Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h
Warning:line 85, column 47
The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name AddressSanitizer.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp

1//===- AddressSanitizer.cpp - memory error detector -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of AddressSanitizer, an address sanity checker.
10// Details of the algorithm:
11// https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
12//
13// FIXME: This sanitizer does not yet handle scalable vectors
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/DepthFirstIterator.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/ADT/Triple.h"
27#include "llvm/ADT/Twine.h"
28#include "llvm/Analysis/MemoryBuiltins.h"
29#include "llvm/Analysis/TargetLibraryInfo.h"
30#include "llvm/Analysis/ValueTracking.h"
31#include "llvm/BinaryFormat/MachO.h"
32#include "llvm/IR/Argument.h"
33#include "llvm/IR/Attributes.h"
34#include "llvm/IR/BasicBlock.h"
35#include "llvm/IR/Comdat.h"
36#include "llvm/IR/Constant.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DIBuilder.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/DebugInfoMetadata.h"
41#include "llvm/IR/DebugLoc.h"
42#include "llvm/IR/DerivedTypes.h"
43#include "llvm/IR/Dominators.h"
44#include "llvm/IR/Function.h"
45#include "llvm/IR/GlobalAlias.h"
46#include "llvm/IR/GlobalValue.h"
47#include "llvm/IR/GlobalVariable.h"
48#include "llvm/IR/IRBuilder.h"
49#include "llvm/IR/InlineAsm.h"
50#include "llvm/IR/InstVisitor.h"
51#include "llvm/IR/InstrTypes.h"
52#include "llvm/IR/Instruction.h"
53#include "llvm/IR/Instructions.h"
54#include "llvm/IR/IntrinsicInst.h"
55#include "llvm/IR/Intrinsics.h"
56#include "llvm/IR/LLVMContext.h"
57#include "llvm/IR/MDBuilder.h"
58#include "llvm/IR/Metadata.h"
59#include "llvm/IR/Module.h"
60#include "llvm/IR/Type.h"
61#include "llvm/IR/Use.h"
62#include "llvm/IR/Value.h"
63#include "llvm/InitializePasses.h"
64#include "llvm/MC/MCSectionMachO.h"
65#include "llvm/Pass.h"
66#include "llvm/Support/Casting.h"
67#include "llvm/Support/CommandLine.h"
68#include "llvm/Support/Debug.h"
69#include "llvm/Support/ErrorHandling.h"
70#include "llvm/Support/MathExtras.h"
71#include "llvm/Support/ScopedPrinter.h"
72#include "llvm/Support/raw_ostream.h"
73#include "llvm/Transforms/Instrumentation.h"
74#include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
75#include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
76#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
77#include "llvm/Transforms/Utils/BasicBlockUtils.h"
78#include "llvm/Transforms/Utils/Local.h"
79#include "llvm/Transforms/Utils/ModuleUtils.h"
80#include "llvm/Transforms/Utils/PromoteMemToReg.h"
81#include <algorithm>
82#include <cassert>
83#include <cstddef>
84#include <cstdint>
85#include <iomanip>
86#include <limits>
87#include <memory>
88#include <sstream>
89#include <string>
90#include <tuple>
91
92using namespace llvm;
93
94#define DEBUG_TYPE"asan" "asan"
95
96static const uint64_t kDefaultShadowScale = 3;
97static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
98static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
99static const uint64_t kDynamicShadowSentinel =
100 std::numeric_limits<uint64_t>::max();
101static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G.
102static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
103static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
104static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
105static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
106static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
107static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
108static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
109static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000;
110static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
111static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
112static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000;
113static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
114static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
115static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
116static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
117static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
118static const uint64_t kEmscriptenShadowOffset = 0;
119
120// The shadow memory space is dynamically allocated.
121static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
122
123static const size_t kMinStackMallocSize = 1 << 6; // 64B
124static const size_t kMaxStackMallocSize = 1 << 16; // 64K
125static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
126static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
127
128const char kAsanModuleCtorName[] = "asan.module_ctor";
129const char kAsanModuleDtorName[] = "asan.module_dtor";
130static const uint64_t kAsanCtorAndDtorPriority = 1;
131// On Emscripten, the system needs more than one priorities for constructors.
132static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
133const char kAsanReportErrorTemplate[] = "__asan_report_";
134const char kAsanRegisterGlobalsName[] = "__asan_register_globals";
135const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals";
136const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals";
137const char kAsanUnregisterImageGlobalsName[] =
138 "__asan_unregister_image_globals";
139const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals";
140const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals";
141const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init";
142const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init";
143const char kAsanInitName[] = "__asan_init";
144const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v";
145const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp";
146const char kAsanPtrSub[] = "__sanitizer_ptr_sub";
147const char kAsanHandleNoReturnName[] = "__asan_handle_no_return";
148static const int kMaxAsanStackMallocSizeClass = 10;
149const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_";
150const char kAsanStackMallocAlwaysNameTemplate[] =
151 "__asan_stack_malloc_always_";
152const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_";
153const char kAsanGenPrefix[] = "___asan_gen_";
154const char kODRGenPrefix[] = "__odr_asan_gen_";
155const char kSanCovGenPrefix[] = "__sancov_gen_";
156const char kAsanSetShadowPrefix[] = "__asan_set_shadow_";
157const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory";
158const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory";
159
160// ASan version script has __asan_* wildcard. Triple underscore prevents a
161// linker (gold) warning about attempting to export a local symbol.
162const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered";
163
164const char kAsanOptionDetectUseAfterReturn[] =
165 "__asan_option_detect_stack_use_after_return";
166
167const char kAsanShadowMemoryDynamicAddress[] =
168 "__asan_shadow_memory_dynamic_address";
169
170const char kAsanAllocaPoison[] = "__asan_alloca_poison";
171const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison";
172
173const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared";
174const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private";
175
176// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
177static const size_t kNumberOfAccessSizes = 5;
178
179static const unsigned kAllocaRzSize = 32;
180
181// Command-line flags.
182
183static cl::opt<bool> ClEnableKasan(
184 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
185 cl::Hidden, cl::init(false));
186
187static cl::opt<bool> ClRecover(
188 "asan-recover",
189 cl::desc("Enable recovery mode (continue-after-error)."),
190 cl::Hidden, cl::init(false));
191
192static cl::opt<bool> ClInsertVersionCheck(
193 "asan-guard-against-version-mismatch",
194 cl::desc("Guard against compiler/runtime version mismatch."),
195 cl::Hidden, cl::init(true));
196
197// This flag may need to be replaced with -f[no-]asan-reads.
198static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
199 cl::desc("instrument read instructions"),
200 cl::Hidden, cl::init(true));
201
202static cl::opt<bool> ClInstrumentWrites(
203 "asan-instrument-writes", cl::desc("instrument write instructions"),
204 cl::Hidden, cl::init(true));
205
206static cl::opt<bool> ClInstrumentAtomics(
207 "asan-instrument-atomics",
208 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
209 cl::init(true));
210
211static cl::opt<bool>
212 ClInstrumentByval("asan-instrument-byval",
213 cl::desc("instrument byval call arguments"), cl::Hidden,
214 cl::init(true));
215
216static cl::opt<bool> ClAlwaysSlowPath(
217 "asan-always-slow-path",
218 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
219 cl::init(false));
220
221static cl::opt<bool> ClForceDynamicShadow(
222 "asan-force-dynamic-shadow",
223 cl::desc("Load shadow address into a local variable for each function"),
224 cl::Hidden, cl::init(false));
225
226static cl::opt<bool>
227 ClWithIfunc("asan-with-ifunc",
228 cl::desc("Access dynamic shadow through an ifunc global on "
229 "platforms that support this"),
230 cl::Hidden, cl::init(true));
231
232static cl::opt<bool> ClWithIfuncSuppressRemat(
233 "asan-with-ifunc-suppress-remat",
234 cl::desc("Suppress rematerialization of dynamic shadow address by passing "
235 "it through inline asm in prologue."),
236 cl::Hidden, cl::init(true));
237
238// This flag limits the number of instructions to be instrumented
239// in any given BB. Normally, this should be set to unlimited (INT_MAX),
240// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
241// set it to 10000.
242static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
243 "asan-max-ins-per-bb", cl::init(10000),
244 cl::desc("maximal number of instructions to instrument in any given BB"),
245 cl::Hidden);
246
247// This flag may need to be replaced with -f[no]asan-stack.
248static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
249 cl::Hidden, cl::init(true));
250static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
251 "asan-max-inline-poisoning-size",
252 cl::desc(
253 "Inline shadow poisoning for blocks up to the given size in bytes."),
254 cl::Hidden, cl::init(64));
255
256static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn(
257 "asan-use-after-return",
258 cl::desc("Sets the mode of detection for stack-use-after-return."),
259 cl::values(
260 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never",llvm::cl::OptionEnumValue { "never", int(AsanDetectStackUseAfterReturnMode
::Never), "Never detect stack use after return." }
261 "Never detect stack use after return.")llvm::cl::OptionEnumValue { "never", int(AsanDetectStackUseAfterReturnMode
::Never), "Never detect stack use after return." }
,
262 clEnumValN(llvm::cl::OptionEnumValue { "runtime", int(AsanDetectStackUseAfterReturnMode
::Runtime), "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."
}
263 AsanDetectStackUseAfterReturnMode::Runtime, "runtime",llvm::cl::OptionEnumValue { "runtime", int(AsanDetectStackUseAfterReturnMode
::Runtime), "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."
}
264 "Detect stack use after return if "llvm::cl::OptionEnumValue { "runtime", int(AsanDetectStackUseAfterReturnMode
::Runtime), "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."
}
265 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set.")llvm::cl::OptionEnumValue { "runtime", int(AsanDetectStackUseAfterReturnMode
::Runtime), "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."
}
,
266 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always",llvm::cl::OptionEnumValue { "always", int(AsanDetectStackUseAfterReturnMode
::Always), "Always detect stack use after return." }
267 "Always detect stack use after return.")llvm::cl::OptionEnumValue { "always", int(AsanDetectStackUseAfterReturnMode
::Always), "Always detect stack use after return." }
),
268 cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime));
269
270static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
271 cl::desc("Create redzones for byval "
272 "arguments (extra copy "
273 "required)"), cl::Hidden,
274 cl::init(true));
275
276static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
277 cl::desc("Check stack-use-after-scope"),
278 cl::Hidden, cl::init(false));
279
280// This flag may need to be replaced with -f[no]asan-globals.
281static cl::opt<bool> ClGlobals("asan-globals",
282 cl::desc("Handle global objects"), cl::Hidden,
283 cl::init(true));
284
285static cl::opt<bool> ClInitializers("asan-initialization-order",
286 cl::desc("Handle C++ initializer order"),
287 cl::Hidden, cl::init(true));
288
289static cl::opt<bool> ClInvalidPointerPairs(
290 "asan-detect-invalid-pointer-pair",
291 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
292 cl::init(false));
293
294static cl::opt<bool> ClInvalidPointerCmp(
295 "asan-detect-invalid-pointer-cmp",
296 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
297 cl::init(false));
298
299static cl::opt<bool> ClInvalidPointerSub(
300 "asan-detect-invalid-pointer-sub",
301 cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
302 cl::init(false));
303
304static cl::opt<unsigned> ClRealignStack(
305 "asan-realign-stack",
306 cl::desc("Realign stack to the value of this flag (power of two)"),
307 cl::Hidden, cl::init(32));
308
309static cl::opt<int> ClInstrumentationWithCallsThreshold(
310 "asan-instrumentation-with-call-threshold",
311 cl::desc(
312 "If the function being instrumented contains more than "
313 "this number of memory accesses, use callbacks instead of "
314 "inline checks (-1 means never use callbacks)."),
315 cl::Hidden, cl::init(7000));
316
317static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
318 "asan-memory-access-callback-prefix",
319 cl::desc("Prefix for memory access callbacks"), cl::Hidden,
320 cl::init("__asan_"));
321
322static cl::opt<bool>
323 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
324 cl::desc("instrument dynamic allocas"),
325 cl::Hidden, cl::init(true));
326
327static cl::opt<bool> ClSkipPromotableAllocas(
328 "asan-skip-promotable-allocas",
329 cl::desc("Do not instrument promotable allocas"), cl::Hidden,
330 cl::init(true));
331
332// These flags allow to change the shadow mapping.
333// The shadow mapping looks like
334// Shadow = (Mem >> scale) + offset
335
336static cl::opt<int> ClMappingScale("asan-mapping-scale",
337 cl::desc("scale of asan shadow mapping"),
338 cl::Hidden, cl::init(0));
339
340static cl::opt<uint64_t>
341 ClMappingOffset("asan-mapping-offset",
342 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
343 cl::Hidden, cl::init(0));
344
345// Optimization flags. Not user visible, used mostly for testing
346// and benchmarking the tool.
347
348static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
349 cl::Hidden, cl::init(true));
350
351static cl::opt<bool> ClOptSameTemp(
352 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
353 cl::Hidden, cl::init(true));
354
355static cl::opt<bool> ClOptGlobals("asan-opt-globals",
356 cl::desc("Don't instrument scalar globals"),
357 cl::Hidden, cl::init(true));
358
359static cl::opt<bool> ClOptStack(
360 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
361 cl::Hidden, cl::init(false));
362
363static cl::opt<bool> ClDynamicAllocaStack(
364 "asan-stack-dynamic-alloca",
365 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
366 cl::init(true));
367
368static cl::opt<uint32_t> ClForceExperiment(
369 "asan-force-experiment",
370 cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
371 cl::init(0));
372
373static cl::opt<bool>
374 ClUsePrivateAlias("asan-use-private-alias",
375 cl::desc("Use private aliases for global variables"),
376 cl::Hidden, cl::init(false));
377
378static cl::opt<bool>
379 ClUseOdrIndicator("asan-use-odr-indicator",
380 cl::desc("Use odr indicators to improve ODR reporting"),
381 cl::Hidden, cl::init(false));
382
383static cl::opt<bool>
384 ClUseGlobalsGC("asan-globals-live-support",
385 cl::desc("Use linker features to support dead "
386 "code stripping of globals"),
387 cl::Hidden, cl::init(true));
388
389// This is on by default even though there is a bug in gold:
390// https://sourceware.org/bugzilla/show_bug.cgi?id=19002
391static cl::opt<bool>
392 ClWithComdat("asan-with-comdat",
393 cl::desc("Place ASan constructors in comdat sections"),
394 cl::Hidden, cl::init(true));
395
396static cl::opt<AsanDtorKind> ClOverrideDestructorKind(
397 "asan-destructor-kind",
398 cl::desc("Sets the ASan destructor kind. The default is to use the value "
399 "provided to the pass constructor"),
400 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors")llvm::cl::OptionEnumValue { "none", int(AsanDtorKind::None), "No destructors"
}
,
401 clEnumValN(AsanDtorKind::Global, "global",llvm::cl::OptionEnumValue { "global", int(AsanDtorKind::Global
), "Use global destructors" }
402 "Use global destructors")llvm::cl::OptionEnumValue { "global", int(AsanDtorKind::Global
), "Use global destructors" }
),
403 cl::init(AsanDtorKind::Invalid), cl::Hidden);
404
405// Debug flags.
406
407static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
408 cl::init(0));
409
410static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
411 cl::Hidden, cl::init(0));
412
413static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
414 cl::desc("Debug func"));
415
416static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
417 cl::Hidden, cl::init(-1));
418
419static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
420 cl::Hidden, cl::init(-1));
421
422STATISTIC(NumInstrumentedReads, "Number of instrumented reads")static llvm::Statistic NumInstrumentedReads = {"asan", "NumInstrumentedReads"
, "Number of instrumented reads"}
;
423STATISTIC(NumInstrumentedWrites, "Number of instrumented writes")static llvm::Statistic NumInstrumentedWrites = {"asan", "NumInstrumentedWrites"
, "Number of instrumented writes"}
;
424STATISTIC(NumOptimizedAccessesToGlobalVar,static llvm::Statistic NumOptimizedAccessesToGlobalVar = {"asan"
, "NumOptimizedAccessesToGlobalVar", "Number of optimized accesses to global vars"
}
425 "Number of optimized accesses to global vars")static llvm::Statistic NumOptimizedAccessesToGlobalVar = {"asan"
, "NumOptimizedAccessesToGlobalVar", "Number of optimized accesses to global vars"
}
;
426STATISTIC(NumOptimizedAccessesToStackVar,static llvm::Statistic NumOptimizedAccessesToStackVar = {"asan"
, "NumOptimizedAccessesToStackVar", "Number of optimized accesses to stack vars"
}
427 "Number of optimized accesses to stack vars")static llvm::Statistic NumOptimizedAccessesToStackVar = {"asan"
, "NumOptimizedAccessesToStackVar", "Number of optimized accesses to stack vars"
}
;
428
429namespace {
430
431/// This struct defines the shadow mapping using the rule:
432/// shadow = (mem >> Scale) ADD-or-OR Offset.
433/// If InGlobal is true, then
434/// extern char __asan_shadow[];
435/// shadow = (mem >> Scale) + &__asan_shadow
436struct ShadowMapping {
437 int Scale;
438 uint64_t Offset;
439 bool OrShadowOffset;
440 bool InGlobal;
441};
442
443} // end anonymous namespace
444
445static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
446 bool IsKasan) {
447 bool IsAndroid = TargetTriple.isAndroid();
448 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
449 bool IsMacOS = TargetTriple.isMacOSX();
450 bool IsFreeBSD = TargetTriple.isOSFreeBSD();
451 bool IsNetBSD = TargetTriple.isOSNetBSD();
452 bool IsPS4CPU = TargetTriple.isPS4CPU();
453 bool IsLinux = TargetTriple.isOSLinux();
454 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
455 TargetTriple.getArch() == Triple::ppc64le;
456 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
457 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
458 bool IsMIPS32 = TargetTriple.isMIPS32();
459 bool IsMIPS64 = TargetTriple.isMIPS64();
460 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
461 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
462 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64;
463 bool IsWindows = TargetTriple.isOSWindows();
464 bool IsFuchsia = TargetTriple.isOSFuchsia();
465 bool IsEmscripten = TargetTriple.isOSEmscripten();
466 bool IsAMDGPU = TargetTriple.isAMDGPU();
467
468 ShadowMapping Mapping;
469
470 Mapping.Scale = kDefaultShadowScale;
471 if (ClMappingScale.getNumOccurrences() > 0) {
472 Mapping.Scale = ClMappingScale;
473 }
474
475 if (LongSize == 32) {
476 if (IsAndroid)
477 Mapping.Offset = kDynamicShadowSentinel;
478 else if (IsMIPS32)
479 Mapping.Offset = kMIPS32_ShadowOffset32;
480 else if (IsFreeBSD)
481 Mapping.Offset = kFreeBSD_ShadowOffset32;
482 else if (IsNetBSD)
483 Mapping.Offset = kNetBSD_ShadowOffset32;
484 else if (IsIOS)
485 Mapping.Offset = kDynamicShadowSentinel;
486 else if (IsWindows)
487 Mapping.Offset = kWindowsShadowOffset32;
488 else if (IsEmscripten)
489 Mapping.Offset = kEmscriptenShadowOffset;
490 else
491 Mapping.Offset = kDefaultShadowOffset32;
492 } else { // LongSize == 64
493 // Fuchsia is always PIE, which means that the beginning of the address
494 // space is always available.
495 if (IsFuchsia)
496 Mapping.Offset = 0;
497 else if (IsPPC64)
498 Mapping.Offset = kPPC64_ShadowOffset64;
499 else if (IsSystemZ)
500 Mapping.Offset = kSystemZ_ShadowOffset64;
501 else if (IsFreeBSD && !IsMIPS64) {
502 if (IsKasan)
503 Mapping.Offset = kFreeBSDKasan_ShadowOffset64;
504 else
505 Mapping.Offset = kFreeBSD_ShadowOffset64;
506 } else if (IsNetBSD) {
507 if (IsKasan)
508 Mapping.Offset = kNetBSDKasan_ShadowOffset64;
509 else
510 Mapping.Offset = kNetBSD_ShadowOffset64;
511 } else if (IsPS4CPU)
512 Mapping.Offset = kPS4CPU_ShadowOffset64;
513 else if (IsLinux && IsX86_64) {
514 if (IsKasan)
515 Mapping.Offset = kLinuxKasan_ShadowOffset64;
516 else
517 Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
518 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
519 } else if (IsWindows && IsX86_64) {
520 Mapping.Offset = kWindowsShadowOffset64;
521 } else if (IsMIPS64)
522 Mapping.Offset = kMIPS64_ShadowOffset64;
523 else if (IsIOS)
524 Mapping.Offset = kDynamicShadowSentinel;
525 else if (IsMacOS && IsAArch64)
526 Mapping.Offset = kDynamicShadowSentinel;
527 else if (IsAArch64)
528 Mapping.Offset = kAArch64_ShadowOffset64;
529 else if (IsRISCV64)
530 Mapping.Offset = kRISCV64_ShadowOffset64;
531 else if (IsAMDGPU)
532 Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
533 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
534 else
535 Mapping.Offset = kDefaultShadowOffset64;
536 }
537
538 if (ClForceDynamicShadow) {
539 Mapping.Offset = kDynamicShadowSentinel;
540 }
541
542 if (ClMappingOffset.getNumOccurrences() > 0) {
543 Mapping.Offset = ClMappingOffset;
544 }
545
546 // OR-ing shadow offset if more efficient (at least on x86) if the offset
547 // is a power of two, but on ppc64 we have to use add since the shadow
548 // offset is not necessary 1/8-th of the address space. On SystemZ,
549 // we could OR the constant in a single instruction, but it's more
550 // efficient to load it once and use indexed addressing.
551 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
552 !IsRISCV64 &&
553 !(Mapping.Offset & (Mapping.Offset - 1)) &&
554 Mapping.Offset != kDynamicShadowSentinel;
555 bool IsAndroidWithIfuncSupport =
556 IsAndroid && !TargetTriple.isAndroidVersionLT(21);
557 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
558
559 return Mapping;
560}
561
562static uint64_t getRedzoneSizeForScale(int MappingScale) {
563 // Redzone used for stack and globals is at least 32 bytes.
564 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
565 return std::max(32U, 1U << MappingScale);
566}
567
568static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
569 if (TargetTriple.isOSEmscripten()) {
570 return kAsanEmscriptenCtorAndDtorPriority;
571 } else {
572 return kAsanCtorAndDtorPriority;
573 }
574}
575
576namespace {
577
578/// Module analysis for getting various metadata about the module.
579class ASanGlobalsMetadataWrapperPass : public ModulePass {
580public:
581 static char ID;
582
583 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
584 initializeASanGlobalsMetadataWrapperPassPass(
585 *PassRegistry::getPassRegistry());
586 }
587
588 bool runOnModule(Module &M) override {
589 GlobalsMD = GlobalsMetadata(M);
590 return false;
591 }
592
593 StringRef getPassName() const override {
594 return "ASanGlobalsMetadataWrapperPass";
595 }
596
597 void getAnalysisUsage(AnalysisUsage &AU) const override {
598 AU.setPreservesAll();
599 }
600
601 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }
602
603private:
604 GlobalsMetadata GlobalsMD;
605};
606
607char ASanGlobalsMetadataWrapperPass::ID = 0;
608
609/// AddressSanitizer: instrument the code in module to find memory bugs.
610struct AddressSanitizer {
611 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
612 bool CompileKernel = false, bool Recover = false,
613 bool UseAfterScope = false,
614 AsanDetectStackUseAfterReturnMode UseAfterReturn =
615 AsanDetectStackUseAfterReturnMode::Runtime)
616 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
617 : CompileKernel),
618 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
619 UseAfterScope(UseAfterScope || ClUseAfterScope),
620 UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn
621 : UseAfterReturn),
622 GlobalsMD(*GlobalsMD) {
623 C = &(M.getContext());
624 LongSize = M.getDataLayout().getPointerSizeInBits();
625 IntptrTy = Type::getIntNTy(*C, LongSize);
626 TargetTriple = Triple(M.getTargetTriple());
627
628 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
629
630 assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid)((void)0);
631 }
632
633 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
634 uint64_t ArraySize = 1;
635 if (AI.isArrayAllocation()) {
636 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
637 assert(CI && "non-constant array size")((void)0);
638 ArraySize = CI->getZExtValue();
639 }
640 Type *Ty = AI.getAllocatedType();
641 uint64_t SizeInBytes =
642 AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
643 return SizeInBytes * ArraySize;
644 }
645
646 /// Check if we want (and can) handle this alloca.
647 bool isInterestingAlloca(const AllocaInst &AI);
648
649 bool ignoreAccess(Value *Ptr);
650 void getInterestingMemoryOperands(
651 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
652
653 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
654 InterestingMemoryOperand &O, bool UseCalls,
655 const DataLayout &DL);
656 void instrumentPointerComparisonOrSubtraction(Instruction *I);
657 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
658 Value *Addr, uint32_t TypeSize, bool IsWrite,
659 Value *SizeArgument, bool UseCalls, uint32_t Exp);
660 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns,
661 Instruction *InsertBefore, Value *Addr,
662 uint32_t TypeSize, bool IsWrite,
663 Value *SizeArgument);
664 void instrumentUnusualSizeOrAlignment(Instruction *I,
665 Instruction *InsertBefore, Value *Addr,
666 uint32_t TypeSize, bool IsWrite,
667 Value *SizeArgument, bool UseCalls,
668 uint32_t Exp);
669 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
670 Value *ShadowValue, uint32_t TypeSize);
671 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
672 bool IsWrite, size_t AccessSizeIndex,
673 Value *SizeArgument, uint32_t Exp);
674 void instrumentMemIntrinsic(MemIntrinsic *MI);
675 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
676 bool suppressInstrumentationSiteForDebug(int &Instrumented);
677 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
678 bool maybeInsertAsanInitAtFunctionEntry(Function &F);
679 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
680 void markEscapedLocalAllocas(Function &F);
681
682private:
683 friend struct FunctionStackPoisoner;
684
685 void initializeCallbacks(Module &M);
686
687 bool LooksLikeCodeInBug11395(Instruction *I);
688 bool GlobalIsLinkerInitialized(GlobalVariable *G);
689 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
690 uint64_t TypeSize) const;
691
692 /// Helper to cleanup per-function state.
693 struct FunctionStateRAII {
694 AddressSanitizer *Pass;
695
696 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
697 assert(Pass->ProcessedAllocas.empty() &&((void)0)
698 "last pass forgot to clear cache")((void)0);
699 assert(!Pass->LocalDynamicShadow)((void)0);
700 }
701
702 ~FunctionStateRAII() {
703 Pass->LocalDynamicShadow = nullptr;
704 Pass->ProcessedAllocas.clear();
705 }
706 };
707
708 LLVMContext *C;
709 Triple TargetTriple;
710 int LongSize;
711 bool CompileKernel;
712 bool Recover;
713 bool UseAfterScope;
714 AsanDetectStackUseAfterReturnMode UseAfterReturn;
715 Type *IntptrTy;
716 ShadowMapping Mapping;
717 FunctionCallee AsanHandleNoReturnFunc;
718 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
719 Constant *AsanShadowGlobal;
720
721 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
722 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
723 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
724
725 // These arrays is indexed by AccessIsWrite and Experiment.
726 FunctionCallee AsanErrorCallbackSized[2][2];
727 FunctionCallee AsanMemoryAccessCallbackSized[2][2];
728
729 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
730 Value *LocalDynamicShadow = nullptr;
731 const GlobalsMetadata &GlobalsMD;
732 DenseMap<const AllocaInst *, bool> ProcessedAllocas;
733
734 FunctionCallee AMDGPUAddressShared;
735 FunctionCallee AMDGPUAddressPrivate;
736};
737
738class AddressSanitizerLegacyPass : public FunctionPass {
739public:
740 static char ID;
741
742 explicit AddressSanitizerLegacyPass(
743 bool CompileKernel = false, bool Recover = false,
744 bool UseAfterScope = false,
745 AsanDetectStackUseAfterReturnMode UseAfterReturn =
746 AsanDetectStackUseAfterReturnMode::Runtime)
747 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
748 UseAfterScope(UseAfterScope), UseAfterReturn(UseAfterReturn) {
749 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
750 }
751
752 StringRef getPassName() const override {
753 return "AddressSanitizerFunctionPass";
754 }
755
756 void getAnalysisUsage(AnalysisUsage &AU) const override {
757 AU.addRequired<ASanGlobalsMetadataWrapperPass>();
758 AU.addRequired<TargetLibraryInfoWrapperPass>();
759 }
760
761 bool runOnFunction(Function &F) override {
762 GlobalsMetadata &GlobalsMD =
763 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
764 const TargetLibraryInfo *TLI =
765 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
766 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover,
767 UseAfterScope, UseAfterReturn);
768 return ASan.instrumentFunction(F, TLI);
1
Calling 'AddressSanitizer::instrumentFunction'
769 }
770
771private:
772 bool CompileKernel;
773 bool Recover;
774 bool UseAfterScope;
775 AsanDetectStackUseAfterReturnMode UseAfterReturn;
776};
777
778class ModuleAddressSanitizer {
779public:
780 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
781 bool CompileKernel = false, bool Recover = false,
782 bool UseGlobalsGC = true, bool UseOdrIndicator = false,
783 AsanDtorKind DestructorKind = AsanDtorKind::Global)
784 : GlobalsMD(*GlobalsMD),
785 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
786 : CompileKernel),
787 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
788 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
789 // Enable aliases as they should have no downside with ODR indicators.
790 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
791 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
792 // Not a typo: ClWithComdat is almost completely pointless without
793 // ClUseGlobalsGC (because then it only works on modules without
794 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
795 // and both suffer from gold PR19002 for which UseGlobalsGC constructor
796 // argument is designed as workaround. Therefore, disable both
797 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
798 // do globals-gc.
799 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel),
800 DestructorKind(DestructorKind) {
801 C = &(M.getContext());
802 int LongSize = M.getDataLayout().getPointerSizeInBits();
803 IntptrTy = Type::getIntNTy(*C, LongSize);
804 TargetTriple = Triple(M.getTargetTriple());
805 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
806
807 if (ClOverrideDestructorKind != AsanDtorKind::Invalid)
808 this->DestructorKind = ClOverrideDestructorKind;
809 assert(this->DestructorKind != AsanDtorKind::Invalid)((void)0);
810 }
811
812 bool instrumentModule(Module &);
813
814private:
815 void initializeCallbacks(Module &M);
816
817 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
818 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
819 ArrayRef<GlobalVariable *> ExtendedGlobals,
820 ArrayRef<Constant *> MetadataInitializers);
821 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
822 ArrayRef<GlobalVariable *> ExtendedGlobals,
823 ArrayRef<Constant *> MetadataInitializers,
824 const std::string &UniqueModuleId);
825 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
826 ArrayRef<GlobalVariable *> ExtendedGlobals,
827 ArrayRef<Constant *> MetadataInitializers);
828 void
829 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
830 ArrayRef<GlobalVariable *> ExtendedGlobals,
831 ArrayRef<Constant *> MetadataInitializers);
832
833 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
834 StringRef OriginalName);
835 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
836 StringRef InternalSuffix);
837 Instruction *CreateAsanModuleDtor(Module &M);
838
839 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const;
840 bool shouldInstrumentGlobal(GlobalVariable *G) const;
841 bool ShouldUseMachOGlobalsSection() const;
842 StringRef getGlobalMetadataSection() const;
843 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
844 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
845 uint64_t getMinRedzoneSizeForGlobal() const {
846 return getRedzoneSizeForScale(Mapping.Scale);
847 }
848 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
849 int GetAsanVersion(const Module &M) const;
850
851 const GlobalsMetadata &GlobalsMD;
852 bool CompileKernel;
853 bool Recover;
854 bool UseGlobalsGC;
855 bool UsePrivateAlias;
856 bool UseOdrIndicator;
857 bool UseCtorComdat;
858 AsanDtorKind DestructorKind;
859 Type *IntptrTy;
860 LLVMContext *C;
861 Triple TargetTriple;
862 ShadowMapping Mapping;
863 FunctionCallee AsanPoisonGlobals;
864 FunctionCallee AsanUnpoisonGlobals;
865 FunctionCallee AsanRegisterGlobals;
866 FunctionCallee AsanUnregisterGlobals;
867 FunctionCallee AsanRegisterImageGlobals;
868 FunctionCallee AsanUnregisterImageGlobals;
869 FunctionCallee AsanRegisterElfGlobals;
870 FunctionCallee AsanUnregisterElfGlobals;
871
872 Function *AsanCtorFunction = nullptr;
873 Function *AsanDtorFunction = nullptr;
874};
875
876class ModuleAddressSanitizerLegacyPass : public ModulePass {
877public:
878 static char ID;
879
880 explicit ModuleAddressSanitizerLegacyPass(
881 bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true,
882 bool UseOdrIndicator = false,
883 AsanDtorKind DestructorKind = AsanDtorKind::Global)
884 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
885 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator),
886 DestructorKind(DestructorKind) {
887 initializeModuleAddressSanitizerLegacyPassPass(
888 *PassRegistry::getPassRegistry());
889 }
890
891 StringRef getPassName() const override { return "ModuleAddressSanitizer"; }
892
893 void getAnalysisUsage(AnalysisUsage &AU) const override {
894 AU.addRequired<ASanGlobalsMetadataWrapperPass>();
895 }
896
897 bool runOnModule(Module &M) override {
898 GlobalsMetadata &GlobalsMD =
899 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
900 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover,
901 UseGlobalGC, UseOdrIndicator,
902 DestructorKind);
903 return ASanModule.instrumentModule(M);
904 }
905
906private:
907 bool CompileKernel;
908 bool Recover;
909 bool UseGlobalGC;
910 bool UseOdrIndicator;
911 AsanDtorKind DestructorKind;
912};
913
914// Stack poisoning does not play well with exception handling.
915// When an exception is thrown, we essentially bypass the code
916// that unpoisones the stack. This is why the run-time library has
917// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
918// stack in the interceptor. This however does not work inside the
919// actual function which catches the exception. Most likely because the
920// compiler hoists the load of the shadow value somewhere too high.
921// This causes asan to report a non-existing bug on 453.povray.
922// It sounds like an LLVM bug.
923struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
924 Function &F;
925 AddressSanitizer &ASan;
926 DIBuilder DIB;
927 LLVMContext *C;
928 Type *IntptrTy;
929 Type *IntptrPtrTy;
930 ShadowMapping Mapping;
931
932 SmallVector<AllocaInst *, 16> AllocaVec;
933 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
934 SmallVector<Instruction *, 8> RetVec;
935
936 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
937 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
938 FunctionCallee AsanSetShadowFunc[0x100] = {};
939 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
940 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
941
942 // Stores a place and arguments of poisoning/unpoisoning call for alloca.
943 struct AllocaPoisonCall {
944 IntrinsicInst *InsBefore;
945 AllocaInst *AI;
946 uint64_t Size;
947 bool DoPoison;
948 };
949 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
950 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
951 bool HasUntracedLifetimeIntrinsic = false;
952
953 SmallVector<AllocaInst *, 1> DynamicAllocaVec;
954 SmallVector<IntrinsicInst *, 1> StackRestoreVec;
955 AllocaInst *DynamicAllocaLayout = nullptr;
956 IntrinsicInst *LocalEscapeCall = nullptr;
957
958 bool HasInlineAsm = false;
959 bool HasReturnsTwiceCall = false;
960 bool PoisonStack;
961
962 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
963 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
964 C(ASan.C), IntptrTy(ASan.IntptrTy),
965 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
966 PoisonStack(ClStack &&
967 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {}
968
969 bool runOnFunction() {
970 if (!PoisonStack
15.1
Field 'PoisonStack' is true
15.1
Field 'PoisonStack' is true
15.1
Field 'PoisonStack' is true
15.1
Field 'PoisonStack' is true
)
16
Taking false branch
971 return false;
972
973 if (ClRedzoneByvalArgs)
17
Assuming the condition is false
18
Taking false branch
974 copyArgsPassedByValToAllocas();
975
976 // Collect alloca, ret, lifetime instructions etc.
977 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
978
979 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
980
981 initializeCallbacks(*F.getParent());
982
983 if (HasUntracedLifetimeIntrinsic) {
19
Assuming field 'HasUntracedLifetimeIntrinsic' is false
20
Taking false branch
984 // If there are lifetime intrinsics which couldn't be traced back to an
985 // alloca, we may not know exactly when a variable enters scope, and
986 // therefore should "fail safe" by not poisoning them.
987 StaticAllocaPoisonCallVec.clear();
988 DynamicAllocaPoisonCallVec.clear();
989 }
990
991 processDynamicAllocas();
21
Calling 'FunctionStackPoisoner::processDynamicAllocas'
992 processStaticAllocas();
993
994 if (ClDebugStack) {
995 LLVM_DEBUG(dbgs() << F)do { } while (false);
996 }
997 return true;
998 }
999
1000 // Arguments marked with the "byval" attribute are implicitly copied without
1001 // using an alloca instruction. To produce redzones for those arguments, we
1002 // copy them a second time into memory allocated with an alloca instruction.
1003 void copyArgsPassedByValToAllocas();
1004
1005 // Finds all Alloca instructions and puts
1006 // poisoned red zones around all of them.
1007 // Then unpoison everything back before the function returns.
1008 void processStaticAllocas();
1009 void processDynamicAllocas();
1010
1011 void createDynamicAllocasInitStorage();
1012
1013 // ----------------------- Visitors.
1014 /// Collect all Ret instructions, or the musttail call instruction if it
1015 /// precedes the return instruction.
1016 void visitReturnInst(ReturnInst &RI) {
1017 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall())
1018 RetVec.push_back(CI);
1019 else
1020 RetVec.push_back(&RI);
1021 }
1022
1023 /// Collect all Resume instructions.
1024 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
1025
1026 /// Collect all CatchReturnInst instructions.
1027 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
1028
1029 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
1030 Value *SavedStack) {
1031 IRBuilder<> IRB(InstBefore);
1032 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
1033 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
1034 // need to adjust extracted SP to compute the address of the most recent
1035 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
1036 // this purpose.
1037 if (!isa<ReturnInst>(InstBefore)) {
1038 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
1039 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
1040 {IntptrTy});
1041
1042 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
1043
1044 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
1045 DynamicAreaOffset);
1046 }
1047
1048 IRB.CreateCall(
1049 AsanAllocasUnpoisonFunc,
1050 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
1051 }
1052
1053 // Unpoison dynamic allocas redzones.
1054 void unpoisonDynamicAllocas() {
1055 for (Instruction *Ret : RetVec)
1056 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
1057
1058 for (Instruction *StackRestoreInst : StackRestoreVec)
1059 unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
1060 StackRestoreInst->getOperand(0));
1061 }
1062
1063 // Deploy and poison redzones around dynamic alloca call. To do this, we
1064 // should replace this call with another one with changed parameters and
1065 // replace all its uses with new address, so
1066 // addr = alloca type, old_size, align
1067 // is replaced by
1068 // new_size = (old_size + additional_size) * sizeof(type)
1069 // tmp = alloca i8, new_size, max(align, 32)
1070 // addr = tmp + 32 (first 32 bytes are for the left redzone).
1071 // Additional_size is added to make new memory allocation contain not only
1072 // requested memory, but also left, partial and right redzones.
1073 void handleDynamicAllocaCall(AllocaInst *AI);
1074
1075 /// Collect Alloca instructions we want (and can) handle.
1076 void visitAllocaInst(AllocaInst &AI) {
1077 if (!ASan.isInterestingAlloca(AI)) {
1078 if (AI.isStaticAlloca()) {
1079 // Skip over allocas that are present *before* the first instrumented
1080 // alloca, we don't want to move those around.
1081 if (AllocaVec.empty())
1082 return;
1083
1084 StaticAllocasToMoveUp.push_back(&AI);
1085 }
1086 return;
1087 }
1088
1089 if (!AI.isStaticAlloca())
1090 DynamicAllocaVec.push_back(&AI);
1091 else
1092 AllocaVec.push_back(&AI);
1093 }
1094
1095 /// Collect lifetime intrinsic calls to check for use-after-scope
1096 /// errors.
1097 void visitIntrinsicInst(IntrinsicInst &II) {
1098 Intrinsic::ID ID = II.getIntrinsicID();
1099 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1100 if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1101 if (!ASan.UseAfterScope)
1102 return;
1103 if (!II.isLifetimeStartOrEnd())
1104 return;
1105 // Found lifetime intrinsic, add ASan instrumentation if necessary.
1106 auto *Size = cast<ConstantInt>(II.getArgOperand(0));
1107 // If size argument is undefined, don't do anything.
1108 if (Size->isMinusOne()) return;
1109 // Check that size doesn't saturate uint64_t and can
1110 // be stored in IntptrTy.
1111 const uint64_t SizeValue = Size->getValue().getLimitedValue();
1112 if (SizeValue == ~0ULL ||
1113 !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1114 return;
1115 // Find alloca instruction that corresponds to llvm.lifetime argument.
1116 // Currently we can only handle lifetime markers pointing to the
1117 // beginning of the alloca.
1118 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
1119 if (!AI) {
1120 HasUntracedLifetimeIntrinsic = true;
1121 return;
1122 }
1123 // We're interested only in allocas we can handle.
1124 if (!ASan.isInterestingAlloca(*AI))
1125 return;
1126 bool DoPoison = (ID == Intrinsic::lifetime_end);
1127 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1128 if (AI->isStaticAlloca())
1129 StaticAllocaPoisonCallVec.push_back(APC);
1130 else if (ClInstrumentDynamicAllocas)
1131 DynamicAllocaPoisonCallVec.push_back(APC);
1132 }
1133
1134 void visitCallBase(CallBase &CB) {
1135 if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1136 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow;
1137 HasReturnsTwiceCall |= CI->canReturnTwice();
1138 }
1139 }
1140
1141 // ---------------------- Helpers.
1142 void initializeCallbacks(Module &M);
1143
1144 // Copies bytes from ShadowBytes into shadow memory for indexes where
1145 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1146 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1147 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1148 IRBuilder<> &IRB, Value *ShadowBase);
1149 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1150 size_t Begin, size_t End, IRBuilder<> &IRB,
1151 Value *ShadowBase);
1152 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1153 ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1154 size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1155
1156 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1157
1158 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1159 bool Dynamic);
1160 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1161 Instruction *ThenTerm, Value *ValueIfFalse);
1162};
1163
1164} // end anonymous namespace
1165
1166void LocationMetadata::parse(MDNode *MDN) {
1167 assert(MDN->getNumOperands() == 3)((void)0);
1168 MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
1169 Filename = DIFilename->getString();
1170 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
1171 ColumnNo =
1172 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
1173}
1174
1175// FIXME: It would be cleaner to instead attach relevant metadata to the globals
1176// we want to sanitize instead and reading this metadata on each pass over a
1177// function instead of reading module level metadata at first.
1178GlobalsMetadata::GlobalsMetadata(Module &M) {
1179 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
1180 if (!Globals)
1181 return;
1182 for (auto MDN : Globals->operands()) {
1183 // Metadata node contains the global and the fields of "Entry".
1184 assert(MDN->getNumOperands() == 5)((void)0);
1185 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
1186 // The optimizer may optimize away a global entirely.
1187 if (!V)
1188 continue;
1189 auto *StrippedV = V->stripPointerCasts();
1190 auto *GV = dyn_cast<GlobalVariable>(StrippedV);
1191 if (!GV)
1192 continue;
1193 // We can already have an entry for GV if it was merged with another
1194 // global.
