Bug Summary

File:src/gnu/lib/libiberty/src/regex.c
Warning:line 5170, column 34
Dereference of null pointer

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name regex.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -fhalf-no-semantic-interposition -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/lib/libiberty/obj -resource-dir /usr/local/lib/clang/13.0.0 -D HAVE_CONFIG_H -I /usr/src/gnu/lib/libiberty/src -I /usr/src/gnu/lib/libiberty/include -I /usr/src/gnu/lib/libiberty/obj -D PIC -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -fdebug-compilation-dir=/usr/src/gnu/lib/libiberty/obj -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c /usr/src/gnu/lib/libiberty/src/regex.c

/usr/src/gnu/lib/libiberty/src/regex.c

1/* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5
6 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
7 2002, 2005 Free Software Foundation, Inc.
8 This file is part of the GNU C Library.
9
10 The GNU C Library is free software; you can redistribute it and/or
11 modify it under the terms of the GNU Lesser General Public
12 License as published by the Free Software Foundation; either
13 version 2.1 of the License, or (at your option) any later version.
14
15 The GNU C Library is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 Lesser General Public License for more details.
19
20 You should have received a copy of the GNU Lesser General Public
21 License along with the GNU C Library; if not, write to the Free
22 Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301 USA. */
24
25/* This file has been modified for usage in libiberty. It includes "xregex.h"
26 instead of <regex.h>. The "xregex.h" header file renames all external
27 routines with an "x" prefix so they do not collide with the native regex
28 routines or with other components regex routines. */
29/* AIX requires this to be the first thing in the file. */
30#if defined _AIX && !defined __GNUC__4 && !defined REGEX_MALLOC
31 #pragma alloca
32#endif
33
34#undef _GNU_SOURCE
35#define _GNU_SOURCE
36
37#ifndef INSIDE_RECURSION
38# ifdef HAVE_CONFIG_H1
39# include <config.h>
40# endif
41#endif
42
43#include <ansidecl.h>
44
45#ifndef INSIDE_RECURSION
46
47# if defined STDC_HEADERS1 && !defined emacs
48# include <stddef.h>
49# else
50/* We need this for `regex.h', and perhaps for the Emacs include files. */
51# include <sys/types.h>
52# endif
53
54# define WIDE_CHAR_SUPPORT(HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC) (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
55
56/* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
58# if defined _LIBC || WIDE_CHAR_SUPPORT(HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
59/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60# include <wchar.h>
61# include <wctype.h>
62# endif
63
64# ifdef _LIBC
65/* We have to keep the namespace clean. */
66# define regfreexregfree(preg) __regfree (preg)
67# define regexecxregexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68# define regcompxregcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69# define regerrorxregerror(errcode, preg, errbuf, errbuf_size) \
70 __regerror(errcode, preg, errbuf, errbuf_size)
71# define re_set_registersxre_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73# define re_match_2xre_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75# define re_matchxre_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77# define re_searchxre_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79# define re_compile_patternxre_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81# define re_set_syntaxxre_set_syntax(syntax) __re_set_syntax (syntax)
82# define re_search_2xre_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84# define re_compile_fastmapxre_compile_fastmap(bufp) __re_compile_fastmap (bufp)
85
86# define btowc __btowc
87
88/* We are also using some library internals. */
89# include <locale/localeinfo.h>
90# include <locale/elem-hash.h>
91# include <langinfo.h>
92# include <locale/coll-lookup.h>
93# endif
94
95/* This is for other GNU distributions with internationalized messages. */
96# if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
97# include <libintl.h>
98# ifdef _LIBC
99# undef gettext
100# define gettext(msgid)(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
101# endif
102# else
103# define gettext(msgid)(msgid) (msgid)
104# endif
105
106# ifndef gettext_noop
107/* This define is so xgettext can find the internationalizable
108 strings. */
109# define gettext_noop(String)String String
110# endif
111
112/* The `emacs' switch turns on certain matching commands
113 that make sense only in Emacs. */
114# ifdef emacs
115
116# include "lisp.h"
117# include "buffer.h"
118# include "syntax.h"
119
120# else /* not emacs */
121
122/* If we are not linking with Emacs proper,
123 we can't use the relocating allocator
124 even if config.h says that we can. */
125# undef REL_ALLOC
126
127# if defined STDC_HEADERS1 || defined _LIBC
128# include <stdlib.h>
129# else
130char *malloc ();
131char *realloc ();
132# endif
133
134/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
135 If nothing else has been done, use the method below. */
136# ifdef INHIBIT_STRING_HEADER
137# if !(defined HAVE_BZERO1 && defined HAVE_BCOPY1)
138# if !defined bzero && !defined bcopy
139# undef INHIBIT_STRING_HEADER
140# endif
141# endif
142# endif
143
144/* This is the normal way of making sure we have a bcopy and a bzero.
145 This is used in most programs--a few other programs avoid this
146 by defining INHIBIT_STRING_HEADER. */
147# ifndef INHIBIT_STRING_HEADER
148# if defined HAVE_STRING_H1 || defined STDC_HEADERS1 || defined _LIBC
149# include <string.h>
150# ifndef bzero
151# ifndef _LIBC
152# define bzero(s, n)(memset (s, '\0', n), (s)) (memset (s, '\0', n), (s))
153# else
154# define bzero(s, n)(memset (s, '\0', n), (s)) __bzero (s, n)
155# endif
156# endif
157# else
158# include <strings.h>
159# ifndef memcmp
160# define memcmp(s1, s2, n) bcmp (s1, s2, n)
161# endif
162# ifndef memcpy
163# define memcpy(d, s, n) (bcopy (s, d, n), (d))
164# endif
165# endif
166# endif
167
168/* Define the syntax stuff for \<, \>, etc. */
169
170/* This must be nonzero for the wordchar and notwordchar pattern
171 commands in re_match_2. */
172# ifndef Sword1
173# define Sword1 1
174# endif
175
176# ifdef SWITCH_ENUM_BUG
177# define SWITCH_ENUM_CAST(x)(x) ((int)(x))
178# else
179# define SWITCH_ENUM_CAST(x)(x) (x)
180# endif
181
182# endif /* not emacs */
183
184# if defined _LIBC || HAVE_LIMITS_H1
185# include <limits.h>
186# endif
187
188# ifndef MB_LEN_MAX4
189# define MB_LEN_MAX4 1
190# endif
191
192/* Get the interface, including the syntax bits. */
193# include "xregex.h" /* change for libiberty */
194
195/* isalpha etc. are used for the character classes. */
196# include <ctype.h>
197
198/* Jim Meyering writes:
199
200 "... Some ctype macros are valid only for character codes that
201 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
202 using /bin/cc or gcc but without giving an ansi option). So, all
203 ctype uses should be through macros like ISPRINT... If
204 STDC_HEADERS is defined, then autoconf has verified that the ctype
205 macros don't need to be guarded with references to isascii. ...
206 Defining isascii to 1 should let any compiler worth its salt
207 eliminate the && through constant folding."
208 Solaris defines some of these symbols so we must undefine them first. */
209
210# undef ISASCII
211# if defined STDC_HEADERS1 || (!defined isascii && !defined HAVE_ISASCII)
212# define ISASCII(c)1 1
213# else
214# define ISASCII(c)1 isascii(c)
215# endif
216
217# ifdef isblank
218# define ISBLANK(c)((c) == ' ' || (c) == '\t') (ISASCII (c)1 && isblank (c))
219# else
220# define ISBLANK(c)((c) == ' ' || (c) == '\t') ((c) == ' ' || (c) == '\t')
221# endif
222# ifdef isgraph
223# define ISGRAPH(c)(1 && isprint (c) && !isspace (c)) (ISASCII (c)1 && isgraph (c))
224# else
225# define ISGRAPH(c)(1 && isprint (c) && !isspace (c)) (ISASCII (c)1 && isprint (c) && !isspace (c))
226# endif
227
228# undef ISPRINT
229# define ISPRINT(c)(1 && isprint (c)) (ISASCII (c)1 && isprint (c))
230# define ISDIGIT(c)(1 && isdigit (c)) (ISASCII (c)1 && isdigit (c))
231# define ISALNUM(c)(1 && isalnum (c)) (ISASCII (c)1 && isalnum (c))
232# define ISALPHA(c)(1 && isalpha (c)) (ISASCII (c)1 && isalpha (c))
233# define ISCNTRL(c)(1 && iscntrl (c)) (ISASCII (c)1 && iscntrl (c))
234# define ISLOWER(c)(1 && islower (c)) (ISASCII (c)1 && islower (c))
235# define ISPUNCT(c)(1 && ispunct (c)) (ISASCII (c)1 && ispunct (c))
236# define ISSPACE(c)(1 && isspace (c)) (ISASCII (c)1 && isspace (c))
237# define ISUPPER(c)(1 && isupper (c)) (ISASCII (c)1 && isupper (c))
238# define ISXDIGIT(c)(1 && isxdigit (c)) (ISASCII (c)1 && isxdigit (c))
239
240# ifdef _tolower
241# define TOLOWER(c)tolower(c) _tolower(c)
242# else
243# define TOLOWER(c)tolower(c) tolower(c)
244# endif
245
246# ifndef NULL((void*)0)
247# define NULL((void*)0) (void *)0
248# endif
249
250/* We remove any previous definition of `SIGN_EXTEND_CHAR',
251 since ours (we hope) works properly with all combinations of
252 machines, compilers, `char' and `unsigned char' argument types.
253 (Per Bothner suggested the basic approach.) */
254# undef SIGN_EXTEND_CHAR
255# if __STDC__1
256# define SIGN_EXTEND_CHAR(c)((signed char) (c)) ((signed char) (c))
257# else /* not __STDC__ */
258/* As in Harbison and Steele. */
259# define SIGN_EXTEND_CHAR(c)((signed char) (c)) ((((unsigned char) (c)) ^ 128) - 128)
260# endif
261
262# ifndef emacs
263/* How many characters in the character set. */
264# define CHAR_SET_SIZE256 256
265
266# ifdef SYNTAX_TABLE
267
268extern char *re_syntax_table;
269
270# else /* not SYNTAX_TABLE */
271
272static char re_syntax_table[CHAR_SET_SIZE256];
273
274static void init_syntax_once (void);
275
276static void
277init_syntax_once (void)
278{
279 register int c;
280 static int done = 0;
281
282 if (done)
283 return;
284 bzero (re_syntax_table, sizeof re_syntax_table)(memset (re_syntax_table, '\0', sizeof re_syntax_table), (re_syntax_table
))
;
285
286 for (c = 0; c < CHAR_SET_SIZE256; ++c)
287 if (ISALNUM (c)(1 && isalnum (c)))
288 re_syntax_table[c] = Sword1;
289
290 re_syntax_table['_'] = Sword1;
291
292 done = 1;
293}
294
295# endif /* not SYNTAX_TABLE */
296
297# define SYNTAX(c)re_syntax_table[(unsigned char) (c)] re_syntax_table[(unsigned char) (c)]
298
299# endif /* emacs */
300
301/* Integer type for pointers. */
302# if !defined _LIBC && !defined HAVE_UINTPTR_T1
303typedef unsigned long int uintptr_t;
304# endif
305
306/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
307 use `alloca' instead of `malloc'. This is because using malloc in
308 re_search* or re_match* could cause memory leaks when C-g is used in
309 Emacs; also, malloc is slower and causes storage fragmentation. On
310 the other hand, malloc is more portable, and easier to debug.
311
312 Because we sometimes use alloca, some routines have to be macros,
313 not functions -- `alloca'-allocated space disappears at the end of the
314 function it is called in. */
315
316# ifdef REGEX_MALLOC
317
318# define REGEX_ALLOCATEalloca malloc
319# define REGEX_REALLOCATE(source, osize, nsize)(destination = (char *) __builtin_alloca(nsize), memcpy (destination
, source, osize))
realloc (source, nsize)
320# define REGEX_FREE free
321
322# else /* not REGEX_MALLOC */
323
324/* Emacs already defines alloca, sometimes. */
325# ifndef alloca
326
327/* Make alloca work the best possible way. */
328# ifdef __GNUC__4
329# define alloca __builtin_alloca
330# else /* not __GNUC__ */
331# if HAVE_ALLOCA_H
332# include <alloca.h>
333# endif /* HAVE_ALLOCA_H */
334# endif /* not __GNUC__ */
335
336# endif /* not alloca */
337
338# define REGEX_ALLOCATEalloca alloca
339
340/* Assumes a `char *destination' variable. */
341# define REGEX_REALLOCATE(source, osize, nsize)(destination = (char *) __builtin_alloca(nsize), memcpy (destination
, source, osize))
\
342 (destination = (char *) alloca (nsize)__builtin_alloca(nsize), \
343 memcpy (destination, source, osize))
344
345/* No need to do anything to free, after alloca. */
346# define REGEX_FREE(arg)((void)0) ((void)0) /* Do nothing! But inhibit gcc warning. */
347
348# endif /* not REGEX_MALLOC */
349
350/* Define how to allocate the failure stack. */
351
352# if defined REL_ALLOC && defined REGEX_MALLOC
353
354# define REGEX_ALLOCATE_STACK(size)__builtin_alloca(size) \
355 r_alloc (&failure_stack_ptr, (size))
356# define REGEX_REALLOCATE_STACK(source, osize, nsize)(destination = (char *) __builtin_alloca(nsize), memcpy (destination
, source, osize))
\
357 r_re_alloc (&failure_stack_ptr, (nsize))
358# define REGEX_FREE_STACK(ptr) \
359 r_alloc_free (&failure_stack_ptr)
360
361# else /* not using relocating allocator */
362
363# ifdef REGEX_MALLOC
364
365# define REGEX_ALLOCATE_STACKalloca malloc
366# define REGEX_REALLOCATE_STACK(source, osize, nsize)(destination = (char *) __builtin_alloca(nsize), memcpy (destination
, source, osize))
realloc (source, nsize)
367# define REGEX_FREE_STACK free
368
369# else /* not REGEX_MALLOC */
370
371# define REGEX_ALLOCATE_STACKalloca alloca
372
373# define REGEX_REALLOCATE_STACK(source, osize, nsize)(destination = (char *) __builtin_alloca(nsize), memcpy (destination
, source, osize))
\
374 REGEX_REALLOCATE (source, osize, nsize)(destination = (char *) __builtin_alloca(nsize), memcpy (destination
, source, osize))
375/* No need to explicitly free anything. */
376# define REGEX_FREE_STACK(arg)
377
378# endif /* not REGEX_MALLOC */
379# endif /* not using relocating allocator */
380
381
382/* True if `size1' is non-NULL and PTR is pointing anywhere inside
383 `string1' or just past its end. This works if PTR is NULL, which is
384 a good thing. */
385# define FIRST_STRING_P(ptr)(size1 && string1 <= (ptr) && (ptr) <= string1
+ size1)
\
386 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
387
388/* (Re)Allocate N items of type T using malloc, or fail. */
389# define TALLOC(n, t)((t *) malloc ((n) * sizeof (t))) ((t *) malloc ((n) * sizeof (t)))
390# define RETALLOC(addr, n, t)((addr) = (t *) realloc (addr, (n) * sizeof (t))) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
391# define RETALLOC_IF(addr, n, t)if (addr) (((addr)) = (t *) realloc ((addr), ((n)) * sizeof (
t))); else (addr) = ((t *) malloc (((n)) * sizeof (t)))
\
392 if (addr) RETALLOC((addr), (n), t)(((addr)) = (t *) realloc ((addr), ((n)) * sizeof (t))); else (addr) = TALLOC ((n), t)((t *) malloc (((n)) * sizeof (t)))
393# define REGEX_TALLOC(n, t)((t *) __builtin_alloca((n) * sizeof (t))) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))__builtin_alloca((n) * sizeof (t)))
394
395# define BYTEWIDTH8 8 /* In bits. */
396
397# define STREQ(s1, s2)((strcmp (s1, s2) == 0)) ((strcmp (s1, s2) == 0))
398
399# undef MAX
400# undef MIN
401# define MAX(a, b)((a) > (b) ? (a) : (b)) ((a) > (b) ? (a) : (b))
402# define MIN(a, b)((a) < (b) ? (a) : (b)) ((a) < (b) ? (a) : (b))
403
404typedef char boolean;
405# define false0 0
406# define true1 1
407
408static reg_errcode_t byte_regex_compile (const char *pattern, size_t size,
409 reg_syntax_t syntax,
410 struct re_pattern_buffer *bufp);
411
412static int byte_re_match_2_internal (struct re_pattern_buffer *bufp,
413 const char *string1, int size1,
414 const char *string2, int size2,
415 int pos,
416 struct re_registers *regs,
417 int stop);
418static int byte_re_search_2 (struct re_pattern_buffer *bufp,
419 const char *string1, int size1,
420 const char *string2, int size2,
421 int startpos, int range,
422 struct re_registers *regs, int stop);
423static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp);
424
425#ifdef MBS_SUPPORT
426static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size,
427 reg_syntax_t syntax,
428 struct re_pattern_buffer *bufp);
429
430
431static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
432 const char *cstring1, int csize1,
433 const char *cstring2, int csize2,
434 int pos,
435 struct re_registers *regs,
436 int stop,
437 wchar_t *string1, int size1,
438 wchar_t *string2, int size2,
439 int *mbs_offset1, int *mbs_offset2);
440static int wcs_re_search_2 (struct re_pattern_buffer *bufp,
441 const char *string1, int size1,
442 const char *string2, int size2,
443 int startpos, int range,
444 struct re_registers *regs, int stop);
445static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp);
446#endif
447
448/* These are the command codes that appear in compiled regular
449 expressions. Some opcodes are followed by argument bytes. A
450 command code can specify any interpretation whatsoever for its
451 arguments. Zero bytes may appear in the compiled regular expression. */
452
453typedef enum
454{
455 no_op = 0,
456
457 /* Succeed right away--no more backtracking. */
458 succeed,
459
460 /* Followed by one byte giving n, then by n literal bytes. */
461 exactn,
462
463# ifdef MBS_SUPPORT
464 /* Same as exactn, but contains binary data. */
465 exactn_bin,
466# endif
467
468 /* Matches any (more or less) character. */
469 anychar,
470
471 /* Matches any one char belonging to specified set. First
472 following byte is number of bitmap bytes. Then come bytes
473 for a bitmap saying which chars are in. Bits in each byte
474 are ordered low-bit-first. A character is in the set if its
475 bit is 1. A character too large to have a bit in the map is
476 automatically not in the set. */
477 /* ifdef MBS_SUPPORT, following element is length of character
478 classes, length of collating symbols, length of equivalence
479 classes, length of character ranges, and length of characters.
480 Next, character class element, collating symbols elements,
481 equivalence class elements, range elements, and character
482 elements follow.
483 See regex_compile function. */
484 charset,
485
486 /* Same parameters as charset, but match any character that is
487 not one of those specified. */
488 charset_not,
489
490 /* Start remembering the text that is matched, for storing in a
491 register. Followed by one byte with the register number, in
492 the range 0 to one less than the pattern buffer's re_nsub
493 field. Then followed by one byte with the number of groups
494 inner to this one. (This last has to be part of the
495 start_memory only because we need it in the on_failure_jump
496 of re_match_2.) */
497 start_memory,
498
499 /* Stop remembering the text that is matched and store it in a
500 memory register. Followed by one byte with the register
501 number, in the range 0 to one less than `re_nsub' in the
502 pattern buffer, and one byte with the number of inner groups,
503 just like `start_memory'. (We need the number of inner
504 groups here because we don't have any easy way of finding the
505 corresponding start_memory when we're at a stop_memory.) */
506 stop_memory,
507
508 /* Match a duplicate of something remembered. Followed by one
509 byte containing the register number. */
510 duplicate,
511
512 /* Fail unless at beginning of line. */
513 begline,
514
515 /* Fail unless at end of line. */
516 endline,
517
518 /* Succeeds if at beginning of buffer (if emacs) or at beginning
519 of string to be matched (if not). */
520 begbuf,
521
522 /* Analogously, for end of buffer/string. */
523 endbuf,
524
525 /* Followed by two byte relative address to which to jump. */
526 jump,
527
528 /* Same as jump, but marks the end of an alternative. */
529 jump_past_alt,
530
531 /* Followed by two-byte relative address of place to resume at
532 in case of failure. */
533 /* ifdef MBS_SUPPORT, the size of address is 1. */
534 on_failure_jump,
535
536 /* Like on_failure_jump, but pushes a placeholder instead of the
537 current string position when executed. */
538 on_failure_keep_string_jump,
539
540 /* Throw away latest failure point and then jump to following
541 two-byte relative address. */
542 /* ifdef MBS_SUPPORT, the size of address is 1. */
543 pop_failure_jump,
544
545 /* Change to pop_failure_jump if know won't have to backtrack to
546 match; otherwise change to jump. This is used to jump
547 back to the beginning of a repeat. If what follows this jump
548 clearly won't match what the repeat does, such that we can be
549 sure that there is no use backtracking out of repetitions
550 already matched, then we change it to a pop_failure_jump.
551 Followed by two-byte address. */
552 /* ifdef MBS_SUPPORT, the size of address is 1. */
553 maybe_pop_jump,
554
555 /* Jump to following two-byte address, and push a dummy failure
556 point. This failure point will be thrown away if an attempt
557 is made to use it for a failure. A `+' construct makes this
558 before the first repeat. Also used as an intermediary kind
559 of jump when compiling an alternative. */
560 /* ifdef MBS_SUPPORT, the size of address is 1. */
561 dummy_failure_jump,
562
563 /* Push a dummy failure point and continue. Used at the end of
564 alternatives. */
565 push_dummy_failure,
566
567 /* Followed by two-byte relative address and two-byte number n.
568 After matching N times, jump to the address upon failure. */
569 /* ifdef MBS_SUPPORT, the size of address is 1. */
570 succeed_n,
571
572 /* Followed by two-byte relative address, and two-byte number n.
573 Jump to the address N times, then fail. */
574 /* ifdef MBS_SUPPORT, the size of address is 1. */
575 jump_n,
576
577 /* Set the following two-byte relative address to the
578 subsequent two-byte number. The address *includes* the two
579 bytes of number. */
580 /* ifdef MBS_SUPPORT, the size of address is 1. */
581 set_number_at,
582
583 wordchar, /* Matches any word-constituent character. */
584 notwordchar, /* Matches any char that is not a word-constituent. */
585
586 wordbeg, /* Succeeds if at word beginning. */
587 wordend, /* Succeeds if at word end. */
588
589 wordbound, /* Succeeds if at a word boundary. */
590 notwordbound /* Succeeds if not at a word boundary. */
591
592# ifdef emacs
593 ,before_dot, /* Succeeds if before point. */
594 at_dot, /* Succeeds if at point. */
595 after_dot, /* Succeeds if after point. */
596
597 /* Matches any character whose syntax is specified. Followed by
598 a byte which contains a syntax code, e.g., Sword. */
599 syntaxspec,
600
601 /* Matches any character whose syntax is not that specified. */
602 notsyntaxspec
603# endif /* emacs */
604} re_opcode_t;
605#endif /* not INSIDE_RECURSION */
606
607
608#ifdef BYTE
609# define CHAR_T char
610# define UCHAR_T unsigned char
611# define COMPILED_BUFFER_VAR bufp->buffer
612# define OFFSET_ADDRESS_SIZE 2
613# define PREFIX(name) byte_##name
614# define ARG_PREFIX(name) name
615# define PUT_CHAR(c) putchar (c)
616#else
617# ifdef WCHAR
618# define CHAR_T wchar_t
619# define UCHAR_T wchar_t
620# define COMPILED_BUFFER_VAR wc_buffer
621# define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
622# define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
623# define PREFIX(name) wcs_##name
624# define ARG_PREFIX(name) c##name
625/* Should we use wide stream?? */
626# define PUT_CHAR(c) printf ("%C", c);
627# define TRUE 1
628# define FALSE 0
629# else
630# ifdef MBS_SUPPORT
631# define WCHAR
632# define INSIDE_RECURSION
633# include "regex.c"
634# undef INSIDE_RECURSION
635# endif
636# define BYTE
637# define INSIDE_RECURSION
638# include "regex.c"
639# undef INSIDE_RECURSION
640# endif
641#endif
642
643#ifdef INSIDE_RECURSION
644/* Common operations on the compiled pattern. */
645
646/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
647/* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
648
649# ifdef WCHAR
650# define STORE_NUMBER(destination, number) \
651 do { \
652 *(destination) = (UCHAR_T)(number); \
653 } while (0)
654# else /* BYTE */
655# define STORE_NUMBER(destination, number) \
656 do { \
657 (destination)[0] = (number) & 0377; \
658 (destination)[1] = (number) >> 8; \
659 } while (0)
660# endif /* WCHAR */
661
662/* Same as STORE_NUMBER, except increment DESTINATION to
663 the byte after where the number is stored. Therefore, DESTINATION
664 must be an lvalue. */
665/* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
666
667# define STORE_NUMBER_AND_INCR(destination, number) \
668 do { \
669 STORE_NUMBER (destination, number); \
670 (destination) += OFFSET_ADDRESS_SIZE; \
671 } while (0)
672
673/* Put into DESTINATION a number stored in two contiguous bytes starting
674 at SOURCE. */
675/* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
676
677# ifdef WCHAR
678# define EXTRACT_NUMBER(destination, source) \
679 do { \
680 (destination) = *(source); \
681 } while (0)
682# else /* BYTE */
683# define EXTRACT_NUMBER(destination, source) \
684 do { \
685 (destination) = *(source) & 0377; \
686 (destination) += SIGN_EXTEND_CHAR (*((source) + 1))((signed char) (*((source) + 1))) << 8; \
687 } while (0)
688# endif
689
690# ifdef DEBUG
691static void PREFIX(extract_number) (int *dest, UCHAR_T *source);
692static void
693PREFIX(extract_number) (int *dest, UCHAR_T *source)
694{
695# ifdef WCHAR
696 *dest = *source;
697# else /* BYTE */
698 int temp = SIGN_EXTEND_CHAR (*(source + 1))((signed char) (*(source + 1)));
699 *dest = *source & 0377;
700 *dest += temp << 8;
701# endif
702}
703
704# ifndef EXTRACT_MACROS /* To debug the macros. */
705# undef EXTRACT_NUMBER
706# define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
707# endif /* not EXTRACT_MACROS */
708
709# endif /* DEBUG */
710
711/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
712 SOURCE must be an lvalue. */
713
714# define EXTRACT_NUMBER_AND_INCR(destination, source) \
715 do { \
716 EXTRACT_NUMBER (destination, source); \
717 (source) += OFFSET_ADDRESS_SIZE; \
718 } while (0)
719
720# ifdef DEBUG
721static void PREFIX(extract_number_and_incr) (int *destination,
722 UCHAR_T **source);
723static void
724PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source)
725{
726 PREFIX(extract_number) (destination, *source);
727 *source += OFFSET_ADDRESS_SIZE;
728}
729
730# ifndef EXTRACT_MACROS
731# undef EXTRACT_NUMBER_AND_INCR
732# define EXTRACT_NUMBER_AND_INCR(dest, src) \
733 PREFIX(extract_number_and_incr) (&dest, &src)
734# endif /* not EXTRACT_MACROS */
735
736# endif /* DEBUG */
737
738
739
740/* If DEBUG is defined, Regex prints many voluminous messages about what
741 it is doing (if the variable `debug' is nonzero). If linked with the
742 main program in `iregex.c', you can enter patterns and strings
743 interactively. And if linked with the main program in `main.c' and
744 the other test files, you can run the already-written tests. */
745
746# ifdef DEBUG
747
748# ifndef DEFINED_ONCE
749
750/* We use standard I/O for debugging. */
751# include <stdio.h>
752
753/* It is useful to test things that ``must'' be true when debugging. */
754# include <assert.h>
755
756static int debug;
757
758# define DEBUG_STATEMENT(e) e
759# define DEBUG_PRINT1(x) if (debug) printf (x)
760# define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
761# define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
762# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
763# endif /* not DEFINED_ONCE */
764
765# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
766 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
767# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
768 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
769
770
771/* Print the fastmap in human-readable form. */
772
773# ifndef DEFINED_ONCE
774void
775print_fastmap (char *fastmap)
776{
777 unsigned was_a_range = 0;
778 unsigned i = 0;
779
780 while (i < (1 << BYTEWIDTH8))
781 {
782 if (fastmap[i++])
783 {
784 was_a_range = 0;
785 putchar (i - 1);
786 while (i < (1 << BYTEWIDTH8) && fastmap[i])
787 {
788 was_a_range = 1;
789 i++;
790 }
791 if (was_a_range)
792 {
793 printf ("-");
794 putchar (i - 1);
795 }
796 }
797 }
798 putchar ('\n');
799}
800# endif /* not DEFINED_ONCE */
801
802
803/* Print a compiled pattern string in human-readable form, starting at
804 the START pointer into it and ending just before the pointer END. */
805
806void
807PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end)
808{
809 int mcnt, mcnt2;
810 UCHAR_T *p1;
811 UCHAR_T *p = start;
812 UCHAR_T *pend = end;
813
814 if (start == NULL((void*)0))
815 {
816 printf ("(null)\n");
817 return;
818 }
819
820 /* Loop over pattern commands. */
821 while (p < pend)
822 {
823# ifdef _LIBC
824 printf ("%td:\t", p - start);
825# else
826 printf ("%ld:\t", (long int) (p - start));
827# endif
828
829 switch ((re_opcode_t) *p++)
830 {
831 case no_op:
832 printf ("/no_op");
833 break;
834
835 case exactn:
836 mcnt = *p++;
837 printf ("/exactn/%d", mcnt);
838 do
839 {
840 putchar ('/');
841 PUT_CHAR (*p++);
842 }
843 while (--mcnt);
844 break;
845
846# ifdef MBS_SUPPORT
847 case exactn_bin:
848 mcnt = *p++;
849 printf ("/exactn_bin/%d", mcnt);
850 do
851 {
852 printf("/%lx", (long int) *p++);
853 }
854 while (--mcnt);
855 break;
856# endif /* MBS_SUPPORT */
857
858 case start_memory:
859 mcnt = *p++;
860 printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
861 break;
862
863 case stop_memory:
864 mcnt = *p++;
865 printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
866 break;
867
868 case duplicate:
869 printf ("/duplicate/%ld", (long int) *p++);
870 break;
871
872 case anychar:
873 printf ("/anychar");
874 break;
875
876 case charset:
877 case charset_not:
878 {
879# ifdef WCHAR
880 int i, length;
881 wchar_t *workp = p;
882 printf ("/charset [%s",
883 (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
884 p += 5;
885 length = *workp++; /* the length of char_classes */
886 for (i=0 ; i<length ; i++)
887 printf("[:%lx:]", (long int) *p++);
888 length = *workp++; /* the length of collating_symbol */
889 for (i=0 ; i<length ;)
890 {
891 printf("[.");
892 while(*p != 0)
893 PUT_CHAR((i++,*p++));
894 i++,p++;
895 printf(".]");
896 }
897 length = *workp++; /* the length of equivalence_class */
898 for (i=0 ; i<length ;)
899 {
900 printf("[=");
901 while(*p != 0)
902 PUT_CHAR((i++,*p++));
903 i++,p++;
904 printf("=]");
905 }
906 length = *workp++; /* the length of char_range */
907 for (i=0 ; i<length ; i++)
908 {
909 wchar_t range_start = *p++;
910 wchar_t range_end = *p++;
911 printf("%C-%C", range_start, range_end);
912 }
913 length = *workp++; /* the length of char */
914 for (i=0 ; i<length ; i++)
915 printf("%C", *p++);
916 putchar (']');
917# else
918 register int c, last = -100;
919 register int in_range = 0;
920
921 printf ("/charset [%s",
922 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
923
924 assert (p + *p < pend);
925
926 for (c = 0; c < 256; c++)
927 if (c / 8 < *p
928 && (p[1 + (c/8)] & (1 << (c % 8))))
929 {
930 /* Are we starting a range? */
931 if (last + 1 == c && ! in_range)
932 {
933 putchar ('-');
934 in_range = 1;
935 }
936 /* Have we broken a range? */
937 else if (last + 1 != c && in_range)
938 {
939 putchar (last);
940 in_range = 0;
941 }
942
943 if (! in_range)
944 putchar (c);
945
946 last = c;
947 }
948
949 if (in_range)
950 putchar (last);
951
952 putchar (']');
953
954 p += 1 + *p;
955# endif /* WCHAR */
956 }
957 break;
958
959 case begline:
960 printf ("/begline");
961 break;
962
963 case endline:
964 printf ("/endline");
965 break;
966
967 case on_failure_jump:
968 PREFIX(extract_number_and_incr) (&mcnt, &p);
969# ifdef _LIBC
970 printf ("/on_failure_jump to %td", p + mcnt - start);
971# else
972 printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
973# endif
974 break;
975
976 case on_failure_keep_string_jump:
977 PREFIX(extract_number_and_incr) (&mcnt, &p);
978# ifdef _LIBC
979 printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
980# else
981 printf ("/on_failure_keep_string_jump to %ld",
982 (long int) (p + mcnt - start));
983# endif
984 break;
985
986 case dummy_failure_jump:
987 PREFIX(extract_number_and_incr) (&mcnt, &p);
988# ifdef _LIBC
989 printf ("/dummy_failure_jump to %td", p + mcnt - start);
990# else
991 printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
992# endif
993 break;
994
995 case push_dummy_failure:
996 printf ("/push_dummy_failure");
997 break;
998
999 case maybe_pop_jump:
1000 PREFIX(extract_number_and_incr) (&mcnt, &p);
1001# ifdef _LIBC
1002 printf ("/maybe_pop_jump to %td", p + mcnt - start);
1003# else
1004 printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1005# endif
1006 break;
1007
1008 case pop_failure_jump:
1009 PREFIX(extract_number_and_incr) (&mcnt, &p);
1010# ifdef _LIBC
1011 printf ("/pop_failure_jump to %td", p + mcnt - start);
1012# else
1013 printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1014# endif
1015 break;
1016
1017 case jump_past_alt:
1018 PREFIX(extract_number_and_incr) (&mcnt, &p);
1019# ifdef _LIBC
1020 printf ("/jump_past_alt to %td", p + mcnt - start);
1021# else
1022 printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1023# endif
1024 break;
1025
1026 case jump:
1027 PREFIX(extract_number_and_incr) (&mcnt, &p);
1028# ifdef _LIBC
1029 printf ("/jump to %td", p + mcnt - start);
1030# else
1031 printf ("/jump to %ld", (long int) (p + mcnt - start));
1032# endif
1033 break;
1034
1035 case succeed_n:
1036 PREFIX(extract_number_and_incr) (&mcnt, &p);
1037 p1 = p + mcnt;
1038 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1039# ifdef _LIBC
1040 printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1041# else
1042 printf ("/succeed_n to %ld, %d times",
1043 (long int) (p1 - start), mcnt2);
1044# endif
1045 break;
1046
1047 case jump_n:
1048 PREFIX(extract_number_and_incr) (&mcnt, &p);
1049 p1 = p + mcnt;
1050 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1051 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1052 break;
1053
1054 case set_number_at:
1055 PREFIX(extract_number_and_incr) (&mcnt, &p);
1056 p1 = p + mcnt;
1057 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1058# ifdef _LIBC
1059 printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1060# else
1061 printf ("/set_number_at location %ld to %d",
1062 (long int) (p1 - start), mcnt2);
1063# endif
1064 break;
1065
1066 case wordbound:
1067 printf ("/wordbound");
1068 break;
1069
1070 case notwordbound:
1071 printf ("/notwordbound");
1072 break;
1073
1074 case wordbeg:
1075 printf ("/wordbeg");
1076 break;
1077
1078 case wordend:
1079 printf ("/wordend");
1080 break;
1081
1082# ifdef emacs
1083 case before_dot:
1084 printf ("/before_dot");
1085 break;
1086
1087 case at_dot:
1088 printf ("/at_dot");
1089 break;
1090
1091 case after_dot:
1092 printf ("/after_dot");
1093 break;
1094
1095 case syntaxspec:
1096 printf ("/syntaxspec");
1097 mcnt = *p++;
1098 printf ("/%d", mcnt);
1099 break;
1100
1101 case notsyntaxspec:
1102 printf ("/notsyntaxspec");
1103 mcnt = *p++;
1104 printf ("/%d", mcnt);
1105 break;
1106# endif /* emacs */
1107
1108 case wordchar:
1109 printf ("/wordchar");
1110 break;
1111
1112 case notwordchar:
1113 printf ("/notwordchar");
1114 break;
1115
1116 case begbuf:
1117 printf ("/begbuf");
1118 break;
1119
1120 case endbuf:
1121 printf ("/endbuf");
1122 break;
1123
1124 default:
1125 printf ("?%ld", (long int) *(p-1));
1126 }
1127
1128 putchar ('\n');
1129 }
1130
1131# ifdef _LIBC
1132 printf ("%td:\tend of pattern.\n", p - start);
1133# else
1134 printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1135# endif
1136}
1137
1138
1139void
1140PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp)
1141{
1142 UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1143
1144 PREFIX(print_partial_compiled_pattern) (buffer, buffer
1145 + bufp->used / sizeof(UCHAR_T));
1146 printf ("%ld bytes used/%ld bytes allocated.\n",
1147 bufp->used, bufp->allocated);
1148
1149 if (bufp->fastmap_accurate && bufp->fastmap)
1150 {
1151 printf ("fastmap: ");
1152 print_fastmap (bufp->fastmap);
1153 }
1154
1155# ifdef _LIBC
1156 printf ("re_nsub: %Zd\t", bufp->re_nsub);
1157# else
1158 printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1159# endif
1160 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1161 printf ("can_be_null: %d\t", bufp->can_be_null);
1162 printf ("newline_anchor: %d\n", bufp->newline_anchor);
1163 printf ("no_sub: %d\t", bufp->no_sub);
1164 printf ("not_bol: %d\t", bufp->not_bol);
1165 printf ("not_eol: %d\t", bufp->not_eol);
1166 printf ("syntax: %lx\n", bufp->syntax);
1167 /* Perhaps we should print the translate table? */
1168}
1169
1170
1171void
1172PREFIX(print_double_string) (const CHAR_T *where, const CHAR_T *string1,
1173 int size1, const CHAR_T *string2, int size2)
1174{
1175 int this_char;
1176
1177 if (where == NULL((void*)0))
1178 printf ("(null)");
1179 else
1180 {
1181 int cnt;
1182
1183 if (FIRST_STRING_P (where)(size1 && string1 <= (where) && (where) <=
string1 + size1)
)
1184 {
1185 for (this_char = where - string1; this_char < size1; this_char++)
1186 PUT_CHAR (string1[this_char]);
1187
1188 where = string2;
1189 }
1190
1191 cnt = 0;
1192 for (this_char = where - string2; this_char < size2; this_char++)
1193 {
1194 PUT_CHAR (string2[this_char]);
1195 if (++cnt > 100)
1196 {
1197 fputs ("...", stdout);
1198 break;
1199 }
1200 }
1201 }
1202}
1203
1204# ifndef DEFINED_ONCE
1205void
1206printchar (int c)
1207{
1208 putc (c, stderr);
1209}
1210# endif
1211
1212# else /* not DEBUG */
1213
1214# ifndef DEFINED_ONCE
1215# undef assert
1216# define assert(e)
1217
1218# define DEBUG_STATEMENT(e)
1219# define DEBUG_PRINT1(x)
1220# define DEBUG_PRINT2(x1, x2)
1221# define DEBUG_PRINT3(x1, x2, x3)
1222# define DEBUG_PRINT4(x1, x2, x3, x4)
1223# endif /* not DEFINED_ONCE */
1224# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1225# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1226
1227# endif /* not DEBUG */
1228
1229
1230
1231# ifdef WCHAR
1232/* This convert a multibyte string to a wide character string.
