------------------------------------
2842/// The landingpad instruction holds all of the information
2843/// necessary to generate correct exception handling. The landingpad instruction
2844/// cannot be moved from the top of a landing pad block, which itself is
2845/// accessible only from the 'unwind' edge of an invoke. This uses the
2846/// SubclassData field in Value to store whether or not the landingpad is a
2847/// cleanup.
2848///
2849class LandingPadInst : public Instruction {
2850 using CleanupField = BoolBitfieldElementT<0>;
2851
2852 /// The number of operands actually allocated. NumOperands is
2853 /// the number actually in use.
2854 unsigned ReservedSpace;
2855
2856 LandingPadInst(const LandingPadInst &LP);
2857
2858public:
2859 enum ClauseType { Catch, Filter };
2860
2861private:
2862 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2863 const Twine &NameStr, Instruction *InsertBefore);
2864 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2865 const Twine &NameStr, BasicBlock *InsertAtEnd);
2866
2867 // Allocate space for exactly zero operands.
2868 void *operator new(size_t S) { return User::operator new(S); }
2869
2870 void growOperands(unsigned Size);
2871 void init(unsigned NumReservedValues, const Twine &NameStr);
2872
2873protected:
2874 // Note: Instruction needs to be a friend here to call cloneImpl.
2875 friend class Instruction;
2876
2877 LandingPadInst *cloneImpl() const;
2878
2879public:
2880 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2881
2882 /// Constructors - NumReservedClauses is a hint for the number of incoming
2883 /// clauses that this landingpad will have (use 0 if you really have no idea).
2884 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2885 const Twine &NameStr = "",
2886 Instruction *InsertBefore = nullptr);
2887 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2888 const Twine &NameStr, BasicBlock *InsertAtEnd);
2889
2890 /// Provide fast operand accessors
2891 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2892
2893 /// Return 'true' if this landingpad instruction is a
2894 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2895 /// doesn't catch the exception.
2896 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2897
2898 /// Indicate that this landingpad instruction is a cleanup.
2899 void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2900
2901 /// Add a catch or filter clause to the landing pad.
2902 void addClause(Constant *ClauseVal);
2903
2904 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2905 /// determine what type of clause this is.
2906 Constant *getClause(unsigned Idx) const {
2907 return cast<Constant>(getOperandList()[Idx]);
2908 }
2909
2910 /// Return 'true' if the clause and index Idx is a catch clause.
2911 bool isCatch(unsigned Idx) const {
2912 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2913 }
2914
2915 /// Return 'true' if the clause and index Idx is a filter clause.
2916 bool isFilter(unsigned Idx) const {
2917 return isa<ArrayType>(getOperandList()[Idx]->getType());
2918 }
2919
2920 /// Get the number of clauses for this landing pad.
2921 unsigned getNumClauses() const { return getNumOperands(); }
2922
2923 /// Grow the size of the operand list to accommodate the new
2924 /// number of clauses.
2925 void reserveClauses(unsigned Size) { growOperands(Size); }
2926
2927 // Methods for support type inquiry through isa, cast, and dyn_cast:
2928 static bool classof(const Instruction *I) {
2929 return I->getOpcode() == Instruction::LandingPad;
2930 }
2931 static bool classof(const Value *V) {
2932 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2933 }
2934};
2935
2936template <>
2937struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2938};
2939
2940DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<LandingPadInst>::op_begin(
const_cast<LandingPadInst*>(this))[i_nocapture].get());
} void LandingPadInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<LandingPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2941
2942//===----------------------------------------------------------------------===//
2943// ReturnInst Class
2944//===----------------------------------------------------------------------===//
2945
2946//===---------------------------------------------------------------------------
2947/// Return a value (possibly void), from a function. Execution
2948/// does not continue in this function any longer.
2949///
2950class ReturnInst : public Instruction {
2951 ReturnInst(const ReturnInst &RI);
2952
2953private:
2954 // ReturnInst constructors:
2955 // ReturnInst() - 'ret void' instruction
2956 // ReturnInst( null) - 'ret void' instruction
2957 // ReturnInst(Value* X) - 'ret X' instruction
2958 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2959 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2960 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2961 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2962 //
2963 // NOTE: If the Value* passed is of type void then the constructor behaves as
2964 // if it was passed NULL.
2965 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2966 Instruction *InsertBefore = nullptr);
2967 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2968 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2969
2970protected:
2971 // Note: Instruction needs to be a friend here to call cloneImpl.
2972 friend class Instruction;
2973
2974 ReturnInst *cloneImpl() const;
2975
2976public:
2977 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2978 Instruction *InsertBefore = nullptr) {
2979 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2980 }
2981
2982 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2983 BasicBlock *InsertAtEnd) {
2984 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2985 }
2986
2987 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2988 return new(0) ReturnInst(C, InsertAtEnd);
2989 }
2990
2991 /// Provide fast operand accessors
2992 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2993
2994 /// Convenience accessor. Returns null if there is no return value.
2995 Value *getReturnValue() const {
2996 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2997 }
2998
2999 unsigned getNumSuccessors() const { return 0; }
3000
3001 // Methods for support type inquiry through isa, cast, and dyn_cast:
3002 static bool classof(const Instruction *I) {
3003 return (I->getOpcode() == Instruction::Ret);
3004 }
3005 static bool classof(const Value *V) {
3006 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3007 }
3008
3009private:
3010 BasicBlock *getSuccessor(unsigned idx) const {
3011 llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable();
3012 }
3013
3014 void setSuccessor(unsigned idx, BasicBlock *B) {
3015 llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable();
3016 }
3017};
3018
3019template <>
3020struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
3021};
3022
3023DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<ReturnInst>::op_begin(const_cast
<ReturnInst*>(this))[i_nocapture].get()); } void ReturnInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<ReturnInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ReturnInst::getNumOperands() const
{ return OperandTraits<ReturnInst>::operands(this); } template
<int Idx_nocapture> Use &ReturnInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ReturnInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3024
3025//===----------------------------------------------------------------------===//
3026// BranchInst Class
3027//===----------------------------------------------------------------------===//
3028
3029//===---------------------------------------------------------------------------
3030/// Conditional or Unconditional Branch instruction.
3031///
3032class BranchInst : public Instruction {
3033 /// Ops list - Branches are strange. The operands are ordered:
3034 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3035 /// they don't have to check for cond/uncond branchness. These are mostly
3036 /// accessed relative from op_end().
3037 BranchInst(const BranchInst &BI);
3038 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3039 // BranchInst(BB *B) - 'br B'
3040 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3041 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3042 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3043 // BranchInst(BB* B, BB *I) - 'br B' insert at end
3044 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3045 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3046 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3047 Instruction *InsertBefore = nullptr);
3048 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3049 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3050 BasicBlock *InsertAtEnd);
3051
3052 void AssertOK();
3053
3054protected:
3055 // Note: Instruction needs to be a friend here to call cloneImpl.
3056 friend class Instruction;
3057
3058 BranchInst *cloneImpl() const;
3059
3060public:
3061 /// Iterator type that casts an operand to a basic block.
3062 ///
3063 /// This only makes sense because the successors are stored as adjacent
3064 /// operands for branch instructions.
3065 struct succ_op_iterator
3066 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3067 std::random_access_iterator_tag, BasicBlock *,
3068 ptrdiff_t, BasicBlock *, BasicBlock *> {
3069 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3070
3071 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3072 BasicBlock *operator->() const { return operator*(); }
3073 };
3074
3075 /// The const version of `succ_op_iterator`.
3076 struct const_succ_op_iterator
3077 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3078 std::random_access_iterator_tag,
3079 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3080 const BasicBlock *> {
3081 explicit const_succ_op_iterator(const_value_op_iterator I)
3082 : iterator_adaptor_base(I) {}
3083
3084 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3085 const BasicBlock *operator->() const { return operator*(); }
3086 };
3087
3088 static BranchInst *Create(BasicBlock *IfTrue,
3089 Instruction *InsertBefore = nullptr) {
3090 return new(1) BranchInst(IfTrue, InsertBefore);
3091 }
3092
3093 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3094 Value *Cond, Instruction *InsertBefore = nullptr) {
3095 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3096 }
3097
3098 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3099 return new(1) BranchInst(IfTrue, InsertAtEnd);
3100 }
3101
3102 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3103 Value *Cond, BasicBlock *InsertAtEnd) {
3104 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3105 }
3106
3107 /// Transparently provide more efficient getOperand methods.
3108 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3109
3110 bool isUnconditional() const { return getNumOperands() == 1; }
3111 bool isConditional() const { return getNumOperands() == 3; }
3112
3113 Value *getCondition() const {
3114 assert(isConditional() && "Cannot get condition of an uncond branch!")((void)0);
3115 return Op<-3>();
3116 }
3117
3118 void setCondition(Value *V) {
3119 assert(isConditional() && "Cannot set condition of unconditional branch!")((void)0);
3120 Op<-3>() = V;
3121 }
3122
3123 unsigned getNumSuccessors() const { return 1+isConditional(); }
3124
3125 BasicBlock *getSuccessor(unsigned i) const {
3126 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((void)0);
3127 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3128 }
3129
3130 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3131 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((void)0);
3132 *(&Op<-1>() - idx) = NewSucc;
3133 }
3134
3135 /// Swap the successors of this branch instruction.
3136 ///
3137 /// Swaps the successors of the branch instruction. This also swaps any
3138 /// branch weight metadata associated with the instruction so that it
3139 /// continues to map correctly to each operand.
3140 void swapSuccessors();
3141
3142 iterator_range<succ_op_iterator> successors() {
3143 return make_range(
3144 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3145 succ_op_iterator(value_op_end()));
3146 }
3147
3148 iterator_range<const_succ_op_iterator> successors() const {
3149 return make_range(const_succ_op_iterator(
3150 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3151 const_succ_op_iterator(value_op_end()));
3152 }
3153
3154 // Methods for support type inquiry through isa, cast, and dyn_cast:
3155 static bool classof(const Instruction *I) {
3156 return (I->getOpcode() == Instruction::Br);
3157 }
3158 static bool classof(const Value *V) {
3159 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3160 }
3161};
3162
3163template <>
3164struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3165};
3166
3167DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<BranchInst>::op_begin(const_cast
<BranchInst*>(this))[i_nocapture].get()); } void BranchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<BranchInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned BranchInst::getNumOperands() const
{ return OperandTraits<BranchInst>::operands(this); } template
<int Idx_nocapture> Use &BranchInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &BranchInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3168
3169//===----------------------------------------------------------------------===//
3170// SwitchInst Class
3171//===----------------------------------------------------------------------===//
3172
3173//===---------------------------------------------------------------------------
3174/// Multiway switch
3175///
3176class SwitchInst : public Instruction {
3177 unsigned ReservedSpace;
3178
3179 // Operand[0] = Value to switch on
3180 // Operand[1] = Default basic block destination
3181 // Operand[2n ] = Value to match
3182 // Operand[2n+1] = BasicBlock to go to on match
3183 SwitchInst(const SwitchInst &SI);
3184
3185 /// Create a new switch instruction, specifying a value to switch on and a
3186 /// default destination. The number of additional cases can be specified here
3187 /// to make memory allocation more efficient. This constructor can also
3188 /// auto-insert before another instruction.
3189 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3190 Instruction *InsertBefore);
3191
3192 /// Create a new switch instruction, specifying a value to switch on and a
3193 /// default destination. The number of additional cases can be specified here
3194 /// to make memory allocation more efficient. This constructor also
3195 /// auto-inserts at the end of the specified BasicBlock.
3196 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3197 BasicBlock *InsertAtEnd);
3198
3199 // allocate space for exactly zero operands
3200 void *operator new(size_t S) { return User::operator new(S); }
3201
3202 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3203 void growOperands();
3204
3205protected:
3206 // Note: Instruction needs to be a friend here to call cloneImpl.
3207 friend class Instruction;
3208
3209 SwitchInst *cloneImpl() const;
3210
3211public:
3212 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3213
3214 // -2
3215 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3216
3217 template <typename CaseHandleT> class CaseIteratorImpl;
3218
3219 /// A handle to a particular switch case. It exposes a convenient interface
3220 /// to both the case value and the successor block.
3221 ///
3222 /// We define this as a template and instantiate it to form both a const and
3223 /// non-const handle.
3224 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3225 class CaseHandleImpl {
3226 // Directly befriend both const and non-const iterators.
3227 friend class SwitchInst::CaseIteratorImpl<
3228 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3229
3230 protected:
3231 // Expose the switch type we're parameterized with to the iterator.
3232 using SwitchInstType = SwitchInstT;
3233
3234 SwitchInstT *SI;
3235 ptrdiff_t Index;
3236
3237 CaseHandleImpl() = default;
3238 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3239
3240 public:
3241 /// Resolves case value for current case.
3242 ConstantIntT *getCaseValue() const {
3243 assert((unsigned)Index < SI->getNumCases() &&((void)0)
3244 "Index out the number of cases.")((void)0);
3245 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3246 }
3247
3248 /// Resolves successor for current case.
3249 BasicBlockT *getCaseSuccessor() const {
3250 assert(((unsigned)Index < SI->getNumCases() ||((void)0)
3251 (unsigned)Index == DefaultPseudoIndex) &&((void)0)
3252 "Index out the number of cases.")((void)0);
3253 return SI->getSuccessor(getSuccessorIndex());
3254 }
3255
3256 /// Returns number of current case.
3257 unsigned getCaseIndex() const { return Index; }
3258
3259 /// Returns successor index for current case successor.
3260 unsigned getSuccessorIndex() const {
3261 assert(((unsigned)Index == DefaultPseudoIndex ||((void)0)
3262 (unsigned)Index < SI->getNumCases()) &&((void)0)
3263 "Index out the number of cases.")((void)0);
3264 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3265 }
3266
3267 bool operator==(const CaseHandleImpl &RHS) const {
3268 assert(SI == RHS.SI && "Incompatible operators.")((void)0);
3269 return Index == RHS.Index;
3270 }
3271 };
3272
3273 using ConstCaseHandle =
3274 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3275
3276 class CaseHandle
3277 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3278 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3279
3280 public:
3281 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3282
3283 /// Sets the new value for current case.
3284 void setValue(ConstantInt *V) {
3285 assert((unsigned)Index < SI->getNumCases() &&((void)0)
3286 "Index out the number of cases.")((void)0);
3287 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3288 }
3289
3290 /// Sets the new successor for current case.
3291 void setSuccessor(BasicBlock *S) {
3292 SI->setSuccessor(getSuccessorIndex(), S);
3293 }
3294 };
3295
3296 template <typename CaseHandleT>
3297 class CaseIteratorImpl
3298 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3299 std::random_access_iterator_tag,
3300 CaseHandleT> {
3301 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3302
3303 CaseHandleT Case;
3304
3305 public:
3306 /// Default constructed iterator is in an invalid state until assigned to
3307 /// a case for a particular switch.
3308 CaseIteratorImpl() = default;
3309
3310 /// Initializes case iterator for given SwitchInst and for given
3311 /// case number.
3312 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3313
3314 /// Initializes case iterator for given SwitchInst and for given
3315 /// successor index.
3316 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3317 unsigned SuccessorIndex) {
3318 assert(SuccessorIndex < SI->getNumSuccessors() &&((void)0)
3319 "Successor index # out of range!")((void)0);
3320 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3321 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3322 }
3323
3324 /// Support converting to the const variant. This will be a no-op for const
3325 /// variant.
3326 operator CaseIteratorImpl<ConstCaseHandle>() const {
3327 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3328 }
3329
3330 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3331 // Check index correctness after addition.
3332 // Note: Index == getNumCases() means end().
3333 assert(Case.Index + N >= 0 &&((void)0)
3334 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((void)0)
3335 "Case.Index out the number of cases.")((void)0);
3336 Case.Index += N;
3337 return *this;
3338 }
3339 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3340 // Check index correctness after subtraction.