1195 Entry &E = Entries[GV];
1196 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
1197 E.SourceLoc.parse(Loc);
1198 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
1199 E.Name = Name->getString();
1200 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
1201 E.IsDynInit |= IsDynInit->isOne();
1202 ConstantInt *IsExcluded =
1203 mdconst::extract<ConstantInt>(MDN->getOperand(4));
1204 E.IsExcluded |= IsExcluded->isOne();
1205 }
1206}
1207
1208AnalysisKey ASanGlobalsMetadataAnalysis::Key;
1209
1210GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
1211 ModuleAnalysisManager &AM) {
1212 return GlobalsMetadata(M);
1213}
1214
1215AddressSanitizerPass::AddressSanitizerPass(
1216 bool CompileKernel, bool Recover, bool UseAfterScope,
1217 AsanDetectStackUseAfterReturnMode UseAfterReturn)
1218 : CompileKernel(CompileKernel), Recover(Recover),
1219 UseAfterScope(UseAfterScope), UseAfterReturn(UseAfterReturn) {}
1220
1221PreservedAnalyses AddressSanitizerPass::run(Function &F,
1222 AnalysisManager<Function> &AM) {
1223 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1224 Module &M = *F.getParent();
1225 if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
1226 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1227 AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope,
1228 UseAfterReturn);
1229 if (Sanitizer.instrumentFunction(F, TLI))
1230 return PreservedAnalyses::none();
1231 return PreservedAnalyses::all();
1232 }
1233
1234 report_fatal_error(
1235 "The ASanGlobalsMetadataAnalysis is required to run before "
1236 "AddressSanitizer can run");
1237 return PreservedAnalyses::all();
1238}
1239
1240ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(
1241 bool CompileKernel, bool Recover, bool UseGlobalGC, bool UseOdrIndicator,
1242 AsanDtorKind DestructorKind)
1243 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC),
1244 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {}
1245
1246PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
1247 AnalysisManager<Module> &AM) {
1248 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M);
1249 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover,
1250 UseGlobalGC, UseOdrIndicator,
1251 DestructorKind);
1252 if (Sanitizer.instrumentModule(M))
1253 return PreservedAnalyses::none();
1254 return PreservedAnalyses::all();
1255}
1256
1257INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",static void *initializeASanGlobalsMetadataWrapperPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Read metadata to mark which globals should be instrumented "
"when running ASan.", "asan-globals-md", &ASanGlobalsMetadataWrapperPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ASanGlobalsMetadataWrapperPass
>), false, true); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeASanGlobalsMetadataWrapperPassPassFlag
; void llvm::initializeASanGlobalsMetadataWrapperPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeASanGlobalsMetadataWrapperPassPassFlag
, initializeASanGlobalsMetadataWrapperPassPassOnce, std::ref(
Registry)); }
1258 "Read metadata to mark which globals should be instrumented "static void *initializeASanGlobalsMetadataWrapperPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Read metadata to mark which globals should be instrumented "
"when running ASan.", "asan-globals-md", &ASanGlobalsMetadataWrapperPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ASanGlobalsMetadataWrapperPass
>), false, true); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeASanGlobalsMetadataWrapperPassPassFlag
; void llvm::initializeASanGlobalsMetadataWrapperPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeASanGlobalsMetadataWrapperPassPassFlag
, initializeASanGlobalsMetadataWrapperPassPassOnce, std::ref(
Registry)); }
1259 "when running ASan.",static void *initializeASanGlobalsMetadataWrapperPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Read metadata to mark which globals should be instrumented "
"when running ASan.", "asan-globals-md", &ASanGlobalsMetadataWrapperPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ASanGlobalsMetadataWrapperPass
>), false, true); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeASanGlobalsMetadataWrapperPassPassFlag
; void llvm::initializeASanGlobalsMetadataWrapperPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeASanGlobalsMetadataWrapperPassPassFlag
, initializeASanGlobalsMetadataWrapperPassPassOnce, std::ref(
Registry)); }
1260 false, true)static void *initializeASanGlobalsMetadataWrapperPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Read metadata to mark which globals should be instrumented "
"when running ASan.", "asan-globals-md", &ASanGlobalsMetadataWrapperPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ASanGlobalsMetadataWrapperPass
>), false, true); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeASanGlobalsMetadataWrapperPassPassFlag
; void llvm::initializeASanGlobalsMetadataWrapperPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeASanGlobalsMetadataWrapperPassPassFlag
, initializeASanGlobalsMetadataWrapperPassPassOnce, std::ref(
Registry)); }
1261
1262char AddressSanitizerLegacyPass::ID = 0;
1263
1264INITIALIZE_PASS_BEGIN(static void *initializeAddressSanitizerLegacyPassPassOnce(PassRegistry
&Registry) {
1265 AddressSanitizerLegacyPass, "asan",static void *initializeAddressSanitizerLegacyPassPassOnce(PassRegistry
&Registry) {
1266 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,static void *initializeAddressSanitizerLegacyPassPassOnce(PassRegistry
&Registry) {
1267 false)static void *initializeAddressSanitizerLegacyPassPassOnce(PassRegistry
&Registry) {
1268INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)initializeASanGlobalsMetadataWrapperPassPass(Registry);
1269INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
1270INITIALIZE_PASS_END(PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
, "asan", &AddressSanitizerLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<AddressSanitizerLegacyPass>), false, false
); Registry.registerPass(*PI, true); return PI; } static llvm
::once_flag InitializeAddressSanitizerLegacyPassPassFlag; void
llvm::initializeAddressSanitizerLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeAddressSanitizerLegacyPassPassFlag
, initializeAddressSanitizerLegacyPassPassOnce, std::ref(Registry
)); }
1271 AddressSanitizerLegacyPass, "asan",PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
, "asan", &AddressSanitizerLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<AddressSanitizerLegacyPass>), false, false
); Registry.registerPass(*PI, true); return PI; } static llvm
::once_flag InitializeAddressSanitizerLegacyPassPassFlag; void
llvm::initializeAddressSanitizerLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeAddressSanitizerLegacyPassPassFlag
, initializeAddressSanitizerLegacyPassPassOnce, std::ref(Registry
)); }
1272 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
, "asan", &AddressSanitizerLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<AddressSanitizerLegacyPass>), false, false
); Registry.registerPass(*PI, true); return PI; } static llvm
::once_flag InitializeAddressSanitizerLegacyPassPassFlag; void
llvm::initializeAddressSanitizerLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeAddressSanitizerLegacyPassPassFlag
, initializeAddressSanitizerLegacyPassPassOnce, std::ref(Registry
)); }
1273 false)PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
, "asan", &AddressSanitizerLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<AddressSanitizerLegacyPass>), false, false
); Registry.registerPass(*PI, true); return PI; } static llvm
::once_flag InitializeAddressSanitizerLegacyPassPassFlag; void
llvm::initializeAddressSanitizerLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeAddressSanitizerLegacyPassPassFlag
, initializeAddressSanitizerLegacyPassPassOnce, std::ref(Registry
)); }
1274
1275FunctionPass *llvm::createAddressSanitizerFunctionPass(
1276 bool CompileKernel, bool Recover, bool UseAfterScope,
1277 AsanDetectStackUseAfterReturnMode UseAfterReturn) {
1278 assert(!CompileKernel || Recover)((void)0);
1279 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope,
1280 UseAfterReturn);
1281}
1282
1283char ModuleAddressSanitizerLegacyPass::ID = 0;
1284
1285INITIALIZE_PASS(static void *initializeModuleAddressSanitizerLegacyPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
"ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass
>), false, false); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag
; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag
, initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref
(Registry)); }
1286 ModuleAddressSanitizerLegacyPass, "asan-module",static void *initializeModuleAddressSanitizerLegacyPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
"ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass
>), false, false); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag
; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag
, initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref
(Registry)); }
1287 "AddressSanitizer: detects use-after-free and out-of-bounds bugs."static void *initializeModuleAddressSanitizerLegacyPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
"ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass
>), false, false); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag
; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag
, initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref
(Registry)); }
1288 "ModulePass",static void *initializeModuleAddressSanitizerLegacyPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
"ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass
>), false, false); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag
; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag
, initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref
(Registry)); }
1289 false, false)static void *initializeModuleAddressSanitizerLegacyPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
"ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass
>), false, false); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag
; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag
, initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref
(Registry)); }
1290
1291ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
1292 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator,
1293 AsanDtorKind Destructor) {
1294 assert(!CompileKernel || Recover)((void)0);
1295 return new ModuleAddressSanitizerLegacyPass(
1296 CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor);
1297}
1298
1299static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
1300 size_t Res = countTrailingZeros(TypeSize / 8);
1301 assert(Res < kNumberOfAccessSizes)((void)0);
1302 return Res;
1303}
1304
1305/// Create a global describing a source location.
1306static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
1307 LocationMetadata MD) {
1308 Constant *LocData[] = {
1309 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
1310 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
1311 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
1312 };
1313 auto LocStruct = ConstantStruct::getAnon(LocData);
1314 auto GV = new GlobalVariable(M, LocStruct->getType(), true,
1315 GlobalValue::PrivateLinkage, LocStruct,
1316 kAsanGenPrefix);
1317 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1318 return GV;
1319}
1320
1321/// Check if \p G has been created by a trusted compiler pass.
1322static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1323 // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1324 if (G->getName().startswith("llvm."))
1325 return true;
1326
1327 // Do not instrument asan globals.
1328 if (G->getName().startswith(kAsanGenPrefix) ||
1329 G->getName().startswith(kSanCovGenPrefix) ||
1330 G->getName().startswith(kODRGenPrefix))
1331 return true;
1332
1333 // Do not instrument gcov counter arrays.
1334 if (G->getName() == "__llvm_gcov_ctr")
1335 return true;
1336
1337 return false;
1338}
1339
1340static bool isUnsupportedAMDGPUAddrspace(Value *Addr) {
1341 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1342 unsigned int AddrSpace = PtrTy->getPointerAddressSpace();
1343 if (AddrSpace == 3 || AddrSpace == 5)
1344 return true;
1345 return false;
1346}
1347
1348Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1349 // Shadow >> scale
1350 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1351 if (Mapping.Offset == 0) return Shadow;
1352 // (Shadow >> scale) | offset
1353 Value *ShadowBase;
1354 if (LocalDynamicShadow)
1355 ShadowBase = LocalDynamicShadow;
1356 else
1357 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1358 if (Mapping.OrShadowOffset)
1359 return IRB.CreateOr(Shadow, ShadowBase);
1360 else
1361 return IRB.CreateAdd(Shadow, ShadowBase);
1362}
1363
1364// Instrument memset/memmove/memcpy
1365void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1366 IRBuilder<> IRB(MI);
1367 if (isa<MemTransferInst>(MI)) {
1368 IRB.CreateCall(
1369 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1370 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1371 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
1372 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1373 } else if (isa<MemSetInst>(MI)) {
1374 IRB.CreateCall(
1375 AsanMemset,
1376 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1377 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1378 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1379 }
1380 MI->eraseFromParent();
1381}
1382
1383/// Check if we want (and can) handle this alloca.
1384bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1385 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1386
1387 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1388 return PreviouslySeenAllocaInfo->getSecond();
1389
1390 bool IsInteresting =
1391 (AI.getAllocatedType()->isSized() &&
1392 // alloca() may be called with 0 size, ignore it.
1393 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
1394 // We are only interested in allocas not promotable to registers.
1395 // Promotable allocas are common under -O0.
1396 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1397 // inalloca allocas are not treated as static, and we don't want
1398 // dynamic alloca instrumentation for them as well.
1399 !AI.isUsedWithInAlloca() &&
1400 // swifterror allocas are register promoted by ISel
1401 !AI.isSwiftError());
1402
1403 ProcessedAllocas[&AI] = IsInteresting;
1404 return IsInteresting;
1405}
1406
1407bool AddressSanitizer::ignoreAccess(Value *Ptr) {
1408 // Instrument acesses from different address spaces only for AMDGPU.
1409 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1410 if (PtrTy->getPointerAddressSpace() != 0 &&
1411 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr)))
1412 return true;
1413
1414 // Ignore swifterror addresses.
1415 // swifterror memory addresses are mem2reg promoted by instruction
1416 // selection. As such they cannot have regular uses like an instrumentation
1417 // function and it makes no sense to track them as memory.
1418 if (Ptr->isSwiftError())
1419 return true;
1420
1421 // Treat memory accesses to promotable allocas as non-interesting since they
1422 // will not cause memory violations. This greatly speeds up the instrumented
1423 // executable at -O0.
1424 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
1425 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
1426 return true;
1427
1428 return false;
1429}
1430
1431void AddressSanitizer::getInterestingMemoryOperands(
1432 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
1433 // Skip memory accesses inserted by another instrumentation.
1434 if (I->hasMetadata("nosanitize"))
1435 return;
1436
1437 // Do not instrument the load fetching the dynamic shadow address.
1438 if (LocalDynamicShadow == I)
1439 return;
1440
1441 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1442 if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand()))
1443 return;
1444 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
1445 LI->getType(), LI->getAlign());
1446 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1447 if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand()))
1448 return;
1449 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
1450 SI->getValueOperand()->getType(), SI->getAlign());
1451 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1452 if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand()))
1453 return;
1454 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
1455 RMW->getValOperand()->getType(), None);
1456 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1457 if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand()))
1458 return;
1459 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
1460 XCHG->getCompareOperand()->getType(), None);
1461 } else if (auto CI = dyn_cast<CallInst>(I)) {
1462 auto *F = CI->getCalledFunction();
1463 if (F && (F->getName().startswith("llvm.masked.load.") ||
1464 F->getName().startswith("llvm.masked.store."))) {
1465 bool IsWrite = F->getName().startswith("llvm.masked.store.");
1466 // Masked store has an initial operand for the value.
1467 unsigned OpOffset = IsWrite ? 1 : 0;
1468 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1469 return;
1470
1471 auto BasePtr = CI->getOperand(OpOffset);
1472 if (ignoreAccess(BasePtr))
1473 return;
1474 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
1475 MaybeAlign Alignment = Align(1);
1476 // Otherwise no alignment guarantees. We probably got Undef.
1477 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1478 Alignment = Op->getMaybeAlignValue();
1479 Value *Mask = CI->getOperand(2 + OpOffset);
1480 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
1481 } else {
1482 for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) {
1483 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
1484 ignoreAccess(CI->getArgOperand(ArgNo)))
1485 continue;
1486 Type *Ty = CI->getParamByValType(ArgNo);
1487 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
1488 }
1489 }
1490 }
1491}
1492
1493static bool isPointerOperand(Value *V) {
1494 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1495}
1496
1497// This is a rough heuristic; it may cause both false positives and
1498// false negatives. The proper implementation requires cooperation with
1499// the frontend.
1500static bool isInterestingPointerComparison(Instruction *I) {
1501 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1502 if (!Cmp->isRelational())
1503 return false;
1504 } else {
1505 return false;
1506 }
1507 return isPointerOperand(I->getOperand(0)) &&
1508 isPointerOperand(I->getOperand(1));
1509}
1510
1511// This is a rough heuristic; it may cause both false positives and
1512// false negatives. The proper implementation requires cooperation with
1513// the frontend.
1514static bool isInterestingPointerSubtraction(Instruction *I) {
1515 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1516 if (BO->getOpcode() != Instruction::Sub)
1517 return false;
1518 } else {
1519 return false;
1520 }
1521 return isPointerOperand(I->getOperand(0)) &&
1522 isPointerOperand(I->getOperand(1));
1523}
1524
1525bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1526 // If a global variable does not have dynamic initialization we don't
1527 // have to instrument it. However, if a global does not have initializer
1528 // at all, we assume it has dynamic initializer (in other TU).
1529 //
1530 // FIXME: Metadata should be attched directly to the global directly instead
1531 // of being added to llvm.asan.globals.
1532 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1533}
1534
1535void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1536 Instruction *I) {
1537 IRBuilder<> IRB(I);
1538 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1539 Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1540 for (Value *&i : Param) {
1541 if (i->getType()->isPointerTy())
1542 i = IRB.CreatePointerCast(i, IntptrTy);
1543 }
1544 IRB.CreateCall(F, Param);
1545}
1546
1547static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1548 Instruction *InsertBefore, Value *Addr,
1549 MaybeAlign Alignment, unsigned Granularity,
1550 uint32_t TypeSize, bool IsWrite,
1551 Value *SizeArgument, bool UseCalls,
1552 uint32_t Exp) {
1553 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1554 // if the data is properly aligned.
1555 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1556 TypeSize == 128) &&
1557 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8))
1558 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1559 nullptr, UseCalls, Exp);
1560 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1561 IsWrite, nullptr, UseCalls, Exp);
1562}
1563
1564static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1565 const DataLayout &DL, Type *IntptrTy,
1566 Value *Mask, Instruction *I,
1567 Value *Addr, MaybeAlign Alignment,
1568 unsigned Granularity, uint32_t TypeSize,
1569 bool IsWrite, Value *SizeArgument,
1570 bool UseCalls, uint32_t Exp) {
1571 auto *VTy = cast<FixedVectorType>(
1572 cast<PointerType>(Addr->getType())->getElementType());
1573 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1574 unsigned Num = VTy->getNumElements();
1575 auto Zero = ConstantInt::get(IntptrTy, 0);
1576 for (unsigned Idx = 0; Idx < Num; ++Idx) {
1577 Value *InstrumentedAddress = nullptr;
1578 Instruction *InsertBefore = I;
1579 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1580 // dyn_cast as we might get UndefValue
1581 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1582 if (Masked->isZero())
1583 // Mask is constant false, so no instrumentation needed.
1584 continue;
1585 // If we have a true or undef value, fall through to doInstrumentAddress
1586 // with InsertBefore == I
1587 }
1588 } else {
1589 IRBuilder<> IRB(I);
1590 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1591 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1592 InsertBefore = ThenTerm;
1593 }
1594
1595 IRBuilder<> IRB(InsertBefore);
1596 InstrumentedAddress =
1597 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1598 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1599 Granularity, ElemTypeSize, IsWrite, SizeArgument,
1600 UseCalls, Exp);
1601 }
1602}
1603
1604void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1605 InterestingMemoryOperand &O, bool UseCalls,
1606 const DataLayout &DL) {
1607 Value *Addr = O.getPtr();
1608
1609 // Optimization experiments.
1610 // The experiments can be used to evaluate potential optimizations that remove
1611 // instrumentation (assess false negatives). Instead of completely removing
1612 // some instrumentation, you set Exp to a non-zero value (mask of optimization
1613 // experiments that want to remove instrumentation of this instruction).
1614 // If Exp is non-zero, this pass will emit special calls into runtime
1615 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1616 // make runtime terminate the program in a special way (with a different
1617 // exit status). Then you run the new compiler on a buggy corpus, collect
1618 // the special terminations (ideally, you don't see them at all -- no false
1619 // negatives) and make the decision on the optimization.
1620 uint32_t Exp = ClForceExperiment;
1621
1622 if (ClOpt && ClOptGlobals) {
1623 // If initialization order checking is disabled, a simple access to a
1624 // dynamically initialized global is always valid.
1625 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr));
1626 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1627 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1628 NumOptimizedAccessesToGlobalVar++;
1629 return;
1630 }
1631 }
1632
1633 if (ClOpt && ClOptStack) {
1634 // A direct inbounds access to a stack variable is always valid.
1635 if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
1636 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1637 NumOptimizedAccessesToStackVar++;
1638 return;
1639 }
1640 }
1641
1642 if (O.IsWrite)
1643 NumInstrumentedWrites++;
1644 else
1645 NumInstrumentedReads++;
1646
1647 unsigned Granularity = 1 << Mapping.Scale;
1648 if (O.MaybeMask) {
1649 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(),
1650 Addr, O.Alignment, Granularity, O.TypeSize,
1651 O.IsWrite, nullptr, UseCalls, Exp);
1652 } else {
1653 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
1654 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls,
1655 Exp);
1656 }
1657}
1658
1659Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1660 Value *Addr, bool IsWrite,
1661 size_t AccessSizeIndex,
1662 Value *SizeArgument,
1663 uint32_t Exp) {
1664 IRBuilder<> IRB(InsertBefore);
1665 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1666 CallInst *Call = nullptr;
1667 if (SizeArgument) {
1668 if (Exp == 0)
1669 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1670 {Addr, SizeArgument});
1671 else
1672 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1673 {Addr, SizeArgument, ExpVal});
1674 } else {
1675 if (Exp == 0)
1676 Call =
1677 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1678 else
1679 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1680 {Addr, ExpVal});
1681 }
1682
1683 Call->setCannotMerge();
1684 return Call;
1685}
1686
1687Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1688 Value *ShadowValue,
1689 uint32_t TypeSize) {
1690 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1691 // Addr & (Granularity - 1)
1692 Value *LastAccessedByte =
1693 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1694 // (Addr & (Granularity - 1)) + size - 1
1695 if (TypeSize / 8 > 1)
1696 LastAccessedByte = IRB.CreateAdd(
1697 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1698 // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1699 LastAccessedByte =
1700 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1701 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1702 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1703}
1704
1705Instruction *AddressSanitizer::instrumentAMDGPUAddress(
1706 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr,
1707 uint32_t TypeSize, bool IsWrite, Value *SizeArgument) {
1708 // Do not instrument unsupported addrspaces.
1709 if (isUnsupportedAMDGPUAddrspace(Addr))
1710 return nullptr;
1711 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1712 // Follow host instrumentation for global and constant addresses.
1713 if (PtrTy->getPointerAddressSpace() != 0)
1714 return InsertBefore;
1715 // Instrument generic addresses in supported addressspaces.
1716 IRBuilder<> IRB(InsertBefore);
1717 Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy());
1718 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong});
1719 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong});
1720 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate);
1721 Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate);
1722 Value *AddrSpaceZeroLanding =
1723 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false);
1724 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding);
1725 return InsertBefore;
1726}
1727
1728void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1729 Instruction *InsertBefore, Value *Addr,
1730 uint32_t TypeSize, bool IsWrite,
1731 Value *SizeArgument, bool UseCalls,
1732 uint32_t Exp) {
1733 if (TargetTriple.isAMDGPU()) {
1734 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr,
1735 TypeSize, IsWrite, SizeArgument);
1736 if (!InsertBefore)
1737 return;
1738 }
1739
1740 IRBuilder<> IRB(InsertBefore);
1741 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1742 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1743
1744 if (UseCalls) {
1745 if (Exp == 0)
1746 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1747 AddrLong);
1748 else
1749 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1750 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1751 return;
1752 }
1753
1754 Type *ShadowTy =
1755 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1756 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1757 Value *ShadowPtr = memToShadow(AddrLong, IRB);
1758 Value *CmpVal = Constant::getNullValue(ShadowTy);
1759 Value *ShadowValue =
1760 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1761
1762 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1763 size_t Granularity = 1ULL << Mapping.Scale;
1764 Instruction *CrashTerm = nullptr;
1765
1766 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1767 // We use branch weights for the slow path check, to indicate that the slow
1768 // path is rarely taken. This seems to be the case for SPEC benchmarks.
1769 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1770 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1771 assert(cast<BranchInst>(CheckTerm)->isUnconditional())((void)0);
1772 BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1773 IRB.SetInsertPoint(CheckTerm);
1774 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1775 if (Recover) {
1776 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1777 } else {
1778 BasicBlock *CrashBlock =
1779 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1780 CrashTerm = new UnreachableInst(*C, CrashBlock);
1781 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1782 ReplaceInstWithInst(CheckTerm, NewTerm);
1783 }
1784 } else {
1785 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1786 }
1787
1788 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1789 AccessSizeIndex, SizeArgument, Exp);
1790 Crash->setDebugLoc(OrigIns->getDebugLoc());
1791}
1792
1793// Instrument unusual size or unusual alignment.
1794// We can not do it with a single check, so we do 1-byte check for the first
1795// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1796// to report the actual access size.
1797void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1798 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1799 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1800 IRBuilder<> IRB(InsertBefore);
1801 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1802 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1803 if (UseCalls) {
1804 if (Exp == 0)
1805 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1806 {AddrLong, Size});
1807 else
1808 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1809 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1810 } else {
1811 Value *LastByte = IRB.CreateIntToPtr(
1812 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1813 Addr->getType());
1814 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1815 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1816 }
1817}
1818
1819void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1820 GlobalValue *ModuleName) {
1821 // Set up the arguments to our poison/unpoison functions.
1822 IRBuilder<> IRB(&GlobalInit.front(),
1823 GlobalInit.front().getFirstInsertionPt());
1824
1825 // Add a call to poison all external globals before the given function starts.
1826 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1827 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1828
1829 // Add calls to unpoison all globals before each return instruction.
1830 for (auto &BB : GlobalInit.getBasicBlockList())
1831 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1832 CallInst::Create(AsanUnpoisonGlobals, "", RI);
1833}
1834
1835void ModuleAddressSanitizer::createInitializerPoisonCalls(
1836 Module &M, GlobalValue *ModuleName) {
1837 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1838 if (!GV)
1839 return;
1840
1841 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1842 if (!CA)
1843 return;
1844
1845 for (Use &OP : CA->operands()) {
1846 if (isa<ConstantAggregateZero>(OP)) continue;
1847 ConstantStruct *CS = cast<ConstantStruct>(OP);
1848
1849 // Must have a function or null ptr.
1850 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1851 if (F->getName() == kAsanModuleCtorName) continue;
1852 auto *Priority = cast<ConstantInt>(CS->getOperand(0));
1853 // Don't instrument CTORs that will run before asan.module_ctor.
1854 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
1855 continue;
1856 poisonOneInitializer(*F, ModuleName);
1857 }
1858 }
1859}
1860
1861const GlobalVariable *
1862ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const {
1863 // In case this function should be expanded to include rules that do not just
1864 // apply when CompileKernel is true, either guard all existing rules with an
1865 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
1866 // should also apply to user space.
1867 assert(CompileKernel && "Only expecting to be called when compiling kernel")((void)0);
1868
1869 const Constant *C = GA.getAliasee();
1870
1871 // When compiling the kernel, globals that are aliased by symbols prefixed
1872 // by "__" are special and cannot be padded with a redzone.
1873 if (GA.getName().startswith("__"))
1874 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases());
1875
1876 return nullptr;
1877}
1878
1879bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
1880 Type *Ty = G->getValueType();
1881 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n")do { } while (false);
1882
1883 // FIXME: Metadata should be attched directly to the global directly instead
1884 // of being added to llvm.asan.globals.
1885 if (GlobalsMD.get(G).IsExcluded) return false;
1886 if (!Ty->isSized()) return false;
1887 if (!G->hasInitializer()) return false;
1888 // Globals in address space 1 and 4 are supported for AMDGPU.
1889 if (G->getAddressSpace() &&
1890 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G)))
1891 return false;
1892 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1893 // Two problems with thread-locals:
1894 // - The address of the main thread's copy can't be computed at link-time.
1895 // - Need to poison all copies, not just the main thread's one.
1896 if (G->isThreadLocal()) return false;
1897 // For now, just ignore this Global if the alignment is large.
1898 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false;
1899
1900 // For non-COFF targets, only instrument globals known to be defined by this
1901 // TU.
1902 // FIXME: We can instrument comdat globals on ELF if we are using the
1903 // GC-friendly metadata scheme.
1904 if (!TargetTriple.isOSBinFormatCOFF()) {
1905 if (!G->hasExactDefinition() || G->hasComdat())
1906 return false;
1907 } else {
1908 // On COFF, don't instrument non-ODR linkages.
1909 if (G->isInterposable())
1910 return false;
1911 }
1912
1913 // If a comdat is present, it must have a selection kind that implies ODR
1914 // semantics: no duplicates, any, or exact match.
1915 if (Comdat *C = G->getComdat()) {
1916 switch (C->getSelectionKind()) {
1917 case Comdat::Any:
1918 case Comdat::ExactMatch:
1919 case Comdat::NoDeduplicate:
1920 break;
1921 case Comdat::Largest:
1922 case Comdat::SameSize:
1923 return false;
1924 }
1925 }
1926
1927 if (G->hasSection()) {
1928 // The kernel uses explicit sections for mostly special global variables
1929 // that we should not instrument. E.g. the kernel may rely on their layout
1930 // without redzones, or remove them at link time ("discard.*"), etc.
1931 if (CompileKernel)
1932 return false;
1933
1934 StringRef Section = G->getSection();
1935
1936 // Globals from llvm.metadata aren't emitted, do not instrument them.
1937 if (Section == "llvm.metadata") return false;
1938 // Do not instrument globals from special LLVM sections.
1939 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1940
1941 // Do not instrument function pointers to initialization and termination
1942 // routines: dynamic linker will not properly handle redzones.
1943 if (Section.startswith(".preinit_array") ||
1944 Section.startswith(".init_array") ||
1945 Section.startswith(".fini_array")) {
1946 return false;
1947 }
1948
1949 // Do not instrument user-defined sections (with names resembling
1950 // valid C identifiers)
1951 if (TargetTriple.isOSBinFormatELF()) {
1952 if (llvm::all_of(Section,
1953 [](char c) { return llvm::isAlnum(c) || c == '_'; }))
1954 return false;
1955 }
1956
1957 // On COFF, if the section name contains '$', it is highly likely that the
1958 // user is using section sorting to create an array of globals similar to
1959 // the way initialization callbacks are registered in .init_array and
1960 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1961 // to such globals is counterproductive, because the intent is that they
1962 // will form an array, and out-of-bounds accesses are expected.
1963 // See https://github.com/google/sanitizers/issues/305
1964 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1965 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
1966 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "do { } while (false)
1967 << *G << "\n")do { } while (false);
1968 return false;
1969 }
1970
1971 if (TargetTriple.isOSBinFormatMachO()) {
1972 StringRef ParsedSegment, ParsedSection;
1973 unsigned TAA = 0, StubSize = 0;
1974 bool TAAParsed;
1975 cantFail(MCSectionMachO::ParseSectionSpecifier(
1976 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize));
1977
1978 // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1979 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1980 // them.
1981 if (ParsedSegment == "__OBJC" ||
1982 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1983 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n")do { } while (false);
1984 return false;
1985 }
1986 // See https://github.com/google/sanitizers/issues/32
1987 // Constant CFString instances are compiled in the following way:
1988 // -- the string buffer is emitted into
1989 // __TEXT,__cstring,cstring_literals
1990 // -- the constant NSConstantString structure referencing that buffer
1991 // is placed into __DATA,__cfstring
1992 // Therefore there's no point in placing redzones into __DATA,__cfstring.
1993 // Moreover, it causes the linker to crash on OS X 10.7
1994 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
1995 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n")do { } while (false);
1996 return false;
1997 }
1998 // The linker merges the contents of cstring_literals and removes the
1999 // trailing zeroes.
2000 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
2001 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n")do { } while (false);
2002 return false;
2003 }
2004 }
2005 }
2006
2007 if (CompileKernel) {
2008 // Globals that prefixed by "__" are special and cannot be padded with a
2009 // redzone.
2010 if (G->getName().startswith("__"))
2011 return false;
2012 }
2013
2014 return true;
2015}
2016
2017// On Mach-O platforms, we emit global metadata in a separate section of the
2018// binary in order to allow the linker to properly dead strip. This is only
2019// supported on recent versions of ld64.
2020bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
2021 if (!TargetTriple.isOSBinFormatMachO())
2022 return false;
2023
2024 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
2025 return true;
2026 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
2027 return true;
2028 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
2029 return true;
2030
2031 return false;
2032}
2033
2034StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
2035 switch (TargetTriple.getObjectFormat()) {
2036 case Triple::COFF: return ".ASAN$GL";
2037 case Triple::ELF: return "asan_globals";
2038 case Triple::MachO: return "__DATA,__asan_globals,regular";
2039 case Triple::Wasm:
2040 case Triple::GOFF:
2041 case Triple::XCOFF:
2042 report_fatal_error(
2043 "ModuleAddressSanitizer not implemented for object file format");
2044 case Triple::UnknownObjectFormat:
2045 break;
2046 }
2047 llvm_unreachable("unsupported object format")__builtin_unreachable();
2048}
2049
2050void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
2051 IRBuilder<> IRB(*C);
2052
2053 // Declare our poisoning and unpoisoning functions.
2054 AsanPoisonGlobals =
2055 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
2056 AsanUnpoisonGlobals =
2057 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
2058
2059 // Declare functions that register/unregister globals.
2060 AsanRegisterGlobals = M.getOrInsertFunction(
2061 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2062 AsanUnregisterGlobals = M.getOrInsertFunction(
2063 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2064
2065 // Declare the functions that find globals in a shared object and then invoke
2066 // the (un)register function on them.
2067 AsanRegisterImageGlobals = M.getOrInsertFunction(
2068 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2069 AsanUnregisterImageGlobals = M.getOrInsertFunction(
2070 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2071
2072 AsanRegisterElfGlobals =
2073 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
2074 IntptrTy, IntptrTy, IntptrTy);
2075 AsanUnregisterElfGlobals =
2076 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
2077 IntptrTy, IntptrTy, IntptrTy);
2078}
2079
2080// Put the metadata and the instrumented global in the same group. This ensures
2081// that the metadata is discarded if the instrumented global is discarded.
2082void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
2083 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
2084 Module &M = *G->getParent();
2085 Comdat *C = G->getComdat();
2086 if (!C) {
2087 if (!G->hasName()) {
2088 // If G is unnamed, it must be internal. Give it an artificial name
2089 // so we can put it in a comdat.
2090 assert(G->hasLocalLinkage())((void)0);
2091 G->setName(Twine(kAsanGenPrefix) + "_anon_global");
2092 }
2093
2094 if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
2095 std::string Name = std::string(G->getName());
2096 Name += InternalSuffix;
2097 C = M.getOrInsertComdat(Name);
2098 } else {
2099 C = M.getOrInsertComdat(G->getName());
2100 }
2101
2102 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2103 // linkage to internal linkage so that a symbol table entry is emitted. This
2104 // is necessary in order to create the comdat group.
2105 if (TargetTriple.isOSBinFormatCOFF()) {
2106 C->setSelectionKind(Comdat::NoDeduplicate);
2107 if (G->hasPrivateLinkage())
2108 G->setLinkage(GlobalValue::InternalLinkage);
2109 }
2110 G->setComdat(C);
2111 }
2112
2113 assert(G->hasComdat())((void)0);
2114 Metadata->setComdat(G->getComdat());
2115}
2116
2117// Create a separate metadata global and put it in the appropriate ASan
2118// global registration section.
2119GlobalVariable *
2120ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2121 StringRef OriginalName) {
2122 auto Linkage = TargetTriple.isOSBinFormatMachO()
2123 ? GlobalVariable::InternalLinkage
2124 : GlobalVariable::PrivateLinkage;
2125 GlobalVariable *Metadata = new GlobalVariable(
2126 M, Initializer->getType(), false, Linkage, Initializer,
2127 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2128 Metadata->setSection(getGlobalMetadataSection());
2129 return Metadata;
2130}
2131
2132Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2133 AsanDtorFunction = Function::createWithDefaultAttr(
2134 FunctionType::get(Type::getVoidTy(*C), false),
2135 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M);
2136 AsanDtorFunction->addAttribute(AttributeList::FunctionIndex,
2137 Attribute::NoUnwind);
2138 // Ensure Dtor cannot be discarded, even if in a comdat.
2139 appendToUsed(M, {AsanDtorFunction});
2140 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2141
2142 return ReturnInst::Create(*C, AsanDtorBB);
2143}
2144
2145void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2146 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2147 ArrayRef<Constant *> MetadataInitializers) {
2148 assert(ExtendedGlobals.size() == MetadataInitializers.size())((void)0);
2149 auto &DL = M.getDataLayout();
2150
2151 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2152 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2153 Constant *Initializer = MetadataInitializers[i];
2154 GlobalVariable *G = ExtendedGlobals[i];
2155 GlobalVariable *Metadata =
2156 CreateMetadataGlobal(M, Initializer, G->getName());
2157 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2158 Metadata->setMetadata(LLVMContext::MD_associated, MD);
2159 MetadataGlobals[i] = Metadata;
2160
2161 // The MSVC linker always inserts padding when linking incrementally. We
2162 // cope with that by aligning each struct to its size, which must be a power
2163 // of two.
2164 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2165 assert(isPowerOf2_32(SizeOfGlobalStruct) &&((void)0)
2166 "global metadata will not be padded appropriately")((void)0);
2167 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
2168
2169 SetComdatForGlobalMetadata(G, Metadata, "");
2170 }
2171
2172 // Update llvm.compiler.used, adding the new metadata globals. This is
2173 // needed so that during LTO these variables stay alive.
2174 if (!MetadataGlobals.empty())
2175 appendToCompilerUsed(M, MetadataGlobals);
2176}
2177
2178void ModuleAddressSanitizer::InstrumentGlobalsELF(
2179 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2180 ArrayRef<Constant *> MetadataInitializers,
2181 const std::string &UniqueModuleId) {
2182 assert(ExtendedGlobals.size() == MetadataInitializers.size())((void)0);
2183
2184 // Putting globals in a comdat changes the semantic and potentially cause
2185 // false negative odr violations at link time. If odr indicators are used, we
2186 // keep the comdat sections, as link time odr violations will be dectected on
2187 // the odr indicator symbols.
2188 bool UseComdatForGlobalsGC = UseOdrIndicator;
2189
2190 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2191 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2192 GlobalVariable *G = ExtendedGlobals[i];
2193 GlobalVariable *Metadata =
2194 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2195 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2196 Metadata->setMetadata(LLVMContext::MD_associated, MD);
2197 MetadataGlobals[i] = Metadata;
2198
2199 if (UseComdatForGlobalsGC)
2200 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2201 }
2202
2203 // Update llvm.compiler.used, adding the new metadata globals. This is
2204 // needed so that during LTO these variables stay alive.
2205 if (!MetadataGlobals.empty())
2206 appendToCompilerUsed(M, MetadataGlobals);
2207
2208 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2209 // to look up the loaded image that contains it. Second, we can store in it
2210 // whether registration has already occurred, to prevent duplicate
2211 // registration.
2212 //
2213 // Common linkage ensures that there is only one global per shared library.
2214 GlobalVariable *RegisteredFlag = new GlobalVariable(
2215 M, IntptrTy, false, GlobalVariable::CommonLinkage,
2216 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2217 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2218
2219 // Create start and stop symbols.
2220 GlobalVariable *StartELFMetadata = new GlobalVariable(
2221 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2222 "__start_" + getGlobalMetadataSection());
2223 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2224 GlobalVariable *StopELFMetadata = new GlobalVariable(
2225 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2226 "__stop_" + getGlobalMetadataSection());
2227 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2228
2229 // Create a call to register the globals with the runtime.
2230 IRB.CreateCall(AsanRegisterElfGlobals,
2231 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2232 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2233 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2234
2235 // We also need to unregister globals at the end, e.g., when a shared library
2236 // gets closed.
2237 if (DestructorKind != AsanDtorKind::None) {
2238 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2239 IrbDtor.CreateCall(AsanUnregisterElfGlobals,
2240 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2241 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2242 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2243 }
2244}
2245
2246void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2247 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2248 ArrayRef<Constant *> MetadataInitializers) {
2249 assert(ExtendedGlobals.size() == MetadataInitializers.size())((void)0);
2250
2251 // On recent Mach-O platforms, use a structure which binds the liveness of
2252 // the global variable to the metadata struct. Keep the list of "Liveness" GV
2253 // created to be added to llvm.compiler.used
2254 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2255 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2256
2257 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2258 Constant *Initializer = MetadataInitializers[i];
2259 GlobalVariable *G = ExtendedGlobals[i];
2260 GlobalVariable *Metadata =
2261 CreateMetadataGlobal(M, Initializer, G->getName());
2262
2263 // On recent Mach-O platforms, we emit the global metadata in a way that
2264 // allows the linker to properly strip dead globals.
2265 auto LivenessBinder =
2266 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2267 ConstantExpr::getPointerCast(Metadata, IntptrTy));
2268 GlobalVariable *Liveness = new GlobalVariable(
2269 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2270 Twine("__asan_binder_") + G->getName());
2271 Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2272 LivenessGlobals[i] = Liveness;
2273 }
2274
2275 // Update llvm.compiler.used, adding the new liveness globals. This is
2276 // needed so that during LTO these variables stay alive. The alternative
2277 // would be to have the linker handling the LTO symbols, but libLTO
2278 // current API does not expose access to the section for each symbol.
2279 if (!LivenessGlobals.empty())
2280 appendToCompilerUsed(M, LivenessGlobals);
2281
2282 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2283 // to look up the loaded image that contains it. Second, we can store in it
2284 // whether registration has already occurred, to prevent duplicate
2285 // registration.
2286 //
2287 // common linkage ensures that there is only one global per shared library.
2288 GlobalVariable *RegisteredFlag = new GlobalVariable(
2289 M, IntptrTy, false, GlobalVariable::CommonLinkage,
2290 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2291 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2292
2293 IRB.CreateCall(AsanRegisterImageGlobals,
2294 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2295
2296 // We also need to unregister globals at the end, e.g., when a shared library
2297 // gets closed.
2298 if (DestructorKind != AsanDtorKind::None) {
2299 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2300 IrbDtor.CreateCall(AsanUnregisterImageGlobals,
2301 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2302 }
2303}
2304
2305void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2306 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2307 ArrayRef<Constant *> MetadataInitializers) {
2308 assert(ExtendedGlobals.size() == MetadataInitializers.size())((void)0);
2309 unsigned N = ExtendedGlobals.size();
2310 assert(N > 0)((void)0);
2311
2312 // On platforms that don't have a custom metadata section, we emit an array
2313 // of global metadata structures.
2314 ArrayType *ArrayOfGlobalStructTy =
2315 ArrayType::get(MetadataInitializers[0]->getType(), N);
2316 auto AllGlobals = new GlobalVariable(
2317 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2318 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2319 if (Mapping.Scale > 3)
2320 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
2321
2322 IRB.CreateCall(AsanRegisterGlobals,
2323 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2324 ConstantInt::get(IntptrTy, N)});
2325
2326 // We also need to unregister globals at the end, e.g., when a shared library
2327 // gets closed.
2328 if (DestructorKind != AsanDtorKind::None) {
2329 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2330 IrbDtor.CreateCall(AsanUnregisterGlobals,
2331 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2332 ConstantInt::get(IntptrTy, N)});
2333 }
2334}
2335
2336// This function replaces all global variables with new variables that have
2337// trailing redzones. It also creates a function that poisons
2338// redzones and inserts this function into llvm.global_ctors.
2339// Sets *CtorComdat to true if the global registration code emitted into the
2340// asan constructor is comdat-compatible.
2341bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
2342 bool *CtorComdat) {
2343 *CtorComdat = false;
2344
2345 // Build set of globals that are aliased by some GA, where
2346 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable.
2347 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions;
2348 if (CompileKernel) {
2349 for (auto &GA : M.aliases()) {
2350 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA))
2351 AliasedGlobalExclusions.insert(GV);
2352 }
2353 }
2354
2355 SmallVector<GlobalVariable *, 16> GlobalsToChange;
2356 for (auto &G : M.globals()) {
2357 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G))
2358 GlobalsToChange.push_back(&G);
2359 }
2360
2361 size_t n = GlobalsToChange.size();
2362 if (n == 0) {
2363 *CtorComdat = true;
2364 return false;
2365 }
2366
2367 auto &DL = M.getDataLayout();
2368
2369 // A global is described by a structure
2370 // size_t beg;
2371 // size_t size;
2372 // size_t size_with_redzone;
2373 // const char *name;
2374 // const char *module_name;
2375 // size_t has_dynamic_init;
2376 // void *source_location;
2377 // size_t odr_indicator;
2378 // We initialize an array of such structures and pass it to a run-time call.
2379 StructType *GlobalStructTy =
2380 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2381 IntptrTy, IntptrTy, IntptrTy);
2382 SmallVector<GlobalVariable *, 16> NewGlobals(n);
2383 SmallVector<Constant *, 16> Initializers(n);
2384
2385 bool HasDynamicallyInitializedGlobals = false;
2386
2387 // We shouldn't merge same module names, as this string serves as unique
2388 // module ID in runtime.