1233 And write their correspondances to offset_buffer(see below)
1234 and write whether each wchar_t is binary data to is_binary.
1235 This assume invalid multibyte sequences as binary data.
1236 We assume offset_buffer and is_binary is already allocated
1237 enough space. */
1238
1239static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1240 size_t len, int *offset_buffer,
1241 char *is_binary);
1242static size_t
1243convert_mbs_to_wcs (CHAR_T *dest, const unsigned char*src, size_t len,
1244 int *offset_buffer, char *is_binary)
1245 /* It hold correspondances between src(char string) and
1246 dest(wchar_t string) for optimization.
1247 e.g. src = "xxxyzz"
1248 dest = {'X', 'Y', 'Z'}
1249 (each "xxx", "y" and "zz" represent one multibyte character
1250 corresponding to 'X', 'Y' and 'Z'.)
1251 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1252 = {0, 3, 4, 6}
1253 */
1254{
1255 wchar_t *pdest = dest;
1256 const unsigned char *psrc = src;
1257 size_t wc_count = 0;
1258
1259 mbstate_t mbs;
1260 int i, consumed;
1261 size_t mb_remain = len;
1262 size_t mb_count = 0;
1263
1264 /* Initialize the conversion state. */
1265 memset (&mbs, 0, sizeof (mbstate_t));
1266
1267 offset_buffer[0] = 0;
1268 for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1269 psrc += consumed)
1270 {
1271#ifdef _LIBC
1272 consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1273#else
1274 consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1275#endif
1276
1277 if (consumed <= 0)
1278 /* failed to convert. maybe src contains binary data.
1279 So we consume 1 byte manualy. */
1280 {
1281 *pdest = *psrc;
1282 consumed = 1;
1283 is_binary[wc_count] = TRUE;
1284 }
1285 else
1286 is_binary[wc_count] = FALSE;
1287 /* In sjis encoding, we use yen sign as escape character in
1288 place of reverse solidus. So we convert 0x5c(yen sign in
1289 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1290 solidus in UCS2). */
1291 if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1292 *pdest = (wchar_t) *psrc;
1293
1294 offset_buffer[wc_count + 1] = mb_count += consumed;
1295 }
1296
1297 /* Fill remain of the buffer with sentinel. */
1298 for (i = wc_count + 1 ; i <= len ; i++)
1299 offset_buffer[i] = mb_count + 1;
1300
1301 return wc_count;
1302}
1303
1304# endif /* WCHAR */
1305
1306#else /* not INSIDE_RECURSION */
1307
1308/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1309 also be assigned to arbitrarily: each pattern buffer stores its own
1310 syntax, so it can be changed between regex compilations. */
1311/* This has no initializer because initialized variables in Emacs
1312 become read-only after dumping. */
1313reg_syntax_t re_syntax_optionsxre_syntax_options;
1314
1315
1316/* Specify the precise syntax of regexps for compilation. This provides
1317 for compatibility for various utilities which historically have
1318 different, incompatible syntaxes.
1319
1320 The argument SYNTAX is a bit mask comprised of the various bits
1321 defined in regex.h. We return the old syntax. */
1322
1323reg_syntax_t
1324re_set_syntaxxre_set_syntax (reg_syntax_t syntax)
1325{
1326 reg_syntax_t ret = re_syntax_optionsxre_syntax_options;
1327
1328 re_syntax_optionsxre_syntax_options = syntax;
1329# ifdef DEBUG
1330 if (syntax & RE_DEBUG((((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1)
)
1331 debug = 1;
1332 else if (debug) /* was on but now is not */
1333 debug = 0;
1334# endif /* DEBUG */
1335 return ret;
1336}
1337# ifdef _LIBC
1338weak_alias (__re_set_syntax, re_set_syntaxxre_set_syntax)
1339# endif
1340
1341/* This table gives an error message for each of the error codes listed
1342 in regex.h. Obviously the order here has to be same as there.
1343 POSIX doesn't require that we do anything for REG_NOERROR,
1344 but why not be nice? */
1345
1346static const char *re_error_msgid[] =
1347 {
1348 gettext_noop ("Success")"Success", /* REG_NOERROR */
1349 gettext_noop ("No match")"No match", /* REG_NOMATCH */
1350 gettext_noop ("Invalid regular expression")"Invalid regular expression", /* REG_BADPAT */
1351 gettext_noop ("Invalid collation character")"Invalid collation character", /* REG_ECOLLATE */
1352 gettext_noop ("Invalid character class name")"Invalid character class name", /* REG_ECTYPE */
1353 gettext_noop ("Trailing backslash")"Trailing backslash", /* REG_EESCAPE */
1354 gettext_noop ("Invalid back reference")"Invalid back reference", /* REG_ESUBREG */
1355 gettext_noop ("Unmatched [ or [^")"Unmatched [ or [^", /* REG_EBRACK */
1356 gettext_noop ("Unmatched ( or \\(")"Unmatched ( or \\(", /* REG_EPAREN */
1357 gettext_noop ("Unmatched \\{")"Unmatched \\{", /* REG_EBRACE */
1358 gettext_noop ("Invalid content of \\{\\}")"Invalid content of \\{\\}", /* REG_BADBR */
1359 gettext_noop ("Invalid range end")"Invalid range end", /* REG_ERANGE */
1360 gettext_noop ("Memory exhausted")"Memory exhausted", /* REG_ESPACE */
1361 gettext_noop ("Invalid preceding regular expression")"Invalid preceding regular expression", /* REG_BADRPT */
1362 gettext_noop ("Premature end of regular expression")"Premature end of regular expression", /* REG_EEND */
1363 gettext_noop ("Regular expression too big")"Regular expression too big", /* REG_ESIZE */
1364 gettext_noop ("Unmatched ) or \\)")"Unmatched ) or \\)" /* REG_ERPAREN */
1365 };
1366
1367#endif /* INSIDE_RECURSION */
1368
1369#ifndef DEFINED_ONCE
1370/* Avoiding alloca during matching, to placate r_alloc. */
1371
1372/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1373 searching and matching functions should not call alloca. On some
1374 systems, alloca is implemented in terms of malloc, and if we're
1375 using the relocating allocator routines, then malloc could cause a
1376 relocation, which might (if the strings being searched are in the
1377 ralloc heap) shift the data out from underneath the regexp
1378 routines.
1379
1380 Here's another reason to avoid allocation: Emacs
1381 processes input from X in a signal handler; processing X input may
1382 call malloc; if input arrives while a matching routine is calling
1383 malloc, then we're scrod. But Emacs can't just block input while
1384 calling matching routines; then we don't notice interrupts when
1385 they come in. So, Emacs blocks input around all regexp calls
1386 except the matching calls, which it leaves unprotected, in the
1387 faith that they will not malloc. */
1388
1389/* Normally, this is fine. */
1390# define MATCH_MAY_ALLOCATE
1391
1392/* When using GNU C, we are not REALLY using the C alloca, no matter
1393 what config.h may say. So don't take precautions for it. */
1394# ifdef __GNUC__4
1395# undef C_ALLOCA
1396# endif
1397
1398/* The match routines may not allocate if (1) they would do it with malloc
1399 and (2) it's not safe for them to use malloc.
1400 Note that if REL_ALLOC is defined, matching would not use malloc for the
1401 failure stack, but we would still use it for the register vectors;
1402 so REL_ALLOC should not affect this. */
1403# if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1404# undef MATCH_MAY_ALLOCATE
1405# endif
1406#endif /* not DEFINED_ONCE */
1407
1408#ifdef INSIDE_RECURSION
1409/* Failure stack declarations and macros; both re_compile_fastmap and
1410 re_match_2 use a failure stack. These have to be macros because of
1411 REGEX_ALLOCATE_STACK. */
1412
1413
1414/* Number of failure points for which to initially allocate space
1415 when matching. If this number is exceeded, we allocate more
1416 space, so it is not a hard limit. */
1417# ifndef INIT_FAILURE_ALLOC5
1418# define INIT_FAILURE_ALLOC5 5
1419# endif
1420
1421/* Roughly the maximum number of failure points on the stack. Would be
1422 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1423 This is a variable only so users of regex can assign to it; we never
1424 change it ourselves. */
1425
1426# ifdef INT_IS_16BIT
1427
1428# ifndef DEFINED_ONCE
1429# if defined MATCH_MAY_ALLOCATE
1430/* 4400 was enough to cause a crash on Alpha OSF/1,
1431 whose default stack limit is 2mb. */
1432long int re_max_failuresxre_max_failures = 4000;
1433# else
1434long int re_max_failuresxre_max_failures = 2000;
1435# endif
1436# endif
1437
1438union PREFIX(fail_stack_elt)
1439{
1440 UCHAR_T *pointer;
1441 long int integer;
1442};
1443
1444typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1445
1446typedef struct
1447{
1448 PREFIX(fail_stack_elt_t) *stack;
1449 unsigned long int size;
1450 unsigned long int avail; /* Offset of next open position. */
1451} PREFIX(fail_stack_type);
1452
1453# else /* not INT_IS_16BIT */
1454
1455# ifndef DEFINED_ONCE
1456# if defined MATCH_MAY_ALLOCATE
1457/* 4400 was enough to cause a crash on Alpha OSF/1,
1458 whose default stack limit is 2mb. */
1459int re_max_failuresxre_max_failures = 4000;
1460# else
1461int re_max_failuresxre_max_failures = 2000;
1462# endif
1463# endif
1464
1465union PREFIX(fail_stack_elt)
1466{
1467 UCHAR_T *pointer;
1468 int integer;
1469};
1470
1471typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1472
1473typedef struct
1474{
1475 PREFIX(fail_stack_elt_t) *stack;
1476 unsigned size;
1477 unsigned avail; /* Offset of next open position. */
1478} PREFIX(fail_stack_type);
1479
1480# endif /* INT_IS_16BIT */
1481
1482# ifndef DEFINED_ONCE
1483# define FAIL_STACK_EMPTY()(fail_stack.avail == 0) (fail_stack.avail == 0)
1484# define FAIL_STACK_PTR_EMPTY()(fail_stack_ptr->avail == 0) (fail_stack_ptr->avail == 0)
1485# define FAIL_STACK_FULL()(fail_stack.avail == fail_stack.size) (fail_stack.avail == fail_stack.size)
1486# endif
1487
1488
1489/* Define macros to initialize and free the failure stack.
1490 Do `return -2' if the alloc fails. */
1491
1492# ifdef MATCH_MAY_ALLOCATE
1493# define INIT_FAIL_STACK() \
1494 do { \
1495 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1496 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t)))__builtin_alloca(5 * sizeof (PREFIX(fail_stack_elt_t))); \
1497 \
1498 if (fail_stack.stack == NULL((void*)0)) \
1499 return -2; \
1500 \
1501 fail_stack.size = INIT_FAILURE_ALLOC5; \
1502 fail_stack.avail = 0; \
1503 } while (0)
1504
1505# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1506# else
1507# define INIT_FAIL_STACK() \
1508 do { \
1509 fail_stack.avail = 0; \
1510 } while (0)
1511
1512# define RESET_FAIL_STACK()
1513# endif
1514
1515
1516/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1517
1518 Return 1 if succeeds, and 0 if either ran out of memory
1519 allocating space for it or it was already too large.
1520
1521 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1522
1523# define DOUBLE_FAIL_STACK(fail_stack) \
1524 ((fail_stack).size > (unsigned) (re_max_failuresxre_max_failures * MAX_FAILURE_ITEMS(5 * 3 + 4)) \
1525 ? 0 \
1526 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1527 REGEX_REALLOCATE_STACK ((fail_stack).stack, \(destination = (char *) __builtin_alloca(((fail_stack).size <<
1) * sizeof (PREFIX(fail_stack_elt_t))), memcpy (destination
, (fail_stack).stack, (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t
))))
1528 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \(destination = (char *) __builtin_alloca(((fail_stack).size <<
1) * sizeof (PREFIX(fail_stack_elt_t))), memcpy (destination
, (fail_stack).stack, (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t
))))
1529 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t)))(destination = (char *) __builtin_alloca(((fail_stack).size <<
1) * sizeof (PREFIX(fail_stack_elt_t))), memcpy (destination
, (fail_stack).stack, (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t
))))
,\
1530 \
1531 (fail_stack).stack == NULL((void*)0) \
1532 ? 0 \
1533 : ((fail_stack).size <<= 1, \
1534 1)))
1535
1536
1537/* Push pointer POINTER on FAIL_STACK.
1538 Return 1 if was able to do so and 0 if ran out of memory allocating
1539 space to do so. */
1540# define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1541 ((FAIL_STACK_FULL ()(fail_stack.avail == fail_stack.size) \
1542 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1543 ? 0 \
1544 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1545 1))
1546
1547/* Push a pointer value onto the failure stack.
1548 Assumes the variable `fail_stack'. Probably should only
1549 be called from within `PUSH_FAILURE_POINT'. */
1550# define PUSH_FAILURE_POINTER(item) \
1551 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1552
1553/* This pushes an integer-valued item onto the failure stack.
1554 Assumes the variable `fail_stack'. Probably should only
1555 be called from within `PUSH_FAILURE_POINT'. */
1556# define PUSH_FAILURE_INT(item) \
1557 fail_stack.stack[fail_stack.avail++].integer = (item)
1558
1559/* Push a fail_stack_elt_t value onto the failure stack.
1560 Assumes the variable `fail_stack'. Probably should only
1561 be called from within `PUSH_FAILURE_POINT'. */
1562# define PUSH_FAILURE_ELT(item) \
1563 fail_stack.stack[fail_stack.avail++] = (item)
1564
1565/* These three POP... operations complement the three PUSH... operations.
1566 All assume that `fail_stack' is nonempty. */
1567# define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1568# define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1569# define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1570
1571/* Used to omit pushing failure point id's when we're not debugging. */
1572# ifdef DEBUG
1573# define DEBUG_PUSH PUSH_FAILURE_INT
1574# define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1575# else
1576# define DEBUG_PUSH(item)
1577# define DEBUG_POP(item_addr)
1578# endif
1579
1580
1581/* Push the information about the state we will need
1582 if we ever fail back to it.
1583
1584 Requires variables fail_stack, regstart, regend, reg_info, and
1585 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1586 be declared.
1587
1588 Does `return FAILURE_CODE' if runs out of memory. */
1589
1590# define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1591 do { \
1592 char *destination; \
1593 /* Must be int, so when we don't save any registers, the arithmetic \
1594 of 0 + -1 isn't done as unsigned. */ \
1595 /* Can't be int, since there is not a shred of a guarantee that int \
1596 is wide enough to hold a value of something to which pointer can \
1597 be assigned */ \
1598 active_reg_t this_reg; \
1599 \
1600 DEBUG_STATEMENT (failure_id++); \
1601 DEBUG_STATEMENT (nfailure_points_pushed++); \
1602 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1603 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1604 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1605 \
1606 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1607 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1608 \
1609 /* Ensure we have enough space allocated for what we will push. */ \
1610 while (REMAINING_AVAIL_SLOTS((fail_stack).size - (fail_stack).avail) < NUM_FAILURE_ITEMS(((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) +
4)
) \
1611 { \
1612 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1613 return failure_code; \
1614 \
1615 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1616 (fail_stack).size); \
1617 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1618 } \
1619 \
1620 /* Push the info, starting with the registers. */ \
1621 DEBUG_PRINT1 ("\n"); \
1622 \
1623 if (1) \
1624 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1625 this_reg++) \
1626 { \
1627 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1628 DEBUG_STATEMENT (num_regs_pushed++); \
1629 \
1630 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1631 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1632 \
1633 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1634 PUSH_FAILURE_POINTER (regend[this_reg]); \
1635 \
1636 DEBUG_PRINT2 (" info: %p\n ", \
1637 reg_info[this_reg].word.pointer); \
1638 DEBUG_PRINT2 (" match_null=%d", \
1639 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1640 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1641 DEBUG_PRINT2 (" matched_something=%d", \
1642 MATCHED_SOMETHING (reg_info[this_reg])); \
1643 DEBUG_PRINT2 (" ever_matched=%d", \
1644 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1645 DEBUG_PRINT1 ("\n"); \
1646 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1647 } \
1648 \
1649 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1650 PUSH_FAILURE_INT (lowest_active_reg); \
1651 \
1652 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1653 PUSH_FAILURE_INT (highest_active_reg); \
1654 \
1655 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1656 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1657 PUSH_FAILURE_POINTER (pattern_place); \
1658 \
1659 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1660 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1661 size2); \
1662 DEBUG_PRINT1 ("'\n"); \
1663 PUSH_FAILURE_POINTER (string_place); \
1664 \
1665 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1666 DEBUG_PUSH (failure_id); \
1667 } while (0)
1668
1669# ifndef DEFINED_ONCE
1670/* This is the number of items that are pushed and popped on the stack
1671 for each register. */
1672# define NUM_REG_ITEMS3 3
1673
1674/* Individual items aside from the registers. */
1675# ifdef DEBUG
1676# define NUM_NONREG_ITEMS4 5 /* Includes failure point id. */
1677# else
1678# define NUM_NONREG_ITEMS4 4
1679# endif
1680
1681/* We push at most this many items on the stack. */
1682/* We used to use (num_regs - 1), which is the number of registers
1683 this regexp will save; but that was changed to 5
1684 to avoid stack overflow for a regexp with lots of parens. */
1685# define MAX_FAILURE_ITEMS(5 * 3 + 4) (5 * NUM_REG_ITEMS3 + NUM_NONREG_ITEMS4)
1686
1687/* We actually push this many items. */
1688# define NUM_FAILURE_ITEMS(((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) +
4)
\
1689 (((0 \
1690 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1691 * NUM_REG_ITEMS3) \
1692 + NUM_NONREG_ITEMS4)
1693
1694/* How many items can still be added to the stack without overflowing it. */
1695# define REMAINING_AVAIL_SLOTS((fail_stack).size - (fail_stack).avail) ((fail_stack).size - (fail_stack).avail)
1696# endif /* not DEFINED_ONCE */
1697
1698
1699/* Pops what PUSH_FAIL_STACK pushes.
1700
1701 We restore into the parameters, all of which should be lvalues:
1702 STR -- the saved data position.
1703 PAT -- the saved pattern position.
1704 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1705 REGSTART, REGEND -- arrays of string positions.
1706 REG_INFO -- array of information about each subexpression.
1707
1708 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1709 `pend', `string1', `size1', `string2', and `size2'. */
1710# define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1711{ \
1712 DEBUG_STATEMENT (unsigned failure_id;) \
1713 active_reg_t this_reg; \
1714 const UCHAR_T *string_temp; \
1715 \
1716 assert (!FAIL_STACK_EMPTY ()); \
1717 \
1718 /* Remove failure points and point to how many regs pushed. */ \
1719 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1720 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1721 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1722 \
1723 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1724 \
1725 DEBUG_POP (&failure_id); \
1726 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1727 \
1728 /* If the saved string location is NULL, it came from an \
1729 on_failure_keep_string_jump opcode, and we want to throw away the \
1730 saved NULL, thus retaining our current position in the string. */ \
1731 string_temp = POP_FAILURE_POINTER (); \
1732 if (string_temp != NULL((void*)0)) \
1733 str = (const CHAR_T *) string_temp; \
1734 \
1735 DEBUG_PRINT2 (" Popping string %p: `", str); \
1736 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1737 DEBUG_PRINT1 ("'\n"); \
1738 \
1739 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1740 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1741 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1742 \
1743 /* Restore register info. */ \
1744 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1745 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1746 \
1747 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1748 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1749 \
1750 if (1) \
1751 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1752 { \
1753 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1754 \
1755 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1756 DEBUG_PRINT2 (" info: %p\n", \
1757 reg_info[this_reg].word.pointer); \
1758 \
1759 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1760 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1761 \
1762 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1763 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1764 } \
1765 else \
1766 { \
1767 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1768 { \
1769 reg_info[this_reg].word.integer = 0; \
1770 regend[this_reg] = 0; \
1771 regstart[this_reg] = 0; \
1772 } \
1773 highest_active_reg = high_reg; \
1774 } \
1775 \
1776 set_regs_matched_done = 0; \
1777 DEBUG_STATEMENT (nfailure_points_popped++); \
1778} /* POP_FAILURE_POINT */
1779
1780/* Structure for per-register (a.k.a. per-group) information.
1781 Other register information, such as the
1782 starting and ending positions (which are addresses), and the list of
1783 inner groups (which is a bits list) are maintained in separate
1784 variables.
1785
1786 We are making a (strictly speaking) nonportable assumption here: that
1787 the compiler will pack our bit fields into something that fits into
1788 the type of `word', i.e., is something that fits into one item on the
1789 failure stack. */
1790
1791
1792/* Declarations and macros for re_match_2. */
1793
1794typedef union
1795{
1796 PREFIX(fail_stack_elt_t) word;
1797 struct
1798 {
1799 /* This field is one if this group can match the empty string,
1800 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1801# define MATCH_NULL_UNSET_VALUE3 3
1802 unsigned match_null_string_p : 2;
1803 unsigned is_active : 1;
1804 unsigned matched_something : 1;
1805 unsigned ever_matched_something : 1;
1806 } bits;
1807} PREFIX(register_info_type);
1808
1809# ifndef DEFINED_ONCE
1810# define REG_MATCH_NULL_STRING_P(R)((R).bits.match_null_string_p) ((R).bits.match_null_string_p)
1811# define IS_ACTIVE(R)((R).bits.is_active) ((R).bits.is_active)
1812# define MATCHED_SOMETHING(R)((R).bits.matched_something) ((R).bits.matched_something)
1813# define EVER_MATCHED_SOMETHING(R)((R).bits.ever_matched_something) ((R).bits.ever_matched_something)
1814
1815
1816/* Call this when have matched a real character; it sets `matched' flags
1817 for the subexpressions which we are currently inside. Also records
1818 that those subexprs have matched. */
1819# define SET_REGS_MATCHED()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
\
1820 do \
1821 { \
1822 if (!set_regs_matched_done) \
1823 { \
1824 active_reg_t r; \
1825 set_regs_matched_done = 1; \
1826 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1827 { \
1828 MATCHED_SOMETHING (reg_info[r])((reg_info[r]).bits.matched_something) \
1829 = EVER_MATCHED_SOMETHING (reg_info[r])((reg_info[r]).bits.ever_matched_something) \
1830 = 1; \
1831 } \
1832 } \
1833 } \
1834 while (0)
1835# endif /* not DEFINED_ONCE */
1836
1837/* Registers are set to a sentinel when they haven't yet matched. */
1838static CHAR_T PREFIX(reg_unset_dummy);
1839# define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1840# define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1841
1842/* Subroutine declarations and macros for regex_compile. */
1843static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg);
1844static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc,
1845 int arg1, int arg2);
1846static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc,
1847 int arg, UCHAR_T *end);
1848static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc,
1849 int arg1, int arg2, UCHAR_T *end);
1850static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern,
1851 const CHAR_T *p,
1852 reg_syntax_t syntax);
1853static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p,
1854 const CHAR_T *pend,
1855 reg_syntax_t syntax);
1856# ifdef WCHAR
1857static reg_errcode_t wcs_compile_range (CHAR_T range_start,
1858 const CHAR_T **p_ptr,
1859 const CHAR_T *pend,
1860 char *translate,
1861 reg_syntax_t syntax,
1862 UCHAR_T *b,
1863 CHAR_T *char_set);
1864static void insert_space (int num, CHAR_T *loc, CHAR_T *end);
1865# else /* BYTE */
1866static reg_errcode_t byte_compile_range (unsigned int range_start,
1867 const char **p_ptr,
1868 const char *pend,
1869 char *translate,
1870 reg_syntax_t syntax,
1871 unsigned char *b);
1872# endif /* WCHAR */
1873
1874/* Fetch the next character in the uncompiled pattern---translating it
1875 if necessary. Also cast from a signed character in the constant
1876 string passed to us by the user to an unsigned char that we can use
1877 as an array index (in, e.g., `translate'). */
1878/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1879 because it is impossible to allocate 4GB array for some encodings
1880 which have 4 byte character_set like UCS4. */
1881# ifndef PATFETCH
1882# ifdef WCHAR
1883# define PATFETCH(c) \
1884 do {if (p == pend) return REG_EEND; \
1885 c = (UCHAR_T) *p++; \
1886 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1887 } while (0)
1888# else /* BYTE */
1889# define PATFETCH(c) \
1890 do {if (p == pend) return REG_EEND; \
1891 c = (unsigned char) *p++; \
1892 if (translate) c = (unsigned char) translate[c]; \
1893 } while (0)
1894# endif /* WCHAR */
1895# endif
1896
1897/* Fetch the next character in the uncompiled pattern, with no
1898 translation. */
1899# define PATFETCH_RAW(c) \
1900 do {if (p == pend) return REG_EEND; \
1901 c = (UCHAR_T) *p++; \
1902 } while (0)
1903
1904/* Go backwards one character in the pattern. */
1905# define PATUNFETCH p--
1906
1907
1908/* If `translate' is non-null, return translate[D], else just D. We
1909 cast the subscript to translate because some data is declared as
1910 `char *', to avoid warnings when a string constant is passed. But
1911 when we use a character as a subscript we must make it unsigned. */
1912/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1913 because it is impossible to allocate 4GB array for some encodings
1914 which have 4 byte character_set like UCS4. */
1915
1916# ifndef TRANSLATE
1917# ifdef WCHAR
1918# define TRANSLATE(d) \
1919 ((translate && ((UCHAR_T) (d)) <= 0xff) \
1920 ? (char) translate[(unsigned char) (d)] : (d))
1921# else /* BYTE */
1922# define TRANSLATE(d) \
1923 (translate ? (char) translate[(unsigned char) (d)] : (char) (d))
1924# endif /* WCHAR */
1925# endif
1926
1927
1928/* Macros for outputting the compiled pattern into `buffer'. */
1929
1930/* If the buffer isn't allocated when it comes in, use this. */
1931# define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
1932
1933/* Make sure we have at least N more bytes of space in buffer. */
1934# ifdef WCHAR
1935# define GET_BUFFER_SPACE(n) \
1936 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
1937 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
1938 EXTEND_BUFFER ()
1939# else /* BYTE */
1940# define GET_BUFFER_SPACE(n) \
1941 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1942 EXTEND_BUFFER ()
1943# endif /* WCHAR */
1944
1945/* Make sure we have one more byte of buffer space and then add C to it. */
1946# define BUF_PUSH(c) \
1947 do { \
1948 GET_BUFFER_SPACE (1); \
1949 *b++ = (UCHAR_T) (c); \
1950 } while (0)
1951
1952
1953/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1954# define BUF_PUSH_2(c1, c2) \
1955 do { \
1956 GET_BUFFER_SPACE (2); \
1957 *b++ = (UCHAR_T) (c1); \
1958 *b++ = (UCHAR_T) (c2); \
1959 } while (0)
1960
1961
1962/* As with BUF_PUSH_2, except for three bytes. */
1963# define BUF_PUSH_3(c1, c2, c3) \
1964 do { \
1965 GET_BUFFER_SPACE (3); \
1966 *b++ = (UCHAR_T) (c1); \
1967 *b++ = (UCHAR_T) (c2); \
1968 *b++ = (UCHAR_T) (c3); \
1969 } while (0)
1970
1971/* Store a jump with opcode OP at LOC to location TO. We store a
1972 relative address offset by the three bytes the jump itself occupies. */
1973# define STORE_JUMP(op, loc, to) \
1974 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1975
1976/* Likewise, for a two-argument jump. */
1977# define STORE_JUMP2(op, loc, to, arg) \
1978 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1979
1980/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1981# define INSERT_JUMP(op, loc, to) \
1982 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1983
1984/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1985# define INSERT_JUMP2(op, loc, to, arg) \
1986 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1987 arg, b)
1988
1989/* This is not an arbitrary limit: the arguments which represent offsets
1990 into the pattern are two bytes long. So if 2^16 bytes turns out to
1991 be too small, many things would have to change. */
1992/* Any other compiler which, like MSC, has allocation limit below 2^16
1993 bytes will have to use approach similar to what was done below for
1994 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1995 reallocating to 0 bytes. Such thing is not going to work too well.