3341 // Note: Case.Index == getNumCases() means end().
3342 assert(Case.Index - N >= 0 &&((void)0)
3343 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((void)0)
3344 "Case.Index out the number of cases.")((void)0);
3345 Case.Index -= N;
3346 return *this;
3347 }
3348 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3349 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0);
3350 return Case.Index - RHS.Case.Index;
3351 }
3352 bool operator==(const CaseIteratorImpl &RHS) const {
3353 return Case == RHS.Case;
3354 }
3355 bool operator<(const CaseIteratorImpl &RHS) const {
3356 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0);
3357 return Case.Index < RHS.Case.Index;
3358 }
3359 CaseHandleT &operator*() { return Case; }
3360 const CaseHandleT &operator*() const { return Case; }
3361 };
3362
3363 using CaseIt = CaseIteratorImpl<CaseHandle>;
3364 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3365
3366 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3367 unsigned NumCases,
3368 Instruction *InsertBefore = nullptr) {
3369 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3370 }
3371
3372 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3373 unsigned NumCases, BasicBlock *InsertAtEnd) {
3374 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3375 }
3376
3377 /// Provide fast operand accessors
3378 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3379
3380 // Accessor Methods for Switch stmt
3381 Value *getCondition() const { return getOperand(0); }
3382 void setCondition(Value *V) { setOperand(0, V); }
3383
3384 BasicBlock *getDefaultDest() const {
3385 return cast<BasicBlock>(getOperand(1));
3386 }
3387
3388 void setDefaultDest(BasicBlock *DefaultCase) {
3389 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3390 }
3391
3392 /// Return the number of 'cases' in this switch instruction, excluding the
3393 /// default case.
3394 unsigned getNumCases() const {
3395 return getNumOperands()/2 - 1;
3396 }
3397
3398 /// Returns a read/write iterator that points to the first case in the
3399 /// SwitchInst.
3400 CaseIt case_begin() {
3401 return CaseIt(this, 0);
3402 }
3403
3404 /// Returns a read-only iterator that points to the first case in the
3405 /// SwitchInst.
3406 ConstCaseIt case_begin() const {
3407 return ConstCaseIt(this, 0);
3408 }
3409
3410 /// Returns a read/write iterator that points one past the last in the
3411 /// SwitchInst.
3412 CaseIt case_end() {
3413 return CaseIt(this, getNumCases());
3414 }
3415
3416 /// Returns a read-only iterator that points one past the last in the
3417 /// SwitchInst.
3418 ConstCaseIt case_end() const {
3419 return ConstCaseIt(this, getNumCases());
3420 }
3421
3422 /// Iteration adapter for range-for loops.
3423 iterator_range<CaseIt> cases() {
3424 return make_range(case_begin(), case_end());
3425 }
3426
3427 /// Constant iteration adapter for range-for loops.
3428 iterator_range<ConstCaseIt> cases() const {
3429 return make_range(case_begin(), case_end());
3430 }
3431
3432 /// Returns an iterator that points to the default case.
3433 /// Note: this iterator allows to resolve successor only. Attempt
3434 /// to resolve case value causes an assertion.
3435 /// Also note, that increment and decrement also causes an assertion and
3436 /// makes iterator invalid.
3437 CaseIt case_default() {
3438 return CaseIt(this, DefaultPseudoIndex);
3439 }
3440 ConstCaseIt case_default() const {
3441 return ConstCaseIt(this, DefaultPseudoIndex);
3442 }
3443
3444 /// Search all of the case values for the specified constant. If it is
3445 /// explicitly handled, return the case iterator of it, otherwise return
3446 /// default case iterator to indicate that it is handled by the default
3447 /// handler.
3448 CaseIt findCaseValue(const ConstantInt *C) {
3449 CaseIt I = llvm::find_if(
3450 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3451 if (I != case_end())
3452 return I;
3453
3454 return case_default();
3455 }
3456 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3457 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3458 return Case.getCaseValue() == C;
3459 });
3460 if (I != case_end())
3461 return I;
3462
3463 return case_default();
3464 }
3465
3466 /// Finds the unique case value for a given successor. Returns null if the
3467 /// successor is not found, not unique, or is the default case.
3468 ConstantInt *findCaseDest(BasicBlock *BB) {
3469 if (BB == getDefaultDest())
3470 return nullptr;
3471
3472 ConstantInt *CI = nullptr;
3473 for (auto Case : cases()) {
3474 if (Case.getCaseSuccessor() != BB)
3475 continue;
3476
3477 if (CI)
3478 return nullptr; // Multiple cases lead to BB.
3479
3480 CI = Case.getCaseValue();
3481 }
3482
3483 return CI;
3484 }
3485
3486 /// Add an entry to the switch instruction.
3487 /// Note:
3488 /// This action invalidates case_end(). Old case_end() iterator will
3489 /// point to the added case.
3490 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3491
3492 /// This method removes the specified case and its successor from the switch
3493 /// instruction. Note that this operation may reorder the remaining cases at
3494 /// index idx and above.
3495 /// Note:
3496 /// This action invalidates iterators for all cases following the one removed,
3497 /// including the case_end() iterator. It returns an iterator for the next
3498 /// case.
3499 CaseIt removeCase(CaseIt I);
3500
3501 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3502 BasicBlock *getSuccessor(unsigned idx) const {
3503 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((void)0);
3504 return cast<BasicBlock>(getOperand(idx*2+1));
3505 }
3506 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3507 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((void)0);
3508 setOperand(idx * 2 + 1, NewSucc);
3509 }
3510
3511 // Methods for support type inquiry through isa, cast, and dyn_cast:
3512 static bool classof(const Instruction *I) {
3513 return I->getOpcode() == Instruction::Switch;
3514 }
3515 static bool classof(const Value *V) {
3516 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3517 }
3518};
3519
3520/// A wrapper class to simplify modification of SwitchInst cases along with
3521/// their prof branch_weights metadata.
3522class SwitchInstProfUpdateWrapper {
3523 SwitchInst &SI;
3524 Optional<SmallVector<uint32_t, 8> > Weights = None;
3525 bool Changed = false;
3526
3527protected:
3528 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3529
3530 MDNode *buildProfBranchWeightsMD();
3531
3532 void init();
3533
3534public:
3535 using CaseWeightOpt = Optional<uint32_t>;
3536 SwitchInst *operator->() { return &SI; }
3537 SwitchInst &operator*() { return SI; }
3538 operator SwitchInst *() { return &SI; }
3539
3540 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3541
3542 ~SwitchInstProfUpdateWrapper() {
3543 if (Changed)
3544 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3545 }
3546
3547 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3548 /// correspondent branch weight.
3549 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3550
3551 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3552 /// specified branch weight for the added case.
3553 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3554
3555 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3556 /// this object to not touch the underlying SwitchInst in destructor.
3557 SymbolTableList<Instruction>::iterator eraseFromParent();
3558
3559 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3560 CaseWeightOpt getSuccessorWeight(unsigned idx);
3561
3562 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3563};
3564
3565template <>
3566struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3567};
3568
3569DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<SwitchInst>::op_begin(const_cast
<SwitchInst*>(this))[i_nocapture].get()); } void SwitchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<SwitchInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned SwitchInst::getNumOperands() const
{ return OperandTraits<SwitchInst>::operands(this); } template
<int Idx_nocapture> Use &SwitchInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &SwitchInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3570
3571//===----------------------------------------------------------------------===//
3572// IndirectBrInst Class
3573//===----------------------------------------------------------------------===//
3574
3575//===---------------------------------------------------------------------------
3576/// Indirect Branch Instruction.
3577///
3578class IndirectBrInst : public Instruction {
3579 unsigned ReservedSpace;
3580
3581 // Operand[0] = Address to jump to
3582 // Operand[n+1] = n-th destination
3583 IndirectBrInst(const IndirectBrInst &IBI);
3584
3585 /// Create a new indirectbr instruction, specifying an
3586 /// Address to jump to. The number of expected destinations can be specified
3587 /// here to make memory allocation more efficient. This constructor can also
3588 /// autoinsert before another instruction.
3589 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3590
3591 /// Create a new indirectbr instruction, specifying an
3592 /// Address to jump to. The number of expected destinations can be specified
3593 /// here to make memory allocation more efficient. This constructor also
3594 /// autoinserts at the end of the specified BasicBlock.
3595 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3596
3597 // allocate space for exactly zero operands
3598 void *operator new(size_t S) { return User::operator new(S); }
3599
3600 void init(Value *Address, unsigned NumDests);
3601 void growOperands();
3602
3603protected:
3604 // Note: Instruction needs to be a friend here to call cloneImpl.
3605 friend class Instruction;
3606
3607 IndirectBrInst *cloneImpl() const;
3608
3609public:
3610 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3611
3612 /// Iterator type that casts an operand to a basic block.
3613 ///
3614 /// This only makes sense because the successors are stored as adjacent
3615 /// operands for indirectbr instructions.
3616 struct succ_op_iterator
3617 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3618 std::random_access_iterator_tag, BasicBlock *,
3619 ptrdiff_t, BasicBlock *, BasicBlock *> {
3620 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3621
3622 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3623 BasicBlock *operator->() const { return operator*(); }
3624 };
3625
3626 /// The const version of `succ_op_iterator`.
3627 struct const_succ_op_iterator
3628 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3629 std::random_access_iterator_tag,
3630 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3631 const BasicBlock *> {
3632 explicit const_succ_op_iterator(const_value_op_iterator I)
3633 : iterator_adaptor_base(I) {}
3634
3635 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3636 const BasicBlock *operator->() const { return operator*(); }
3637 };
3638
3639 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3640 Instruction *InsertBefore = nullptr) {
3641 return new IndirectBrInst(Address, NumDests, InsertBefore);
3642 }
3643
3644 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3645 BasicBlock *InsertAtEnd) {
3646 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3647 }
3648
3649 /// Provide fast operand accessors.
3650 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3651
3652 // Accessor Methods for IndirectBrInst instruction.
3653 Value *getAddress() { return getOperand(0); }
3654 const Value *getAddress() const { return getOperand(0); }
3655 void setAddress(Value *V) { setOperand(0, V); }
3656
3657 /// return the number of possible destinations in this
3658 /// indirectbr instruction.
3659 unsigned getNumDestinations() const { return getNumOperands()-1; }
3660
3661 /// Return the specified destination.
3662 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3663 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3664
3665 /// Add a destination.
3666 ///
3667 void addDestination(BasicBlock *Dest);
3668
3669 /// This method removes the specified successor from the
3670 /// indirectbr instruction.
3671 void removeDestination(unsigned i);
3672
3673 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3674 BasicBlock *getSuccessor(unsigned i) const {
3675 return cast<BasicBlock>(getOperand(i+1));
3676 }
3677 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3678 setOperand(i + 1, NewSucc);
3679 }
3680
3681 iterator_range<succ_op_iterator> successors() {
3682 return make_range(succ_op_iterator(std::next(value_op_begin())),
3683 succ_op_iterator(value_op_end()));
3684 }
3685
3686 iterator_range<const_succ_op_iterator> successors() const {
3687 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3688 const_succ_op_iterator(value_op_end()));
3689 }
3690
3691 // Methods for support type inquiry through isa, cast, and dyn_cast:
3692 static bool classof(const Instruction *I) {
3693 return I->getOpcode() == Instruction::IndirectBr;
3694 }
3695 static bool classof(const Value *V) {
3696 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3697 }
3698};
3699
3700template <>
3701struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3702};
3703
3704DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<IndirectBrInst>::op_begin(
const_cast<IndirectBrInst*>(this))[i_nocapture].get());
} void IndirectBrInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<IndirectBrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
IndirectBrInst::getNumOperands() const { return OperandTraits
<IndirectBrInst>::operands(this); } template <int Idx_nocapture
> Use &IndirectBrInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &IndirectBrInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
3705
3706//===----------------------------------------------------------------------===//
3707// InvokeInst Class
3708//===----------------------------------------------------------------------===//
3709
3710/// Invoke instruction. The SubclassData field is used to hold the
3711/// calling convention of the call.
3712///
3713class InvokeInst : public CallBase {
3714 /// The number of operands for this call beyond the called function,
3715 /// arguments, and operand bundles.
3716 static constexpr int NumExtraOperands = 2;
3717
3718 /// The index from the end of the operand array to the normal destination.
3719 static constexpr int NormalDestOpEndIdx = -3;
3720
3721 /// The index from the end of the operand array to the unwind destination.
3722 static constexpr int UnwindDestOpEndIdx = -2;
3723
3724 InvokeInst(const InvokeInst &BI);
3725
3726 /// Construct an InvokeInst given a range of arguments.
3727 ///
3728 /// Construct an InvokeInst from a range of arguments
3729 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3730 BasicBlock *IfException, ArrayRef<Value *> Args,
3731 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3732 const Twine &NameStr, Instruction *InsertBefore);
3733
3734 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3735 BasicBlock *IfException, ArrayRef<Value *> Args,
3736 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3737 const Twine &NameStr, BasicBlock *InsertAtEnd);
3738
3739 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3740 BasicBlock *IfException, ArrayRef<Value *> Args,
3741 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3742
3743 /// Compute the number of operands to allocate.
3744 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3745 // We need one operand for the called function, plus our extra operands and
3746 // the input operand counts provided.
3747 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3748 }
3749
3750protected:
3751 // Note: Instruction needs to be a friend here to call cloneImpl.
3752 friend class Instruction;
3753
3754 InvokeInst *cloneImpl() const;
3755
3756public:
3757 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3758 BasicBlock *IfException, ArrayRef<Value *> Args,
3759 const Twine &NameStr,
3760 Instruction *InsertBefore = nullptr) {
3761 int NumOperands = ComputeNumOperands(Args.size());
3762 return new (NumOperands)
3763 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3764 NameStr, InsertBefore);
3765 }
3766
3767 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3768 BasicBlock *IfException, ArrayRef<Value *> Args,
3769 ArrayRef<OperandBundleDef> Bundles = None,
3770 const Twine &NameStr = "",
3771 Instruction *InsertBefore = nullptr) {
3772 int NumOperands =
3773 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3774 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3775
3776 return new (NumOperands, DescriptorBytes)
3777 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3778 NameStr, InsertBefore);
3779 }
3780
3781 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3782 BasicBlock *IfException, ArrayRef<Value *> Args,
3783 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3784 int NumOperands = ComputeNumOperands(Args.size());
3785 return new (NumOperands)
3786 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3787 NameStr, InsertAtEnd);
3788 }
3789
3790 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3791 BasicBlock *IfException, ArrayRef<Value *> Args,
3792 ArrayRef<OperandBundleDef> Bundles,
3793 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3794 int NumOperands =
3795 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3796 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3797
3798 return new (NumOperands, DescriptorBytes)
3799 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3800 NameStr, InsertAtEnd);
3801 }
3802
3803 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3804 BasicBlock *IfException, ArrayRef<Value *> Args,
3805 const Twine &NameStr,
3806 Instruction *InsertBefore = nullptr) {
3807 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3808 IfException, Args, None, NameStr, InsertBefore);
3809 }
3810
3811 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3812 BasicBlock *IfException, ArrayRef<Value *> Args,
3813 ArrayRef<OperandBundleDef> Bundles = None,
3814 const Twine &NameStr = "",
3815 Instruction *InsertBefore = nullptr) {
3816 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3817 IfException, Args, Bundles, NameStr, InsertBefore);
3818 }
3819
3820 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3821 BasicBlock *IfException, ArrayRef<Value *> Args,
3822 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3823 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3824 IfException, Args, NameStr, InsertAtEnd);
3825 }
3826
3827 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3828 BasicBlock *IfException, ArrayRef<Value *> Args,
3829 ArrayRef<OperandBundleDef> Bundles,
3830 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3831 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3832 IfException, Args, Bundles, NameStr, InsertAtEnd);
3833 }
3834
3835 /// Create a clone of \p II with a different set of operand bundles and
3836 /// insert it before \p InsertPt.