2389 GlobalVariable *ModuleName = createPrivateGlobalForString(
2390 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);
2391
2392 for (size_t i = 0; i < n; i++) {
2393 GlobalVariable *G = GlobalsToChange[i];
2394
2395 // FIXME: Metadata should be attched directly to the global directly instead
2396 // of being added to llvm.asan.globals.
2397 auto MD = GlobalsMD.get(G);
2398 StringRef NameForGlobal = G->getName();
2399 // Create string holding the global name (use global name from metadata
2400 // if it's available, otherwise just write the name of global variable).
2401 GlobalVariable *Name = createPrivateGlobalForString(
2402 M, MD.Name.empty() ? NameForGlobal : MD.Name,
2403 /*AllowMerging*/ true, kAsanGenPrefix);
2404
2405 Type *Ty = G->getValueType();
2406 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2407 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
2408 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2409
2410 StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2411 Constant *NewInitializer = ConstantStruct::get(
2412 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2413
2414 // Create a new global variable with enough space for a redzone.
2415 GlobalValue::LinkageTypes Linkage = G->getLinkage();
2416 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2417 Linkage = GlobalValue::InternalLinkage;
2418 GlobalVariable *NewGlobal = new GlobalVariable(
2419 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G,
2420 G->getThreadLocalMode(), G->getAddressSpace());
2421 NewGlobal->copyAttributesFrom(G);
2422 NewGlobal->setComdat(G->getComdat());
2423 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal()));
2424 // Don't fold globals with redzones. ODR violation detector and redzone
2425 // poisoning implicitly creates a dependence on the global's address, so it
2426 // is no longer valid for it to be marked unnamed_addr.
2427 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2428
2429 // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2430 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2431 G->isConstant()) {
2432 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2433 if (Seq && Seq->isCString())
2434 NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2435 }
2436
2437 // Transfer the debug info and type metadata. The payload starts at offset
2438 // zero so we can copy the metadata over as is.
2439 NewGlobal->copyMetadata(G, 0);
2440
2441 Value *Indices2[2];
2442 Indices2[0] = IRB.getInt32(0);
2443 Indices2[1] = IRB.getInt32(0);
2444
2445 G->replaceAllUsesWith(
2446 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2447 NewGlobal->takeName(G);
2448 G->eraseFromParent();
2449 NewGlobals[i] = NewGlobal;
2450
2451 Constant *SourceLoc;
2452 if (!MD.SourceLoc.empty()) {
2453 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
2454 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
2455 } else {
2456 SourceLoc = ConstantInt::get(IntptrTy, 0);
2457 }
2458
2459 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
2460 GlobalValue *InstrumentedGlobal = NewGlobal;
2461
2462 bool CanUsePrivateAliases =
2463 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2464 TargetTriple.isOSBinFormatWasm();
2465 if (CanUsePrivateAliases && UsePrivateAlias) {
2466 // Create local alias for NewGlobal to avoid crash on ODR between
2467 // instrumented and non-instrumented libraries.
2468 InstrumentedGlobal =
2469 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2470 }
2471
2472 // ODR should not happen for local linkage.
2473 if (NewGlobal->hasLocalLinkage()) {
2474 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
2475 IRB.getInt8PtrTy());
2476 } else if (UseOdrIndicator) {
2477 // With local aliases, we need to provide another externally visible
2478 // symbol __odr_asan_XXX to detect ODR violation.
2479 auto *ODRIndicatorSym =
2480 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2481 Constant::getNullValue(IRB.getInt8Ty()),
2482 kODRGenPrefix + NameForGlobal, nullptr,
2483 NewGlobal->getThreadLocalMode());
2484
2485 // Set meaningful attributes for indicator symbol.
2486 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2487 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2488 ODRIndicatorSym->setAlignment(Align(1));
2489 ODRIndicator = ODRIndicatorSym;
2490 }
2491
2492 Constant *Initializer = ConstantStruct::get(
2493 GlobalStructTy,
2494 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2495 ConstantInt::get(IntptrTy, SizeInBytes),
2496 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2497 ConstantExpr::getPointerCast(Name, IntptrTy),
2498 ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2499 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
2500 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2501
2502 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
2503
2504 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n")do { } while (false);
2505
2506 Initializers[i] = Initializer;
2507 }
2508
2509 // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2510 // ConstantMerge'ing them.
2511 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2512 for (size_t i = 0; i < n; i++) {
2513 GlobalVariable *G = NewGlobals[i];
2514 if (G->getName().empty()) continue;
2515 GlobalsToAddToUsedList.push_back(G);
2516 }
2517 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2518
2519 std::string ELFUniqueModuleId =
2520 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
2521 : "";
2522
2523 if (!ELFUniqueModuleId.empty()) {
2524 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
2525 *CtorComdat = true;
2526 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2527 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2528 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2529 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2530 } else {
2531 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2532 }
2533
2534 // Create calls for poisoning before initializers run and unpoisoning after.
2535 if (HasDynamicallyInitializedGlobals)
2536 createInitializerPoisonCalls(M, ModuleName);
2537
2538 LLVM_DEBUG(dbgs() << M)do { } while (false);
2539 return true;
2540}
2541
2542uint64_t
2543ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
2544 constexpr uint64_t kMaxRZ = 1 << 18;
2545 const uint64_t MinRZ = getMinRedzoneSizeForGlobal();
2546
2547 uint64_t RZ = 0;
2548 if (SizeInBytes <= MinRZ / 2) {
2549 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is
2550 // at least 32 bytes, optimize when SizeInBytes is less than or equal to
2551 // half of MinRZ.
2552 RZ = MinRZ - SizeInBytes;
2553 } else {
2554 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
2555 RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ));
2556
2557 // Round up to multiple of MinRZ.
2558 if (SizeInBytes % MinRZ)
2559 RZ += MinRZ - (SizeInBytes % MinRZ);
2560 }
2561
2562 assert((RZ + SizeInBytes) % MinRZ == 0)((void)0);
2563
2564 return RZ;
2565}
2566
2567int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2568 int LongSize = M.getDataLayout().getPointerSizeInBits();
2569 bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2570 int Version = 8;
2571 // 32-bit Android is one version ahead because of the switch to dynamic
2572 // shadow.
2573 Version += (LongSize == 32 && isAndroid);
2574 return Version;
2575}
2576
2577bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2578 initializeCallbacks(M);
2579
2580 // Create a module constructor. A destructor is created lazily because not all
2581 // platforms, and not all modules need it.
2582 if (CompileKernel) {
2583 // The kernel always builds with its own runtime, and therefore does not
2584 // need the init and version check calls.
2585 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
2586 } else {
2587 std::string AsanVersion = std::to_string(GetAsanVersion(M));
2588 std::string VersionCheckName =
2589 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
2590 std::tie(AsanCtorFunction, std::ignore) =
2591 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName,
2592 kAsanInitName, /*InitArgTypes=*/{},
2593 /*InitArgs=*/{}, VersionCheckName);
2594 }
2595
2596 bool CtorComdat = true;
2597 if (ClGlobals) {
2598 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2599 InstrumentGlobals(IRB, M, &CtorComdat);
2600 }
2601
2602 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2603
2604 // Put the constructor and destructor in comdat if both
2605 // (1) global instrumentation is not TU-specific
2606 // (2) target is ELF.
2607 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2608 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2609 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2610 if (AsanDtorFunction) {
2611 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2612 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2613 }
2614 } else {
2615 appendToGlobalCtors(M, AsanCtorFunction, Priority);
2616 if (AsanDtorFunction)
2617 appendToGlobalDtors(M, AsanDtorFunction, Priority);
2618 }
2619
2620 return true;
2621}
2622
2623void AddressSanitizer::initializeCallbacks(Module &M) {
2624 IRBuilder<> IRB(*C);
2625 // Create __asan_report* callbacks.
2626 // IsWrite, TypeSize and Exp are encoded in the function name.
2627 for (int Exp = 0; Exp < 2; Exp++) {
2628 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2629 const std::string TypeStr = AccessIsWrite ? "store" : "load";
2630 const std::string ExpStr = Exp ? "exp_" : "";
2631 const std::string EndingStr = Recover ? "_noabort" : "";
2632
2633 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2634 SmallVector<Type *, 2> Args1{1, IntptrTy};
2635 if (Exp) {
2636 Type *ExpType = Type::getInt32Ty(*C);
2637 Args2.push_back(ExpType);
2638 Args1.push_back(ExpType);
2639 }
2640 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2641 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2642 FunctionType::get(IRB.getVoidTy(), Args2, false));
2643
2644 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2645 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2646 FunctionType::get(IRB.getVoidTy(), Args2, false));
2647
2648 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2649 AccessSizeIndex++) {
2650 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2651 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2652 M.getOrInsertFunction(
2653 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2654 FunctionType::get(IRB.getVoidTy(), Args1, false));
2655
2656 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2657 M.getOrInsertFunction(
2658 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2659 FunctionType::get(IRB.getVoidTy(), Args1, false));
2660 }
2661 }
2662 }
2663
2664 const std::string MemIntrinCallbackPrefix =
2665 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
2666 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2667 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2668 IRB.getInt8PtrTy(), IntptrTy);
2669 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
2670 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2671 IRB.getInt8PtrTy(), IntptrTy);
2672 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2673 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2674 IRB.getInt32Ty(), IntptrTy);
2675
2676 AsanHandleNoReturnFunc =
2677 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2678
2679 AsanPtrCmpFunction =
2680 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2681 AsanPtrSubFunction =
2682 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2683 if (Mapping.InGlobal)
2684 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2685 ArrayType::get(IRB.getInt8Ty(), 0));
2686
2687 AMDGPUAddressShared = M.getOrInsertFunction(
2688 kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
2689 AMDGPUAddressPrivate = M.getOrInsertFunction(
2690 kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
2691}
2692
2693bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2694 // For each NSObject descendant having a +load method, this method is invoked
2695 // by the ObjC runtime before any of the static constructors is called.
2696 // Therefore we need to instrument such methods with a call to __asan_init
2697 // at the beginning in order to initialize our runtime before any access to
2698 // the shadow memory.
2699 // We cannot just ignore these methods, because they may call other
2700 // instrumented functions.
2701 if (F.getName().find(" load]") != std::string::npos) {
2702 FunctionCallee AsanInitFunction =
2703 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2704 IRBuilder<> IRB(&F.front(), F.front().begin());
2705 IRB.CreateCall(AsanInitFunction, {});
2706 return true;
2707 }
2708 return false;
2709}
2710
2711bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2712 // Generate code only when dynamic addressing is needed.
2713 if (Mapping.Offset != kDynamicShadowSentinel)
2714 return false;
2715
2716 IRBuilder<> IRB(&F.front().front());
2717 if (Mapping.InGlobal) {
2718 if (ClWithIfuncSuppressRemat) {
2719 // An empty inline asm with input reg == output reg.
2720 // An opaque pointer-to-int cast, basically.
2721 InlineAsm *Asm = InlineAsm::get(
2722 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2723 StringRef(""), StringRef("=r,0"),
2724 /*hasSideEffects=*/false);
2725 LocalDynamicShadow =
2726 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2727 } else {
2728 LocalDynamicShadow =
2729 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2730 }
2731 } else {
2732 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2733 kAsanShadowMemoryDynamicAddress, IntptrTy);
2734 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2735 }
2736 return true;
2737}
2738
2739void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2740 // Find the one possible call to llvm.localescape and pre-mark allocas passed
2741 // to it as uninteresting. This assumes we haven't started processing allocas
2742 // yet. This check is done up front because iterating the use list in
2743 // isInterestingAlloca would be algorithmically slower.
2744 assert(ProcessedAllocas.empty() && "must process localescape before allocas")((void)0);
2745
2746 // Try to get the declaration of llvm.localescape. If it's not in the module,
2747 // we can exit early.
2748 if (!F.getParent()->getFunction("llvm.localescape")) return;
2749
2750 // Look for a call to llvm.localescape call in the entry block. It can't be in
2751 // any other block.
2752 for (Instruction &I : F.getEntryBlock()) {
2753 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2754 if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2755 // We found a call. Mark all the allocas passed in as uninteresting.
2756 for (Value *Arg : II->arg_operands()) {
2757 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2758 assert(AI && AI->isStaticAlloca() &&((void)0)
2759 "non-static alloca arg to localescape")((void)0);
2760 ProcessedAllocas[AI] = false;
2761 }
2762 break;
2763 }
2764 }
2765}
2766
2767bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
2768 bool ShouldInstrument =
2769 ClDebugMin < 0 || ClDebugMax < 0 ||
2770 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
2771 Instrumented++;
2772 return !ShouldInstrument;
2773}
2774
2775bool AddressSanitizer::instrumentFunction(Function &F,
2776 const TargetLibraryInfo *TLI) {
2777 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2
Assuming the condition is false
3
Taking false branch
2778 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
4
Assuming the condition is false
5
Taking false branch
2779 if (F.getName().startswith("__asan_")) return false;
6
Assuming the condition is false
7
Taking false branch
2780
2781 bool FunctionModified = false;
2782
2783 // If needed, insert __asan_init before checking for SanitizeAddress attr.
2784 // This function needs to be called even if the function body is not
2785 // instrumented.
2786 if (maybeInsertAsanInitAtFunctionEntry(F))
8
Taking false branch
2787 FunctionModified = true;
2788
2789 // Leave if the function doesn't need instrumentation.
2790 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
9
Assuming the condition is false
10
Taking false branch
2791
2792 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n")do { } while (false);
11
Loop condition is false. Exiting loop
2793
2794 initializeCallbacks(*F.getParent());
2795
2796 FunctionStateRAII CleanupObj(this);
2797
2798 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);
2799
2800 // We can't instrument allocas used with llvm.localescape. Only static allocas
2801 // can be passed to that intrinsic.
2802 markEscapedLocalAllocas(F);
2803
2804 // We want to instrument every address only once per basic block (unless there
2805 // are calls between uses).
2806 SmallPtrSet<Value *, 16> TempsToInstrument;
2807 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
2808 SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
2809 SmallVector<Instruction *, 8> NoReturnCalls;
2810 SmallVector<BasicBlock *, 16> AllBlocks;
2811 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2812 int NumAllocas = 0;
2813
2814 // Fill the set of memory operations to instrument.
2815 for (auto &BB : F) {
2816 AllBlocks.push_back(&BB);
2817 TempsToInstrument.clear();
2818 int NumInsnsPerBB = 0;
2819 for (auto &Inst : BB) {
2820 if (LooksLikeCodeInBug11395(&Inst)) return false;
2821 SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
2822 getInterestingMemoryOperands(&Inst, InterestingOperands);
2823
2824 if (!InterestingOperands.empty()) {
2825 for (auto &Operand : InterestingOperands) {
2826 if (ClOpt && ClOptSameTemp) {
2827 Value *Ptr = Operand.getPtr();
2828 // If we have a mask, skip instrumentation if we've already
2829 // instrumented the full object. But don't add to TempsToInstrument
2830 // because we might get another load/store with a different mask.
2831 if (Operand.MaybeMask) {
2832 if (TempsToInstrument.count(Ptr))
2833 continue; // We've seen this (whole) temp in the current BB.
2834 } else {
2835 if (!TempsToInstrument.insert(Ptr).second)
2836 continue; // We've seen this temp in the current BB.
2837 }
2838 }
2839 OperandsToInstrument.push_back(Operand);
2840 NumInsnsPerBB++;
2841 }
2842 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
2843 isInterestingPointerComparison(&Inst)) ||
2844 ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
2845 isInterestingPointerSubtraction(&Inst))) {
2846 PointerComparisonsOrSubtracts.push_back(&Inst);
2847 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
2848 // ok, take it.
2849 IntrinToInstrument.push_back(MI);
2850 NumInsnsPerBB++;
2851 } else {
2852 if (isa<AllocaInst>(Inst)) NumAllocas++;
2853 if (auto *CB = dyn_cast<CallBase>(&Inst)) {
2854 // A call inside BB.
2855 TempsToInstrument.clear();
2856 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize"))
2857 NoReturnCalls.push_back(CB);
2858 }
2859 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2860 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2861 }
2862 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2863 }
2864 }
2865
2866 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 &&
12
Assuming the condition is false
2867 OperandsToInstrument.size() + IntrinToInstrument.size() >
2868 (unsigned)ClInstrumentationWithCallsThreshold);
2869 const DataLayout &DL = F.getParent()->getDataLayout();
2870 ObjectSizeOpts ObjSizeOpts;
2871 ObjSizeOpts.RoundToAlign = true;
2872 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2873
2874 // Instrument.
2875 int NumInstrumented = 0;
2876 for (auto &Operand : OperandsToInstrument) {
13
Assuming '__begin1' is equal to '__end1'
2877 if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2878 instrumentMop(ObjSizeVis, Operand, UseCalls,
2879 F.getParent()->getDataLayout());
2880 FunctionModified = true;
2881 }
2882 for (auto Inst : IntrinToInstrument) {
14
Assuming '__begin1' is equal to '__end1'
2883 if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2884 instrumentMemIntrinsic(Inst);
2885 FunctionModified = true;
2886 }
2887
2888 FunctionStackPoisoner FSP(F, *this);
2889 bool ChangedStack = FSP.runOnFunction();
15
Calling 'FunctionStackPoisoner::runOnFunction'
2890
2891 // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2892 // See e.g. https://github.com/google/sanitizers/issues/37
2893 for (auto CI : NoReturnCalls) {
2894 IRBuilder<> IRB(CI);
2895 IRB.CreateCall(AsanHandleNoReturnFunc, {});
2896 }
2897
2898 for (auto Inst : PointerComparisonsOrSubtracts) {
2899 instrumentPointerComparisonOrSubtraction(Inst);
2900 FunctionModified = true;
2901 }
2902
2903 if (ChangedStack || !NoReturnCalls.empty())
2904 FunctionModified = true;
2905
2906 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "do { } while (false)
2907 << F << "\n")do { } while (false);
2908
2909 return FunctionModified;
2910}
2911
2912// Workaround for bug 11395: we don't want to instrument stack in functions
2913// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2914// FIXME: remove once the bug 11395 is fixed.
2915bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2916 if (LongSize != 32) return false;
2917 CallInst *CI = dyn_cast<CallInst>(I);
2918 if (!CI || !CI->isInlineAsm()) return false;
2919 if (CI->getNumArgOperands() <= 5) return false;
2920 // We have inline assembly with quite a few arguments.
2921 return true;
2922}
2923
2924void FunctionStackPoisoner::initializeCallbacks(Module &M) {
2925 IRBuilder<> IRB(*C);
2926 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always ||
2927 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
2928 const char *MallocNameTemplate =
2929 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always
2930 ? kAsanStackMallocAlwaysNameTemplate
2931 : kAsanStackMallocNameTemplate;
2932 for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) {
2933 std::string Suffix = itostr(Index);
2934 AsanStackMallocFunc[Index] = M.getOrInsertFunction(
2935 MallocNameTemplate + Suffix, IntptrTy, IntptrTy);
2936 AsanStackFreeFunc[Index] =
2937 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
2938 IRB.getVoidTy(), IntptrTy, IntptrTy);
2939 }
2940 }
2941 if (ASan.UseAfterScope) {
2942 AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
2943 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2944 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
2945 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2946 }
2947
2948 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2949 std::ostringstream Name;
2950 Name << kAsanSetShadowPrefix;
2951 Name << std::setw(2) << std::setfill('0') << std::hex << Val;
2952 AsanSetShadowFunc[Val] =
2953 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
2954 }
2955
2956 AsanAllocaPoisonFunc = M.getOrInsertFunction(
2957 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2958 AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
2959 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2960}
2961
2962void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
2963 ArrayRef<uint8_t> ShadowBytes,
2964 size_t Begin, size_t End,
2965 IRBuilder<> &IRB,
2966 Value *ShadowBase) {
2967 if (Begin >= End)
2968 return;
2969
2970 const size_t LargestStoreSizeInBytes =
2971 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
2972
2973 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
2974
2975 // Poison given range in shadow using larges store size with out leading and
2976 // trailing zeros in ShadowMask. Zeros never change, so they need neither
2977 // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2978 // middle of a store.
2979 for (size_t i = Begin; i < End;) {
2980 if (!ShadowMask[i]) {
2981 assert(!ShadowBytes[i])((void)0);
2982 ++i;
2983 continue;
2984 }
2985
2986 size_t StoreSizeInBytes = LargestStoreSizeInBytes;
2987 // Fit store size into the range.
2988 while (StoreSizeInBytes > End - i)
2989 StoreSizeInBytes /= 2;
2990
2991 // Minimize store size by trimming trailing zeros.
2992 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
2993 while (j <= StoreSizeInBytes / 2)
2994 StoreSizeInBytes /= 2;
2995 }
2996
2997 uint64_t Val = 0;
2998 for (size_t j = 0; j < StoreSizeInBytes; j++) {
2999 if (IsLittleEndian)
3000 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
3001 else
3002 Val = (Val << 8) | ShadowBytes[i + j];
3003 }
3004
3005 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
3006 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
3007 IRB.CreateAlignedStore(
3008 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()),
3009 Align(1));
3010
3011 i += StoreSizeInBytes;
3012 }
3013}
3014
3015void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3016 ArrayRef<uint8_t> ShadowBytes,
3017 IRBuilder<> &IRB, Value *ShadowBase) {
3018 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
3019}
3020
3021void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3022 ArrayRef<uint8_t> ShadowBytes,
3023 size_t Begin, size_t End,
3024 IRBuilder<> &IRB, Value *ShadowBase) {
3025 assert(ShadowMask.size() == ShadowBytes.size())((void)0);
3026 size_t Done = Begin;
3027 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
3028 if (!ShadowMask[i]) {
3029 assert(!ShadowBytes[i])((void)0);
3030 continue;
3031 }
3032 uint8_t Val = ShadowBytes[i];
3033 if (!AsanSetShadowFunc[Val])
3034 continue;
3035
3036 // Skip same values.
3037 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
3038 }
3039
3040 if (j - i >= ClMaxInlinePoisoningSize) {
3041 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
3042 IRB.CreateCall(AsanSetShadowFunc[Val],
3043 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
3044 ConstantInt::get(IntptrTy, j - i)});
3045 Done = j;
3046 }
3047 }
3048
3049 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
3050}
3051
3052// Fake stack allocator (asan_fake_stack.h) has 11 size classes
3053// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
3054static int StackMallocSizeClass(uint64_t LocalStackSize) {
3055 assert(LocalStackSize <= kMaxStackMallocSize)((void)0);
3056 uint64_t MaxSize = kMinStackMallocSize;
3057 for (int i = 0;; i++, MaxSize *= 2)
3058 if (LocalStackSize <= MaxSize) return i;
3059 llvm_unreachable("impossible LocalStackSize")__builtin_unreachable();
3060}
3061
3062void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
3063 Instruction *CopyInsertPoint = &F.front().front();
3064 if (CopyInsertPoint == ASan.LocalDynamicShadow) {
3065 // Insert after the dynamic shadow location is determined
3066 CopyInsertPoint = CopyInsertPoint->getNextNode();
3067 assert(CopyInsertPoint)((void)0);
3068 }
3069 IRBuilder<> IRB(CopyInsertPoint);
3070 const DataLayout &DL = F.getParent()->getDataLayout();
3071 for (Argument &Arg : F.args()) {
3072 if (Arg.hasByValAttr()) {
3073 Type *Ty = Arg.getParamByValType();
3074 const Align Alignment =
3075 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);
3076
3077 AllocaInst *AI = IRB.CreateAlloca(
3078 Ty, nullptr,
3079 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
3080 ".byval");
3081 AI->setAlignment(Alignment);
3082 Arg.replaceAllUsesWith(AI);
3083
3084 uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3085 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
3086 }
3087 }
3088}
3089
3090PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
3091 Value *ValueIfTrue,
3092 Instruction *ThenTerm,
3093 Value *ValueIfFalse) {
3094 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
3095 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
3096 PHI->addIncoming(ValueIfFalse, CondBlock);
3097 BasicBlock *ThenBlock = ThenTerm->getParent();
3098 PHI->addIncoming(ValueIfTrue, ThenBlock);
3099 return PHI;
3100}
3101
3102Value *FunctionStackPoisoner::createAllocaForLayout(
3103 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
3104 AllocaInst *Alloca;
3105 if (Dynamic) {
3106 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
3107 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
3108 "MyAlloca");
3109 } else {
3110 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
3111 nullptr, "MyAlloca");
3112 assert(Alloca->isStaticAlloca())((void)0);
3113 }
3114 assert((ClRealignStack & (ClRealignStack - 1)) == 0)((void)0);
3115 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
3116 Alloca->setAlignment(Align(FrameAlignment));
3117 return IRB.CreatePointerCast(Alloca, IntptrTy);
3118}
3119
3120void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
3121 BasicBlock &FirstBB = *F.begin();
3122 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
3123 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
3124 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
3125 DynamicAllocaLayout->setAlignment(Align(32));
3126}
3127
3128void FunctionStackPoisoner::processDynamicAllocas() {
3129 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
22
Assuming the condition is false
23
Taking false branch
3130 assert(DynamicAllocaPoisonCallVec.empty())((void)0);
3131 return;
3132 }
3133
3134 // Insert poison calls for lifetime intrinsics for dynamic allocas.
3135 for (const auto &APC : DynamicAllocaPoisonCallVec) {
24
Assuming '__begin1' is equal to '__end1'
3136 assert(APC.InsBefore)((void)0);
3137 assert(APC.AI)((void)0);
3138 assert(ASan.isInterestingAlloca(*APC.AI))((void)0);
3139 assert(!APC.AI->isStaticAlloca())((void)0);
3140
3141 IRBuilder<> IRB(APC.InsBefore);
3142 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
3143 // Dynamic allocas will be unpoisoned unconditionally below in
3144 // unpoisonDynamicAllocas.
3145 // Flag that we need unpoison static allocas.
3146 }
3147
3148 // Handle dynamic allocas.
3149 createDynamicAllocasInitStorage();
3150 for (auto &AI : DynamicAllocaVec)
25
Assuming '__begin1' is not equal to '__end1'
3151 handleDynamicAllocaCall(AI);
26
Calling 'FunctionStackPoisoner::handleDynamicAllocaCall'
3152 unpoisonDynamicAllocas();
3153}
3154
3155/// Collect instructions in the entry block after \p InsBefore which initialize
3156/// permanent storage for a function argument. These instructions must remain in
3157/// the entry block so that uninitialized values do not appear in backtraces. An
3158/// added benefit is that this conserves spill slots. This does not move stores
3159/// before instrumented / "interesting" allocas.
3160static void findStoresToUninstrumentedArgAllocas(
3161 AddressSanitizer &ASan, Instruction &InsBefore,
3162 SmallVectorImpl<Instruction *> &InitInsts) {
3163 Instruction *Start = InsBefore.getNextNonDebugInstruction();
3164 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
3165 // Argument initialization looks like:
3166 // 1) store <Argument>, <Alloca> OR
3167 // 2) <CastArgument> = cast <Argument> to ...
3168 // store <CastArgument> to <Alloca>
3169 // Do not consider any other kind of instruction.
3170 //
3171 // Note: This covers all known cases, but may not be exhaustive. An
3172 // alternative to pattern-matching stores is to DFS over all Argument uses:
3173 // this might be more general, but is probably much more complicated.
3174 if (isa<AllocaInst>(It) || isa<CastInst>(It))
3175 continue;
3176 if (auto *Store = dyn_cast<StoreInst>(It)) {
3177 // The store destination must be an alloca that isn't interesting for
3178 // ASan to instrument. These are moved up before InsBefore, and they're
3179 // not interesting because allocas for arguments can be mem2reg'd.
3180 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
3181 if (!Alloca || ASan.isInterestingAlloca(*Alloca))
3182 continue;
3183
3184 Value *Val = Store->getValueOperand();
3185 bool IsDirectArgInit = isa<Argument>(Val);
3186 bool IsArgInitViaCast =
3187 isa<CastInst>(Val) &&
3188 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
3189 // Check that the cast appears directly before the store. Otherwise
3190 // moving the cast before InsBefore may break the IR.
3191 Val == It->getPrevNonDebugInstruction();
3192 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
3193 if (!IsArgInit)
3194 continue;
3195
3196 if (IsArgInitViaCast)
3197 InitInsts.push_back(cast<Instruction>(Val));
3198 InitInsts.push_back(Store);
3199 continue;
3200 }
3201
3202 // Do not reorder past unknown instructions: argument initialization should
3203 // only involve casts and stores.
3204 return;
3205 }
3206}
3207
3208void FunctionStackPoisoner::processStaticAllocas() {
3209 if (AllocaVec.empty()) {
3210 assert(StaticAllocaPoisonCallVec.empty())((void)0);
3211 return;
3212 }
3213
3214 int StackMallocIdx = -1;
3215 DebugLoc EntryDebugLocation;
3216 if (auto SP = F.getSubprogram())
3217 EntryDebugLocation =
3218 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP);
3219
3220 Instruction *InsBefore = AllocaVec[0];
3221 IRBuilder<> IRB(InsBefore);
3222
3223 // Make sure non-instrumented allocas stay in the entry block. Otherwise,
3224 // debug info is broken, because only entry-block allocas are treated as
3225 // regular stack slots.
3226 auto InsBeforeB = InsBefore->getParent();
3227 assert(InsBeforeB == &F.getEntryBlock())((void)0);
3228 for (auto *AI : StaticAllocasToMoveUp)
3229 if (AI->getParent() == InsBeforeB)
3230 AI->moveBefore(InsBefore);
3231
3232 // Move stores of arguments into entry-block allocas as well. This prevents
3233 // extra stack slots from being generated (to house the argument values until
3234 // they can be stored into the allocas). This also prevents uninitialized
3235 // values from being shown in backtraces.
3236 SmallVector<Instruction *, 8> ArgInitInsts;
3237 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
3238 for (Instruction *ArgInitInst : ArgInitInsts)
3239 ArgInitInst->moveBefore(InsBefore);
3240
3241 // If we have a call to llvm.localescape, keep it in the entry block.
3242 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3243
3244 SmallVector<ASanStackVariableDescription, 16> SVD;
3245 SVD.reserve(AllocaVec.size());
3246 for (AllocaInst *AI : AllocaVec) {
3247 ASanStackVariableDescription D = {AI->getName().data(),
3248 ASan.getAllocaSizeInBytes(*AI),
3249 0,
3250 AI->getAlignment(),
3251 AI,
3252 0,
3253 0};
3254 SVD.push_back(D);
3255 }
3256
3257 // Minimal header size (left redzone) is 4 pointers,
3258 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3259 size_t Granularity = 1ULL << Mapping.Scale;
3260 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
3261 const ASanStackFrameLayout &L =
3262 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3263
3264 // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3265 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3266 for (auto &Desc : SVD)
3267 AllocaToSVDMap[Desc.AI] = &Desc;
3268
3269 // Update SVD with information from lifetime intrinsics.
3270 for (const auto &APC : StaticAllocaPoisonCallVec) {
3271 assert(APC.InsBefore)((void)0);
3272 assert(APC.AI)((void)0);
3273 assert(ASan.isInterestingAlloca(*APC.AI))((void)0);
3274 assert(APC.AI->isStaticAlloca())((void)0);
3275
3276 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3277 Desc.LifetimeSize = Desc.Size;
3278 if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3279 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3280 if (LifetimeLoc->getFile() == FnLoc->getFile())
3281 if (unsigned Line = LifetimeLoc->getLine())
3282 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3283 }
3284 }
3285 }
3286
3287 auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3288 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n")do { } while (false);
3289 uint64_t LocalStackSize = L.FrameSize;
3290 bool DoStackMalloc =
3291 ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never &&
3292 !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize;
3293 bool DoDynamicAlloca = ClDynamicAllocaStack;
3294 // Don't do dynamic alloca or stack malloc if:
3295 // 1) There is inline asm: too often it makes assumptions on which registers
3296 // are available.
3297 // 2) There is a returns_twice call (typically setjmp), which is
3298 // optimization-hostile, and doesn't play well with introduced indirect
3299 // register-relative calculation of local variable addresses.
3300 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall;
3301 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall;
3302
3303 Value *StaticAlloca =
3304 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3305
3306 Value *FakeStack;
3307 Value *LocalStackBase;
3308 Value *LocalStackBaseAlloca;
3309 uint8_t DIExprFlags = DIExpression::ApplyOffset;
3310
3311 if (DoStackMalloc) {
3312 LocalStackBaseAlloca =
3313 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3314 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
3315 // void *FakeStack = __asan_option_detect_stack_use_after_return
3316 // ? __asan_stack_malloc_N(LocalStackSize)
3317 // : nullptr;
3318 // void *LocalStackBase = (FakeStack) ? FakeStack :
3319 // alloca(LocalStackSize);
3320 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3321 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3322 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3323 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3324 Constant::getNullValue(IRB.getInt32Ty()));
3325 Instruction *Term =
3326 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3327 IRBuilder<> IRBIf(Term);
3328 StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3329 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass)((void)0);
3330 Value *FakeStackValue =
3331 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3332 ConstantInt::get(IntptrTy, LocalStackSize));
3333 IRB.SetInsertPoint(InsBefore);
3334 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3335 ConstantInt::get(IntptrTy, 0));
3336 } else {
3337 // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always)
3338 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize);
3339 // void *LocalStackBase = (FakeStack) ? FakeStack :
3340 // alloca(LocalStackSize);
3341 StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3342 FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3343 ConstantInt::get(IntptrTy, LocalStackSize));
3344 }
3345 Value *NoFakeStack =
3346 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3347 Instruction *Term =
3348 SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3349 IRBuilder<> IRBIf(Term);
3350 Value *AllocaValue =
3351 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3352
3353 IRB.SetInsertPoint(InsBefore);
3354 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3355 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3356 DIExprFlags |= DIExpression::DerefBefore;
3357 } else {
3358 // void *FakeStack = nullptr;
3359 // void *LocalStackBase = alloca(LocalStackSize);
3360 FakeStack = ConstantInt::get(IntptrTy, 0);
3361 LocalStackBase =
3362 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3363 LocalStackBaseAlloca = LocalStackBase;
3364 }
3365
3366 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
3367 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
3368 // later passes and can result in dropped variable coverage in debug info.
3369 Value *LocalStackBaseAllocaPtr =
3370 isa<PtrToIntInst>(LocalStackBaseAlloca)
3371 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
3372 : LocalStackBaseAlloca;
3373 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&((void)0)
3374 "Variable descriptions relative to ASan stack base will be dropped")((void)0);
3375
3376 // Replace Alloca instructions with base+offset.
3377 for (const auto &Desc : SVD) {
3378 AllocaInst *AI = Desc.AI;
3379 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
3380 Desc.Offset);
3381 Value *NewAllocaPtr = IRB.CreateIntToPtr(
3382 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3383 AI->getType());
3384 AI->replaceAllUsesWith(NewAllocaPtr);
3385 }
3386
3387 // The left-most redzone has enough space for at least 4 pointers.
3388 // Write the Magic value to redzone[0].
3389 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3390 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3391 BasePlus0);
3392 // Write the frame description constant to redzone[1].
3393 Value *BasePlus1 = IRB.CreateIntToPtr(
3394 IRB.CreateAdd(LocalStackBase,
3395 ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3396 IntptrPtrTy);
3397 GlobalVariable *StackDescriptionGlobal =
3398 createPrivateGlobalForString(*F.getParent(), DescriptionString,
3399 /*AllowMerging*/ true, kAsanGenPrefix);
3400 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3401 IRB.CreateStore(Description, BasePlus1);
3402 // Write the PC to redzone[2].
3403 Value *BasePlus2 = IRB.CreateIntToPtr(
3404 IRB.CreateAdd(LocalStackBase,
3405 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3406 IntptrPtrTy);
3407 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3408
3409 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3410
3411 // Poison the stack red zones at the entry.
3412 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3413 // As mask we must use most poisoned case: red zones and after scope.
3414 // As bytes we can use either the same or just red zones only.
3415 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3416
3417 if (!StaticAllocaPoisonCallVec.empty()) {
3418 const auto &ShadowInScope = GetShadowBytes(SVD, L);
3419
3420 // Poison static allocas near lifetime intrinsics.
3421 for (const auto &APC : StaticAllocaPoisonCallVec) {
3422 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3423 assert(Desc.Offset % L.Granularity == 0)((void)0);
3424 size_t Begin = Desc.Offset / L.Granularity;
3425 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3426
3427 IRBuilder<> IRB(APC.InsBefore);
3428 copyToShadow(ShadowAfterScope,
3429 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3430 IRB, ShadowBase);
3431 }
3432 }
3433
3434 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3435 SmallVector<uint8_t, 64> ShadowAfterReturn;
3436
3437 // (Un)poison the stack before all ret instructions.
3438 for (Instruction *Ret : RetVec) {
3439 IRBuilder<> IRBRet(Ret);
3440 // Mark the current frame as retired.
3441 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3442 BasePlus0);
3443 if (DoStackMalloc) {
3444 assert(StackMallocIdx >= 0)((void)0);
3445 // if FakeStack != 0 // LocalStackBase == FakeStack
3446 // // In use-after-return mode, poison the whole stack frame.
3447 // if StackMallocIdx <= 4
3448 // // For small sizes inline the whole thing:
3449 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3450 // **SavedFlagPtr(FakeStack) = 0
3451 // else
3452 // __asan_stack_free_N(FakeStack, LocalStackSize)
3453 // else
3454 // <This is not a fake stack; unpoison the redzones>
3455 Value *Cmp =
3456 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3457 Instruction *ThenTerm, *ElseTerm;
3458 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3459
3460 IRBuilder<> IRBPoison(ThenTerm);
3461 if (StackMallocIdx <= 4) {
3462 int ClassSize = kMinStackMallocSize << StackMallocIdx;
3463 ShadowAfterReturn.resize(ClassSize / L.Granularity,
3464 kAsanStackUseAfterReturnMagic);
3465 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3466 ShadowBase);
3467 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3468 FakeStack,
3469 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3470 Value *SavedFlagPtr = IRBPoison.CreateLoad(
3471 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3472 IRBPoison.CreateStore(
3473 Constant::getNullValue(IRBPoison.getInt8Ty()),
3474 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
3475 } else {
3476 // For larger frames call __asan_stack_free_*.
3477 IRBPoison.CreateCall(
3478 AsanStackFreeFunc[StackMallocIdx],
3479 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3480 }
3481
3482 IRBuilder<> IRBElse(ElseTerm);
3483 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3484 } else {
3485 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3486 }
3487 }
3488
3489 // We are done. Remove the old unused alloca instructions.
3490 for (auto AI : AllocaVec) AI->eraseFromParent();
3491}
3492
3493void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3494 IRBuilder<> &IRB, bool DoPoison) {
3495 // For now just insert the call to ASan runtime.
3496 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3497 Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3498 IRB.CreateCall(
3499 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3500 {AddrArg, SizeArg});
3501}
3502
3503// Handling llvm.lifetime intrinsics for a given %alloca:
3504// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3505// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3506// invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3507// could be poisoned by previous llvm.lifetime.end instruction, as the
3508// variable may go in and out of scope several times, e.g. in loops).
3509// (3) if we poisoned at least one %alloca in a function,
3510// unpoison the whole stack frame at function exit.
3511void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3512 IRBuilder<> IRB(AI);
3513
3514 const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment());
27
Calling 'AllocaInst::getAlignment'
3515 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3516
3517 Value *Zero = Constant::getNullValue(IntptrTy);
3518 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3519 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3520
3521 // Since we need to extend alloca with additional memory to locate
3522 // redzones, and OldSize is number of allocated blocks with
3523 // ElementSize size, get allocated memory size in bytes by
3524 // OldSize * ElementSize.
3525 const unsigned ElementSize =
3526 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3527 Value *OldSize =
3528 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3529 ConstantInt::get(IntptrTy, ElementSize));
3530
3531 // PartialSize = OldSize % 32
3532 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3533
3534 // Misalign = kAllocaRzSize - PartialSize;
3535 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3536
3537 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3538 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3539 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3540
3541 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
3542 // Alignment is added to locate left redzone, PartialPadding for possible
3543 // partial redzone and kAllocaRzSize for right redzone respectively.
3544 Value *AdditionalChunkSize = IRB.CreateAdd(
3545 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding);
3546
3547 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3548
3549 // Insert new alloca with new NewSize and Alignment params.
3550 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3551 NewAlloca->setAlignment(Align(Alignment));
3552
3553 // NewAddress = Address + Alignment
3554 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3555 ConstantInt::get(IntptrTy, Alignment));
3556
3557 // Insert __asan_alloca_poison call for new created alloca.
3558 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3559
3560 // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3561 // for unpoisoning stuff.
3562 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3563
3564 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3565
3566 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3567 AI->replaceAllUsesWith(NewAddressPtr);
3568
3569 // We are done. Erase old alloca from parent.
3570 AI->eraseFromParent();
3571}
3572
3573// isSafeAccess returns true if Addr is always inbounds with respect to its
3574// base object. For example, it is a field access or an array access with
3575// constant inbounds index.
3576bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3577 Value *Addr, uint64_t TypeSize) const {
3578 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
3579 if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
3580 uint64_t Size = SizeOffset.first.getZExtValue();
3581 int64_t Offset = SizeOffset.second.getSExtValue();
3582 // Three checks are required to ensure safety:
3583 // . Offset >= 0 (since the offset is given from the base ptr)
3584 // . Size >= Offset (unsigned)
3585 // . Size - Offset >= NeededSize (unsigned)
3586 return Offset >= 0 && Size >= uint64_t(Offset) &&
3587 Size - uint64_t(Offset) >= TypeSize / 8;
3588}

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/None.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringRef.h"
25#include "llvm/ADT/Twine.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/IR/Attributes.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/CFG.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/InstrTypes.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/OperandTraits.h"
38#include "llvm/IR/Type.h"
39#include "llvm/IR/Use.h"
40#include "llvm/IR/User.h"
41#include "llvm/IR/Value.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include <cassert>
46#include <cstddef>
47#include <cstdint>
48#include <iterator>
49
50namespace llvm {
51
52class APInt;
53class ConstantInt;
54class DataLayout;
55class LLVMContext;
56
57//===----------------------------------------------------------------------===//
58// AllocaInst Class
59//===----------------------------------------------------------------------===//
60
61/// an instruction to allocate memory on the stack
62class AllocaInst : public UnaryInstruction {
63 Type *AllocatedType;
64
65 using AlignmentField = AlignmentBitfieldElementT<0>;
66 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
67 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
68 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
69 SwiftErrorField>(),
70 "Bitfields must be contiguous");
71
72protected:
73 // Note: Instruction needs to be a friend here to call cloneImpl.
74 friend class Instruction;
75
76 AllocaInst *cloneImpl() const;
77
78public:
79 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
80 const Twine &Name, Instruction *InsertBefore);
81 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
82 const Twine &Name, BasicBlock *InsertAtEnd);
83
84 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
85 Instruction *InsertBefore);
86 AllocaInst(Type *Ty, unsigned AddrSpace,
87 const Twine &Name, BasicBlock *InsertAtEnd);
88
89 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
90 const Twine &Name = "", Instruction *InsertBefore = nullptr);
91 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
92 const Twine &Name, BasicBlock *InsertAtEnd);
93
94 /// Return true if there is an allocation size parameter to the allocation
95 /// instruction that is not 1.
96 bool isArrayAllocation() const;
97
98 /// Get the number of elements allocated. For a simple allocation of a single
99 /// element, this will return a constant 1 value.
100 const Value *getArraySize() const { return getOperand(0); }
101 Value *getArraySize() { return getOperand(0); }
102
103 /// Overload to return most specific pointer type.