1996 You have been warned!! */
1997# ifndef DEFINED_ONCE
1998# if defined _MSC_VER && !defined WIN32
1999/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2000 The REALLOC define eliminates a flurry of conversion warnings,
2001 but is not required. */
2002# define MAX_BUF_SIZE(1L << 16) 65500L
2003# define REALLOC(p,s)realloc ((p), (s)) realloc ((p), (size_t) (s))
2004# else
2005# define MAX_BUF_SIZE(1L << 16) (1L << 16)
2006# define REALLOC(p,s)realloc ((p), (s)) realloc ((p), (s))
2007# endif
2008
2009/* Extend the buffer by twice its current size via realloc and
2010 reset the pointers that pointed into the old block to point to the
2011 correct places in the new one. If extending the buffer results in it
2012 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2013# if __BOUNDED_POINTERS__
2014# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2015# define MOVE_BUFFER_POINTER(P)(P) += incr \
2016 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2017# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2018 else \
2019 { \
2020 SET_HIGH_BOUND (b); \
2021 SET_HIGH_BOUND (begalt); \
2022 if (fixup_alt_jump) \
2023 SET_HIGH_BOUND (fixup_alt_jump); \
2024 if (laststart) \
2025 SET_HIGH_BOUND (laststart); \
2026 if (pending_exact) \
2027 SET_HIGH_BOUND (pending_exact); \
2028 }
2029# else
2030# define MOVE_BUFFER_POINTER(P)(P) += incr (P) += incr
2031# define ELSE_EXTEND_BUFFER_HIGH_BOUND
2032# endif
2033# endif /* not DEFINED_ONCE */
2034
2035# ifdef WCHAR
2036# define EXTEND_BUFFER() \
2037 do { \
2038 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2039 int wchar_count; \
2040 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE(1L << 16)) \
2041 return REG_ESIZE; \
2042 bufp->allocated <<= 1; \
2043 if (bufp->allocated > MAX_BUF_SIZE(1L << 16)) \
2044 bufp->allocated = MAX_BUF_SIZE(1L << 16); \
2045 /* How many characters the new buffer can have? */ \
2046 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2047 if (wchar_count == 0) wchar_count = 1; \
2048 /* Truncate the buffer to CHAR_T align. */ \
2049 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2050 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T)((COMPILED_BUFFER_VAR) = (UCHAR_T *) realloc (COMPILED_BUFFER_VAR
, (wchar_count) * sizeof (UCHAR_T)))
; \
2051 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2052 if (COMPILED_BUFFER_VAR == NULL((void*)0)) \
2053 return REG_ESPACE; \
2054 /* If the buffer moved, move all the pointers into it. */ \
2055 if (old_buffer != COMPILED_BUFFER_VAR) \
2056 { \
2057 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2058 MOVE_BUFFER_POINTER (b)(b) += incr; \
2059 MOVE_BUFFER_POINTER (begalt)(begalt) += incr; \
2060 if (fixup_alt_jump) \
2061 MOVE_BUFFER_POINTER (fixup_alt_jump)(fixup_alt_jump) += incr; \
2062 if (laststart) \
2063 MOVE_BUFFER_POINTER (laststart)(laststart) += incr; \
2064 if (pending_exact) \
2065 MOVE_BUFFER_POINTER (pending_exact)(pending_exact) += incr; \
2066 } \
2067 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2068 } while (0)
2069# else /* BYTE */
2070# define EXTEND_BUFFER() \
2071 do { \
2072 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2073 if (bufp->allocated == MAX_BUF_SIZE(1L << 16)) \
2074 return REG_ESIZE; \
2075 bufp->allocated <<= 1; \
2076 if (bufp->allocated > MAX_BUF_SIZE(1L << 16)) \
2077 bufp->allocated = MAX_BUF_SIZE(1L << 16); \
2078 bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \realloc ((COMPILED_BUFFER_VAR), (bufp->allocated))
2079 bufp->allocated)realloc ((COMPILED_BUFFER_VAR), (bufp->allocated)); \
2080 if (COMPILED_BUFFER_VAR == NULL((void*)0)) \
2081 return REG_ESPACE; \
2082 /* If the buffer moved, move all the pointers into it. */ \
2083 if (old_buffer != COMPILED_BUFFER_VAR) \
2084 { \
2085 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2086 MOVE_BUFFER_POINTER (b)(b) += incr; \
2087 MOVE_BUFFER_POINTER (begalt)(begalt) += incr; \
2088 if (fixup_alt_jump) \
2089 MOVE_BUFFER_POINTER (fixup_alt_jump)(fixup_alt_jump) += incr; \
2090 if (laststart) \
2091 MOVE_BUFFER_POINTER (laststart)(laststart) += incr; \
2092 if (pending_exact) \
2093 MOVE_BUFFER_POINTER (pending_exact)(pending_exact) += incr; \
2094 } \
2095 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2096 } while (0)
2097# endif /* WCHAR */
2098
2099# ifndef DEFINED_ONCE
2100/* Since we have one byte reserved for the register number argument to
2101 {start,stop}_memory, the maximum number of groups we can report
2102 things about is what fits in that byte. */
2103# define MAX_REGNUM255 255
2104
2105/* But patterns can have more than `MAX_REGNUM' registers. We just
2106 ignore the excess. */
2107typedef unsigned regnum_t;
2108
2109
2110/* Macros for the compile stack. */
2111
2112/* Since offsets can go either forwards or backwards, this type needs to
2113 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2114/* int may be not enough when sizeof(int) == 2. */
2115typedef long pattern_offset_t;
2116
2117typedef struct
2118{
2119 pattern_offset_t begalt_offset;
2120 pattern_offset_t fixup_alt_jump;
2121 pattern_offset_t inner_group_offset;
2122 pattern_offset_t laststart_offset;
2123 regnum_t regnum;
2124} compile_stack_elt_t;
2125
2126
2127typedef struct
2128{
2129 compile_stack_elt_t *stack;
2130 unsigned size;
2131 unsigned avail; /* Offset of next open position. */
2132} compile_stack_type;
2133
2134
2135# define INIT_COMPILE_STACK_SIZE32 32
2136
2137# define COMPILE_STACK_EMPTY(compile_stack.avail == 0) (compile_stack.avail == 0)
2138# define COMPILE_STACK_FULL(compile_stack.avail == compile_stack.size) (compile_stack.avail == compile_stack.size)
2139
2140/* The next available element. */
2141# define COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]) (compile_stack.stack[compile_stack.avail])
2142
2143# endif /* not DEFINED_ONCE */
2144
2145/* Set the bit for character C in a list. */
2146# ifndef DEFINED_ONCE
2147# define SET_LIST_BIT(c)(b[((unsigned char) (c)) / 8] |= 1 << (((unsigned char)
c) % 8))
\
2148 (b[((unsigned char) (c)) / BYTEWIDTH8] \
2149 |= 1 << (((unsigned char) c) % BYTEWIDTH8))
2150# endif /* DEFINED_ONCE */
2151
2152/* Get the next unsigned number in the uncompiled pattern. */
2153# define GET_UNSIGNED_NUMBER(num) \
2154 { \
2155 while (p != pend) \
2156 { \
2157 PATFETCH (c); \
2158 if (c < '0' || c > '9') \
2159 break; \
2160 if (num <= RE_DUP_MAX(0x7fff)) \
2161 { \
2162 if (num < 0) \
2163 num = 0; \
2164 num = num * 10 + c - '0'; \
2165 } \
2166 } \
2167 }
2168
2169# ifndef DEFINED_ONCE
2170# if defined _LIBC || WIDE_CHAR_SUPPORT(HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
2171/* The GNU C library provides support for user-defined character classes
2172 and the functions from ISO C amendement 1. */
2173# ifdef CHARCLASS_NAME_MAX
2174# define CHAR_CLASS_MAX_LENGTH6 CHARCLASS_NAME_MAX
2175# else
2176/* This shouldn't happen but some implementation might still have this
2177 problem. Use a reasonable default value. */
2178# define CHAR_CLASS_MAX_LENGTH6 256
2179# endif
2180
2181# ifdef _LIBC
2182# define IS_CHAR_CLASS(string)(((strcmp (string, "alpha") == 0)) || ((strcmp (string, "upper"
) == 0)) || ((strcmp (string, "lower") == 0)) || ((strcmp (string
, "digit") == 0)) || ((strcmp (string, "alnum") == 0)) || ((strcmp
(string, "xdigit") == 0)) || ((strcmp (string, "space") == 0
)) || ((strcmp (string, "print") == 0)) || ((strcmp (string, "punct"
) == 0)) || ((strcmp (string, "graph") == 0)) || ((strcmp (string
, "cntrl") == 0)) || ((strcmp (string, "blank") == 0)))
__wctype (string)
2183# else
2184# define IS_CHAR_CLASS(string)(((strcmp (string, "alpha") == 0)) || ((strcmp (string, "upper"
) == 0)) || ((strcmp (string, "lower") == 0)) || ((strcmp (string
, "digit") == 0)) || ((strcmp (string, "alnum") == 0)) || ((strcmp
(string, "xdigit") == 0)) || ((strcmp (string, "space") == 0
)) || ((strcmp (string, "print") == 0)) || ((strcmp (string, "punct"
) == 0)) || ((strcmp (string, "graph") == 0)) || ((strcmp (string
, "cntrl") == 0)) || ((strcmp (string, "blank") == 0)))
wctype (string)
2185# endif
2186# else
2187# define CHAR_CLASS_MAX_LENGTH6 6 /* Namely, `xdigit'. */
2188
2189# define IS_CHAR_CLASS(string)(((strcmp (string, "alpha") == 0)) || ((strcmp (string, "upper"
) == 0)) || ((strcmp (string, "lower") == 0)) || ((strcmp (string
, "digit") == 0)) || ((strcmp (string, "alnum") == 0)) || ((strcmp
(string, "xdigit") == 0)) || ((strcmp (string, "space") == 0
)) || ((strcmp (string, "print") == 0)) || ((strcmp (string, "punct"
) == 0)) || ((strcmp (string, "graph") == 0)) || ((strcmp (string
, "cntrl") == 0)) || ((strcmp (string, "blank") == 0)))
\
2190 (STREQ (string, "alpha")((strcmp (string, "alpha") == 0)) || STREQ (string, "upper")((strcmp (string, "upper") == 0)) \
2191 || STREQ (string, "lower")((strcmp (string, "lower") == 0)) || STREQ (string, "digit")((strcmp (string, "digit") == 0)) \
2192 || STREQ (string, "alnum")((strcmp (string, "alnum") == 0)) || STREQ (string, "xdigit")((strcmp (string, "xdigit") == 0)) \
2193 || STREQ (string, "space")((strcmp (string, "space") == 0)) || STREQ (string, "print")((strcmp (string, "print") == 0)) \
2194 || STREQ (string, "punct")((strcmp (string, "punct") == 0)) || STREQ (string, "graph")((strcmp (string, "graph") == 0)) \
2195 || STREQ (string, "cntrl")((strcmp (string, "cntrl") == 0)) || STREQ (string, "blank")((strcmp (string, "blank") == 0)))
2196# endif
2197# endif /* DEFINED_ONCE */
2198
2199# ifndef MATCH_MAY_ALLOCATE
2200
2201/* If we cannot allocate large objects within re_match_2_internal,
2202 we make the fail stack and register vectors global.
2203 The fail stack, we grow to the maximum size when a regexp
2204 is compiled.
2205 The register vectors, we adjust in size each time we
2206 compile a regexp, according to the number of registers it needs. */
2207
2208static PREFIX(fail_stack_type) fail_stack;
2209
2210/* Size with which the following vectors are currently allocated.
2211 That is so we can make them bigger as needed,
2212 but never make them smaller. */
2213# ifdef DEFINED_ONCE
2214static int regs_allocated_size;
2215
2216static const char ** regstart, ** regend;
2217static const char ** old_regstart, ** old_regend;
2218static const char **best_regstart, **best_regend;
2219static const char **reg_dummy;
2220# endif /* DEFINED_ONCE */
2221
2222static PREFIX(register_info_type) *PREFIX(reg_info);
2223static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2224
2225/* Make the register vectors big enough for NUM_REGS registers,
2226 but don't make them smaller. */
2227
2228static void
2229PREFIX(regex_grow_registers) (int num_regs)
2230{
2231 if (num_regs > regs_allocated_size)
2232 {
2233 RETALLOC_IF (regstart, num_regs, const char *)if (regstart) (((regstart)) = (const char * *) realloc ((regstart
), ((num_regs)) * sizeof (const char *))); else (regstart) = (
(const char * *) malloc (((num_regs)) * sizeof (const char *)
))
;
2234 RETALLOC_IF (regend, num_regs, const char *)if (regend) (((regend)) = (const char * *) realloc ((regend),
((num_regs)) * sizeof (const char *))); else (regend) = ((const
char * *) malloc (((num_regs)) * sizeof (const char *)))
;
2235 RETALLOC_IF (old_regstart, num_regs, const char *)if (old_regstart) (((old_regstart)) = (const char * *) realloc
((old_regstart), ((num_regs)) * sizeof (const char *))); else
(old_regstart) = ((const char * *) malloc (((num_regs)) * sizeof
(const char *)))
;
2236 RETALLOC_IF (old_regend, num_regs, const char *)if (old_regend) (((old_regend)) = (const char * *) realloc ((
old_regend), ((num_regs)) * sizeof (const char *))); else (old_regend
) = ((const char * *) malloc (((num_regs)) * sizeof (const char
*)))
;
2237 RETALLOC_IF (best_regstart, num_regs, const char *)if (best_regstart) (((best_regstart)) = (const char * *) realloc
((best_regstart), ((num_regs)) * sizeof (const char *))); else
(best_regstart) = ((const char * *) malloc (((num_regs)) * sizeof
(const char *)))
;
2238 RETALLOC_IF (best_regend, num_regs, const char *)if (best_regend) (((best_regend)) = (const char * *) realloc (
(best_regend), ((num_regs)) * sizeof (const char *))); else (
best_regend) = ((const char * *) malloc (((num_regs)) * sizeof
(const char *)))
;
2239 RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type))if (PREFIX(reg_info)) (((PREFIX(reg_info))) = (PREFIX(register_info_type
) *) realloc ((PREFIX(reg_info)), ((num_regs)) * sizeof (PREFIX
(register_info_type)))); else (PREFIX(reg_info)) = ((PREFIX(register_info_type
) *) malloc (((num_regs)) * sizeof (PREFIX(register_info_type
))))
;
2240 RETALLOC_IF (reg_dummy, num_regs, const char *)if (reg_dummy) (((reg_dummy)) = (const char * *) realloc ((reg_dummy
), ((num_regs)) * sizeof (const char *))); else (reg_dummy) =
((const char * *) malloc (((num_regs)) * sizeof (const char *
)))
;
2241 RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type))if (PREFIX(reg_info_dummy)) (((PREFIX(reg_info_dummy))) = (PREFIX
(register_info_type) *) realloc ((PREFIX(reg_info_dummy)), ((
num_regs)) * sizeof (PREFIX(register_info_type)))); else (PREFIX
(reg_info_dummy)) = ((PREFIX(register_info_type) *) malloc ((
(num_regs)) * sizeof (PREFIX(register_info_type))))
;
2242
2243 regs_allocated_size = num_regs;
2244 }
2245}
2246
2247# endif /* not MATCH_MAY_ALLOCATE */
2248
2249# ifndef DEFINED_ONCE
2250static boolean group_in_compile_stack (compile_stack_type compile_stack,
2251 regnum_t regnum);
2252# endif /* not DEFINED_ONCE */
2253
2254/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2255 Returns one of error codes defined in `regex.h', or zero for success.
2256
2257 Assumes the `allocated' (and perhaps `buffer') and `translate'
2258 fields are set in BUFP on entry.
2259
2260 If it succeeds, results are put in BUFP (if it returns an error, the
2261 contents of BUFP are undefined):
2262 `buffer' is the compiled pattern;
2263 `syntax' is set to SYNTAX;
2264 `used' is set to the length of the compiled pattern;
2265 `fastmap_accurate' is zero;
2266 `re_nsub' is the number of subexpressions in PATTERN;
2267 `not_bol' and `not_eol' are zero;
2268
2269 The `fastmap' and `newline_anchor' fields are neither
2270 examined nor set. */
2271
2272/* Return, freeing storage we allocated. */
2273# ifdef WCHAR
2274# define FREE_STACK_RETURN(value) \
2275 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2276# else
2277# define FREE_STACK_RETURN(value) \
2278 return (free (compile_stack.stack), value)
2279# endif /* WCHAR */
2280
2281static reg_errcode_t
2282PREFIX(regex_compile) (const char *ARG_PREFIX(pattern),
2283 size_t ARG_PREFIX(size), reg_syntax_t syntax,
2284 struct re_pattern_buffer *bufp)
2285{
2286 /* We fetch characters from PATTERN here. Even though PATTERN is
2287 `char *' (i.e., signed), we declare these variables as unsigned, so
2288 they can be reliably used as array indices. */
2289 register UCHAR_T c, c1;
2290
2291#ifdef WCHAR
2292 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2293 CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2294 size_t size;
2295 /* offset buffer for optimization. See convert_mbs_to_wc. */
2296 int *mbs_offset = NULL((void*)0);
2297 /* It hold whether each wchar_t is binary data or not. */
2298 char *is_binary = NULL((void*)0);
2299 /* A flag whether exactn is handling binary data or not. */
2300 char is_exactn_bin = FALSE;
2301#endif /* WCHAR */
2302
2303 /* A random temporary spot in PATTERN. */
2304 const CHAR_T *p1;
2305
2306 /* Points to the end of the buffer, where we should append. */
2307 register UCHAR_T *b;
2308
2309 /* Keeps track of unclosed groups. */
2310 compile_stack_type compile_stack;
2311
2312 /* Points to the current (ending) position in the pattern. */
2313#ifdef WCHAR
2314 const CHAR_T *p;
2315 const CHAR_T *pend;
2316#else /* BYTE */
2317 const CHAR_T *p = pattern;
2318 const CHAR_T *pend = pattern + size;
2319#endif /* WCHAR */
2320
2321 /* How to translate the characters in the pattern. */
2322 RE_TRANSLATE_TYPEchar * translate = bufp->translate;
2323
2324 /* Address of the count-byte of the most recently inserted `exactn'
2325 command. This makes it possible to tell if a new exact-match
2326 character can be added to that command or if the character requires
2327 a new `exactn' command. */
2328 UCHAR_T *pending_exact = 0;
2329
2330 /* Address of start of the most recently finished expression.
2331 This tells, e.g., postfix * where to find the start of its
2332 operand. Reset at the beginning of groups and alternatives. */
2333 UCHAR_T *laststart = 0;
2334
2335 /* Address of beginning of regexp, or inside of last group. */
2336 UCHAR_T *begalt;
2337
2338 /* Address of the place where a forward jump should go to the end of
2339 the containing expression. Each alternative of an `or' -- except the
2340 last -- ends with a forward jump of this sort. */
2341 UCHAR_T *fixup_alt_jump = 0;
2342
2343 /* Counts open-groups as they are encountered. Remembered for the
2344 matching close-group on the compile stack, so the same register
2345 number is put in the stop_memory as the start_memory. */
2346 regnum_t regnum = 0;
2347
2348#ifdef WCHAR
2349 /* Initialize the wchar_t PATTERN and offset_buffer. */
2350 p = pend = pattern = TALLOC(csize + 1, CHAR_T)((CHAR_T *) malloc ((csize + 1) * sizeof (CHAR_T)));
2351 mbs_offset = TALLOC(csize + 1, int)((int *) malloc ((csize + 1) * sizeof (int)));
2352 is_binary = TALLOC(csize + 1, char)((char *) malloc ((csize + 1) * sizeof (char)));
2353 if (pattern == NULL((void*)0) || mbs_offset == NULL((void*)0) || is_binary == NULL((void*)0))
2354 {
2355 free(pattern);
2356 free(mbs_offset);
2357 free(is_binary);
2358 return REG_ESPACE;
2359 }
2360 pattern[csize] = L'\0'; /* sentinel */
2361 size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2362 pend = p + size;
2363 if (size < 0)
2364 {
2365 free(pattern);
2366 free(mbs_offset);
2367 free(is_binary);
2368 return REG_BADPAT;
2369 }
2370#endif
2371
2372#ifdef DEBUG
2373 DEBUG_PRINT1 ("\nCompiling pattern: ");
2374 if (debug)
2375 {
2376 unsigned debug_count;
2377
2378 for (debug_count = 0; debug_count < size; debug_count++)
2379 PUT_CHAR (pattern[debug_count]);
2380 putchar ('\n');
2381 }
2382#endif /* DEBUG */
2383
2384 /* Initialize the compile stack. */
2385 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t)((compile_stack_elt_t *) malloc ((32) * sizeof (compile_stack_elt_t
)))
;
2386 if (compile_stack.stack == NULL((void*)0))
2387 {
2388#ifdef WCHAR
2389 free(pattern);
2390 free(mbs_offset);
2391 free(is_binary);
2392#endif
2393 return REG_ESPACE;
2394 }
2395
2396 compile_stack.size = INIT_COMPILE_STACK_SIZE32;
2397 compile_stack.avail = 0;
2398
2399 /* Initialize the pattern buffer. */
2400 bufp->syntax = syntax;
2401 bufp->fastmap_accurate = 0;
2402 bufp->not_bol = bufp->not_eol = 0;
2403
2404 /* Set `used' to zero, so that if we return an error, the pattern
2405 printer (for debugging) will think there's no pattern. We reset it
2406 at the end. */
2407 bufp->used = 0;
2408
2409 /* Always count groups, whether or not bufp->no_sub is set. */
2410 bufp->re_nsub = 0;
2411
2412#if !defined emacs && !defined SYNTAX_TABLE
2413 /* Initialize the syntax table. */
2414 init_syntax_once ();
2415#endif
2416
2417 if (bufp->allocated == 0)
2418 {
2419 if (bufp->buffer)
2420 { /* If zero allocated, but buffer is non-null, try to realloc
2421 enough space. This loses if buffer's address is bogus, but
2422 that is the user's responsibility. */
2423#ifdef WCHAR
2424 /* Free bufp->buffer and allocate an array for wchar_t pattern
2425 buffer. */
2426 free(bufp->buffer);
2427 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),((UCHAR_T *) malloc ((INIT_BUF_SIZE/sizeof(UCHAR_T)) * sizeof
(UCHAR_T)))
2428 UCHAR_T)((UCHAR_T *) malloc ((INIT_BUF_SIZE/sizeof(UCHAR_T)) * sizeof
(UCHAR_T)))
;
2429#else
2430 RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T)((COMPILED_BUFFER_VAR) = (UCHAR_T *) realloc (COMPILED_BUFFER_VAR
, (INIT_BUF_SIZE) * sizeof (UCHAR_T)))
;
2431#endif /* WCHAR */
2432 }
2433 else
2434 { /* Caller did not allocate a buffer. Do it for them. */
2435 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),((UCHAR_T *) malloc ((INIT_BUF_SIZE / sizeof(UCHAR_T)) * sizeof
(UCHAR_T)))
2436 UCHAR_T)((UCHAR_T *) malloc ((INIT_BUF_SIZE / sizeof(UCHAR_T)) * sizeof
(UCHAR_T)))
;
2437 }
2438
2439 if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2440#ifdef WCHAR
2441 bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2442#endif /* WCHAR */
2443 bufp->allocated = INIT_BUF_SIZE;
2444 }
2445#ifdef WCHAR
2446 else
2447 COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2448#endif
2449
2450 begalt = b = COMPILED_BUFFER_VAR;
2451
2452 /* Loop through the uncompiled pattern until we're at the end. */
2453 while (p != pend)
2454 {
2455 PATFETCH (c);
2456
2457 switch (c)
2458 {
2459 case '^':
2460 {
2461 if ( /* If at start of pattern, it's an operator. */
2462 p == pattern + 1
2463 /* If context independent, it's an operator. */
2464 || syntax & RE_CONTEXT_INDEP_ANCHORS(((((unsigned long int) 1) << 1) << 1) << 1
)
2465 /* Otherwise, depends on what's come before. */
2466 || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2467 BUF_PUSH (begline);
2468 else
2469 goto normal_char;
2470 }
2471 break;
2472
2473
2474 case '$':
2475 {
2476 if ( /* If at end of pattern, it's an operator. */
2477 p == pend
2478 /* If context independent, it's an operator. */
2479 || syntax & RE_CONTEXT_INDEP_ANCHORS(((((unsigned long int) 1) << 1) << 1) << 1
)
2480 /* Otherwise, depends on what's next. */
2481 || PREFIX(at_endline_loc_p) (p, pend, syntax))
2482 BUF_PUSH (endline);
2483 else
2484 goto normal_char;
2485 }
2486 break;
2487
2488
2489 case '+':
2490 case '?':
2491 if ((syntax & RE_BK_PLUS_QM(((unsigned long int) 1) << 1))
2492 || (syntax & RE_LIMITED_OPS((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1)
))
2493 goto normal_char;
2494 handle_plus:
2495 case '*':
2496 /* If there is no previous pattern... */
2497 if (!laststart)
2498 {
2499 if (syntax & RE_CONTEXT_INVALID_OPS(((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1)
)
2500 FREE_STACK_RETURN (REG_BADRPT);
2501 else if (!(syntax & RE_CONTEXT_INDEP_OPS((((((unsigned long int) 1) << 1) << 1) << 1
) << 1)
))
2502 goto normal_char;
2503 }
2504
2505 {
2506 /* Are we optimizing this jump? */
2507 boolean keep_string_p = false0;
2508
2509 /* 1 means zero (many) matches is allowed. */
2510 char zero_times_ok = 0, many_times_ok = 0;
2511
2512 /* If there is a sequence of repetition chars, collapse it
2513 down to just one (the right one). We can't combine
2514 interval operators with these because of, e.g., `a{2}*',
2515 which should only match an even number of `a's. */
2516
2517 for (;;)
2518 {
2519 zero_times_ok |= c != '+';
2520 many_times_ok |= c != '?';
2521
2522 if (p == pend)
2523 break;
2524
2525 PATFETCH (c);
2526
2527 if (c == '*'
2528 || (!(syntax & RE_BK_PLUS_QM(((unsigned long int) 1) << 1)) && (c == '+' || c == '?')))
2529 ;
2530
2531 else if (syntax & RE_BK_PLUS_QM(((unsigned long int) 1) << 1) && c == '\\')
2532 {
2533 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2534
2535 PATFETCH (c1);
2536 if (!(c1 == '+' || c1 == '?'))
2537 {
2538 PATUNFETCH;
2539 PATUNFETCH;
2540 break;
2541 }
2542
2543 c = c1;
2544 }
2545 else
2546 {
2547 PATUNFETCH;
2548 break;
2549 }
2550
2551 /* If we get here, we found another repeat character. */
2552 }
2553
2554 /* Star, etc. applied to an empty pattern is equivalent
2555 to an empty pattern. */
2556 if (!laststart)
2557 break;
2558
2559 /* Now we know whether or not zero matches is allowed
2560 and also whether or not two or more matches is allowed. */
2561 if (many_times_ok)
2562 { /* More than one repetition is allowed, so put in at the
2563 end a backward relative jump from `b' to before the next
2564 jump we're going to put in below (which jumps from
2565 laststart to after this jump).
2566
2567 But if we are at the `*' in the exact sequence `.*\n',
2568 insert an unconditional jump backwards to the .,
2569 instead of the beginning of the loop. This way we only
2570 push a failure point once, instead of every time
2571 through the loop. */
2572 assert (p - 1 > pattern);
2573
2574 /* Allocate the space for the jump. */
2575 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2576
2577 /* We know we are not at the first character of the pattern,
2578 because laststart was nonzero. And we've already
2579 incremented `p', by the way, to be the character after
2580 the `*'. Do we have to do something analogous here
2581 for null bytes, because of RE_DOT_NOT_NULL? */
2582 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2583 && zero_times_ok
2584 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2585 && !(syntax & RE_DOT_NEWLINE((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1)
))
2586 { /* We have .*\n. */
2587 STORE_JUMP (jump, b, laststart);
2588 keep_string_p = true1;
2589 }
2590 else
2591 /* Anything else. */
2592 STORE_JUMP (maybe_pop_jump, b, laststart -
2593 (1 + OFFSET_ADDRESS_SIZE));
2594
2595 /* We've added more stuff to the buffer. */
2596 b += 1 + OFFSET_ADDRESS_SIZE;
2597 }
2598
2599 /* On failure, jump from laststart to b + 3, which will be the
2600 end of the buffer after this jump is inserted. */
2601 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2602 'b + 3'. */
2603 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2604 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2605 : on_failure_jump,
2606 laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2607 pending_exact = 0;
2608 b += 1 + OFFSET_ADDRESS_SIZE;
2609
2610 if (!zero_times_ok)
2611 {
2612 /* At least one repetition is required, so insert a
2613 `dummy_failure_jump' before the initial
2614 `on_failure_jump' instruction of the loop. This
2615 effects a skip over that instruction the first time
2616 we hit that loop. */
2617 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2618 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2619 2 + 2 * OFFSET_ADDRESS_SIZE);
2620 b += 1 + OFFSET_ADDRESS_SIZE;
2621 }
2622 }
2623 break;
2624
2625
2626 case '.':
2627 laststart = b;
2628 BUF_PUSH (anychar);
2629 break;
2630
2631
2632 case '[':
2633 {
2634 boolean had_char_class = false0;
2635#ifdef WCHAR
2636 CHAR_T range_start = 0xffffffff;
2637#else
2638 unsigned int range_start = 0xffffffff;
2639#endif
2640 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2641
2642#ifdef WCHAR
2643 /* We assume a charset(_not) structure as a wchar_t array.
2644 charset[0] = (re_opcode_t) charset(_not)
2645 charset[1] = l (= length of char_classes)
2646 charset[2] = m (= length of collating_symbols)
2647 charset[3] = n (= length of equivalence_classes)
2648 charset[4] = o (= length of char_ranges)
2649 charset[5] = p (= length of chars)
2650
2651 charset[6] = char_class (wctype_t)
2652 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2653 ...
2654 charset[l+5] = char_class (wctype_t)
2655
2656 charset[l+6] = collating_symbol (wchar_t)
2657 ...
2658 charset[l+m+5] = collating_symbol (wchar_t)
2659 ifdef _LIBC we use the index if
2660 _NL_COLLATE_SYMB_EXTRAMB instead of
2661 wchar_t string.
2662
2663 charset[l+m+6] = equivalence_classes (wchar_t)
2664 ...
2665 charset[l+m+n+5] = equivalence_classes (wchar_t)
2666 ifdef _LIBC we use the index in
2667 _NL_COLLATE_WEIGHT instead of
2668 wchar_t string.
2669
2670 charset[l+m+n+6] = range_start
2671 charset[l+m+n+7] = range_end
2672 ...
2673 charset[l+m+n+2o+4] = range_start
2674 charset[l+m+n+2o+5] = range_end
2675 ifdef _LIBC we use the value looked up
2676 in _NL_COLLATE_COLLSEQ instead of
2677 wchar_t character.
2678
2679 charset[l+m+n+2o+6] = char
2680 ...
2681 charset[l+m+n+2o+p+5] = char
2682
2683 */
2684
2685 /* We need at least 6 spaces: the opcode, the length of
2686 char_classes, the length of collating_symbols, the length of
2687 equivalence_classes, the length of char_ranges, the length of
2688 chars. */
2689 GET_BUFFER_SPACE (6);
2690
2691 /* Save b as laststart. And We use laststart as the pointer
2692 to the first element of the charset here.
2693 In other words, laststart[i] indicates charset[i]. */
2694 laststart = b;
2695
2696 /* We test `*p == '^' twice, instead of using an if
2697 statement, so we only need one BUF_PUSH. */
2698 BUF_PUSH (*p == '^' ? charset_not : charset);
2699 if (*p == '^')
2700 p++;
2701
2702 /* Push the length of char_classes, the length of
2703 collating_symbols, the length of equivalence_classes, the
2704 length of char_ranges and the length of chars. */
2705 BUF_PUSH_3 (0, 0, 0);
2706 BUF_PUSH_2 (0, 0);
2707
2708 /* Remember the first position in the bracket expression. */
2709 p1 = p;
2710
2711 /* charset_not matches newline according to a syntax bit. */
2712 if ((re_opcode_t) b[-6] == charset_not
2713 && (syntax & RE_HAT_LISTS_NOT_NEWLINE((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
)
))
2714 {
2715 BUF_PUSH('\n');
2716 laststart[5]++; /* Update the length of characters */
2717 }
2718
2719 /* Read in characters and ranges, setting map bits. */
2720 for (;;)
2721 {
2722 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2723
2724 PATFETCH (c);
2725
2726 /* \ might escape characters inside [...] and [^...]. */
2727 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS((unsigned long int) 1)) && c == '\\')
2728 {
2729 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2730
2731 PATFETCH (c1);
2732 BUF_PUSH(c1);
2733 laststart[5]++; /* Update the length of chars */
2734 range_start = c1;
2735 continue;
2736 }
2737
2738 /* Could be the end of the bracket expression. If it's
2739 not (i.e., when the bracket expression is `[]' so
2740 far), the ']' character bit gets set way below. */
2741 if (c == ']' && p != p1 + 1)
2742 break;
2743
2744 /* Look ahead to see if it's a range when the last thing
2745 was a character class. */
2746 if (had_char_class && c == '-' && *p != ']')
2747 FREE_STACK_RETURN (REG_ERANGE);
2748
2749 /* Look ahead to see if it's a range when the last thing
2750 was a character: if this is a hyphen not at the
2751 beginning or the end of a list, then it's the range
2752 operator. */
2753 if (c == '-'
2754 && !(p - 2 >= pattern && p[-2] == '[')
2755 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2756 && *p != ']')
2757 {
2758 reg_errcode_t ret;
2759 /* Allocate the space for range_start and range_end. */
2760 GET_BUFFER_SPACE (2);
2761 /* Update the pointer to indicate end of buffer. */
2762 b += 2;
2763 ret = wcs_compile_range (range_start, &p, pend, translate,
2764 syntax, b, laststart);
2765 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2766 range_start = 0xffffffff;
2767 }
2768 else if (p[0] == '-' && p[1] != ']')
2769 { /* This handles ranges made up of characters only. */
2770 reg_errcode_t ret;
2771
2772 /* Move past the `-'. */
2773 PATFETCH (c1);
2774 /* Allocate the space for range_start and range_end. */
2775 GET_BUFFER_SPACE (2);
2776 /* Update the pointer to indicate end of buffer. */
2777 b += 2;
2778 ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2779 laststart);
2780 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2781 range_start = 0xffffffff;
2782 }
2783
2784 /* See if we're at the beginning of a possible character
2785 class. */
2786 else if (syntax & RE_CHAR_CLASSES((((unsigned long int) 1) << 1) << 1) && c == '[' && *p == ':')
2787 { /* Leave room for the null. */
2788 char str[CHAR_CLASS_MAX_LENGTH6 + 1];
2789
2790 PATFETCH (c);
2791 c1 = 0;
2792
2793 /* If pattern is `[[:'. */
2794 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2795
2796 for (;;)
2797 {
2798 PATFETCH (c);
2799 if ((c == ':' && *p == ']') || p == pend)
2800 break;
2801 if (c1 < CHAR_CLASS_MAX_LENGTH6)
2802 str[c1++] = c;
2803 else
2804 /* This is in any case an invalid class name. */
2805 str[0] = '\0';
2806 }
2807 str[c1] = '\0';
2808
2809 /* If isn't a word bracketed by `[:' and `:]':
2810 undo the ending character, the letters, and leave
2811 the leading `:' and `[' (but store them as character). */
2812 if (c == ':' && *p == ']')
2813 {
2814 wctype_t wt;
2815 uintptr_t alignedp;
2816
2817 /* Query the character class as wctype_t. */
2818 wt = IS_CHAR_CLASS (str)(((strcmp (str, "alpha") == 0)) || ((strcmp (str, "upper") ==
0)) || ((strcmp (str, "lower") == 0)) || ((strcmp (str, "digit"
) == 0)) || ((strcmp (str, "alnum") == 0)) || ((strcmp (str, "xdigit"
) == 0)) || ((strcmp (str, "space") == 0)) || ((strcmp (str, "print"
) == 0)) || ((strcmp (str, "punct") == 0)) || ((strcmp (str, "graph"
) == 0)) || ((strcmp (str, "cntrl") == 0)) || ((strcmp (str, "blank"
) == 0)))
;
2819 if (wt == 0)
2820 FREE_STACK_RETURN (REG_ECTYPE);
2821
2822 /* Throw away the ] at the end of the character
2823 class. */
2824 PATFETCH (c);
2825
2826 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2827
2828 /* Allocate the space for character class. */
2829 GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2830 /* Update the pointer to indicate end of buffer. */
2831 b += CHAR_CLASS_SIZE;
2832 /* Move data which follow character classes
2833 not to violate the data. */
2834 insert_space(CHAR_CLASS_SIZE,
2835 laststart + 6 + laststart[1],
2836 b - 1);
2837 alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2838 + __alignof__(wctype_t) - 1)
2839 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2840 /* Store the character class. */
2841 *((wctype_t*)alignedp) = wt;
2842 /* Update length of char_classes */
2843 laststart[1] += CHAR_CLASS_SIZE;
2844
2845 had_char_class = true1;
2846 }
2847 else
2848 {
2849 c1++;
2850 while (c1--)
2851 PATUNFETCH;
2852 BUF_PUSH ('[');
2853 BUF_PUSH (':');
2854 laststart[5] += 2; /* Update the length of characters */
2855 range_start = ':';
2856 had_char_class = false0;
2857 }
2858 }
2859 else if (syntax & RE_CHAR_CLASSES((((unsigned long int) 1) << 1) << 1) && c == '[' && (*p == '='
2860 || *p == '.'))