3837 ///
3838 /// The returned invoke instruction is identical to \p II in every way except
3839 /// that the operand bundles for the new instruction are set to the operand
3840 /// bundles in \p Bundles.
3841 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3842 Instruction *InsertPt = nullptr);
3843
3844 // get*Dest - Return the destination basic blocks...
3845 BasicBlock *getNormalDest() const {
3846 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3847 }
3848 BasicBlock *getUnwindDest() const {
3849 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3850 }
3851 void setNormalDest(BasicBlock *B) {
3852 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3853 }
3854 void setUnwindDest(BasicBlock *B) {
3855 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3856 }
3857
3858 /// Get the landingpad instruction from the landing pad
3859 /// block (the unwind destination).
3860 LandingPadInst *getLandingPadInst() const;
3861
3862 BasicBlock *getSuccessor(unsigned i) const {
3863 assert(i < 2 && "Successor # out of range for invoke!")((void)0);
3864 return i == 0 ? getNormalDest() : getUnwindDest();
3865 }
3866
3867 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3868 assert(i < 2 && "Successor # out of range for invoke!")((void)0);
3869 if (i == 0)
3870 setNormalDest(NewSucc);
3871 else
3872 setUnwindDest(NewSucc);
3873 }
3874
3875 unsigned getNumSuccessors() const { return 2; }
3876
3877 // Methods for support type inquiry through isa, cast, and dyn_cast:
3878 static bool classof(const Instruction *I) {
3879 return (I->getOpcode() == Instruction::Invoke);
3880 }
3881 static bool classof(const Value *V) {
3882 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3883 }
3884
3885private:
3886 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3887 // method so that subclasses cannot accidentally use it.
3888 template <typename Bitfield>
3889 void setSubclassData(typename Bitfield::Type Value) {
3890 Instruction::setSubclassData<Bitfield>(Value);
3891 }
3892};
3893
3894InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3895 BasicBlock *IfException, ArrayRef<Value *> Args,
3896 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3897 const Twine &NameStr, Instruction *InsertBefore)
3898 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3899 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3900 InsertBefore) {
3901 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3902}
3903
3904InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3905 BasicBlock *IfException, ArrayRef<Value *> Args,
3906 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3907 const Twine &NameStr, BasicBlock *InsertAtEnd)
3908 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3909 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3910 InsertAtEnd) {
3911 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3912}
3913
3914//===----------------------------------------------------------------------===//
3915// CallBrInst Class
3916//===----------------------------------------------------------------------===//
3917
3918/// CallBr instruction, tracking function calls that may not return control but
3919/// instead transfer it to a third location. The SubclassData field is used to
3920/// hold the calling convention of the call.
3921///
3922class CallBrInst : public CallBase {
3923
3924 unsigned NumIndirectDests;
3925
3926 CallBrInst(const CallBrInst &BI);
3927
3928 /// Construct a CallBrInst given a range of arguments.
3929 ///
3930 /// Construct a CallBrInst from a range of arguments
3931 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3932 ArrayRef<BasicBlock *> IndirectDests,
3933 ArrayRef<Value *> Args,
3934 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3935 const Twine &NameStr, Instruction *InsertBefore);
3936
3937 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3938 ArrayRef<BasicBlock *> IndirectDests,
3939 ArrayRef<Value *> Args,
3940 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3941 const Twine &NameStr, BasicBlock *InsertAtEnd);
3942
3943 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3944 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3945 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3946
3947 /// Should the Indirect Destinations change, scan + update the Arg list.
3948 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3949
3950 /// Compute the number of operands to allocate.
3951 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3952 int NumBundleInputs = 0) {
3953 // We need one operand for the called function, plus our extra operands and
3954 // the input operand counts provided.
3955 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3956 }
3957
3958protected:
3959 // Note: Instruction needs to be a friend here to call cloneImpl.
3960 friend class Instruction;
3961
3962 CallBrInst *cloneImpl() const;
3963
3964public:
3965 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3966 BasicBlock *DefaultDest,
3967 ArrayRef<BasicBlock *> IndirectDests,
3968 ArrayRef<Value *> Args, const Twine &NameStr,
3969 Instruction *InsertBefore = nullptr) {
3970 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3971 return new (NumOperands)
3972 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3973 NumOperands, NameStr, InsertBefore);
3974 }
3975
3976 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3977 BasicBlock *DefaultDest,
3978 ArrayRef<BasicBlock *> IndirectDests,
3979 ArrayRef<Value *> Args,
3980 ArrayRef<OperandBundleDef> Bundles = None,
3981 const Twine &NameStr = "",
3982 Instruction *InsertBefore = nullptr) {
3983 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3984 CountBundleInputs(Bundles));
3985 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3986
3987 return new (NumOperands, DescriptorBytes)
3988 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3989 NumOperands, NameStr, InsertBefore);
3990 }
3991
3992 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3993 BasicBlock *DefaultDest,
3994 ArrayRef<BasicBlock *> IndirectDests,
3995 ArrayRef<Value *> Args, const Twine &NameStr,
3996 BasicBlock *InsertAtEnd) {
3997 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3998 return new (NumOperands)
3999 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4000 NumOperands, NameStr, InsertAtEnd);
4001 }
4002
4003 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4004 BasicBlock *DefaultDest,
4005 ArrayRef<BasicBlock *> IndirectDests,
4006 ArrayRef<Value *> Args,
4007 ArrayRef<OperandBundleDef> Bundles,
4008 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4009 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4010 CountBundleInputs(Bundles));
4011 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4012
4013 return new (NumOperands, DescriptorBytes)
4014 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4015 NumOperands, NameStr, InsertAtEnd);
4016 }
4017
4018 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4019 ArrayRef<BasicBlock *> IndirectDests,
4020 ArrayRef<Value *> Args, const Twine &NameStr,
4021 Instruction *InsertBefore = nullptr) {
4022 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4023 IndirectDests, Args, NameStr, InsertBefore);
4024 }
4025
4026 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4027 ArrayRef<BasicBlock *> IndirectDests,
4028 ArrayRef<Value *> Args,
4029 ArrayRef<OperandBundleDef> Bundles = None,
4030 const Twine &NameStr = "",
4031 Instruction *InsertBefore = nullptr) {
4032 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4033 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4034 }
4035
4036 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4037 ArrayRef<BasicBlock *> IndirectDests,
4038 ArrayRef<Value *> Args, const Twine &NameStr,
4039 BasicBlock *InsertAtEnd) {
4040 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4041 IndirectDests, Args, NameStr, InsertAtEnd);
4042 }
4043
4044 static CallBrInst *Create(FunctionCallee Func,
4045 BasicBlock *DefaultDest,
4046 ArrayRef<BasicBlock *> IndirectDests,
4047 ArrayRef<Value *> Args,
4048 ArrayRef<OperandBundleDef> Bundles,
4049 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4050 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4051 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4052 }
4053
4054 /// Create a clone of \p CBI with a different set of operand bundles and
4055 /// insert it before \p InsertPt.
4056 ///
4057 /// The returned callbr instruction is identical to \p CBI in every way
4058 /// except that the operand bundles for the new instruction are set to the
4059 /// operand bundles in \p Bundles.
4060 static CallBrInst *Create(CallBrInst *CBI,
4061 ArrayRef<OperandBundleDef> Bundles,
4062 Instruction *InsertPt = nullptr);
4063
4064 /// Return the number of callbr indirect dest labels.
4065 ///
4066 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4067
4068 /// getIndirectDestLabel - Return the i-th indirect dest label.
4069 ///
4070 Value *getIndirectDestLabel(unsigned i) const {
4071 assert(i < getNumIndirectDests() && "Out of bounds!")((void)0);
4072 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4073 1);
4074 }
4075
4076 Value *getIndirectDestLabelUse(unsigned i) const {
4077 assert(i < getNumIndirectDests() && "Out of bounds!")((void)0);
4078 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4079 1);
4080 }
4081
4082 // Return the destination basic blocks...
4083 BasicBlock *getDefaultDest() const {
4084 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4085 }
4086 BasicBlock *getIndirectDest(unsigned i) const {
4087 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4088 }
4089 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4090 SmallVector<BasicBlock *, 16> IndirectDests;
4091 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4092 IndirectDests.push_back(getIndirectDest(i));
4093 return IndirectDests;
4094 }
4095 void setDefaultDest(BasicBlock *B) {
4096 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4097 }
4098 void setIndirectDest(unsigned i, BasicBlock *B) {
4099 updateArgBlockAddresses(i, B);
4100 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4101 }
4102
4103 BasicBlock *getSuccessor(unsigned i) const {
4104 assert(i < getNumSuccessors() + 1 &&((void)0)
4105 "Successor # out of range for callbr!")((void)0);
4106 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4107 }
4108
4109 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4110 assert(i < getNumIndirectDests() + 1 &&((void)0)
4111 "Successor # out of range for callbr!")((void)0);
4112 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4113 }
4114
4115 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4116
4117 // Methods for support type inquiry through isa, cast, and dyn_cast:
4118 static bool classof(const Instruction *I) {
4119 return (I->getOpcode() == Instruction::CallBr);
4120 }
4121 static bool classof(const Value *V) {
4122 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4123 }
4124
4125private:
4126 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4127 // method so that subclasses cannot accidentally use it.
4128 template <typename Bitfield>
4129 void setSubclassData(typename Bitfield::Type Value) {
4130 Instruction::setSubclassData<Bitfield>(Value);
4131 }
4132};
4133
4134CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4135 ArrayRef<BasicBlock *> IndirectDests,
4136 ArrayRef<Value *> Args,
4137 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4138 const Twine &NameStr, Instruction *InsertBefore)
4139 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4140 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4141 InsertBefore) {
4142 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4143}
4144
4145CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4146 ArrayRef<BasicBlock *> IndirectDests,
4147 ArrayRef<Value *> Args,
4148 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4149 const Twine &NameStr, BasicBlock *InsertAtEnd)
4150 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4151 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4152 InsertAtEnd) {
4153 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4154}
4155
4156//===----------------------------------------------------------------------===//
4157// ResumeInst Class
4158//===----------------------------------------------------------------------===//
4159
4160//===---------------------------------------------------------------------------
4161/// Resume the propagation of an exception.
4162///
4163class ResumeInst : public Instruction {
4164 ResumeInst(const ResumeInst &RI);
4165
4166 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4167 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4168
4169protected:
4170 // Note: Instruction needs to be a friend here to call cloneImpl.
4171 friend class Instruction;
4172
4173 ResumeInst *cloneImpl() const;
4174
4175public:
4176 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4177 return new(1) ResumeInst(Exn, InsertBefore);
4178 }
4179
4180 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4181 return new(1) ResumeInst(Exn, InsertAtEnd);
4182 }
4183
4184 /// Provide fast operand accessors
4185 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4186
4187 /// Convenience accessor.
4188 Value *getValue() const { return Op<0>(); }
4189
4190 unsigned getNumSuccessors() const { return 0; }
4191
4192 // Methods for support type inquiry through isa, cast, and dyn_cast:
4193 static bool classof(const Instruction *I) {
4194 return I->getOpcode() == Instruction::Resume;
4195 }
4196 static bool classof(const Value *V) {
4197 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4198 }
4199
4200private:
4201 BasicBlock *getSuccessor(unsigned idx) const {
4202 llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable();
4203 }
4204
4205 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4206 llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable();
4207 }
4208};
4209
4210template <>
4211struct OperandTraits<ResumeInst> :
4212 public FixedNumOperandTraits<ResumeInst, 1> {
4213};
4214
4215DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<ResumeInst>::op_begin(const_cast
<ResumeInst*>(this))[i_nocapture].get()); } void ResumeInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<ResumeInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ResumeInst::getNumOperands() const
{ return OperandTraits<ResumeInst>::operands(this); } template
<int Idx_nocapture> Use &ResumeInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ResumeInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
4216
4217//===----------------------------------------------------------------------===//
4218// CatchSwitchInst Class
4219//===----------------------------------------------------------------------===//
4220class CatchSwitchInst : public Instruction {
4221 using UnwindDestField = BoolBitfieldElementT<0>;
4222
4223 /// The number of operands actually allocated. NumOperands is
4224 /// the number actually in use.
4225 unsigned ReservedSpace;
4226
4227 // Operand[0] = Outer scope
4228 // Operand[1] = Unwind block destination
4229 // Operand[n] = BasicBlock to go to on match
4230 CatchSwitchInst(const CatchSwitchInst &CSI);
4231
4232 /// Create a new switch instruction, specifying a
4233 /// default destination. The number of additional handlers can be specified
4234 /// here to make memory allocation more efficient.
4235 /// This constructor can also autoinsert before another instruction.
4236 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4237 unsigned NumHandlers, const Twine &NameStr,
4238 Instruction *InsertBefore);
4239
4240 /// Create a new switch instruction, specifying a
4241 /// default destination. The number of additional handlers can be specified
4242 /// here to make memory allocation more efficient.
4243 /// This constructor also autoinserts at the end of the specified BasicBlock.
4244 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4245 unsigned NumHandlers, const Twine &NameStr,
4246 BasicBlock *InsertAtEnd);
4247
4248 // allocate space for exactly zero operands
4249 void *operator new(size_t S) { return User::operator new(S); }
4250
4251 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4252 void growOperands(unsigned Size);
4253
4254protected:
4255 // Note: Instruction needs to be a friend here to call cloneImpl.
4256 friend class Instruction;
4257
4258 CatchSwitchInst *cloneImpl() const;
4259
4260public:
4261 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
4262
4263 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4264 unsigned NumHandlers,
4265 const Twine &NameStr = "",
4266 Instruction *InsertBefore = nullptr) {
4267 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4268 InsertBefore);
4269 }
4270
4271 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4272 unsigned NumHandlers, const Twine &NameStr,
4273 BasicBlock *InsertAtEnd) {
4274 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4275 InsertAtEnd);
4276 }
4277
4278 /// Provide fast operand accessors
4279 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4280
4281 // Accessor Methods for CatchSwitch stmt
4282 Value *getParentPad() const { return getOperand(0); }
4283 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4284
4285 // Accessor Methods for CatchSwitch stmt
4286 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4287 bool unwindsToCaller() const { return !hasUnwindDest(); }
4288 BasicBlock *getUnwindDest() const {
4289 if (hasUnwindDest())
4290 return cast<BasicBlock>(getOperand(1));
4291 return nullptr;
4292 }
4293 void setUnwindDest(BasicBlock *UnwindDest) {
4294 assert(UnwindDest)((void)0);
4295 assert(hasUnwindDest())((void)0);
4296 setOperand(1, UnwindDest);
4297 }
4298
4299 /// return the number of 'handlers' in this catchswitch
4300 /// instruction, except the default handler
4301 unsigned getNumHandlers() const {
4302 if (hasUnwindDest())
4303 return getNumOperands() - 2;
4304 return getNumOperands() - 1;
4305 }
4306
4307private:
4308 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4309 static const BasicBlock *handler_helper(const Value *V) {
4310 return cast<BasicBlock>(V);
4311 }
4312
4313public:
4314 using DerefFnTy = BasicBlock *(*)(Value *);
4315 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4316 using handler_range = iterator_range<handler_iterator>;
4317 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4318 using const_handler_iterator =
4319 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4320 using const_handler_range = iterator_range<const_handler_iterator>;
4321
4322 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4323 handler_iterator handler_begin() {
4324 op_iterator It = op_begin() + 1;
4325 if (hasUnwindDest())
4326 ++It;
4327 return handler_iterator(It, DerefFnTy(handler_helper));
4328 }
4329
4330 /// Returns an iterator that points to the first handler in the
4331 /// CatchSwitchInst.