104 PointerType *getType() const {
105 return cast<PointerType>(Instruction::getType());
106 }
107
108 /// Get allocation size in bits. Returns None if size can't be determined,
109 /// e.g. in case of a VLA.
110 Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
111
112 /// Return the type that is being allocated by the instruction.
113 Type *getAllocatedType() const { return AllocatedType; }
114 /// for use only in special circumstances that need to generically
115 /// transform a whole instruction (eg: IR linking and vectorization).
116 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
117
118 /// Return the alignment of the memory that is being allocated by the
119 /// instruction.
120 Align getAlign() const {
121 return Align(1ULL << getSubclassData<AlignmentField>());
29
Calling constructor for 'Align'
34
Returning from constructor for 'Align'
122 }
123
124 void setAlignment(Align Align) {
125 setSubclassData<AlignmentField>(Log2(Align));
126 }
127
128 // FIXME: Remove this one transition to Align is over.
129 unsigned getAlignment() const { return getAlign().value(); }
28
Calling 'AllocaInst::getAlign'
35
Returning from 'AllocaInst::getAlign'
36
Calling 'Align::value'
130
131 /// Return true if this alloca is in the entry block of the function and is a
132 /// constant size. If so, the code generator will fold it into the
133 /// prolog/epilog code, so it is basically free.
134 bool isStaticAlloca() const;
135
136 /// Return true if this alloca is used as an inalloca argument to a call. Such
137 /// allocas are never considered static even if they are in the entry block.
138 bool isUsedWithInAlloca() const {
139 return getSubclassData<UsedWithInAllocaField>();
140 }
141
142 /// Specify whether this alloca is used to represent the arguments to a call.
143 void setUsedWithInAlloca(bool V) {
144 setSubclassData<UsedWithInAllocaField>(V);
145 }
146
147 /// Return true if this alloca is used as a swifterror argument to a call.
148 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
149 /// Specify whether this alloca is used to represent a swifterror.
150 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
151
152 // Methods for support type inquiry through isa, cast, and dyn_cast:
153 static bool classof(const Instruction *I) {
154 return (I->getOpcode() == Instruction::Alloca);
155 }
156 static bool classof(const Value *V) {
157 return isa<Instruction>(V) && classof(cast<Instruction>(V));
158 }
159
160private:
161 // Shadow Instruction::setInstructionSubclassData with a private forwarding
162 // method so that subclasses cannot accidentally use it.
163 template <typename Bitfield>
164 void setSubclassData(typename Bitfield::Type Value) {
165 Instruction::setSubclassData<Bitfield>(Value);
166 }
167};
168
169//===----------------------------------------------------------------------===//
170// LoadInst Class
171//===----------------------------------------------------------------------===//
172
173/// An instruction for reading from memory. This uses the SubclassData field in
174/// Value to store whether or not the load is volatile.
175class LoadInst : public UnaryInstruction {
176 using VolatileField = BoolBitfieldElementT<0>;
177 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
178 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
179 static_assert(
180 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
181 "Bitfields must be contiguous");
182
183 void AssertOK();
184
185protected:
186 // Note: Instruction needs to be a friend here to call cloneImpl.
187 friend class Instruction;
188
189 LoadInst *cloneImpl() const;
190
191public:
192 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
193 Instruction *InsertBefore);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
195 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
196 Instruction *InsertBefore);
197 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
198 BasicBlock *InsertAtEnd);
199 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
200 Align Align, Instruction *InsertBefore = nullptr);
201 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
202 Align Align, BasicBlock *InsertAtEnd);
203 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
204 Align Align, AtomicOrdering Order,
205 SyncScope::ID SSID = SyncScope::System,
206 Instruction *InsertBefore = nullptr);
207 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
208 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
209 BasicBlock *InsertAtEnd);
210
211 /// Return true if this is a load from a volatile memory location.
212 bool isVolatile() const { return getSubclassData<VolatileField>(); }
213
214 /// Specify whether this is a volatile load or not.
215 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
216
217 /// Return the alignment of the access that is being performed.
218 /// FIXME: Remove this function once transition to Align is over.
219 /// Use getAlign() instead.
220 unsigned getAlignment() const { return getAlign().value(); }
221
222 /// Return the alignment of the access that is being performed.
223 Align getAlign() const {
224 return Align(1ULL << (getSubclassData<AlignmentField>()));
225 }
226
227 void setAlignment(Align Align) {
228 setSubclassData<AlignmentField>(Log2(Align));
229 }
230
231 /// Returns the ordering constraint of this load instruction.
232 AtomicOrdering getOrdering() const {
233 return getSubclassData<OrderingField>();
234 }
235 /// Sets the ordering constraint of this load instruction. May not be Release
236 /// or AcquireRelease.
237 void setOrdering(AtomicOrdering Ordering) {
238 setSubclassData<OrderingField>(Ordering);
239 }
240
241 /// Returns the synchronization scope ID of this load instruction.
242 SyncScope::ID getSyncScopeID() const {
243 return SSID;
244 }
245
246 /// Sets the synchronization scope ID of this load instruction.
247 void setSyncScopeID(SyncScope::ID SSID) {
248 this->SSID = SSID;
249 }
250
251 /// Sets the ordering constraint and the synchronization scope ID of this load
252 /// instruction.
253 void setAtomic(AtomicOrdering Ordering,
254 SyncScope::ID SSID = SyncScope::System) {
255 setOrdering(Ordering);
256 setSyncScopeID(SSID);
257 }
258
259 bool isSimple() const { return !isAtomic() && !isVolatile(); }
260
261 bool isUnordered() const {
262 return (getOrdering() == AtomicOrdering::NotAtomic ||
263 getOrdering() == AtomicOrdering::Unordered) &&
264 !isVolatile();
265 }
266
267 Value *getPointerOperand() { return getOperand(0); }
268 const Value *getPointerOperand() const { return getOperand(0); }
269 static unsigned getPointerOperandIndex() { return 0U; }
270 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
271
272 /// Returns the address space of the pointer operand.
273 unsigned getPointerAddressSpace() const {
274 return getPointerOperandType()->getPointerAddressSpace();
275 }
276
277 // Methods for support type inquiry through isa, cast, and dyn_cast:
278 static bool classof(const Instruction *I) {
279 return I->getOpcode() == Instruction::Load;
280 }
281 static bool classof(const Value *V) {
282 return isa<Instruction>(V) && classof(cast<Instruction>(V));
283 }
284
285private:
286 // Shadow Instruction::setInstructionSubclassData with a private forwarding
287 // method so that subclasses cannot accidentally use it.
288 template <typename Bitfield>
289 void setSubclassData(typename Bitfield::Type Value) {
290 Instruction::setSubclassData<Bitfield>(Value);
291 }
292
293 /// The synchronization scope ID of this load instruction. Not quite enough
294 /// room in SubClassData for everything, so synchronization scope ID gets its
295 /// own field.
296 SyncScope::ID SSID;
297};
298
299//===----------------------------------------------------------------------===//
300// StoreInst Class
301//===----------------------------------------------------------------------===//
302
303/// An instruction for storing to memory.
304class StoreInst : public Instruction {
305 using VolatileField = BoolBitfieldElementT<0>;
306 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
307 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
308 static_assert(
309 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
310 "Bitfields must be contiguous");
311
312 void AssertOK();
313
314protected:
315 // Note: Instruction needs to be a friend here to call cloneImpl.
316 friend class Instruction;
317
318 StoreInst *cloneImpl() const;
319
320public:
321 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
322 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
323 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
325 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
326 Instruction *InsertBefore = nullptr);
327 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
328 BasicBlock *InsertAtEnd);
329 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
330 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
331 Instruction *InsertBefore = nullptr);
332 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
333 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
334
335 // allocate space for exactly two operands
336 void *operator new(size_t S) { return User::operator new(S, 2); }
337 void operator delete(void *Ptr) { User::operator delete(Ptr); }
338
339 /// Return true if this is a store to a volatile memory location.
340 bool isVolatile() const { return getSubclassData<VolatileField>(); }
341
342 /// Specify whether this is a volatile store or not.
343 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344
345 /// Transparently provide more efficient getOperand methods.
346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
347
348 /// Return the alignment of the access that is being performed
349 /// FIXME: Remove this function once transition to Align is over.
350 /// Use getAlign() instead.
351 unsigned getAlignment() const { return getAlign().value(); }
352
353 Align getAlign() const {
354 return Align(1ULL << (getSubclassData<AlignmentField>()));
355 }
356
357 void setAlignment(Align Align) {
358 setSubclassData<AlignmentField>(Log2(Align));
359 }
360
361 /// Returns the ordering constraint of this store instruction.
362 AtomicOrdering getOrdering() const {
363 return getSubclassData<OrderingField>();
364 }
365
366 /// Sets the ordering constraint of this store instruction. May not be
367 /// Acquire or AcquireRelease.
368 void setOrdering(AtomicOrdering Ordering) {
369 setSubclassData<OrderingField>(Ordering);
370 }
371
372 /// Returns the synchronization scope ID of this store instruction.
373 SyncScope::ID getSyncScopeID() const {
374 return SSID;
375 }
376
377 /// Sets the synchronization scope ID of this store instruction.
378 void setSyncScopeID(SyncScope::ID SSID) {
379 this->SSID = SSID;
380 }
381
382 /// Sets the ordering constraint and the synchronization scope ID of this
383 /// store instruction.
384 void setAtomic(AtomicOrdering Ordering,
385 SyncScope::ID SSID = SyncScope::System) {
386 setOrdering(Ordering);
387 setSyncScopeID(SSID);
388 }
389
390 bool isSimple() const { return !isAtomic() && !isVolatile(); }
391
392 bool isUnordered() const {
393 return (getOrdering() == AtomicOrdering::NotAtomic ||
394 getOrdering() == AtomicOrdering::Unordered) &&
395 !isVolatile();
396 }
397
398 Value *getValueOperand() { return getOperand(0); }
399 const Value *getValueOperand() const { return getOperand(0); }
400
401 Value *getPointerOperand() { return getOperand(1); }
402 const Value *getPointerOperand() const { return getOperand(1); }
403 static unsigned getPointerOperandIndex() { return 1U; }
404 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405
406 /// Returns the address space of the pointer operand.
407 unsigned getPointerAddressSpace() const {
408 return getPointerOperandType()->getPointerAddressSpace();
409 }
410
411 // Methods for support type inquiry through isa, cast, and dyn_cast:
412 static bool classof(const Instruction *I) {
413 return I->getOpcode() == Instruction::Store;
414 }
415 static bool classof(const Value *V) {
416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
417 }
418
419private:
420 // Shadow Instruction::setInstructionSubclassData with a private forwarding
421 // method so that subclasses cannot accidentally use it.
422 template <typename Bitfield>
423 void setSubclassData(typename Bitfield::Type Value) {
424 Instruction::setSubclassData<Bitfield>(Value);
425 }
426
427 /// The synchronization scope ID of this store instruction. Not quite enough
428 /// room in SubClassData for everything, so synchronization scope ID gets its
429 /// own field.
430 SyncScope::ID SSID;
431};
432
433template <>
434struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435};
436
437DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<StoreInst>::op_begin(const_cast
<StoreInst*>(this))[i_nocapture].get()); } void StoreInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<StoreInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned StoreInst::getNumOperands() const
{ return OperandTraits<StoreInst>::operands(this); } template
<int Idx_nocapture> Use &StoreInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &StoreInst::Op() const { return this->OpFrom
<Idx_nocapture>(this); }
438
439//===----------------------------------------------------------------------===//
440// FenceInst Class
441//===----------------------------------------------------------------------===//
442
443/// An instruction for ordering other memory operations.
444class FenceInst : public Instruction {
445 using OrderingField = AtomicOrderingBitfieldElementT<0>;
446
447 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448
449protected:
450 // Note: Instruction needs to be a friend here to call cloneImpl.
451 friend class Instruction;
452
453 FenceInst *cloneImpl() const;
454
455public:
456 // Ordering may only be Acquire, Release, AcquireRelease, or
457 // SequentiallyConsistent.
458 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459 SyncScope::ID SSID = SyncScope::System,
460 Instruction *InsertBefore = nullptr);
461 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462 BasicBlock *InsertAtEnd);
463
464 // allocate space for exactly zero operands
465 void *operator new(size_t S) { return User::operator new(S, 0); }
466 void operator delete(void *Ptr) { User::operator delete(Ptr); }
467
468 /// Returns the ordering constraint of this fence instruction.
469 AtomicOrdering getOrdering() const {
470 return getSubclassData<OrderingField>();
471 }
472
473 /// Sets the ordering constraint of this fence instruction. May only be
474 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
475 void setOrdering(AtomicOrdering Ordering) {
476 setSubclassData<OrderingField>(Ordering);
477 }
478
479 /// Returns the synchronization scope ID of this fence instruction.
480 SyncScope::ID getSyncScopeID() const {
481 return SSID;
482 }
483
484 /// Sets the synchronization scope ID of this fence instruction.
485 void setSyncScopeID(SyncScope::ID SSID) {
486 this->SSID = SSID;
487 }
488
489 // Methods for support type inquiry through isa, cast, and dyn_cast:
490 static bool classof(const Instruction *I) {
491 return I->getOpcode() == Instruction::Fence;
492 }
493 static bool classof(const Value *V) {
494 return isa<Instruction>(V) && classof(cast<Instruction>(V));
495 }
496
497private:
498 // Shadow Instruction::setInstructionSubclassData with a private forwarding
499 // method so that subclasses cannot accidentally use it.
500 template <typename Bitfield>
501 void setSubclassData(typename Bitfield::Type Value) {
502 Instruction::setSubclassData<Bitfield>(Value);
503 }
504
505 /// The synchronization scope ID of this fence instruction. Not quite enough
506 /// room in SubClassData for everything, so synchronization scope ID gets its
507 /// own field.
508 SyncScope::ID SSID;
509};
510
511//===----------------------------------------------------------------------===//
512// AtomicCmpXchgInst Class
513//===----------------------------------------------------------------------===//
514
515/// An instruction that atomically checks whether a
516/// specified value is in a memory location, and, if it is, stores a new value
517/// there. The value returned by this instruction is a pair containing the
518/// original value as first element, and an i1 indicating success (true) or
519/// failure (false) as second element.
520///
521class AtomicCmpXchgInst : public Instruction {
522 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
523 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
524 SyncScope::ID SSID);
525
526 template <unsigned Offset>
527 using AtomicOrderingBitfieldElement =
528 typename Bitfield::Element<AtomicOrdering, Offset, 3,
529 AtomicOrdering::LAST>;
530
531protected:
532 // Note: Instruction needs to be a friend here to call cloneImpl.
533 friend class Instruction;
534
535 AtomicCmpXchgInst *cloneImpl() const;
536
537public:
538 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
539 AtomicOrdering SuccessOrdering,
540 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
541 Instruction *InsertBefore = nullptr);
542 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
543 AtomicOrdering SuccessOrdering,
544 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
545 BasicBlock *InsertAtEnd);
546
547 // allocate space for exactly three operands
548 void *operator new(size_t S) { return User::operator new(S, 3); }
549 void operator delete(void *Ptr) { User::operator delete(Ptr); }
550
551 using VolatileField = BoolBitfieldElementT<0>;
552 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
553 using SuccessOrderingField =
554 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
555 using FailureOrderingField =
556 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
557 using AlignmentField =
558 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
559 static_assert(
560 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
561 FailureOrderingField, AlignmentField>(),
562 "Bitfields must be contiguous");
563
564 /// Return the alignment of the memory that is being allocated by the
565 /// instruction.
566 Align getAlign() const {
567 return Align(1ULL << getSubclassData<AlignmentField>());
568 }
569
570 void setAlignment(Align Align) {
571 setSubclassData<AlignmentField>(Log2(Align));
572 }
573
574 /// Return true if this is a cmpxchg from a volatile memory
575 /// location.
576 ///
577 bool isVolatile() const { return getSubclassData<VolatileField>(); }
578
579 /// Specify whether this is a volatile cmpxchg.
580 ///
581 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
582
583 /// Return true if this cmpxchg may spuriously fail.
584 bool isWeak() const { return getSubclassData<WeakField>(); }
585
586 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
587
588 /// Transparently provide more efficient getOperand methods.
589 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
590
591 static bool isValidSuccessOrdering(AtomicOrdering Ordering) {
592 return Ordering != AtomicOrdering::NotAtomic &&
593 Ordering != AtomicOrdering::Unordered;
594 }
595
596 static bool isValidFailureOrdering(AtomicOrdering Ordering) {
597 return Ordering != AtomicOrdering::NotAtomic &&
598 Ordering != AtomicOrdering::Unordered &&
599 Ordering != AtomicOrdering::AcquireRelease &&
600 Ordering != AtomicOrdering::Release;
601 }
602
603 /// Returns the success ordering constraint of this cmpxchg instruction.
604 AtomicOrdering getSuccessOrdering() const {
605 return getSubclassData<SuccessOrderingField>();
606 }
607
608 /// Sets the success ordering constraint of this cmpxchg instruction.
609 void setSuccessOrdering(AtomicOrdering Ordering) {
610 assert(isValidSuccessOrdering(Ordering) &&((void)0)
611 "invalid CmpXchg success ordering")((void)0);
612 setSubclassData<SuccessOrderingField>(Ordering);
613 }
614
615 /// Returns the failure ordering constraint of this cmpxchg instruction.
616 AtomicOrdering getFailureOrdering() const {
617 return getSubclassData<FailureOrderingField>();
618 }
619
620 /// Sets the failure ordering constraint of this cmpxchg instruction.
621 void setFailureOrdering(AtomicOrdering Ordering) {
622 assert(isValidFailureOrdering(Ordering) &&((void)0)
623 "invalid CmpXchg failure ordering")((void)0);
624 setSubclassData<FailureOrderingField>(Ordering);
625 }
626
627 /// Returns a single ordering which is at least as strong as both the
628 /// success and failure orderings for this cmpxchg.
629 AtomicOrdering getMergedOrdering() const {
630 if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent)
631 return AtomicOrdering::SequentiallyConsistent;
632 if (getFailureOrdering() == AtomicOrdering::Acquire) {
633 if (getSuccessOrdering() == AtomicOrdering::Monotonic)
634 return AtomicOrdering::Acquire;
635 if (getSuccessOrdering() == AtomicOrdering::Release)
636 return AtomicOrdering::AcquireRelease;
637 }
638 return getSuccessOrdering();
639 }
640
641 /// Returns the synchronization scope ID of this cmpxchg instruction.
642 SyncScope::ID getSyncScopeID() const {
643 return SSID;
644 }
645
646 /// Sets the synchronization scope ID of this cmpxchg instruction.
647 void setSyncScopeID(SyncScope::ID SSID) {
648 this->SSID = SSID;
649 }
650
651 Value *getPointerOperand() { return getOperand(0); }
652 const Value *getPointerOperand() const { return getOperand(0); }
653 static unsigned getPointerOperandIndex() { return 0U; }
654
655 Value *getCompareOperand() { return getOperand(1); }
656 const Value *getCompareOperand() const { return getOperand(1); }
657
658 Value *getNewValOperand() { return getOperand(2); }
659 const Value *getNewValOperand() const { return getOperand(2); }
660
661 /// Returns the address space of the pointer operand.
662 unsigned getPointerAddressSpace() const {
663 return getPointerOperand()->getType()->getPointerAddressSpace();
664 }
665
666 /// Returns the strongest permitted ordering on failure, given the
667 /// desired ordering on success.
668 ///
669 /// If the comparison in a cmpxchg operation fails, there is no atomic store
670 /// so release semantics cannot be provided. So this function drops explicit
671 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
672 /// operation would remain SequentiallyConsistent.
673 static AtomicOrdering
674 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
675 switch (SuccessOrdering) {
676 default:
677 llvm_unreachable("invalid cmpxchg success ordering")__builtin_unreachable();
678 case AtomicOrdering::Release:
679 case AtomicOrdering::Monotonic:
680 return AtomicOrdering::Monotonic;
681 case AtomicOrdering::AcquireRelease:
682 case AtomicOrdering::Acquire:
683 return AtomicOrdering::Acquire;
684 case AtomicOrdering::SequentiallyConsistent:
685 return AtomicOrdering::SequentiallyConsistent;
686 }
687 }
688
689 // Methods for support type inquiry through isa, cast, and dyn_cast:
690 static bool classof(const Instruction *I) {
691 return I->getOpcode() == Instruction::AtomicCmpXchg;
692 }
693 static bool classof(const Value *V) {
694 return isa<Instruction>(V) && classof(cast<Instruction>(V));
695 }
696
697private:
698 // Shadow Instruction::setInstructionSubclassData with a private forwarding
699 // method so that subclasses cannot accidentally use it.
700 template <typename Bitfield>
701 void setSubclassData(typename Bitfield::Type Value) {
702 Instruction::setSubclassData<Bitfield>(Value);
703 }
704
705 /// The synchronization scope ID of this cmpxchg instruction. Not quite
706 /// enough room in SubClassData for everything, so synchronization scope ID
707 /// gets its own field.
708 SyncScope::ID SSID;
709};
710
711template <>
712struct OperandTraits<AtomicCmpXchgInst> :
713 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
714};
715
716DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast
<AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void
AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<AtomicCmpXchgInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned AtomicCmpXchgInst
::getNumOperands() const { return OperandTraits<AtomicCmpXchgInst
>::operands(this); } template <int Idx_nocapture> Use
&AtomicCmpXchgInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
AtomicCmpXchgInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
717
718//===----------------------------------------------------------------------===//
719// AtomicRMWInst Class
720//===----------------------------------------------------------------------===//
721
722/// an instruction that atomically reads a memory location,
723/// combines it with another value, and then stores the result back. Returns
724/// the old value.
725///
726class AtomicRMWInst : public Instruction {
727protected:
728 // Note: Instruction needs to be a friend here to call cloneImpl.
729 friend class Instruction;
730
731 AtomicRMWInst *cloneImpl() const;
732
733public:
734 /// This enumeration lists the possible modifications atomicrmw can make. In
735 /// the descriptions, 'p' is the pointer to the instruction's memory location,
736 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
737 /// instruction. These instructions always return 'old'.
738 enum BinOp : unsigned {
739 /// *p = v
740 Xchg,
741 /// *p = old + v
742 Add,
743 /// *p = old - v
744 Sub,
745 /// *p = old & v
746 And,
747 /// *p = ~(old & v)
748 Nand,
749 /// *p = old | v
750 Or,
751 /// *p = old ^ v
752 Xor,
753 /// *p = old >signed v ? old : v
754 Max,
755 /// *p = old <signed v ? old : v
756 Min,
757 /// *p = old >unsigned v ? old : v
758 UMax,
759 /// *p = old <unsigned v ? old : v
760 UMin,
761
762 /// *p = old + v
763 FAdd,
764
765 /// *p = old - v
766 FSub,
767
768 FIRST_BINOP = Xchg,
769 LAST_BINOP = FSub,
770 BAD_BINOP
771 };
772
773private:
774 template <unsigned Offset>
775 using AtomicOrderingBitfieldElement =
776 typename Bitfield::Element<AtomicOrdering, Offset, 3,
777 AtomicOrdering::LAST>;
778
779 template <unsigned Offset>
780 using BinOpBitfieldElement =
781 typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
782
783public:
784 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
785 AtomicOrdering Ordering, SyncScope::ID SSID,
786 Instruction *InsertBefore = nullptr);
787 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
788 AtomicOrdering Ordering, SyncScope::ID SSID,
789 BasicBlock *InsertAtEnd);
790
791 // allocate space for exactly two operands
792 void *operator new(size_t S) { return User::operator new(S, 2); }
793 void operator delete(void *Ptr) { User::operator delete(Ptr); }
794
795 using VolatileField = BoolBitfieldElementT<0>;
796 using AtomicOrderingField =
797 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
798 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
799 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
800 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
801 OperationField, AlignmentField>(),
802 "Bitfields must be contiguous");
803
804 BinOp getOperation() const { return getSubclassData<OperationField>(); }
805
806 static StringRef getOperationName(BinOp Op);
807
808 static bool isFPOperation(BinOp Op) {
809 switch (Op) {
810 case AtomicRMWInst::FAdd:
811 case AtomicRMWInst::FSub:
812 return true;
813 default:
814 return false;
815 }
816 }
817
818 void setOperation(BinOp Operation) {
819 setSubclassData<OperationField>(Operation);
820 }
821
822 /// Return the alignment of the memory that is being allocated by the
823 /// instruction.
824 Align getAlign() const {
825 return Align(1ULL << getSubclassData<AlignmentField>());
826 }
827
828 void setAlignment(Align Align) {
829 setSubclassData<AlignmentField>(Log2(Align));
830 }
831
832 /// Return true if this is a RMW on a volatile memory location.
833 ///
834 bool isVolatile() const { return getSubclassData<VolatileField>(); }
835
836 /// Specify whether this is a volatile RMW or not.
837 ///
838 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
839
840 /// Transparently provide more efficient getOperand methods.
841 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
842
843 /// Returns the ordering constraint of this rmw instruction.
844 AtomicOrdering getOrdering() const {
845 return getSubclassData<AtomicOrderingField>();
846 }
847
848 /// Sets the ordering constraint of this rmw instruction.
849 void setOrdering(AtomicOrdering Ordering) {
850 assert(Ordering != AtomicOrdering::NotAtomic &&((void)0)
851 "atomicrmw instructions can only be atomic.")((void)0);
852 setSubclassData<AtomicOrderingField>(Ordering);
853 }
854
855 /// Returns the synchronization scope ID of this rmw instruction.
856 SyncScope::ID getSyncScopeID() const {
857 return SSID;
858 }
859
860 /// Sets the synchronization scope ID of this rmw instruction.
861 void setSyncScopeID(SyncScope::ID SSID) {
862 this->SSID = SSID;
863 }
864
865 Value *getPointerOperand() { return getOperand(0); }
866 const Value *getPointerOperand() const { return getOperand(0); }
867 static unsigned getPointerOperandIndex() { return 0U; }
868
869 Value *getValOperand() { return getOperand(1); }
870 const Value *getValOperand() const { return getOperand(1); }
871
872 /// Returns the address space of the pointer operand.
873 unsigned getPointerAddressSpace() const {
874 return getPointerOperand()->getType()->getPointerAddressSpace();
875 }
876
877 bool isFloatingPointOperation() const {
878 return isFPOperation(getOperation());
879 }
880
881 // Methods for support type inquiry through isa, cast, and dyn_cast:
882 static bool classof(const Instruction *I) {
883 return I->getOpcode() == Instruction::AtomicRMW;
884 }
885 static bool classof(const Value *V) {
886 return isa<Instruction>(V) && classof(cast<Instruction>(V));
887 }
888
889private:
890 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
891 AtomicOrdering Ordering, SyncScope::ID SSID);
892
893 // Shadow Instruction::setInstructionSubclassData with a private forwarding
894 // method so that subclasses cannot accidentally use it.
895 template <typename Bitfield>
896 void setSubclassData(typename Bitfield::Type Value) {
897 Instruction::setSubclassData<Bitfield>(Value);
898 }
899
900 /// The synchronization scope ID of this rmw instruction. Not quite enough
901 /// room in SubClassData for everything, so synchronization scope ID gets its
902 /// own field.
903 SyncScope::ID SSID;
904};
905
906template <>
907struct OperandTraits<AtomicRMWInst>
908 : public FixedNumOperandTraits<AtomicRMWInst,2> {
909};
910
911DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast
<AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<AtomicRMWInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned AtomicRMWInst::getNumOperands()
const { return OperandTraits<AtomicRMWInst>::operands(
this); } template <int Idx_nocapture> Use &AtomicRMWInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &AtomicRMWInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
912
913//===----------------------------------------------------------------------===//
914// GetElementPtrInst Class
915//===----------------------------------------------------------------------===//
916
917// checkGEPType - Simple wrapper function to give a better assertion failure
918// message on bad indexes for a gep instruction.
919//
920inline Type *checkGEPType(Type *Ty) {
921 assert(Ty && "Invalid GetElementPtrInst indices for type!")((void)0);
922 return Ty;
923}
924
925/// an instruction for type-safe pointer arithmetic to
926/// access elements of arrays and structs
927///
928class GetElementPtrInst : public Instruction {
929 Type *SourceElementType;
930 Type *ResultElementType;
931
932 GetElementPtrInst(const GetElementPtrInst &GEPI);
933
934 /// Constructors - Create a getelementptr instruction with a base pointer an
935 /// list of indices. The first ctor can optionally insert before an existing
936 /// instruction, the second appends the new instruction to the specified
937 /// BasicBlock.
938 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
939 ArrayRef<Value *> IdxList, unsigned Values,
940 const Twine &NameStr, Instruction *InsertBefore);
941 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
942 ArrayRef<Value *> IdxList, unsigned Values,
943 const Twine &NameStr, BasicBlock *InsertAtEnd);
944
945 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
946
947protected:
948 // Note: Instruction needs to be a friend here to call cloneImpl.
949 friend class Instruction;
950
951 GetElementPtrInst *cloneImpl() const;
952
953public:
954 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
955 ArrayRef<Value *> IdxList,
956 const Twine &NameStr = "",
957 Instruction *InsertBefore = nullptr) {
958 unsigned Values = 1 + unsigned(IdxList.size());
959 assert(PointeeType && "Must specify element type")((void)0);
960 assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0)
961 ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0);
962 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
963 NameStr, InsertBefore);
964 }
965
966 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
967 ArrayRef<Value *> IdxList,
968 const Twine &NameStr,
969 BasicBlock *InsertAtEnd) {
970 unsigned Values = 1 + unsigned(IdxList.size());
971 assert(PointeeType && "Must specify element type")((void)0);
972 assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0)
973 ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0);
974 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
975 NameStr, InsertAtEnd);
976 }
977
978 LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
979 Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
980 Instruction *InsertBefore = nullptr),[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
981 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
{
982 return CreateInBounds(
983 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
984 NameStr, InsertBefore);
985 }
986
987 /// Create an "inbounds" getelementptr. See the documentation for the
988 /// "inbounds" flag in LangRef.html for details.
989 static GetElementPtrInst *
990 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
991 const Twine &NameStr = "",
992 Instruction *InsertBefore = nullptr) {
993 GetElementPtrInst *GEP =
994 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
995 GEP->setIsInBounds(true);
996 return GEP;
997 }
998
999 LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1000 Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1001 BasicBlock *InsertAtEnd),[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1002 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
{
1003 return CreateInBounds(
1004 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
1005 NameStr, InsertAtEnd);
1006 }
1007
1008 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
1009 ArrayRef<Value *> IdxList,
1010 const Twine &NameStr,
1011 BasicBlock *InsertAtEnd) {
1012 GetElementPtrInst *GEP =
1013 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
1014 GEP->setIsInBounds(true);
1015 return GEP;
1016 }
1017
1018 /// Transparently provide more efficient getOperand methods.
1019 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1020
1021 Type *getSourceElementType() const { return SourceElementType; }
1022
1023 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1024 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1025
1026 Type *getResultElementType() const {
1027 assert(cast<PointerType>(getType()->getScalarType())((void)0)
1028 ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0);
1029 return ResultElementType;
1030 }
1031
1032 /// Returns the address space of this instruction's pointer type.
1033 unsigned getAddressSpace() const {
1034 // Note that this is always the same as the pointer operand's address space
1035 // and that is cheaper to compute, so cheat here.
1036 return getPointerAddressSpace();
1037 }
1038
1039 /// Returns the result type of a getelementptr with the given source
1040 /// element type and indexes.
1041 ///
1042 /// Null is returned if the indices are invalid for the specified
1043 /// source element type.
1044 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1045 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1046 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1047
1048 /// Return the type of the element at the given index of an indexable
1049 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1050 ///
1051 /// Returns null if the type can't be indexed, or the given index is not
1052 /// legal for the given type.
1053 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1054 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1055
1056 inline op_iterator idx_begin() { return op_begin()+1; }
1057 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1058 inline op_iterator idx_end() { return op_end(); }
1059 inline const_op_iterator idx_end() const { return op_end(); }
1060
1061 inline iterator_range<op_iterator> indices() {
1062 return make_range(idx_begin(), idx_end());
1063 }
1064
1065 inline iterator_range<const_op_iterator> indices() const {
1066 return make_range(idx_begin(), idx_end());
1067 }
1068
1069 Value *getPointerOperand() {
1070 return getOperand(0);
1071 }
1072 const Value *getPointerOperand() const {
1073 return getOperand(0);
1074 }
1075 static unsigned getPointerOperandIndex() {
1076 return 0U; // get index for modifying correct operand.
1077 }
1078
1079 /// Method to return the pointer operand as a
1080 /// PointerType.
1081 Type *getPointerOperandType() const {
1082 return getPointerOperand()->getType();
1083 }
1084
1085 /// Returns the address space of the pointer operand.
1086 unsigned getPointerAddressSpace() const {
1087 return getPointerOperandType()->getPointerAddressSpace();
1088 }
1089
1090 /// Returns the pointer type returned by the GEP
1091 /// instruction, which may be a vector of pointers.
1092 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1093 ArrayRef<Value *> IdxList) {
1094 PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1095 unsigned AddrSpace = OrigPtrTy->getAddressSpace();
1096 Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList));
1097 Type *PtrTy = OrigPtrTy->isOpaque()
1098 ? PointerType::get(OrigPtrTy->getContext(), AddrSpace)
1099 : PointerType::get(ResultElemTy, AddrSpace);
1100 // Vector GEP
1101 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1102 ElementCount EltCount = PtrVTy->getElementCount();
1103 return VectorType::get(PtrTy, EltCount);
1104 }
1105 for (Value *Index : IdxList)
1106 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1107 ElementCount EltCount = IndexVTy->getElementCount();
1108 return VectorType::get(PtrTy, EltCount);
1109 }
1110 // Scalar GEP
1111 return PtrTy;
1112 }
1113
1114 unsigned getNumIndices() const { // Note: always non-negative
1115 return getNumOperands() - 1;
1116 }
1117
1118 bool hasIndices() const {
1119 return getNumOperands() > 1;
1120 }
1121
1122 /// Return true if all of the indices of this GEP are
1123 /// zeros. If so, the result pointer and the first operand have the same
1124 /// value, just potentially different types.
1125 bool hasAllZeroIndices() const;
1126
1127 /// Return true if all of the indices of this GEP are
1128 /// constant integers. If so, the result pointer and the first operand have
1129 /// a constant offset between them.
1130 bool hasAllConstantIndices() const;
1131
1132 /// Set or clear the inbounds flag on this GEP instruction.
1133 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1134 void setIsInBounds(bool b = true);
1135
1136 /// Determine whether the GEP has the inbounds flag.
1137 bool isInBounds() const;
1138
1139 /// Accumulate the constant address offset of this GEP if possible.
1140 ///
1141 /// This routine accepts an APInt into which it will accumulate the constant
1142 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1143 /// all-constant, it returns false and the value of the offset APInt is
1144 /// undefined (it is *not* preserved!). The APInt passed into this routine
1145 /// must be at least as wide as the IntPtr type for the address space of
1146 /// the base GEP pointer.
1147 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1148 bool collectOffset(const DataLayout &DL, unsigned BitWidth,
1149 MapVector<Value *, APInt> &VariableOffsets,
1150 APInt &ConstantOffset) const;
1151 // Methods for support type inquiry through isa, cast, and dyn_cast:
1152 static bool classof(const Instruction *I) {
1153 return (I->getOpcode() == Instruction::GetElementPtr);
1154 }
1155 static bool classof(const Value *V) {
1156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1157 }
1158};
1159
1160template <>
1161struct OperandTraits<GetElementPtrInst> :
1162 public VariadicOperandTraits<GetElementPtrInst, 1> {
1163};
1164
1165GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1166 ArrayRef<Value *> IdxList, unsigned Values,
1167 const Twine &NameStr,
1168 Instruction *InsertBefore)
1169 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1170 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1171 Values, InsertBefore),
1172 SourceElementType(PointeeType),
1173 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1174 assert(cast<PointerType>(getType()->getScalarType())((void)0)
1175 ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0);
1176 init(Ptr, IdxList, NameStr);
1177}
1178
1179GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1180 ArrayRef<Value *> IdxList, unsigned Values,
1181 const Twine &NameStr,
1182 BasicBlock *InsertAtEnd)
1183 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1184 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1185 Values, InsertAtEnd),
1186 SourceElementType(PointeeType),
1187 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1188 assert(cast<PointerType>(getType()->getScalarType())((void)0)
1189 ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0);
1190 init(Ptr, IdxList, NameStr);
1191}
1192
1193DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<GetElementPtrInst>::op_begin(const_cast
<GetElementPtrInst*>(this))[i_nocapture].get()); } void
GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<GetElementPtrInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned GetElementPtrInst
::getNumOperands() const { return OperandTraits<GetElementPtrInst
>::operands(this); } template <int Idx_nocapture> Use
&GetElementPtrInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
GetElementPtrInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1194
1195//===----------------------------------------------------------------------===//
1196// ICmpInst Class
1197//===----------------------------------------------------------------------===//
1198
1199/// This instruction compares its operands according to the predicate given
1200/// to the constructor. It only operates on integers or pointers. The operands
1201/// must be identical types.
1202/// Represent an integer comparison operator.
1203class ICmpInst: public CmpInst {
1204 void AssertOK() {
1205 assert(isIntPredicate() &&((void)0)
1206 "Invalid ICmp predicate value")((void)0);
1207 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0)
1208 "Both operands to ICmp instruction are not of the same type!")((void)0);
1209 // Check that the operands are the right type
1210 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||((void)0)
1211 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&((void)0)
1212 "Invalid operand types for ICmp instruction")((void)0);
1213 }
1214
1215protected:
1216 // Note: Instruction needs to be a friend here to call cloneImpl.
1217 friend class Instruction;
1218
1219 /// Clone an identical ICmpInst
1220 ICmpInst *cloneImpl() const;
1221
1222public:
1223 /// Constructor with insert-before-instruction semantics.
1224 ICmpInst(
1225 Instruction *InsertBefore, ///< Where to insert
1226 Predicate pred, ///< The predicate to use for the comparison
1227 Value *LHS, ///< The left-hand-side of the expression
1228 Value *RHS, ///< The right-hand-side of the expression
1229 const Twine &NameStr = "" ///< Name of the instruction
1230 ) : CmpInst(makeCmpResultType(LHS->getType()),
1231 Instruction::ICmp, pred, LHS, RHS, NameStr,
1232 InsertBefore) {
1233#ifndef NDEBUG1
1234 AssertOK();
1235#endif
1236 }
1237
1238 /// Constructor with insert-at-end semantics.
1239 ICmpInst(
1240 BasicBlock &InsertAtEnd, ///< Block to insert into.
1241 Predicate pred, ///< The predicate to use for the comparison
1242 Value *LHS, ///< The left-hand-side of the expression
1243 Value *RHS, ///< The right-hand-side of the expression
1244 const Twine &NameStr = "" ///< Name of the instruction
1245 ) : CmpInst(makeCmpResultType(LHS->getType()),
1246 Instruction::ICmp, pred, LHS, RHS, NameStr,
1247 &InsertAtEnd) {
1248#ifndef NDEBUG1
1249 AssertOK();
1250#endif
1251 }
1252
1253 /// Constructor with no-insertion semantics
1254 ICmpInst(
1255 Predicate pred, ///< The predicate to use for the comparison
1256 Value *LHS, ///< The left-hand-side of the expression
1257 Value *RHS, ///< The right-hand-side of the expression
1258 const Twine &NameStr = "" ///< Name of the instruction
1259 ) : CmpInst(makeCmpResultType(LHS->getType()),
1260 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1261#ifndef NDEBUG1
1262 AssertOK();
1263#endif
1264 }
1265
1266 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1267 /// @returns the predicate that would be the result if the operand were
1268 /// regarded as signed.
1269 /// Return the signed version of the predicate
1270 Predicate getSignedPredicate() const {
1271 return getSignedPredicate(getPredicate());
1272 }
1273
1274 /// This is a static version that you can use without an instruction.
1275 /// Return the signed version of the predicate.
1276 static Predicate getSignedPredicate(Predicate pred);
1277
1278 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1279 /// @returns the predicate that would be the result if the operand were
1280 /// regarded as unsigned.
1281 /// Return the unsigned version of the predicate
1282 Predicate getUnsignedPredicate() const {
1283 return getUnsignedPredicate(getPredicate());
1284 }
1285
1286 /// This is a static version that you can use without an instruction.
1287 /// Return the unsigned version of the predicate.
1288 static Predicate getUnsignedPredicate(Predicate pred);
1289
1290 /// Return true if this predicate is either EQ or NE. This also
1291 /// tests for commutativity.
1292 static bool isEquality(Predicate P) {
1293 return P == ICMP_EQ || P == ICMP_NE;
1294 }
1295
1296 /// Return true if this predicate is either EQ or NE. This also
1297 /// tests for commutativity.
1298 bool isEquality() const {
1299 return isEquality(getPredicate());
1300 }
1301
1302 /// @returns true if the predicate of this ICmpInst is commutative
1303 /// Determine if this relation is commutative.
1304 bool isCommutative() const { return isEquality(); }
1305
1306 /// Return true if the predicate is relational (not EQ or NE).
1307 ///
1308 bool isRelational() const {
1309 return !isEquality();
1310 }
1311
1312 /// Return true if the predicate is relational (not EQ or NE).
1313 ///
1314 static bool isRelational(Predicate P) {
1315 return !isEquality(P);
1316 }
1317
1318 /// Return true if the predicate is SGT or UGT.
1319 ///
1320 static bool isGT(Predicate P) {
1321 return P == ICMP_SGT || P == ICMP_UGT;
1322 }
1323
1324 /// Return true if the predicate is SLT or ULT.
1325 ///
1326 static bool isLT(Predicate P) {
1327 return P == ICMP_SLT || P == ICMP_ULT;
1328 }
1329
1330 /// Return true if the predicate is SGE or UGE.
1331 ///
1332 static bool isGE(Predicate P) {
1333 return P == ICMP_SGE || P == ICMP_UGE;
1334 }
1335
1336 /// Return true if the predicate is SLE or ULE.
1337 ///
1338 static bool isLE(Predicate P) {
1339 return P == ICMP_SLE || P == ICMP_ULE;
1340 }
1341
1342 /// Exchange the two operands to this instruction in such a way that it does
1343 /// not modify the semantics of the instruction. The predicate value may be
1344 /// changed to retain the same result if the predicate is order dependent
1345 /// (e.g. ult).
1346 /// Swap operands and adjust predicate.
1347 void swapOperands() {
1348 setPredicate(getSwappedPredicate());
1349 Op<0>().swap(Op<1>());
1350 }
1351
1352 // Methods for support type inquiry through isa, cast, and dyn_cast:
1353 static bool classof(const Instruction *I) {
1354 return I->getOpcode() == Instruction::ICmp;
1355 }
1356 static bool classof(const Value *V) {
1357 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1358 }
1359};
1360
1361//===----------------------------------------------------------------------===//
1362// FCmpInst Class
1363//===----------------------------------------------------------------------===//
1364
1365/// This instruction compares its operands according to the predicate given
1366/// to the constructor. It only operates on floating point values or packed
1367/// vectors of floating point values. The operands must be identical types.
1368/// Represents a floating point comparison operator.
1369class FCmpInst: public CmpInst {
1370 void AssertOK() {
1371 assert(isFPPredicate() && "Invalid FCmp predicate value")((void)0);
1372 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0)
1373 "Both operands to FCmp instruction are not of the same type!")((void)0);
1374 // Check that the operands are the right type
1375 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((void)0)
1376 "Invalid operand types for FCmp instruction")((void)0);
1377 }
1378
1379protected:
1380 // Note: Instruction needs to be a friend here to call cloneImpl.
1381 friend class Instruction;
1382
1383 /// Clone an identical FCmpInst
1384 FCmpInst *cloneImpl() const;
1385
1386public:
1387 /// Constructor with insert-before-instruction semantics.