2861 {
2862 CHAR_T str[128]; /* Should be large enough. */
2863 CHAR_T delim = *p; /* '=' or '.' */
2864# ifdef _LIBC
2865 uint32_t nrules =
2866 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2867# endif
2868 PATFETCH (c);
2869 c1 = 0;
2870
2871 /* If pattern is `[[=' or '[[.'. */
2872 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2873
2874 for (;;)
2875 {
2876 PATFETCH (c);
2877 if ((c == delim && *p == ']') || p == pend)
2878 break;
2879 if (c1 < sizeof (str) - 1)
2880 str[c1++] = c;
2881 else
2882 /* This is in any case an invalid class name. */
2883 str[0] = '\0';
2884 }
2885 str[c1] = '\0';
2886
2887 if (c == delim && *p == ']' && str[0] != '\0')
2888 {
2889 unsigned int i, offset;
2890 /* If we have no collation data we use the default
2891 collation in which each character is in a class
2892 by itself. It also means that ASCII is the
2893 character set and therefore we cannot have character
2894 with more than one byte in the multibyte
2895 representation. */
2896
2897 /* If not defined _LIBC, we push the name and
2898 `\0' for the sake of matching performance. */
2899 int datasize = c1 + 1;
2900
2901# ifdef _LIBC
2902 int32_t idx = 0;
2903 if (nrules == 0)
2904# endif
2905 {
2906 if (c1 != 1)
2907 FREE_STACK_RETURN (REG_ECOLLATE);
2908 }
2909# ifdef _LIBC
2910 else
2911 {
2912 const int32_t *table;
2913 const int32_t *weights;
2914 const int32_t *extra;
2915 const int32_t *indirect;
2916 wint_t *cp;
2917
2918 /* This #include defines a local function! */
2919# include <locale/weightwc.h>
2920
2921 if(delim == '=')
2922 {
2923 /* We push the index for equivalence class. */
2924 cp = (wint_t*)str;
2925
2926 table = (const int32_t *)
2927 _NL_CURRENT (LC_COLLATE,
2928 _NL_COLLATE_TABLEWC);
2929 weights = (const int32_t *)
2930 _NL_CURRENT (LC_COLLATE,
2931 _NL_COLLATE_WEIGHTWC);
2932 extra = (const int32_t *)
2933 _NL_CURRENT (LC_COLLATE,
2934 _NL_COLLATE_EXTRAWC);
2935 indirect = (const int32_t *)
2936 _NL_CURRENT (LC_COLLATE,
2937 _NL_COLLATE_INDIRECTWC);
2938
2939 idx = findidx ((const wint_t**)&cp);
2940 if (idx == 0 || cp < (wint_t*) str + c1)
2941 /* This is no valid character. */
2942 FREE_STACK_RETURN (REG_ECOLLATE);
2943
2944 str[0] = (wchar_t)idx;
2945 }
2946 else /* delim == '.' */
2947 {
2948 /* We push collation sequence value
2949 for collating symbol. */
2950 int32_t table_size;
2951 const int32_t *symb_table;
2952 const unsigned char *extra;
2953 int32_t idx;
2954 int32_t elem;
2955 int32_t second;
2956 int32_t hash;
2957 char char_str[c1];
2958
2959 /* We have to convert the name to a single-byte
2960 string. This is possible since the names
2961 consist of ASCII characters and the internal
2962 representation is UCS4. */
2963 for (i = 0; i < c1; ++i)
2964 char_str[i] = str[i];
2965
2966 table_size =
2967 _NL_CURRENT_WORD (LC_COLLATE,
2968 _NL_COLLATE_SYMB_HASH_SIZEMB);
2969 symb_table = (const int32_t *)
2970 _NL_CURRENT (LC_COLLATE,
2971 _NL_COLLATE_SYMB_TABLEMB);
2972 extra = (const unsigned char *)
2973 _NL_CURRENT (LC_COLLATE,
2974 _NL_COLLATE_SYMB_EXTRAMB);
2975
2976 /* Locate the character in the hashing table. */
2977 hash = elem_hash (char_str, c1);
2978
2979 idx = 0;
2980 elem = hash % table_size;
2981 second = hash % (table_size - 2);
2982 while (symb_table[2 * elem] != 0)
2983 {
2984 /* First compare the hashing value. */
2985 if (symb_table[2 * elem] == hash
2986 && c1 == extra[symb_table[2 * elem + 1]]
2987 && memcmp (char_str,
2988 &extra[symb_table[2 * elem + 1]
2989 + 1], c1) == 0)
2990 {
2991 /* Yep, this is the entry. */
2992 idx = symb_table[2 * elem + 1];
2993 idx += 1 + extra[idx];
2994 break;
2995 }
2996
2997 /* Next entry. */
2998 elem += second;
2999 }
3000
3001 if (symb_table[2 * elem] != 0)
3002 {
3003 /* Compute the index of the byte sequence
3004 in the table. */
3005 idx += 1 + extra[idx];
3006 /* Adjust for the alignment. */
3007 idx = (idx + 3) & ~3;
3008
3009 str[0] = (wchar_t) idx + 4;
3010 }
3011 else if (symb_table[2 * elem] == 0 && c1 == 1)
3012 {
3013 /* No valid character. Match it as a
3014 single byte character. */
3015 had_char_class = false0;
3016 BUF_PUSH(str[0]);
3017 /* Update the length of characters */
3018 laststart[5]++;
3019 range_start = str[0];
3020
3021 /* Throw away the ] at the end of the
3022 collating symbol. */
3023 PATFETCH (c);
3024 /* exit from the switch block. */
3025 continue;
3026 }
3027 else
3028 FREE_STACK_RETURN (REG_ECOLLATE);
3029 }
3030 datasize = 1;
3031 }
3032# endif
3033 /* Throw away the ] at the end of the equivalence
3034 class (or collating symbol). */
3035 PATFETCH (c);
3036
3037 /* Allocate the space for the equivalence class
3038 (or collating symbol) (and '\0' if needed). */
3039 GET_BUFFER_SPACE(datasize);
3040 /* Update the pointer to indicate end of buffer. */
3041 b += datasize;
3042
3043 if (delim == '=')
3044 { /* equivalence class */
3045 /* Calculate the offset of char_ranges,
3046 which is next to equivalence_classes. */
3047 offset = laststart[1] + laststart[2]
3048 + laststart[3] +6;
3049 /* Insert space. */
3050 insert_space(datasize, laststart + offset, b - 1);
3051
3052 /* Write the equivalence_class and \0. */
3053 for (i = 0 ; i < datasize ; i++)
3054 laststart[offset + i] = str[i];
3055
3056 /* Update the length of equivalence_classes. */
3057 laststart[3] += datasize;
3058 had_char_class = true1;
3059 }
3060 else /* delim == '.' */
3061 { /* collating symbol */
3062 /* Calculate the offset of the equivalence_classes,
3063 which is next to collating_symbols. */
3064 offset = laststart[1] + laststart[2] + 6;
3065 /* Insert space and write the collationg_symbol
3066 and \0. */
3067 insert_space(datasize, laststart + offset, b-1);
3068 for (i = 0 ; i < datasize ; i++)
3069 laststart[offset + i] = str[i];
3070
3071 /* In re_match_2_internal if range_start < -1, we
3072 assume -range_start is the offset of the
3073 collating symbol which is specified as
3074 the character of the range start. So we assign
3075 -(laststart[1] + laststart[2] + 6) to
3076 range_start. */
3077 range_start = -(laststart[1] + laststart[2] + 6);
3078 /* Update the length of collating_symbol. */
3079 laststart[2] += datasize;
3080 had_char_class = false0;
3081 }
3082 }
3083 else
3084 {
3085 c1++;
3086 while (c1--)
3087 PATUNFETCH;
3088 BUF_PUSH ('[');
3089 BUF_PUSH (delim);
3090 laststart[5] += 2; /* Update the length of characters */
3091 range_start = delim;
3092 had_char_class = false0;
3093 }
3094 }
3095 else
3096 {
3097 had_char_class = false0;
3098 BUF_PUSH(c);
3099 laststart[5]++; /* Update the length of characters */
3100 range_start = c;
3101 }
3102 }
3103
3104#else /* BYTE */
3105 /* Ensure that we have enough space to push a charset: the
3106 opcode, the length count, and the bitset; 34 bytes in all. */
3107 GET_BUFFER_SPACE (34);
3108
3109 laststart = b;
3110
3111 /* We test `*p == '^' twice, instead of using an if
3112 statement, so we only need one BUF_PUSH. */
3113 BUF_PUSH (*p == '^' ? charset_not : charset);
3114 if (*p == '^')
3115 p++;
3116
3117 /* Remember the first position in the bracket expression. */
3118 p1 = p;
3119
3120 /* Push the number of bytes in the bitmap. */
3121 BUF_PUSH ((1 << BYTEWIDTH8) / BYTEWIDTH8);
3122
3123 /* Clear the whole map. */
3124 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH)(memset (b, '\0', (1 << 8) / 8), (b));
3125
3126 /* charset_not matches newline according to a syntax bit. */
3127 if ((re_opcode_t) b[-2] == charset_not
3128 && (syntax & RE_HAT_LISTS_NOT_NEWLINE((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
)
))
3129 SET_LIST_BIT ('\n')(b[((unsigned char) ('\n')) / 8] |= 1 << (((unsigned char
) '\n') % 8))
;
3130
3131 /* Read in characters and ranges, setting map bits. */
3132 for (;;)
3133 {
3134 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3135
3136 PATFETCH (c);
3137
3138 /* \ might escape characters inside [...] and [^...]. */
3139 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS((unsigned long int) 1)) && c == '\\')
3140 {
3141 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3142
3143 PATFETCH (c1);
3144 SET_LIST_BIT (c1)(b[((unsigned char) (c1)) / 8] |= 1 << (((unsigned char
) c1) % 8))
;
3145 range_start = c1;
3146 continue;
3147 }
3148
3149 /* Could be the end of the bracket expression. If it's
3150 not (i.e., when the bracket expression is `[]' so
3151 far), the ']' character bit gets set way below. */
3152 if (c == ']' && p != p1 + 1)
3153 break;
3154
3155 /* Look ahead to see if it's a range when the last thing
3156 was a character class. */
3157 if (had_char_class && c == '-' && *p != ']')
3158 FREE_STACK_RETURN (REG_ERANGE);
3159
3160 /* Look ahead to see if it's a range when the last thing
3161 was a character: if this is a hyphen not at the
3162 beginning or the end of a list, then it's the range
3163 operator. */
3164 if (c == '-'
3165 && !(p - 2 >= pattern && p[-2] == '[')
3166 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3167 && *p != ']')
3168 {
3169 reg_errcode_t ret
3170 = byte_compile_range (range_start, &p, pend, translate,
3171 syntax, b);
3172 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3173 range_start = 0xffffffff;
3174 }
3175
3176 else if (p[0] == '-' && p[1] != ']')
3177 { /* This handles ranges made up of characters only. */
3178 reg_errcode_t ret;
3179
3180 /* Move past the `-'. */
3181 PATFETCH (c1);
3182
3183 ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3184 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3185 range_start = 0xffffffff;
3186 }
3187
3188 /* See if we're at the beginning of a possible character
3189 class. */
3190
3191 else if (syntax & RE_CHAR_CLASSES((((unsigned long int) 1) << 1) << 1) && c == '[' && *p == ':')
3192 { /* Leave room for the null. */
3193 char str[CHAR_CLASS_MAX_LENGTH6 + 1];
3194
3195 PATFETCH (c);
3196 c1 = 0;
3197
3198 /* If pattern is `[[:'. */
3199 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3200
3201 for (;;)
3202 {
3203 PATFETCH (c);
3204 if ((c == ':' && *p == ']') || p == pend)
3205 break;
3206 if (c1 < CHAR_CLASS_MAX_LENGTH6)
3207 str[c1++] = c;
3208 else
3209 /* This is in any case an invalid class name. */
3210 str[0] = '\0';
3211 }
3212 str[c1] = '\0';
3213
3214 /* If isn't a word bracketed by `[:' and `:]':
3215 undo the ending character, the letters, and leave
3216 the leading `:' and `[' (but set bits for them). */
3217 if (c == ':' && *p == ']')
3218 {
3219# if defined _LIBC || WIDE_CHAR_SUPPORT(HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
3220 boolean is_lower = STREQ (str, "lower")((strcmp (str, "lower") == 0));
3221 boolean is_upper = STREQ (str, "upper")((strcmp (str, "upper") == 0));
3222 wctype_t wt;
3223 int ch;
3224
3225 wt = IS_CHAR_CLASS (str)(((strcmp (str, "alpha") == 0)) || ((strcmp (str, "upper") ==
0)) || ((strcmp (str, "lower") == 0)) || ((strcmp (str, "digit"
) == 0)) || ((strcmp (str, "alnum") == 0)) || ((strcmp (str, "xdigit"
) == 0)) || ((strcmp (str, "space") == 0)) || ((strcmp (str, "print"
) == 0)) || ((strcmp (str, "punct") == 0)) || ((strcmp (str, "graph"
) == 0)) || ((strcmp (str, "cntrl") == 0)) || ((strcmp (str, "blank"
) == 0)))
;
3226 if (wt == 0)
3227 FREE_STACK_RETURN (REG_ECTYPE);
3228
3229 /* Throw away the ] at the end of the character
3230 class. */
3231 PATFETCH (c);
3232
3233 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3234
3235 for (ch = 0; ch < 1 << BYTEWIDTH8; ++ch)
3236 {
3237# ifdef _LIBC
3238 if (__iswctype (__btowc (ch), wt))
3239 SET_LIST_BIT (ch)(b[((unsigned char) (ch)) / 8] |= 1 << (((unsigned char
) ch) % 8))
;
3240# else
3241 if (iswctype (btowc (ch), wt))
3242 SET_LIST_BIT (ch)(b[((unsigned char) (ch)) / 8] |= 1 << (((unsigned char
) ch) % 8))
;
3243# endif
3244
3245 if (translate && (is_upper || is_lower)
3246 && (ISUPPER (ch)(1 && isupper (ch)) || ISLOWER (ch)(1 && islower (ch))))
3247 SET_LIST_BIT (ch)(b[((unsigned char) (ch)) / 8] |= 1 << (((unsigned char
) ch) % 8))
;
3248 }
3249
3250 had_char_class = true1;
3251# else
3252 int ch;
3253 boolean is_alnum = STREQ (str, "alnum")((strcmp (str, "alnum") == 0));
3254 boolean is_alpha = STREQ (str, "alpha")((strcmp (str, "alpha") == 0));
3255 boolean is_blank = STREQ (str, "blank")((strcmp (str, "blank") == 0));
3256 boolean is_cntrl = STREQ (str, "cntrl")((strcmp (str, "cntrl") == 0));
3257 boolean is_digit = STREQ (str, "digit")((strcmp (str, "digit") == 0));
3258 boolean is_graph = STREQ (str, "graph")((strcmp (str, "graph") == 0));
3259 boolean is_lower = STREQ (str, "lower")((strcmp (str, "lower") == 0));
3260 boolean is_print = STREQ (str, "print")((strcmp (str, "print") == 0));
3261 boolean is_punct = STREQ (str, "punct")((strcmp (str, "punct") == 0));
3262 boolean is_space = STREQ (str, "space")((strcmp (str, "space") == 0));
3263 boolean is_upper = STREQ (str, "upper")((strcmp (str, "upper") == 0));
3264 boolean is_xdigit = STREQ (str, "xdigit")((strcmp (str, "xdigit") == 0));
3265
3266 if (!IS_CHAR_CLASS (str)(((strcmp (str, "alpha") == 0)) || ((strcmp (str, "upper") ==
0)) || ((strcmp (str, "lower") == 0)) || ((strcmp (str, "digit"
) == 0)) || ((strcmp (str, "alnum") == 0)) || ((strcmp (str, "xdigit"
) == 0)) || ((strcmp (str, "space") == 0)) || ((strcmp (str, "print"
) == 0)) || ((strcmp (str, "punct") == 0)) || ((strcmp (str, "graph"
) == 0)) || ((strcmp (str, "cntrl") == 0)) || ((strcmp (str, "blank"
) == 0)))
)
3267 FREE_STACK_RETURN (REG_ECTYPE);
3268
3269 /* Throw away the ] at the end of the character
3270 class. */
3271 PATFETCH (c);
3272
3273 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3274
3275 for (ch = 0; ch < 1 << BYTEWIDTH8; ch++)
3276 {
3277 /* This was split into 3 if's to
3278 avoid an arbitrary limit in some compiler. */
3279 if ( (is_alnum && ISALNUM (ch)(1 && isalnum (ch)))
3280 || (is_alpha && ISALPHA (ch)(1 && isalpha (ch)))
3281 || (is_blank && ISBLANK (ch)((ch) == ' ' || (ch) == '\t'))
3282 || (is_cntrl && ISCNTRL (ch)(1 && iscntrl (ch))))
3283 SET_LIST_BIT (ch)(b[((unsigned char) (ch)) / 8] |= 1 << (((unsigned char
) ch) % 8))
;
3284 if ( (is_digit && ISDIGIT (ch)(1 && isdigit (ch)))
3285 || (is_graph && ISGRAPH (ch)(1 && isprint (ch) && !isspace (ch)))
3286 || (is_lower && ISLOWER (ch)(1 && islower (ch)))
3287 || (is_print && ISPRINT (ch)(1 && isprint (ch))))
3288 SET_LIST_BIT (ch)(b[((unsigned char) (ch)) / 8] |= 1 << (((unsigned char
) ch) % 8))
;
3289 if ( (is_punct && ISPUNCT (ch)(1 && ispunct (ch)))
3290 || (is_space && ISSPACE (ch)(1 && isspace (ch)))
3291 || (is_upper && ISUPPER (ch)(1 && isupper (ch)))
3292 || (is_xdigit && ISXDIGIT (ch)(1 && isxdigit (ch))))
3293 SET_LIST_BIT (ch)(b[((unsigned char) (ch)) / 8] |= 1 << (((unsigned char
) ch) % 8))
;
3294 if ( translate && (is_upper || is_lower)
3295 && (ISUPPER (ch)(1 && isupper (ch)) || ISLOWER (ch)(1 && islower (ch))))
3296 SET_LIST_BIT (ch)(b[((unsigned char) (ch)) / 8] |= 1 << (((unsigned char
) ch) % 8))
;
3297 }
3298 had_char_class = true1;
3299# endif /* libc || wctype.h */
3300 }
3301 else
3302 {
3303 c1++;
3304 while (c1--)
3305 PATUNFETCH;
3306 SET_LIST_BIT ('[')(b[((unsigned char) ('[')) / 8] |= 1 << (((unsigned char
) '[') % 8))
;
3307 SET_LIST_BIT (':')(b[((unsigned char) (':')) / 8] |= 1 << (((unsigned char
) ':') % 8))
;
3308 range_start = ':';
3309 had_char_class = false0;
3310 }
3311 }
3312 else if (syntax & RE_CHAR_CLASSES((((unsigned long int) 1) << 1) << 1) && c == '[' && *p == '=')
3313 {
3314 unsigned char str[MB_LEN_MAX4 + 1];
3315# ifdef _LIBC
3316 uint32_t nrules =
3317 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3318# endif
3319
3320 PATFETCH (c);
3321 c1 = 0;
3322
3323 /* If pattern is `[[='. */
3324 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3325
3326 for (;;)
3327 {
3328 PATFETCH (c);
3329 if ((c == '=' && *p == ']') || p == pend)
3330 break;
3331 if (c1 < MB_LEN_MAX4)
3332 str[c1++] = c;
3333 else
3334 /* This is in any case an invalid class name. */
3335 str[0] = '\0';
3336 }
3337 str[c1] = '\0';
3338
3339 if (c == '=' && *p == ']' && str[0] != '\0')
3340 {
3341 /* If we have no collation data we use the default
3342 collation in which each character is in a class
3343 by itself. It also means that ASCII is the
3344 character set and therefore we cannot have character
3345 with more than one byte in the multibyte
3346 representation. */
3347# ifdef _LIBC
3348 if (nrules == 0)
3349# endif
3350 {
3351 if (c1 != 1)
3352 FREE_STACK_RETURN (REG_ECOLLATE);
3353
3354 /* Throw away the ] at the end of the equivalence
3355 class. */
3356 PATFETCH (c);
3357
3358 /* Set the bit for the character. */
3359 SET_LIST_BIT (str[0])(b[((unsigned char) (str[0])) / 8] |= 1 << (((unsigned char
) str[0]) % 8))
;
3360 }
3361# ifdef _LIBC
3362 else
3363 {
3364 /* Try to match the byte sequence in `str' against
3365 those known to the collate implementation.
3366 First find out whether the bytes in `str' are
3367 actually from exactly one character. */
3368 const int32_t *table;
3369 const unsigned char *weights;
3370 const unsigned char *extra;
3371 const int32_t *indirect;
3372 int32_t idx;
3373 const unsigned char *cp = str;
3374 int ch;
3375
3376 /* This #include defines a local function! */
3377# include <locale/weight.h>
3378
3379 table = (const int32_t *)
3380 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3381 weights = (const unsigned char *)
3382 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3383 extra = (const unsigned char *)
3384 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3385 indirect = (const int32_t *)
3386 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3387
3388 idx = findidx (&cp);
3389 if (idx == 0 || cp < str + c1)
3390 /* This is no valid character. */
3391 FREE_STACK_RETURN (REG_ECOLLATE);
3392
3393 /* Throw away the ] at the end of the equivalence
3394 class. */
3395 PATFETCH (c);
3396
3397 /* Now we have to go throught the whole table
3398 and find all characters which have the same
3399 first level weight.
3400
3401 XXX Note that this is not entirely correct.
3402 we would have to match multibyte sequences
3403 but this is not possible with the current
3404 implementation. */
3405 for (ch = 1; ch < 256; ++ch)
3406 /* XXX This test would have to be changed if we
3407 would allow matching multibyte sequences. */
3408 if (table[ch] > 0)
3409 {
3410 int32_t idx2 = table[ch];
3411 size_t len = weights[idx2];
3412
3413 /* Test whether the lenghts match. */
3414 if (weights[idx] == len)
3415 {
3416 /* They do. New compare the bytes of
3417 the weight. */
3418 size_t cnt = 0;
3419
3420 while (cnt < len
3421 && (weights[idx + 1 + cnt]
3422 == weights[idx2 + 1 + cnt]))
3423 ++cnt;
3424
3425 if (cnt == len)
3426 /* They match. Mark the character as
3427 acceptable. */
3428 SET_LIST_BIT (ch)(b[((unsigned char) (ch)) / 8] |= 1 << (((unsigned char
) ch) % 8))
;
3429 }
3430 }
3431 }
3432# endif
3433 had_char_class = true1;
3434 }
3435 else
3436 {
3437 c1++;
3438 while (c1--)
3439 PATUNFETCH;
3440 SET_LIST_BIT ('[')(b[((unsigned char) ('[')) / 8] |= 1 << (((unsigned char
) '[') % 8))
;
3441 SET_LIST_BIT ('=')(b[((unsigned char) ('=')) / 8] |= 1 << (((unsigned char
) '=') % 8))
;
3442 range_start = '=';
3443 had_char_class = false0;
3444 }
3445 }
3446 else if (syntax & RE_CHAR_CLASSES((((unsigned long int) 1) << 1) << 1) && c == '[' && *p == '.')
3447 {
3448 unsigned char str[128]; /* Should be large enough. */
3449# ifdef _LIBC
3450 uint32_t nrules =
3451 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3452# endif
3453
3454 PATFETCH (c);
3455 c1 = 0;
3456
3457 /* If pattern is `[[.'. */
3458 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3459
3460 for (;;)
3461 {
3462 PATFETCH (c);
3463 if ((c == '.' && *p == ']') || p == pend)
3464 break;
3465 if (c1 < sizeof (str))
3466 str[c1++] = c;
3467 else
3468 /* This is in any case an invalid class name. */
3469 str[0] = '\0';
3470 }
3471 str[c1] = '\0';
3472
3473 if (c == '.' && *p == ']' && str[0] != '\0')
3474 {
3475 /* If we have no collation data we use the default
3476 collation in which each character is the name
3477 for its own class which contains only the one
3478 character. It also means that ASCII is the
3479 character set and therefore we cannot have character
3480 with more than one byte in the multibyte
3481 representation. */
3482# ifdef _LIBC
3483 if (nrules == 0)
3484# endif
3485 {
3486 if (c1 != 1)
3487 FREE_STACK_RETURN (REG_ECOLLATE);
3488
3489 /* Throw away the ] at the end of the equivalence
3490 class. */
3491 PATFETCH (c);
3492
3493 /* Set the bit for the character. */
3494 SET_LIST_BIT (str[0])(b[((unsigned char) (str[0])) / 8] |= 1 << (((unsigned char
) str[0]) % 8))
;
3495 range_start = ((const unsigned char *) str)[0];
3496 }
3497# ifdef _LIBC
3498 else
3499 {
3500 /* Try to match the byte sequence in `str' against
3501 those known to the collate implementation.
3502 First find out whether the bytes in `str' are
3503 actually from exactly one character. */
3504 int32_t table_size;
3505 const int32_t *symb_table;
3506 const unsigned char *extra;
3507 int32_t idx;
3508 int32_t elem;
3509 int32_t second;
3510 int32_t hash;
3511
3512 table_size =
3513 _NL_CURRENT_WORD (LC_COLLATE,
3514 _NL_COLLATE_SYMB_HASH_SIZEMB);
3515 symb_table = (const int32_t *)
3516 _NL_CURRENT (LC_COLLATE,
3517 _NL_COLLATE_SYMB_TABLEMB);
3518 extra = (const unsigned char *)
3519 _NL_CURRENT (LC_COLLATE,
3520 _NL_COLLATE_SYMB_EXTRAMB);
3521
3522 /* Locate the character in the hashing table. */
3523 hash = elem_hash (str, c1);
3524
3525 idx = 0;
3526 elem = hash % table_size;
3527 second = hash % (table_size - 2);
3528 while (symb_table[2 * elem] != 0)
3529 {
3530 /* First compare the hashing value. */
3531 if (symb_table[2 * elem] == hash
3532 && c1 == extra[symb_table[2 * elem + 1]]
3533 && memcmp (str,
3534 &extra[symb_table[2 * elem + 1]
3535 + 1],
3536 c1) == 0)
3537 {
3538 /* Yep, this is the entry. */
3539 idx = symb_table[2 * elem + 1];
3540 idx += 1 + extra[idx];
3541 break;
3542 }
3543
3544 /* Next entry. */
3545 elem += second;
3546 }
3547
3548 if (symb_table[2 * elem] == 0)
3549 /* This is no valid character. */
3550 FREE_STACK_RETURN (REG_ECOLLATE);
3551
3552 /* Throw away the ] at the end of the equivalence
3553 class. */
3554 PATFETCH (c);
3555
3556 /* Now add the multibyte character(s) we found
3557 to the accept list.
3558
3559 XXX Note that this is not entirely correct.
3560 we would have to match multibyte sequences
3561 but this is not possible with the current
3562 implementation. Also, we have to match
3563 collating symbols, which expand to more than
3564 one file, as a whole and not allow the
3565 individual bytes. */
3566 c1 = extra[idx++];
3567 if (c1 == 1)
3568 range_start = extra[idx];
3569 while (c1-- > 0)
3570 {
3571 SET_LIST_BIT (extra[idx])(b[((unsigned char) (extra[idx])) / 8] |= 1 << (((unsigned
char) extra[idx]) % 8))
;
3572 ++idx;
3573 }
3574 }
3575# endif
3576 had_char_class = false0;
3577 }
3578 else
3579 {
3580 c1++;
3581 while (c1--)
3582 PATUNFETCH;
3583 SET_LIST_BIT ('[')(b[((unsigned char) ('[')) / 8] |= 1 << (((unsigned char
) '[') % 8))
;
3584 SET_LIST_BIT ('.')(b[((unsigned char) ('.')) / 8] |= 1 << (((unsigned char
) '.') % 8))
;
3585 range_start = '.';
3586 had_char_class = false0;
3587 }
3588 }
3589 else
3590 {
3591 had_char_class = false0;
3592 SET_LIST_BIT (c)(b[((unsigned char) (c)) / 8] |= 1 << (((unsigned char)
c) % 8))
;
3593 range_start = c;
3594 }
3595 }
3596
3597 /* Discard any (non)matching list bytes that are all 0 at the
3598 end of the map. Decrease the map-length byte too. */
3599 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3600 b[-1]--;
3601 b += b[-1];
3602#endif /* WCHAR */
3603 }
3604 break;
3605
3606
3607 case '(':
3608 if (syntax & RE_NO_BK_PARENS(((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
)
3609 goto handle_open;
3610 else
3611 goto normal_char;
3612
3613
3614 case ')':
3615 if (syntax & RE_NO_BK_PARENS(((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
)
3616 goto handle_close;
3617 else
3618 goto normal_char;
3619
3620
3621 case '\n':
3622 if (syntax & RE_NEWLINE_ALT(((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1)
)
3623 goto handle_alt;
3624 else
3625 goto normal_char;
3626
3627
3628 case '|':
3629 if (syntax & RE_NO_BK_VBAR(((((((((((((((((unsigned long int) 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1)
)
3630 goto handle_alt;
3631 else
3632 goto normal_char;
3633
3634
3635 case '{':
3636 if (syntax & RE_INTERVALS(((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1)
&& syntax & RE_NO_BK_BRACES((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1)
)
3637 goto handle_interval;
3638 else
3639 goto normal_char;
3640
3641
3642 case '\\':
3643 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3644
3645 /* Do not translate the character after the \, so that we can
3646 distinguish, e.g., \B from \b, even if we normally would
3647 translate, e.g., B to b. */
3648 PATFETCH_RAW (c);
3649
3650 switch (c)
3651 {
3652 case '(':
3653 if (syntax & RE_NO_BK_PARENS(((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
)
3654 goto normal_backslash;
3655
3656 handle_open:
3657 bufp->re_nsub++;
3658 regnum++;
3659
3660 if (COMPILE_STACK_FULL(compile_stack.avail == compile_stack.size))
3661 {
3662 RETALLOC (compile_stack.stack, compile_stack.size << 1,((compile_stack.stack) = (compile_stack_elt_t *) realloc (compile_stack
.stack, (compile_stack.size << 1) * sizeof (compile_stack_elt_t
)))
3663 compile_stack_elt_t)((compile_stack.stack) = (compile_stack_elt_t *) realloc (compile_stack
.stack, (compile_stack.size << 1) * sizeof (compile_stack_elt_t
)))
;
3664 if (compile_stack.stack == NULL((void*)0)) return REG_ESPACE;
3665
3666 compile_stack.size <<= 1;
3667 }
3668
3669 /* These are the values to restore when we hit end of this
3670 group. They are all relative offsets, so that if the
3671 whole pattern moves because of realloc, they will still
3672 be valid. */
3673 COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).begalt_offset = begalt - COMPILED_BUFFER_VAR;
3674 COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).fixup_alt_jump
3675 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3676 COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).laststart_offset = b - COMPILED_BUFFER_VAR;
3677 COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).regnum = regnum;
3678
3679 /* We will eventually replace the 0 with the number of
3680 groups inner to this one. But do not push a
3681 start_memory for groups beyond the last one we can
3682 represent in the compiled pattern. */
3683 if (regnum <= MAX_REGNUM255)
3684 {
3685 COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).inner_group_offset = b
3686 - COMPILED_BUFFER_VAR + 2;
3687 BUF_PUSH_3 (start_memory, regnum, 0);
3688 }
3689
3690 compile_stack.avail++;
3691
3692 fixup_alt_jump = 0;
3693 laststart = 0;
3694 begalt = b;
3695 /* If we've reached MAX_REGNUM groups, then this open
3696 won't actually generate any code, so we'll have to
3697 clear pending_exact explicitly. */
3698 pending_exact = 0;
3699 break;
3700
3701
3702 case ')':
3703 if (syntax & RE_NO_BK_PARENS(((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
) goto normal_backslash;
3704
3705 if (COMPILE_STACK_EMPTY(compile_stack.avail == 0))
3706 {
3707 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD(((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1)
)
3708 goto normal_backslash;
3709 else
3710 FREE_STACK_RETURN (REG_ERPAREN);
3711 }
3712
3713 handle_close:
3714 if (fixup_alt_jump)
3715 { /* Push a dummy failure point at the end of the
3716 alternative for a possible future
3717 `pop_failure_jump' to pop. See comments at
3718 `push_dummy_failure' in `re_match_2'. */
3719 BUF_PUSH (push_dummy_failure);
3720
3721 /* We allocated space for this jump when we assigned
3722 to `fixup_alt_jump', in the `handle_alt' case below. */
3723 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3724 }
3725
3726 /* See similar code for backslashed left paren above. */
3727 if (COMPILE_STACK_EMPTY(compile_stack.avail == 0))
3728 {
3729 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD(((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1)
)
3730 goto normal_char;
3731 else
3732 FREE_STACK_RETURN (REG_ERPAREN);
3733 }
3734
3735 /* Since we just checked for an empty stack above, this
3736 ``can't happen''. */
3737 assert (compile_stack.avail != 0);
3738 {
3739 /* We don't just want to restore into `regnum', because
3740 later groups should continue to be numbered higher,
3741 as in `(ab)c(de)' -- the second group is #2. */
3742 regnum_t this_group_regnum;
3743
3744 compile_stack.avail--;
3745 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).begalt_offset;
3746 fixup_alt_jump
3747 = COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).fixup_alt_jump
3748 ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).fixup_alt_jump - 1
3749 : 0;
3750 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).laststart_offset;
3751 this_group_regnum = COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).regnum;
3752 /* If we've reached MAX_REGNUM groups, then this open
3753 won't actually generate any code, so we'll have to
3754 clear pending_exact explicitly. */
3755 pending_exact = 0;
3756
3757 /* We're at the end of the group, so now we know how many
3758 groups were inside this one. */
3759 if (this_group_regnum <= MAX_REGNUM255)
3760 {
3761 UCHAR_T *inner_group_loc
3762 = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).inner_group_offset;
3763
3764 *inner_group_loc = regnum - this_group_regnum;
3765 BUF_PUSH_3 (stop_memory, this_group_regnum,
3766 regnum - this_group_regnum);
3767 }
3768 }
3769 break;
3770
3771
3772 case '|': /* `\|'. */
3773 if (syntax & RE_LIMITED_OPS((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1)
|| syntax & RE_NO_BK_VBAR(((((((((((((((((unsigned long int) 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1)
)
3774 goto normal_backslash;
3775 handle_alt:
3776 if (syntax & RE_LIMITED_OPS((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1)
)
3777 goto normal_char;
3778
3779 /* Insert before the previous alternative a jump which
3780 jumps to this alternative if the former fails. */
3781 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3782 INSERT_JUMP (on_failure_jump, begalt,
3783 b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3784 pending_exact = 0;
3785 b += 1 + OFFSET_ADDRESS_SIZE;
3786
3787 /* The alternative before this one has a jump after it
3788 which gets executed if it gets matched. Adjust that
3789 jump so it will jump to this alternative's analogous
3790 jump (put in below, which in turn will jump to the next
3791 (if any) alternative's such jump, etc.). The last such
3792 jump jumps to the correct final destination. A picture:
3793 _____ _____
3794 | | | |
3795 | v | v
3796 a | b | c
3797
3798 If we are at `b', then fixup_alt_jump right now points to a
3799 three-byte space after `a'. We'll put in the jump, set
3800 fixup_alt_jump to right after `b', and leave behind three
3801 bytes which we'll fill in when we get to after `c'. */
3802
3803 if (fixup_alt_jump)
3804 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3805
3806 /* Mark and leave space for a jump after this alternative,
3807 to be filled in later either by next alternative or
3808 when know we're at the end of a series of alternatives. */
3809 fixup_alt_jump = b;
3810 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3811 b += 1 + OFFSET_ADDRESS_SIZE;
3812
3813 laststart = 0;
3814 begalt = b;
3815 break;
3816
3817
3818 case '{':
3819 /* If \{ is a literal. */
3820 if (!(syntax & RE_INTERVALS(((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1)
)
3821 /* If we're at `\{' and it's not the open-interval
3822 operator. */
3823 || (syntax & RE_NO_BK_BRACES((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1)
))
3824 goto normal_backslash;
3825
3826 handle_interval:
3827 {
3828 /* If got here, then the syntax allows intervals. */
3829
3830 /* At least (most) this many matches must be made. */
3831 int lower_bound = -1, upper_bound = -1;
3832
3833 /* Place in the uncompiled pattern (i.e., just after
3834 the '{') to go back to if the interval is invalid. */
3835 const CHAR_T *beg_interval = p;
3836
3837 if (p == pend)
3838 goto invalid_interval;
3839
3840 GET_UNSIGNED_NUMBER (lower_bound);
3841
3842 if (c == ',')
3843 {
3844 GET_UNSIGNED_NUMBER (upper_bound);
3845 if (upper_bound < 0)
3846 upper_bound = RE_DUP_MAX(0x7fff);
3847 }
3848 else
3849 /* Interval such as `{1}' => match exactly once. */
3850 upper_bound = lower_bound;
3851
3852 if (! (0 <= lower_bound && lower_bound <= upper_bound))
3853 goto invalid_interval;
3854
3855 if (!(syntax & RE_NO_BK_BRACES((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1)
))
3856 {
3857 if (c != '\\' || p == pend)
3858 goto invalid_interval;
3859 PATFETCH (c);
3860 }
3861
3862 if (c != '}')
3863 goto invalid_interval;
3864
3865 /* If it's invalid to have no preceding re. */
3866 if (!laststart)
3867 {
3868 if (syntax & RE_CONTEXT_INVALID_OPS(((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1)
3869 && !(syntax & RE_INVALID_INTERVAL_ORD(((((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1)
))
3870 FREE_STACK_RETURN (REG_BADRPT);
3871 else if (syntax & RE_CONTEXT_INDEP_OPS((((((unsigned long int) 1) << 1) << 1) << 1
) << 1)
)
3872 laststart = b;
3873 else
3874 goto unfetch_interval;
3875 }
3876
3877 /* We just parsed a valid interval. */
3878
3879 if (RE_DUP_MAX(0x7fff) < upper_bound)
3880 FREE_STACK_RETURN (REG_BADBR);
3881
3882 /* If the upper bound is zero, don't want to succeed at
3883 all; jump from `laststart' to `b + 3', which will be
3884 the end of the buffer after we insert the jump. */
3885 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3886 instead of 'b + 3'. */
3887 if (upper_bound == 0)
3888 {
3889 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3890 INSERT_JUMP (jump, laststart, b + 1
3891 + OFFSET_ADDRESS_SIZE);
3892 b += 1 + OFFSET_ADDRESS_SIZE;
3893 }
3894
3895 /* Otherwise, we have a nontrivial interval. When
3896 we're all done, the pattern will look like:
3897 set_number_at <jump count> <upper bound>
3898 set_number_at <succeed_n count> <lower bound>
3899 succeed_n <after jump addr> <succeed_n count>
3900 <body of loop>
3901 jump_n <succeed_n addr> <jump count>
3902 (The upper bound and `jump_n' are omitted if
3903 `upper_bound' is 1, though.) */
3904 else
3905 { /* If the upper bound is > 1, we need to insert
3906 more at the end of the loop. */
3907 unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3908 (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3909
3910 GET_BUFFER_SPACE (nbytes);
3911
3912 /* Initialize lower bound of the `succeed_n', even
3913 though it will be set during matching by its
3914 attendant `set_number_at' (inserted next),
3915 because `re_compile_fastmap' needs to know.