4332 const_handler_iterator handler_begin() const {
4333 const_op_iterator It = op_begin() + 1;
4334 if (hasUnwindDest())
4335 ++It;
4336 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4337 }
4338
4339 /// Returns a read-only iterator that points one past the last
4340 /// handler in the CatchSwitchInst.
4341 handler_iterator handler_end() {
4342 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4343 }
4344
4345 /// Returns an iterator that points one past the last handler in the
4346 /// CatchSwitchInst.
4347 const_handler_iterator handler_end() const {
4348 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4349 }
4350
4351 /// iteration adapter for range-for loops.
4352 handler_range handlers() {
4353 return make_range(handler_begin(), handler_end());
4354 }
4355
4356 /// iteration adapter for range-for loops.
4357 const_handler_range handlers() const {
4358 return make_range(handler_begin(), handler_end());
4359 }
4360
4361 /// Add an entry to the switch instruction...
4362 /// Note:
4363 /// This action invalidates handler_end(). Old handler_end() iterator will
4364 /// point to the added handler.
4365 void addHandler(BasicBlock *Dest);
4366
4367 void removeHandler(handler_iterator HI);
4368
4369 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4370 BasicBlock *getSuccessor(unsigned Idx) const {
4371 assert(Idx < getNumSuccessors() &&((void)0)
4372 "Successor # out of range for catchswitch!")((void)0);
4373 return cast<BasicBlock>(getOperand(Idx + 1));
4374 }
4375 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4376 assert(Idx < getNumSuccessors() &&((void)0)
4377 "Successor # out of range for catchswitch!")((void)0);
4378 setOperand(Idx + 1, NewSucc);
4379 }
4380
4381 // Methods for support type inquiry through isa, cast, and dyn_cast:
4382 static bool classof(const Instruction *I) {
4383 return I->getOpcode() == Instruction::CatchSwitch;
4384 }
4385 static bool classof(const Value *V) {
4386 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4387 }
4388};
4389
4390template <>
4391struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4392
4393DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return
OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst
::const_op_iterator CatchSwitchInst::op_begin() const { return
OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst
::op_end() { return OperandTraits<CatchSwitchInst>::op_end
(this); } CatchSwitchInst::const_op_iterator CatchSwitchInst::
op_end() const { return OperandTraits<CatchSwitchInst>::
op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<CatchSwitchInst>::op_begin
(const_cast<CatchSwitchInst*>(this))[i_nocapture].get()
); } void CatchSwitchInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<CatchSwitchInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchSwitchInst::getNumOperands() const { return OperandTraits
<CatchSwitchInst>::operands(this); } template <int Idx_nocapture
> Use &CatchSwitchInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchSwitchInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4394
4395//===----------------------------------------------------------------------===//
4396// CleanupPadInst Class
4397//===----------------------------------------------------------------------===//
4398class CleanupPadInst : public FuncletPadInst {
4399private:
4400 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4401 unsigned Values, const Twine &NameStr,
4402 Instruction *InsertBefore)
4403 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4404 NameStr, InsertBefore) {}
4405 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4406 unsigned Values, const Twine &NameStr,
4407 BasicBlock *InsertAtEnd)
4408 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4409 NameStr, InsertAtEnd) {}
4410
4411public:
4412 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4413 const Twine &NameStr = "",
4414 Instruction *InsertBefore = nullptr) {
4415 unsigned Values = 1 + Args.size();
4416 return new (Values)
4417 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4418 }
4419
4420 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4421 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4422 unsigned Values = 1 + Args.size();
4423 return new (Values)
4424 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4425 }
4426
4427 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4428 static bool classof(const Instruction *I) {
4429 return I->getOpcode() == Instruction::CleanupPad;
4430 }
4431 static bool classof(const Value *V) {
4432 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4433 }
4434};
4435
4436//===----------------------------------------------------------------------===//
4437// CatchPadInst Class
4438//===----------------------------------------------------------------------===//
4439class CatchPadInst : public FuncletPadInst {
4440private:
4441 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4442 unsigned Values, const Twine &NameStr,
4443 Instruction *InsertBefore)
4444 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4445 NameStr, InsertBefore) {}
4446 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4447 unsigned Values, const Twine &NameStr,
4448 BasicBlock *InsertAtEnd)
4449 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4450 NameStr, InsertAtEnd) {}
4451
4452public:
4453 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4454 const Twine &NameStr = "",
4455 Instruction *InsertBefore = nullptr) {
4456 unsigned Values = 1 + Args.size();
4457 return new (Values)
4458 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4459 }
4460
4461 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4462 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4463 unsigned Values = 1 + Args.size();
4464 return new (Values)
4465 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4466 }
4467
4468 /// Convenience accessors
4469 CatchSwitchInst *getCatchSwitch() const {
4470 return cast<CatchSwitchInst>(Op<-1>());
4471 }
4472 void setCatchSwitch(Value *CatchSwitch) {
4473 assert(CatchSwitch)((void)0);
4474 Op<-1>() = CatchSwitch;
4475 }
4476
4477 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4478 static bool classof(const Instruction *I) {
4479 return I->getOpcode() == Instruction::CatchPad;
4480 }
4481 static bool classof(const Value *V) {
4482 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4483 }
4484};
4485
4486//===----------------------------------------------------------------------===//
4487// CatchReturnInst Class
4488//===----------------------------------------------------------------------===//
4489
4490class CatchReturnInst : public Instruction {
4491 CatchReturnInst(const CatchReturnInst &RI);
4492 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4493 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4494
4495 void init(Value *CatchPad, BasicBlock *BB);
4496
4497protected:
4498 // Note: Instruction needs to be a friend here to call cloneImpl.
4499 friend class Instruction;
4500
4501 CatchReturnInst *cloneImpl() const;
4502
4503public:
4504 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4505 Instruction *InsertBefore = nullptr) {
4506 assert(CatchPad)((void)0);
4507 assert(BB)((void)0);
4508 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4509 }
4510
4511 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4512 BasicBlock *InsertAtEnd) {
4513 assert(CatchPad)((void)0);
4514 assert(BB)((void)0);
4515 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4516 }
4517
4518 /// Provide fast operand accessors
4519 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4520
4521 /// Convenience accessors.
4522 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4523 void setCatchPad(CatchPadInst *CatchPad) {
4524 assert(CatchPad)((void)0);
4525 Op<0>() = CatchPad;
4526 }
4527
4528 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4529 void setSuccessor(BasicBlock *NewSucc) {
4530 assert(NewSucc)((void)0);
4531 Op<1>() = NewSucc;
4532 }
4533 unsigned getNumSuccessors() const { return 1; }
4534
4535 /// Get the parentPad of this catchret's catchpad's catchswitch.
4536 /// The successor block is implicitly a member of this funclet.
4537 Value *getCatchSwitchParentPad() const {
4538 return getCatchPad()->getCatchSwitch()->getParentPad();
4539 }
4540
4541 // Methods for support type inquiry through isa, cast, and dyn_cast:
4542 static bool classof(const Instruction *I) {
4543 return (I->getOpcode() == Instruction::CatchRet);
4544 }
4545 static bool classof(const Value *V) {
4546 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4547 }
4548
4549private:
4550 BasicBlock *getSuccessor(unsigned Idx) const {
4551 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0);
4552 return getSuccessor();
4553 }
4554
4555 void setSuccessor(unsigned Idx, BasicBlock *B) {
4556 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0);
4557 setSuccessor(B);
4558 }
4559};
4560
4561template <>
4562struct OperandTraits<CatchReturnInst>
4563 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4564
4565DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return
OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst
::const_op_iterator CatchReturnInst::op_begin() const { return
OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst
::op_end() { return OperandTraits<CatchReturnInst>::op_end
(this); } CatchReturnInst::const_op_iterator CatchReturnInst::
op_end() const { return OperandTraits<CatchReturnInst>::
op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<CatchReturnInst>::op_begin
(const_cast<CatchReturnInst*>(this))[i_nocapture].get()
); } void CatchReturnInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<CatchReturnInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchReturnInst::getNumOperands() const { return OperandTraits
<CatchReturnInst>::operands(this); } template <int Idx_nocapture
> Use &CatchReturnInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchReturnInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4566
4567//===----------------------------------------------------------------------===//
4568// CleanupReturnInst Class
4569//===----------------------------------------------------------------------===//
4570
4571class CleanupReturnInst : public Instruction {
4572 using UnwindDestField = BoolBitfieldElementT<0>;
4573
4574private:
4575 CleanupReturnInst(const CleanupReturnInst &RI);
4576 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4577 Instruction *InsertBefore = nullptr);
4578 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4579 BasicBlock *InsertAtEnd);
4580
4581 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4582
4583protected:
4584 // Note: Instruction needs to be a friend here to call cloneImpl.
4585 friend class Instruction;
4586
4587 CleanupReturnInst *cloneImpl() const;
4588
4589public:
4590 static CleanupReturnInst *Create(Value *CleanupPad,
4591 BasicBlock *UnwindBB = nullptr,
4592 Instruction *InsertBefore = nullptr) {
4593 assert(CleanupPad)((void)0);
4594 unsigned Values = 1;
4595 if (UnwindBB)
4596 ++Values;
4597 return new (Values)
4598 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4599 }
4600
4601 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4602 BasicBlock *InsertAtEnd) {
4603 assert(CleanupPad)((void)0);
4604 unsigned Values = 1;
4605 if (UnwindBB)
4606 ++Values;
4607 return new (Values)
4608 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4609 }
4610
4611 /// Provide fast operand accessors
4612 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4613
4614 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4615 bool unwindsToCaller() const { return !hasUnwindDest(); }
4616
4617 /// Convenience accessor.
4618 CleanupPadInst *getCleanupPad() const {
4619 return cast<CleanupPadInst>(Op<0>());
4620 }
4621 void setCleanupPad(CleanupPadInst *CleanupPad) {
4622 assert(CleanupPad)((void)0);
4623 Op<0>() = CleanupPad;
4624 }
4625
4626 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4627
4628 BasicBlock *getUnwindDest() const {
4629 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4630 }
4631 void setUnwindDest(BasicBlock *NewDest) {
4632 assert(NewDest)((void)0);
4633 assert(hasUnwindDest())((void)0);
4634 Op<1>() = NewDest;
4635 }
4636
4637 // Methods for support type inquiry through isa, cast, and dyn_cast:
4638 static bool classof(const Instruction *I) {
4639 return (I->getOpcode() == Instruction::CleanupRet);
4640 }
4641 static bool classof(const Value *V) {
4642 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4643 }
4644
4645private:
4646 BasicBlock *getSuccessor(unsigned Idx) const {
4647 assert(Idx == 0)((void)0);
4648 return getUnwindDest();
4649 }
4650
4651 void setSuccessor(unsigned Idx, BasicBlock *B) {
4652 assert(Idx == 0)((void)0);
4653 setUnwindDest(B);
4654 }
4655
4656 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4657 // method so that subclasses cannot accidentally use it.
4658 template <typename Bitfield>
4659 void setSubclassData(typename Bitfield::Type Value) {
4660 Instruction::setSubclassData<Bitfield>(Value);
4661 }
4662};
4663
4664template <>
4665struct OperandTraits<CleanupReturnInst>
4666 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4667
4668DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() {
return OperandTraits<CleanupReturnInst>::op_begin(this
); } CleanupReturnInst::const_op_iterator CleanupReturnInst::
op_begin() const { return OperandTraits<CleanupReturnInst>
::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst
::op_iterator CleanupReturnInst::op_end() { return OperandTraits
<CleanupReturnInst>::op_end(this); } CleanupReturnInst::
const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits
<CleanupReturnInst>::op_end(const_cast<CleanupReturnInst
*>(this)); } Value *CleanupReturnInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<CleanupReturnInst>::op_begin(const_cast
<CleanupReturnInst*>(this))[i_nocapture].get()); } void
CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<CleanupReturnInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned CleanupReturnInst
::getNumOperands() const { return OperandTraits<CleanupReturnInst
>::operands(this); } template <int Idx_nocapture> Use
&CleanupReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
CleanupReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
4669
4670//===----------------------------------------------------------------------===//
4671// UnreachableInst Class
4672//===----------------------------------------------------------------------===//
4673
4674//===---------------------------------------------------------------------------
4675/// This function has undefined behavior. In particular, the
4676/// presence of this instruction indicates some higher level knowledge that the
4677/// end of the block cannot be reached.
4678///
4679class UnreachableInst : public Instruction {
4680protected:
4681 // Note: Instruction needs to be a friend here to call cloneImpl.
4682 friend class Instruction;
4683
4684 UnreachableInst *cloneImpl() const;
4685
4686public:
4687 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4688 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4689
4690 // allocate space for exactly zero operands
4691 void *operator new(size_t S) { return User::operator new(S, 0); }
4692 void operator delete(void *Ptr) { User::operator delete(Ptr); }
4693
4694 unsigned getNumSuccessors() const { return 0; }
4695
4696 // Methods for support type inquiry through isa, cast, and dyn_cast:
4697 static bool classof(const Instruction *I) {
4698 return I->getOpcode() == Instruction::Unreachable;
4699 }
4700 static bool classof(const Value *V) {
4701 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4702 }
4703
4704private:
4705 BasicBlock *getSuccessor(unsigned idx) const {
4706 llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable();
4707 }
4708
4709 void setSuccessor(unsigned idx, BasicBlock *B) {
4710 llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable();
4711 }
4712};
4713
4714//===----------------------------------------------------------------------===//
4715// TruncInst Class
4716//===----------------------------------------------------------------------===//
4717
4718/// This class represents a truncation of integer types.
4719class TruncInst : public CastInst {
4720protected:
4721 // Note: Instruction needs to be a friend here to call cloneImpl.
4722 friend class Instruction;
4723
4724 /// Clone an identical TruncInst
4725 TruncInst *cloneImpl() const;
4726
4727public:
4728 /// Constructor with insert-before-instruction semantics
4729 TruncInst(
4730 Value *S, ///< The value to be truncated
4731 Type *Ty, ///< The (smaller) type to truncate to
4732 const Twine &NameStr = "", ///< A name for the new instruction
4733 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4734 );
4735
4736 /// Constructor with insert-at-end-of-block semantics
4737 TruncInst(
4738 Value *S, ///< The value to be truncated
4739 Type *Ty, ///< The (smaller) type to truncate to
4740 const Twine &NameStr, ///< A name for the new instruction
4741 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4742 );
4743
4744 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4745 static bool classof(const Instruction *I) {
4746 return I->getOpcode() == Trunc;
4747 }
4748 static bool classof(const Value *V) {
4749 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4750 }
4751};
4752
4753//===----------------------------------------------------------------------===//
4754// ZExtInst Class
4755//===----------------------------------------------------------------------===//
4756
4757/// This class represents zero extension of integer types.
4758class ZExtInst : public CastInst {
4759protected:
4760 // Note: Instruction needs to be a friend here to call cloneImpl.
4761 friend class Instruction;
4762
4763 /// Clone an identical ZExtInst
4764 ZExtInst *cloneImpl() const;
4765
4766public:
4767 /// Constructor with insert-before-instruction semantics
4768 ZExtInst(
4769 Value *S, ///< The value to be zero extended
4770 Type *Ty, ///< The type to zero extend to
4771 const Twine &NameStr = "", ///< A name for the new instruction
4772 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4773 );
4774
4775 /// Constructor with insert-at-end semantics.
4776 ZExtInst(
4777 Value *S, ///< The value to be zero extended
4778 Type *Ty, ///< The type to zero extend to
4779 const Twine &NameStr, ///< A name for the new instruction
4780 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4781 );
4782
4783 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4784 static bool classof(const Instruction *I) {
4785 return I->getOpcode() == ZExt;
4786 }
4787 static bool classof(const Value *V) {
4788 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4789 }
4790};
4791
4792//===----------------------------------------------------------------------===//
4793// SExtInst Class
4794//===----------------------------------------------------------------------===//
4795
4796/// This class represents a sign extension of integer types.