1388 FCmpInst(
1389 Instruction *InsertBefore, ///< Where to insert
1390 Predicate pred, ///< The predicate to use for the comparison
1391 Value *LHS, ///< The left-hand-side of the expression
1392 Value *RHS, ///< The right-hand-side of the expression
1393 const Twine &NameStr = "" ///< Name of the instruction
1394 ) : CmpInst(makeCmpResultType(LHS->getType()),
1395 Instruction::FCmp, pred, LHS, RHS, NameStr,
1396 InsertBefore) {
1397 AssertOK();
1398 }
1399
1400 /// Constructor with insert-at-end semantics.
1401 FCmpInst(
1402 BasicBlock &InsertAtEnd, ///< Block to insert into.
1403 Predicate pred, ///< The predicate to use for the comparison
1404 Value *LHS, ///< The left-hand-side of the expression
1405 Value *RHS, ///< The right-hand-side of the expression
1406 const Twine &NameStr = "" ///< Name of the instruction
1407 ) : CmpInst(makeCmpResultType(LHS->getType()),
1408 Instruction::FCmp, pred, LHS, RHS, NameStr,
1409 &InsertAtEnd) {
1410 AssertOK();
1411 }
1412
1413 /// Constructor with no-insertion semantics
1414 FCmpInst(
1415 Predicate Pred, ///< The predicate to use for the comparison
1416 Value *LHS, ///< The left-hand-side of the expression
1417 Value *RHS, ///< The right-hand-side of the expression
1418 const Twine &NameStr = "", ///< Name of the instruction
1419 Instruction *FlagsSource = nullptr
1420 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1421 RHS, NameStr, nullptr, FlagsSource) {
1422 AssertOK();
1423 }
1424
1425 /// @returns true if the predicate of this instruction is EQ or NE.
1426 /// Determine if this is an equality predicate.
1427 static bool isEquality(Predicate Pred) {
1428 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1429 Pred == FCMP_UNE;
1430 }
1431
1432 /// @returns true if the predicate of this instruction is EQ or NE.
1433 /// Determine if this is an equality predicate.
1434 bool isEquality() const { return isEquality(getPredicate()); }
1435
1436 /// @returns true if the predicate of this instruction is commutative.
1437 /// Determine if this is a commutative predicate.
1438 bool isCommutative() const {
1439 return isEquality() ||
1440 getPredicate() == FCMP_FALSE ||
1441 getPredicate() == FCMP_TRUE ||
1442 getPredicate() == FCMP_ORD ||
1443 getPredicate() == FCMP_UNO;
1444 }
1445
1446 /// @returns true if the predicate is relational (not EQ or NE).
1447 /// Determine if this a relational predicate.
1448 bool isRelational() const { return !isEquality(); }
1449
1450 /// Exchange the two operands to this instruction in such a way that it does
1451 /// not modify the semantics of the instruction. The predicate value may be
1452 /// changed to retain the same result if the predicate is order dependent
1453 /// (e.g. ult).
1454 /// Swap operands and adjust predicate.
1455 void swapOperands() {
1456 setPredicate(getSwappedPredicate());
1457 Op<0>().swap(Op<1>());
1458 }
1459
1460 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1461 static bool classof(const Instruction *I) {
1462 return I->getOpcode() == Instruction::FCmp;
1463 }
1464 static bool classof(const Value *V) {
1465 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1466 }
1467};
1468
1469//===----------------------------------------------------------------------===//
1470/// This class represents a function call, abstracting a target
1471/// machine's calling convention. This class uses low bit of the SubClassData
1472/// field to indicate whether or not this is a tail call. The rest of the bits
1473/// hold the calling convention of the call.
1474///
1475class CallInst : public CallBase {
1476 CallInst(const CallInst &CI);
1477
1478 /// Construct a CallInst given a range of arguments.
1479 /// Construct a CallInst from a range of arguments
1480 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1481 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1482 Instruction *InsertBefore);
1483
1484 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1485 const Twine &NameStr, Instruction *InsertBefore)
1486 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1487
1488 /// Construct a CallInst given a range of arguments.
1489 /// Construct a CallInst from a range of arguments
1490 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1491 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1492 BasicBlock *InsertAtEnd);
1493
1494 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1495 Instruction *InsertBefore);
1496
1497 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1498 BasicBlock *InsertAtEnd);
1499
1500 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1501 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1502 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1503
1504 /// Compute the number of operands to allocate.
1505 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1506 // We need one operand for the called function, plus the input operand
1507 // counts provided.
1508 return 1 + NumArgs + NumBundleInputs;
1509 }
1510
1511protected:
1512 // Note: Instruction needs to be a friend here to call cloneImpl.
1513 friend class Instruction;
1514
1515 CallInst *cloneImpl() const;
1516
1517public:
1518 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1519 Instruction *InsertBefore = nullptr) {
1520 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1521 }
1522
1523 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1524 const Twine &NameStr,
1525 Instruction *InsertBefore = nullptr) {
1526 return new (ComputeNumOperands(Args.size()))
1527 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1528 }
1529
1530 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1531 ArrayRef<OperandBundleDef> Bundles = None,
1532 const Twine &NameStr = "",
1533 Instruction *InsertBefore = nullptr) {
1534 const int NumOperands =
1535 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1536 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1537
1538 return new (NumOperands, DescriptorBytes)
1539 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1540 }
1541
1542 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1543 BasicBlock *InsertAtEnd) {
1544 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1545 }
1546
1547 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1548 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1549 return new (ComputeNumOperands(Args.size()))
1550 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1551 }
1552
1553 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1554 ArrayRef<OperandBundleDef> Bundles,
1555 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1556 const int NumOperands =
1557 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1558 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1559
1560 return new (NumOperands, DescriptorBytes)
1561 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1562 }
1563
1564 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1565 Instruction *InsertBefore = nullptr) {
1566 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1567 InsertBefore);
1568 }
1569
1570 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1571 ArrayRef<OperandBundleDef> Bundles = None,
1572 const Twine &NameStr = "",
1573 Instruction *InsertBefore = nullptr) {
1574 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1575 NameStr, InsertBefore);
1576 }
1577
1578 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1579 const Twine &NameStr,
1580 Instruction *InsertBefore = nullptr) {
1581 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1582 InsertBefore);
1583 }
1584
1585 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1586 BasicBlock *InsertAtEnd) {
1587 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1588 InsertAtEnd);
1589 }
1590
1591 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1592 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1593 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1594 InsertAtEnd);
1595 }
1596
1597 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1598 ArrayRef<OperandBundleDef> Bundles,
1599 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1600 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1601 NameStr, InsertAtEnd);
1602 }
1603
1604 /// Create a clone of \p CI with a different set of operand bundles and
1605 /// insert it before \p InsertPt.
1606 ///
1607 /// The returned call instruction is identical \p CI in every way except that
1608 /// the operand bundles for the new instruction are set to the operand bundles
1609 /// in \p Bundles.
1610 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1611 Instruction *InsertPt = nullptr);
1612
1613 /// Generate the IR for a call to malloc:
1614 /// 1. Compute the malloc call's argument as the specified type's size,
1615 /// possibly multiplied by the array size if the array size is not
1616 /// constant 1.
1617 /// 2. Call malloc with that argument.
1618 /// 3. Bitcast the result of the malloc call to the specified type.
1619 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1620 Type *AllocTy, Value *AllocSize,
1621 Value *ArraySize = nullptr,
1622 Function *MallocF = nullptr,
1623 const Twine &Name = "");
1624 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1625 Type *AllocTy, Value *AllocSize,
1626 Value *ArraySize = nullptr,
1627 Function *MallocF = nullptr,
1628 const Twine &Name = "");
1629 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1630 Type *AllocTy, Value *AllocSize,
1631 Value *ArraySize = nullptr,
1632 ArrayRef<OperandBundleDef> Bundles = None,
1633 Function *MallocF = nullptr,
1634 const Twine &Name = "");
1635 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1636 Type *AllocTy, Value *AllocSize,
1637 Value *ArraySize = nullptr,
1638 ArrayRef<OperandBundleDef> Bundles = None,
1639 Function *MallocF = nullptr,
1640 const Twine &Name = "");
1641 /// Generate the IR for a call to the builtin free function.
1642 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1643 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1644 static Instruction *CreateFree(Value *Source,
1645 ArrayRef<OperandBundleDef> Bundles,
1646 Instruction *InsertBefore);
1647 static Instruction *CreateFree(Value *Source,
1648 ArrayRef<OperandBundleDef> Bundles,
1649 BasicBlock *InsertAtEnd);
1650
1651 // Note that 'musttail' implies 'tail'.
1652 enum TailCallKind : unsigned {
1653 TCK_None = 0,
1654 TCK_Tail = 1,
1655 TCK_MustTail = 2,
1656 TCK_NoTail = 3,
1657 TCK_LAST = TCK_NoTail
1658 };
1659
1660 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1661 static_assert(
1662 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1663 "Bitfields must be contiguous");
1664
1665 TailCallKind getTailCallKind() const {
1666 return getSubclassData<TailCallKindField>();
1667 }
1668
1669 bool isTailCall() const {
1670 TailCallKind Kind = getTailCallKind();
1671 return Kind == TCK_Tail || Kind == TCK_MustTail;
1672 }
1673
1674 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1675
1676 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1677
1678 void setTailCallKind(TailCallKind TCK) {
1679 setSubclassData<TailCallKindField>(TCK);
1680 }
1681
1682 void setTailCall(bool IsTc = true) {
1683 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1684 }
1685
1686 /// Return true if the call can return twice
1687 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1688 void setCanReturnTwice() {
1689 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1690 }
1691
1692 // Methods for support type inquiry through isa, cast, and dyn_cast:
1693 static bool classof(const Instruction *I) {
1694 return I->getOpcode() == Instruction::Call;
1695 }
1696 static bool classof(const Value *V) {
1697 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1698 }
1699
1700 /// Updates profile metadata by scaling it by \p S / \p T.
1701 void updateProfWeight(uint64_t S, uint64_t T);
1702
1703private:
1704 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1705 // method so that subclasses cannot accidentally use it.
1706 template <typename Bitfield>
1707 void setSubclassData(typename Bitfield::Type Value) {
1708 Instruction::setSubclassData<Bitfield>(Value);
1709 }
1710};
1711
1712CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1713 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1714 BasicBlock *InsertAtEnd)
1715 : CallBase(Ty->getReturnType(), Instruction::Call,
1716 OperandTraits<CallBase>::op_end(this) -
1717 (Args.size() + CountBundleInputs(Bundles) + 1),
1718 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1719 InsertAtEnd) {
1720 init(Ty, Func, Args, Bundles, NameStr);
1721}
1722
1723CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1724 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1725 Instruction *InsertBefore)
1726 : CallBase(Ty->getReturnType(), Instruction::Call,
1727 OperandTraits<CallBase>::op_end(this) -
1728 (Args.size() + CountBundleInputs(Bundles) + 1),
1729 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1730 InsertBefore) {
1731 init(Ty, Func, Args, Bundles, NameStr);
1732}
1733
1734//===----------------------------------------------------------------------===//
1735// SelectInst Class
1736//===----------------------------------------------------------------------===//
1737
1738/// This class represents the LLVM 'select' instruction.
1739///
1740class SelectInst : public Instruction {
1741 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1742 Instruction *InsertBefore)
1743 : Instruction(S1->getType(), Instruction::Select,
1744 &Op<0>(), 3, InsertBefore) {
1745 init(C, S1, S2);
1746 setName(NameStr);
1747 }
1748
1749 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1750 BasicBlock *InsertAtEnd)
1751 : Instruction(S1->getType(), Instruction::Select,
1752 &Op<0>(), 3, InsertAtEnd) {
1753 init(C, S1, S2);
1754 setName(NameStr);
1755 }
1756
1757 void init(Value *C, Value *S1, Value *S2) {
1758 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((void)0);
1759 Op<0>() = C;
1760 Op<1>() = S1;
1761 Op<2>() = S2;
1762 }
1763
1764protected:
1765 // Note: Instruction needs to be a friend here to call cloneImpl.
1766 friend class Instruction;
1767
1768 SelectInst *cloneImpl() const;
1769
1770public:
1771 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1772 const Twine &NameStr = "",
1773 Instruction *InsertBefore = nullptr,
1774 Instruction *MDFrom = nullptr) {
1775 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1776 if (MDFrom)
1777 Sel->copyMetadata(*MDFrom);
1778 return Sel;
1779 }
1780
1781 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1782 const Twine &NameStr,
1783 BasicBlock *InsertAtEnd) {
1784 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1785 }
1786
1787 const Value *getCondition() const { return Op<0>(); }
1788 const Value *getTrueValue() const { return Op<1>(); }
1789 const Value *getFalseValue() const { return Op<2>(); }
1790 Value *getCondition() { return Op<0>(); }
1791 Value *getTrueValue() { return Op<1>(); }
1792 Value *getFalseValue() { return Op<2>(); }
1793
1794 void setCondition(Value *V) { Op<0>() = V; }
1795 void setTrueValue(Value *V) { Op<1>() = V; }
1796 void setFalseValue(Value *V) { Op<2>() = V; }
1797
1798 /// Swap the true and false values of the select instruction.
1799 /// This doesn't swap prof metadata.
1800 void swapValues() { Op<1>().swap(Op<2>()); }
1801
1802 /// Return a string if the specified operands are invalid
1803 /// for a select operation, otherwise return null.
1804 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1805
1806 /// Transparently provide more efficient getOperand methods.
1807 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1808
1809 OtherOps getOpcode() const {
1810 return static_cast<OtherOps>(Instruction::getOpcode());
1811 }
1812
1813 // Methods for support type inquiry through isa, cast, and dyn_cast:
1814 static bool classof(const Instruction *I) {
1815 return I->getOpcode() == Instruction::Select;
1816 }
1817 static bool classof(const Value *V) {
1818 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1819 }
1820};
1821
1822template <>
1823struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1824};
1825
1826DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<SelectInst>::op_begin(const_cast
<SelectInst*>(this))[i_nocapture].get()); } void SelectInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<SelectInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned SelectInst::getNumOperands() const
{ return OperandTraits<SelectInst>::operands(this); } template
<int Idx_nocapture> Use &SelectInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &SelectInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
1827
1828//===----------------------------------------------------------------------===//
1829// VAArgInst Class
1830//===----------------------------------------------------------------------===//
1831
1832/// This class represents the va_arg llvm instruction, which returns
1833/// an argument of the specified type given a va_list and increments that list
1834///
1835class VAArgInst : public UnaryInstruction {
1836protected:
1837 // Note: Instruction needs to be a friend here to call cloneImpl.
1838 friend class Instruction;
1839
1840 VAArgInst *cloneImpl() const;
1841
1842public:
1843 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1844 Instruction *InsertBefore = nullptr)
1845 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1846 setName(NameStr);
1847 }
1848
1849 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1850 BasicBlock *InsertAtEnd)
1851 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1852 setName(NameStr);
1853 }
1854
1855 Value *getPointerOperand() { return getOperand(0); }
1856 const Value *getPointerOperand() const { return getOperand(0); }
1857 static unsigned getPointerOperandIndex() { return 0U; }
1858
1859 // Methods for support type inquiry through isa, cast, and dyn_cast:
1860 static bool classof(const Instruction *I) {
1861 return I->getOpcode() == VAArg;
1862 }
1863 static bool classof(const Value *V) {
1864 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1865 }
1866};
1867
1868//===----------------------------------------------------------------------===//
1869// ExtractElementInst Class
1870//===----------------------------------------------------------------------===//
1871
1872/// This instruction extracts a single (scalar)
1873/// element from a VectorType value
1874///
1875class ExtractElementInst : public Instruction {
1876 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1877 Instruction *InsertBefore = nullptr);
1878 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1879 BasicBlock *InsertAtEnd);
1880
1881protected:
1882 // Note: Instruction needs to be a friend here to call cloneImpl.
1883 friend class Instruction;
1884
1885 ExtractElementInst *cloneImpl() const;
1886
1887public:
1888 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1889 const Twine &NameStr = "",
1890 Instruction *InsertBefore = nullptr) {
1891 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1892 }
1893
1894 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1895 const Twine &NameStr,
1896 BasicBlock *InsertAtEnd) {
1897 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1898 }
1899
1900 /// Return true if an extractelement instruction can be
1901 /// formed with the specified operands.
1902 static bool isValidOperands(const Value *Vec, const Value *Idx);
1903
1904 Value *getVectorOperand() { return Op<0>(); }
1905 Value *getIndexOperand() { return Op<1>(); }
1906 const Value *getVectorOperand() const { return Op<0>(); }
1907 const Value *getIndexOperand() const { return Op<1>(); }
1908
1909 VectorType *getVectorOperandType() const {
1910 return cast<VectorType>(getVectorOperand()->getType());
1911 }
1912
1913 /// Transparently provide more efficient getOperand methods.
1914 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1915
1916 // Methods for support type inquiry through isa, cast, and dyn_cast:
1917 static bool classof(const Instruction *I) {
1918 return I->getOpcode() == Instruction::ExtractElement;
1919 }
1920 static bool classof(const Value *V) {
1921 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1922 }
1923};
1924
1925template <>
1926struct OperandTraits<ExtractElementInst> :
1927 public FixedNumOperandTraits<ExtractElementInst, 2> {
1928};
1929
1930DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
((void)0); return cast_or_null<Value>( OperandTraits<
ExtractElementInst>::op_begin(const_cast<ExtractElementInst
*>(this))[i_nocapture].get()); } void ExtractElementInst::
setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void
)0); OperandTraits<ExtractElementInst>::op_begin(this)[
i_nocapture] = Val_nocapture; } unsigned ExtractElementInst::
getNumOperands() const { return OperandTraits<ExtractElementInst
>::operands(this); } template <int Idx_nocapture> Use
&ExtractElementInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ExtractElementInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1931
1932//===----------------------------------------------------------------------===//
1933// InsertElementInst Class
1934//===----------------------------------------------------------------------===//
1935
1936/// This instruction inserts a single (scalar)
1937/// element into a VectorType value
1938///
1939class InsertElementInst : public Instruction {
1940 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1941 const Twine &NameStr = "",
1942 Instruction *InsertBefore = nullptr);
1943 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1944 BasicBlock *InsertAtEnd);
1945
1946protected:
1947 // Note: Instruction needs to be a friend here to call cloneImpl.
1948 friend class Instruction;
1949
1950 InsertElementInst *cloneImpl() const;
1951
1952public:
1953 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1954 const Twine &NameStr = "",
1955 Instruction *InsertBefore = nullptr) {
1956 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1957 }
1958
1959 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1960 const Twine &NameStr,
1961 BasicBlock *InsertAtEnd) {
1962 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1963 }
1964
1965 /// Return true if an insertelement instruction can be
1966 /// formed with the specified operands.
1967 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1968 const Value *Idx);
1969
1970 /// Overload to return most specific vector type.
1971 ///
1972 VectorType *getType() const {
1973 return cast<VectorType>(Instruction::getType());
1974 }
1975
1976 /// Transparently provide more efficient getOperand methods.
1977 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1978
1979 // Methods for support type inquiry through isa, cast, and dyn_cast:
1980 static bool classof(const Instruction *I) {
1981 return I->getOpcode() == Instruction::InsertElement;
1982 }
1983 static bool classof(const Value *V) {
1984 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1985 }
1986};
1987
1988template <>
1989struct OperandTraits<InsertElementInst> :
1990 public FixedNumOperandTraits<InsertElementInst, 3> {
1991};
1992
1993DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<InsertElementInst>::op_begin(const_cast
<InsertElementInst*>(this))[i_nocapture].get()); } void
InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<InsertElementInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned InsertElementInst
::getNumOperands() const { return OperandTraits<InsertElementInst
>::operands(this); } template <int Idx_nocapture> Use
&InsertElementInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
InsertElementInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1994
1995//===----------------------------------------------------------------------===//
1996// ShuffleVectorInst Class
1997//===----------------------------------------------------------------------===//
1998
1999constexpr int UndefMaskElem = -1;
2000
2001/// This instruction constructs a fixed permutation of two
2002/// input vectors.
2003///
2004/// For each element of the result vector, the shuffle mask selects an element
2005/// from one of the input vectors to copy to the result. Non-negative elements
2006/// in the mask represent an index into the concatenated pair of input vectors.
2007/// UndefMaskElem (-1) specifies that the result element is undefined.
2008///
2009/// For scalable vectors, all the elements of the mask must be 0 or -1. This
2010/// requirement may be relaxed in the future.
2011class ShuffleVectorInst : public Instruction {
2012 SmallVector<int, 4> ShuffleMask;
2013 Constant *ShuffleMaskForBitcode;
2014
2015protected:
2016 // Note: Instruction needs to be a friend here to call cloneImpl.
2017 friend class Instruction;
2018
2019 ShuffleVectorInst *cloneImpl() const;
2020
2021public:
2022 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2023 const Twine &NameStr = "",
2024 Instruction *InsertBefor = nullptr);
2025 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2026 const Twine &NameStr, BasicBlock *InsertAtEnd);
2027 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2028 const Twine &NameStr = "",
2029 Instruction *InsertBefor = nullptr);
2030 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2031 const Twine &NameStr, BasicBlock *InsertAtEnd);
2032
2033 void *operator new(size_t S) { return User::operator new(S, 2); }
2034 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
2035
2036 /// Swap the operands and adjust the mask to preserve the semantics
2037 /// of the instruction.
2038 void commute();
2039
2040 /// Return true if a shufflevector instruction can be
2041 /// formed with the specified operands.
2042 static bool isValidOperands(const Value *V1, const Value *V2,
2043 const Value *Mask);
2044 static bool isValidOperands(const Value *V1, const Value *V2,
2045 ArrayRef<int> Mask);
2046
2047 /// Overload to return most specific vector type.
2048 ///
2049 VectorType *getType() const {
2050 return cast<VectorType>(Instruction::getType());
2051 }
2052
2053 /// Transparently provide more efficient getOperand methods.
2054 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2055
2056 /// Return the shuffle mask value of this instruction for the given element
2057 /// index. Return UndefMaskElem if the element is undef.
2058 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2059
2060 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2061 /// elements of the mask are returned as UndefMaskElem.
2062 static void getShuffleMask(const Constant *Mask,
2063 SmallVectorImpl<int> &Result);
2064
2065 /// Return the mask for this instruction as a vector of integers. Undefined
2066 /// elements of the mask are returned as UndefMaskElem.
2067 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2068 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2069 }
2070
2071 /// Return the mask for this instruction, for use in bitcode.
2072 ///
2073 /// TODO: This is temporary until we decide a new bitcode encoding for
2074 /// shufflevector.
2075 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2076
2077 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2078 Type *ResultTy);
2079
2080 void setShuffleMask(ArrayRef<int> Mask);
2081
2082 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2083
2084 /// Return true if this shuffle returns a vector with a different number of
2085 /// elements than its source vectors.
2086 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2087 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2088 bool changesLength() const {
2089 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2090 ->getElementCount()
2091 .getKnownMinValue();
2092 unsigned NumMaskElts = ShuffleMask.size();
2093 return NumSourceElts != NumMaskElts;
2094 }
2095
2096 /// Return true if this shuffle returns a vector with a greater number of
2097 /// elements than its source vectors.
2098 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2099 bool increasesLength() const {
2100 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2101 ->getElementCount()
2102 .getKnownMinValue();
2103 unsigned NumMaskElts = ShuffleMask.size();
2104 return NumSourceElts < NumMaskElts;
2105 }
2106
2107 /// Return true if this shuffle mask chooses elements from exactly one source
2108 /// vector.
2109 /// Example: <7,5,undef,7>
2110 /// This assumes that vector operands are the same length as the mask.
2111 static bool isSingleSourceMask(ArrayRef<int> Mask);
2112 static bool isSingleSourceMask(const Constant *Mask) {
2113 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2114 SmallVector<int, 16> MaskAsInts;
2115 getShuffleMask(Mask, MaskAsInts);
2116 return isSingleSourceMask(MaskAsInts);
2117 }
2118
2119 /// Return true if this shuffle chooses elements from exactly one source
2120 /// vector without changing the length of that vector.
2121 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2122 /// TODO: Optionally allow length-changing shuffles.
2123 bool isSingleSource() const {
2124 return !changesLength() && isSingleSourceMask(ShuffleMask);
2125 }
2126
2127 /// Return true if this shuffle mask chooses elements from exactly one source
2128 /// vector without lane crossings. A shuffle using this mask is not
2129 /// necessarily a no-op because it may change the number of elements from its
2130 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2131 /// Example: <undef,undef,2,3>
2132 static bool isIdentityMask(ArrayRef<int> Mask);
2133 static bool isIdentityMask(const Constant *Mask) {
2134 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2135 SmallVector<int, 16> MaskAsInts;
2136 getShuffleMask(Mask, MaskAsInts);
2137 return isIdentityMask(MaskAsInts);
2138 }
2139
2140 /// Return true if this shuffle chooses elements from exactly one source
2141 /// vector without lane crossings and does not change the number of elements
2142 /// from its input vectors.
2143 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2144 bool isIdentity() const {
2145 return !changesLength() && isIdentityMask(ShuffleMask);
2146 }
2147
2148 /// Return true if this shuffle lengthens exactly one source vector with
2149 /// undefs in the high elements.
2150 bool isIdentityWithPadding() const;
2151
2152 /// Return true if this shuffle extracts the first N elements of exactly one
2153 /// source vector.
2154 bool isIdentityWithExtract() const;
2155
2156 /// Return true if this shuffle concatenates its 2 source vectors. This
2157 /// returns false if either input is undefined. In that case, the shuffle is
2158 /// is better classified as an identity with padding operation.
2159 bool isConcat() const;
2160
2161 /// Return true if this shuffle mask chooses elements from its source vectors
2162 /// without lane crossings. A shuffle using this mask would be
2163 /// equivalent to a vector select with a constant condition operand.
2164 /// Example: <4,1,6,undef>
2165 /// This returns false if the mask does not choose from both input vectors.
2166 /// In that case, the shuffle is better classified as an identity shuffle.
2167 /// This assumes that vector operands are the same length as the mask
2168 /// (a length-changing shuffle can never be equivalent to a vector select).
2169 static bool isSelectMask(ArrayRef<int> Mask);
2170 static bool isSelectMask(const Constant *Mask) {
2171 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2172 SmallVector<int, 16> MaskAsInts;
2173 getShuffleMask(Mask, MaskAsInts);
2174 return isSelectMask(MaskAsInts);
2175 }
2176
2177 /// Return true if this shuffle chooses elements from its source vectors
2178 /// without lane crossings and all operands have the same number of elements.
2179 /// In other words, this shuffle is equivalent to a vector select with a
2180 /// constant condition operand.
2181 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2182 /// This returns false if the mask does not choose from both input vectors.
2183 /// In that case, the shuffle is better classified as an identity shuffle.
2184 /// TODO: Optionally allow length-changing shuffles.
2185 bool isSelect() const {
2186 return !changesLength() && isSelectMask(ShuffleMask);
2187 }
2188
2189 /// Return true if this shuffle mask swaps the order of elements from exactly
2190 /// one source vector.
2191 /// Example: <7,6,undef,4>
2192 /// This assumes that vector operands are the same length as the mask.
2193 static bool isReverseMask(ArrayRef<int> Mask);
2194 static bool isReverseMask(const Constant *Mask) {
2195 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2196 SmallVector<int, 16> MaskAsInts;
2197 getShuffleMask(Mask, MaskAsInts);
2198 return isReverseMask(MaskAsInts);
2199 }
2200
2201 /// Return true if this shuffle swaps the order of elements from exactly
2202 /// one source vector.
2203 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2204 /// TODO: Optionally allow length-changing shuffles.
2205 bool isReverse() const {
2206 return !changesLength() && isReverseMask(ShuffleMask);
2207 }
2208
2209 /// Return true if this shuffle mask chooses all elements with the same value
2210 /// as the first element of exactly one source vector.
2211 /// Example: <4,undef,undef,4>
2212 /// This assumes that vector operands are the same length as the mask.
2213 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2214 static bool isZeroEltSplatMask(const Constant *Mask) {
2215 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2216 SmallVector<int, 16> MaskAsInts;
2217 getShuffleMask(Mask, MaskAsInts);
2218 return isZeroEltSplatMask(MaskAsInts);
2219 }
2220
2221 /// Return true if all elements of this shuffle are the same value as the
2222 /// first element of exactly one source vector without changing the length
2223 /// of that vector.
2224 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2225 /// TODO: Optionally allow length-changing shuffles.
2226 /// TODO: Optionally allow splats from other elements.
2227 bool isZeroEltSplat() const {
2228 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2229 }
2230
2231 /// Return true if this shuffle mask is a transpose mask.
2232 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2233 /// even- or odd-numbered vector elements from two n-dimensional source
2234 /// vectors and write each result into consecutive elements of an
2235 /// n-dimensional destination vector. Two shuffles are necessary to complete
2236 /// the transpose, one for the even elements and another for the odd elements.
2237 /// This description closely follows how the TRN1 and TRN2 AArch64
2238 /// instructions operate.
2239 ///
2240 /// For example, a simple 2x2 matrix can be transposed with:
2241 ///
2242 /// ; Original matrix
2243 /// m0 = < a, b >
2244 /// m1 = < c, d >
2245 ///
2246 /// ; Transposed matrix
2247 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2248 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2249 ///
2250 /// For matrices having greater than n columns, the resulting nx2 transposed
2251 /// matrix is stored in two result vectors such that one vector contains
2252 /// interleaved elements from all the even-numbered rows and the other vector
2253 /// contains interleaved elements from all the odd-numbered rows. For example,
2254 /// a 2x4 matrix can be transposed with:
2255 ///
2256 /// ; Original matrix
2257 /// m0 = < a, b, c, d >
2258 /// m1 = < e, f, g, h >
2259 ///
2260 /// ; Transposed matrix
2261 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2262 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2263 static bool isTransposeMask(ArrayRef<int> Mask);
2264 static bool isTransposeMask(const Constant *Mask) {
2265 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2266 SmallVector<int, 16> MaskAsInts;
2267 getShuffleMask(Mask, MaskAsInts);
2268 return isTransposeMask(MaskAsInts);
2269 }
2270
2271 /// Return true if this shuffle transposes the elements of its inputs without
2272 /// changing the length of the vectors. This operation may also be known as a
2273 /// merge or interleave. See the description for isTransposeMask() for the
2274 /// exact specification.
2275 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2276 bool isTranspose() const {
2277 return !changesLength() && isTransposeMask(ShuffleMask);
2278 }
2279
2280 /// Return true if this shuffle mask is an extract subvector mask.
2281 /// A valid extract subvector mask returns a smaller vector from a single
2282 /// source operand. The base extraction index is returned as well.
2283 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2284 int &Index);
2285 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2286 int &Index) {
2287 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2288 // Not possible to express a shuffle mask for a scalable vector for this
2289 // case.
2290 if (isa<ScalableVectorType>(Mask->getType()))
2291 return false;
2292 SmallVector<int, 16> MaskAsInts;
2293 getShuffleMask(Mask, MaskAsInts);
2294 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2295 }
2296
2297 /// Return true if this shuffle mask is an extract subvector mask.
2298 bool isExtractSubvectorMask(int &Index) const {
2299 // Not possible to express a shuffle mask for a scalable vector for this
2300 // case.
2301 if (isa<ScalableVectorType>(getType()))
2302 return false;
2303
2304 int NumSrcElts =
2305 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2306 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2307 }
2308
2309 /// Change values in a shuffle permute mask assuming the two vector operands
2310 /// of length InVecNumElts have swapped position.
2311 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2312 unsigned InVecNumElts) {
2313 for (int &Idx : Mask) {
2314 if (Idx == -1)
2315 continue;
2316 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2317 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((void)0)
2318 "shufflevector mask index out of range")((void)0);
2319 }
2320 }
2321
2322 // Methods for support type inquiry through isa, cast, and dyn_cast:
2323 static bool classof(const Instruction *I) {
2324 return I->getOpcode() == Instruction::ShuffleVector;
2325 }
2326 static bool classof(const Value *V) {
2327 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2328 }
2329};
2330
2331template <>
2332struct OperandTraits<ShuffleVectorInst>
2333 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2334
2335DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<ShuffleVectorInst>::op_begin(const_cast
<ShuffleVectorInst*>(this))[i_nocapture].get()); } void
ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<ShuffleVectorInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned ShuffleVectorInst
::getNumOperands() const { return OperandTraits<ShuffleVectorInst
>::operands(this); } template <int Idx_nocapture> Use
&ShuffleVectorInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ShuffleVectorInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2336
2337//===----------------------------------------------------------------------===//
2338// ExtractValueInst Class
2339//===----------------------------------------------------------------------===//
2340
2341/// This instruction extracts a struct member or array
2342/// element value from an aggregate value.
2343///
2344class ExtractValueInst : public UnaryInstruction {
2345 SmallVector<unsigned, 4> Indices;
2346
2347 ExtractValueInst(const ExtractValueInst &EVI);
2348
2349 /// Constructors - Create a extractvalue instruction with a base aggregate
2350 /// value and a list of indices. The first ctor can optionally insert before
2351 /// an existing instruction, the second appends the new instruction to the
2352 /// specified BasicBlock.
2353 inline ExtractValueInst(Value *Agg,
2354 ArrayRef<unsigned> Idxs,
2355 const Twine &NameStr,
2356 Instruction *InsertBefore);
2357 inline ExtractValueInst(Value *Agg,
2358 ArrayRef<unsigned> Idxs,
2359 const Twine &NameStr, BasicBlock *InsertAtEnd);
2360
2361 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2362
2363protected:
2364 // Note: Instruction needs to be a friend here to call cloneImpl.
2365 friend class Instruction;
2366
2367 ExtractValueInst *cloneImpl() const;
2368
2369public:
2370 static ExtractValueInst *Create(Value *Agg,
2371 ArrayRef<unsigned> Idxs,
2372 const Twine &NameStr = "",
2373 Instruction *InsertBefore = nullptr) {
2374 return new
2375 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2376 }
2377
2378 static ExtractValueInst *Create(Value *Agg,
2379 ArrayRef<unsigned> Idxs,
2380 const Twine &NameStr,
2381 BasicBlock *InsertAtEnd) {
2382 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2383 }
2384
2385 /// Returns the type of the element that would be extracted
2386 /// with an extractvalue instruction with the specified parameters.
2387 ///
2388 /// Null is returned if the indices are invalid for the specified type.
2389 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2390
2391 using idx_iterator = const unsigned*;
2392
2393 inline idx_iterator idx_begin() const { return Indices.begin(); }
2394 inline idx_iterator idx_end() const { return Indices.end(); }
2395 inline iterator_range<idx_iterator> indices() const {
2396 return make_range(idx_begin(), idx_end());
2397 }
2398
2399 Value *getAggregateOperand() {
2400 return getOperand(0);
2401 }
2402 const Value *getAggregateOperand() const {
2403 return getOperand(0);
2404 }
2405 static unsigned getAggregateOperandIndex() {
2406 return 0U; // get index for modifying correct operand
2407 }
2408
2409 ArrayRef<unsigned> getIndices() const {
2410 return Indices;
2411 }
2412
2413 unsigned getNumIndices() const {
2414 return (unsigned)Indices.size();
2415 }
2416
2417 bool hasIndices() const {
2418 return true;
2419 }
2420
2421 // Methods for support type inquiry through isa, cast, and dyn_cast:
2422 static bool classof(const Instruction *I) {
2423 return I->getOpcode() == Instruction::ExtractValue;
2424 }
2425 static bool classof(const Value *V) {
2426 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2427 }
2428};
2429
2430ExtractValueInst::ExtractValueInst(Value *Agg,
2431 ArrayRef<unsigned> Idxs,
2432 const Twine &NameStr,
2433 Instruction *InsertBefore)
2434 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2435 ExtractValue, Agg, InsertBefore) {
2436 init(Idxs, NameStr);
2437}
2438
2439ExtractValueInst::ExtractValueInst(Value *Agg,
2440 ArrayRef<unsigned> Idxs,
2441 const Twine &NameStr,
2442 BasicBlock *InsertAtEnd)
2443 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2444 ExtractValue, Agg, InsertAtEnd) {
2445 init(Idxs, NameStr);
2446}
2447
2448//===----------------------------------------------------------------------===//
2449// InsertValueInst Class
2450//===----------------------------------------------------------------------===//
2451
2452/// This instruction inserts a struct field of array element
2453/// value into an aggregate value.
2454///
2455class InsertValueInst : public Instruction {
2456 SmallVector<unsigned, 4> Indices;
2457
2458 InsertValueInst(const InsertValueInst &IVI);
2459
2460 /// Constructors - Create a insertvalue instruction with a base aggregate
2461 /// value, a value to insert, and a list of indices. The first ctor can
2462 /// optionally insert before an existing instruction, the second appends
2463 /// the new instruction to the specified BasicBlock.
2464 inline InsertValueInst(Value *Agg, Value *Val,
2465 ArrayRef<unsigned> Idxs,
2466 const Twine &NameStr,
2467 Instruction *InsertBefore);
2468 inline InsertValueInst(Value *Agg, Value *Val,
2469 ArrayRef<unsigned> Idxs,
2470 const Twine &NameStr, BasicBlock *InsertAtEnd);
2471
2472 /// Constructors - These two constructors are convenience methods because one
2473 /// and two index insertvalue instructions are so common.
2474 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2475 const Twine &NameStr = "",
2476 Instruction *InsertBefore = nullptr);
2477 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2478 BasicBlock *InsertAtEnd);
2479
2480 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2481 const Twine &NameStr);
2482
2483protected:
2484 // Note: Instruction needs to be a friend here to call cloneImpl.
2485 friend class Instruction;
2486
2487 InsertValueInst *cloneImpl() const;
2488
2489public:
2490 // allocate space for exactly two operands
2491 void *operator new(size_t S) { return User::operator new(S, 2); }
2492 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2493
2494 static InsertValueInst *Create(Value *Agg, Value *Val,
2495 ArrayRef<unsigned> Idxs,
2496 const Twine &NameStr = "",
2497 Instruction *InsertBefore = nullptr) {
2498 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2499 }
2500
2501 static InsertValueInst *Create(Value *Agg, Value *Val,
2502 ArrayRef<unsigned> Idxs,
2503 const Twine &NameStr,
2504 BasicBlock *InsertAtEnd) {
2505 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2506 }
2507
2508 /// Transparently provide more efficient getOperand methods.
2509 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2510
2511 using idx_iterator = const unsigned*;
2512
2513 inline idx_iterator idx_begin() const { return Indices.begin(); }
2514 inline idx_iterator idx_end() const { return Indices.end(); }
2515 inline iterator_range<idx_iterator> indices() const {
2516 return make_range(idx_begin(), idx_end());
2517 }
2518
2519 Value *getAggregateOperand() {
2520 return getOperand(0);
2521 }
2522 const Value *getAggregateOperand() const {
2523 return getOperand(0);
2524 }
2525 static unsigned getAggregateOperandIndex() {
2526 return 0U; // get index for modifying correct operand
2527 }
2528
2529 Value *getInsertedValueOperand() {
2530 return getOperand(1);
2531 }
2532 const Value *getInsertedValueOperand() const {
2533 return getOperand(1);
2534 }
2535 static unsigned getInsertedValueOperandIndex() {
2536 return 1U; // get index for modifying correct operand
2537 }
2538
2539 ArrayRef<unsigned> getIndices() const {
2540 return Indices;
2541 }
2542
2543 unsigned getNumIndices() const {
2544 return (unsigned)Indices.size();
2545 }
2546
2547 bool hasIndices() const {
2548 return true;
2549 }
2550
2551 // Methods for support type inquiry through isa, cast, and dyn_cast:
2552 static bool classof(const Instruction *I) {
2553 return I->getOpcode() == Instruction::InsertValue;
2554 }
2555 static bool classof(const Value *V) {
2556 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2557 }
2558};
2559
2560template <>
2561struct OperandTraits<InsertValueInst> :
2562 public FixedNumOperandTraits<InsertValueInst, 2> {
2563};
2564
2565InsertValueInst::InsertValueInst(Value *Agg,
2566 Value *Val,
2567 ArrayRef<unsigned> Idxs,
2568 const Twine &NameStr,
2569 Instruction *InsertBefore)
2570 : Instruction(Agg->getType(), InsertValue,
2571 OperandTraits<InsertValueInst>::op_begin(this),
2572 2, InsertBefore) {
2573 init(Agg, Val, Idxs, NameStr);
2574}
2575
2576InsertValueInst::InsertValueInst(Value *Agg,
2577 Value *Val,
2578 ArrayRef<unsigned> Idxs,
2579 const Twine &NameStr,
2580 BasicBlock *InsertAtEnd)
2581 : Instruction(Agg->getType(), InsertValue,
2582 OperandTraits<InsertValueInst>::op_begin(this),
2583 2, InsertAtEnd) {
2584 init(Agg, Val, Idxs, NameStr);
2585}
2586
2587DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<InsertValueInst>::op_begin
(const_cast<InsertValueInst*>(this))[i_nocapture].get()
); } void InsertValueInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<InsertValueInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertValueInst::getNumOperands() const { return OperandTraits
<InsertValueInst>::operands(this); } template <int Idx_nocapture
> Use &InsertValueInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &InsertValueInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2588
2589//===----------------------------------------------------------------------===//
2590// PHINode Class
2591//===----------------------------------------------------------------------===//
2592
2593// PHINode - The PHINode class is used to represent the magical mystical PHI
2594// node, that can not exist in nature, but can be synthesized in a computer
2595// scientist's overactive imagination.
2596//
2597class PHINode : public Instruction {
2598 /// The number of operands actually allocated. NumOperands is
2599 /// the number actually in use.
2600 unsigned ReservedSpace;
2601
2602 PHINode(const PHINode &PN);
2603
2604 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2605 const Twine &NameStr = "",
2606 Instruction *InsertBefore = nullptr)
2607 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2608 ReservedSpace(NumReservedValues) {
2609 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0);
2610 setName(NameStr);
2611 allocHungoffUses(ReservedSpace);
2612 }
2613
2614 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2615 BasicBlock *InsertAtEnd)
2616 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2617 ReservedSpace(NumReservedValues) {
2618 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0);
2619 setName(NameStr);
2620 allocHungoffUses(ReservedSpace);
2621 }
2622
2623protected:
2624 // Note: Instruction needs to be a friend here to call cloneImpl.
2625 friend class Instruction;
2626
2627 PHINode *cloneImpl() const;
2628
2629 // allocHungoffUses - this is more complicated than the generic
2630 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2631 // values and pointers to the incoming blocks, all in one allocation.
2632 void allocHungoffUses(unsigned N) {
2633 User::allocHungoffUses(N, /* IsPhi */ true);
2634 }
2635
2636public:
2637 /// Constructors - NumReservedValues is a hint for the number of incoming
2638 /// edges that this phi node will have (use 0 if you really have no idea).
2639 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2640 const Twine &NameStr = "",
2641 Instruction *InsertBefore = nullptr) {
2642 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2643 }
2644
2645 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2646 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2647 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2648 }
2649
2650 /// Provide fast operand accessors
2651 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2652
2653 // Block iterator interface. This provides access to the list of incoming
2654 // basic blocks, which parallels the list of incoming values.