3916 Jump to the `jump_n' we might insert below. */
3917 INSERT_JUMP2 (succeed_n, laststart,
3918 b + 1 + 2 * OFFSET_ADDRESS_SIZE
3919 + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3920 , lower_bound);
3921 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3922
3923 /* Code to initialize the lower bound. Insert
3924 before the `succeed_n'. The `5' is the last two
3925 bytes of this `set_number_at', plus 3 bytes of
3926 the following `succeed_n'. */
3927 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3928 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3929 of the following `succeed_n'. */
3930 PREFIX(insert_op2) (set_number_at, laststart, 1
3931 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3932 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3933
3934 if (upper_bound > 1)
3935 { /* More than one repetition is allowed, so
3936 append a backward jump to the `succeed_n'
3937 that starts this interval.
3938
3939 When we've reached this during matching,
3940 we'll have matched the interval once, so
3941 jump back only `upper_bound - 1' times. */
3942 STORE_JUMP2 (jump_n, b, laststart
3943 + 2 * OFFSET_ADDRESS_SIZE + 1,
3944 upper_bound - 1);
3945 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3946
3947 /* The location we want to set is the second
3948 parameter of the `jump_n'; that is `b-2' as
3949 an absolute address. `laststart' will be
3950 the `set_number_at' we're about to insert;
3951 `laststart+3' the number to set, the source
3952 for the relative address. But we are
3953 inserting into the middle of the pattern --
3954 so everything is getting moved up by 5.
3955 Conclusion: (b - 2) - (laststart + 3) + 5,
3956 i.e., b - laststart.
3957
3958 We insert this at the beginning of the loop
3959 so that if we fail during matching, we'll
3960 reinitialize the bounds. */
3961 PREFIX(insert_op2) (set_number_at, laststart,
3962 b - laststart,
3963 upper_bound - 1, b);
3964 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3965 }
3966 }
3967 pending_exact = 0;
3968 break;
3969
3970 invalid_interval:
3971 if (!(syntax & RE_INVALID_INTERVAL_ORD(((((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1)
))
3972 FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3973 unfetch_interval:
3974 /* Match the characters as literals. */
3975 p = beg_interval;
3976 c = '{';
3977 if (syntax & RE_NO_BK_BRACES((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1)
)
3978 goto normal_char;
3979 else
3980 goto normal_backslash;
3981 }
3982
3983#ifdef emacs
3984 /* There is no way to specify the before_dot and after_dot
3985 operators. rms says this is ok. --karl */
3986 case '=':
3987 BUF_PUSH (at_dot);
3988 break;
3989
3990 case 's':
3991 laststart = b;
3992 PATFETCH (c);
3993 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3994 break;
3995
3996 case 'S':
3997 laststart = b;
3998 PATFETCH (c);
3999 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4000 break;
4001#endif /* emacs */
4002
4003
4004 case 'w':
4005 if (syntax & RE_NO_GNU_OPS(((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1)
)
4006 goto normal_char;
4007 laststart = b;
4008 BUF_PUSH (wordchar);
4009 break;
4010
4011
4012 case 'W':
4013 if (syntax & RE_NO_GNU_OPS(((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1)
)
4014 goto normal_char;
4015 laststart = b;
4016 BUF_PUSH (notwordchar);
4017 break;
4018
4019
4020 case '<':
4021 if (syntax & RE_NO_GNU_OPS(((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1)
)
4022 goto normal_char;
4023 BUF_PUSH (wordbeg);
4024 break;
4025
4026 case '>':
4027 if (syntax & RE_NO_GNU_OPS(((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1)
)
4028 goto normal_char;
4029 BUF_PUSH (wordend);
4030 break;
4031
4032 case 'b':
4033 if (syntax & RE_NO_GNU_OPS(((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1)
)
4034 goto normal_char;
4035 BUF_PUSH (wordbound);
4036 break;
4037
4038 case 'B':
4039 if (syntax & RE_NO_GNU_OPS(((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1)
)
4040 goto normal_char;
4041 BUF_PUSH (notwordbound);
4042 break;
4043
4044 case '`':
4045 if (syntax & RE_NO_GNU_OPS(((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1)
)
4046 goto normal_char;
4047 BUF_PUSH (begbuf);
4048 break;
4049
4050 case '\'':
4051 if (syntax & RE_NO_GNU_OPS(((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1)
)
4052 goto normal_char;
4053 BUF_PUSH (endbuf);
4054 break;
4055
4056 case '1': case '2': case '3': case '4': case '5':
4057 case '6': case '7': case '8': case '9':
4058 if (syntax & RE_NO_BK_REFS((((((((((((((((unsigned long int) 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1)
)
4059 goto normal_char;
4060
4061 c1 = c - '0';
4062
4063 if (c1 > regnum)
4064 FREE_STACK_RETURN (REG_ESUBREG);
4065
4066 /* Can't back reference to a subexpression if inside of it. */
4067 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4068 goto normal_char;
4069
4070 laststart = b;
4071 BUF_PUSH_2 (duplicate, c1);
4072 break;
4073
4074
4075 case '+':
4076 case '?':
4077 if (syntax & RE_BK_PLUS_QM(((unsigned long int) 1) << 1))
4078 goto handle_plus;
4079 else
4080 goto normal_backslash;
4081
4082 default:
4083 normal_backslash:
4084 /* You might think it would be useful for \ to mean
4085 not to translate; but if we don't translate it
4086 it will never match anything. */
4087 c = TRANSLATE (c);
4088 goto normal_char;
4089 }
4090 break;
4091
4092
4093 default:
4094 /* Expects the character in `c'. */
4095 normal_char:
4096 /* If no exactn currently being built. */
4097 if (!pending_exact
4098#ifdef WCHAR
4099 /* If last exactn handle binary(or character) and
4100 new exactn handle character(or binary). */
4101 || is_exactn_bin != is_binary[p - 1 - pattern]
4102#endif /* WCHAR */
4103
4104 /* If last exactn not at current position. */
4105 || pending_exact + *pending_exact + 1 != b
4106
4107 /* We have only one byte following the exactn for the count. */
4108 || *pending_exact == (1 << BYTEWIDTH8) - 1
4109
4110 /* If followed by a repetition operator. */
4111 || *p == '*' || *p == '^'
4112 || ((syntax & RE_BK_PLUS_QM(((unsigned long int) 1) << 1))
4113 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4114 : (*p == '+' || *p == '?'))
4115 || ((syntax & RE_INTERVALS(((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1)
)
4116 && ((syntax & RE_NO_BK_BRACES((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1)
)
4117 ? *p == '{'
4118 : (p[0] == '\\' && p[1] == '{'))))
4119 {
4120 /* Start building a new exactn. */
4121
4122 laststart = b;
4123
4124#ifdef WCHAR
4125 /* Is this exactn binary data or character? */
4126 is_exactn_bin = is_binary[p - 1 - pattern];
4127 if (is_exactn_bin)
4128 BUF_PUSH_2 (exactn_bin, 0);
4129 else
4130 BUF_PUSH_2 (exactn, 0);
4131#else
4132 BUF_PUSH_2 (exactn, 0);
4133#endif /* WCHAR */
4134 pending_exact = b - 1;
4135 }
4136
4137 BUF_PUSH (c);
4138 (*pending_exact)++;
4139 break;
4140 } /* switch (c) */
4141 } /* while p != pend */
4142
4143
4144 /* Through the pattern now. */
4145
4146 if (fixup_alt_jump)
4147 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4148
4149 if (!COMPILE_STACK_EMPTY(compile_stack.avail == 0))
4150 FREE_STACK_RETURN (REG_EPAREN);
4151
4152 /* If we don't want backtracking, force success
4153 the first time we reach the end of the compiled pattern. */
4154 if (syntax & RE_NO_POSIX_BACKTRACKING((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1)
)
4155 BUF_PUSH (succeed);
4156
4157#ifdef WCHAR
4158 free (pattern);
4159 free (mbs_offset);
4160 free (is_binary);
4161#endif
4162 free (compile_stack.stack);
4163
4164 /* We have succeeded; set the length of the buffer. */
4165#ifdef WCHAR
4166 bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4167#else
4168 bufp->used = b - bufp->buffer;
4169#endif
4170
4171#ifdef DEBUG
4172 if (debug)
4173 {
4174 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4175 PREFIX(print_compiled_pattern) (bufp);
4176 }
4177#endif /* DEBUG */
4178
4179#ifndef MATCH_MAY_ALLOCATE
4180 /* Initialize the failure stack to the largest possible stack. This
4181 isn't necessary unless we're trying to avoid calling alloca in
4182 the search and match routines. */
4183 {
4184 int num_regs = bufp->re_nsub + 1;
4185
4186 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4187 is strictly greater than re_max_failures, the largest possible stack
4188 is 2 * re_max_failures failure points. */
4189 if (fail_stack.size < (2 * re_max_failuresxre_max_failures * MAX_FAILURE_ITEMS(5 * 3 + 4)))
4190 {
4191 fail_stack.size = (2 * re_max_failuresxre_max_failures * MAX_FAILURE_ITEMS(5 * 3 + 4));
4192
4193# ifdef emacs
4194 if (! fail_stack.stack)
4195 fail_stack.stack
4196 = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4197 * sizeof (PREFIX(fail_stack_elt_t)));
4198 else
4199 fail_stack.stack
4200 = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4201 (fail_stack.size
4202 * sizeof (PREFIX(fail_stack_elt_t))));
4203# else /* not emacs */
4204 if (! fail_stack.stack)
4205 fail_stack.stack
4206 = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4207 * sizeof (PREFIX(fail_stack_elt_t)));
4208 else
4209 fail_stack.stack
4210 = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4211 (fail_stack.size
4212 * sizeof (PREFIX(fail_stack_elt_t))));
4213# endif /* not emacs */
4214 }
4215
4216 PREFIX(regex_grow_registers) (num_regs);
4217 }
4218#endif /* not MATCH_MAY_ALLOCATE */
4219
4220 return REG_NOERROR;
4221} /* regex_compile */
4222
4223/* Subroutines for `regex_compile'. */
4224
4225/* Store OP at LOC followed by two-byte integer parameter ARG. */
4226/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4227
4228static void
4229PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg)
4230{
4231 *loc = (UCHAR_T) op;
4232 STORE_NUMBER (loc + 1, arg);
4233}
4234
4235
4236/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4237/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4238
4239static void
4240PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2)
4241{
4242 *loc = (UCHAR_T) op;
4243 STORE_NUMBER (loc + 1, arg1);
4244 STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4245}
4246
4247
4248/* Copy the bytes from LOC to END to open up three bytes of space at LOC
4249 for OP followed by two-byte integer parameter ARG. */
4250/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4251
4252static void
4253PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end)
4254{
4255 register UCHAR_T *pfrom = end;
4256 register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4257
4258 while (pfrom != loc)
4259 *--pto = *--pfrom;
4260
4261 PREFIX(store_op1) (op, loc, arg);
4262}
4263
4264
4265/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4266/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4267
4268static void
4269PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1,
4270 int arg2, UCHAR_T *end)
4271{
4272 register UCHAR_T *pfrom = end;
4273 register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4274
4275 while (pfrom != loc)
4276 *--pto = *--pfrom;
4277
4278 PREFIX(store_op2) (op, loc, arg1, arg2);
4279}
4280
4281
4282/* P points to just after a ^ in PATTERN. Return true if that ^ comes
4283 after an alternative or a begin-subexpression. We assume there is at
4284 least one character before the ^. */
4285
4286static boolean
4287PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p,
4288 reg_syntax_t syntax)
4289{
4290 const CHAR_T *prev = p - 2;
4291 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4292
4293 return
4294 /* After a subexpression? */
4295 (*prev == '(' && (syntax & RE_NO_BK_PARENS(((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
|| prev_prev_backslash))
4296 /* After an alternative? */
4297 || (*prev == '|' && (syntax & RE_NO_BK_VBAR(((((((((((((((((unsigned long int) 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1)
|| prev_prev_backslash));
4298}
4299
4300
4301/* The dual of at_begline_loc_p. This one is for $. We assume there is
4302 at least one character after the $, i.e., `P < PEND'. */
4303
4304static boolean
4305PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend,
4306 reg_syntax_t syntax)
4307{
4308 const CHAR_T *next = p;
4309 boolean next_backslash = *next == '\\';
4310 const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4311
4312 return
4313 /* Before a subexpression? */
4314 (syntax & RE_NO_BK_PARENS(((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
? *next == ')'
4315 : next_backslash && next_next && *next_next == ')')
4316 /* Before an alternative? */
4317 || (syntax & RE_NO_BK_VBAR(((((((((((((((((unsigned long int) 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1)
? *next == '|'
4318 : next_backslash && next_next && *next_next == '|');
4319}
4320
4321#else /* not INSIDE_RECURSION */
4322
4323/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4324 false if it's not. */
4325
4326static boolean
4327group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
4328{
4329 int this_element;
4330
4331 for (this_element = compile_stack.avail - 1;
4332 this_element >= 0;
4333 this_element--)
4334 if (compile_stack.stack[this_element].regnum == regnum)
4335 return true1;
4336
4337 return false0;
4338}
4339#endif /* not INSIDE_RECURSION */
4340
4341#ifdef INSIDE_RECURSION
4342
4343#ifdef WCHAR
4344/* This insert space, which size is "num", into the pattern at "loc".
4345 "end" must point the end of the allocated buffer. */
4346static void
4347insert_space (int num, CHAR_T *loc, CHAR_T *end)
4348{
4349 register CHAR_T *pto = end;
4350 register CHAR_T *pfrom = end - num;
4351
4352 while (pfrom >= loc)
4353 *pto-- = *pfrom--;
4354}
4355#endif /* WCHAR */
4356
4357#ifdef WCHAR
4358static reg_errcode_t
4359wcs_compile_range (CHAR_T range_start_char, const CHAR_T **p_ptr,
4360 const CHAR_T *pend, RE_TRANSLATE_TYPEchar * translate,
4361 reg_syntax_t syntax, CHAR_T *b, CHAR_T *char_set)
4362{
4363 const CHAR_T *p = *p_ptr;
4364 CHAR_T range_start, range_end;
4365 reg_errcode_t ret;
4366# ifdef _LIBC
4367 uint32_t nrules;
4368 uint32_t start_val, end_val;
4369# endif
4370 if (p == pend)
4371 return REG_ERANGE;
4372
4373# ifdef _LIBC
4374 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4375 if (nrules != 0)
4376 {
4377 const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4378 _NL_COLLATE_COLLSEQWC);
4379 const unsigned char *extra = (const unsigned char *)
4380 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4381
4382 if (range_start_char < -1)
4383 {
4384 /* range_start is a collating symbol. */
4385 int32_t *wextra;
4386 /* Retreive the index and get collation sequence value. */
4387 wextra = (int32_t*)(extra + char_set[-range_start_char]);
4388 start_val = wextra[1 + *wextra];
4389 }
4390 else
4391 start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4392
4393 end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4394
4395 /* Report an error if the range is empty and the syntax prohibits
4396 this. */
4397 ret = ((syntax & RE_NO_EMPTY_RANGES((((((((((((((((((unsigned long int) 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1)
)
4398 && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4399
4400 /* Insert space to the end of the char_ranges. */
4401 insert_space(2, b - char_set[5] - 2, b - 1);
4402 *(b - char_set[5] - 2) = (wchar_t)start_val;
4403 *(b - char_set[5] - 1) = (wchar_t)end_val;
4404 char_set[4]++; /* ranges_index */
4405 }
4406 else
4407# endif
4408 {
4409 range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4410 range_start_char;
4411 range_end = TRANSLATE (p[0]);
4412 /* Report an error if the range is empty and the syntax prohibits
4413 this. */
4414 ret = ((syntax & RE_NO_EMPTY_RANGES((((((((((((((((((unsigned long int) 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1)
)
4415 && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4416
4417 /* Insert space to the end of the char_ranges. */
4418 insert_space(2, b - char_set[5] - 2, b - 1);
4419 *(b - char_set[5] - 2) = range_start;
4420 *(b - char_set[5] - 1) = range_end;
4421 char_set[4]++; /* ranges_index */
4422 }
4423 /* Have to increment the pointer into the pattern string, so the
4424 caller isn't still at the ending character. */
4425 (*p_ptr)++;
4426
4427 return ret;
4428}
4429#else /* BYTE */
4430/* Read the ending character of a range (in a bracket expression) from the
4431 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4432 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4433 Then we set the translation of all bits between the starting and
4434 ending characters (inclusive) in the compiled pattern B.
4435
4436 Return an error code.
4437
4438 We use these short variable names so we can use the same macros as
4439 `regex_compile' itself. */
4440
4441static reg_errcode_t
4442byte_compile_range (unsigned int range_start_char, const char **p_ptr,
4443 const char *pend, RE_TRANSLATE_TYPEchar * translate,
4444 reg_syntax_t syntax, unsigned char *b)
4445{
4446 unsigned this_char;
4447 const char *p = *p_ptr;
4448 reg_errcode_t ret;
4449# if _LIBC
4450 const unsigned char *collseq;
4451 unsigned int start_colseq;
4452 unsigned int end_colseq;
4453# else
4454 unsigned end_char;
4455# endif
4456
4457 if (p == pend)
4458 return REG_ERANGE;
4459
4460 /* Have to increment the pointer into the pattern string, so the
4461 caller isn't still at the ending character. */
4462 (*p_ptr)++;
4463
4464 /* Report an error if the range is empty and the syntax prohibits this. */
4465 ret = syntax & RE_NO_EMPTY_RANGES((((((((((((((((((unsigned long int) 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1)
? REG_ERANGE : REG_NOERROR;
4466
4467# if _LIBC
4468 collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4469 _NL_COLLATE_COLLSEQMB);
4470
4471 start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4472 end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4473 for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4474 {
4475 unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4476
4477 if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4478 {
4479 SET_LIST_BIT (TRANSLATE (this_char))(b[((unsigned char) (TRANSLATE (this_char))) / 8] |= 1 <<
(((unsigned char) TRANSLATE (this_char)) % 8))
;
4480 ret = REG_NOERROR;
4481 }
4482 }
4483# else
4484 /* Here we see why `this_char' has to be larger than an `unsigned
4485 char' -- we would otherwise go into an infinite loop, since all
4486 characters <= 0xff. */
4487 range_start_char = TRANSLATE (range_start_char);
4488 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4489 and some compilers cast it to int implicitly, so following for_loop
4490 may fall to (almost) infinite loop.
4491 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4492 To avoid this, we cast p[0] to unsigned int and truncate it. */
4493 end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH8) - 1));
4494
4495 for (this_char = range_start_char; this_char <= end_char; ++this_char)
4496 {
4497 SET_LIST_BIT (TRANSLATE (this_char))(b[((unsigned char) (TRANSLATE (this_char))) / 8] |= 1 <<
(((unsigned char) TRANSLATE (this_char)) % 8))
;
4498 ret = REG_NOERROR;
4499 }
4500# endif
4501
4502 return ret;
4503}
4504#endif /* WCHAR */
4505
4506/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4507 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4508 characters can start a string that matches the pattern. This fastmap
4509 is used by re_search to skip quickly over impossible starting points.
4510
4511 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4512 area as BUFP->fastmap.
4513
4514 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4515 the pattern buffer.
4516
4517 Returns 0 if we succeed, -2 if an internal error. */
4518
4519#ifdef WCHAR
4520/* local function for re_compile_fastmap.
4521 truncate wchar_t character to char. */
4522static unsigned char truncate_wchar (CHAR_T c);
4523
4524static unsigned char
4525truncate_wchar (CHAR_T c)
4526{
4527 unsigned char buf[MB_CUR_MAX__mb_cur_max()];
4528 mbstate_t state;
4529 int retval;
4530 memset (&state, '\0', sizeof (state));
4531# ifdef _LIBC
4532 retval = __wcrtomb (buf, c, &state);
4533# else
4534 retval = wcrtomb (buf, c, &state);
4535# endif
4536 return retval > 0 ? buf[0] : (unsigned char) c;
4537}
4538#endif /* WCHAR */
4539
4540static int
4541PREFIX(re_compile_fastmapxre_compile_fastmap) (struct re_pattern_buffer *bufp)
4542{
4543 int j, k;
4544#ifdef MATCH_MAY_ALLOCATE
4545 PREFIX(fail_stack_type) fail_stack;
4546#endif
4547#ifndef REGEX_MALLOC
4548 char *destination;
4549#endif
4550
4551 register char *fastmap = bufp->fastmap;
4552
4553#ifdef WCHAR
4554 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4555 pattern to (char*) in regex_compile. */
4556 UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4557 register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4558#else /* BYTE */
4559 UCHAR_T *pattern = bufp->buffer;
4560 register UCHAR_T *pend = pattern + bufp->used;
4561#endif /* WCHAR */
4562 UCHAR_T *p = pattern;
4563
4564#ifdef REL_ALLOC
4565 /* This holds the pointer to the failure stack, when
4566 it is allocated relocatably. */
4567 fail_stack_elt_t *failure_stack_ptr;
4568#endif
4569
4570 /* Assume that each path through the pattern can be null until
4571 proven otherwise. We set this false at the bottom of switch
4572 statement, to which we get only if a particular path doesn't
4573 match the empty string. */
4574 boolean path_can_be_null = true1;
4575
4576 /* We aren't doing a `succeed_n' to begin with. */
4577 boolean succeed_n_p = false0;
4578
4579 assert (fastmap != NULL && p != NULL);
4580
4581 INIT_FAIL_STACK ();
4582 bzero (fastmap, 1 << BYTEWIDTH)(memset (fastmap, '\0', 1 << 8), (fastmap)); /* Assume nothing's valid. */
4583 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4584 bufp->can_be_null = 0;
4585
4586 while (1)
4587 {
4588 if (p == pend || *p == (UCHAR_T) succeed)
4589 {
4590 /* We have reached the (effective) end of pattern. */
4591 if (!FAIL_STACK_EMPTY ()(fail_stack.avail == 0))
4592 {
4593 bufp->can_be_null |= path_can_be_null;
4594
4595 /* Reset for next path. */
4596 path_can_be_null = true1;
4597
4598 p = fail_stack.stack[--fail_stack.avail].pointer;
4599
4600 continue;
4601 }
4602 else
4603 break;
4604 }
4605
4606 /* We should never be about to go beyond the end of the pattern. */
4607 assert (p < pend);
4608
4609 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)((re_opcode_t) *p++))
4610 {
4611
4612 /* I guess the idea here is to simply not bother with a fastmap
4613 if a backreference is used, since it's too hard to figure out
4614 the fastmap for the corresponding group. Setting
4615 `can_be_null' stops `re_search_2' from using the fastmap, so
4616 that is all we do. */
4617 case duplicate:
4618 bufp->can_be_null = 1;
4619 goto done;
4620
4621
4622 /* Following are the cases which match a character. These end
4623 with `break'. */
4624
4625#ifdef WCHAR
4626 case exactn:
4627 fastmap[truncate_wchar(p[1])] = 1;
4628 break;
4629#else /* BYTE */
4630 case exactn:
4631 fastmap[p[1]] = 1;
4632 break;
4633#endif /* WCHAR */
4634#ifdef MBS_SUPPORT
4635 case exactn_bin:
4636 fastmap[p[1]] = 1;
4637 break;
4638#endif
4639
4640#ifdef WCHAR
4641 /* It is hard to distinguish fastmap from (multi byte) characters
4642 which depends on current locale. */
4643 case charset:
4644 case charset_not:
4645 case wordchar:
4646 case notwordchar:
4647 bufp->can_be_null = 1;
4648 goto done;
4649#else /* BYTE */
4650 case charset:
4651 for (j = *p++ * BYTEWIDTH8 - 1; j >= 0; j--)
4652 if (p[j / BYTEWIDTH8] & (1 << (j % BYTEWIDTH8)))
4653 fastmap[j] = 1;
4654 break;
4655
4656
4657 case charset_not:
4658 /* Chars beyond end of map must be allowed. */
4659 for (j = *p * BYTEWIDTH8; j < (1 << BYTEWIDTH8); j++)
4660 fastmap[j] = 1;
4661
4662 for (j = *p++ * BYTEWIDTH8 - 1; j >= 0; j--)
4663 if (!(p[j / BYTEWIDTH8] & (1 << (j % BYTEWIDTH8))))
4664 fastmap[j] = 1;
4665 break;
4666
4667
4668 case wordchar:
4669 for (j = 0; j < (1 << BYTEWIDTH8); j++)
4670 if (SYNTAX (j)re_syntax_table[(unsigned char) (j)] == Sword1)
4671 fastmap[j] = 1;
4672 break;
4673
4674
4675 case notwordchar:
4676 for (j = 0; j < (1 << BYTEWIDTH8); j++)
4677 if (SYNTAX (j)re_syntax_table[(unsigned char) (j)] != Sword1)
4678 fastmap[j] = 1;
4679 break;
4680#endif /* WCHAR */
4681
4682 case anychar:
4683 {
4684 int fastmap_newline = fastmap['\n'];
4685
4686 /* `.' matches anything ... */
4687 for (j = 0; j < (1 << BYTEWIDTH8); j++)
4688 fastmap[j] = 1;
4689
4690 /* ... except perhaps newline. */
4691 if (!(bufp->syntax & RE_DOT_NEWLINE((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1)
))
4692 fastmap['\n'] = fastmap_newline;
4693
4694 /* Return if we have already set `can_be_null'; if we have,
4695 then the fastmap is irrelevant. Something's wrong here. */
4696 else if (bufp->can_be_null)
4697 goto done;
4698
4699 /* Otherwise, have to check alternative paths. */
4700 break;
4701 }
4702
4703#ifdef emacs
4704 case syntaxspec:
4705 k = *p++;
4706 for (j = 0; j < (1 << BYTEWIDTH8); j++)
4707 if (SYNTAX (j)re_syntax_table[(unsigned char) (j)] == (enum syntaxcode) k)
4708 fastmap[j] = 1;
4709 break;
4710
4711
4712 case notsyntaxspec:
4713 k = *p++;
4714 for (j = 0; j < (1 << BYTEWIDTH8); j++)
4715 if (SYNTAX (j)re_syntax_table[(unsigned char) (j)] != (enum syntaxcode) k)
4716 fastmap[j] = 1;
4717 break;
4718
4719
4720 /* All cases after this match the empty string. These end with
4721 `continue'. */
4722
4723
4724 case before_dot:
4725 case at_dot:
4726 case after_dot:
4727 continue;
4728#endif /* emacs */
4729
4730
4731 case no_op:
4732 case begline:
4733 case endline:
4734 case begbuf:
4735 case endbuf:
4736 case wordbound:
4737 case notwordbound:
4738 case wordbeg:
4739 case wordend:
4740 case push_dummy_failure:
4741 continue;
4742
4743
4744 case jump_n:
4745 case pop_failure_jump:
4746 case maybe_pop_jump:
4747 case jump:
4748 case jump_past_alt:
4749 case dummy_failure_jump:
4750 EXTRACT_NUMBER_AND_INCR (j, p);
4751 p += j;
4752 if (j > 0)
4753 continue;
4754
4755 /* Jump backward implies we just went through the body of a
4756 loop and matched nothing. Opcode jumped to should be
4757 `on_failure_jump' or `succeed_n'. Just treat it like an
4758 ordinary jump. For a * loop, it has pushed its failure
4759 point already; if so, discard that as redundant. */
4760 if ((re_opcode_t) *p != on_failure_jump
4761 && (re_opcode_t) *p != succeed_n)
4762 continue;
4763
4764 p++;
4765 EXTRACT_NUMBER_AND_INCR (j, p);
4766 p += j;
4767
4768 /* If what's on the stack is where we are now, pop it. */
4769 if (!FAIL_STACK_EMPTY ()(fail_stack.avail == 0)
4770 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4771 fail_stack.avail--;
4772
4773 continue;
4774
4775
4776 case on_failure_jump:
4777 case on_failure_keep_string_jump:
4778 handle_on_failure_jump:
4779 EXTRACT_NUMBER_AND_INCR (j, p);
4780
4781 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4782 end of the pattern. We don't want to push such a point,
4783 since when we restore it above, entering the switch will
4784 increment `p' past the end of the pattern. We don't need
4785 to push such a point since we obviously won't find any more
4786 fastmap entries beyond `pend'. Such a pattern can match
4787 the null string, though. */
4788 if (p + j < pend)
4789 {
4790 if (!PUSH_PATTERN_OP (p + j, fail_stack))
4791 {
4792 RESET_FAIL_STACK ();
4793 return -2;
4794 }
4795 }
4796 else
4797 bufp->can_be_null = 1;
4798
4799 if (succeed_n_p)
4800 {
4801 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
4802 succeed_n_p = false0;
4803 }
4804
4805 continue;
4806
4807
4808 case succeed_n:
4809 /* Get to the number of times to succeed. */
4810 p += OFFSET_ADDRESS_SIZE;
4811
4812 /* Increment p past the n for when k != 0. */
4813 EXTRACT_NUMBER_AND_INCR (k, p);
4814 if (k == 0)
4815 {
4816 p -= 2 * OFFSET_ADDRESS_SIZE;
4817 succeed_n_p = true1; /* Spaghetti code alert. */
4818 goto handle_on_failure_jump;
4819 }
4820 continue;
4821
4822
4823 case set_number_at:
4824 p += 2 * OFFSET_ADDRESS_SIZE;
4825 continue;
4826
4827
4828 case start_memory:
4829 case stop_memory:
4830 p += 2;
4831 continue;
4832
4833
4834 default:
4835 abort (); /* We have listed all the cases. */
4836 } /* switch *p++ */
4837
4838 /* Getting here means we have found the possible starting
4839 characters for one path of the pattern -- and that the empty
4840 string does not match. We need not follow this path further.