4797class SExtInst : public CastInst {
4798protected:
4799 // Note: Instruction needs to be a friend here to call cloneImpl.
4800 friend class Instruction;
4801
4802 /// Clone an identical SExtInst
4803 SExtInst *cloneImpl() const;
4804
4805public:
4806 /// Constructor with insert-before-instruction semantics
4807 SExtInst(
4808 Value *S, ///< The value to be sign extended
4809 Type *Ty, ///< The type to sign extend to
4810 const Twine &NameStr = "", ///< A name for the new instruction
4811 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4812 );
4813
4814 /// Constructor with insert-at-end-of-block semantics
4815 SExtInst(
4816 Value *S, ///< The value to be sign extended
4817 Type *Ty, ///< The type to sign extend to
4818 const Twine &NameStr, ///< A name for the new instruction
4819 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4820 );
4821
4822 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4823 static bool classof(const Instruction *I) {
4824 return I->getOpcode() == SExt;
4825 }
4826 static bool classof(const Value *V) {
4827 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4828 }
4829};
4830
4831//===----------------------------------------------------------------------===//
4832// FPTruncInst Class
4833//===----------------------------------------------------------------------===//
4834
4835/// This class represents a truncation of floating point types.
4836class FPTruncInst : public CastInst {
4837protected:
4838 // Note: Instruction needs to be a friend here to call cloneImpl.
4839 friend class Instruction;
4840
4841 /// Clone an identical FPTruncInst
4842 FPTruncInst *cloneImpl() const;
4843
4844public:
4845 /// Constructor with insert-before-instruction semantics
4846 FPTruncInst(
4847 Value *S, ///< The value to be truncated
4848 Type *Ty, ///< The type to truncate to
4849 const Twine &NameStr = "", ///< A name for the new instruction
4850 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4851 );
4852
4853 /// Constructor with insert-before-instruction semantics
4854 FPTruncInst(
4855 Value *S, ///< The value to be truncated
4856 Type *Ty, ///< The type to truncate to
4857 const Twine &NameStr, ///< A name for the new instruction
4858 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4859 );
4860
4861 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4862 static bool classof(const Instruction *I) {
4863 return I->getOpcode() == FPTrunc;
4864 }
4865 static bool classof(const Value *V) {
4866 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4867 }
4868};
4869
4870//===----------------------------------------------------------------------===//
4871// FPExtInst Class
4872//===----------------------------------------------------------------------===//
4873
4874/// This class represents an extension of floating point types.
4875class FPExtInst : public CastInst {
4876protected:
4877 // Note: Instruction needs to be a friend here to call cloneImpl.
4878 friend class Instruction;
4879
4880 /// Clone an identical FPExtInst
4881 FPExtInst *cloneImpl() const;
4882
4883public:
4884 /// Constructor with insert-before-instruction semantics
4885 FPExtInst(
4886 Value *S, ///< The value to be extended
4887 Type *Ty, ///< The type to extend to
4888 const Twine &NameStr = "", ///< A name for the new instruction
4889 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4890 );
4891
4892 /// Constructor with insert-at-end-of-block semantics
4893 FPExtInst(
4894 Value *S, ///< The value to be extended
4895 Type *Ty, ///< The type to extend to
4896 const Twine &NameStr, ///< A name for the new instruction
4897 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4898 );
4899
4900 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4901 static bool classof(const Instruction *I) {
4902 return I->getOpcode() == FPExt;
4903 }
4904 static bool classof(const Value *V) {
4905 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4906 }
4907};
4908
4909//===----------------------------------------------------------------------===//
4910// UIToFPInst Class
4911//===----------------------------------------------------------------------===//
4912
4913/// This class represents a cast unsigned integer to floating point.
4914class UIToFPInst : public CastInst {
4915protected:
4916 // Note: Instruction needs to be a friend here to call cloneImpl.
4917 friend class Instruction;
4918
4919 /// Clone an identical UIToFPInst
4920 UIToFPInst *cloneImpl() const;
4921
4922public:
4923 /// Constructor with insert-before-instruction semantics
4924 UIToFPInst(
4925 Value *S, ///< The value to be converted
4926 Type *Ty, ///< The type to convert to
4927 const Twine &NameStr = "", ///< A name for the new instruction
4928 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4929 );
4930
4931 /// Constructor with insert-at-end-of-block semantics
4932 UIToFPInst(
4933 Value *S, ///< The value to be converted
4934 Type *Ty, ///< The type to convert to
4935 const Twine &NameStr, ///< A name for the new instruction
4936 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4937 );
4938
4939 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4940 static bool classof(const Instruction *I) {
4941 return I->getOpcode() == UIToFP;
4942 }
4943 static bool classof(const Value *V) {
4944 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4945 }
4946};
4947
4948//===----------------------------------------------------------------------===//
4949// SIToFPInst Class
4950//===----------------------------------------------------------------------===//
4951
4952/// This class represents a cast from signed integer to floating point.
4953class SIToFPInst : public CastInst {
4954protected:
4955 // Note: Instruction needs to be a friend here to call cloneImpl.
4956 friend class Instruction;
4957
4958 /// Clone an identical SIToFPInst
4959 SIToFPInst *cloneImpl() const;
4960
4961public:
4962 /// Constructor with insert-before-instruction semantics
4963 SIToFPInst(
4964 Value *S, ///< The value to be converted
4965 Type *Ty, ///< The type to convert to
4966 const Twine &NameStr = "", ///< A name for the new instruction
4967 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4968 );
4969
4970 /// Constructor with insert-at-end-of-block semantics
4971 SIToFPInst(
4972 Value *S, ///< The value to be converted
4973 Type *Ty, ///< The type to convert to
4974 const Twine &NameStr, ///< A name for the new instruction
4975 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4976 );
4977
4978 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4979 static bool classof(const Instruction *I) {
4980 return I->getOpcode() == SIToFP;
4981 }
4982 static bool classof(const Value *V) {
4983 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4984 }
4985};
4986
4987//===----------------------------------------------------------------------===//
4988// FPToUIInst Class
4989//===----------------------------------------------------------------------===//
4990
4991/// This class represents a cast from floating point to unsigned integer
4992class FPToUIInst : public CastInst {
4993protected:
4994 // Note: Instruction needs to be a friend here to call cloneImpl.
4995 friend class Instruction;
4996
4997 /// Clone an identical FPToUIInst
4998 FPToUIInst *cloneImpl() const;
4999
5000public:
5001 /// Constructor with insert-before-instruction semantics
5002 FPToUIInst(
5003 Value *S, ///< The value to be converted
5004 Type *Ty, ///< The type to convert to
5005 const Twine &NameStr = "", ///< A name for the new instruction
5006 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5007 );
5008
5009 /// Constructor with insert-at-end-of-block semantics
5010 FPToUIInst(
5011 Value *S, ///< The value to be converted
5012 Type *Ty, ///< The type to convert to
5013 const Twine &NameStr, ///< A name for the new instruction
5014 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
5015 );
5016
5017 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5018 static bool classof(const Instruction *I) {
5019 return I->getOpcode() == FPToUI;
5020 }
5021 static bool classof(const Value *V) {
5022 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5023 }
5024};
5025
5026//===----------------------------------------------------------------------===//
5027// FPToSIInst Class
5028//===----------------------------------------------------------------------===//
5029
5030/// This class represents a cast from floating point to signed integer.
5031class FPToSIInst : public CastInst {
5032protected:
5033 // Note: Instruction needs to be a friend here to call cloneImpl.
5034 friend class Instruction;
5035
5036 /// Clone an identical FPToSIInst
5037 FPToSIInst *cloneImpl() const;
5038
5039public:
5040 /// Constructor with insert-before-instruction semantics
5041 FPToSIInst(
5042 Value *S, ///< The value to be converted
5043 Type *Ty, ///< The type to convert to
5044 const Twine &NameStr = "", ///< A name for the new instruction
5045 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5046 );
5047
5048 /// Constructor with insert-at-end-of-block semantics
5049 FPToSIInst(
5050 Value *S, ///< The value to be converted
5051 Type *Ty, ///< The type to convert to
5052 const Twine &NameStr, ///< A name for the new instruction
5053 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5054 );
5055
5056 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5057 static bool classof(const Instruction *I) {
5058 return I->getOpcode() == FPToSI;
5059 }
5060 static bool classof(const Value *V) {
5061 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5062 }
5063};
5064
5065//===----------------------------------------------------------------------===//
5066// IntToPtrInst Class
5067//===----------------------------------------------------------------------===//
5068
5069/// This class represents a cast from an integer to a pointer.
5070class IntToPtrInst : public CastInst {
5071public:
5072 // Note: Instruction needs to be a friend here to call cloneImpl.
5073 friend class Instruction;
5074
5075 /// Constructor with insert-before-instruction semantics
5076 IntToPtrInst(
5077 Value *S, ///< The value to be converted
5078 Type *Ty, ///< The type to convert to
5079 const Twine &NameStr = "", ///< A name for the new instruction
5080 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5081 );
5082
5083 /// Constructor with insert-at-end-of-block semantics
5084 IntToPtrInst(
5085 Value *S, ///< The value to be converted
5086 Type *Ty, ///< The type to convert to
5087 const Twine &NameStr, ///< A name for the new instruction
5088 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5089 );
5090
5091 /// Clone an identical IntToPtrInst.
5092 IntToPtrInst *cloneImpl() const;
5093
5094 /// Returns the address space of this instruction's pointer type.
5095 unsigned getAddressSpace() const {
5096 return getType()->getPointerAddressSpace();
5097 }
5098
5099 // Methods for support type inquiry through isa, cast, and dyn_cast:
5100 static bool classof(const Instruction *I) {
5101 return I->getOpcode() == IntToPtr;
5102 }
5103 static bool classof(const Value *V) {
5104 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5105 }
5106};
5107
5108//===----------------------------------------------------------------------===//
5109// PtrToIntInst Class
5110//===----------------------------------------------------------------------===//
5111
5112/// This class represents a cast from a pointer to an integer.
5113class PtrToIntInst : public CastInst {
5114protected:
5115 // Note: Instruction needs to be a friend here to call cloneImpl.
5116 friend class Instruction;
5117
5118 /// Clone an identical PtrToIntInst.
5119 PtrToIntInst *cloneImpl() const;
5120
5121public:
5122 /// Constructor with insert-before-instruction semantics
5123 PtrToIntInst(
5124 Value *S, ///< The value to be converted
5125 Type *Ty, ///< The type to convert to
5126 const Twine &NameStr = "", ///< A name for the new instruction
5127 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5128 );
5129
5130 /// Constructor with insert-at-end-of-block semantics
5131 PtrToIntInst(
5132 Value *S, ///< The value to be converted
5133 Type *Ty, ///< The type to convert to
5134 const Twine &NameStr, ///< A name for the new instruction
5135 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5136 );
5137
5138 /// Gets the pointer operand.
5139 Value *getPointerOperand() { return getOperand(0); }
5140 /// Gets the pointer operand.
5141 const Value *getPointerOperand() const { return getOperand(0); }
5142 /// Gets the operand index of the pointer operand.
5143 static unsigned getPointerOperandIndex() { return 0U; }
5144
5145 /// Returns the address space of the pointer operand.
5146 unsigned getPointerAddressSpace() const {
5147 return getPointerOperand()->getType()->getPointerAddressSpace();
5148 }
5149
5150 // Methods for support type inquiry through isa, cast, and dyn_cast:
5151 static bool classof(const Instruction *I) {
5152 return I->getOpcode() == PtrToInt;
5153 }
5154 static bool classof(const Value *V) {
5155 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5156 }
5157};
5158
5159//===----------------------------------------------------------------------===//
5160// BitCastInst Class
5161//===----------------------------------------------------------------------===//
5162
5163/// This class represents a no-op cast from one type to another.
5164class BitCastInst : public CastInst {
5165protected:
5166 // Note: Instruction needs to be a friend here to call cloneImpl.
5167 friend class Instruction;
5168
5169 /// Clone an identical BitCastInst.
5170 BitCastInst *cloneImpl() const;
5171
5172public:
5173 /// Constructor with insert-before-instruction semantics
5174 BitCastInst(
5175 Value *S, ///< The value to be casted
5176 Type *Ty, ///< The type to casted to
5177 const Twine &NameStr = "", ///< A name for the new instruction
5178 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5179 );
5180
5181 /// Constructor with insert-at-end-of-block semantics
5182 BitCastInst(
5183 Value *S, ///< The value to be casted
5184 Type *Ty, ///< The type to casted to
5185 const Twine &NameStr, ///< A name for the new instruction
5186 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5187 );
5188
5189 // Methods for support type inquiry through isa, cast, and dyn_cast:
5190 static bool classof(const Instruction *I) {
5191 return I->getOpcode() == BitCast;
5192 }
5193 static bool classof(const Value *V) {
5194 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5195 }
5196};
5197
5198//===----------------------------------------------------------------------===//
5199// AddrSpaceCastInst Class
5200//===----------------------------------------------------------------------===//
5201
5202/// This class represents a conversion between pointers from one address space
5203/// to another.
5204class AddrSpaceCastInst : public CastInst {
5205protected:
5206 // Note: Instruction needs to be a friend here to call cloneImpl.
5207 friend class Instruction;
5208
5209 /// Clone an identical AddrSpaceCastInst.
5210 AddrSpaceCastInst *cloneImpl() const;
5211
5212public:
5213 /// Constructor with insert-before-instruction semantics
5214 AddrSpaceCastInst(
5215 Value *S, ///< The value to be casted
5216 Type *Ty, ///< The type to casted to
5217 const Twine &NameStr = "", ///< A name for the new instruction
5218 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5219 );
5220
5221 /// Constructor with insert-at-end-of-block semantics
5222 AddrSpaceCastInst(
5223 Value *S, ///< The value to be casted
5224 Type *Ty, ///< The type to casted to
5225 const Twine &NameStr, ///< A name for the new instruction
5226 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5227 );
5228
5229 // Methods for support type inquiry through isa, cast, and dyn_cast:
5230 static bool classof(const Instruction *I) {
5231 return I->getOpcode() == AddrSpaceCast;
5232 }
5233 static bool classof(const Value *V) {
5234 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5235 }
5236
5237 /// Gets the pointer operand.
5238 Value *getPointerOperand() {
5239 return getOperand(0);
5240 }
5241
5242 /// Gets the pointer operand.
5243 const Value *getPointerOperand() const {
5244 return getOperand(0);
5245 }
5246
5247 /// Gets the operand index of the pointer operand.
5248 static unsigned getPointerOperandIndex() {
5249 return 0U;
5250 }
5251
5252 /// Returns the address space of the pointer operand.
5253 unsigned getSrcAddressSpace() const {
5254 return getPointerOperand()->getType()->getPointerAddressSpace();
5255 }
5256
5257 /// Returns the address space of the result.
5258 unsigned getDestAddressSpace() const {
5259 return getType()->getPointerAddressSpace();
5260 }
5261};
5262
5263/// A helper function that returns the pointer operand of a load or store
5264/// instruction. Returns nullptr if not load or store.
5265inline const Value *getLoadStorePointerOperand(const Value *V) {
5266 if (auto *Load = dyn_cast<LoadInst>(V))
5267 return Load->getPointerOperand();
5268 if (auto *Store = dyn_cast<StoreInst>(V))
5269 return Store->getPointerOperand();
5270 return nullptr;
5271}
5272inline Value *getLoadStorePointerOperand(Value *V) {
5273 return const_cast<Value *>(
5274 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5275}
5276
5277/// A helper function that returns the pointer operand of a load, store
5278/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5279inline const Value *getPointerOperand(const Value *V) {
5280 if (auto *Ptr = getLoadStorePointerOperand(V))
5281 return Ptr;
5282 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5283 return Gep->getPointerOperand();
5284 return nullptr;
5285}
5286inline Value *getPointerOperand(Value *V) {
5287 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5288}
5289
5290/// A helper function that returns the alignment of load or store instruction.