2655
2656 using block_iterator = BasicBlock **;
2657 using const_block_iterator = BasicBlock * const *;
2658
2659 block_iterator block_begin() {
2660 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2661 }
2662
2663 const_block_iterator block_begin() const {
2664 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2665 }
2666
2667 block_iterator block_end() {
2668 return block_begin() + getNumOperands();
2669 }
2670
2671 const_block_iterator block_end() const {
2672 return block_begin() + getNumOperands();
2673 }
2674
2675 iterator_range<block_iterator> blocks() {
2676 return make_range(block_begin(), block_end());
2677 }
2678
2679 iterator_range<const_block_iterator> blocks() const {
2680 return make_range(block_begin(), block_end());
2681 }
2682
2683 op_range incoming_values() { return operands(); }
2684
2685 const_op_range incoming_values() const { return operands(); }
2686
2687 /// Return the number of incoming edges
2688 ///
2689 unsigned getNumIncomingValues() const { return getNumOperands(); }
2690
2691 /// Return incoming value number x
2692 ///
2693 Value *getIncomingValue(unsigned i) const {
2694 return getOperand(i);
2695 }
2696 void setIncomingValue(unsigned i, Value *V) {
2697 assert(V && "PHI node got a null value!")((void)0);
2698 assert(getType() == V->getType() &&((void)0)
2699 "All operands to PHI node must be the same type as the PHI node!")((void)0);
2700 setOperand(i, V);
2701 }
2702
2703 static unsigned getOperandNumForIncomingValue(unsigned i) {
2704 return i;
2705 }
2706
2707 static unsigned getIncomingValueNumForOperand(unsigned i) {
2708 return i;
2709 }
2710
2711 /// Return incoming basic block number @p i.
2712 ///
2713 BasicBlock *getIncomingBlock(unsigned i) const {
2714 return block_begin()[i];
2715 }
2716
2717 /// Return incoming basic block corresponding
2718 /// to an operand of the PHI.
2719 ///
2720 BasicBlock *getIncomingBlock(const Use &U) const {
2721 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((void)0);
2722 return getIncomingBlock(unsigned(&U - op_begin()));
2723 }
2724
2725 /// Return incoming basic block corresponding
2726 /// to value use iterator.
2727 ///
2728 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2729 return getIncomingBlock(I.getUse());
2730 }
2731
2732 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2733 assert(BB && "PHI node got a null basic block!")((void)0);
2734 block_begin()[i] = BB;
2735 }
2736
2737 /// Replace every incoming basic block \p Old to basic block \p New.
2738 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2739 assert(New && Old && "PHI node got a null basic block!")((void)0);
2740 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2741 if (getIncomingBlock(Op) == Old)
2742 setIncomingBlock(Op, New);
2743 }
2744
2745 /// Add an incoming value to the end of the PHI list
2746 ///
2747 void addIncoming(Value *V, BasicBlock *BB) {
2748 if (getNumOperands() == ReservedSpace)
2749 growOperands(); // Get more space!
2750 // Initialize some new operands.
2751 setNumHungOffUseOperands(getNumOperands() + 1);
2752 setIncomingValue(getNumOperands() - 1, V);
2753 setIncomingBlock(getNumOperands() - 1, BB);
2754 }
2755
2756 /// Remove an incoming value. This is useful if a
2757 /// predecessor basic block is deleted. The value removed is returned.
2758 ///
2759 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2760 /// is true), the PHI node is destroyed and any uses of it are replaced with
2761 /// dummy values. The only time there should be zero incoming values to a PHI
2762 /// node is when the block is dead, so this strategy is sound.
2763 ///
2764 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2765
2766 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2767 int Idx = getBasicBlockIndex(BB);
2768 assert(Idx >= 0 && "Invalid basic block argument to remove!")((void)0);
2769 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2770 }
2771
2772 /// Return the first index of the specified basic
2773 /// block in the value list for this PHI. Returns -1 if no instance.
2774 ///
2775 int getBasicBlockIndex(const BasicBlock *BB) const {
2776 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2777 if (block_begin()[i] == BB)
2778 return i;
2779 return -1;
2780 }
2781
2782 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2783 int Idx = getBasicBlockIndex(BB);
2784 assert(Idx >= 0 && "Invalid basic block argument!")((void)0);
2785 return getIncomingValue(Idx);
2786 }
2787
2788 /// Set every incoming value(s) for block \p BB to \p V.
2789 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2790 assert(BB && "PHI node got a null basic block!")((void)0);
2791 bool Found = false;
2792 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2793 if (getIncomingBlock(Op) == BB) {
2794 Found = true;
2795 setIncomingValue(Op, V);
2796 }
2797 (void)Found;
2798 assert(Found && "Invalid basic block argument to set!")((void)0);
2799 }
2800
2801 /// If the specified PHI node always merges together the
2802 /// same value, return the value, otherwise return null.
2803 Value *hasConstantValue() const;
2804
2805 /// Whether the specified PHI node always merges
2806 /// together the same value, assuming undefs are equal to a unique
2807 /// non-undef value.
2808 bool hasConstantOrUndefValue() const;
2809
2810 /// If the PHI node is complete which means all of its parent's predecessors
2811 /// have incoming value in this PHI, return true, otherwise return false.
2812 bool isComplete() const {
2813 return llvm::all_of(predecessors(getParent()),
2814 [this](const BasicBlock *Pred) {
2815 return getBasicBlockIndex(Pred) >= 0;
2816 });
2817 }
2818
2819 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2820 static bool classof(const Instruction *I) {
2821 return I->getOpcode() == Instruction::PHI;
2822 }
2823 static bool classof(const Value *V) {
2824 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2825 }
2826
2827private:
2828 void growOperands();
2829};
2830
2831template <>
2832struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2833};
2834
2835DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { ((void)0); return cast_or_null<Value>( OperandTraits
<PHINode>::op_begin(const_cast<PHINode*>(this))[i_nocapture
].get()); } void PHINode::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<PHINode>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned PHINode::getNumOperands
() const { return OperandTraits<PHINode>::operands(this
); } template <int Idx_nocapture> Use &PHINode::Op(
) { return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &PHINode::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
2836
2837//===----------------------------------------------------------------------===//
2838// LandingPadInst Class
2839//===----------------------------------------------------------------------===//
2840
2841//===---------------------------------------------------------------------------
2842/// The landingpad instruction holds all of the information
2843/// necessary to generate correct exception handling. The landingpad instruction
2844/// cannot be moved from the top of a landing pad block, which itself is
2845/// accessible only from the 'unwind' edge of an invoke. This uses the
2846/// SubclassData field in Value to store whether or not the landingpad is a
2847/// cleanup.
2848///
2849class LandingPadInst : public Instruction {
2850 using CleanupField = BoolBitfieldElementT<0>;
2851
2852 /// The number of operands actually allocated. NumOperands is
2853 /// the number actually in use.
2854 unsigned ReservedSpace;
2855
2856 LandingPadInst(const LandingPadInst &LP);
2857
2858public:
2859 enum ClauseType { Catch, Filter };
2860
2861private:
2862 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2863 const Twine &NameStr, Instruction *InsertBefore);
2864 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2865 const Twine &NameStr, BasicBlock *InsertAtEnd);
2866
2867 // Allocate space for exactly zero operands.
2868 void *operator new(size_t S) { return User::operator new(S); }
2869
2870 void growOperands(unsigned Size);
2871 void init(unsigned NumReservedValues, const Twine &NameStr);
2872
2873protected:
2874 // Note: Instruction needs to be a friend here to call cloneImpl.
2875 friend class Instruction;
2876
2877 LandingPadInst *cloneImpl() const;
2878
2879public:
2880 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2881
2882 /// Constructors - NumReservedClauses is a hint for the number of incoming
2883 /// clauses that this landingpad will have (use 0 if you really have no idea).
2884 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2885 const Twine &NameStr = "",
2886 Instruction *InsertBefore = nullptr);
2887 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2888 const Twine &NameStr, BasicBlock *InsertAtEnd);
2889
2890 /// Provide fast operand accessors
2891 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2892
2893 /// Return 'true' if this landingpad instruction is a
2894 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2895 /// doesn't catch the exception.
2896 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2897
2898 /// Indicate that this landingpad instruction is a cleanup.
2899 void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2900
2901 /// Add a catch or filter clause to the landing pad.
2902 void addClause(Constant *ClauseVal);
2903
2904 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2905 /// determine what type of clause this is.
2906 Constant *getClause(unsigned Idx) const {
2907 return cast<Constant>(getOperandList()[Idx]);
2908 }
2909
2910 /// Return 'true' if the clause and index Idx is a catch clause.
2911 bool isCatch(unsigned Idx) const {
2912 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2913 }
2914
2915 /// Return 'true' if the clause and index Idx is a filter clause.
2916 bool isFilter(unsigned Idx) const {
2917 return isa<ArrayType>(getOperandList()[Idx]->getType());
2918 }
2919
2920 /// Get the number of clauses for this landing pad.
2921 unsigned getNumClauses() const { return getNumOperands(); }
2922
2923 /// Grow the size of the operand list to accommodate the new
2924 /// number of clauses.
2925 void reserveClauses(unsigned Size) { growOperands(Size); }
2926
2927 // Methods for support type inquiry through isa, cast, and dyn_cast:
2928 static bool classof(const Instruction *I) {
2929 return I->getOpcode() == Instruction::LandingPad;
2930 }
2931 static bool classof(const Value *V) {
2932 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2933 }
2934};
2935
2936template <>
2937struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2938};
2939
2940DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<LandingPadInst>::op_begin(
const_cast<LandingPadInst*>(this))[i_nocapture].get());
} void LandingPadInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<LandingPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2941
2942//===----------------------------------------------------------------------===//
2943// ReturnInst Class
2944//===----------------------------------------------------------------------===//
2945
2946//===---------------------------------------------------------------------------
2947/// Return a value (possibly void), from a function. Execution
2948/// does not continue in this function any longer.
2949///
2950class ReturnInst : public Instruction {
2951 ReturnInst(const ReturnInst &RI);
2952
2953private:
2954 // ReturnInst constructors:
2955 // ReturnInst() - 'ret void' instruction
2956 // ReturnInst( null) - 'ret void' instruction
2957 // ReturnInst(Value* X) - 'ret X' instruction
2958 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2959 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2960 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2961 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2962 //
2963 // NOTE: If the Value* passed is of type void then the constructor behaves as
2964 // if it was passed NULL.
2965 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2966 Instruction *InsertBefore = nullptr);
2967 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2968 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2969
2970protected:
2971 // Note: Instruction needs to be a friend here to call cloneImpl.
2972 friend class Instruction;
2973
2974 ReturnInst *cloneImpl() const;
2975
2976public:
2977 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2978 Instruction *InsertBefore = nullptr) {
2979 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2980 }
2981
2982 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2983 BasicBlock *InsertAtEnd) {
2984 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2985 }
2986
2987 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2988 return new(0) ReturnInst(C, InsertAtEnd);
2989 }
2990
2991 /// Provide fast operand accessors
2992 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2993
2994 /// Convenience accessor. Returns null if there is no return value.
2995 Value *getReturnValue() const {
2996 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2997 }
2998
2999 unsigned getNumSuccessors() const { return 0; }
3000
3001 // Methods for support type inquiry through isa, cast, and dyn_cast:
3002 static bool classof(const Instruction *I) {
3003 return (I->getOpcode() == Instruction::Ret);
3004 }
3005 static bool classof(const Value *V) {
3006 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3007 }
3008
3009private:
3010 BasicBlock *getSuccessor(unsigned idx) const {
3011 llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable();
3012 }
3013
3014 void setSuccessor(unsigned idx, BasicBlock *B) {
3015 llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable();
3016 }
3017};
3018
3019template <>
3020struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
3021};
3022
3023DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<ReturnInst>::op_begin(const_cast
<ReturnInst*>(this))[i_nocapture].get()); } void ReturnInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<ReturnInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ReturnInst::getNumOperands() const
{ return OperandTraits<ReturnInst>::operands(this); } template
<int Idx_nocapture> Use &ReturnInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ReturnInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3024
3025//===----------------------------------------------------------------------===//
3026// BranchInst Class
3027//===----------------------------------------------------------------------===//
3028
3029//===---------------------------------------------------------------------------
3030/// Conditional or Unconditional Branch instruction.
3031///
3032class BranchInst : public Instruction {
3033 /// Ops list - Branches are strange. The operands are ordered:
3034 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3035 /// they don't have to check for cond/uncond branchness. These are mostly
3036 /// accessed relative from op_end().
3037 BranchInst(const BranchInst &BI);
3038 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3039 // BranchInst(BB *B) - 'br B'
3040 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3041 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3042 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3043 // BranchInst(BB* B, BB *I) - 'br B' insert at end
3044 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3045 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3046 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3047 Instruction *InsertBefore = nullptr);
3048 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3049 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3050 BasicBlock *InsertAtEnd);
3051
3052 void AssertOK();
3053
3054protected:
3055 // Note: Instruction needs to be a friend here to call cloneImpl.
3056 friend class Instruction;
3057
3058 BranchInst *cloneImpl() const;
3059
3060public:
3061 /// Iterator type that casts an operand to a basic block.
3062 ///
3063 /// This only makes sense because the successors are stored as adjacent
3064 /// operands for branch instructions.
3065 struct succ_op_iterator
3066 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3067 std::random_access_iterator_tag, BasicBlock *,
3068 ptrdiff_t, BasicBlock *, BasicBlock *> {
3069 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3070
3071 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3072 BasicBlock *operator->() const { return operator*(); }
3073 };
3074
3075 /// The const version of `succ_op_iterator`.
3076 struct const_succ_op_iterator
3077 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3078 std::random_access_iterator_tag,
3079 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3080 const BasicBlock *> {
3081 explicit const_succ_op_iterator(const_value_op_iterator I)
3082 : iterator_adaptor_base(I) {}
3083
3084 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3085 const BasicBlock *operator->() const { return operator*(); }
3086 };
3087
3088 static BranchInst *Create(BasicBlock *IfTrue,
3089 Instruction *InsertBefore = nullptr) {
3090 return new(1) BranchInst(IfTrue, InsertBefore);
3091 }
3092
3093 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3094 Value *Cond, Instruction *InsertBefore = nullptr) {
3095 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3096 }
3097
3098 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3099 return new(1) BranchInst(IfTrue, InsertAtEnd);
3100 }
3101
3102 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3103 Value *Cond, BasicBlock *InsertAtEnd) {
3104 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3105 }
3106
3107 /// Transparently provide more efficient getOperand methods.
3108 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3109
3110 bool isUnconditional() const { return getNumOperands() == 1; }
3111 bool isConditional() const { return getNumOperands() == 3; }
3112
3113 Value *getCondition() const {
3114 assert(isConditional() && "Cannot get condition of an uncond branch!")((void)0);
3115 return Op<-3>();
3116 }
3117
3118 void setCondition(Value *V) {
3119 assert(isConditional() && "Cannot set condition of unconditional branch!")((void)0);
3120 Op<-3>() = V;
3121 }
3122
3123 unsigned getNumSuccessors() const { return 1+isConditional(); }
3124
3125 BasicBlock *getSuccessor(unsigned i) const {
3126 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((void)0);
3127 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3128 }
3129
3130 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3131 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((void)0);
3132 *(&Op<-1>() - idx) = NewSucc;
3133 }
3134
3135 /// Swap the successors of this branch instruction.
3136 ///
3137 /// Swaps the successors of the branch instruction. This also swaps any
3138 /// branch weight metadata associated with the instruction so that it
3139 /// continues to map correctly to each operand.
3140 void swapSuccessors();
3141
3142 iterator_range<succ_op_iterator> successors() {
3143 return make_range(
3144 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3145 succ_op_iterator(value_op_end()));
3146 }
3147
3148 iterator_range<const_succ_op_iterator> successors() const {
3149 return make_range(const_succ_op_iterator(
3150 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3151 const_succ_op_iterator(value_op_end()));
3152 }
3153
3154 // Methods for support type inquiry through isa, cast, and dyn_cast:
3155 static bool classof(const Instruction *I) {
3156 return (I->getOpcode() == Instruction::Br);
3157 }
3158 static bool classof(const Value *V) {
3159 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3160 }
3161};
3162
3163template <>
3164struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3165};
3166
3167DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<BranchInst>::op_begin(const_cast
<BranchInst*>(this))[i_nocapture].get()); } void BranchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<BranchInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned BranchInst::getNumOperands() const
{ return OperandTraits<BranchInst>::operands(this); } template
<int Idx_nocapture> Use &BranchInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &BranchInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3168
3169//===----------------------------------------------------------------------===//
3170// SwitchInst Class
3171//===----------------------------------------------------------------------===//
3172
3173//===---------------------------------------------------------------------------
3174/// Multiway switch
3175///
3176class SwitchInst : public Instruction {
3177 unsigned ReservedSpace;
3178
3179 // Operand[0] = Value to switch on
3180 // Operand[1] = Default basic block destination
3181 // Operand[2n ] = Value to match
3182 // Operand[2n+1] = BasicBlock to go to on match
3183 SwitchInst(const SwitchInst &SI);
3184
3185 /// Create a new switch instruction, specifying a value to switch on and a
3186 /// default destination. The number of additional cases can be specified here
3187 /// to make memory allocation more efficient. This constructor can also
3188 /// auto-insert before another instruction.
3189 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3190 Instruction *InsertBefore);
3191
3192 /// Create a new switch instruction, specifying a value to switch on and a
3193 /// default destination. The number of additional cases can be specified here
3194 /// to make memory allocation more efficient. This constructor also
3195 /// auto-inserts at the end of the specified BasicBlock.
3196 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3197 BasicBlock *InsertAtEnd);
3198
3199 // allocate space for exactly zero operands
3200 void *operator new(size_t S) { return User::operator new(S); }
3201
3202 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3203 void growOperands();
3204
3205protected:
3206 // Note: Instruction needs to be a friend here to call cloneImpl.
3207 friend class Instruction;
3208
3209 SwitchInst *cloneImpl() const;
3210
3211public:
3212 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3213
3214 // -2
3215 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3216
3217 template <typename CaseHandleT> class CaseIteratorImpl;
3218
3219 /// A handle to a particular switch case. It exposes a convenient interface
3220 /// to both the case value and the successor block.
3221 ///
3222 /// We define this as a template and instantiate it to form both a const and
3223 /// non-const handle.
3224 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3225 class CaseHandleImpl {
3226 // Directly befriend both const and non-const iterators.
3227 friend class SwitchInst::CaseIteratorImpl<
3228 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3229
3230 protected:
3231 // Expose the switch type we're parameterized with to the iterator.
3232 using SwitchInstType = SwitchInstT;
3233
3234 SwitchInstT *SI;
3235 ptrdiff_t Index;
3236
3237 CaseHandleImpl() = default;
3238 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3239
3240 public:
3241 /// Resolves case value for current case.
3242 ConstantIntT *getCaseValue() const {
3243 assert((unsigned)Index < SI->getNumCases() &&((void)0)
3244 "Index out the number of cases.")((void)0);
3245 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3246 }
3247
3248 /// Resolves successor for current case.
3249 BasicBlockT *getCaseSuccessor() const {
3250 assert(((unsigned)Index < SI->getNumCases() ||((void)0)
3251 (unsigned)Index == DefaultPseudoIndex) &&((void)0)
3252 "Index out the number of cases.")((void)0);
3253 return SI->getSuccessor(getSuccessorIndex());
3254 }
3255
3256 /// Returns number of current case.
3257 unsigned getCaseIndex() const { return Index; }
3258
3259 /// Returns successor index for current case successor.
3260 unsigned getSuccessorIndex() const {
3261 assert(((unsigned)Index == DefaultPseudoIndex ||((void)0)
3262 (unsigned)Index < SI->getNumCases()) &&((void)0)
3263 "Index out the number of cases.")((void)0);
3264 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3265 }
3266
3267 bool operator==(const CaseHandleImpl &RHS) const {
3268 assert(SI == RHS.SI && "Incompatible operators.")((void)0);
3269 return Index == RHS.Index;
3270 }
3271 };
3272
3273 using ConstCaseHandle =
3274 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3275
3276 class CaseHandle
3277 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3278 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3279
3280 public:
3281 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3282
3283 /// Sets the new value for current case.
3284 void setValue(ConstantInt *V) {
3285 assert((unsigned)Index < SI->getNumCases() &&((void)0)
3286 "Index out the number of cases.")((void)0);
3287 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3288 }
3289
3290 /// Sets the new successor for current case.
3291 void setSuccessor(BasicBlock *S) {
3292 SI->setSuccessor(getSuccessorIndex(), S);
3293 }
3294 };
3295
3296 template <typename CaseHandleT>
3297 class CaseIteratorImpl
3298 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3299 std::random_access_iterator_tag,
3300 CaseHandleT> {
3301 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3302
3303 CaseHandleT Case;
3304
3305 public:
3306 /// Default constructed iterator is in an invalid state until assigned to
3307 /// a case for a particular switch.
3308 CaseIteratorImpl() = default;
3309
3310 /// Initializes case iterator for given SwitchInst and for given
3311 /// case number.
3312 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3313
3314 /// Initializes case iterator for given SwitchInst and for given
3315 /// successor index.
3316 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3317 unsigned SuccessorIndex) {
3318 assert(SuccessorIndex < SI->getNumSuccessors() &&((void)0)
3319 "Successor index # out of range!")((void)0);
3320 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3321 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3322 }
3323
3324 /// Support converting to the const variant. This will be a no-op for const
3325 /// variant.
3326 operator CaseIteratorImpl<ConstCaseHandle>() const {
3327 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3328 }
3329
3330 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3331 // Check index correctness after addition.
3332 // Note: Index == getNumCases() means end().
3333 assert(Case.Index + N >= 0 &&((void)0)
3334 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((void)0)
3335 "Case.Index out the number of cases.")((void)0);
3336 Case.Index += N;
3337 return *this;
3338 }
3339 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3340 // Check index correctness after subtraction.
3341 // Note: Case.Index == getNumCases() means end().
3342 assert(Case.Index - N >= 0 &&((void)0)
3343 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((void)0)
3344 "Case.Index out the number of cases.")((void)0);
3345 Case.Index -= N;
3346 return *this;
3347 }
3348 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3349 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0);
3350 return Case.Index - RHS.Case.Index;
3351 }
3352 bool operator==(const CaseIteratorImpl &RHS) const {
3353 return Case == RHS.Case;
3354 }
3355 bool operator<(const CaseIteratorImpl &RHS) const {
3356 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0);
3357 return Case.Index < RHS.Case.Index;
3358 }
3359 CaseHandleT &operator*() { return Case; }
3360 const CaseHandleT &operator*() const { return Case; }
3361 };
3362
3363 using CaseIt = CaseIteratorImpl<CaseHandle>;
3364 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3365
3366 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3367 unsigned NumCases,
3368 Instruction *InsertBefore = nullptr) {
3369 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3370 }
3371
3372 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3373 unsigned NumCases, BasicBlock *InsertAtEnd) {
3374 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3375 }
3376
3377 /// Provide fast operand accessors
3378 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3379
3380 // Accessor Methods for Switch stmt
3381 Value *getCondition() const { return getOperand(0); }
3382 void setCondition(Value *V) { setOperand(0, V); }
3383
3384 BasicBlock *getDefaultDest() const {
3385 return cast<BasicBlock>(getOperand(1));
3386 }
3387
3388 void setDefaultDest(BasicBlock *DefaultCase) {
3389 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3390 }
3391
3392 /// Return the number of 'cases' in this switch instruction, excluding the
3393 /// default case.
3394 unsigned getNumCases() const {
3395 return getNumOperands()/2 - 1;
3396 }
3397
3398 /// Returns a read/write iterator that points to the first case in the
3399 /// SwitchInst.
3400 CaseIt case_begin() {
3401 return CaseIt(this, 0);
3402 }
3403
3404 /// Returns a read-only iterator that points to the first case in the
3405 /// SwitchInst.
3406 ConstCaseIt case_begin() const {
3407 return ConstCaseIt(this, 0);
3408 }
3409
3410 /// Returns a read/write iterator that points one past the last in the
3411 /// SwitchInst.
3412 CaseIt case_end() {
3413 return CaseIt(this, getNumCases());
3414 }
3415
3416 /// Returns a read-only iterator that points one past the last in the
3417 /// SwitchInst.
3418 ConstCaseIt case_end() const {
3419 return ConstCaseIt(this, getNumCases());
3420 }
3421
3422 /// Iteration adapter for range-for loops.
3423 iterator_range<CaseIt> cases() {
3424 return make_range(case_begin(), case_end());
3425 }
3426
3427 /// Constant iteration adapter for range-for loops.
3428 iterator_range<ConstCaseIt> cases() const {
3429 return make_range(case_begin(), case_end());
3430 }
3431
3432 /// Returns an iterator that points to the default case.
3433 /// Note: this iterator allows to resolve successor only. Attempt
3434 /// to resolve case value causes an assertion.
3435 /// Also note, that increment and decrement also causes an assertion and
3436 /// makes iterator invalid.
3437 CaseIt case_default() {
3438 return CaseIt(this, DefaultPseudoIndex);
3439 }
3440 ConstCaseIt case_default() const {
3441 return ConstCaseIt(this, DefaultPseudoIndex);
3442 }
3443
3444 /// Search all of the case values for the specified constant. If it is
3445 /// explicitly handled, return the case iterator of it, otherwise return
3446 /// default case iterator to indicate that it is handled by the default
3447 /// handler.
3448 CaseIt findCaseValue(const ConstantInt *C) {
3449 CaseIt I = llvm::find_if(
3450 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3451 if (I != case_end())
3452 return I;
3453
3454 return case_default();
3455 }
3456 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3457 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3458 return Case.getCaseValue() == C;
3459 });
3460 if (I != case_end())
3461 return I;
3462
3463 return case_default();
3464 }
3465
3466 /// Finds the unique case value for a given successor. Returns null if the
3467 /// successor is not found, not unique, or is the default case.
3468 ConstantInt *findCaseDest(BasicBlock *BB) {
3469 if (BB == getDefaultDest())
3470 return nullptr;
3471
3472 ConstantInt *CI = nullptr;
3473 for (auto Case : cases()) {
3474 if (Case.getCaseSuccessor() != BB)
3475 continue;
3476
3477 if (CI)
3478 return nullptr; // Multiple cases lead to BB.
3479
3480 CI = Case.getCaseValue();
3481 }
3482
3483 return CI;
3484 }
3485
3486 /// Add an entry to the switch instruction.
3487 /// Note:
3488 /// This action invalidates case_end(). Old case_end() iterator will
3489 /// point to the added case.
3490 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3491
3492 /// This method removes the specified case and its successor from the switch
3493 /// instruction. Note that this operation may reorder the remaining cases at
3494 /// index idx and above.
3495 /// Note:
3496 /// This action invalidates iterators for all cases following the one removed,
3497 /// including the case_end() iterator. It returns an iterator for the next
3498 /// case.
3499 CaseIt removeCase(CaseIt I);
3500
3501 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3502 BasicBlock *getSuccessor(unsigned idx) const {
3503 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((void)0);
3504 return cast<BasicBlock>(getOperand(idx*2+1));
3505 }
3506 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3507 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((void)0);
3508 setOperand(idx * 2 + 1, NewSucc);
3509 }
3510
3511 // Methods for support type inquiry through isa, cast, and dyn_cast:
3512 static bool classof(const Instruction *I) {
3513 return I->getOpcode() == Instruction::Switch;
3514 }
3515 static bool classof(const Value *V) {
3516 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3517 }
3518};
3519
3520/// A wrapper class to simplify modification of SwitchInst cases along with
3521/// their prof branch_weights metadata.
3522class SwitchInstProfUpdateWrapper {
3523 SwitchInst &SI;
3524 Optional<SmallVector<uint32_t, 8> > Weights = None;
3525 bool Changed = false;
3526
3527protected:
3528 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3529
3530 MDNode *buildProfBranchWeightsMD();
3531
3532 void init();
3533
3534public:
3535 using CaseWeightOpt = Optional<uint32_t>;
3536 SwitchInst *operator->() { return &SI; }
3537 SwitchInst &operator*() { return SI; }
3538 operator SwitchInst *() { return &SI; }
3539
3540 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3541
3542 ~SwitchInstProfUpdateWrapper() {
3543 if (Changed)
3544 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3545 }
3546
3547 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3548 /// correspondent branch weight.
3549 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3550
3551 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3552 /// specified branch weight for the added case.
3553 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3554
3555 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3556 /// this object to not touch the underlying SwitchInst in destructor.
3557 SymbolTableList<Instruction>::iterator eraseFromParent();
3558
3559 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3560 CaseWeightOpt getSuccessorWeight(unsigned idx);
3561
3562 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3563};
3564
3565template <>
3566struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3567};
3568
3569DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<SwitchInst>::op_begin(const_cast
<SwitchInst*>(this))[i_nocapture].get()); } void SwitchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<SwitchInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned SwitchInst::getNumOperands() const
{ return OperandTraits<SwitchInst>::operands(this); } template
<int Idx_nocapture> Use &SwitchInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &SwitchInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3570
3571//===----------------------------------------------------------------------===//
3572// IndirectBrInst Class
3573//===----------------------------------------------------------------------===//
3574
3575//===---------------------------------------------------------------------------
3576/// Indirect Branch Instruction.
3577///
3578class IndirectBrInst : public Instruction {
3579 unsigned ReservedSpace;
3580
3581 // Operand[0] = Address to jump to
3582 // Operand[n+1] = n-th destination
3583 IndirectBrInst(const IndirectBrInst &IBI);
3584
3585 /// Create a new indirectbr instruction, specifying an
3586 /// Address to jump to. The number of expected destinations can be specified
3587 /// here to make memory allocation more efficient. This constructor can also
3588 /// autoinsert before another instruction.
3589 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3590
3591 /// Create a new indirectbr instruction, specifying an
3592 /// Address to jump to. The number of expected destinations can be specified
3593 /// here to make memory allocation more efficient. This constructor also
3594 /// autoinserts at the end of the specified BasicBlock.
3595 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3596
3597 // allocate space for exactly zero operands
3598 void *operator new(size_t S) { return User::operator new(S); }
3599
3600 void init(Value *Address, unsigned NumDests);
3601 void growOperands();
3602
3603protected:
3604 // Note: Instruction needs to be a friend here to call cloneImpl.
3605 friend class Instruction;
3606
3607 IndirectBrInst *cloneImpl() const;
3608
3609public:
3610 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3611
3612 /// Iterator type that casts an operand to a basic block.
3613 ///
3614 /// This only makes sense because the successors are stored as adjacent
3615 /// operands for indirectbr instructions.
3616 struct succ_op_iterator
3617 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3618 std::random_access_iterator_tag, BasicBlock *,
3619 ptrdiff_t, BasicBlock *, BasicBlock *> {
3620 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3621
3622 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3623 BasicBlock *operator->() const { return operator*(); }
3624 };
3625
3626 /// The const version of `succ_op_iterator`.
3627 struct const_succ_op_iterator
3628 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3629 std::random_access_iterator_tag,
3630 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3631 const BasicBlock *> {
3632 explicit const_succ_op_iterator(const_value_op_iterator I)
3633 : iterator_adaptor_base(I) {}
3634
3635 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3636 const BasicBlock *operator->() const { return operator*(); }
3637 };
3638
3639 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3640 Instruction *InsertBefore = nullptr) {
3641 return new IndirectBrInst(Address, NumDests, InsertBefore);
3642 }
3643
3644 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3645 BasicBlock *InsertAtEnd) {
3646 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3647 }
3648
3649 /// Provide fast operand accessors.
3650 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3651
3652 // Accessor Methods for IndirectBrInst instruction.
3653 Value *getAddress() { return getOperand(0); }
3654 const Value *getAddress() const { return getOperand(0); }
3655 void setAddress(Value *V) { setOperand(0, V); }
3656
3657 /// return the number of possible destinations in this
3658 /// indirectbr instruction.
3659 unsigned getNumDestinations() const { return getNumOperands()-1; }
3660
3661 /// Return the specified destination.
3662 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3663 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3664
3665 /// Add a destination.
3666 ///
3667 void addDestination(BasicBlock *Dest);
3668
3669 /// This method removes the specified successor from the
3670 /// indirectbr instruction.
3671 void removeDestination(unsigned i);
3672
3673 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3674 BasicBlock *getSuccessor(unsigned i) const {
3675 return cast<BasicBlock>(getOperand(i+1));
3676 }
3677 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3678 setOperand(i + 1, NewSucc);
3679 }
3680
3681 iterator_range<succ_op_iterator> successors() {
3682 return make_range(succ_op_iterator(std::next(value_op_begin())),
3683 succ_op_iterator(value_op_end()));
3684 }
3685
3686 iterator_range<const_succ_op_iterator> successors() const {
3687 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3688 const_succ_op_iterator(value_op_end()));
3689 }
3690
3691 // Methods for support type inquiry through isa, cast, and dyn_cast:
3692 static bool classof(const Instruction *I) {
3693 return I->getOpcode() == Instruction::IndirectBr;
3694 }
3695 static bool classof(const Value *V) {
3696 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3697 }
3698};
3699
3700template <>
3701struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3702};
3703
3704DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<IndirectBrInst>::op_begin(
const_cast<IndirectBrInst*>(this))[i_nocapture].get());
} void IndirectBrInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<IndirectBrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
IndirectBrInst::getNumOperands() const { return OperandTraits
<IndirectBrInst>::operands(this); } template <int Idx_nocapture
> Use &IndirectBrInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &IndirectBrInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
3705
3706//===----------------------------------------------------------------------===//
3707// InvokeInst Class
3708//===----------------------------------------------------------------------===//
3709
3710/// Invoke instruction. The SubclassData field is used to hold the
3711/// calling convention of the call.
3712///
3713class InvokeInst : public CallBase {
3714 /// The number of operands for this call beyond the called function,
3715 /// arguments, and operand bundles.
3716 static constexpr int NumExtraOperands = 2;
3717
3718 /// The index from the end of the operand array to the normal destination.
3719 static constexpr int NormalDestOpEndIdx = -3;
3720
3721 /// The index from the end of the operand array to the unwind destination.
3722 static constexpr int UnwindDestOpEndIdx = -2;
3723
3724 InvokeInst(const InvokeInst &BI);
3725
3726 /// Construct an InvokeInst given a range of arguments.
3727 ///
3728 /// Construct an InvokeInst from a range of arguments
3729 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3730 BasicBlock *IfException, ArrayRef<Value *> Args,
3731 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3732 const Twine &NameStr, Instruction *InsertBefore);
3733
3734 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3735 BasicBlock *IfException, ArrayRef<Value *> Args,
3736 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3737 const Twine &NameStr, BasicBlock *InsertAtEnd);
3738
3739 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3740 BasicBlock *IfException, ArrayRef<Value *> Args,
3741 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3742
3743 /// Compute the number of operands to allocate.
3744 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3745 // We need one operand for the called function, plus our extra operands and
3746 // the input operand counts provided.
3747 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3748 }
3749
3750protected:
3751 // Note: Instruction needs to be a friend here to call cloneImpl.
3752 friend class Instruction;
3753
3754 InvokeInst *cloneImpl() const;
3755
3756public:
3757 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3758 BasicBlock *IfException, ArrayRef<Value *> Args,
3759 const Twine &NameStr,
3760 Instruction *InsertBefore = nullptr) {
3761 int NumOperands = ComputeNumOperands(Args.size());
3762 return new (NumOperands)
3763 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3764 NameStr, InsertBefore);
3765 }
3766
3767 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3768 BasicBlock *IfException, ArrayRef<Value *> Args,
3769 ArrayRef<OperandBundleDef> Bundles = None,
3770 const Twine &NameStr = "",
3771 Instruction *InsertBefore = nullptr) {
3772 int NumOperands =
3773 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3774 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3775
3776 return new (NumOperands, DescriptorBytes)
3777 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3778 NameStr, InsertBefore);
3779 }
3780
3781 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3782 BasicBlock *IfException, ArrayRef<Value *> Args,
3783 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3784 int NumOperands = ComputeNumOperands(Args.size());
3785 return new (NumOperands)
3786 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3787 NameStr, InsertAtEnd);
3788 }
3789
3790 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3791 BasicBlock *IfException, ArrayRef<Value *> Args,
3792 ArrayRef<OperandBundleDef> Bundles,
3793 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3794 int NumOperands =
3795 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3796 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3797
3798 return new (NumOperands, DescriptorBytes)
3799 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3800 NameStr, InsertAtEnd);
3801 }
3802
3803 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3804 BasicBlock *IfException, ArrayRef<Value *> Args,
3805 const Twine &NameStr,
3806 Instruction *InsertBefore = nullptr) {
3807 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3808 IfException, Args, None, NameStr, InsertBefore);
3809 }
3810
3811 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3812 BasicBlock *IfException, ArrayRef<Value *> Args,
3813 ArrayRef<OperandBundleDef> Bundles = None,
3814 const Twine &NameStr = "",
3815 Instruction *InsertBefore = nullptr) {
3816 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3817 IfException, Args, Bundles, NameStr, InsertBefore);
3818 }
3819
3820 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3821 BasicBlock *IfException, ArrayRef<Value *> Args,
3822 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3823 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3824 IfException, Args, NameStr, InsertAtEnd);
3825 }
3826
3827 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3828 BasicBlock *IfException, ArrayRef<Value *> Args,
3829 ArrayRef<OperandBundleDef> Bundles,
3830 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3831 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3832 IfException, Args, Bundles, NameStr, InsertAtEnd);
3833 }
3834
3835 /// Create a clone of \p II with a different set of operand bundles and
3836 /// insert it before \p InsertPt.
3837 ///
3838 /// The returned invoke instruction is identical to \p II in every way except
3839 /// that the operand bundles for the new instruction are set to the operand
3840 /// bundles in \p Bundles.
3841 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3842 Instruction *InsertPt = nullptr);
3843
3844 // get*Dest - Return the destination basic blocks...
3845 BasicBlock *getNormalDest() const {
3846 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3847 }
3848 BasicBlock *getUnwindDest() const {
3849 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3850 }
3851 void setNormalDest(BasicBlock *B) {
3852 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3853 }
3854 void setUnwindDest(BasicBlock *B) {
3855 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3856 }
3857
3858 /// Get the landingpad instruction from the landing pad
3859 /// block (the unwind destination).
3860 LandingPadInst *getLandingPadInst() const;
3861
3862 BasicBlock *getSuccessor(unsigned i) const {
3863 assert(i < 2 && "Successor # out of range for invoke!")((void)0);
3864 return i == 0 ? getNormalDest() : getUnwindDest();
3865 }
3866
3867 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3868 assert(i < 2 && "Successor # out of range for invoke!")((void)0);
3869 if (i == 0)
3870 setNormalDest(NewSucc);
3871 else
3872 setUnwindDest(NewSucc);
3873 }
3874
3875 unsigned getNumSuccessors() const { return 2; }
3876
3877 // Methods for support type inquiry through isa, cast, and dyn_cast:
3878 static bool classof(const Instruction *I) {
3879 return (I->getOpcode() == Instruction::Invoke);
3880 }
3881 static bool classof(const Value *V) {
3882 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3883 }
3884
3885private:
3886 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3887 // method so that subclasses cannot accidentally use it.
3888 template <typename Bitfield>
3889 void setSubclassData(typename Bitfield::Type Value) {
3890 Instruction::setSubclassData<Bitfield>(Value);
3891 }
3892};
3893
3894InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3895 BasicBlock *IfException, ArrayRef<Value *> Args,
3896 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3897 const Twine &NameStr, Instruction *InsertBefore)
3898 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3899 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3900 InsertBefore) {
3901 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3902}
3903
3904InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3905 BasicBlock *IfException, ArrayRef<Value *> Args,
3906 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3907 const Twine &NameStr, BasicBlock *InsertAtEnd)
3908 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3909 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3910 InsertAtEnd) {
3911 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3912}
3913
3914//===----------------------------------------------------------------------===//
3915// CallBrInst Class
3916//===----------------------------------------------------------------------===//
3917
3918/// CallBr instruction, tracking function calls that may not return control but
3919/// instead transfer it to a third location. The SubclassData field is used to
3920/// hold the calling convention of the call.
3921///
3922class CallBrInst : public CallBase {
3923
3924 unsigned NumIndirectDests;
3925
3926 CallBrInst(const CallBrInst &BI);
3927
3928 /// Construct a CallBrInst given a range of arguments.
3929 ///
3930 /// Construct a CallBrInst from a range of arguments
3931 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3932 ArrayRef<BasicBlock *> IndirectDests,
3933 ArrayRef<Value *> Args,
3934 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3935 const Twine &NameStr, Instruction *InsertBefore);
3936
3937 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3938 ArrayRef<BasicBlock *> IndirectDests,
3939 ArrayRef<Value *> Args,
3940 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3941 const Twine &NameStr, BasicBlock *InsertAtEnd);
3942
3943 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3944 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3945 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3946
3947 /// Should the Indirect Destinations change, scan + update the Arg list.
3948 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3949
3950 /// Compute the number of operands to allocate.
3951 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3952 int NumBundleInputs = 0) {
3953 // We need one operand for the called function, plus our extra operands and
3954 // the input operand counts provided.
3955 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3956 }
3957
3958protected:
3959 // Note: Instruction needs to be a friend here to call cloneImpl.
3960 friend class Instruction;
3961
3962 CallBrInst *cloneImpl() const;
3963
3964public:
3965 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3966 BasicBlock *DefaultDest,
3967 ArrayRef<BasicBlock *> IndirectDests,
3968 ArrayRef<Value *> Args, const Twine &NameStr,
3969 Instruction *InsertBefore = nullptr) {
3970 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3971 return new (NumOperands)
3972 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3973 NumOperands, NameStr, InsertBefore);
3974 }
3975
3976 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3977 BasicBlock *DefaultDest,
3978 ArrayRef<BasicBlock *> IndirectDests,
3979 ArrayRef<Value *> Args,
3980 ArrayRef<OperandBundleDef> Bundles = None,
3981 const Twine &NameStr = "",
3982 Instruction *InsertBefore = nullptr) {
3983 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3984 CountBundleInputs(Bundles));
3985 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3986
3987 return new (NumOperands, DescriptorBytes)
3988 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3989 NumOperands, NameStr, InsertBefore);
3990 }
3991
3992 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3993 BasicBlock *DefaultDest,
3994 ArrayRef<BasicBlock *> IndirectDests,
3995 ArrayRef<Value *> Args, const Twine &NameStr,
3996 BasicBlock *InsertAtEnd) {
3997 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3998 return new (NumOperands)
3999 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4000 NumOperands, NameStr, InsertAtEnd);
4001 }
4002
4003 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4004 BasicBlock *DefaultDest,
4005 ArrayRef<BasicBlock *> IndirectDests,
4006 ArrayRef<Value *> Args,
4007 ArrayRef<OperandBundleDef> Bundles,
4008 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4009 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4010 CountBundleInputs(Bundles));
4011 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4012
4013 return new (NumOperands, DescriptorBytes)
4014 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4015 NumOperands, NameStr, InsertAtEnd);
4016 }
4017
4018 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4019 ArrayRef<BasicBlock *> IndirectDests,
4020 ArrayRef<Value *> Args, const Twine &NameStr,
4021 Instruction *InsertBefore = nullptr) {
4022 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4023 IndirectDests, Args, NameStr, InsertBefore);
4024 }
4025
4026 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4027 ArrayRef<BasicBlock *> IndirectDests,
4028 ArrayRef<Value *> Args,
4029 ArrayRef<OperandBundleDef> Bundles = None,
4030 const Twine &NameStr = "",
4031 Instruction *InsertBefore = nullptr) {
4032 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4033 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4034 }
4035
4036 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4037 ArrayRef<BasicBlock *> IndirectDests,
4038 ArrayRef<Value *> Args, const Twine &NameStr,
4039 BasicBlock *InsertAtEnd) {
4040 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4041 IndirectDests, Args, NameStr, InsertAtEnd);
4042 }
4043
4044 static CallBrInst *Create(FunctionCallee Func,
4045 BasicBlock *DefaultDest,
4046 ArrayRef<BasicBlock *> IndirectDests,
4047 ArrayRef<Value *> Args,
4048 ArrayRef<OperandBundleDef> Bundles,
4049 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4050 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4051 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4052 }
4053
4054 /// Create a clone of \p CBI with a different set of operand bundles and
4055 /// insert it before \p InsertPt.