4841 Instead, look at the next alternative (remembered on the
4842 stack), or quit if no more. The test at the top of the loop
4843 does these things. */
4844 path_can_be_null = false0;
4845 p = pend;
4846 } /* while p */
4847
4848 /* Set `can_be_null' for the last path (also the first path, if the
4849 pattern is empty). */
4850 bufp->can_be_null |= path_can_be_null;
4851
4852 done:
4853 RESET_FAIL_STACK ();
4854 return 0;
4855}
4856
4857#else /* not INSIDE_RECURSION */
4858
4859int
4860re_compile_fastmapxre_compile_fastmap (struct re_pattern_buffer *bufp)
4861{
4862# ifdef MBS_SUPPORT
4863 if (MB_CUR_MAX__mb_cur_max() != 1)
4864 return wcs_re_compile_fastmap(bufp);
4865 else
4866# endif
4867 return byte_re_compile_fastmap(bufp);
4868} /* re_compile_fastmap */
4869#ifdef _LIBC
4870weak_alias (__re_compile_fastmap, re_compile_fastmapxre_compile_fastmap)
4871#endif
4872
4873
4874/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4875 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4876 this memory for recording register information. STARTS and ENDS
4877 must be allocated using the malloc library routine, and must each
4878 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4879
4880 If NUM_REGS == 0, then subsequent matches should allocate their own
4881 register data.
4882
4883 Unless this function is called, the first search or match using
4884 PATTERN_BUFFER will allocate its own register data, without
4885 freeing the old data. */
4886
4887void
4888re_set_registersxre_set_registers (struct re_pattern_buffer *bufp,
4889 struct re_registers *regs, unsigned num_regs,
4890 regoff_t *starts, regoff_t *ends)
4891{
4892 if (num_regs)
4893 {
4894 bufp->regs_allocated = REGS_REALLOCATE1;
4895 regs->num_regs = num_regs;
4896 regs->start = starts;
4897 regs->end = ends;
4898 }
4899 else
4900 {
4901 bufp->regs_allocated = REGS_UNALLOCATED0;
4902 regs->num_regs = 0;
4903 regs->start = regs->end = (regoff_t *) 0;
4904 }
4905}
4906#ifdef _LIBC
4907weak_alias (__re_set_registers, re_set_registersxre_set_registers)
4908#endif
4909
4910/* Searching routines. */
4911
4912/* Like re_search_2, below, but only one string is specified, and
4913 doesn't let you say where to stop matching. */
4914
4915int
4916re_searchxre_search (struct re_pattern_buffer *bufp, const char *string, int size,
4917 int startpos, int range, struct re_registers *regs)
4918{
4919 return re_search_2xre_search_2 (bufp, NULL((void*)0), 0, string, size, startpos, range,
7
Calling 'xre_search_2'
4920 regs, size);
4921}
4922#ifdef _LIBC
4923weak_alias (__re_search, re_searchxre_search)
4924#endif
4925
4926
4927/* Using the compiled pattern in BUFP->buffer, first tries to match the
4928 virtual concatenation of STRING1 and STRING2, starting first at index
4929 STARTPOS, then at STARTPOS + 1, and so on.
4930
4931 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4932
4933 RANGE is how far to scan while trying to match. RANGE = 0 means try
4934 only at STARTPOS; in general, the last start tried is STARTPOS +
4935 RANGE.
4936
4937 In REGS, return the indices of the virtual concatenation of STRING1
4938 and STRING2 that matched the entire BUFP->buffer and its contained
4939 subexpressions.
4940
4941 Do not consider matching one past the index STOP in the virtual
4942 concatenation of STRING1 and STRING2.
4943
4944 We return either the position in the strings at which the match was
4945 found, -1 if no match, or -2 if error (such as failure
4946 stack overflow). */
4947
4948int
4949re_search_2xre_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
4950 const char *string2, int size2, int startpos, int range,
4951 struct re_registers *regs, int stop)
4952{
4953# ifdef MBS_SUPPORT
4954 if (MB_CUR_MAX__mb_cur_max() != 1)
4955 return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4956 range, regs, stop);
4957 else
4958# endif
4959 return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
8
Calling 'byte_re_search_2'
4960 range, regs, stop);
4961} /* re_search_2 */
4962#ifdef _LIBC
4963weak_alias (__re_search_2, re_search_2xre_search_2)
4964#endif
4965
4966#endif /* not INSIDE_RECURSION */
4967
4968#ifdef INSIDE_RECURSION
4969
4970#ifdef MATCH_MAY_ALLOCATE
4971# define FREE_VAR(var) if (var) REGEX_FREE (var)((void)0); var = NULL((void*)0)
4972#else
4973# define FREE_VAR(var) if (var) free (var); var = NULL((void*)0)
4974#endif
4975
4976#ifdef WCHAR
4977# define MAX_ALLOCA_SIZE 2000
4978
4979# define FREE_WCS_BUFFERS() \
4980 do { \
4981 if (size1 > MAX_ALLOCA_SIZE) \
4982 { \
4983 free (wcs_string1); \
4984 free (mbs_offset1); \
4985 } \
4986 else \
4987 { \
4988 FREE_VAR (wcs_string1); \
4989 FREE_VAR (mbs_offset1); \
4990 } \
4991 if (size2 > MAX_ALLOCA_SIZE) \
4992 { \
4993 free (wcs_string2); \
4994 free (mbs_offset2); \
4995 } \
4996 else \
4997 { \
4998 FREE_VAR (wcs_string2); \
4999 FREE_VAR (mbs_offset2); \
5000 } \
5001 } while (0)
5002
5003#endif
5004
5005
5006static int
5007PREFIX(re_search_2xre_search_2) (struct re_pattern_buffer *bufp, const char *string1,
5008 int size1, const char *string2, int size2,
5009 int startpos, int range,
5010 struct re_registers *regs, int stop)
5011{
5012 int val;
5013 register char *fastmap = bufp->fastmap;
5014 register RE_TRANSLATE_TYPEchar * translate = bufp->translate;
5015 int total_size = size1 + size2;
5016 int endpos = startpos + range;
5017#ifdef WCHAR
5018 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5019 wchar_t *wcs_string1 = NULL((void*)0), *wcs_string2 = NULL((void*)0);
5020 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5021 int wcs_size1 = 0, wcs_size2 = 0;
5022 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5023 int *mbs_offset1 = NULL((void*)0), *mbs_offset2 = NULL((void*)0);
5024 /* They hold whether each wchar_t is binary data or not. */
5025 char *is_binary = NULL((void*)0);
5026#endif /* WCHAR */
5027
5028 /* Check for out-of-range STARTPOS. */
5029 if (startpos < 0 || startpos > total_size)
5030 return -1;
5031
5032 /* Fix up RANGE if it might eventually take us outside
5033 the virtual concatenation of STRING1 and STRING2.
5034 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5035 if (endpos < 0)
5036 range = 0 - startpos;
5037 else if (endpos > total_size)
5038 range = total_size - startpos;
5039
5040 /* If the search isn't to be a backwards one, don't waste time in a
5041 search for a pattern that must be anchored. */
5042 if (bufp->used > 0 && range > 0
5043 && ((re_opcode_t) bufp->buffer[0] == begbuf
5044 /* `begline' is like `begbuf' if it cannot match at newlines. */
5045 || ((re_opcode_t) bufp->buffer[0] == begline
5046 && !bufp->newline_anchor)))
5047 {
5048 if (startpos > 0)
5049 return -1;
5050 else
5051 range = 1;
5052 }
5053
5054#ifdef emacs
5055 /* In a forward search for something that starts with \=.
5056 don't keep searching past point. */
5057 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5058 {
5059 range = PT - startpos;
5060 if (range <= 0)
5061 return -1;
5062 }
5063#endif /* emacs */
5064
5065 /* Update the fastmap now if not correct already. */
5066 if (fastmap && !bufp->fastmap_accurate)
5067 if (re_compile_fastmapxre_compile_fastmap (bufp) == -2)
5068 return -2;
5069
5070#ifdef WCHAR
5071 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5072 fill them with converted string. */
5073 if (size1 != 0)
5074 {
5075 if (size1 > MAX_ALLOCA_SIZE)
5076 {
5077 wcs_string1 = TALLOC (size1 + 1, CHAR_T)((CHAR_T *) malloc ((size1 + 1) * sizeof (CHAR_T)));
5078 mbs_offset1 = TALLOC (size1 + 1, int)((int *) malloc ((size1 + 1) * sizeof (int)));
5079 is_binary = TALLOC (size1 + 1, char)((char *) malloc ((size1 + 1) * sizeof (char)));
5080 }
5081 else
5082 {
5083 wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T)((CHAR_T *) __builtin_alloca((size1 + 1) * sizeof (CHAR_T)));
5084 mbs_offset1 = REGEX_TALLOC (size1 + 1, int)((int *) __builtin_alloca((size1 + 1) * sizeof (int)));
5085 is_binary = REGEX_TALLOC (size1 + 1, char)((char *) __builtin_alloca((size1 + 1) * sizeof (char)));
5086 }
5087 if (!wcs_string1 || !mbs_offset1 || !is_binary)
5088 {
5089 if (size1 > MAX_ALLOCA_SIZE)
5090 {
5091 free (wcs_string1);
5092 free (mbs_offset1);
5093 free (is_binary);
5094 }
5095 else
5096 {
5097 FREE_VAR (wcs_string1);
5098 FREE_VAR (mbs_offset1);
5099 FREE_VAR (is_binary);
5100 }
5101 return -2;
5102 }
5103 wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5104 mbs_offset1, is_binary);
5105 wcs_string1[wcs_size1] = L'\0'; /* for a sentinel */
5106 if (size1 > MAX_ALLOCA_SIZE)
5107 free (is_binary);
5108 else
5109 FREE_VAR (is_binary);
5110 }
5111 if (size2 != 0)
5112 {
5113 if (size2 > MAX_ALLOCA_SIZE)
5114 {
5115 wcs_string2 = TALLOC (size2 + 1, CHAR_T)((CHAR_T *) malloc ((size2 + 1) * sizeof (CHAR_T)));
5116 mbs_offset2 = TALLOC (size2 + 1, int)((int *) malloc ((size2 + 1) * sizeof (int)));
5117 is_binary = TALLOC (size2 + 1, char)((char *) malloc ((size2 + 1) * sizeof (char)));
5118 }
5119 else
5120 {
5121 wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T)((CHAR_T *) __builtin_alloca((size2 + 1) * sizeof (CHAR_T)));
5122 mbs_offset2 = REGEX_TALLOC (size2 + 1, int)((int *) __builtin_alloca((size2 + 1) * sizeof (int)));
5123 is_binary = REGEX_TALLOC (size2 + 1, char)((char *) __builtin_alloca((size2 + 1) * sizeof (char)));
5124 }
5125 if (!wcs_string2 || !mbs_offset2 || !is_binary)
5126 {
5127 FREE_WCS_BUFFERS ();
5128 if (size2 > MAX_ALLOCA_SIZE)
5129 free (is_binary);
5130 else
5131 FREE_VAR (is_binary);
5132 return -2;
5133 }
5134 wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5135 mbs_offset2, is_binary);
5136 wcs_string2[wcs_size2] = L'\0'; /* for a sentinel */
5137 if (size2 > MAX_ALLOCA_SIZE)
5138 free (is_binary);
5139 else
5140 FREE_VAR (is_binary);
5141 }
5142#endif /* WCHAR */
5143
5144
5145 /* Loop through the string, looking for a place to start matching. */
5146 for (;;)
5147 {
5148 /* If a fastmap is supplied, skip quickly over characters that
5149 cannot be the start of a match. If the pattern can match the
5150 null string, however, we don't need to skip characters; we want
5151 the first null string. */
5152 if (fastmap && startpos < total_size && !bufp->can_be_null)
5153 {
5154 if (range > 0) /* Searching forwards. */
5155 {
5156 register const char *d;
5157 register int lim = 0;
5158 int irange = range;
5159
5160 if (startpos < size1 && startpos + range >= size1)
5161 lim = range - (size1 - startpos);
5162
5163 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5164
5165 /* Written out as an if-else to avoid testing `translate'
5166 inside the loop. */
5167 if (translate)
5168 while (range > lim
5169 && !fastmap[(unsigned char)
5170 translate[(unsigned char) *d++]])
5171 range--;
5172 else
5173 while (range > lim && !fastmap[(unsigned char) *d++])
5174 range--;
5175
5176 startpos += irange - range;
5177 }
5178 else /* Searching backwards. */
5179 {
5180 register CHAR_T c = (size1 == 0 || startpos >= size1
5181 ? string2[startpos - size1]
5182 : string1[startpos]);
5183
5184 if (!fastmap[(unsigned char) TRANSLATE (c)])
5185 goto advance;
5186 }
5187 }
5188
5189 /* If can't match the null string, and that's all we have left, fail. */
5190 if (range >= 0 && startpos == total_size && fastmap
5191 && !bufp->can_be_null)
5192 {
5193#ifdef WCHAR
5194 FREE_WCS_BUFFERS ();
5195#endif
5196 return -1;
5197 }
5198
5199#ifdef WCHAR
5200 val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5201 size2, startpos, regs, stop,
5202 wcs_string1, wcs_size1,
5203 wcs_string2, wcs_size2,
5204 mbs_offset1, mbs_offset2);
5205#else /* BYTE */
5206 val = byte_re_match_2_internal (bufp, string1, size1, string2,
5207 size2, startpos, regs, stop);
5208#endif /* BYTE */
5209
5210#ifndef REGEX_MALLOC
5211# ifdef C_ALLOCA
5212 alloca (0)__builtin_alloca(0);
5213# endif
5214#endif
5215
5216 if (val >= 0)
5217 {
5218#ifdef WCHAR
5219 FREE_WCS_BUFFERS ();
5220#endif
5221 return startpos;
5222 }
5223
5224 if (val == -2)
5225 {
5226#ifdef WCHAR
5227 FREE_WCS_BUFFERS ();
5228#endif
5229 return -2;
5230 }
5231
5232 advance:
5233 if (!range)
5234 break;
5235 else if (range > 0)
5236 {
5237 range--;
5238 startpos++;
5239 }
5240 else
5241 {
5242 range++;
5243 startpos--;
5244 }
5245 }
5246#ifdef WCHAR
5247 FREE_WCS_BUFFERS ();
5248#endif
5249 return -1;
5250}
5251
5252#ifdef WCHAR
5253/* This converts PTR, a pointer into one of the search wchar_t strings
5254 `string1' and `string2' into an multibyte string offset from the
5255 beginning of that string. We use mbs_offset to optimize.
5256 See convert_mbs_to_wcs. */
5257# define POINTER_TO_OFFSET(ptr) \
5258 (FIRST_STRING_P (ptr)(size1 && string1 <= (ptr) && (ptr) <= string1
+ size1)
\
5259 ? ((regoff_t)(mbs_offset1 != NULL((void*)0)? mbs_offset1[(ptr)-string1] : 0)) \
5260 : ((regoff_t)((mbs_offset2 != NULL((void*)0)? mbs_offset2[(ptr)-string2] : 0) \
5261 + csize1)))
5262#else /* BYTE */
5263/* This converts PTR, a pointer into one of the search strings `string1'
5264 and `string2' into an offset from the beginning of that string. */
5265# define POINTER_TO_OFFSET(ptr) \
5266 (FIRST_STRING_P (ptr)(size1 && string1 <= (ptr) && (ptr) <= string1
+ size1)
\
5267 ? ((regoff_t) ((ptr) - string1)) \
5268 : ((regoff_t) ((ptr) - string2 + size1)))
5269#endif /* WCHAR */
5270
5271/* Macros for dealing with the split strings in re_match_2. */
5272
5273#define MATCHING_IN_FIRST_STRING(dend == end_match_1) (dend == end_match_1)
5274
5275/* Call before fetching a character with *d. This switches over to
5276 string2 if necessary. */
5277#define PREFETCH() \
5278 while (d == dend) \
5279 { \
5280 /* End of string2 => fail. */ \
5281 if (dend == end_match_2) \
5282 goto fail; \
5283 /* End of string1 => advance to string2. */ \
5284 d = string2; \
5285 dend = end_match_2; \
5286 }
5287
5288/* Test if at very beginning or at very end of the virtual concatenation
5289 of `string1' and `string2'. If only one string, it's `string2'. */
5290#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5291#define AT_STRINGS_END(d) ((d) == end2)
5292
5293
5294/* Test if D points to a character which is word-constituent. We have
5295 two special cases to check for: if past the end of string1, look at
5296 the first character in string2; and if before the beginning of
5297 string2, look at the last character in string1. */
5298#ifdef WCHAR
5299/* Use internationalized API instead of SYNTAX. */
5300# define WORDCHAR_P(d) \
5301 (iswalnum ((wint_t)((d) == end1 ? *string2 \
5302 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5303 || ((d) == end1 ? *string2 \
5304 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5305#else /* BYTE */
5306# define WORDCHAR_P(d) \
5307 (SYNTAX ((d) == end1 ? *string2 \re_syntax_table[(unsigned char) ((d) == end1 ? *string2 : (d)
== string2 - 1 ? *(end1 - 1) : *(d))]
5308 : (d) == string2 - 1 ? *(end1 - 1) : *(d))re_syntax_table[(unsigned char) ((d) == end1 ? *string2 : (d)
== string2 - 1 ? *(end1 - 1) : *(d))]
\
5309 == Sword1)
5310#endif /* WCHAR */
5311
5312/* Disabled due to a compiler bug -- see comment at case wordbound */
5313#if 0
5314/* Test if the character before D and the one at D differ with respect
5315 to being word-constituent. */
5316#define AT_WORD_BOUNDARY(d) \
5317 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5318 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5319#endif
5320
5321/* Free everything we malloc. */
5322#ifdef MATCH_MAY_ALLOCATE
5323# ifdef WCHAR
5324# define FREE_VARIABLES() \
5325 do { \
5326 REGEX_FREE_STACK (fail_stack.stack); \
5327 FREE_VAR (regstart); \
5328 FREE_VAR (regend); \
5329 FREE_VAR (old_regstart); \
5330 FREE_VAR (old_regend); \
5331 FREE_VAR (best_regstart); \
5332 FREE_VAR (best_regend); \
5333 FREE_VAR (reg_info); \
5334 FREE_VAR (reg_dummy); \
5335 FREE_VAR (reg_info_dummy); \
5336 if (!cant_free_wcs_buf) \
5337 { \
5338 FREE_VAR (string1); \
5339 FREE_VAR (string2); \
5340 FREE_VAR (mbs_offset1); \
5341 FREE_VAR (mbs_offset2); \
5342 } \
5343 } while (0)
5344# else /* BYTE */
5345# define FREE_VARIABLES() \
5346 do { \
5347 REGEX_FREE_STACK (fail_stack.stack); \
5348 FREE_VAR (regstart); \
5349 FREE_VAR (regend); \
5350 FREE_VAR (old_regstart); \
5351 FREE_VAR (old_regend); \
5352 FREE_VAR (best_regstart); \
5353 FREE_VAR (best_regend); \
5354 FREE_VAR (reg_info); \
5355 FREE_VAR (reg_dummy); \
5356 FREE_VAR (reg_info_dummy); \
5357 } while (0)
5358# endif /* WCHAR */
5359#else
5360# ifdef WCHAR
5361# define FREE_VARIABLES() \
5362 do { \
5363 if (!cant_free_wcs_buf) \
5364 { \
5365 FREE_VAR (string1); \
5366 FREE_VAR (string2); \
5367 FREE_VAR (mbs_offset1); \
5368 FREE_VAR (mbs_offset2); \
5369 } \
5370 } while (0)
5371# else /* BYTE */
5372# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5373# endif /* WCHAR */
5374#endif /* not MATCH_MAY_ALLOCATE */
5375
5376/* These values must meet several constraints. They must not be valid
5377 register values; since we have a limit of 255 registers (because
5378 we use only one byte in the pattern for the register number), we can
5379 use numbers larger than 255. They must differ by 1, because of
5380 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5381 be larger than the value for the highest register, so we do not try
5382 to actually save any registers when none are active. */
5383#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH8)
5384#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5385
5386#else /* not INSIDE_RECURSION */
5387/* Matching routines. */
5388
5389#ifndef emacs /* Emacs never uses this. */
5390/* re_match is like re_match_2 except it takes only a single string. */
5391
5392int
5393re_matchxre_match (struct re_pattern_buffer *bufp, const char *string,
5394 int size, int pos, struct re_registers *regs)
5395{
5396 int result;
5397# ifdef MBS_SUPPORT
5398 if (MB_CUR_MAX__mb_cur_max() != 1)
5399 result = wcs_re_match_2_internal (bufp, NULL((void*)0), 0, string, size,
5400 pos, regs, size,
5401 NULL((void*)0), 0, NULL((void*)0), 0, NULL((void*)0), NULL((void*)0));
5402 else
5403# endif
5404 result = byte_re_match_2_internal (bufp, NULL((void*)0), 0, string, size,
5405 pos, regs, size);
5406# ifndef REGEX_MALLOC
5407# ifdef C_ALLOCA
5408 alloca (0)__builtin_alloca(0);
5409# endif
5410# endif
5411 return result;
5412}
5413# ifdef _LIBC
5414weak_alias (__re_match, re_matchxre_match)
5415# endif
5416#endif /* not emacs */
5417
5418#endif /* not INSIDE_RECURSION */
5419
5420#ifdef INSIDE_RECURSION
5421static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p,
5422 UCHAR_T *end,
5423 PREFIX(register_info_type) *reg_info);
5424static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p,
5425 UCHAR_T *end,
5426 PREFIX(register_info_type) *reg_info);
5427static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p,
5428 UCHAR_T *end,
5429 PREFIX(register_info_type) *reg_info);
5430static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
5431 int len, char *translate);
5432#else /* not INSIDE_RECURSION */
5433
5434/* re_match_2 matches the compiled pattern in BUFP against the
5435 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5436 and SIZE2, respectively). We start matching at POS, and stop
5437 matching at STOP.
5438
5439 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5440 store offsets for the substring each group matched in REGS. See the
5441 documentation for exactly how many groups we fill.
5442
5443 We return -1 if no match, -2 if an internal error (such as the
5444 failure stack overflowing). Otherwise, we return the length of the
5445 matched substring. */
5446
5447int
5448re_match_2xre_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
5449 const char *string2, int size2, int pos,
5450 struct re_registers *regs, int stop)
5451{
5452 int result;
5453# ifdef MBS_SUPPORT
5454 if (MB_CUR_MAX__mb_cur_max() != 1)
5455 result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5456 pos, regs, stop,
5457 NULL((void*)0), 0, NULL((void*)0), 0, NULL((void*)0), NULL((void*)0));
5458 else
5459# endif
5460 result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5461 pos, regs, stop);
5462
5463#ifndef REGEX_MALLOC
5464# ifdef C_ALLOCA
5465 alloca (0)__builtin_alloca(0);
5466# endif
5467#endif
5468 return result;
5469}
5470#ifdef _LIBC
5471weak_alias (__re_match_2, re_match_2xre_match_2)
5472#endif
5473
5474#endif /* not INSIDE_RECURSION */
5475
5476#ifdef INSIDE_RECURSION
5477
5478#ifdef WCHAR
5479static int count_mbs_length (int *, int);
5480
5481/* This check the substring (from 0, to length) of the multibyte string,
5482 to which offset_buffer correspond. And count how many wchar_t_characters
5483 the substring occupy. We use offset_buffer to optimization.
5484 See convert_mbs_to_wcs. */
5485
5486static int
5487count_mbs_length(int *offset_buffer, int length)
5488{
5489 int upper, lower;
5490
5491 /* Check whether the size is valid. */
5492 if (length < 0)
5493 return -1;
5494
5495 if (offset_buffer == NULL((void*)0))
5496 return 0;
5497
5498 /* If there are no multibyte character, offset_buffer[i] == i.
5499 Optmize for this case. */
5500 if (offset_buffer[length] == length)
5501 return length;
5502
5503 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5504 upper = length;
5505 lower = 0;
5506
5507 while (true1)
5508 {
5509 int middle = (lower + upper) / 2;
5510 if (middle == lower || middle == upper)
5511 break;
5512 if (offset_buffer[middle] > length)
5513 upper = middle;
5514 else if (offset_buffer[middle] < length)
5515 lower = middle;
5516 else
5517 return middle;
5518 }
5519
5520 return -1;
5521}
5522#endif /* WCHAR */
5523
5524/* This is a separate function so that we can force an alloca cleanup
5525 afterwards. */
5526#ifdef WCHAR
5527static int
5528wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
5529 const char *cstring1, int csize1,
5530 const char *cstring2, int csize2,
5531 int pos,
5532 struct re_registers *regs,
5533 int stop,
5534 /* string1 == string2 == NULL means string1/2, size1/2 and
5535 mbs_offset1/2 need seting up in this function. */
5536 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5537 wchar_t *string1, int size1,
5538 wchar_t *string2, int size2,
5539 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5540 int *mbs_offset1, int *mbs_offset2)
5541#else /* BYTE */
5542static int
5543byte_re_match_2_internal (struct re_pattern_buffer *bufp,
5544 const char *string1, int size1,
5545 const char *string2, int size2,
5546 int pos,
5547 struct re_registers *regs, int stop)
5548#endif /* BYTE */
5549{
5550 /* General temporaries. */
5551 int mcnt;
5552 UCHAR_T *p1;
5553#ifdef WCHAR
5554 /* They hold whether each wchar_t is binary data or not. */
5555 char *is_binary = NULL((void*)0);
5556 /* If true, we can't free string1/2, mbs_offset1/2. */
5557 int cant_free_wcs_buf = 1;
5558#endif /* WCHAR */
5559
5560 /* Just past the end of the corresponding string. */
5561 const CHAR_T *end1, *end2;
5562
5563 /* Pointers into string1 and string2, just past the last characters in
5564 each to consider matching. */
5565 const CHAR_T *end_match_1, *end_match_2;
5566
5567 /* Where we are in the data, and the end of the current string. */
5568 const CHAR_T *d, *dend;
5569
5570 /* Where we are in the pattern, and the end of the pattern. */
5571#ifdef WCHAR
5572 UCHAR_T *pattern, *p;
5573 register UCHAR_T *pend;
5574#else /* BYTE */
5575 UCHAR_T *p = bufp->buffer;
5576 register UCHAR_T *pend = p + bufp->used;
5577#endif /* WCHAR */
5578
5579 /* Mark the opcode just after a start_memory, so we can test for an
5580 empty subpattern when we get to the stop_memory. */
5581 UCHAR_T *just_past_start_mem = 0;
5582
5583 /* We use this to map every character in the string. */
5584 RE_TRANSLATE_TYPEchar * translate = bufp->translate;
5585
5586 /* Failure point stack. Each place that can handle a failure further
5587 down the line pushes a failure point on this stack. It consists of
5588 restart, regend, and reg_info for all registers corresponding to
5589 the subexpressions we're currently inside, plus the number of such
5590 registers, and, finally, two char *'s. The first char * is where
5591 to resume scanning the pattern; the second one is where to resume
5592 scanning the strings. If the latter is zero, the failure point is
5593 a ``dummy''; if a failure happens and the failure point is a dummy,
5594 it gets discarded and the next next one is tried. */
5595#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5596 PREFIX(fail_stack_type) fail_stack;
5597#endif
5598#ifdef DEBUG
5599 static unsigned failure_id;
5600 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5601#endif
5602
5603#ifdef REL_ALLOC
5604 /* This holds the pointer to the failure stack, when
5605 it is allocated relocatably. */
5606 fail_stack_elt_t *failure_stack_ptr;
5607#endif
5608
5609 /* We fill all the registers internally, independent of what we
5610 return, for use in backreferences. The number here includes
5611 an element for register zero. */
5612 size_t num_regs = bufp->re_nsub + 1;
5613
5614 /* The currently active registers. */
5615 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5616 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5617
5618 /* Information on the contents of registers. These are pointers into
5619 the input strings; they record just what was matched (on this
5620 attempt) by a subexpression part of the pattern, that is, the
5621 regnum-th regstart pointer points to where in the pattern we began
5622 matching and the regnum-th regend points to right after where we
5623 stopped matching the regnum-th subexpression. (The zeroth register
5624 keeps track of what the whole pattern matches.) */
5625#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5626 const CHAR_T **regstart, **regend;
5627#endif
5628
5629 /* If a group that's operated upon by a repetition operator fails to
5630 match anything, then the register for its start will need to be
5631 restored because it will have been set to wherever in the string we
5632 are when we last see its open-group operator. Similarly for a
5633 register's end. */
5634#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5635 const CHAR_T **old_regstart, **old_regend;
5636#endif
5637
5638 /* The is_active field of reg_info helps us keep track of which (possibly
5639 nested) subexpressions we are currently in. The matched_something
5640 field of reg_info[reg_num] helps us tell whether or not we have
5641 matched any of the pattern so far this time through the reg_num-th
5642 subexpression. These two fields get reset each time through any
5643 loop their register is in. */
5644#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5645 PREFIX(register_info_type) *reg_info;
5646#endif
5647
5648 /* The following record the register info as found in the above
5649 variables when we find a match better than any we've seen before.
5650 This happens as we backtrack through the failure points, which in
5651 turn happens only if we have not yet matched the entire string. */
5652 unsigned best_regs_set = false0;
5653#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5654 const CHAR_T **best_regstart, **best_regend;
5655#endif
5656
5657 /* Logically, this is `best_regend[0]'. But we don't want to have to
5658 allocate space for that if we're not allocating space for anything
5659 else (see below). Also, we never need info about register 0 for
5660 any of the other register vectors, and it seems rather a kludge to
5661 treat `best_regend' differently than the rest. So we keep track of
5662 the end of the best match so far in a separate variable. We
5663 initialize this to NULL so that when we backtrack the first time
5664 and need to test it, it's not garbage. */
5665 const CHAR_T *match_end = NULL((void*)0);
5666
5667 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5668 int set_regs_matched_done = 0;
5669
5670 /* Used when we pop values we don't care about. */
5671#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5672 const CHAR_T **reg_dummy;
5673 PREFIX(register_info_type) *reg_info_dummy;
5674#endif
5675
5676#ifdef DEBUG
5677 /* Counts the total number of registers pushed. */
5678 unsigned num_regs_pushed = 0;
5679#endif
5680
5681 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5682
5683 INIT_FAIL_STACK ();
5684
5685#ifdef MATCH_MAY_ALLOCATE
5686 /* Do not bother to initialize all the register variables if there are
5687 no groups in the pattern, as it takes a fair amount of time. If
5688 there are groups, we include space for register 0 (the whole
5689 pattern), even though we never use it, since it simplifies the
5690 array indexing. We should fix this. */
5691 if (bufp->re_nsub)
5692 {
5693 regstart = REGEX_TALLOC (num_regs, const CHAR_T *)((const CHAR_T * *) __builtin_alloca((num_regs) * sizeof (const
CHAR_T *)))
;
5694 regend = REGEX_TALLOC (num_regs, const CHAR_T *)((const CHAR_T * *) __builtin_alloca((num_regs) * sizeof (const
CHAR_T *)))
;
5695 old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *)((const CHAR_T * *) __builtin_alloca((num_regs) * sizeof (const
CHAR_T *)))
;
5696 old_regend = REGEX_TALLOC (num_regs, const CHAR_T *)((const CHAR_T * *) __builtin_alloca((num_regs) * sizeof (const
CHAR_T *)))
;
5697 best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *)((const CHAR_T * *) __builtin_alloca((num_regs) * sizeof (const
CHAR_T *)))
;
5698 best_regend = REGEX_TALLOC (num_regs, const CHAR_T *)((const CHAR_T * *) __builtin_alloca((num_regs) * sizeof (const
CHAR_T *)))
;
5699 reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type))((PREFIX(register_info_type) *) __builtin_alloca((num_regs) *
sizeof (PREFIX(register_info_type))))
;
5700 reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *)((const CHAR_T * *) __builtin_alloca((num_regs) * sizeof (const
CHAR_T *)))
;
5701 reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type))((PREFIX(register_info_type) *) __builtin_alloca((num_regs) *
sizeof (PREFIX(register_info_type))))
;
5702
5703 if (!(regstart && regend && old_regstart && old_regend && reg_info
5704 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5705 {
5706 FREE_VARIABLES ();
5707 return -2;
5708 }
5709 }
5710 else
5711 {
5712 /* We must initialize all our variables to NULL, so that
5713 `FREE_VARIABLES' doesn't try to free them. */
5714 regstart = regend = old_regstart = old_regend = best_regstart
5715 = best_regend = reg_dummy = NULL((void*)0);
5716 reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL((void*)0);
5717 }
5718#endif /* MATCH_MAY_ALLOCATE */
5719
5720 /* The starting position is bogus. */
5721#ifdef WCHAR
5722 if (pos < 0 || pos > csize1 + csize2)
5723#else /* BYTE */
5724 if (pos < 0 || pos > size1 + size2)
5725#endif
5726 {
5727 FREE_VARIABLES ();
5728 return -1;
5729 }
5730
5731#ifdef WCHAR
5732 /* Allocate wchar_t array for string1 and string2 and
5733 fill them with converted string. */
5734 if (string1 == NULL((void*)0) && string2 == NULL((void*)0))
5735 {
5736 /* We need seting up buffers here. */
5737
5738 /* We must free wcs buffers in this function. */
5739 cant_free_wcs_buf = 0;
5740
5741 if (csize1 != 0)
5742 {
5743 string1 = REGEX_TALLOC (csize1 + 1, CHAR_T)((CHAR_T *) __builtin_alloca((csize1 + 1) * sizeof (CHAR_T)));
5744 mbs_offset1 = REGEX_TALLOC (csize1 + 1, int)((int *) __builtin_alloca((csize1 + 1) * sizeof (int)));
5745 is_binary = REGEX_TALLOC (csize1 + 1, char)((char *) __builtin_alloca((csize1 + 1) * sizeof (char)));
5746 if (!string1 || !mbs_offset1 || !is_binary)
5747 {
5748 FREE_VAR (string1);
5749 FREE_VAR (mbs_offset1);
5750 FREE_VAR (is_binary);
5751 return -2;
5752 }
5753 }
5754 if (csize2 != 0)
5755 {
5756 string2 = REGEX_TALLOC (csize2 + 1, CHAR_T)((CHAR_T *) __builtin_alloca((csize2 + 1) * sizeof (CHAR_T)));
5757 mbs_offset2 = REGEX_TALLOC (csize2 + 1, int)((int *) __builtin_alloca((csize2 + 1) * sizeof (int)));
5758 is_binary = REGEX_TALLOC (csize2 + 1, char)((char *) __builtin_alloca((csize2 + 1) * sizeof (char)));
5759 if (!string2 || !mbs_offset2 || !is_binary)
5760 {
5761 FREE_VAR (string1);
5762 FREE_VAR (mbs_offset1);
5763 FREE_VAR (string2);
5764 FREE_VAR (mbs_offset2);
5765 FREE_VAR (is_binary);
5766 return -2;
5767 }
5768 size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5769 mbs_offset2, is_binary);
5770 string2[size2] = L'\0'; /* for a sentinel */
5771 FREE_VAR (is_binary);
5772 }
5773 }
5774
5775 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5776 pattern to (char*) in regex_compile. */
5777 p = pattern = (CHAR_T*)bufp->buffer;
5778 pend = (CHAR_T*)(bufp->buffer + bufp->used);
5779
5780#endif /* WCHAR */
5781
5782 /* Initialize subexpression text positions to -1 to mark ones that no
5783 start_memory/stop_memory has been seen for. Also initialize the
5784 register information struct. */
5785 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5786 {
5787 regstart[mcnt] = regend[mcnt]
5788 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5789
5790 REG_MATCH_NULL_STRING_P (reg_info[mcnt])((reg_info[mcnt]).bits.match_null_string_p) = MATCH_NULL_UNSET_VALUE3;
5791 IS_ACTIVE (reg_info[mcnt])((reg_info[mcnt]).bits.is_active) = 0;
5792 MATCHED_SOMETHING (reg_info[mcnt])((reg_info[mcnt]).bits.matched_something) = 0;
5793 EVER_MATCHED_SOMETHING (reg_info[mcnt])((reg_info[mcnt]).bits.ever_matched_something) = 0;
5794 }
5795
5796 /* We move `string1' into `string2' if the latter's empty -- but not if
5797 `string1' is null. */
5798 if (size2 == 0 && string1 != NULL((void*)0))
5799 {
5800 string2 = string1;
5801 size2 = size1;
5802 string1 = 0;
5803 size1 = 0;
5804#ifdef WCHAR
5805 mbs_offset2 = mbs_offset1;
5806 csize2 = csize1;
5807 mbs_offset1 = NULL((void*)0);
5808 csize1 = 0;
5809#endif
5810 }
5811 end1 = string1 + size1;
5812 end2 = string2 + size2;
5813
5814 /* Compute where to stop matching, within the two strings. */
5815#ifdef WCHAR
5816 if (stop <= csize1)
5817 {
5818 mcnt = count_mbs_length(mbs_offset1, stop);
5819 end_match_1 = string1 + mcnt;
5820 end_match_2 = string2;
5821 }
5822 else
5823 {
5824 if (stop > csize1 + csize2)
5825 stop = csize1 + csize2;
5826 end_match_1 = end1;
5827 mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5828 end_match_2 = string2 + mcnt;
5829 }
5830 if (mcnt < 0)
5831 { /* count_mbs_length return error. */
5832 FREE_VARIABLES ();
5833 return -1;
5834 }
5835#else
5836 if (stop <= size1)
5837 {
5838 end_match_1 = string1 + stop;
5839 end_match_2 = string2;
5840 }
5841 else
5842 {
5843 end_match_1 = end1;
5844 end_match_2 = string2 + stop - size1;
5845 }
5846#endif /* WCHAR */
5847
5848 /* `p' scans through the pattern as `d' scans through the data.