5291inline Align getLoadStoreAlignment(Value *I) {
5292 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0)
5293 "Expected Load or Store instruction")((void)0);
5294 if (auto *LI = dyn_cast<LoadInst>(I))
5295 return LI->getAlign();
5296 return cast<StoreInst>(I)->getAlign();
5297}
5298
5299/// A helper function that returns the address space of the pointer operand of
5300/// load or store instruction.
5301inline unsigned getLoadStoreAddressSpace(Value *I) {
5302 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0)
5303 "Expected Load or Store instruction")((void)0);
5304 if (auto *LI = dyn_cast<LoadInst>(I))
5305 return LI->getPointerAddressSpace();
5306 return cast<StoreInst>(I)->getPointerAddressSpace();
5307}
5308
5309/// A helper function that returns the type of a load or store instruction.
5310inline Type *getLoadStoreType(Value *I) {
5311 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0)
5312 "Expected Load or Store instruction")((void)0);
5313 if (auto *LI = dyn_cast<LoadInst>(I))
5314 return LI->getType();
5315 return cast<StoreInst>(I)->getValueOperand()->getType();
5316}
5317
5318//===----------------------------------------------------------------------===//
5319// FreezeInst Class
5320//===----------------------------------------------------------------------===//
5321
5322/// This class represents a freeze function that returns random concrete
5323/// value if an operand is either a poison value or an undef value
5324class FreezeInst : public UnaryInstruction {
5325protected:
5326 // Note: Instruction needs to be a friend here to call cloneImpl.
5327 friend class Instruction;
5328
5329 /// Clone an identical FreezeInst
5330 FreezeInst *cloneImpl() const;
5331
5332public:
5333 explicit FreezeInst(Value *S,
5334 const Twine &NameStr = "",
5335 Instruction *InsertBefore = nullptr);
5336 FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5337
5338 // Methods for support type inquiry through isa, cast, and dyn_cast:
5339 static inline bool classof(const Instruction *I) {
5340 return I->getOpcode() == Freeze;
5341 }
5342 static inline bool classof(const Value *V) {
5343 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5344 }
5345};
5346
5347} // end namespace llvm
5348
5349#endif // LLVM_IR_INSTRUCTIONS_H

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h

1//===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains types to represent alignments.
10// They are instrumented to guarantee some invariants are preserved and prevent
11// invalid manipulations.
12//
13// - Align represents an alignment in bytes, it is always set and always a valid
14// power of two, its minimum value is 1 which means no alignment requirements.
15//
16// - MaybeAlign is an optional type, it may be undefined or set. When it's set
17// you can get the underlying Align type by using the getValue() method.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_SUPPORT_ALIGNMENT_H_
22#define LLVM_SUPPORT_ALIGNMENT_H_
23
24#include "llvm/ADT/Optional.h"
25#include "llvm/Support/MathExtras.h"
26#include <cassert>
27#ifndef NDEBUG1
28#include <string>
29#endif // NDEBUG
30
31namespace llvm {
32
33#define ALIGN_CHECK_ISPOSITIVE(decl) \
34 assert(decl > 0 && (#decl " should be defined"))((void)0)
35
36/// This struct is a compact representation of a valid (non-zero power of two)
37/// alignment.
38/// It is suitable for use as static global constants.
39struct Align {
40private:
41 uint8_t ShiftValue = 0; /// The log2 of the required alignment.
42 /// ShiftValue is less than 64 by construction.
43
44 friend struct MaybeAlign;
45 friend unsigned Log2(Align);
46 friend bool operator==(Align Lhs, Align Rhs);
47 friend bool operator!=(Align Lhs, Align Rhs);
48 friend bool operator<=(Align Lhs, Align Rhs);
49 friend bool operator>=(Align Lhs, Align Rhs);
50 friend bool operator<(Align Lhs, Align Rhs);
51 friend bool operator>(Align Lhs, Align Rhs);
52 friend unsigned encode(struct MaybeAlign A);
53 friend struct MaybeAlign decodeMaybeAlign(unsigned Value);
54
55 /// A trivial type to allow construction of constexpr Align.
56 /// This is currently needed to workaround a bug in GCC 5.3 which prevents
57 /// definition of constexpr assign operators.
58 /// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic
59 /// FIXME: Remove this, make all assign operators constexpr and introduce user
60 /// defined literals when we don't have to support GCC 5.3 anymore.
61 /// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain
62 struct LogValue {
63 uint8_t Log;
64 };
65
66public:
67 /// Default is byte-aligned.
68 constexpr Align() = default;
69 /// Do not perform checks in case of copy/move construct/assign, because the
70 /// checks have been performed when building `Other`.
71 constexpr Align(const Align &Other) = default;
72 constexpr Align(Align &&Other) = default;
73 Align &operator=(const Align &Other) = default;
74 Align &operator=(Align &&Other) = default;
75
76 explicit Align(uint64_t Value) {
77 assert(Value > 0 && "Value must not be 0")((void)0);
78 assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2")((void)0);
79 ShiftValue = Log2_64(Value);
65
Calling 'Log2_64'
67
Returning from 'Log2_64'
68
The value 255 is assigned to field 'ShiftValue'
80 assert(ShiftValue < 64 && "Broken invariant")((void)0);
81 }
82
83 /// This is a hole in the type system and should not be abused.
84 /// Needed to interact with C for instance.
85 uint64_t value() const { return uint64_t(1) << ShiftValue; }
72
The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t'
86
87 /// Allow constructions of constexpr Align.
88 template <size_t kValue> constexpr static LogValue Constant() {
89 return LogValue{static_cast<uint8_t>(CTLog2<kValue>())};
90 }
91
92 /// Allow constructions of constexpr Align from types.
93 /// Compile time equivalent to Align(alignof(T)).
94 template <typename T> constexpr static LogValue Of() {
95 return Constant<std::alignment_of<T>::value>();
96 }
97
98 /// Constexpr constructor from LogValue type.
99 constexpr Align(LogValue CA) : ShiftValue(CA.Log) {}
100};
101
102/// Treats the value 0 as a 1, so Align is always at least 1.
103inline Align assumeAligned(uint64_t Value) {
104 return Value ? Align(Value) : Align();
105}
106
107/// This struct is a compact representation of a valid (power of two) or
108/// undefined (0) alignment.
109struct MaybeAlign : public llvm::Optional<Align> {
110private:
111 using UP = llvm::Optional<Align>;
112
113public:
114 /// Default is undefined.
115 MaybeAlign() = default;
116 /// Do not perform checks in case of copy/move construct/assign, because the
117 /// checks have been performed when building `Other`.
118 MaybeAlign(const MaybeAlign &Other) = default;
119 MaybeAlign &operator=(const MaybeAlign &Other) = default;
120 MaybeAlign(MaybeAlign &&Other) = default;
121 MaybeAlign &operator=(MaybeAlign &&Other) = default;
122
123 /// Use llvm::Optional<Align> constructor.
124 using UP::UP;
125
126 explicit MaybeAlign(uint64_t Value) {
127 assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&((void)0)
128 "Alignment is neither 0 nor a power of 2")((void)0);
129 if (Value)
130 emplace(Value);
131 }
132
133 /// For convenience, returns a valid alignment or 1 if undefined.
134 Align valueOrOne() const { return hasValue() ? getValue() : Align(); }
135};
136
137/// Checks that SizeInBytes is a multiple of the alignment.
138inline bool isAligned(Align Lhs, uint64_t SizeInBytes) {
139 return SizeInBytes % Lhs.value() == 0;
140}
141
142/// Checks that Addr is a multiple of the alignment.
143inline bool isAddrAligned(Align Lhs, const void *Addr) {
144 return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr));
145}
146
147/// Returns a multiple of A needed to store `Size` bytes.
148inline uint64_t alignTo(uint64_t Size, Align A) {
149 const uint64_t Value = A.value();
150 // The following line is equivalent to `(Size + Value - 1) / Value * Value`.
151
152 // The division followed by a multiplication can be thought of as a right
153 // shift followed by a left shift which zeros out the extra bits produced in
154 // the bump; `~(Value - 1)` is a mask where all those bits being zeroed out
155 // are just zero.
156
157 // Most compilers can generate this code but the pattern may be missed when
158 // multiple functions gets inlined.
159 return (Size + Value - 1) & ~(Value - 1U);
160}
161
162/// If non-zero \p Skew is specified, the return value will be a minimal integer
163/// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for
164/// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p
165/// Skew mod \p A'.
166///
167/// Examples:
168/// \code
169/// alignTo(5, Align(8), 7) = 7
170/// alignTo(17, Align(8), 1) = 17
171/// alignTo(~0LL, Align(8), 3) = 3
172/// \endcode
173inline uint64_t alignTo(uint64_t Size, Align A, uint64_t Skew) {
174 const uint64_t Value = A.value();
175 Skew %= Value;
176 return ((Size + Value - 1 - Skew) & ~(Value - 1U)) + Skew;
177}
178
179/// Returns a multiple of A needed to store `Size` bytes.
180/// Returns `Size` if current alignment is undefined.
181inline uint64_t alignTo(uint64_t Size, MaybeAlign A) {
182 return A ? alignTo(Size, A.getValue()) : Size;
183}
184
185/// Aligns `Addr` to `Alignment` bytes, rounding up.
186inline uintptr_t alignAddr(const void *Addr, Align Alignment) {
187 uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr);
188 assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=((void)0)
189 ArithAddr &&((void)0)
190 "Overflow")((void)0);
191 return alignTo(ArithAddr, Alignment);
192}
193
194/// Returns the offset to the next integer (mod 2**64) that is greater than
195/// or equal to \p Value and is a multiple of \p Align.
196inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) {
197 return alignTo(Value, Alignment) - Value;
198}
199
200/// Returns the necessary adjustment for aligning `Addr` to `Alignment`
201/// bytes, rounding up.
202inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) {
203 return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment);
204}
205
206/// Returns the log2 of the alignment.
207inline unsigned Log2(Align A) { return A.ShiftValue; }
208
209/// Returns the alignment that satisfies both alignments.
210/// Same semantic as MinAlign.
211inline Align commonAlignment(Align A, Align B) { return std::min(A, B); }
212
213/// Returns the alignment that satisfies both alignments.
214/// Same semantic as MinAlign.
215inline Align commonAlignment(Align A, uint64_t Offset) {
216 return Align(MinAlign(A.value(), Offset));
217}
218
219/// Returns the alignment that satisfies both alignments.
220/// Same semantic as MinAlign.
221inline MaybeAlign commonAlignment(MaybeAlign A, MaybeAlign B) {
222 return A && B ? commonAlignment(*A, *B) : A ? A : B;
223}
224
225/// Returns the alignment that satisfies both alignments.
226/// Same semantic as MinAlign.
227inline MaybeAlign commonAlignment(MaybeAlign A, uint64_t Offset) {
228 return MaybeAlign(MinAlign((*A).value(), Offset));
229}
230
231/// Returns a representation of the alignment that encodes undefined as 0.
232inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; }
233
234/// Dual operation of the encode function above.
235inline MaybeAlign decodeMaybeAlign(unsigned Value) {
236 if (Value == 0)
237 return MaybeAlign();
238 Align Out;
239 Out.ShiftValue = Value - 1;
240 return Out;
241}
242
243/// Returns a representation of the alignment, the encoded value is positive by
244/// definition.
245inline unsigned encode(Align A) { return encode(MaybeAlign(A)); }
246
247/// Comparisons between Align and scalars. Rhs must be positive.
248inline bool operator==(Align Lhs, uint64_t Rhs) {
249 ALIGN_CHECK_ISPOSITIVE(Rhs);
250 return Lhs.value() == Rhs;
251}
252inline bool operator!=(Align Lhs, uint64_t Rhs) {
253 ALIGN_CHECK_ISPOSITIVE(Rhs);
254 return Lhs.value() != Rhs;
255}
256inline bool operator<=(Align Lhs, uint64_t Rhs) {
257 ALIGN_CHECK_ISPOSITIVE(Rhs);
258 return Lhs.value() <= Rhs;
259}
260inline bool operator>=(Align Lhs, uint64_t Rhs) {
261 ALIGN_CHECK_ISPOSITIVE(Rhs);
262 return Lhs.value() >= Rhs;
263}
264inline bool operator<(Align Lhs, uint64_t Rhs) {
265 ALIGN_CHECK_ISPOSITIVE(Rhs);
266 return Lhs.value() < Rhs;
267}
268inline bool operator>(Align Lhs, uint64_t Rhs) {
269 ALIGN_CHECK_ISPOSITIVE(Rhs);
270 return Lhs.value() > Rhs;
271}
272
273/// Comparisons between MaybeAlign and scalars.
274inline bool operator==(MaybeAlign Lhs, uint64_t Rhs) {
275 return Lhs ? (*Lhs).value() == Rhs : Rhs == 0;
276}
277inline bool operator!=(MaybeAlign Lhs, uint64_t Rhs) {
278 return Lhs ? (*Lhs).value() != Rhs : Rhs != 0;
279}
280
281/// Comparisons operators between Align.
282inline bool operator==(Align Lhs, Align Rhs) {
283 return Lhs.ShiftValue == Rhs.ShiftValue;
284}
285inline bool operator!=(Align Lhs, Align Rhs) {
286 return Lhs.ShiftValue != Rhs.ShiftValue;
287}
288inline bool operator<=(Align Lhs, Align Rhs) {
289 return Lhs.ShiftValue <= Rhs.ShiftValue;
290}
291inline bool operator>=(Align Lhs, Align Rhs) {
292 return Lhs.ShiftValue >= Rhs.ShiftValue;
293}
294inline bool operator<(Align Lhs, Align Rhs) {
295 return Lhs.ShiftValue < Rhs.ShiftValue;
296}
297inline bool operator>(Align Lhs, Align Rhs) {
298 return Lhs.ShiftValue > Rhs.ShiftValue;
299}
300
301// Don't allow relational comparisons with MaybeAlign.
302bool operator<=(Align Lhs, MaybeAlign Rhs) = delete;
303bool operator>=(Align Lhs, MaybeAlign Rhs) = delete;
304bool operator<(Align Lhs, MaybeAlign Rhs) = delete;
305bool operator>(Align Lhs, MaybeAlign Rhs) = delete;
306
307bool operator<=(MaybeAlign Lhs, Align Rhs) = delete;
308bool operator>=(MaybeAlign Lhs, Align Rhs) = delete;
309bool operator<(MaybeAlign Lhs, Align Rhs) = delete;
310bool operator>(MaybeAlign Lhs, Align Rhs) = delete;
311
312bool operator<=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
313bool operator>=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
314bool operator<(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
315bool operator>(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
316
317inline Align operator*(Align Lhs, uint64_t Rhs) {
318 assert(Rhs > 0 && "Rhs must be positive")((void)0);
319 return Align(Lhs.value() * Rhs);
320}
321
322inline MaybeAlign operator*(MaybeAlign Lhs, uint64_t Rhs) {
323 assert(Rhs > 0 && "Rhs must be positive")((void)0);
324 return Lhs ? Lhs.getValue() * Rhs : MaybeAlign();
325}
326
327inline Align operator/(Align Lhs, uint64_t Divisor) {
328 assert(llvm::isPowerOf2_64(Divisor) &&((void)0)
329 "Divisor must be positive and a power of 2")((void)0);
330 assert(Lhs != 1 && "Can't halve byte alignment")((void)0);
331 return Align(Lhs.value() / Divisor);
332}
333
334inline MaybeAlign operator/(MaybeAlign Lhs, uint64_t Divisor) {
335 assert(llvm::isPowerOf2_64(Divisor) &&((void)0)
336 "Divisor must be positive and a power of 2")((void)0);
337 return Lhs ? Lhs.getValue() / Divisor : MaybeAlign();
338}
339
340inline Align max(MaybeAlign Lhs, Align Rhs) {
341 return Lhs && *Lhs > Rhs ? *Lhs : Rhs;
342}
343
344inline Align max(Align Lhs, MaybeAlign Rhs) {
345 return Rhs && *Rhs > Lhs ? *Rhs : Lhs;
346}
347
348#ifndef NDEBUG1
349// For usage in LLVM_DEBUG macros.