4056 ///
4057 /// The returned callbr instruction is identical to \p CBI in every way
4058 /// except that the operand bundles for the new instruction are set to the
4059 /// operand bundles in \p Bundles.
4060 static CallBrInst *Create(CallBrInst *CBI,
4061 ArrayRef<OperandBundleDef> Bundles,
4062 Instruction *InsertPt = nullptr);
4063
4064 /// Return the number of callbr indirect dest labels.
4065 ///
4066 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4067
4068 /// getIndirectDestLabel - Return the i-th indirect dest label.
4069 ///
4070 Value *getIndirectDestLabel(unsigned i) const {
4071 assert(i < getNumIndirectDests() && "Out of bounds!")((void)0);
4072 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4073 1);
4074 }
4075
4076 Value *getIndirectDestLabelUse(unsigned i) const {
4077 assert(i < getNumIndirectDests() && "Out of bounds!")((void)0);
4078 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4079 1);
4080 }
4081
4082 // Return the destination basic blocks...
4083 BasicBlock *getDefaultDest() const {
4084 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4085 }
4086 BasicBlock *getIndirectDest(unsigned i) const {
4087 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4088 }
4089 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4090 SmallVector<BasicBlock *, 16> IndirectDests;
4091 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4092 IndirectDests.push_back(getIndirectDest(i));
4093 return IndirectDests;
4094 }
4095 void setDefaultDest(BasicBlock *B) {
4096 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4097 }
4098 void setIndirectDest(unsigned i, BasicBlock *B) {
4099 updateArgBlockAddresses(i, B);
4100 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4101 }
4102
4103 BasicBlock *getSuccessor(unsigned i) const {
4104 assert(i < getNumSuccessors() + 1 &&((void)0)
4105 "Successor # out of range for callbr!")((void)0);
4106 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4107 }
4108
4109 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4110 assert(i < getNumIndirectDests() + 1 &&((void)0)
4111 "Successor # out of range for callbr!")((void)0);
4112 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4113 }
4114
4115 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4116
4117 // Methods for support type inquiry through isa, cast, and dyn_cast:
4118 static bool classof(const Instruction *I) {
4119 return (I->getOpcode() == Instruction::CallBr);
4120 }
4121 static bool classof(const Value *V) {
4122 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4123 }
4124
4125private:
4126 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4127 // method so that subclasses cannot accidentally use it.
4128 template <typename Bitfield>
4129 void setSubclassData(typename Bitfield::Type Value) {
4130 Instruction::setSubclassData<Bitfield>(Value);
4131 }
4132};
4133
4134CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4135 ArrayRef<BasicBlock *> IndirectDests,
4136 ArrayRef<Value *> Args,
4137 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4138 const Twine &NameStr, Instruction *InsertBefore)
4139 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4140 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4141 InsertBefore) {
4142 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4143}
4144
4145CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4146 ArrayRef<BasicBlock *> IndirectDests,
4147 ArrayRef<Value *> Args,
4148 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4149 const Twine &NameStr, BasicBlock *InsertAtEnd)
4150 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4151 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4152 InsertAtEnd) {
4153 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4154}
4155
4156//===----------------------------------------------------------------------===//
4157// ResumeInst Class
4158//===----------------------------------------------------------------------===//
4159
4160//===---------------------------------------------------------------------------
4161/// Resume the propagation of an exception.
4162///
4163class ResumeInst : public Instruction {
4164 ResumeInst(const ResumeInst &RI);
4165
4166 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4167 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4168
4169protected:
4170 // Note: Instruction needs to be a friend here to call cloneImpl.
4171 friend class Instruction;
4172
4173 ResumeInst *cloneImpl() const;
4174
4175public:
4176 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4177 return new(1) ResumeInst(Exn, InsertBefore);
4178 }
4179
4180 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4181 return new(1) ResumeInst(Exn, InsertAtEnd);
4182 }
4183
4184 /// Provide fast operand accessors
4185 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4186
4187 /// Convenience accessor.
4188 Value *getValue() const { return Op<0>(); }
4189
4190 unsigned getNumSuccessors() const { return 0; }
4191
4192 // Methods for support type inquiry through isa, cast, and dyn_cast:
4193 static bool classof(const Instruction *I) {
4194 return I->getOpcode() == Instruction::Resume;
4195 }
4196 static bool classof(const Value *V) {
4197 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4198 }
4199
4200private:
4201 BasicBlock *getSuccessor(unsigned idx) const {
4202 llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable();
4203 }
4204
4205 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4206 llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable();
4207 }
4208};
4209
4210template <>
4211struct OperandTraits<ResumeInst> :
4212 public FixedNumOperandTraits<ResumeInst, 1> {
4213};
4214
4215DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<ResumeInst>::op_begin(const_cast
<ResumeInst*>(this))[i_nocapture].get()); } void ResumeInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<ResumeInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ResumeInst::getNumOperands() const
{ return OperandTraits<ResumeInst>::operands(this); } template
<int Idx_nocapture> Use &ResumeInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ResumeInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
4216
4217//===----------------------------------------------------------------------===//
4218// CatchSwitchInst Class
4219//===----------------------------------------------------------------------===//
4220class CatchSwitchInst : public Instruction {
4221 using UnwindDestField = BoolBitfieldElementT<0>;
4222
4223 /// The number of operands actually allocated. NumOperands is
4224 /// the number actually in use.
4225 unsigned ReservedSpace;
4226
4227 // Operand[0] = Outer scope
4228 // Operand[1] = Unwind block destination
4229 // Operand[n] = BasicBlock to go to on match
4230 CatchSwitchInst(const CatchSwitchInst &CSI);
4231
4232 /// Create a new switch instruction, specifying a
4233 /// default destination. The number of additional handlers can be specified
4234 /// here to make memory allocation more efficient.
4235 /// This constructor can also autoinsert before another instruction.
4236 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4237 unsigned NumHandlers, const Twine &NameStr,
4238 Instruction *InsertBefore);
4239
4240 /// Create a new switch instruction, specifying a
4241 /// default destination. The number of additional handlers can be specified
4242 /// here to make memory allocation more efficient.
4243 /// This constructor also autoinserts at the end of the specified BasicBlock.
4244 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4245 unsigned NumHandlers, const Twine &NameStr,
4246 BasicBlock *InsertAtEnd);
4247
4248 // allocate space for exactly zero operands
4249 void *operator new(size_t S) { return User::operator new(S); }
4250
4251 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4252 void growOperands(unsigned Size);
4253
4254protected:
4255 // Note: Instruction needs to be a friend here to call cloneImpl.
4256 friend class Instruction;
4257
4258 CatchSwitchInst *cloneImpl() const;
4259
4260public:
4261 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
4262
4263 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4264 unsigned NumHandlers,
4265 const Twine &NameStr = "",
4266 Instruction *InsertBefore = nullptr) {
4267 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4268 InsertBefore);
4269 }
4270
4271 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4272 unsigned NumHandlers, const Twine &NameStr,
4273 BasicBlock *InsertAtEnd) {
4274 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4275 InsertAtEnd);
4276 }
4277
4278 /// Provide fast operand accessors
4279 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4280
4281 // Accessor Methods for CatchSwitch stmt
4282 Value *getParentPad() const { return getOperand(0); }
4283 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4284
4285 // Accessor Methods for CatchSwitch stmt
4286 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4287 bool unwindsToCaller() const { return !hasUnwindDest(); }
4288 BasicBlock *getUnwindDest() const {
4289 if (hasUnwindDest())
4290 return cast<BasicBlock>(getOperand(1));
4291 return nullptr;
4292 }
4293 void setUnwindDest(BasicBlock *UnwindDest) {
4294 assert(UnwindDest)((void)0);
4295 assert(hasUnwindDest())((void)0);
4296 setOperand(1, UnwindDest);
4297 }
4298
4299 /// return the number of 'handlers' in this catchswitch
4300 /// instruction, except the default handler
4301 unsigned getNumHandlers() const {
4302 if (hasUnwindDest())
4303 return getNumOperands() - 2;
4304 return getNumOperands() - 1;
4305 }
4306
4307private:
4308 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4309 static const BasicBlock *handler_helper(const Value *V) {
4310 return cast<BasicBlock>(V);
4311 }
4312
4313public:
4314 using DerefFnTy = BasicBlock *(*)(Value *);
4315 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4316 using handler_range = iterator_range<handler_iterator>;
4317 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4318 using const_handler_iterator =
4319 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4320 using const_handler_range = iterator_range<const_handler_iterator>;
4321
4322 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4323 handler_iterator handler_begin() {
4324 op_iterator It = op_begin() + 1;
4325 if (hasUnwindDest())
4326 ++It;
4327 return handler_iterator(It, DerefFnTy(handler_helper));
4328 }
4329
4330 /// Returns an iterator that points to the first handler in the
4331 /// CatchSwitchInst.
4332 const_handler_iterator handler_begin() const {
4333 const_op_iterator It = op_begin() + 1;
4334 if (hasUnwindDest())
4335 ++It;
4336 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4337 }
4338
4339 /// Returns a read-only iterator that points one past the last
4340 /// handler in the CatchSwitchInst.
4341 handler_iterator handler_end() {
4342 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4343 }
4344
4345 /// Returns an iterator that points one past the last handler in the
4346 /// CatchSwitchInst.
4347 const_handler_iterator handler_end() const {
4348 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4349 }
4350
4351 /// iteration adapter for range-for loops.
4352 handler_range handlers() {
4353 return make_range(handler_begin(), handler_end());
4354 }
4355
4356 /// iteration adapter for range-for loops.
4357 const_handler_range handlers() const {
4358 return make_range(handler_begin(), handler_end());
4359 }
4360
4361 /// Add an entry to the switch instruction...
4362 /// Note:
4363 /// This action invalidates handler_end(). Old handler_end() iterator will
4364 /// point to the added handler.
4365 void addHandler(BasicBlock *Dest);
4366
4367 void removeHandler(handler_iterator HI);
4368
4369 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4370 BasicBlock *getSuccessor(unsigned Idx) const {
4371 assert(Idx < getNumSuccessors() &&((void)0)
4372 "Successor # out of range for catchswitch!")((void)0);
4373 return cast<BasicBlock>(getOperand(Idx + 1));
4374 }
4375 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4376 assert(Idx < getNumSuccessors() &&((void)0)
4377 "Successor # out of range for catchswitch!")((void)0);
4378 setOperand(Idx + 1, NewSucc);
4379 }
4380
4381 // Methods for support type inquiry through isa, cast, and dyn_cast:
4382 static bool classof(const Instruction *I) {
4383 return I->getOpcode() == Instruction::CatchSwitch;
4384 }
4385 static bool classof(const Value *V) {
4386 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4387 }
4388};
4389
4390template <>
4391struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4392
4393DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return
OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst
::const_op_iterator CatchSwitchInst::op_begin() const { return
OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst
::op_end() { return OperandTraits<CatchSwitchInst>::op_end
(this); } CatchSwitchInst::const_op_iterator CatchSwitchInst::
op_end() const { return OperandTraits<CatchSwitchInst>::
op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<CatchSwitchInst>::op_begin
(const_cast<CatchSwitchInst*>(this))[i_nocapture].get()
); } void CatchSwitchInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<CatchSwitchInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchSwitchInst::getNumOperands() const { return OperandTraits
<CatchSwitchInst>::operands(this); } template <int Idx_nocapture
> Use &CatchSwitchInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchSwitchInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4394
4395//===----------------------------------------------------------------------===//
4396// CleanupPadInst Class
4397//===----------------------------------------------------------------------===//
4398class CleanupPadInst : public FuncletPadInst {
4399private:
4400 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4401 unsigned Values, const Twine &NameStr,
4402 Instruction *InsertBefore)
4403 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4404 NameStr, InsertBefore) {}
4405 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4406 unsigned Values, const Twine &NameStr,
4407 BasicBlock *InsertAtEnd)
4408 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4409 NameStr, InsertAtEnd) {}
4410
4411public:
4412 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4413 const Twine &NameStr = "",
4414 Instruction *InsertBefore = nullptr) {
4415 unsigned Values = 1 + Args.size();
4416 return new (Values)
4417 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4418 }
4419
4420 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4421 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4422 unsigned Values = 1 + Args.size();
4423 return new (Values)
4424 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4425 }
4426
4427 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4428 static bool classof(const Instruction *I) {
4429 return I->getOpcode() == Instruction::CleanupPad;
4430 }
4431 static bool classof(const Value *V) {
4432 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4433 }
4434};
4435
4436//===----------------------------------------------------------------------===//
4437// CatchPadInst Class
4438//===----------------------------------------------------------------------===//
4439class CatchPadInst : public FuncletPadInst {
4440private:
4441 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4442 unsigned Values, const Twine &NameStr,
4443 Instruction *InsertBefore)
4444 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4445 NameStr, InsertBefore) {}
4446 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4447 unsigned Values, const Twine &NameStr,
4448 BasicBlock *InsertAtEnd)
4449 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4450 NameStr, InsertAtEnd) {}
4451
4452public:
4453 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4454 const Twine &NameStr = "",
4455 Instruction *InsertBefore = nullptr) {
4456 unsigned Values = 1 + Args.size();
4457 return new (Values)
4458 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4459 }
4460
4461 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4462 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4463 unsigned Values = 1 + Args.size();
4464 return new (Values)
4465 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4466 }
4467
4468 /// Convenience accessors
4469 CatchSwitchInst *getCatchSwitch() const {
4470 return cast<CatchSwitchInst>(Op<-1>());
4471 }
4472 void setCatchSwitch(Value *CatchSwitch) {
4473 assert(CatchSwitch)((void)0);
4474 Op<-1>() = CatchSwitch;
4475 }
4476
4477 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4478 static bool classof(const Instruction *I) {
4479 return I->getOpcode() == Instruction::CatchPad;
4480 }
4481 static bool classof(const Value *V) {
4482 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4483 }
4484};
4485
4486//===----------------------------------------------------------------------===//
4487// CatchReturnInst Class
4488//===----------------------------------------------------------------------===//
4489
4490class CatchReturnInst : public Instruction {
4491 CatchReturnInst(const CatchReturnInst &RI);
4492 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4493 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4494
4495 void init(Value *CatchPad, BasicBlock *BB);
4496
4497protected:
4498 // Note: Instruction needs to be a friend here to call cloneImpl.
4499 friend class Instruction;
4500
4501 CatchReturnInst *cloneImpl() const;
4502
4503public:
4504 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4505 Instruction *InsertBefore = nullptr) {
4506 assert(CatchPad)((void)0);
4507 assert(BB)((void)0);
4508 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4509 }
4510
4511 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4512 BasicBlock *InsertAtEnd) {
4513 assert(CatchPad)((void)0);
4514 assert(BB)((void)0);
4515 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4516 }
4517
4518 /// Provide fast operand accessors
4519 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4520
4521 /// Convenience accessors.
4522 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4523 void setCatchPad(CatchPadInst *CatchPad) {
4524 assert(CatchPad)((void)0);
4525 Op<0>() = CatchPad;
4526 }
4527
4528 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4529 void setSuccessor(BasicBlock *NewSucc) {
4530 assert(NewSucc)((void)0);
4531 Op<1>() = NewSucc;
4532 }
4533 unsigned getNumSuccessors() const { return 1; }
4534
4535 /// Get the parentPad of this catchret's catchpad's catchswitch.
4536 /// The successor block is implicitly a member of this funclet.
4537 Value *getCatchSwitchParentPad() const {
4538 return getCatchPad()->getCatchSwitch()->getParentPad();
4539 }
4540
4541 // Methods for support type inquiry through isa, cast, and dyn_cast:
4542 static bool classof(const Instruction *I) {
4543 return (I->getOpcode() == Instruction::CatchRet);
4544 }
4545 static bool classof(const Value *V) {
4546 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4547 }
4548
4549private:
4550 BasicBlock *getSuccessor(unsigned Idx) const {
4551 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0);
4552 return getSuccessor();
4553 }
4554
4555 void setSuccessor(unsigned Idx, BasicBlock *B) {
4556 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0);
4557 setSuccessor(B);
4558 }
4559};
4560
4561template <>
4562struct OperandTraits<CatchReturnInst>
4563 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4564
4565DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return
OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst
::const_op_iterator CatchReturnInst::op_begin() const { return
OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst
::op_end() { return OperandTraits<CatchReturnInst>::op_end
(this); } CatchReturnInst::const_op_iterator CatchReturnInst::
op_end() const { return OperandTraits<CatchReturnInst>::
op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<CatchReturnInst>::op_begin
(const_cast<CatchReturnInst*>(this))[i_nocapture].get()
); } void CatchReturnInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<CatchReturnInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchReturnInst::getNumOperands() const { return OperandTraits
<CatchReturnInst>::operands(this); } template <int Idx_nocapture
> Use &CatchReturnInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchReturnInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4566
4567//===----------------------------------------------------------------------===//
4568// CleanupReturnInst Class
4569//===----------------------------------------------------------------------===//
4570
4571class CleanupReturnInst : public Instruction {
4572 using UnwindDestField = BoolBitfieldElementT<0>;
4573
4574private:
4575 CleanupReturnInst(const CleanupReturnInst &RI);
4576 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4577 Instruction *InsertBefore = nullptr);
4578 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4579 BasicBlock *InsertAtEnd);
4580
4581 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4582
4583protected:
4584 // Note: Instruction needs to be a friend here to call cloneImpl.
4585 friend class Instruction;
4586
4587 CleanupReturnInst *cloneImpl() const;
4588
4589public:
4590 static CleanupReturnInst *Create(Value *CleanupPad,
4591 BasicBlock *UnwindBB = nullptr,
4592 Instruction *InsertBefore = nullptr) {
4593 assert(CleanupPad)((void)0);
4594 unsigned Values = 1;
4595 if (UnwindBB)
4596 ++Values;
4597 return new (Values)
4598 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4599 }
4600
4601 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4602 BasicBlock *InsertAtEnd) {
4603 assert(CleanupPad)((void)0);
4604 unsigned Values = 1;
4605 if (UnwindBB)
4606 ++Values;
4607 return new (Values)
4608 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4609 }
4610
4611 /// Provide fast operand accessors
4612 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4613
4614 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4615 bool unwindsToCaller() const { return !hasUnwindDest(); }
4616
4617 /// Convenience accessor.
4618 CleanupPadInst *getCleanupPad() const {
4619 return cast<CleanupPadInst>(Op<0>());
4620 }
4621 void setCleanupPad(CleanupPadInst *CleanupPad) {
4622 assert(CleanupPad)((void)0);
4623 Op<0>() = CleanupPad;
4624 }
4625
4626 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4627
4628 BasicBlock *getUnwindDest() const {
4629 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4630 }
4631 void setUnwindDest(BasicBlock *NewDest) {
4632 assert(NewDest)((void)0);
4633 assert(hasUnwindDest())((void)0);
4634 Op<1>() = NewDest;
4635 }
4636
4637 // Methods for support type inquiry through isa, cast, and dyn_cast:
4638 static bool classof(const Instruction *I) {
4639 return (I->getOpcode() == Instruction::CleanupRet);
4640 }
4641 static bool classof(const Value *V) {
4642 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4643 }
4644
4645private:
4646 BasicBlock *getSuccessor(unsigned Idx) const {
4647 assert(Idx == 0)((void)0);
4648 return getUnwindDest();
4649 }
4650
4651 void setSuccessor(unsigned Idx, BasicBlock *B) {
4652 assert(Idx == 0)((void)0);
4653 setUnwindDest(B);
4654 }
4655
4656 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4657 // method so that subclasses cannot accidentally use it.
4658 template <typename Bitfield>
4659 void setSubclassData(typename Bitfield::Type Value) {
4660 Instruction::setSubclassData<Bitfield>(Value);
4661 }
4662};
4663
4664template <>
4665struct OperandTraits<CleanupReturnInst>
4666 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4667
4668DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() {
return OperandTraits<CleanupReturnInst>::op_begin(this
); } CleanupReturnInst::const_op_iterator CleanupReturnInst::
op_begin() const { return OperandTraits<CleanupReturnInst>
::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst
::op_iterator CleanupReturnInst::op_end() { return OperandTraits
<CleanupReturnInst>::op_end(this); } CleanupReturnInst::
const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits
<CleanupReturnInst>::op_end(const_cast<CleanupReturnInst
*>(this)); } Value *CleanupReturnInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<CleanupReturnInst>::op_begin(const_cast
<CleanupReturnInst*>(this))[i_nocapture].get()); } void
CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<CleanupReturnInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned CleanupReturnInst
::getNumOperands() const { return OperandTraits<CleanupReturnInst
>::operands(this); } template <int Idx_nocapture> Use
&CleanupReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
CleanupReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
4669
4670//===----------------------------------------------------------------------===//
4671// UnreachableInst Class
4672//===----------------------------------------------------------------------===//
4673
4674//===---------------------------------------------------------------------------
4675/// This function has undefined behavior. In particular, the
4676/// presence of this instruction indicates some higher level knowledge that the
4677/// end of the block cannot be reached.
4678///
4679class UnreachableInst : public Instruction {
4680protected:
4681 // Note: Instruction needs to be a friend here to call cloneImpl.
4682 friend class Instruction;
4683
4684 UnreachableInst *cloneImpl() const;
4685
4686public:
4687 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4688 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4689
4690 // allocate space for exactly zero operands
4691 void *operator new(size_t S) { return User::operator new(S, 0); }
4692 void operator delete(void *Ptr) { User::operator delete(Ptr); }
4693
4694 unsigned getNumSuccessors() const { return 0; }
4695
4696 // Methods for support type inquiry through isa, cast, and dyn_cast:
4697 static bool classof(const Instruction *I) {
4698 return I->getOpcode() == Instruction::Unreachable;
4699 }
4700 static bool classof(const Value *V) {
4701 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4702 }
4703
4704private:
4705 BasicBlock *getSuccessor(unsigned idx) const {
4706 llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable();
4707 }
4708
4709 void setSuccessor(unsigned idx, BasicBlock *B) {
4710 llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable();
4711 }
4712};
4713
4714//===----------------------------------------------------------------------===//
4715// TruncInst Class
4716//===----------------------------------------------------------------------===//
4717
4718/// This class represents a truncation of integer types.
4719class TruncInst : public CastInst {
4720protected:
4721 // Note: Instruction needs to be a friend here to call cloneImpl.
4722 friend class Instruction;
4723
4724 /// Clone an identical TruncInst
4725 TruncInst *cloneImpl() const;
4726
4727public:
4728 /// Constructor with insert-before-instruction semantics
4729 TruncInst(
4730 Value *S, ///< The value to be truncated
4731 Type *Ty, ///< The (smaller) type to truncate to
4732 const Twine &NameStr = "", ///< A name for the new instruction
4733 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4734 );
4735
4736 /// Constructor with insert-at-end-of-block semantics
4737 TruncInst(
4738 Value *S, ///< The value to be truncated
4739 Type *Ty, ///< The (smaller) type to truncate to
4740 const Twine &NameStr, ///< A name for the new instruction
4741 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4742 );
4743
4744 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4745 static bool classof(const Instruction *I) {
4746 return I->getOpcode() == Trunc;
4747 }
4748 static bool classof(const Value *V) {
4749 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4750 }
4751};
4752
4753//===----------------------------------------------------------------------===//
4754// ZExtInst Class
4755//===----------------------------------------------------------------------===//
4756
4757/// This class represents zero extension of integer types.
4758class ZExtInst : public CastInst {
4759protected:
4760 // Note: Instruction needs to be a friend here to call cloneImpl.
4761 friend class Instruction;
4762
4763 /// Clone an identical ZExtInst
4764 ZExtInst *cloneImpl() const;
4765
4766public:
4767 /// Constructor with insert-before-instruction semantics
4768 ZExtInst(
4769 Value *S, ///< The value to be zero extended
4770 Type *Ty, ///< The type to zero extend to
4771 const Twine &NameStr = "", ///< A name for the new instruction
4772 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4773 );
4774
4775 /// Constructor with insert-at-end semantics.
4776 ZExtInst(
4777 Value *S, ///< The value to be zero extended
4778 Type *Ty, ///< The type to zero extend to
4779 const Twine &NameStr, ///< A name for the new instruction
4780 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4781 );
4782
4783 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4784 static bool classof(const Instruction *I) {
4785 return I->getOpcode() == ZExt;
4786 }
4787 static bool classof(const Value *V) {
4788 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4789 }
4790};
4791
4792//===----------------------------------------------------------------------===//
4793// SExtInst Class
4794//===----------------------------------------------------------------------===//
4795
4796/// This class represents a sign extension of integer types.
4797class SExtInst : public CastInst {
4798protected:
4799 // Note: Instruction needs to be a friend here to call cloneImpl.
4800 friend class Instruction;
4801
4802 /// Clone an identical SExtInst
4803 SExtInst *cloneImpl() const;
4804
4805public:
4806 /// Constructor with insert-before-instruction semantics
4807 SExtInst(
4808 Value *S, ///< The value to be sign extended
4809 Type *Ty, ///< The type to sign extend to
4810 const Twine &NameStr = "", ///< A name for the new instruction
4811 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4812 );
4813
4814 /// Constructor with insert-at-end-of-block semantics
4815 SExtInst(
4816 Value *S, ///< The value to be sign extended
4817 Type *Ty, ///< The type to sign extend to
4818 const Twine &NameStr, ///< A name for the new instruction
4819 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4820 );
4821
4822 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4823 static bool classof(const Instruction *I) {
4824 return I->getOpcode() == SExt;
4825 }
4826 static bool classof(const Value *V) {
4827 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4828 }
4829};
4830
4831//===----------------------------------------------------------------------===//
4832// FPTruncInst Class
4833//===----------------------------------------------------------------------===//
4834
4835/// This class represents a truncation of floating point types.
4836class FPTruncInst : public CastInst {
4837protected:
4838 // Note: Instruction needs to be a friend here to call cloneImpl.
4839 friend class Instruction;
4840
4841 /// Clone an identical FPTruncInst
4842 FPTruncInst *cloneImpl() const;
4843
4844public:
4845 /// Constructor with insert-before-instruction semantics
4846 FPTruncInst(
4847 Value *S, ///< The value to be truncated
4848 Type *Ty, ///< The type to truncate to
4849 const Twine &NameStr = "", ///< A name for the new instruction
4850 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4851 );
4852
4853 /// Constructor with insert-before-instruction semantics
4854 FPTruncInst(
4855 Value *S, ///< The value to be truncated
4856 Type *Ty, ///< The type to truncate to
4857 const Twine &NameStr, ///< A name for the new instruction
4858 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4859 );
4860
4861 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4862 static bool classof(const Instruction *I) {
4863 return I->getOpcode() == FPTrunc;
4864 }
4865 static bool classof(const Value *V) {
4866 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4867 }
4868};
4869
4870//===----------------------------------------------------------------------===//
4871// FPExtInst Class
4872//===----------------------------------------------------------------------===//
4873
4874/// This class represents an extension of floating point types.
4875class FPExtInst : public CastInst {
4876protected:
4877 // Note: Instruction needs to be a friend here to call cloneImpl.
4878 friend class Instruction;
4879
4880 /// Clone an identical FPExtInst
4881 FPExtInst *cloneImpl() const;
4882
4883public:
4884 /// Constructor with insert-before-instruction semantics
4885 FPExtInst(
4886 Value *S, ///< The value to be extended
4887 Type *Ty, ///< The type to extend to
4888 const Twine &NameStr = "", ///< A name for the new instruction
4889 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4890 );
4891
4892 /// Constructor with insert-at-end-of-block semantics
4893 FPExtInst(
4894 Value *S, ///< The value to be extended
4895 Type *Ty, ///< The type to extend to
4896 const Twine &NameStr, ///< A name for the new instruction
4897 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4898 );
4899
4900 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4901 static bool classof(const Instruction *I) {
4902 return I->getOpcode() == FPExt;
4903 }
4904 static bool classof(const Value *V) {
4905 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4906 }
4907};
4908
4909//===----------------------------------------------------------------------===//
4910// UIToFPInst Class
4911//===----------------------------------------------------------------------===//
4912
4913/// This class represents a cast unsigned integer to floating point.
4914class UIToFPInst : public CastInst {
4915protected:
4916 // Note: Instruction needs to be a friend here to call cloneImpl.
4917 friend class Instruction;
4918
4919 /// Clone an identical UIToFPInst
4920 UIToFPInst *cloneImpl() const;
4921
4922public:
4923 /// Constructor with insert-before-instruction semantics
4924 UIToFPInst(
4925 Value *S, ///< The value to be converted
4926 Type *Ty, ///< The type to convert to
4927 const Twine &NameStr = "", ///< A name for the new instruction
4928 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4929 );
4930
4931 /// Constructor with insert-at-end-of-block semantics
4932 UIToFPInst(
4933 Value *S, ///< The value to be converted
4934 Type *Ty, ///< The type to convert to
4935 const Twine &NameStr, ///< A name for the new instruction
4936 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4937 );
4938
4939 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4940 static bool classof(const Instruction *I) {
4941 return I->getOpcode() == UIToFP;
4942 }
4943 static bool classof(const Value *V) {
4944 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4945 }
4946};
4947
4948//===----------------------------------------------------------------------===//
4949// SIToFPInst Class
4950//===----------------------------------------------------------------------===//
4951
4952/// This class represents a cast from signed integer to floating point.
4953class SIToFPInst : public CastInst {
4954protected:
4955 // Note: Instruction needs to be a friend here to call cloneImpl.
4956 friend class Instruction;
4957
4958 /// Clone an identical SIToFPInst
4959 SIToFPInst *cloneImpl() const;
4960
4961public:
4962 /// Constructor with insert-before-instruction semantics
4963 SIToFPInst(
4964 Value *S, ///< The value to be converted
4965 Type *Ty, ///< The type to convert to
4966 const Twine &NameStr = "", ///< A name for the new instruction
4967 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4968 );
4969
4970 /// Constructor with insert-at-end-of-block semantics
4971 SIToFPInst(
4972 Value *S, ///< The value to be converted
4973 Type *Ty, ///< The type to convert to
4974 const Twine &NameStr, ///< A name for the new instruction
4975 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4976 );
4977
4978 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4979 static bool classof(const Instruction *I) {
4980 return I->getOpcode() == SIToFP;
4981 }
4982 static bool classof(const Value *V) {
4983 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4984 }
4985};
4986
4987//===----------------------------------------------------------------------===//
4988// FPToUIInst Class
4989//===----------------------------------------------------------------------===//
4990
4991/// This class represents a cast from floating point to unsigned integer
4992class FPToUIInst : public CastInst {
4993protected:
4994 // Note: Instruction needs to be a friend here to call cloneImpl.
4995 friend class Instruction;
4996
4997 /// Clone an identical FPToUIInst
4998 FPToUIInst *cloneImpl() const;
4999
5000public:
5001 /// Constructor with insert-before-instruction semantics
5002 FPToUIInst(
5003 Value *S, ///< The value to be converted
5004 Type *Ty, ///< The type to convert to
5005 const Twine &NameStr = "", ///< A name for the new instruction
5006 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5007 );
5008
5009 /// Constructor with insert-at-end-of-block semantics
5010 FPToUIInst(
5011 Value *S, ///< The value to be converted
5012 Type *Ty, ///< The type to convert to
5013 const Twine &NameStr, ///< A name for the new instruction
5014 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
5015 );
5016
5017 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5018 static bool classof(const Instruction *I) {
5019 return I->getOpcode() == FPToUI;
5020 }
5021 static bool classof(const Value *V) {
5022 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5023 }
5024};
5025
5026//===----------------------------------------------------------------------===//
5027// FPToSIInst Class
5028//===----------------------------------------------------------------------===//
5029
5030/// This class represents a cast from floating point to signed integer.
5031class FPToSIInst : public CastInst {
5032protected:
5033 // Note: Instruction needs to be a friend here to call cloneImpl.
5034 friend class Instruction;
5035
5036 /// Clone an identical FPToSIInst
5037 FPToSIInst *cloneImpl() const;
5038
5039public:
5040 /// Constructor with insert-before-instruction semantics
5041 FPToSIInst(
5042 Value *S, ///< The value to be converted
5043 Type *Ty, ///< The type to convert to
5044 const Twine &NameStr = "", ///< A name for the new instruction
5045 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5046 );
5047
5048 /// Constructor with insert-at-end-of-block semantics
5049 FPToSIInst(
5050 Value *S, ///< The value to be converted
5051 Type *Ty, ///< The type to convert to
5052 const Twine &NameStr, ///< A name for the new instruction
5053 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5054 );
5055
5056 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5057 static bool classof(const Instruction *I) {
5058 return I->getOpcode() == FPToSI;
5059 }
5060 static bool classof(const Value *V) {
5061 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5062 }
5063};
5064
5065//===----------------------------------------------------------------------===//
5066// IntToPtrInst Class
5067//===----------------------------------------------------------------------===//
5068
5069/// This class represents a cast from an integer to a pointer.
5070class IntToPtrInst : public CastInst {
5071public:
5072 // Note: Instruction needs to be a friend here to call cloneImpl.
5073 friend class Instruction;
5074
5075 /// Constructor with insert-before-instruction semantics
5076 IntToPtrInst(
5077 Value *S, ///< The value to be converted
5078 Type *Ty, ///< The type to convert to
5079 const Twine &NameStr = "", ///< A name for the new instruction
5080 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5081 );
5082
5083 /// Constructor with insert-at-end-of-block semantics
5084 IntToPtrInst(
5085 Value *S, ///< The value to be converted
5086 Type *Ty, ///< The type to convert to
5087 const Twine &NameStr, ///< A name for the new instruction
5088 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5089 );
5090
5091 /// Clone an identical IntToPtrInst.
5092 IntToPtrInst *cloneImpl() const;
5093
5094 /// Returns the address space of this instruction's pointer type.
5095 unsigned getAddressSpace() const {
5096 return getType()->getPointerAddressSpace();
5097 }
5098
5099 // Methods for support type inquiry through isa, cast, and dyn_cast:
5100 static bool classof(const Instruction *I) {
5101 return I->getOpcode() == IntToPtr;
5102 }
5103 static bool classof(const Value *V) {
5104 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5105 }
5106};
5107
5108//===----------------------------------------------------------------------===//
5109// PtrToIntInst Class
5110//===----------------------------------------------------------------------===//
5111
5112/// This class represents a cast from a pointer to an integer.
5113class PtrToIntInst : public CastInst {
5114protected:
5115 // Note: Instruction needs to be a friend here to call cloneImpl.
5116 friend class Instruction;
5117
5118 /// Clone an identical PtrToIntInst.
5119 PtrToIntInst *cloneImpl() const;
5120
5121public:
5122 /// Constructor with insert-before-instruction semantics
5123 PtrToIntInst(
5124 Value *S, ///< The value to be converted
5125 Type *Ty, ///< The type to convert to
5126 const Twine &NameStr = "", ///< A name for the new instruction
5127 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5128 );
5129
5130 /// Constructor with insert-at-end-of-block semantics
5131 PtrToIntInst(
5132 Value *S, ///< The value to be converted
5133 Type *Ty, ///< The type to convert to
5134 const Twine &NameStr, ///< A name for the new instruction
5135 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5136 );
5137
5138 /// Gets the pointer operand.
5139 Value *getPointerOperand() { return getOperand(0); }
5140 /// Gets the pointer operand.
5141 const Value *getPointerOperand() const { return getOperand(0); }
5142 /// Gets the operand index of the pointer operand.
5143 static unsigned getPointerOperandIndex() { return 0U; }
5144
5145 /// Returns the address space of the pointer operand.
5146 unsigned getPointerAddressSpace() const {
5147 return getPointerOperand()->getType()->getPointerAddressSpace();
5148 }
5149
5150 // Methods for support type inquiry through isa, cast, and dyn_cast:
5151 static bool classof(const Instruction *I) {
5152 return I->getOpcode() == PtrToInt;
5153 }
5154 static bool classof(const Value *V) {
5155 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5156 }
5157};
5158
5159//===----------------------------------------------------------------------===//
5160// BitCastInst Class
5161//===----------------------------------------------------------------------===//
5162
5163/// This class represents a no-op cast from one type to another.
5164class BitCastInst : public CastInst {
5165protected:
5166 // Note: Instruction needs to be a friend here to call cloneImpl.
5167 friend class Instruction;
5168
5169 /// Clone an identical BitCastInst.
5170 BitCastInst *cloneImpl() const;
5171
5172public:
5173 /// Constructor with insert-before-instruction semantics
5174 BitCastInst(
5175 Value *S, ///< The value to be casted
5176 Type *Ty, ///< The type to casted to
5177 const Twine &NameStr = "", ///< A name for the new instruction
5178 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5179 );
5180
5181 /// Constructor with insert-at-end-of-block semantics
5182 BitCastInst(
5183 Value *S, ///< The value to be casted
5184 Type *Ty, ///< The type to casted to
5185 const Twine &NameStr, ///< A name for the new instruction
5186 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5187 );
5188
5189 // Methods for support type inquiry through isa, cast, and dyn_cast:
5190 static bool classof(const Instruction *I) {
5191 return I->getOpcode() == BitCast;
5192 }
5193 static bool classof(const Value *V) {
5194 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5195 }
5196};
5197
5198//===----------------------------------------------------------------------===//
5199// AddrSpaceCastInst Class
5200//===----------------------------------------------------------------------===//
5201
5202/// This class represents a conversion between pointers from one address space
5203/// to another.
5204class AddrSpaceCastInst : public CastInst {
5205protected:
5206 // Note: Instruction needs to be a friend here to call cloneImpl.
5207 friend class Instruction;
5208
5209 /// Clone an identical AddrSpaceCastInst.
5210 AddrSpaceCastInst *cloneImpl() const;
5211
5212public:
5213 /// Constructor with insert-before-instruction semantics
5214 AddrSpaceCastInst(
5215 Value *S, ///< The value to be casted
5216 Type *Ty, ///< The type to casted to
5217 const Twine &NameStr = "", ///< A name for the new instruction
5218 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5219 );
5220
5221 /// Constructor with insert-at-end-of-block semantics
5222 AddrSpaceCastInst(
5223 Value *S, ///< The value to be casted
5224 Type *Ty, ///< The type to casted to
5225 const Twine &NameStr, ///< A name for the new instruction
5226 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5227 );
5228
5229 // Methods for support type inquiry through isa, cast, and dyn_cast:
5230 static bool classof(const Instruction *I) {
5231 return I->getOpcode() == AddrSpaceCast;
5232 }
5233 static bool classof(const Value *V) {
5234 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5235 }
5236
5237 /// Gets the pointer operand.
5238 Value *getPointerOperand() {
5239 return getOperand(0);
5240 }
5241
5242 /// Gets the pointer operand.
5243 const Value *getPointerOperand() const {
5244 return getOperand(0);
5245 }
5246
5247 /// Gets the operand index of the pointer operand.
5248 static unsigned getPointerOperandIndex() {
5249 return 0U;
5250 }
5251
5252 /// Returns the address space of the pointer operand.
5253 unsigned getSrcAddressSpace() const {
5254 return getPointerOperand()->getType()->getPointerAddressSpace();
5255 }
5256
5257 /// Returns the address space of the result.
5258 unsigned getDestAddressSpace() const {
5259 return getType()->getPointerAddressSpace();
5260 }
5261};
5262
5263/// A helper function that returns the pointer operand of a load or store
5264/// instruction. Returns nullptr if not load or store.
5265inline const Value *getLoadStorePointerOperand(const Value *V) {
5266 if (auto *Load = dyn_cast<LoadInst>(V))
5267 return Load->getPointerOperand();
5268 if (auto *Store = dyn_cast<StoreInst>(V))
5269 return Store->getPointerOperand();
5270 return nullptr;
5271}
5272inline Value *getLoadStorePointerOperand(Value *V) {
5273 return const_cast<Value *>(
5274 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5275}
5276
5277/// A helper function that returns the pointer operand of a load, store
5278/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5279inline const Value *getPointerOperand(const Value *V) {
5280 if (auto *Ptr = getLoadStorePointerOperand(V))
5281 return Ptr;
5282 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5283 return Gep->getPointerOperand();
5284 return nullptr;
5285}
5286inline Value *getPointerOperand(Value *V) {
5287 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5288}
5289
5290/// A helper function that returns the alignment of load or store instruction.
5291inline Align getLoadStoreAlignment(Value *I) {
5292 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0)
5293 "Expected Load or Store instruction")((void)0);
5294 if (auto *LI = dyn_cast<LoadInst>(I))
5295 return LI->getAlign();
5296 return cast<StoreInst>(I)->getAlign();
5297}
5298
5299/// A helper function that returns the address space of the pointer operand of
5300/// load or store instruction.
5301inline unsigned getLoadStoreAddressSpace(Value *I) {
5302 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0)
5303 "Expected Load or Store instruction")((void)0);
5304 if (auto *LI = dyn_cast<LoadInst>(I))
5305 return LI->getPointerAddressSpace();
5306 return cast<StoreInst>(I)->getPointerAddressSpace();
5307}
5308
5309/// A helper function that returns the type of a load or store instruction.
5310inline Type *getLoadStoreType(Value *I) {
5311 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0)
5312 "Expected Load or Store instruction")((void)0);
5313 if (auto *LI = dyn_cast<LoadInst>(I))
5314 return LI->getType();
5315 return cast<StoreInst>(I)->getValueOperand()->getType();
5316}
5317
5318//===----------------------------------------------------------------------===//
5319// FreezeInst Class
5320//===----------------------------------------------------------------------===//
5321
5322/// This class represents a freeze function that returns random concrete
5323/// value if an operand is either a poison value or an undef value
5324class FreezeInst : public UnaryInstruction {
5325protected:
5326 // Note: Instruction needs to be a friend here to call cloneImpl.
5327 friend class Instruction;
5328
5329 /// Clone an identical FreezeInst
5330 FreezeInst *cloneImpl() const;
5331
5332public:
5333 explicit FreezeInst(Value *S,
5334 const Twine &NameStr = "",
5335 Instruction *InsertBefore = nullptr);
5336 FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5337
5338 // Methods for support type inquiry through isa, cast, and dyn_cast:
5339 static inline bool classof(const Instruction *I) {
5340 return I->getOpcode() == Freeze;
5341 }
5342 static inline bool classof(const Value *V) {
5343 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5344 }
5345};
5346
5347} // end namespace llvm
5348
5349#endif // LLVM_IR_INSTRUCTIONS_H

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h

1//===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains types to represent alignments.
10// They are instrumented to guarantee some invariants are preserved and prevent
11// invalid manipulations.
12//
13// - Align represents an alignment in bytes, it is always set and always a valid
14// power of two, its minimum value is 1 which means no alignment requirements.
15//
16// - MaybeAlign is an optional type, it may be undefined or set. When it's set
17// you can get the underlying Align type by using the getValue() method.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_SUPPORT_ALIGNMENT_H_
22#define LLVM_SUPPORT_ALIGNMENT_H_
23
24#include "llvm/ADT/Optional.h"
25#include "llvm/Support/MathExtras.h"
26#include <cassert>
27#ifndef NDEBUG1
28#include <string>
29#endif // NDEBUG
30
31namespace llvm {
32
33#define ALIGN_CHECK_ISPOSITIVE(decl) \
34 assert(decl > 0 && (#decl " should be defined"))((void)0)
35
36/// This struct is a compact representation of a valid (non-zero power of two)
37/// alignment.
38/// It is suitable for use as static global constants.
39struct Align {
40private:
41 uint8_t ShiftValue = 0; /// The log2 of the required alignment.