5849 `dend' is the end of the input string that `d' points within. `d'
5850 is advanced into the following input string whenever necessary, but
5851 this happens before fetching; therefore, at the beginning of the
5852 loop, `d' can be pointing at the end of a string, but it cannot
5853 equal `string2'. */
5854#ifdef WCHAR
5855 if (size1 > 0 && pos <= csize1)
5856 {
5857 mcnt = count_mbs_length(mbs_offset1, pos);
5858 d = string1 + mcnt;
5859 dend = end_match_1;
5860 }
5861 else
5862 {
5863 mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5864 d = string2 + mcnt;
5865 dend = end_match_2;
5866 }
5867
5868 if (mcnt < 0)
5869 { /* count_mbs_length return error. */
5870 FREE_VARIABLES ();
5871 return -1;
5872 }
5873#else
5874 if (size1 > 0 && pos <= size1)
5875 {
5876 d = string1 + pos;
5877 dend = end_match_1;
5878 }
5879 else
5880 {
5881 d = string2 + pos - size1;
5882 dend = end_match_2;
5883 }
5884#endif /* WCHAR */
5885
5886 DEBUG_PRINT1 ("The compiled pattern is:\n");
5887 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5888 DEBUG_PRINT1 ("The string to match is: `");
5889 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5890 DEBUG_PRINT1 ("'\n");
5891
5892 /* This loops over pattern commands. It exits by returning from the
5893 function if the match is complete, or it drops through if the match
5894 fails at this starting point in the input data. */
5895 for (;;)
5896 {
5897#ifdef _LIBC
5898 DEBUG_PRINT2 ("\n%p: ", p);
5899#else
5900 DEBUG_PRINT2 ("\n0x%x: ", p);
5901#endif
5902
5903 if (p == pend)
5904 { /* End of pattern means we might have succeeded. */
5905 DEBUG_PRINT1 ("end of pattern ... ");
5906
5907 /* If we haven't matched the entire string, and we want the
5908 longest match, try backtracking. */
5909 if (d != end_match_2)
5910 {
5911 /* 1 if this match ends in the same string (string1 or string2)
5912 as the best previous match. */
5913 boolean same_str_p = (FIRST_STRING_P (match_end)(size1 && string1 <= (match_end) && (match_end
) <= string1 + size1)
5914 == MATCHING_IN_FIRST_STRING(dend == end_match_1));
5915 /* 1 if this match is the best seen so far. */
5916 boolean best_match_p;
5917
5918 /* AIX compiler got confused when this was combined
5919 with the previous declaration. */
5920 if (same_str_p)
5921 best_match_p = d > match_end;
5922 else
5923 best_match_p = !MATCHING_IN_FIRST_STRING(dend == end_match_1);
5924
5925 DEBUG_PRINT1 ("backtracking.\n");
5926
5927 if (!FAIL_STACK_EMPTY ()(fail_stack.avail == 0))
5928 { /* More failure points to try. */
5929
5930 /* If exceeds best match so far, save it. */
5931 if (!best_regs_set || best_match_p)
5932 {
5933 best_regs_set = true1;
5934 match_end = d;
5935
5936 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5937
5938 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5939 {
5940 best_regstart[mcnt] = regstart[mcnt];
5941 best_regend[mcnt] = regend[mcnt];
5942 }
5943 }
5944 goto fail;
5945 }
5946
5947 /* If no failure points, don't restore garbage. And if
5948 last match is real best match, don't restore second
5949 best one. */
5950 else if (best_regs_set && !best_match_p)
5951 {
5952 restore_best_regs:
5953 /* Restore best match. It may happen that `dend ==
5954 end_match_1' while the restored d is in string2.
5955 For example, the pattern `x.*y.*z' against the
5956 strings `x-' and `y-z-', if the two strings are
5957 not consecutive in memory. */
5958 DEBUG_PRINT1 ("Restoring best registers.\n");
5959
5960 d = match_end;
5961 dend = ((d >= string1 && d <= end1)
5962 ? end_match_1 : end_match_2);
5963
5964 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5965 {
5966 regstart[mcnt] = best_regstart[mcnt];
5967 regend[mcnt] = best_regend[mcnt];
5968 }
5969 }
5970 } /* d != end_match_2 */
5971
5972 succeed_label:
5973 DEBUG_PRINT1 ("Accepting match.\n");
5974 /* If caller wants register contents data back, do it. */
5975 if (regs && !bufp->no_sub)
5976 {
5977 /* Have the register data arrays been allocated? */
5978 if (bufp->regs_allocated == REGS_UNALLOCATED0)
5979 { /* No. So allocate them with malloc. We need one
5980 extra element beyond `num_regs' for the `-1' marker
5981 GNU code uses. */
5982 regs->num_regs = MAX (RE_NREGS, num_regs + 1)((30) > (num_regs + 1) ? (30) : (num_regs + 1));
5983 regs->start = TALLOC (regs->num_regs, regoff_t)((regoff_t *) malloc ((regs->num_regs) * sizeof (regoff_t)
))
;
5984 regs->end = TALLOC (regs->num_regs, regoff_t)((regoff_t *) malloc ((regs->num_regs) * sizeof (regoff_t)
))
;
5985 if (regs->start == NULL((void*)0) || regs->end == NULL((void*)0))
5986 {
5987 FREE_VARIABLES ();
5988 return -2;
5989 }
5990 bufp->regs_allocated = REGS_REALLOCATE1;
5991 }
5992 else if (bufp->regs_allocated == REGS_REALLOCATE1)
5993 { /* Yes. If we need more elements than were already
5994 allocated, reallocate them. If we need fewer, just
5995 leave it alone. */
5996 if (regs->num_regs < num_regs + 1)
5997 {
5998 regs->num_regs = num_regs + 1;
5999 RETALLOC (regs->start, regs->num_regs, regoff_t)((regs->start) = (regoff_t *) realloc (regs->start, (regs
->num_regs) * sizeof (regoff_t)))
;
6000 RETALLOC (regs->end, regs->num_regs, regoff_t)((regs->end) = (regoff_t *) realloc (regs->end, (regs->
num_regs) * sizeof (regoff_t)))
;
6001 if (regs->start == NULL((void*)0) || regs->end == NULL((void*)0))
6002 {
6003 FREE_VARIABLES ();
6004 return -2;
6005 }
6006 }
6007 }
6008 else
6009 {
6010 /* These braces fend off a "empty body in an else-statement"
6011 warning under GCC when assert expands to nothing. */
6012 assert (bufp->regs_allocated == REGS_FIXED);
6013 }
6014
6015 /* Convert the pointer data in `regstart' and `regend' to
6016 indices. Register zero has to be set differently,
6017 since we haven't kept track of any info for it. */
6018 if (regs->num_regs > 0)
6019 {
6020 regs->start[0] = pos;
6021#ifdef WCHAR
6022 if (MATCHING_IN_FIRST_STRING(dend == end_match_1))
6023 regs->end[0] = mbs_offset1 != NULL((void*)0) ?
6024 mbs_offset1[d-string1] : 0;
6025 else
6026 regs->end[0] = csize1 + (mbs_offset2 != NULL((void*)0) ?
6027 mbs_offset2[d-string2] : 0);
6028#else
6029 regs->end[0] = (MATCHING_IN_FIRST_STRING(dend == end_match_1)
6030 ? ((regoff_t) (d - string1))
6031 : ((regoff_t) (d - string2 + size1)));
6032#endif /* WCHAR */
6033 }
6034
6035 /* Go through the first `min (num_regs, regs->num_regs)'
6036 registers, since that is all we initialized. */
6037 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs)((num_regs) < (regs->num_regs) ? (num_regs) : (regs->
num_regs))
;
6038 mcnt++)
6039 {
6040 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6041 regs->start[mcnt] = regs->end[mcnt] = -1;
6042 else
6043 {
6044 regs->start[mcnt]
6045 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6046 regs->end[mcnt]
6047 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6048 }
6049 }
6050
6051 /* If the regs structure we return has more elements than
6052 were in the pattern, set the extra elements to -1. If
6053 we (re)allocated the registers, this is the case,
6054 because we always allocate enough to have at least one
6055 -1 at the end. */
6056 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6057 regs->start[mcnt] = regs->end[mcnt] = -1;
6058 } /* regs && !bufp->no_sub */
6059
6060 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6061 nfailure_points_pushed, nfailure_points_popped,
6062 nfailure_points_pushed - nfailure_points_popped);
6063 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6064
6065#ifdef WCHAR
6066 if (MATCHING_IN_FIRST_STRING(dend == end_match_1))
6067 mcnt = mbs_offset1 != NULL((void*)0) ? mbs_offset1[d-string1] : 0;
6068 else
6069 mcnt = (mbs_offset2 != NULL((void*)0) ? mbs_offset2[d-string2] : 0) +
6070 csize1;
6071 mcnt -= pos;
6072#else
6073 mcnt = d - pos - (MATCHING_IN_FIRST_STRING(dend == end_match_1)
6074 ? string1
6075 : string2 - size1);
6076#endif /* WCHAR */
6077
6078 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6079
6080 FREE_VARIABLES ();
6081 return mcnt;
6082 }
6083
6084 /* Otherwise match next pattern command. */
6085 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)((re_opcode_t) *p++))
6086 {
6087 /* Ignore these. Used to ignore the n of succeed_n's which
6088 currently have n == 0. */
6089 case no_op:
6090 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6091 break;
6092
6093 case succeed:
6094 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6095 goto succeed_label;
6096
6097 /* Match the next n pattern characters exactly. The following
6098 byte in the pattern defines n, and the n bytes after that
6099 are the characters to match. */
6100 case exactn:
6101#ifdef MBS_SUPPORT
6102 case exactn_bin:
6103#endif
6104 mcnt = *p++;
6105 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6106
6107 /* This is written out as an if-else so we don't waste time
6108 testing `translate' inside the loop. */
6109 if (translate)
6110 {
6111 do
6112 {
6113 PREFETCH ();
6114#ifdef WCHAR
6115 if (*d <= 0xff)
6116 {
6117 if ((UCHAR_T) translate[(unsigned char) *d++]
6118 != (UCHAR_T) *p++)
6119 goto fail;
6120 }
6121 else
6122 {
6123 if (*d++ != (CHAR_T) *p++)
6124 goto fail;
6125 }
6126#else
6127 if ((UCHAR_T) translate[(unsigned char) *d++]
6128 != (UCHAR_T) *p++)
6129 goto fail;
6130#endif /* WCHAR */
6131 }
6132 while (--mcnt);
6133 }
6134 else
6135 {
6136 do
6137 {
6138 PREFETCH ();
6139 if (*d++ != (CHAR_T) *p++) goto fail;
6140 }
6141 while (--mcnt);
6142 }
6143 SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
;
6144 break;
6145
6146
6147 /* Match any character except possibly a newline or a null. */
6148 case anychar:
6149 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6150
6151 PREFETCH ();
6152
6153 if ((!(bufp->syntax & RE_DOT_NEWLINE((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1)
) && TRANSLATE (*d) == '\n')
6154 || (bufp->syntax & RE_DOT_NOT_NULL(((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1)
&& TRANSLATE (*d) == '\000'))
6155 goto fail;
6156
6157 SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
;
6158 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d);
6159 d++;
6160 break;
6161
6162
6163 case charset:
6164 case charset_not:
6165 {
6166 register UCHAR_T c;
6167#ifdef WCHAR
6168 unsigned int i, char_class_length, coll_symbol_length,
6169 equiv_class_length, ranges_length, chars_length, length;
6170 CHAR_T *workp, *workp2, *charset_top;
6171#define WORK_BUFFER_SIZE 128
6172 CHAR_T str_buf[WORK_BUFFER_SIZE];
6173# ifdef _LIBC
6174 uint32_t nrules;
6175# endif /* _LIBC */
6176#endif /* WCHAR */
6177 boolean negate = (re_opcode_t) *(p - 1) == charset_not;
6178
6179 DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate ? "_not" : "");
6180 PREFETCH ();
6181 c = TRANSLATE (*d); /* The character to match. */
6182#ifdef WCHAR
6183# ifdef _LIBC
6184 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6185# endif /* _LIBC */
6186 charset_top = p - 1;
6187 char_class_length = *p++;
6188 coll_symbol_length = *p++;
6189 equiv_class_length = *p++;
6190 ranges_length = *p++;
6191 chars_length = *p++;
6192 /* p points charset[6], so the address of the next instruction
6193 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6194 where l=length of char_classes, m=length of collating_symbol,
6195 n=equivalence_class, o=length of char_range,
6196 p'=length of character. */
6197 workp = p;
6198 /* Update p to indicate the next instruction. */
6199 p += char_class_length + coll_symbol_length+ equiv_class_length +
6200 2*ranges_length + chars_length;
6201
6202 /* match with char_class? */
6203 for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6204 {
6205 wctype_t wctype;
6206 uintptr_t alignedp = ((uintptr_t)workp
6207 + __alignof__(wctype_t) - 1)
6208 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6209 wctype = *((wctype_t*)alignedp);
6210 workp += CHAR_CLASS_SIZE;
6211# ifdef _LIBC
6212 if (__iswctype((wint_t)c, wctype))
6213 goto char_set_matched;
6214# else
6215 if (iswctype((wint_t)c, wctype))
6216 goto char_set_matched;
6217# endif
6218 }
6219
6220 /* match with collating_symbol? */
6221# ifdef _LIBC
6222 if (nrules != 0)
6223 {
6224 const unsigned char *extra = (const unsigned char *)
6225 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6226
6227 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6228 workp++)
6229 {
6230 int32_t *wextra;
6231 wextra = (int32_t*)(extra + *workp++);
6232 for (i = 0; i < *wextra; ++i)
6233 if (TRANSLATE(d[i]) != wextra[1 + i])
6234 break;
6235
6236 if (i == *wextra)
6237 {
6238 /* Update d, however d will be incremented at
6239 char_set_matched:, we decrement d here. */
6240 d += i - 1;
6241 goto char_set_matched;
6242 }
6243 }
6244 }
6245 else /* (nrules == 0) */
6246# endif
6247 /* If we can't look up collation data, we use wcscoll
6248 instead. */
6249 {
6250 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6251 {
6252 const CHAR_T *backup_d = d, *backup_dend = dend;
6253# ifdef _LIBC
6254 length = __wcslen (workp);
6255# else
6256 length = wcslen (workp);
6257# endif
6258
6259 /* If wcscoll(the collating symbol, whole string) > 0,
6260 any substring of the string never match with the
6261 collating symbol. */
6262# ifdef _LIBC
6263 if (__wcscoll (workp, d) > 0)
6264# else
6265 if (wcscoll (workp, d) > 0)
6266# endif
6267 {
6268 workp += length + 1;
6269 continue;
6270 }
6271
6272 /* First, we compare the collating symbol with
6273 the first character of the string.
6274 If it don't match, we add the next character to
6275 the compare buffer in turn. */
6276 for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6277 {
6278 int match;
6279 if (d == dend)
6280 {
6281 if (dend == end_match_2)
6282 break;
6283 d = string2;
6284 dend = end_match_2;
6285 }
6286
6287 /* add next character to the compare buffer. */
6288 str_buf[i] = TRANSLATE(*d);
6289 str_buf[i+1] = '\0';
6290
6291# ifdef _LIBC
6292 match = __wcscoll (workp, str_buf);
6293# else
6294 match = wcscoll (workp, str_buf);
6295# endif
6296 if (match == 0)
6297 goto char_set_matched;
6298
6299 if (match < 0)
6300 /* (str_buf > workp) indicate (str_buf + X > workp),
6301 because for all X (str_buf + X > str_buf).
6302 So we don't need continue this loop. */
6303 break;
6304
6305 /* Otherwise(str_buf < workp),
6306 (str_buf+next_character) may equals (workp).
6307 So we continue this loop. */
6308 }
6309 /* not matched */
6310 d = backup_d;
6311 dend = backup_dend;
6312 workp += length + 1;
6313 }
6314 }
6315 /* match with equivalence_class? */
6316# ifdef _LIBC
6317 if (nrules != 0)
6318 {
6319 const CHAR_T *backup_d = d, *backup_dend = dend;
6320 /* Try to match the equivalence class against
6321 those known to the collate implementation. */
6322 const int32_t *table;
6323 const int32_t *weights;
6324 const int32_t *extra;
6325 const int32_t *indirect;
6326 int32_t idx, idx2;
6327 wint_t *cp;
6328 size_t len;
6329
6330 /* This #include defines a local function! */
6331# include <locale/weightwc.h>
6332
6333 table = (const int32_t *)
6334 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6335 weights = (const wint_t *)
6336 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6337 extra = (const wint_t *)
6338 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6339 indirect = (const int32_t *)
6340 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6341
6342 /* Write 1 collating element to str_buf, and
6343 get its index. */
6344 idx2 = 0;
6345
6346 for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6347 {
6348 cp = (wint_t*)str_buf;
6349 if (d == dend)
6350 {
6351 if (dend == end_match_2)
6352 break;
6353 d = string2;
6354 dend = end_match_2;
6355 }
6356 str_buf[i] = TRANSLATE(*(d+i));
6357 str_buf[i+1] = '\0'; /* sentinel */
6358 idx2 = findidx ((const wint_t**)&cp);
6359 }
6360
6361 /* Update d, however d will be incremented at
6362 char_set_matched:, we decrement d here. */
6363 d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6364 if (d >= dend)
6365 {
6366 if (dend == end_match_2)
6367 d = dend;
6368 else
6369 {
6370 d = string2;
6371 dend = end_match_2;
6372 }
6373 }
6374
6375 len = weights[idx2];
6376
6377 for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6378 workp++)
6379 {
6380 idx = (int32_t)*workp;
6381 /* We already checked idx != 0 in regex_compile. */
6382
6383 if (idx2 != 0 && len == weights[idx])
6384 {
6385 int cnt = 0;
6386 while (cnt < len && (weights[idx + 1 + cnt]
6387 == weights[idx2 + 1 + cnt]))
6388 ++cnt;
6389
6390 if (cnt == len)
6391 goto char_set_matched;
6392 }
6393 }
6394 /* not matched */
6395 d = backup_d;
6396 dend = backup_dend;
6397 }
6398 else /* (nrules == 0) */
6399# endif
6400 /* If we can't look up collation data, we use wcscoll
6401 instead. */
6402 {
6403 for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6404 {
6405 const CHAR_T *backup_d = d, *backup_dend = dend;
6406# ifdef _LIBC
6407 length = __wcslen (workp);
6408# else
6409 length = wcslen (workp);
6410# endif
6411
6412 /* If wcscoll(the collating symbol, whole string) > 0,
6413 any substring of the string never match with the
6414 collating symbol. */
6415# ifdef _LIBC
6416 if (__wcscoll (workp, d) > 0)
6417# else
6418 if (wcscoll (workp, d) > 0)
6419# endif
6420 {
6421 workp += length + 1;
6422 break;
6423 }
6424
6425 /* First, we compare the equivalence class with
6426 the first character of the string.
6427 If it don't match, we add the next character to
6428 the compare buffer in turn. */
6429 for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6430 {
6431 int match;
6432 if (d == dend)
6433 {
6434 if (dend == end_match_2)
6435 break;
6436 d = string2;
6437 dend = end_match_2;
6438 }
6439
6440 /* add next character to the compare buffer. */
6441 str_buf[i] = TRANSLATE(*d);
6442 str_buf[i+1] = '\0';
6443
6444# ifdef _LIBC
6445 match = __wcscoll (workp, str_buf);
6446# else
6447 match = wcscoll (workp, str_buf);
6448# endif
6449
6450 if (match == 0)
6451 goto char_set_matched;
6452
6453 if (match < 0)
6454 /* (str_buf > workp) indicate (str_buf + X > workp),
6455 because for all X (str_buf + X > str_buf).
6456 So we don't need continue this loop. */
6457 break;
6458
6459 /* Otherwise(str_buf < workp),
6460 (str_buf+next_character) may equals (workp).
6461 So we continue this loop. */
6462 }
6463 /* not matched */
6464 d = backup_d;
6465 dend = backup_dend;
6466 workp += length + 1;
6467 }
6468 }
6469
6470 /* match with char_range? */
6471# ifdef _LIBC
6472 if (nrules != 0)
6473 {
6474 uint32_t collseqval;
6475 const char *collseq = (const char *)
6476 _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6477
6478 collseqval = collseq_table_lookup (collseq, c);
6479
6480 for (; workp < p - chars_length ;)
6481 {
6482 uint32_t start_val, end_val;
6483
6484 /* We already compute the collation sequence value
6485 of the characters (or collating symbols). */
6486 start_val = (uint32_t) *workp++; /* range_start */
6487 end_val = (uint32_t) *workp++; /* range_end */
6488
6489 if (start_val <= collseqval && collseqval <= end_val)
6490 goto char_set_matched;
6491 }
6492 }
6493 else
6494# endif
6495 {
6496 /* We set range_start_char at str_buf[0], range_end_char
6497 at str_buf[4], and compared char at str_buf[2]. */
6498 str_buf[1] = 0;
6499 str_buf[2] = c;
6500 str_buf[3] = 0;
6501 str_buf[5] = 0;
6502 for (; workp < p - chars_length ;)
6503 {
6504 wchar_t *range_start_char, *range_end_char;
6505
6506 /* match if (range_start_char <= c <= range_end_char). */
6507
6508 /* If range_start(or end) < 0, we assume -range_start(end)
6509 is the offset of the collating symbol which is specified
6510 as the character of the range start(end). */
6511
6512 /* range_start */
6513 if (*workp < 0)
6514 range_start_char = charset_top - (*workp++);
6515 else
6516 {
6517 str_buf[0] = *workp++;
6518 range_start_char = str_buf;
6519 }
6520
6521 /* range_end */
6522 if (*workp < 0)
6523 range_end_char = charset_top - (*workp++);
6524 else
6525 {
6526 str_buf[4] = *workp++;
6527 range_end_char = str_buf + 4;
6528 }
6529
6530# ifdef _LIBC
6531 if (__wcscoll (range_start_char, str_buf+2) <= 0
6532 && __wcscoll (str_buf+2, range_end_char) <= 0)
6533# else
6534 if (wcscoll (range_start_char, str_buf+2) <= 0
6535 && wcscoll (str_buf+2, range_end_char) <= 0)
6536# endif
6537 goto char_set_matched;
6538 }
6539 }
6540
6541 /* match with char? */
6542 for (; workp < p ; workp++)
6543 if (c == *workp)
6544 goto char_set_matched;
6545
6546 negate = !negate;
6547
6548 char_set_matched:
6549 if (negate) goto fail;
6550#else
6551 /* Cast to `unsigned' instead of `unsigned char' in case the
6552 bit list is a full 32 bytes long. */
6553 if (c < (unsigned) (*p * BYTEWIDTH8)
6554 && p[1 + c / BYTEWIDTH8] & (1 << (c % BYTEWIDTH8)))
6555 negate = !negate;
6556
6557 p += 1 + *p;
6558
6559 if (!negate) goto fail;
6560#undef WORK_BUFFER_SIZE
6561#endif /* WCHAR */
6562 SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
;
6563 d++;
6564 break;
6565 }
6566
6567
6568 /* The beginning of a group is represented by start_memory.
6569 The arguments are the register number in the next byte, and the
6570 number of groups inner to this one in the next. The text
6571 matched within the group is recorded (in the internal
6572 registers data structure) under the register number. */
6573 case start_memory:
6574 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6575 (long int) *p, (long int) p[1]);
6576
6577 /* Find out if this group can match the empty string. */
6578 p1 = p; /* To send to group_match_null_string_p. */
6579
6580 if (REG_MATCH_NULL_STRING_P (reg_info[*p])((reg_info[*p]).bits.match_null_string_p) == MATCH_NULL_UNSET_VALUE3)
6581 REG_MATCH_NULL_STRING_P (reg_info[*p])((reg_info[*p]).bits.match_null_string_p)
6582 = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6583
6584 /* Save the position in the string where we were the last time
6585 we were at this open-group operator in case the group is
6586 operated upon by a repetition operator, e.g., with `(a*)*b'
6587 against `ab'; then we want to ignore where we are now in
6588 the string in case this attempt to match fails. */
6589 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])((reg_info[*p]).bits.match_null_string_p)
6590 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6591 : regstart[*p];
6592 DEBUG_PRINT2 (" old_regstart: %d\n",
6593 POINTER_TO_OFFSET (old_regstart[*p]));
6594
6595 regstart[*p] = d;
6596 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6597
6598 IS_ACTIVE (reg_info[*p])((reg_info[*p]).bits.is_active) = 1;
6599 MATCHED_SOMETHING (reg_info[*p])((reg_info[*p]).bits.matched_something) = 0;
6600
6601 /* Clear this whenever we change the register activity status. */
6602 set_regs_matched_done = 0;
6603
6604 /* This is the new highest active register. */
6605 highest_active_reg = *p;
6606
6607 /* If nothing was active before, this is the new lowest active
6608 register. */
6609 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6610 lowest_active_reg = *p;
6611
6612 /* Move past the register number and inner group count. */
6613 p += 2;
6614 just_past_start_mem = p;
6615
6616 break;
6617
6618
6619 /* The stop_memory opcode represents the end of a group. Its
6620 arguments are the same as start_memory's: the register
6621 number, and the number of inner groups. */
6622 case stop_memory:
6623 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6624 (long int) *p, (long int) p[1]);
6625
6626 /* We need to save the string position the last time we were at
6627 this close-group operator in case the group is operated
6628 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6629 against `aba'; then we want to ignore where we are now in
6630 the string in case this attempt to match fails. */
6631 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])((reg_info[*p]).bits.match_null_string_p)
6632 ? REG_UNSET (regend[*p]) ? d : regend[*p]
6633 : regend[*p];
6634 DEBUG_PRINT2 (" old_regend: %d\n",
6635 POINTER_TO_OFFSET (old_regend[*p]));
6636
6637 regend[*p] = d;
6638 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6639
6640 /* This register isn't active anymore. */
6641 IS_ACTIVE (reg_info[*p])((reg_info[*p]).bits.is_active) = 0;
6642
6643 /* Clear this whenever we change the register activity status. */
6644 set_regs_matched_done = 0;
6645
6646 /* If this was the only register active, nothing is active
6647 anymore. */
6648 if (lowest_active_reg == highest_active_reg)
6649 {
6650 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6651 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6652 }
6653 else
6654 { /* We must scan for the new highest active register, since
6655 it isn't necessarily one less than now: consider
6656 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6657 new highest active register is 1. */
6658 UCHAR_T r = *p - 1;
6659 while (r > 0 && !IS_ACTIVE (reg_info[r])((reg_info[r]).bits.is_active))
6660 r--;
6661
6662 /* If we end up at register zero, that means that we saved
6663 the registers as the result of an `on_failure_jump', not
6664 a `start_memory', and we jumped to past the innermost
6665 `stop_memory'. For example, in ((.)*) we save
6666 registers 1 and 2 as a result of the *, but when we pop
6667 back to the second ), we are at the stop_memory 1.
6668 Thus, nothing is active. */
6669 if (r == 0)
6670 {
6671 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6672 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6673 }
6674 else
6675 highest_active_reg = r;
6676 }
6677
6678 /* If just failed to match something this time around with a
6679 group that's operated on by a repetition operator, try to
6680 force exit from the ``loop'', and restore the register
6681 information for this group that we had before trying this
6682 last match. */
6683 if ((!MATCHED_SOMETHING (reg_info[*p])((reg_info[*p]).bits.matched_something)
6684 || just_past_start_mem == p - 1)
6685 && (p + 2) < pend)
6686 {
6687 boolean is_a_jump_n = false0;
6688
6689 p1 = p + 2;
6690 mcnt = 0;
6691 switch ((re_opcode_t) *p1++)
6692 {
6693 case jump_n:
6694 is_a_jump_n = true1;
6695 case pop_failure_jump:
6696 case maybe_pop_jump:
6697 case jump:
6698 case dummy_failure_jump:
6699 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6700 if (is_a_jump_n)
6701 p1 += OFFSET_ADDRESS_SIZE;
6702 break;
6703
6704 default:
6705 /* do nothing */ ;
6706 }
6707 p1 += mcnt;
6708
6709 /* If the next operation is a jump backwards in the pattern
6710 to an on_failure_jump right before the start_memory
6711 corresponding to this stop_memory, exit from the loop
6712 by forcing a failure after pushing on the stack the
6713 on_failure_jump's jump in the pattern, and d. */
6714 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6715 && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6716 && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6717 {
6718 /* If this group ever matched anything, then restore
6719 what its registers were before trying this last
6720 failed match, e.g., with `(a*)*b' against `ab' for
6721 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6722 against `aba' for regend[3].
6723
6724 Also restore the registers for inner groups for,
6725 e.g., `((a*)(b*))*' against `aba' (register 3 would
6726 otherwise get trashed). */
6727
6728 if (EVER_MATCHED_SOMETHING (reg_info[*p])((reg_info[*p]).bits.ever_matched_something))
6729 {
6730 unsigned r;
6731
6732 EVER_MATCHED_SOMETHING (reg_info[*p])((reg_info[*p]).bits.ever_matched_something) = 0;
6733
6734 /* Restore this and inner groups' (if any) registers. */
6735 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6736 r++)
6737 {
6738 regstart[r] = old_regstart[r];
6739
6740 /* xx why this test? */
6741 if (old_regend[r] >= regstart[r])
6742 regend[r] = old_regend[r];
6743 }
6744 }
6745 p1++;
6746 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6747 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6748
6749 goto fail;
6750 }
6751 }
6752
6753 /* Move past the register number and the inner group count. */
6754 p += 2;
6755 break;
6756
6757
6758 /* \<digit> has been turned into a `duplicate' command which is
6759 followed by the numeric value of <digit> as the register number. */
6760 case duplicate:
6761 {
6762 register const CHAR_T *d2, *dend2;
6763 int regno = *p++; /* Get which register to match against. */
6764 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6765
6766 /* Can't back reference a group which we've never matched. */
6767 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6768 goto fail;
6769
6770 /* Where in input to try to start matching. */
6771 d2 = regstart[regno];
6772
6773 /* Where to stop matching; if both the place to start and
6774 the place to stop matching are in the same string, then
6775 set to the place to stop, otherwise, for now have to use
6776 the end of the first string. */
6777
6778 dend2 = ((FIRST_STRING_P (regstart[regno])(size1 && string1 <= (regstart[regno]) && (
regstart[regno]) <= string1 + size1)
6779 == FIRST_STRING_P (regend[regno])(size1 && string1 <= (regend[regno]) && (regend
[regno]) <= string1 + size1)
)
6780 ? regend[regno] : end_match_1);
6781 for (;;)
6782 {
6783 /* If necessary, advance to next segment in register
6784 contents. */
6785 while (d2 == dend2)
6786 {
6787 if (dend2 == end_match_2) break;
6788 if (dend2 == regend[regno]) break;
6789
6790 /* End of string1 => advance to string2. */
6791 d2 = string2;
6792 dend2 = regend[regno];
6793 }
6794 /* At end of register contents => success */
6795 if (d2 == dend2) break;
6796
6797 /* If necessary, advance to next segment in data. */
6798 PREFETCH ();
6799
6800 /* How many characters left in this segment to match. */
6801 mcnt = dend - d;
6802
6803 /* Want how many consecutive characters we can match in
6804 one shot, so, if necessary, adjust the count. */
6805 if (mcnt > dend2 - d2)
6806 mcnt = dend2 - d2;
6807
6808 /* Compare that many; failure if mismatch, else move
6809 past them. */
6810 if (translate
6811 ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6812 : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6813 goto fail;
6814 d += mcnt, d2 += mcnt;
6815
6816 /* Do this because we've match some characters. */
6817 SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
;
6818 }
6819 }
6820 break;
6821
6822
6823 /* begline matches the empty string at the beginning of the string
6824 (unless `not_bol' is set in `bufp'), and, if
6825 `newline_anchor' is set, after newlines. */
6826 case begline:
6827 DEBUG_PRINT1 ("EXECUTING begline.\n");
6828
6829 if (AT_STRINGS_BEG (d))
6830 {
6831 if (!bufp->not_bol) break;
6832 }
6833 else if (d[-1] == '\n' && bufp->newline_anchor)
6834 {
6835 break;
6836 }
6837 /* In all other cases, we fail. */
6838 goto fail;
6839
6840
6841 /* endline is the dual of begline. */
6842 case endline:
6843 DEBUG_PRINT1 ("EXECUTING endline.\n");
6844
6845 if (AT_STRINGS_END (d))
6846 {
6847 if (!bufp->not_eol) break;
6848 }
6849
6850 /* We have to ``prefetch'' the next character. */
6851 else if ((d == end1 ? *string2 : *d) == '\n'
6852 && bufp->newline_anchor)
6853 {
6854 break;
6855 }
6856 goto fail;
6857
6858
6859 /* Match at the very beginning of the data. */
6860 case begbuf:
6861 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6862 if (AT_STRINGS_BEG (d))
6863 break;
6864 goto fail;
6865
6866
6867 /* Match at the very end of the data. */
6868 case endbuf:
6869 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6870 if (AT_STRINGS_END (d))
6871 break;
6872 goto fail;
6873
6874
6875 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
6876 pushes NULL as the value for the string on the stack. Then
6877 `pop_failure_point' will keep the current value for the
6878 string, instead of restoring it. To see why, consider
6879 matching `foo\nbar' against `.*\n'. The .* matches the foo;
6880 then the . fails against the \n. But the next thing we want
6881 to do is match the \n against the \n; if we restored the
6882 string value, we would be back at the foo.