350inline std::string DebugStr(const Align &A) {
351 return std::to_string(A.value());
352}
353// For usage in LLVM_DEBUG macros.
354inline std::string DebugStr(const MaybeAlign &MA) {
355 if (MA)
356 return std::to_string(MA->value());
357 return "None";
358}
359#endif // NDEBUG
360
361#undef ALIGN_CHECK_ISPOSITIVE
362
363} // namespace llvm
364
365#endif // LLVM_SUPPORT_ALIGNMENT_H_

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/MathExtras.h

1//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains some functions that are useful for math stuff.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_MATHEXTRAS_H
14#define LLVM_SUPPORT_MATHEXTRAS_H
15
16#include "llvm/Support/Compiler.h"
17#include <cassert>
18#include <climits>
19#include <cmath>
20#include <cstdint>
21#include <cstring>
22#include <limits>
23#include <type_traits>
24
25#ifdef __ANDROID_NDK__
26#include <android/api-level.h>
27#endif
28
29#ifdef _MSC_VER
30// Declare these intrinsics manually rather including intrin.h. It's very
31// expensive, and MathExtras.h is popular.
32// #include <intrin.h>
33extern "C" {
34unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
35unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
36unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
37unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
38}
39#endif
40
41namespace llvm {
42
43/// The behavior an operation has on an input of 0.
44enum ZeroBehavior {
45 /// The returned value is undefined.
46 ZB_Undefined,
47 /// The returned value is numeric_limits<T>::max()
48 ZB_Max,
49 /// The returned value is numeric_limits<T>::digits
50 ZB_Width
51};
52
53/// Mathematical constants.
54namespace numbers {
55// TODO: Track C++20 std::numbers.
56// TODO: Favor using the hexadecimal FP constants (requires C++17).
57constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113
58 egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620
59 ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162
60 ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392
61 log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0)
62 log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2)
63 pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796
64 inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541
65 sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161
66 inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197
67 sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219
68 inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1)
69 sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194
70 inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1)
71 phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622
72constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113
73 egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620
74 ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162
75 ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392
76 log2ef = 1.44269504F, // (0x1.715476P+0)
77 log10ef = .434294482F, // (0x1.bcb7b2P-2)
78 pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796
79 inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541
80 sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161
81 inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197
82 sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193
83 inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1)
84 sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194
85 inv_sqrt3f = .577350269F, // (0x1.279a74P-1)
86 phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622
87} // namespace numbers
88
89namespace detail {
90template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
91 static unsigned count(T Val, ZeroBehavior) {
92 if (!Val)
93 return std::numeric_limits<T>::digits;
94 if (Val & 0x1)
95 return 0;
96
97 // Bisection method.
98 unsigned ZeroBits = 0;
99 T Shift = std::numeric_limits<T>::digits >> 1;
100 T Mask = std::numeric_limits<T>::max() >> Shift;
101 while (Shift) {
102 if ((Val & Mask) == 0) {
103 Val >>= Shift;
104 ZeroBits |= Shift;
105 }
106 Shift >>= 1;
107 Mask >>= Shift;
108 }
109 return ZeroBits;
110 }
111};
112
113#if defined(__GNUC__4) || defined(_MSC_VER)
114template <typename T> struct TrailingZerosCounter<T, 4> {
115 static unsigned count(T Val, ZeroBehavior ZB) {
116 if (ZB != ZB_Undefined && Val == 0)
117 return 32;
118
119#if __has_builtin(__builtin_ctz)1 || defined(__GNUC__4)
120 return __builtin_ctz(Val);
121#elif defined(_MSC_VER)
122 unsigned long Index;
123 _BitScanForward(&Index, Val);
124 return Index;
125#endif
126 }
127};
128
129#if !defined(_MSC_VER) || defined(_M_X64)
130template <typename T> struct TrailingZerosCounter<T, 8> {
131 static unsigned count(T Val, ZeroBehavior ZB) {
132 if (ZB != ZB_Undefined && Val == 0)
133 return 64;
134
135#if __has_builtin(__builtin_ctzll)1 || defined(__GNUC__4)
136 return __builtin_ctzll(Val);
137#elif defined(_MSC_VER)
138 unsigned long Index;
139 _BitScanForward64(&Index, Val);
140 return Index;
141#endif
142 }
143};
144#endif
145#endif
146} // namespace detail
147
148/// Count number of 0's from the least significant bit to the most
149/// stopping at the first 1.
150///
151/// Only unsigned integral types are allowed.
152///
153/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
154/// valid arguments.
155template <typename T>
156unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
157 static_assert(std::numeric_limits<T>::is_integer &&
158 !std::numeric_limits<T>::is_signed,
159 "Only unsigned integral types are allowed.");
160 return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
161}
162
163namespace detail {
164template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
165 static unsigned count(T Val, ZeroBehavior) {
166 if (!Val)
167 return std::numeric_limits<T>::digits;
168
169 // Bisection method.
170 unsigned ZeroBits = 0;
171 for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
172 T Tmp = Val >> Shift;
173 if (Tmp)
174 Val = Tmp;
175 else
176 ZeroBits |= Shift;
177 }
178 return ZeroBits;
179 }
180};
181
182#if defined(__GNUC__4) || defined(_MSC_VER)
183template <typename T> struct LeadingZerosCounter<T, 4> {
184 static unsigned count(T Val, ZeroBehavior ZB) {
185 if (ZB != ZB_Undefined && Val == 0)
186 return 32;
187
188#if __has_builtin(__builtin_clz)1 || defined(__GNUC__4)
189 return __builtin_clz(Val);
190#elif defined(_MSC_VER)
191 unsigned long Index;
192 _BitScanReverse(&Index, Val);
193 return Index ^ 31;
194#endif
195 }
196};
197
198#if !defined(_MSC_VER) || defined(_M_X64)
199template <typename T> struct LeadingZerosCounter<T, 8> {
200 static unsigned count(T Val, ZeroBehavior ZB) {
201 if (ZB != ZB_Undefined && Val == 0)
202 return 64;
203
204#if __has_builtin(__builtin_clzll)1 || defined(__GNUC__4)
205 return __builtin_clzll(Val);
206#elif defined(_MSC_VER)
207 unsigned long Index;
208 _BitScanReverse64(&Index, Val);
209 return Index ^ 63;
210#endif
211 }
212};
213#endif
214#endif
215} // namespace detail
216
217/// Count number of 0's from the most significant bit to the least
218/// stopping at the first 1.
219///
220/// Only unsigned integral types are allowed.
221///
222/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
223/// valid arguments.
224template <typename T>
225unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
226 static_assert(std::numeric_limits<T>::is_integer &&
227 !std::numeric_limits<T>::is_signed,
228 "Only unsigned integral types are allowed.");
229 return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
230}
231
232/// Get the index of the first set bit starting from the least
233/// significant bit.
234///
235/// Only unsigned integral types are allowed.
236///
237/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
238/// valid arguments.
239template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
240 if (ZB == ZB_Max && Val == 0)
241 return std::numeric_limits<T>::max();
242
243 return countTrailingZeros(Val, ZB_Undefined);
244}
245
246/// Create a bitmask with the N right-most bits set to 1, and all other
247/// bits set to 0. Only unsigned types are allowed.
248template <typename T> T maskTrailingOnes(unsigned N) {
249 static_assert(std::is_unsigned<T>::value, "Invalid type!");
250 const unsigned Bits = CHAR_BIT8 * sizeof(T);
251 assert(N <= Bits && "Invalid bit index")((void)0);
252 return N == 0 ? 0 : (T(-1) >> (Bits - N));
253}
254
255/// Create a bitmask with the N left-most bits set to 1, and all other
256/// bits set to 0. Only unsigned types are allowed.
257template <typename T> T maskLeadingOnes(unsigned N) {
258 return ~maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
259}
260
261/// Create a bitmask with the N right-most bits set to 0, and all other
262/// bits set to 1. Only unsigned types are allowed.
263template <typename T> T maskTrailingZeros(unsigned N) {
264 return maskLeadingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
265}
266
267/// Create a bitmask with the N left-most bits set to 0, and all other
268/// bits set to 1. Only unsigned types are allowed.
269template <typename T> T maskLeadingZeros(unsigned N) {
270 return maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
271}
272
273/// Get the index of the last set bit starting from the least
274/// significant bit.
275///
276/// Only unsigned integral types are allowed.
277///
278/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
279/// valid arguments.
280template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
281 if (ZB == ZB_Max && Val == 0)
282 return std::numeric_limits<T>::max();
283
284 // Use ^ instead of - because both gcc and llvm can remove the associated ^
285 // in the __builtin_clz intrinsic on x86.
286 return countLeadingZeros(Val, ZB_Undefined) ^
287 (std::numeric_limits<T>::digits - 1);
288}
289
290/// Macro compressed bit reversal table for 256 bits.
291///
292/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
293static const unsigned char BitReverseTable256[256] = {
294#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
295#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
296#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
297 R6(0), R6(2), R6(1), R6(3)
298#undef R2
299#undef R4
300#undef R6
301};
302
303/// Reverse the bits in \p Val.
304template <typename T>
305T reverseBits(T Val) {
306 unsigned char in[sizeof(Val)];
307 unsigned char out[sizeof(Val)];
308 std::memcpy(in, &Val, sizeof(Val));
309 for (unsigned i = 0; i < sizeof(Val); ++i)
310 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
311 std::memcpy(&Val, out, sizeof(Val));
312 return Val;
313}
314
315#if __has_builtin(__builtin_bitreverse8)1
316template<>
317inline uint8_t reverseBits<uint8_t>(uint8_t Val) {
318 return __builtin_bitreverse8(Val);
319}
320#endif
321
322#if __has_builtin(__builtin_bitreverse16)1
323template<>
324inline uint16_t reverseBits<uint16_t>(uint16_t Val) {
325 return __builtin_bitreverse16(Val);
326}
327#endif
328
329#if __has_builtin(__builtin_bitreverse32)1
330template<>
331inline uint32_t reverseBits<uint32_t>(uint32_t Val) {
332 return __builtin_bitreverse32(Val);
333}
334#endif
335
336#if __has_builtin(__builtin_bitreverse64)1
337template<>
338inline uint64_t reverseBits<uint64_t>(uint64_t Val) {
339 return __builtin_bitreverse64(Val);
340}
341#endif
342
343// NOTE: The following support functions use the _32/_64 extensions instead of
344// type overloading so that signed and unsigned integers can be used without
345// ambiguity.
346
347/// Return the high 32 bits of a 64 bit value.
348constexpr inline uint32_t Hi_32(uint64_t Value) {
349 return static_cast<uint32_t>(Value >> 32);
350}
351
352/// Return the low 32 bits of a 64 bit value.
353constexpr inline uint32_t Lo_32(uint64_t Value) {
354 return static_cast<uint32_t>(Value);
355}
356
357/// Make a 64-bit integer from a high / low pair of 32-bit integers.
358constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
359 return ((uint64_t)High << 32) | (uint64_t)Low;
360}
361
362/// Checks if an integer fits into the given bit width.
363template <unsigned N> constexpr inline bool isInt(int64_t x) {
364 return N >= 64 || (-(INT64_C(1)1LL<<(N-1)) <= x && x < (INT64_C(1)1LL<<(N-1)));
365}
366// Template specializations to get better code for common cases.
367template <> constexpr inline bool isInt<8>(int64_t x) {
368 return static_cast<int8_t>(x) == x;
369}
370template <> constexpr inline bool isInt<16>(int64_t x) {
371 return static_cast<int16_t>(x) == x;
372}
373template <> constexpr inline bool isInt<32>(int64_t x) {
374 return static_cast<int32_t>(x) == x;
375}
376
377/// Checks if a signed integer is an N bit number shifted left by S.
378template <unsigned N, unsigned S>
379constexpr inline bool isShiftedInt(int64_t x) {
380 static_assert(
381 N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
382 static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
383 return isInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0);
384}
385
386/// Checks if an unsigned integer fits into the given bit width.
387///
388/// This is written as two functions rather than as simply
389///
390/// return N >= 64 || X < (UINT64_C(1) << N);
391///
392/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
393/// left too many places.
394template <unsigned N>
395constexpr inline std::enable_if_t<(N < 64), bool> isUInt(uint64_t X) {
396 static_assert(N > 0, "isUInt<0> doesn't make sense");
397 return X < (UINT64_C(1)1ULL << (N));
398}
399template <unsigned N>
400constexpr inline std::enable_if_t<N >= 64, bool> isUInt(uint64_t) {
401 return true;
402}
403
404// Template specializations to get better code for common cases.
405template <> constexpr inline bool isUInt<8>(uint64_t x) {
406 return static_cast<uint8_t>(x) == x;
407}
408template <> constexpr inline bool isUInt<16>(uint64_t x) {
409 return static_cast<uint16_t>(x) == x;
410}
411template <> constexpr inline bool isUInt<32>(uint64_t x) {
412 return static_cast<uint32_t>(x) == x;
413}
414
415/// Checks if a unsigned integer is an N bit number shifted left by S.
416template <unsigned N, unsigned S>
417constexpr inline bool isShiftedUInt(uint64_t x) {
418 static_assert(
419 N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
420 static_assert(N + S <= 64,
421 "isShiftedUInt<N, S> with N + S > 64 is too wide.");
422 // Per the two static_asserts above, S must be strictly less than 64. So
423 // 1 << S is not undefined behavior.
424 return isUInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0);
425}
426
427/// Gets the maximum value for a N-bit unsigned integer.
428inline uint64_t maxUIntN(uint64_t N) {
429 assert(N > 0 && N <= 64 && "integer width out of range")((void)0);
430
431 // uint64_t(1) << 64 is undefined behavior, so we can't do
432 // (uint64_t(1) << N) - 1
433 // without checking first that N != 64. But this works and doesn't have a
434 // branch.
435 return UINT64_MAX0xffffffffffffffffULL >> (64 - N);
436}
437
438/// Gets the minimum value for a N-bit signed integer.
439inline int64_t minIntN(int64_t N) {
440 assert(N > 0 && N <= 64 && "integer width out of range")((void)0);
441
442 return UINT64_C(1)1ULL + ~(UINT64_C(1)1ULL << (N - 1));
443}
444
445/// Gets the maximum value for a N-bit signed integer.
446inline int64_t maxIntN(int64_t N) {
447 assert(N > 0 && N <= 64 && "integer width out of range")((void)0);
448
449 // This relies on two's complement wraparound when N == 64, so we convert to
450 // int64_t only at the very end to avoid UB.
451 return (UINT64_C(1)1ULL << (N - 1)) - 1;
452}
453
454/// Checks if an unsigned integer fits into the given (dynamic) bit width.
455inline bool isUIntN(unsigned N, uint64_t x) {
456 return N >= 64 || x <= maxUIntN(N);
457}
458
459/// Checks if an signed integer fits into the given (dynamic) bit width.
460inline bool isIntN(unsigned N, int64_t x) {
461 return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
462}
463
464/// Return true if the argument is a non-empty sequence of ones starting at the
465/// least significant bit with the remainder zero (32 bit version).
466/// Ex. isMask_32(0x0000FFFFU) == true.
467constexpr inline bool isMask_32(uint32_t Value) {
468 return Value && ((Value + 1) & Value) == 0;
469}
470
471/// Return true if the argument is a non-empty sequence of ones starting at the
472/// least significant bit with the remainder zero (64 bit version).