42 /// ShiftValue is less than 64 by construction.
43
44 friend struct MaybeAlign;
45 friend unsigned Log2(Align);
46 friend bool operator==(Align Lhs, Align Rhs);
47 friend bool operator!=(Align Lhs, Align Rhs);
48 friend bool operator<=(Align Lhs, Align Rhs);
49 friend bool operator>=(Align Lhs, Align Rhs);
50 friend bool operator<(Align Lhs, Align Rhs);
51 friend bool operator>(Align Lhs, Align Rhs);
52 friend unsigned encode(struct MaybeAlign A);
53 friend struct MaybeAlign decodeMaybeAlign(unsigned Value);
54
55 /// A trivial type to allow construction of constexpr Align.
56 /// This is currently needed to workaround a bug in GCC 5.3 which prevents
57 /// definition of constexpr assign operators.
58 /// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic
59 /// FIXME: Remove this, make all assign operators constexpr and introduce user
60 /// defined literals when we don't have to support GCC 5.3 anymore.
61 /// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain
62 struct LogValue {
63 uint8_t Log;
64 };
65
66public:
67 /// Default is byte-aligned.
68 constexpr Align() = default;
69 /// Do not perform checks in case of copy/move construct/assign, because the
70 /// checks have been performed when building `Other`.
71 constexpr Align(const Align &Other) = default;
72 constexpr Align(Align &&Other) = default;
73 Align &operator=(const Align &Other) = default;
74 Align &operator=(Align &&Other) = default;
75
76 explicit Align(uint64_t Value) {
77 assert(Value > 0 && "Value must not be 0")((void)0);
78 assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2")((void)0);
79 ShiftValue = Log2_64(Value);
30
Calling 'Log2_64'
32
Returning from 'Log2_64'
33
The value 255 is assigned to field 'ShiftValue'
80 assert(ShiftValue < 64 && "Broken invariant")((void)0);
81 }
82
83 /// This is a hole in the type system and should not be abused.
84 /// Needed to interact with C for instance.
85 uint64_t value() const { return uint64_t(1) << ShiftValue; }
37
The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t'
86
87 /// Allow constructions of constexpr Align.
88 template <size_t kValue> constexpr static LogValue Constant() {
89 return LogValue{static_cast<uint8_t>(CTLog2<kValue>())};
90 }
91
92 /// Allow constructions of constexpr Align from types.
93 /// Compile time equivalent to Align(alignof(T)).
94 template <typename T> constexpr static LogValue Of() {
95 return Constant<std::alignment_of<T>::value>();
96 }
97
98 /// Constexpr constructor from LogValue type.
99 constexpr Align(LogValue CA) : ShiftValue(CA.Log) {}
100};
101
102/// Treats the value 0 as a 1, so Align is always at least 1.
103inline Align assumeAligned(uint64_t Value) {
104 return Value ? Align(Value) : Align();
105}
106
107/// This struct is a compact representation of a valid (power of two) or
108/// undefined (0) alignment.
109struct MaybeAlign : public llvm::Optional<Align> {
110private:
111 using UP = llvm::Optional<Align>;
112
113public:
114 /// Default is undefined.
115 MaybeAlign() = default;
116 /// Do not perform checks in case of copy/move construct/assign, because the
117 /// checks have been performed when building `Other`.
118 MaybeAlign(const MaybeAlign &Other) = default;
119 MaybeAlign &operator=(const MaybeAlign &Other) = default;
120 MaybeAlign(MaybeAlign &&Other) = default;
121 MaybeAlign &operator=(MaybeAlign &&Other) = default;
122
123 /// Use llvm::Optional<Align> constructor.
124 using UP::UP;
125
126 explicit MaybeAlign(uint64_t Value) {
127 assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&((void)0)
128 "Alignment is neither 0 nor a power of 2")((void)0);
129 if (Value)
130 emplace(Value);
131 }
132
133 /// For convenience, returns a valid alignment or 1 if undefined.
134 Align valueOrOne() const { return hasValue() ? getValue() : Align(); }
135};
136
137/// Checks that SizeInBytes is a multiple of the alignment.
138inline bool isAligned(Align Lhs, uint64_t SizeInBytes) {
139 return SizeInBytes % Lhs.value() == 0;
140}
141
142/// Checks that Addr is a multiple of the alignment.
143inline bool isAddrAligned(Align Lhs, const void *Addr) {
144 return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr));
145}
146
147/// Returns a multiple of A needed to store `Size` bytes.
148inline uint64_t alignTo(uint64_t Size, Align A) {
149 const uint64_t Value = A.value();
150 // The following line is equivalent to `(Size + Value - 1) / Value * Value`.
151
152 // The division followed by a multiplication can be thought of as a right
153 // shift followed by a left shift which zeros out the extra bits produced in
154 // the bump; `~(Value - 1)` is a mask where all those bits being zeroed out
155 // are just zero.
156
157 // Most compilers can generate this code but the pattern may be missed when
158 // multiple functions gets inlined.
159 return (Size + Value - 1) & ~(Value - 1U);
160}
161
162/// If non-zero \p Skew is specified, the return value will be a minimal integer
163/// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for
164/// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p
165/// Skew mod \p A'.
166///
167/// Examples:
168/// \code
169/// alignTo(5, Align(8), 7) = 7
170/// alignTo(17, Align(8), 1) = 17
171/// alignTo(~0LL, Align(8), 3) = 3
172/// \endcode
173inline uint64_t alignTo(uint64_t Size, Align A, uint64_t Skew) {
174 const uint64_t Value = A.value();
175 Skew %= Value;
176 return ((Size + Value - 1 - Skew) & ~(Value - 1U)) + Skew;
177}
178
179/// Returns a multiple of A needed to store `Size` bytes.
180/// Returns `Size` if current alignment is undefined.
181inline uint64_t alignTo(uint64_t Size, MaybeAlign A) {
182 return A ? alignTo(Size, A.getValue()) : Size;
183}
184
185/// Aligns `Addr` to `Alignment` bytes, rounding up.
186inline uintptr_t alignAddr(const void *Addr, Align Alignment) {
187 uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr);
188 assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=((void)0)
189 ArithAddr &&((void)0)
190 "Overflow")((void)0);
191 return alignTo(ArithAddr, Alignment);
192}
193
194/// Returns the offset to the next integer (mod 2**64) that is greater than
195/// or equal to \p Value and is a multiple of \p Align.
196inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) {
197 return alignTo(Value, Alignment) - Value;
198}
199
200/// Returns the necessary adjustment for aligning `Addr` to `Alignment`
201/// bytes, rounding up.
202inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) {
203 return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment);
204}
205
206/// Returns the log2 of the alignment.
207inline unsigned Log2(Align A) { return A.ShiftValue; }
208
209/// Returns the alignment that satisfies both alignments.
210/// Same semantic as MinAlign.
211inline Align commonAlignment(Align A, Align B) { return std::min(A, B); }
212
213/// Returns the alignment that satisfies both alignments.
214/// Same semantic as MinAlign.
215inline Align commonAlignment(Align A, uint64_t Offset) {
216 return Align(MinAlign(A.value(), Offset));
217}
218
219/// Returns the alignment that satisfies both alignments.
220/// Same semantic as MinAlign.
221inline MaybeAlign commonAlignment(MaybeAlign A, MaybeAlign B) {
222 return A && B ? commonAlignment(*A, *B) : A ? A : B;
223}
224
225/// Returns the alignment that satisfies both alignments.
226/// Same semantic as MinAlign.
227inline MaybeAlign commonAlignment(MaybeAlign A, uint64_t Offset) {
228 return MaybeAlign(MinAlign((*A).value(), Offset));
229}
230
231/// Returns a representation of the alignment that encodes undefined as 0.
232inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; }
233
234/// Dual operation of the encode function above.
235inline MaybeAlign decodeMaybeAlign(unsigned Value) {
236 if (Value == 0)
237 return MaybeAlign();
238 Align Out;
239 Out.ShiftValue = Value - 1;
240 return Out;
241}
242
243/// Returns a representation of the alignment, the encoded value is positive by
244/// definition.
245inline unsigned encode(Align A) { return encode(MaybeAlign(A)); }
246
247/// Comparisons between Align and scalars. Rhs must be positive.
248inline bool operator==(Align Lhs, uint64_t Rhs) {
249 ALIGN_CHECK_ISPOSITIVE(Rhs);
250 return Lhs.value() == Rhs;
251}
252inline bool operator!=(Align Lhs, uint64_t Rhs) {
253 ALIGN_CHECK_ISPOSITIVE(Rhs);
254 return Lhs.value() != Rhs;
255}
256inline bool operator<=(Align Lhs, uint64_t Rhs) {
257 ALIGN_CHECK_ISPOSITIVE(Rhs);
258 return Lhs.value() <= Rhs;
259}
260inline bool operator>=(Align Lhs, uint64_t Rhs) {
261 ALIGN_CHECK_ISPOSITIVE(Rhs);
262 return Lhs.value() >= Rhs;
263}
264inline bool operator<(Align Lhs, uint64_t Rhs) {
265 ALIGN_CHECK_ISPOSITIVE(Rhs);
266 return Lhs.value() < Rhs;
267}
268inline bool operator>(Align Lhs, uint64_t Rhs) {
269 ALIGN_CHECK_ISPOSITIVE(Rhs);
270 return Lhs.value() > Rhs;
271}
272
273/// Comparisons between MaybeAlign and scalars.
274inline bool operator==(MaybeAlign Lhs, uint64_t Rhs) {
275 return Lhs ? (*Lhs).value() == Rhs : Rhs == 0;
276}
277inline bool operator!=(MaybeAlign Lhs, uint64_t Rhs) {
278 return Lhs ? (*Lhs).value() != Rhs : Rhs != 0;
279}
280
281/// Comparisons operators between Align.
282inline bool operator==(Align Lhs, Align Rhs) {
283 return Lhs.ShiftValue == Rhs.ShiftValue;
284}
285inline bool operator!=(Align Lhs, Align Rhs) {
286 return Lhs.ShiftValue != Rhs.ShiftValue;
287}
288inline bool operator<=(Align Lhs, Align Rhs) {
289 return Lhs.ShiftValue <= Rhs.ShiftValue;
290}
291inline bool operator>=(Align Lhs, Align Rhs) {
292 return Lhs.ShiftValue >= Rhs.ShiftValue;
293}
294inline bool operator<(Align Lhs, Align Rhs) {
295 return Lhs.ShiftValue < Rhs.ShiftValue;
296}
297inline bool operator>(Align Lhs, Align Rhs) {
298 return Lhs.ShiftValue > Rhs.ShiftValue;
299}
300
301// Don't allow relational comparisons with MaybeAlign.
302bool operator<=(Align Lhs, MaybeAlign Rhs) = delete;
303bool operator>=(Align Lhs, MaybeAlign Rhs) = delete;
304bool operator<(Align Lhs, MaybeAlign Rhs) = delete;
305bool operator>(Align Lhs, MaybeAlign Rhs) = delete;
306
307bool operator<=(MaybeAlign Lhs, Align Rhs) = delete;
308bool operator>=(MaybeAlign Lhs, Align Rhs) = delete;
309bool operator<(MaybeAlign Lhs, Align Rhs) = delete;
310bool operator>(MaybeAlign Lhs, Align Rhs) = delete;
311
312bool operator<=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
313bool operator>=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
314bool operator<(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
315bool operator>(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
316
317inline Align operator*(Align Lhs, uint64_t Rhs) {
318 assert(Rhs > 0 && "Rhs must be positive")((void)0);
319 return Align(Lhs.value() * Rhs);
320}
321
322inline MaybeAlign operator*(MaybeAlign Lhs, uint64_t Rhs) {
323 assert(Rhs > 0 && "Rhs must be positive")((void)0);
324 return Lhs ? Lhs.getValue() * Rhs : MaybeAlign();
325}
326
327inline Align operator/(Align Lhs, uint64_t Divisor) {
328 assert(llvm::isPowerOf2_64(Divisor) &&((void)0)
329 "Divisor must be positive and a power of 2")((void)0);
330 assert(Lhs != 1 && "Can't halve byte alignment")((void)0);
331 return Align(Lhs.value() / Divisor);
332}
333
334inline MaybeAlign operator/(MaybeAlign Lhs, uint64_t Divisor) {
335 assert(llvm::isPowerOf2_64(Divisor) &&((void)0)
336 "Divisor must be positive and a power of 2")((void)0);
337 return Lhs ? Lhs.getValue() / Divisor : MaybeAlign();
338}
339
340inline Align max(MaybeAlign Lhs, Align Rhs) {
341 return Lhs && *Lhs > Rhs ? *Lhs : Rhs;
342}
343
344inline Align max(Align Lhs, MaybeAlign Rhs) {
345 return Rhs && *Rhs > Lhs ? *Rhs : Lhs;
346}
347
348#ifndef NDEBUG1
349// For usage in LLVM_DEBUG macros.
350inline std::string DebugStr(const Align &A) {
351 return std::to_string(A.value());
352}
353// For usage in LLVM_DEBUG macros.
354inline std::string DebugStr(const MaybeAlign &MA) {
355 if (MA)
356 return std::to_string(MA->value());
357 return "None";
358}
359#endif // NDEBUG
360
361#undef ALIGN_CHECK_ISPOSITIVE
362
363} // namespace llvm
364
365#endif // LLVM_SUPPORT_ALIGNMENT_H_

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/MathExtras.h

1//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains some functions that are useful for math stuff.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_MATHEXTRAS_H
14#define LLVM_SUPPORT_MATHEXTRAS_H
15
16#include "llvm/Support/Compiler.h"
17#include <cassert>
18#include <climits>
19#include <cmath>
20#include <cstdint>
21#include <cstring>
22#include <limits>
23#include <type_traits>
24
25#ifdef __ANDROID_NDK__
26#include <android/api-level.h>
27#endif
28
29#ifdef _MSC_VER
30// Declare these intrinsics manually rather including intrin.h. It's very
31// expensive, and MathExtras.h is popular.
32// #include <intrin.h>
33extern "C" {
34unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
35unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
36unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
37unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
38}
39#endif
40
41namespace llvm {
42
43/// The behavior an operation has on an input of 0.
44enum ZeroBehavior {
45 /// The returned value is undefined.
46 ZB_Undefined,
47 /// The returned value is numeric_limits<T>::max()
48 ZB_Max,
49 /// The returned value is numeric_limits<T>::digits
50 ZB_Width
51};
52
53/// Mathematical constants.
54namespace numbers {
55// TODO: Track C++20 std::numbers.
56// TODO: Favor using the hexadecimal FP constants (requires C++17).
57constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113
58 egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620
59 ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162
60 ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392
61 log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0)
62 log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2)
63 pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796
64 inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541
65 sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161
66 inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197
67 sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219
68 inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1)
69 sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194
70 inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1)
71 phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622
72constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113
73 egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620
74 ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162
75 ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392
76 log2ef = 1.44269504F, // (0x1.715476P+0)
77 log10ef = .434294482F, // (0x1.bcb7b2P-2)
78 pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796
79 inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541
80 sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161
81 inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197
82 sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193
83 inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1)
84 sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194
85 inv_sqrt3f = .577350269F, // (0x1.279a74P-1)
86 phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622
87} // namespace numbers
88
89namespace detail {
90template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
91 static unsigned count(T Val, ZeroBehavior) {
92 if (!Val)
93 return std::numeric_limits<T>::digits;
94 if (Val & 0x1)
95 return 0;
96
97 // Bisection method.
98 unsigned ZeroBits = 0;
99 T Shift = std::numeric_limits<T>::digits >> 1;
100 T Mask = std::numeric_limits<T>::max() >> Shift;
101 while (Shift) {
102 if ((Val & Mask) == 0) {
103 Val >>= Shift;
104 ZeroBits |= Shift;
105 }
106 Shift >>= 1;
107 Mask >>= Shift;
108 }
109 return ZeroBits;
110 }
111};
112
113#if defined(__GNUC__4) || defined(_MSC_VER)
114template <typename T> struct TrailingZerosCounter<T, 4> {
115 static unsigned count(T Val, ZeroBehavior ZB) {
116 if (ZB != ZB_Undefined && Val == 0)
117 return 32;
118
119#if __has_builtin(__builtin_ctz)1 || defined(__GNUC__4)
120 return __builtin_ctz(Val);
121#elif defined(_MSC_VER)
122 unsigned long Index;
123 _BitScanForward(&Index, Val);
124 return Index;
125#endif
126 }
127};
128
129#if !defined(_MSC_VER) || defined(_M_X64)
130template <typename T> struct TrailingZerosCounter<T, 8> {
131 static unsigned count(T Val, ZeroBehavior ZB) {
132 if (ZB != ZB_Undefined && Val == 0)
133 return 64;
134
135#if __has_builtin(__builtin_ctzll)1 || defined(__GNUC__4)
136 return __builtin_ctzll(Val);
137#elif defined(_MSC_VER)
138 unsigned long Index;
139 _BitScanForward64(&Index, Val);
140 return Index;
141#endif
142 }
143};
144#endif
145#endif
146} // namespace detail
147
148/// Count number of 0's from the least significant bit to the most
149/// stopping at the first 1.
150///
151/// Only unsigned integral types are allowed.
152///
153/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
154/// valid arguments.
155template <typename T>
156unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
157 static_assert(std::numeric_limits<T>::is_integer &&
158 !std::numeric_limits<T>::is_signed,
159 "Only unsigned integral types are allowed.");
160 return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
161}
162
163namespace detail {
164template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
165 static unsigned count(T Val, ZeroBehavior) {
166 if (!Val)
167 return std::numeric_limits<T>::digits;
168
169 // Bisection method.
170 unsigned ZeroBits = 0;
171 for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
172 T Tmp = Val >> Shift;
173 if (Tmp)
174 Val = Tmp;
175 else
176 ZeroBits |= Shift;
177 }
178 return ZeroBits;
179 }
180};
181
182#if defined(__GNUC__4) || defined(_MSC_VER)
183template <typename T> struct LeadingZerosCounter<T, 4> {
184 static unsigned count(T Val, ZeroBehavior ZB) {
185 if (ZB != ZB_Undefined && Val == 0)
186 return 32;
187
188#if __has_builtin(__builtin_clz)1 || defined(__GNUC__4)
189 return __builtin_clz(Val);
190#elif defined(_MSC_VER)
191 unsigned long Index;
192 _BitScanReverse(&Index, Val);
193 return Index ^ 31;
194#endif
195 }
196};
197
198#if !defined(_MSC_VER) || defined(_M_X64)
199template <typename T> struct LeadingZerosCounter<T, 8> {
200 static unsigned count(T Val, ZeroBehavior ZB) {
201 if (ZB != ZB_Undefined && Val == 0)
202 return 64;
203
204#if __has_builtin(__builtin_clzll)1 || defined(__GNUC__4)
205 return __builtin_clzll(Val);
206#elif defined(_MSC_VER)
207 unsigned long Index;
208 _BitScanReverse64(&Index, Val);
209 return Index ^ 63;
210#endif
211 }
212};
213#endif
214#endif
215} // namespace detail
216
217/// Count number of 0's from the most significant bit to the least
218/// stopping at the first 1.
219///
220/// Only unsigned integral types are allowed.
221///
222/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
223/// valid arguments.
224template <typename T>
225unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
226 static_assert(std::numeric_limits<T>::is_integer &&
227 !std::numeric_limits<T>::is_signed,
228 "Only unsigned integral types are allowed.");
229 return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
230}
231
232/// Get the index of the first set bit starting from the least
233/// significant bit.
234///
235/// Only unsigned integral types are allowed.
236///
237/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
238/// valid arguments.
239template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
240 if (ZB == ZB_Max && Val == 0)
241 return std::numeric_limits<T>::max();
242
243 return countTrailingZeros(Val, ZB_Undefined);
244}
245
246/// Create a bitmask with the N right-most bits set to 1, and all other
247/// bits set to 0. Only unsigned types are allowed.
248template <typename T> T maskTrailingOnes(unsigned N) {
249 static_assert(std::is_unsigned<T>::value, "Invalid type!");
250 const unsigned Bits = CHAR_BIT8 * sizeof(T);
251 assert(N <= Bits && "Invalid bit index")((void)0);
252 return N == 0 ? 0 : (T(-1) >> (Bits - N));
253}
254
255/// Create a bitmask with the N left-most bits set to 1, and all other
256/// bits set to 0. Only unsigned types are allowed.
257template <typename T> T maskLeadingOnes(unsigned N) {
258 return ~maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
259}
260
261/// Create a bitmask with the N right-most bits set to 0, and all other
262/// bits set to 1. Only unsigned types are allowed.
263template <typename T> T maskTrailingZeros(unsigned N) {
264 return maskLeadingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
265}
266
267/// Create a bitmask with the N left-most bits set to 0, and all other
268/// bits set to 1. Only unsigned types are allowed.
269template <typename T> T maskLeadingZeros(unsigned N) {
270 return maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
271}
272
273/// Get the index of the last set bit starting from the least
274/// significant bit.
275///
276/// Only unsigned integral types are allowed.
277///
278/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
279/// valid arguments.
280template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
281 if (ZB == ZB_Max && Val == 0)
282 return std::numeric_limits<T>::max();
283
284 // Use ^ instead of - because both gcc and llvm can remove the associated ^
285 // in the __builtin_clz intrinsic on x86.
286 return countLeadingZeros(Val, ZB_Undefined) ^
287 (std::numeric_limits<T>::digits - 1);
288}
289
290/// Macro compressed bit reversal table for 256 bits.
291///
292/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
293static const unsigned char BitReverseTable256[256] = {
294#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
295#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
296#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
297 R6(0), R6(2), R6(1), R6(3)
298#undef R2
299#undef R4
300#undef R6
301};
302
303/// Reverse the bits in \p Val.
304template <typename T>
305T reverseBits(T Val) {
306 unsigned char in[sizeof(Val)];
307 unsigned char out[sizeof(Val)];
308 std::memcpy(in, &Val, sizeof(Val));
309 for (unsigned i = 0; i < sizeof(Val); ++i)
310 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
311 std::memcpy(&Val, out, sizeof(Val));
312 return Val;
313}
314
315#if __has_builtin(__builtin_bitreverse8)1
316template<>
317inline uint8_t reverseBits<uint8_t>(uint8_t Val) {
318 return __builtin_bitreverse8(Val);
319}
320#endif
321
322#if __has_builtin(__builtin_bitreverse16)1
323template<>
324inline uint16_t reverseBits<uint16_t>(uint16_t Val) {
325 return __builtin_bitreverse16(Val);
326}
327#endif
328
329#if __has_builtin(__builtin_bitreverse32)1
330template<>
331inline uint32_t reverseBits<uint32_t>(uint32_t Val) {
332 return __builtin_bitreverse32(Val);
333}
334#endif
335
336#if __has_builtin(__builtin_bitreverse64)1
337template<>
338inline uint64_t reverseBits<uint64_t>(uint64_t Val) {
339 return __builtin_bitreverse64(Val);
340}
341#endif
342
343// NOTE: The following support functions use the _32/_64 extensions instead of
344// type overloading so that signed and unsigned integers can be used without
345// ambiguity.
346
347/// Return the high 32 bits of a 64 bit value.
348constexpr inline uint32_t Hi_32(uint64_t Value) {
349 return static_cast<uint32_t>(Value >> 32);
350}
351
352/// Return the low 32 bits of a 64 bit value.
353constexpr inline uint32_t Lo_32(uint64_t Value) {
354 return static_cast<uint32_t>(Value);
355}
356
357/// Make a 64-bit integer from a high / low pair of 32-bit integers.
358constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
359 return ((uint64_t)High << 32) | (uint64_t)Low;
360}
361
362/// Checks if an integer fits into the given bit width.
363template <unsigned N> constexpr inline bool isInt(int64_t x) {
364 return N >= 64 || (-(INT64_C(1)1LL<<(N-1)) <= x && x < (INT64_C(1)1LL<<(N-1)));
365}
366// Template specializations to get better code for common cases.
367template <> constexpr inline bool isInt<8>(int64_t x) {
368 return static_cast<int8_t>(x) == x;
369}
370template <> constexpr inline bool isInt<16>(int64_t x) {
371 return static_cast<int16_t>(x) == x;
372}
373template <> constexpr inline bool isInt<32>(int64_t x) {
374 return static_cast<int32_t>(x) == x;
375}
376
377/// Checks if a signed integer is an N bit number shifted left by S.
378template <unsigned N, unsigned S>
379constexpr inline bool isShiftedInt(int64_t x) {
380 static_assert(
381 N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
382 static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
383 return isInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0);
384}
385
386/// Checks if an unsigned integer fits into the given bit width.
387///
388/// This is written as two functions rather than as simply
389///
390/// return N >= 64 || X < (UINT64_C(1) << N);
391///
392/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
393/// left too many places.
394template <unsigned N>
395constexpr inline std::enable_if_t<(N < 64), bool> isUInt(uint64_t X) {
396 static_assert(N > 0, "isUInt<0> doesn't make sense");
397 return X < (UINT64_C(1)1ULL << (N));
398}
399template <unsigned N>
400constexpr inline std::enable_if_t<N >= 64, bool> isUInt(uint64_t) {
401 return true;
402}
403
404// Template specializations to get better code for common cases.
405template <> constexpr inline bool isUInt<8>(uint64_t x) {
406 return static_cast<uint8_t>(x) == x;
407}
408template <> constexpr inline bool isUInt<16>(uint64_t x) {
409 return static_cast<uint16_t>(x) == x;
410}
411template <> constexpr inline bool isUInt<32>(uint64_t x) {
412 return static_cast<uint32_t>(x) == x;
413}
414
415/// Checks if a unsigned integer is an N bit number shifted left by S.
416template <unsigned N, unsigned S>
417constexpr inline bool isShiftedUInt(uint64_t x) {
418 static_assert(
419 N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
420 static_assert(N + S <= 64,
421 "isShiftedUInt<N, S> with N + S > 64 is too wide.");
422 // Per the two static_asserts above, S must be strictly less than 64. So
423 // 1 << S is not undefined behavior.
424 return isUInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0);
425}
426
427/// Gets the maximum value for a N-bit unsigned integer.
428inline uint64_t maxUIntN(uint64_t N) {
429 assert(N > 0 && N <= 64 && "integer width out of range")((void)0);
430
431 // uint64_t(1) << 64 is undefined behavior, so we can't do
432 // (uint64_t(1) << N) - 1
433 // without checking first that N != 64. But this works and doesn't have a
434 // branch.
435 return UINT64_MAX0xffffffffffffffffULL >> (64 - N);
436}
437
438/// Gets the minimum value for a N-bit signed integer.
439inline int64_t minIntN(int64_t N) {
440 assert(N > 0 && N <= 64 && "integer width out of range")((void)0);
441
442 return UINT64_C(1)1ULL + ~(UINT64_C(1)1ULL << (N - 1));
443}
444
445/// Gets the maximum value for a N-bit signed integer.
446inline int64_t maxIntN(int64_t N) {
447 assert(N > 0 && N <= 64 && "integer width out of range")((void)0);
448
449 // This relies on two's complement wraparound when N == 64, so we convert to
450 // int64_t only at the very end to avoid UB.
451 return (UINT64_C(1)1ULL << (N - 1)) - 1;
452}
453
454/// Checks if an unsigned integer fits into the given (dynamic) bit width.
455inline bool isUIntN(unsigned N, uint64_t x) {
456 return N >= 64 || x <= maxUIntN(N);
457}
458
459/// Checks if an signed integer fits into the given (dynamic) bit width.
460inline bool isIntN(unsigned N, int64_t x) {
461 return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
462}
463
464/// Return true if the argument is a non-empty sequence of ones starting at the
465/// least significant bit with the remainder zero (32 bit version).
466/// Ex. isMask_32(0x0000FFFFU) == true.
467constexpr inline bool isMask_32(uint32_t Value) {
468 return Value && ((Value + 1) & Value) == 0;
469}
470
471/// Return true if the argument is a non-empty sequence of ones starting at the
472/// least significant bit with the remainder zero (64 bit version).
473constexpr inline bool isMask_64(uint64_t Value) {
474 return Value && ((Value + 1) & Value) == 0;
475}
476
477/// Return true if the argument contains a non-empty sequence of ones with the
478/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
479constexpr inline bool isShiftedMask_32(uint32_t Value) {
480 return Value && isMask_32((Value - 1) | Value);
481}
482
483/// Return true if the argument contains a non-empty sequence of ones with the
484/// remainder zero (64 bit version.)
485constexpr inline bool isShiftedMask_64(uint64_t Value) {
486 return Value && isMask_64((Value - 1) | Value);
487}
488
489/// Return true if the argument is a power of two > 0.
490/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
491constexpr inline bool isPowerOf2_32(uint32_t Value) {
492 return Value && !(Value & (Value - 1));
493}
494
495/// Return true if the argument is a power of two > 0 (64 bit edition.)
496constexpr inline bool isPowerOf2_64(uint64_t Value) {
497 return Value && !(Value & (Value - 1));
498}
499
500/// Count the number of ones from the most significant bit to the first
501/// zero bit.
502///
503/// Ex. countLeadingOnes(0xFF0FFF00) == 8.
504/// Only unsigned integral types are allowed.
505///
506/// \param ZB the behavior on an input of all ones. Only ZB_Width and
507/// ZB_Undefined are valid arguments.
508template <typename T>
509unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
510 static_assert(std::numeric_limits<T>::is_integer &&
511 !std::numeric_limits<T>::is_signed,
512 "Only unsigned integral types are allowed.");
513 return countLeadingZeros<T>(~Value, ZB);
514}
515
516/// Count the number of ones from the least significant bit to the first
517/// zero bit.
518///
519/// Ex. countTrailingOnes(0x00FF00FF) == 8.
520/// Only unsigned integral types are allowed.
521///
522/// \param ZB the behavior on an input of all ones. Only ZB_Width and
523/// ZB_Undefined are valid arguments.
524template <typename T>
525unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
526 static_assert(std::numeric_limits<T>::is_integer &&
527 !std::numeric_limits<T>::is_signed,
528 "Only unsigned integral types are allowed.");
529 return countTrailingZeros<T>(~Value, ZB);
530}
531
532namespace detail {
533template <typename T, std::size_t SizeOfT> struct PopulationCounter {
534 static unsigned count(T Value) {
535 // Generic version, forward to 32 bits.
536 static_assert(SizeOfT <= 4, "Not implemented!");
537#if defined(__GNUC__4)
538 return __builtin_popcount(Value);
539#else
540 uint32_t v = Value;
541 v = v - ((v >> 1) & 0x55555555);
542 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
543 return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
544#endif
545 }
546};
547
548template <typename T> struct PopulationCounter<T, 8> {
549 static unsigned count(T Value) {
550#if defined(__GNUC__4)
551 return __builtin_popcountll(Value);
552#else
553 uint64_t v = Value;
554 v = v - ((v >> 1) & 0x5555555555555555ULL);
555 v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
556 v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
557 return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
558#endif
559 }
560};
561} // namespace detail
562
563/// Count the number of set bits in a value.
564/// Ex. countPopulation(0xF000F000) = 8
565/// Returns 0 if the word is zero.
566template <typename T>
567inline unsigned countPopulation(T Value) {
568 static_assert(std::numeric_limits<T>::is_integer &&
569 !std::numeric_limits<T>::is_signed,
570 "Only unsigned integral types are allowed.");
571 return detail::PopulationCounter<T, sizeof(T)>::count(Value);
572}
573
574/// Compile time Log2.
575/// Valid only for positive powers of two.
576template <size_t kValue> constexpr inline size_t CTLog2() {
577 static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue),
578 "Value is not a valid power of 2");
579 return 1 + CTLog2<kValue / 2>();
580}
581
582template <> constexpr inline size_t CTLog2<1>() { return 0; }
583
584/// Return the log base 2 of the specified value.
585inline double Log2(double Value) {
586#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
587 return __builtin_log(Value) / __builtin_log(2.0);
588#else
589 return log2(Value);
590#endif
591}
592
593/// Return the floor log base 2 of the specified value, -1 if the value is zero.
594/// (32 bit edition.)
595/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
596inline unsigned Log2_32(uint32_t Value) {
597 return 31 - countLeadingZeros(Value);
598}
599
600/// Return the floor log base 2 of the specified value, -1 if the value is zero.
601/// (64 bit edition.)
602inline unsigned Log2_64(uint64_t Value) {
603 return 63 - countLeadingZeros(Value);
31
Returning the value 4294967295
604}
605
606/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
607/// (32 bit edition).
608/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
609inline unsigned Log2_32_Ceil(uint32_t Value) {
610 return 32 - countLeadingZeros(Value - 1);
611}
612
613/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
614/// (64 bit edition.)
615inline unsigned Log2_64_Ceil(uint64_t Value) {
616 return 64 - countLeadingZeros(Value - 1);
617}
618
619/// Return the greatest common divisor of the values using Euclid's algorithm.
620template <typename T>
621inline T greatestCommonDivisor(T A, T B) {
622 while (B) {
623 T Tmp = B;
624 B = A % B;
625 A = Tmp;
626 }
627 return A;
628}
629
630inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
631 return greatestCommonDivisor<uint64_t>(A, B);
632}
633
634/// This function takes a 64-bit integer and returns the bit equivalent double.
635inline double BitsToDouble(uint64_t Bits) {
636 double D;
637 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
638 memcpy(&D, &Bits, sizeof(Bits));
639 return D;
640}
641
642/// This function takes a 32-bit integer and returns the bit equivalent float.
643inline float BitsToFloat(uint32_t Bits) {
644 float F;
645 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
646 memcpy(&F, &Bits, sizeof(Bits));
647 return F;
648}
649
650/// This function takes a double and returns the bit equivalent 64-bit integer.
651/// Note that copying doubles around changes the bits of NaNs on some hosts,
652/// notably x86, so this routine cannot be used if these bits are needed.
653inline uint64_t DoubleToBits(double Double) {
654 uint64_t Bits;
655 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
656 memcpy(&Bits, &Double, sizeof(Double));
657 return Bits;
658}
659
660/// This function takes a float and returns the bit equivalent 32-bit integer.
661/// Note that copying floats around changes the bits of NaNs on some hosts,
662/// notably x86, so this routine cannot be used if these bits are needed.
663inline uint32_t FloatToBits(float Float) {
664 uint32_t Bits;
665 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
666 memcpy(&Bits, &Float, sizeof(Float));
667 return Bits;
668}
669
670/// A and B are either alignments or offsets. Return the minimum alignment that
671/// may be assumed after adding the two together.
672constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
673 // The largest power of 2 that divides both A and B.
674 //
675 // Replace "-Value" by "1+~Value" in the following commented code to avoid
676 // MSVC warning C4146
677 // return (A | B) & -(A | B);
678 return (A | B) & (1 + ~(A | B));
679}
680
681/// Returns the next power of two (in 64-bits) that is strictly greater than A.
682/// Returns zero on overflow.
683inline uint64_t NextPowerOf2(uint64_t A) {
684 A |= (A >> 1);
685 A |= (A >> 2);
686 A |= (A >> 4);
687 A |= (A >> 8);
688 A |= (A >> 16);
689 A |= (A >> 32);
690 return A + 1;
691}
692
693/// Returns the power of two which is less than or equal to the given value.
694/// Essentially, it is a floor operation across the domain of powers of two.
695inline uint64_t PowerOf2Floor(uint64_t A) {
696 if (!A) return 0;
697 return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
698}
699
700/// Returns the power of two which is greater than or equal to the given value.
701/// Essentially, it is a ceil operation across the domain of powers of two.
702inline uint64_t PowerOf2Ceil(uint64_t A) {
703 if (!A)
704 return 0;
705 return NextPowerOf2(A - 1);
706}
707
708/// Returns the next integer (mod 2**64) that is greater than or equal to
709/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
710///
711/// If non-zero \p Skew is specified, the return value will be a minimal
712/// integer that is greater than or equal to \p Value and equal to
713/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
714/// \p Align, its value is adjusted to '\p Skew mod \p Align'.
715///
716/// Examples:
717/// \code
718/// alignTo(5, 8) = 8
719/// alignTo(17, 8) = 24
720/// alignTo(~0LL, 8) = 0
721/// alignTo(321, 255) = 510
722///
723/// alignTo(5, 8, 7) = 7
724/// alignTo(17, 8, 1) = 17
725/// alignTo(~0LL, 8, 3) = 3
726/// alignTo(321, 255, 42) = 552
727/// \endcode
728inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
729 assert(Align != 0u && "Align can't be 0.")((void)0);
730 Skew %= Align;
731 return (Value + Align - 1 - Skew) / Align * Align + Skew;
732}
733
734/// Returns the next integer (mod 2**64) that is greater than or equal to
735/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
736template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
737 static_assert(Align != 0u, "Align must be non-zero");
738 return (Value + Align - 1) / Align * Align;
739}
740
741/// Returns the integer ceil(Numerator / Denominator).
742inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
743 return alignTo(Numerator, Denominator) / Denominator;
744}
745
746/// Returns the integer nearest(Numerator / Denominator).
747inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) {
748 return (Numerator + (Denominator / 2)) / Denominator;
749}
750
751/// Returns the largest uint64_t less than or equal to \p Value and is
752/// \p Skew mod \p Align. \p Align must be non-zero
753inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
754 assert(Align != 0u && "Align can't be 0.")((void)0);
755 Skew %= Align;
756 return (Value - Skew) / Align * Align + Skew;
757}
758
759/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
760/// Requires 0 < B <= 32.
761template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
762 static_assert(B > 0, "Bit width can't be 0.");
763 static_assert(B <= 32, "Bit width out of range.");
764 return int32_t(X << (32 - B)) >> (32 - B);
765}
766
767/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
768/// Requires 0 < B <= 32.
769inline int32_t SignExtend32(uint32_t X, unsigned B) {
770 assert(B > 0 && "Bit width can't be 0.")((void)0);
771 assert(B <= 32 && "Bit width out of range.")((void)0);
772 return int32_t(X << (32 - B)) >> (32 - B);
773}
774
775/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
776/// Requires 0 < B <= 64.
777template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
778 static_assert(B > 0, "Bit width can't be 0.");
779 static_assert(B <= 64, "Bit width out of range.");
780 return int64_t(x << (64 - B)) >> (64 - B);
781}
782
783/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
784/// Requires 0 < B <= 64.
785inline int64_t SignExtend64(uint64_t X, unsigned B) {
786 assert(B > 0 && "Bit width can't be 0.")((void)0);
787 assert(B <= 64 && "Bit width out of range.")((void)0);
788 return int64_t(X << (64 - B)) >> (64 - B);
789}
790
791/// Subtract two unsigned integers, X and Y, of type T and return the absolute
792/// value of the result.
793template <typename T>
794std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) {
795 return X > Y ? (X - Y) : (Y - X);
796}
797
798/// Add two unsigned integers, X and Y, of type T. Clamp the result to the
799/// maximum representable value of T on overflow. ResultOverflowed indicates if
800/// the result is larger than the maximum representable value of type T.
801template <typename T>
802std::enable_if_t<std::is_unsigned<T>::value, T>
803SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
804 bool Dummy;
805 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
806 // Hacker's Delight, p. 29
807 T Z = X + Y;
808 Overflowed = (Z < X || Z < Y);
809 if (Overflowed)
810 return std::numeric_limits<T>::max();
811 else
812 return Z;
813}
814
815/// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
816/// maximum representable value of T on overflow. ResultOverflowed indicates if
817/// the result is larger than the maximum representable value of type T.
818template <typename T>
819std::enable_if_t<std::is_unsigned<T>::value, T>
820SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
821 bool Dummy;
822 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
823
824 // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
825 // because it fails for uint16_t (where multiplication can have undefined
826 // behavior due to promotion to int), and requires a division in addition
827 // to the multiplication.
828
829 Overflowed = false;
830
831 // Log2(Z) would be either Log2Z or Log2Z + 1.
832 // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
833 // will necessarily be less than Log2Max as desired.
834 int Log2Z = Log2_64(X) + Log2_64(Y);
835 const T Max = std::numeric_limits<T>::max();
836 int Log2Max = Log2_64(Max);
837 if (Log2Z < Log2Max) {
838 return X * Y;
839 }
840 if (Log2Z > Log2Max) {
841 Overflowed = true;
842 return Max;
843 }
844
845 // We're going to use the top bit, and maybe overflow one
846 // bit past it. Multiply all but the bottom bit then add
847 // that on at the end.
848 T Z = (X >> 1) * Y;
849 if (Z & ~(Max >> 1)) {
850 Overflowed = true;
851 return Max;
852 }
853 Z <<= 1;
854 if (X & 1)
855 return SaturatingAdd(Z, Y, ResultOverflowed);
856
857 return Z;
858}
859
860/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
861/// the product. Clamp the result to the maximum representable value of T on
862/// overflow. ResultOverflowed indicates if the result is larger than the
863/// maximum representable value of type T.
864template <typename T>
865std::enable_if_t<std::is_unsigned<T>::value, T>
866SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
867 bool Dummy;
868 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
869
870 T Product = SaturatingMultiply(X, Y, &Overflowed);
871 if (Overflowed)
872 return Product;
873
874 return SaturatingAdd(A, Product, &Overflowed);
875}
876
877/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
878extern const float huge_valf;
879
880
881/// Add two signed integers, computing the two's complement truncated result,
882/// returning true if overflow occured.
883template <typename T>
884std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) {
885#if __has_builtin(__builtin_add_overflow)1
886 return __builtin_add_overflow(X, Y, &Result);
887#else
888 // Perform the unsigned addition.
889 using U = std::make_unsigned_t<T>;
890 const U UX = static_cast<U>(X);
891 const U UY = static_cast<U>(Y);
892 const U UResult = UX + UY;
893
894 // Convert to signed.
895 Result = static_cast<T>(UResult);
896
897 // Adding two positive numbers should result in a positive number.
898 if (X > 0 && Y > 0)
899 return Result <= 0;
900 // Adding two negatives should result in a negative number.
901 if (X < 0 && Y < 0)
902 return Result >= 0;
903 return false;
904#endif
905}
906
907/// Subtract two signed integers, computing the two's complement truncated
908/// result, returning true if an overflow ocurred.
909template <typename T>
910std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) {
911#if __has_builtin(__builtin_sub_overflow)1
912 return __builtin_sub_overflow(X, Y, &Result);
913#else
914 // Perform the unsigned addition.
915 using U = std::make_unsigned_t<T>;
916 const U UX = static_cast<U>(X);
917 const U UY = static_cast<U>(Y);
918 const U UResult = UX - UY;
919
920 // Convert to signed.
921 Result = static_cast<T>(UResult);
922
923 // Subtracting a positive number from a negative results in a negative number.
924 if (X <= 0 && Y > 0)
925 return Result >= 0;
926 // Subtracting a negative number from a positive results in a positive number.
927 if (X >= 0 && Y < 0)
928 return Result <= 0;
929 return false;
930#endif
931}
932
933/// Multiply two signed integers, computing the two's complement truncated
934/// result, returning true if an overflow ocurred.
935template <typename T>
936std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) {
937 // Perform the unsigned multiplication on absolute values.
938 using U = std::make_unsigned_t<T>;
939 const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
940 const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
941 const U UResult = UX * UY;
942
943 // Convert to signed.
944 const bool IsNegative = (X < 0) ^ (Y < 0);
945 Result = IsNegative ? (0 - UResult) : UResult;
946
947 // If any of the args was 0, result is 0 and no overflow occurs.
948 if (UX == 0 || UY == 0)
949 return false;
950
951 // UX and UY are in [1, 2^n], where n is the number of digits.
952 // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
953 // positive) divided by an argument compares to the other.
954 if (IsNegative)
955 return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY;
956 else
957 return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY;
958}
959
960} // End llvm namespace
961
962#endif