473constexpr inline bool isMask_64(uint64_t Value) {
474 return Value && ((Value + 1) & Value) == 0;
475}
476
477/// Return true if the argument contains a non-empty sequence of ones with the
478/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
479constexpr inline bool isShiftedMask_32(uint32_t Value) {
480 return Value && isMask_32((Value - 1) | Value);
481}
482
483/// Return true if the argument contains a non-empty sequence of ones with the
484/// remainder zero (64 bit version.)
485constexpr inline bool isShiftedMask_64(uint64_t Value) {
486 return Value && isMask_64((Value - 1) | Value);
487}
488
489/// Return true if the argument is a power of two > 0.
490/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
491constexpr inline bool isPowerOf2_32(uint32_t Value) {
492 return Value && !(Value & (Value - 1));
493}
494
495/// Return true if the argument is a power of two > 0 (64 bit edition.)
496constexpr inline bool isPowerOf2_64(uint64_t Value) {
497 return Value && !(Value & (Value - 1));
498}
499
500/// Count the number of ones from the most significant bit to the first
501/// zero bit.
502///
503/// Ex. countLeadingOnes(0xFF0FFF00) == 8.
504/// Only unsigned integral types are allowed.
505///
506/// \param ZB the behavior on an input of all ones. Only ZB_Width and
507/// ZB_Undefined are valid arguments.
508template <typename T>
509unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
510 static_assert(std::numeric_limits<T>::is_integer &&
511 !std::numeric_limits<T>::is_signed,
512 "Only unsigned integral types are allowed.");
513 return countLeadingZeros<T>(~Value, ZB);
514}
515
516/// Count the number of ones from the least significant bit to the first
517/// zero bit.
518///
519/// Ex. countTrailingOnes(0x00FF00FF) == 8.
520/// Only unsigned integral types are allowed.
521///
522/// \param ZB the behavior on an input of all ones. Only ZB_Width and
523/// ZB_Undefined are valid arguments.
524template <typename T>
525unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
526 static_assert(std::numeric_limits<T>::is_integer &&
527 !std::numeric_limits<T>::is_signed,
528 "Only unsigned integral types are allowed.");
529 return countTrailingZeros<T>(~Value, ZB);
530}
531
532namespace detail {
533template <typename T, std::size_t SizeOfT> struct PopulationCounter {
534 static unsigned count(T Value) {
535 // Generic version, forward to 32 bits.
536 static_assert(SizeOfT <= 4, "Not implemented!");
537#if defined(__GNUC__4)
538 return __builtin_popcount(Value);
539#else
540 uint32_t v = Value;
541 v = v - ((v >> 1) & 0x55555555);
542 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
543 return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
544#endif
545 }
546};
547
548template <typename T> struct PopulationCounter<T, 8> {
549 static unsigned count(T Value) {
550#if defined(__GNUC__4)
551 return __builtin_popcountll(Value);
552#else
553 uint64_t v = Value;
554 v = v - ((v >> 1) & 0x5555555555555555ULL);
555 v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
556 v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
557 return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
558#endif
559 }
560};
561} // namespace detail
562
563/// Count the number of set bits in a value.
564/// Ex. countPopulation(0xF000F000) = 8
565/// Returns 0 if the word is zero.
566template <typename T>
567inline unsigned countPopulation(T Value) {
568 static_assert(std::numeric_limits<T>::is_integer &&
569 !std::numeric_limits<T>::is_signed,
570 "Only unsigned integral types are allowed.");
571 return detail::PopulationCounter<T, sizeof(T)>::count(Value);
572}
573
574/// Compile time Log2.
575/// Valid only for positive powers of two.
576template <size_t kValue> constexpr inline size_t CTLog2() {
577 static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue),
578 "Value is not a valid power of 2");
579 return 1 + CTLog2<kValue / 2>();
580}
581
582template <> constexpr inline size_t CTLog2<1>() { return 0; }
583
584/// Return the log base 2 of the specified value.
585inline double Log2(double Value) {
586#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
587 return __builtin_log(Value) / __builtin_log(2.0);
588#else
589 return log2(Value);
590#endif
591}
592
593/// Return the floor log base 2 of the specified value, -1 if the value is zero.
594/// (32 bit edition.)
595/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
596inline unsigned Log2_32(uint32_t Value) {
597 return 31 - countLeadingZeros(Value);
598}
599
600/// Return the floor log base 2 of the specified value, -1 if the value is zero.
601/// (64 bit edition.)
602inline unsigned Log2_64(uint64_t Value) {
603 return 63 - countLeadingZeros(Value);
66
Returning the value 4294967295
604}
605
606/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
607/// (32 bit edition).
608/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
609inline unsigned Log2_32_Ceil(uint32_t Value) {
610 return 32 - countLeadingZeros(Value - 1);
611}
612
613/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
614/// (64 bit edition.)
615inline unsigned Log2_64_Ceil(uint64_t Value) {
616 return 64 - countLeadingZeros(Value - 1);
617}
618
619/// Return the greatest common divisor of the values using Euclid's algorithm.
620template <typename T>
621inline T greatestCommonDivisor(T A, T B) {
622 while (B) {
623 T Tmp = B;
624 B = A % B;
625 A = Tmp;
626 }
627 return A;
628}
629
630inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
631 return greatestCommonDivisor<uint64_t>(A, B);
632}
633
634/// This function takes a 64-bit integer and returns the bit equivalent double.
635inline double BitsToDouble(uint64_t Bits) {
636 double D;
637 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
638 memcpy(&D, &Bits, sizeof(Bits));
639 return D;
640}
641
642/// This function takes a 32-bit integer and returns the bit equivalent float.
643inline float BitsToFloat(uint32_t Bits) {
644 float F;
645 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
646 memcpy(&F, &Bits, sizeof(Bits));
647 return F;
648}
649
650/// This function takes a double and returns the bit equivalent 64-bit integer.
651/// Note that copying doubles around changes the bits of NaNs on some hosts,
652/// notably x86, so this routine cannot be used if these bits are needed.
653inline uint64_t DoubleToBits(double Double) {
654 uint64_t Bits;
655 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
656 memcpy(&Bits, &Double, sizeof(Double));
657 return Bits;
658}
659
660/// This function takes a float and returns the bit equivalent 32-bit integer.
661/// Note that copying floats around changes the bits of NaNs on some hosts,
662/// notably x86, so this routine cannot be used if these bits are needed.
663inline uint32_t FloatToBits(float Float) {
664 uint32_t Bits;
665 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
666 memcpy(&Bits, &Float, sizeof(Float));
667 return Bits;
668}
669
670/// A and B are either alignments or offsets. Return the minimum alignment that
671/// may be assumed after adding the two together.
672constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
673 // The largest power of 2 that divides both A and B.
674 //
675 // Replace "-Value" by "1+~Value" in the following commented code to avoid
676 // MSVC warning C4146
677 // return (A | B) & -(A | B);
678 return (A | B) & (1 + ~(A | B));
679}
680
681/// Returns the next power of two (in 64-bits) that is strictly greater than A.
682/// Returns zero on overflow.
683inline uint64_t NextPowerOf2(uint64_t A) {
684 A |= (A >> 1);
685 A |= (A >> 2);
686 A |= (A >> 4);
687 A |= (A >> 8);
688 A |= (A >> 16);
689 A |= (A >> 32);
690 return A + 1;
691}
692
693/// Returns the power of two which is less than or equal to the given value.
694/// Essentially, it is a floor operation across the domain of powers of two.
695inline uint64_t PowerOf2Floor(uint64_t A) {
696 if (!A) return 0;
697 return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
698}
699
700/// Returns the power of two which is greater than or equal to the given value.
701/// Essentially, it is a ceil operation across the domain of powers of two.
702inline uint64_t PowerOf2Ceil(uint64_t A) {
703 if (!A)
704 return 0;
705 return NextPowerOf2(A - 1);
706}
707
708/// Returns the next integer (mod 2**64) that is greater than or equal to
709/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
710///
711/// If non-zero \p Skew is specified, the return value will be a minimal
712/// integer that is greater than or equal to \p Value and equal to
713/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
714/// \p Align, its value is adjusted to '\p Skew mod \p Align'.
715///
716/// Examples:
717/// \code
718/// alignTo(5, 8) = 8
719/// alignTo(17, 8) = 24
720/// alignTo(~0LL, 8) = 0
721/// alignTo(321, 255) = 510
722///
723/// alignTo(5, 8, 7) = 7
724/// alignTo(17, 8, 1) = 17
725/// alignTo(~0LL, 8, 3) = 3
726/// alignTo(321, 255, 42) = 552
727/// \endcode
728inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
729 assert(Align != 0u && "Align can't be 0.")((void)0);
730 Skew %= Align;
731 return (Value + Align - 1 - Skew) / Align * Align + Skew;
732}
733
734/// Returns the next integer (mod 2**64) that is greater than or equal to
735/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
736template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
737 static_assert(Align != 0u, "Align must be non-zero");
738 return (Value + Align - 1) / Align * Align;
739}
740
741/// Returns the integer ceil(Numerator / Denominator).
742inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
743 return alignTo(Numerator, Denominator) / Denominator;
744}
745
746/// Returns the integer nearest(Numerator / Denominator).
747inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) {
748 return (Numerator + (Denominator / 2)) / Denominator;
749}
750
751/// Returns the largest uint64_t less than or equal to \p Value and is
752/// \p Skew mod \p Align. \p Align must be non-zero
753inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
754 assert(Align != 0u && "Align can't be 0.")((void)0);
755 Skew %= Align;
756 return (Value - Skew) / Align * Align + Skew;
757}
758
759/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
760/// Requires 0 < B <= 32.
761template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
762 static_assert(B > 0, "Bit width can't be 0.");
763 static_assert(B <= 32, "Bit width out of range.");
764 return int32_t(X << (32 - B)) >> (32 - B);
765}
766
767/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
768/// Requires 0 < B <= 32.
769inline int32_t SignExtend32(uint32_t X, unsigned B) {
770 assert(B > 0 && "Bit width can't be 0.")((void)0);
771 assert(B <= 32 && "Bit width out of range.")((void)0);
772 return int32_t(X << (32 - B)) >> (32 - B);
773}
774
775/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
776/// Requires 0 < B <= 64.
777template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
778 static_assert(B > 0, "Bit width can't be 0.");
779 static_assert(B <= 64, "Bit width out of range.");
780 return int64_t(x << (64 - B)) >> (64 - B);
781}
782
783/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
784/// Requires 0 < B <= 64.
785inline int64_t SignExtend64(uint64_t X, unsigned B) {
786 assert(B > 0 && "Bit width can't be 0.")((void)0);
787 assert(B <= 64 && "Bit width out of range.")((void)0);
788 return int64_t(X << (64 - B)) >> (64 - B);
789}
790
791/// Subtract two unsigned integers, X and Y, of type T and return the absolute
792/// value of the result.
793template <typename T>
794std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) {
795 return X > Y ? (X - Y) : (Y - X);
796}
797
798/// Add two unsigned integers, X and Y, of type T. Clamp the result to the
799/// maximum representable value of T on overflow. ResultOverflowed indicates if
800/// the result is larger than the maximum representable value of type T.
801template <typename T>
802std::enable_if_t<std::is_unsigned<T>::value, T>
803SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
804 bool Dummy;
805 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
806 // Hacker's Delight, p. 29
807 T Z = X + Y;
808 Overflowed = (Z < X || Z < Y);
809 if (Overflowed)
810 return std::numeric_limits<T>::max();
811 else
812 return Z;
813}
814
815/// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
816/// maximum representable value of T on overflow. ResultOverflowed indicates if
817/// the result is larger than the maximum representable value of type T.
818template <typename T>
819std::enable_if_t<std::is_unsigned<T>::value, T>
820SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
821 bool Dummy;
822 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
823
824 // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
825 // because it fails for uint16_t (where multiplication can have undefined
826 // behavior due to promotion to int), and requires a division in addition
827 // to the multiplication.
828
829 Overflowed = false;
830
831 // Log2(Z) would be either Log2Z or Log2Z + 1.
832 // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
833 // will necessarily be less than Log2Max as desired.
834 int Log2Z = Log2_64(X) + Log2_64(Y);
835 const T Max = std::numeric_limits<T>::max();
836 int Log2Max = Log2_64(Max);
837 if (Log2Z < Log2Max) {
838 return X * Y;
839 }
840 if (Log2Z > Log2Max) {
841 Overflowed = true;
842 return Max;
843 }
844
845 // We're going to use the top bit, and maybe overflow one
846 // bit past it. Multiply all but the bottom bit then add
847 // that on at the end.
848 T Z = (X >> 1) * Y;
849 if (Z & ~(Max >> 1)) {
850 Overflowed = true;
851 return Max;
852 }
853 Z <<= 1;
854 if (X & 1)
855 return SaturatingAdd(Z, Y, ResultOverflowed);
856
857 return Z;
858}
859
860/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
861/// the product. Clamp the result to the maximum representable value of T on
862/// overflow. ResultOverflowed indicates if the result is larger than the
863/// maximum representable value of type T.
864template <typename T>
865std::enable_if_t<std::is_unsigned<T>::value, T>
866SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
867 bool Dummy;
868 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
869
870 T Product = SaturatingMultiply(X, Y, &Overflowed);
871 if (Overflowed)
872 return Product;
873
874 return SaturatingAdd(A, Product, &Overflowed);
875}
876
877/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
878extern const float huge_valf;
879
880
881/// Add two signed integers, computing the two's complement truncated result,
882/// returning true if overflow occured.
883template <typename T>
884std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) {
885#if __has_builtin(__builtin_add_overflow)1
886 return __builtin_add_overflow(X, Y, &Result);
887#else
888 // Perform the unsigned addition.
889 using U = std::make_unsigned_t<T>;
890 const U UX = static_cast<U>(X);
891 const U UY = static_cast<U>(Y);
892 const U UResult = UX + UY;
893
894 // Convert to signed.
895 Result = static_cast<T>(UResult);
896
897 // Adding two positive numbers should result in a positive number.
898 if (X > 0 && Y > 0)
899 return Result <= 0;
900 // Adding two negatives should result in a negative number.
901 if (X < 0 && Y < 0)
902 return Result >= 0;
903 return false;
904#endif
905}
906
907/// Subtract two signed integers, computing the two's complement truncated
908/// result, returning true if an overflow ocurred.
909template <typename T>
910std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) {
911#if __has_builtin(__builtin_sub_overflow)1
912 return __builtin_sub_overflow(X, Y, &Result);
913#else
914 // Perform the unsigned addition.
915 using U = std::make_unsigned_t<T>;
916 const U UX = static_cast<U>(X);
917 const U UY = static_cast<U>(Y);
918 const U UResult = UX - UY;
919
920 // Convert to signed.
921 Result = static_cast<T>(UResult);
922
923 // Subtracting a positive number from a negative results in a negative number.
924 if (X <= 0 && Y > 0)
925 return Result >= 0;
926 // Subtracting a negative number from a positive results in a positive number.
927 if (X >= 0 && Y < 0)
928 return Result <= 0;
929 return false;
930#endif
931}
932
933/// Multiply two signed integers, computing the two's complement truncated
934/// result, returning true if an overflow ocurred.
935template <typename T>
936std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) {
937 // Perform the unsigned multiplication on absolute values.
938 using U = std::make_unsigned_t<T>;
939 const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
940 const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
941 const U UResult = UX * UY;
942
943 // Convert to signed.
944 const bool IsNegative = (X < 0) ^ (Y < 0);
945 Result = IsNegative ? (0 - UResult) : UResult;
946
947 // If any of the args was 0, result is 0 and no overflow occurs.
948 if (UX == 0 || UY == 0)
949 return false;
950
951 // UX and UY are in [1, 2^n], where n is the number of digits.
952 // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
953 // positive) divided by an argument compares to the other.
954 if (IsNegative)
955 return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY;
956 else
957 return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY;
958}
959
960} // End llvm namespace
961
962#endif