6883
6884 Because this is used only in specific cases, we don't need to
6885 check all the things that `on_failure_jump' does, to make
6886 sure the right things get saved on the stack. Hence we don't
6887 share its code. The only reason to push anything on the
6888 stack at all is that otherwise we would have to change
6889 `anychar's code to do something besides goto fail in this
6890 case; that seems worse than this. */
6891 case on_failure_keep_string_jump:
6892 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6893
6894 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6895#ifdef _LIBC
6896 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6897#else
6898 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6899#endif
6900
6901 PUSH_FAILURE_POINT (p + mcnt, NULL((void*)0), -2);
6902 break;
6903
6904
6905 /* Uses of on_failure_jump:
6906
6907 Each alternative starts with an on_failure_jump that points
6908 to the beginning of the next alternative. Each alternative
6909 except the last ends with a jump that in effect jumps past
6910 the rest of the alternatives. (They really jump to the
6911 ending jump of the following alternative, because tensioning
6912 these jumps is a hassle.)
6913
6914 Repeats start with an on_failure_jump that points past both
6915 the repetition text and either the following jump or
6916 pop_failure_jump back to this on_failure_jump. */
6917 case on_failure_jump:
6918 on_failure:
6919 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6920
6921 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6922#ifdef _LIBC
6923 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
6924#else
6925 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
6926#endif
6927
6928 /* If this on_failure_jump comes right before a group (i.e.,
6929 the original * applied to a group), save the information
6930 for that group and all inner ones, so that if we fail back
6931 to this point, the group's information will be correct.
6932 For example, in \(a*\)*\1, we need the preceding group,
6933 and in \(zz\(a*\)b*\)\2, we need the inner group. */
6934
6935 /* We can't use `p' to check ahead because we push
6936 a failure point to `p + mcnt' after we do this. */
6937 p1 = p;
6938
6939 /* We need to skip no_op's before we look for the
6940 start_memory in case this on_failure_jump is happening as
6941 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6942 against aba. */
6943 while (p1 < pend && (re_opcode_t) *p1 == no_op)
6944 p1++;
6945
6946 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
6947 {
6948 /* We have a new highest active register now. This will
6949 get reset at the start_memory we are about to get to,
6950 but we will have saved all the registers relevant to
6951 this repetition op, as described above. */
6952 highest_active_reg = *(p1 + 1) + *(p1 + 2);
6953 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6954 lowest_active_reg = *(p1 + 1);
6955 }
6956
6957 DEBUG_PRINT1 (":\n");
6958 PUSH_FAILURE_POINT (p + mcnt, d, -2);
6959 break;
6960
6961
6962 /* A smart repeat ends with `maybe_pop_jump'.
6963 We change it to either `pop_failure_jump' or `jump'. */
6964 case maybe_pop_jump:
6965 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6966 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
6967 {
6968 register UCHAR_T *p2 = p;
6969
6970 /* Compare the beginning of the repeat with what in the
6971 pattern follows its end. If we can establish that there
6972 is nothing that they would both match, i.e., that we
6973 would have to backtrack because of (as in, e.g., `a*a')
6974 then we can change to pop_failure_jump, because we'll
6975 never have to backtrack.
6976
6977 This is not true in the case of alternatives: in
6978 `(a|ab)*' we do need to backtrack to the `ab' alternative
6979 (e.g., if the string was `ab'). But instead of trying to
6980 detect that here, the alternative has put on a dummy
6981 failure point which is what we will end up popping. */
6982
6983 /* Skip over open/close-group commands.
6984 If what follows this loop is a ...+ construct,
6985 look at what begins its body, since we will have to
6986 match at least one of that. */
6987 while (1)
6988 {
6989 if (p2 + 2 < pend
6990 && ((re_opcode_t) *p2 == stop_memory
6991 || (re_opcode_t) *p2 == start_memory))
6992 p2 += 3;
6993 else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
6994 && (re_opcode_t) *p2 == dummy_failure_jump)
6995 p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
6996 else
6997 break;
6998 }
6999
7000 p1 = p + mcnt;
7001 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7002 to the `maybe_finalize_jump' of this case. Examine what
7003 follows. */
7004
7005 /* If we're at the end of the pattern, we can change. */
7006 if (p2 == pend)
7007 {
7008 /* Consider what happens when matching ":\(.*\)"
7009 against ":/". I don't really understand this code
7010 yet. */
7011 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7012 pop_failure_jump;
7013 DEBUG_PRINT1
7014 (" End of pattern: change to `pop_failure_jump'.\n");
7015 }
7016
7017 else if ((re_opcode_t) *p2 == exactn
7018#ifdef MBS_SUPPORT
7019 || (re_opcode_t) *p2 == exactn_bin
7020#endif
7021 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7022 {
7023 register UCHAR_T c
7024 = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7025
7026 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7027#ifdef MBS_SUPPORT
7028 || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7029#endif
7030 ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7031 {
7032 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7033 pop_failure_jump;
7034#ifdef WCHAR
7035 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7036 (wint_t) c,
7037 (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7038#else
7039 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7040 (char) c,
7041 (char) p1[3+OFFSET_ADDRESS_SIZE]);
7042#endif
7043 }
7044
7045#ifndef WCHAR
7046 else if ((re_opcode_t) p1[3] == charset
7047 || (re_opcode_t) p1[3] == charset_not)
7048 {
7049 int negate = (re_opcode_t) p1[3] == charset_not;
7050
7051 if (c < (unsigned) (p1[4] * BYTEWIDTH8)
7052 && p1[5 + c / BYTEWIDTH8] & (1 << (c % BYTEWIDTH8)))
7053 negate = !negate;
7054
7055 /* `negate' is equal to 1 if c would match, which means
7056 that we can't change to pop_failure_jump. */
7057 if (!negate)
7058 {
7059 p[-3] = (unsigned char) pop_failure_jump;
7060 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7061 }
7062 }
7063#endif /* not WCHAR */
7064 }
7065#ifndef WCHAR
7066 else if ((re_opcode_t) *p2 == charset)
7067 {
7068 /* We win if the first character of the loop is not part
7069 of the charset. */
7070 if ((re_opcode_t) p1[3] == exactn
7071 && ! ((int) p2[1] * BYTEWIDTH8 > (int) p1[5]
7072 && (p2[2 + p1[5] / BYTEWIDTH8]
7073 & (1 << (p1[5] % BYTEWIDTH8)))))
7074 {
7075 p[-3] = (unsigned char) pop_failure_jump;
7076 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7077 }
7078
7079 else if ((re_opcode_t) p1[3] == charset_not)
7080 {
7081 int idx;
7082 /* We win if the charset_not inside the loop
7083 lists every character listed in the charset after. */
7084 for (idx = 0; idx < (int) p2[1]; idx++)
7085 if (! (p2[2 + idx] == 0
7086 || (idx < (int) p1[4]
7087 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7088 break;
7089
7090 if (idx == p2[1])
7091 {
7092 p[-3] = (unsigned char) pop_failure_jump;
7093 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7094 }
7095 }
7096 else if ((re_opcode_t) p1[3] == charset)
7097 {
7098 int idx;
7099 /* We win if the charset inside the loop
7100 has no overlap with the one after the loop. */
7101 for (idx = 0;
7102 idx < (int) p2[1] && idx < (int) p1[4];
7103 idx++)
7104 if ((p2[2 + idx] & p1[5 + idx]) != 0)
7105 break;
7106
7107 if (idx == p2[1] || idx == p1[4])
7108 {
7109 p[-3] = (unsigned char) pop_failure_jump;
7110 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7111 }
7112 }
7113 }
7114#endif /* not WCHAR */
7115 }
7116 p -= OFFSET_ADDRESS_SIZE; /* Point at relative address again. */
7117 if ((re_opcode_t) p[-1] != pop_failure_jump)
7118 {
7119 p[-1] = (UCHAR_T) jump;
7120 DEBUG_PRINT1 (" Match => jump.\n");
7121 goto unconditional_jump;
7122 }
7123 /* Note fall through. */
7124
7125
7126 /* The end of a simple repeat has a pop_failure_jump back to
7127 its matching on_failure_jump, where the latter will push a
7128 failure point. The pop_failure_jump takes off failure
7129 points put on by this pop_failure_jump's matching
7130 on_failure_jump; we got through the pattern to here from the
7131 matching on_failure_jump, so didn't fail. */
7132 case pop_failure_jump:
7133 {
7134 /* We need to pass separate storage for the lowest and
7135 highest registers, even though we don't care about the
7136 actual values. Otherwise, we will restore only one
7137 register from the stack, since lowest will == highest in
7138 `pop_failure_point'. */
7139 active_reg_t dummy_low_reg, dummy_high_reg;
7140 UCHAR_T *pdummy = NULL((void*)0);
7141 const CHAR_T *sdummy = NULL((void*)0);
7142
7143 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7144 POP_FAILURE_POINT (sdummy, pdummy,
7145 dummy_low_reg, dummy_high_reg,
7146 reg_dummy, reg_dummy, reg_info_dummy);
7147 }
7148 /* Note fall through. */
7149
7150 unconditional_jump:
7151#ifdef _LIBC
7152 DEBUG_PRINT2 ("\n%p: ", p);
7153#else
7154 DEBUG_PRINT2 ("\n0x%x: ", p);
7155#endif
7156 /* Note fall through. */
7157
7158 /* Unconditionally jump (without popping any failure points). */
7159 case jump:
7160 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
7161 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7162 p += mcnt; /* Do the jump. */
7163#ifdef _LIBC
7164 DEBUG_PRINT2 ("(to %p).\n", p);
7165#else
7166 DEBUG_PRINT2 ("(to 0x%x).\n", p);
7167#endif
7168 break;
7169
7170
7171 /* We need this opcode so we can detect where alternatives end
7172 in `group_match_null_string_p' et al. */
7173 case jump_past_alt:
7174 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7175 goto unconditional_jump;
7176
7177
7178 /* Normally, the on_failure_jump pushes a failure point, which
7179 then gets popped at pop_failure_jump. We will end up at
7180 pop_failure_jump, also, and with a pattern of, say, `a+', we
7181 are skipping over the on_failure_jump, so we have to push
7182 something meaningless for pop_failure_jump to pop. */
7183 case dummy_failure_jump:
7184 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7185 /* It doesn't matter what we push for the string here. What
7186 the code at `fail' tests is the value for the pattern. */
7187 PUSH_FAILURE_POINT (NULL((void*)0), NULL((void*)0), -2);
7188 goto unconditional_jump;
7189
7190
7191 /* At the end of an alternative, we need to push a dummy failure
7192 point in case we are followed by a `pop_failure_jump', because
7193 we don't want the failure point for the alternative to be
7194 popped. For example, matching `(a|ab)*' against `aab'
7195 requires that we match the `ab' alternative. */
7196 case push_dummy_failure:
7197 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7198 /* See comments just above at `dummy_failure_jump' about the
7199 two zeroes. */
7200 PUSH_FAILURE_POINT (NULL((void*)0), NULL((void*)0), -2);
7201 break;
7202
7203 /* Have to succeed matching what follows at least n times.
7204 After that, handle like `on_failure_jump'. */
7205 case succeed_n:
7206 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7207 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7208
7209 assert (mcnt >= 0);
7210 /* Originally, this is how many times we HAVE to succeed. */
7211 if (mcnt > 0)
7212 {
7213 mcnt--;
7214 p += OFFSET_ADDRESS_SIZE;
7215 STORE_NUMBER_AND_INCR (p, mcnt);
7216#ifdef _LIBC
7217 DEBUG_PRINT3 (" Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7218 , mcnt);
7219#else
7220 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7221 , mcnt);
7222#endif
7223 }
7224 else if (mcnt == 0)
7225 {
7226#ifdef _LIBC
7227 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7228 p + OFFSET_ADDRESS_SIZE);
7229#else
7230 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7231 p + OFFSET_ADDRESS_SIZE);
7232#endif /* _LIBC */
7233
7234#ifdef WCHAR
7235 p[1] = (UCHAR_T) no_op;
7236#else
7237 p[2] = (UCHAR_T) no_op;
7238 p[3] = (UCHAR_T) no_op;
7239#endif /* WCHAR */
7240 goto on_failure;
7241 }
7242 break;
7243
7244 case jump_n:
7245 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7246 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7247
7248 /* Originally, this is how many times we CAN jump. */
7249 if (mcnt)
7250 {
7251 mcnt--;
7252 STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7253
7254#ifdef _LIBC
7255 DEBUG_PRINT3 (" Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7256 mcnt);
7257#else
7258 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7259 mcnt);
7260#endif /* _LIBC */
7261 goto unconditional_jump;
7262 }
7263 /* If don't have to jump any more, skip over the rest of command. */
7264 else
7265 p += 2 * OFFSET_ADDRESS_SIZE;
7266 break;
7267
7268 case set_number_at:
7269 {
7270 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7271
7272 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7273 p1 = p + mcnt;
7274 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7275#ifdef _LIBC
7276 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
7277#else
7278 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
7279#endif
7280 STORE_NUMBER (p1, mcnt);
7281 break;
7282 }
7283
7284#if 0
7285 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7286 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7287 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7288 macro and introducing temporary variables works around the bug. */
7289
7290 case wordbound:
7291 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7292 if (AT_WORD_BOUNDARY (d))
7293 break;
7294 goto fail;
7295
7296 case notwordbound:
7297 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7298 if (AT_WORD_BOUNDARY (d))
7299 goto fail;
7300 break;
7301#else
7302 case wordbound:
7303 {
7304 boolean prevchar, thischar;
7305
7306 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7307 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7308 break;
7309
7310 prevchar = WORDCHAR_P (d - 1);
7311 thischar = WORDCHAR_P (d);
7312 if (prevchar != thischar)
7313 break;
7314 goto fail;
7315 }
7316
7317 case notwordbound:
7318 {
7319 boolean prevchar, thischar;
7320
7321 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7322 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7323 goto fail;
7324
7325 prevchar = WORDCHAR_P (d - 1);
7326 thischar = WORDCHAR_P (d);
7327 if (prevchar != thischar)
7328 goto fail;
7329 break;
7330 }
7331#endif
7332
7333 case wordbeg:
7334 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7335 if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7336 && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7337 break;
7338 goto fail;
7339
7340 case wordend:
7341 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7342 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7343 && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7344 break;
7345 goto fail;
7346
7347#ifdef emacs
7348 case before_dot:
7349 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7350 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7351 goto fail;
7352 break;
7353
7354 case at_dot:
7355 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7356 if (PTR_CHAR_POS ((unsigned char *) d) != point)
7357 goto fail;
7358 break;
7359
7360 case after_dot:
7361 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7362 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7363 goto fail;
7364 break;
7365
7366 case syntaxspec:
7367 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7368 mcnt = *p++;
7369 goto matchsyntax;
7370
7371 case wordchar:
7372 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7373 mcnt = (int) Sword1;
7374 matchsyntax:
7375 PREFETCH ();
7376 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7377 d++;
7378 if (SYNTAX (d[-1])re_syntax_table[(unsigned char) (d[-1])] != (enum syntaxcode) mcnt)
7379 goto fail;
7380 SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
;
7381 break;
7382
7383 case notsyntaxspec:
7384 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7385 mcnt = *p++;
7386 goto matchnotsyntax;
7387
7388 case notwordchar:
7389 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7390 mcnt = (int) Sword1;
7391 matchnotsyntax:
7392 PREFETCH ();
7393 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7394 d++;
7395 if (SYNTAX (d[-1])re_syntax_table[(unsigned char) (d[-1])] == (enum syntaxcode) mcnt)
7396 goto fail;
7397 SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
;
7398 break;
7399
7400#else /* not emacs */
7401 case wordchar:
7402 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7403 PREFETCH ();
7404 if (!WORDCHAR_P (d))
7405 goto fail;
7406 SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
;
7407 d++;
7408 break;
7409
7410 case notwordchar:
7411 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7412 PREFETCH ();
7413 if (WORDCHAR_P (d))
7414 goto fail;
7415 SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
;
7416 d++;
7417 break;
7418#endif /* not emacs */
7419
7420 default:
7421 abort ();
7422 }
7423 continue; /* Successfully executed one pattern command; keep going. */
7424
7425
7426 /* We goto here if a matching operation fails. */
7427 fail:
7428 if (!FAIL_STACK_EMPTY ()(fail_stack.avail == 0))
7429 { /* A restart point is known. Restore to that state. */
7430 DEBUG_PRINT1 ("\nFAIL:\n");
7431 POP_FAILURE_POINT (d, p,
7432 lowest_active_reg, highest_active_reg,
7433 regstart, regend, reg_info);
7434
7435 /* If this failure point is a dummy, try the next one. */
7436 if (!p)
7437 goto fail;
7438
7439 /* If we failed to the end of the pattern, don't examine *p. */
7440 assert (p <= pend);
7441 if (p < pend)
7442 {
7443 boolean is_a_jump_n = false0;
7444
7445 /* If failed to a backwards jump that's part of a repetition
7446 loop, need to pop this failure point and use the next one. */
7447 switch ((re_opcode_t) *p)
7448 {
7449 case jump_n:
7450 is_a_jump_n = true1;
7451 case maybe_pop_jump:
7452 case pop_failure_jump:
7453 case jump:
7454 p1 = p + 1;
7455 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7456 p1 += mcnt;
7457
7458 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7459 || (!is_a_jump_n
7460 && (re_opcode_t) *p1 == on_failure_jump))
7461 goto fail;
7462 break;
7463 default:
7464 /* do nothing */ ;
7465 }
7466 }
7467
7468 if (d >= string1 && d <= end1)
7469 dend = end_match_1;
7470 }
7471 else
7472 break; /* Matching at this starting point really fails. */
7473 } /* for (;;) */
7474
7475 if (best_regs_set)
7476 goto restore_best_regs;
7477
7478 FREE_VARIABLES ();
7479
7480 return -1; /* Failure to match. */
7481} /* re_match_2 */
7482
7483/* Subroutine definitions for re_match_2. */
7484
7485
7486/* We are passed P pointing to a register number after a start_memory.
7487
7488 Return true if the pattern up to the corresponding stop_memory can
7489 match the empty string, and false otherwise.
7490
7491 If we find the matching stop_memory, sets P to point to one past its number.
7492 Otherwise, sets P to an undefined byte less than or equal to END.
7493
7494 We don't handle duplicates properly (yet). */
7495
7496static boolean
7497PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7498 PREFIX(register_info_type) *reg_info)
7499{
7500 int mcnt;
7501 /* Point to after the args to the start_memory. */
7502 UCHAR_T *p1 = *p + 2;
7503
7504 while (p1 < end)
7505 {
7506 /* Skip over opcodes that can match nothing, and return true or
7507 false, as appropriate, when we get to one that can't, or to the
7508 matching stop_memory. */
7509
7510 switch ((re_opcode_t) *p1)
7511 {
7512 /* Could be either a loop or a series of alternatives. */
7513 case on_failure_jump:
7514 p1++;
7515 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7516
7517 /* If the next operation is not a jump backwards in the
7518 pattern. */
7519
7520 if (mcnt >= 0)
7521 {
7522 /* Go through the on_failure_jumps of the alternatives,
7523 seeing if any of the alternatives cannot match nothing.
7524 The last alternative starts with only a jump,
7525 whereas the rest start with on_failure_jump and end
7526 with a jump, e.g., here is the pattern for `a|b|c':
7527
7528 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7529 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7530 /exactn/1/c
7531
7532 So, we have to first go through the first (n-1)
7533 alternatives and then deal with the last one separately. */
7534
7535
7536 /* Deal with the first (n-1) alternatives, which start
7537 with an on_failure_jump (see above) that jumps to right
7538 past a jump_past_alt. */
7539
7540 while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7541 jump_past_alt)
7542 {
7543 /* `mcnt' holds how many bytes long the alternative
7544 is, including the ending `jump_past_alt' and
7545 its number. */
7546
7547 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7548 (1 + OFFSET_ADDRESS_SIZE),
7549 reg_info))
7550 return false0;
7551
7552 /* Move to right after this alternative, including the
7553 jump_past_alt. */
7554 p1 += mcnt;
7555
7556 /* Break if it's the beginning of an n-th alternative
7557 that doesn't begin with an on_failure_jump. */
7558 if ((re_opcode_t) *p1 != on_failure_jump)
7559 break;
7560
7561 /* Still have to check that it's not an n-th
7562 alternative that starts with an on_failure_jump. */
7563 p1++;
7564 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7565 if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7566 jump_past_alt)
7567 {
7568 /* Get to the beginning of the n-th alternative. */
7569 p1 -= 1 + OFFSET_ADDRESS_SIZE;
7570 break;
7571 }
7572 }
7573
7574 /* Deal with the last alternative: go back and get number
7575 of the `jump_past_alt' just before it. `mcnt' contains
7576 the length of the alternative. */
7577 EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7578
7579 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7580 return false0;
7581
7582 p1 += mcnt; /* Get past the n-th alternative. */
7583 } /* if mcnt > 0 */
7584 break;
7585
7586
7587 case stop_memory:
7588 assert (p1[1] == **p);
7589 *p = p1 + 2;
7590 return true1;
7591
7592
7593 default:
7594 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7595 return false0;
7596 }
7597 } /* while p1 < end */
7598
7599 return false0;
7600} /* group_match_null_string_p */
7601
7602
7603/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7604 It expects P to be the first byte of a single alternative and END one
7605 byte past the last. The alternative can contain groups. */
7606
7607static boolean
7608PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end,
7609 PREFIX(register_info_type) *reg_info)
7610{
7611 int mcnt;
7612 UCHAR_T *p1 = p;
7613
7614 while (p1 < end)
7615 {
7616 /* Skip over opcodes that can match nothing, and break when we get
7617 to one that can't. */
7618
7619 switch ((re_opcode_t) *p1)
7620 {
7621 /* It's a loop. */
7622 case on_failure_jump:
7623 p1++;
7624 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7625 p1 += mcnt;
7626 break;
7627
7628 default:
7629 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7630 return false0;
7631 }
7632 } /* while p1 < end */
7633
7634 return true1;
7635} /* alt_match_null_string_p */
7636
7637
7638/* Deals with the ops common to group_match_null_string_p and
7639 alt_match_null_string_p.
7640
7641 Sets P to one after the op and its arguments, if any. */
7642
7643static boolean
7644PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7645 PREFIX(register_info_type) *reg_info)
7646{
7647 int mcnt;
7648 boolean ret;
7649 int reg_no;
7650 UCHAR_T *p1 = *p;
7651
7652 switch ((re_opcode_t) *p1++)
7653 {
7654 case no_op:
7655 case begline:
7656 case endline:
7657 case begbuf:
7658 case endbuf:
7659 case wordbeg:
7660 case wordend:
7661 case wordbound:
7662 case notwordbound:
7663#ifdef emacs
7664 case before_dot:
7665 case at_dot:
7666 case after_dot:
7667#endif
7668 break;
7669
7670 case start_memory:
7671 reg_no = *p1;
7672 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7673 ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7674
7675 /* Have to set this here in case we're checking a group which
7676 contains a group and a back reference to it. */
7677
7678 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no])((reg_info[reg_no]).bits.match_null_string_p) == MATCH_NULL_UNSET_VALUE3)
7679 REG_MATCH_NULL_STRING_P (reg_info[reg_no])((reg_info[reg_no]).bits.match_null_string_p) = ret;
7680
7681 if (!ret)
7682 return false0;
7683 break;
7684
7685 /* If this is an optimized succeed_n for zero times, make the jump. */
7686 case jump:
7687 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7688 if (mcnt >= 0)
7689 p1 += mcnt;
7690 else
7691 return false0;
7692 break;
7693
7694 case succeed_n:
7695 /* Get to the number of times to succeed. */
7696 p1 += OFFSET_ADDRESS_SIZE;
7697 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7698
7699 if (mcnt == 0)
7700 {
7701 p1 -= 2 * OFFSET_ADDRESS_SIZE;
7702 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7703 p1 += mcnt;
7704 }
7705 else
7706 return false0;
7707 break;
7708
7709 case duplicate:
7710 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])((reg_info[*p1]).bits.match_null_string_p))
7711 return false0;
7712 break;
7713
7714 case set_number_at:
7715 p1 += 2 * OFFSET_ADDRESS_SIZE;
7716
7717 default:
7718 /* All other opcodes mean we cannot match the empty string. */
7719 return false0;
7720 }
7721
7722 *p = p1;
7723 return true1;
7724} /* common_op_match_null_string_p */
7725
7726
7727/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7728 bytes; nonzero otherwise. */
7729
7730static int
7731PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, register int len,
7732 RE_TRANSLATE_TYPEchar * translate)
7733{
7734 register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7735 register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7736 while (len)
7737 {
7738#ifdef WCHAR
7739 if (((*p1<=0xff)?translate[*p1++]:*p1++)
7740 != ((*p2<=0xff)?translate[*p2++]:*p2++))
7741 return 1;
7742#else /* BYTE */
7743 if (translate[*p1++] != translate[*p2++]) return 1;
7744#endif /* WCHAR */
7745 len--;
7746 }
7747 return 0;
7748}
7749
7750
7751#else /* not INSIDE_RECURSION */
7752
7753/* Entry points for GNU code. */
7754
7755/* re_compile_pattern is the GNU regular expression compiler: it
7756 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7757 Returns 0 if the pattern was valid, otherwise an error string.
7758
7759 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7760 are set in BUFP on entry.
7761
7762 We call regex_compile to do the actual compilation. */
7763
7764const char *
7765re_compile_patternxre_compile_pattern (const char *pattern, size_t length,
7766 struct re_pattern_buffer *bufp)
7767{
7768 reg_errcode_t ret;
7769
7770 /* GNU code is written to assume at least RE_NREGS registers will be set
7771 (and at least one extra will be -1). */
7772 bufp->regs_allocated = REGS_UNALLOCATED0;
7773
7774 /* And GNU code determines whether or not to get register information
7775 by passing null for the REGS argument to re_match, etc., not by
7776 setting no_sub. */
7777 bufp->no_sub = 0;
7778
7779 /* Match anchors at newline. */
7780 bufp->newline_anchor = 1;
7781
7782# ifdef MBS_SUPPORT
7783 if (MB_CUR_MAX__mb_cur_max() != 1)
7784 ret = wcs_regex_compile (pattern, length, re_syntax_optionsxre_syntax_options, bufp);
7785 else
7786# endif
7787 ret = byte_regex_compile (pattern, length, re_syntax_optionsxre_syntax_options, bufp);
7788
7789 if (!ret)
7790 return NULL((void*)0);
7791 return gettext (re_error_msgid[(int) ret])(re_error_msgid[(int) ret]);
7792}
7793#ifdef _LIBC
7794weak_alias (__re_compile_pattern, re_compile_patternxre_compile_pattern)
7795#endif
7796
7797/* Entry points compatible with 4.2 BSD regex library. We don't define
7798 them unless specifically requested. */
7799
7800#if defined _REGEX_RE_COMP || defined _LIBC
7801
7802/* BSD has one and only one pattern buffer. */
7803static struct re_pattern_buffer re_comp_buf;
7804
7805char *
7806#ifdef _LIBC
7807/* Make these definitions weak in libc, so POSIX programs can redefine
7808 these names if they don't use our functions, and still use
7809 regcomp/regexec below without link errors. */
7810weak_function
7811#endif
7812re_compxre_comp (const char *s)
7813{
7814 reg_errcode_t ret;
7815
7816 if (!s)
7817 {
7818 if (!re_comp_buf.buffer)
7819 return (char *) gettext ("No previous regular expression")("No previous regular expression");
7820 return 0;
7821 }
7822
7823 if (!re_comp_buf.buffer)
7824 {
7825 re_comp_buf.buffer = (unsigned char *) malloc (200);
7826 if (re_comp_buf.buffer == NULL((void*)0))
7827 return (char *) gettext (re_error_msgid[(int) REG_ESPACE])(re_error_msgid[(int) REG_ESPACE]);
7828 re_comp_buf.allocated = 200;
7829
7830 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH8);
7831 if (re_comp_buf.fastmap == NULL((void*)0))
7832 return (char *) gettext (re_error_msgid[(int) REG_ESPACE])(re_error_msgid[(int) REG_ESPACE]);
7833 }
7834
7835 /* Since `re_exec' always passes NULL for the `regs' argument, we
7836 don't need to initialize the pattern buffer fields which affect it. */
7837
7838 /* Match anchors at newlines. */
7839 re_comp_buf.newline_anchor = 1;
7840
7841# ifdef MBS_SUPPORT
7842 if (MB_CUR_MAX__mb_cur_max() != 1)
7843 ret = wcs_regex_compile (s, strlen (s), re_syntax_optionsxre_syntax_options, &re_comp_buf);
7844 else
7845# endif
7846 ret = byte_regex_compile (s, strlen (s), re_syntax_optionsxre_syntax_options, &re_comp_buf);
7847
7848 if (!ret)
7849 return NULL((void*)0);
7850
7851 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
7852 return (char *) gettext (re_error_msgid[(int) ret])(re_error_msgid[(int) ret]);
7853}
7854
7855
7856int
7857#ifdef _LIBC
7858weak_function
7859#endif
7860re_execxre_exec (const char *s)
7861{
7862 const int len = strlen (s);
7863 return
7864 0 <= re_searchxre_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
7865}
7866
7867#endif /* _REGEX_RE_COMP */
7868
7869/* POSIX.2 functions. Don't define these for Emacs. */
7870
7871#ifndef emacs
7872
7873/* regcomp takes a regular expression as a string and compiles it.
7874
7875 PREG is a regex_t *. We do not expect any fields to be initialized,
7876 since POSIX says we shouldn't. Thus, we set
7877
7878 `buffer' to the compiled pattern;
7879 `used' to the length of the compiled pattern;
7880 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7881 REG_EXTENDED bit in CFLAGS is set; otherwise, to
7882 RE_SYNTAX_POSIX_BASIC;
7883 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7884 `fastmap' to an allocated space for the fastmap;
7885 `fastmap_accurate' to zero;
7886 `re_nsub' to the number of subexpressions in PATTERN.
7887
7888 PATTERN is the address of the pattern string.
7889
7890 CFLAGS is a series of bits which affect compilation.
7891
7892 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7893 use POSIX basic syntax.
7894
7895 If REG_NEWLINE is set, then . and [^...] don't match newline.
7896 Also, regexec will try a match beginning after every newline.
7897
7898 If REG_ICASE is set, then we considers upper- and lowercase
7899 versions of letters to be equivalent when matching.
7900
7901 If REG_NOSUB is set, then when PREG is passed to regexec, that
7902 routine will report only success or failure, and nothing about the
7903 registers.
7904
7905 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
7906 the return codes and their meanings.) */
7907
7908int
7909regcompxregcomp (regex_t *preg, const char *pattern, int cflags)
7910{
7911 reg_errcode_t ret;
7912 reg_syntax_t syntax
7913 = (cflags & REG_EXTENDED1) ?
7914 RE_SYNTAX_POSIX_EXTENDED((((((unsigned long int) 1) << 1) << 1) | (((((((
(unsigned long int) 1) << 1) << 1) << 1) <<
1) << 1) << 1) | (((((((((unsigned long int) 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) | (((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) | ((((((((((((((((((unsigned long int
) 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1)) | (((((unsigned long int) 1) << 1) <<
1) << 1) | ((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) | ((((((((((((((unsigned long int
) 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) | (((((((((((((((unsigned long int)
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) | (((((((((((((((((unsigned
long int) 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) | (((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) | (((((((((((((((((((unsigned long
int) 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1))
: RE_SYNTAX_POSIX_BASIC((((((unsigned long int) 1) << 1) << 1) | (((((((
(unsigned long int) 1) << 1) << 1) << 1) <<
1) << 1) << 1) | (((((((((unsigned long int) 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) | (((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) | ((((((((((((((((((unsigned long int
) 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1)) | (((unsigned long int) 1) << 1))
;
7915
7916 /* regex_compile will allocate the space for the compiled pattern. */
7917 preg->buffer = 0;
7918 preg->allocated = 0;
7919 preg->used = 0;
7920
7921 /* Try to allocate space for the fastmap. */
7922 preg->fastmap = (char *) malloc (1 << BYTEWIDTH8);
7923
7924 if (cflags & REG_ICASE(1 << 1))
7925 {
7926 int i;
7927
7928 preg->translate
7929 = (RE_TRANSLATE_TYPEchar *) malloc (CHAR_SET_SIZE256
7930 * sizeof (*(RE_TRANSLATE_TYPEchar *)0));
7931 if (preg->translate == NULL((void*)0))
7932 return (int) REG_ESPACE;
7933
7934 /* Map uppercase characters to corresponding lowercase ones. */
7935 for (i = 0; i < CHAR_SET_SIZE256; i++)
7936 preg->translate[i] = ISUPPER (i)(1 && isupper (i)) ? TOLOWER (i)tolower(i) : i;
7937 }
7938 else
7939 preg->translate = NULL((void*)0);
7940
7941 /* If REG_NEWLINE is set, newlines are treated differently. */
7942 if (cflags & REG_NEWLINE((1 << 1) << 1))
7943 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
7944 syntax &= ~RE_DOT_NEWLINE((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1)
;
7945 syntax |= RE_HAT_LISTS_NOT_NEWLINE((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
)
;
7946 /* It also changes the matching behavior. */
7947 preg->newline_anchor = 1;
7948 }
7949 else
7950 preg->newline_anchor = 0;
7951
7952 preg->no_sub = !!(cflags & REG_NOSUB(((1 << 1) << 1) << 1));
7953
7954 /* POSIX says a null character in the pattern terminates it, so we
7955 can use strlen here in compiling the pattern. */
7956# ifdef MBS_SUPPORT
7957 if (MB_CUR_MAX__mb_cur_max() != 1)
7958 ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
7959 else
7960# endif
7961 ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
7962
7963 /* POSIX doesn't distinguish between an unmatched open-group and an
7964 unmatched close-group: both are REG_EPAREN. */
7965 if (ret == REG_ERPAREN) ret = REG_EPAREN;
7966
7967 if (ret == REG_NOERROR && preg->fastmap)
7968 {
7969 /* Compute the fastmap now, since regexec cannot modify the pattern
7970 buffer. */
7971 if (re_compile_fastmapxre_compile_fastmap (preg) == -2)
7972 {
7973 /* Some error occurred while computing the fastmap, just forget
7974 about it. */
7975 free (preg->fastmap);
7976 preg->fastmap = NULL((void*)0);
7977 }
7978 }
7979
7980 return (int) ret;
7981}
7982#ifdef _LIBC
7983weak_alias (__regcomp, regcompxregcomp)
7984#endif
7985
7986
7987/* regexec searches for a given pattern, specified by PREG, in the
7988 string STRING.
7989
7990 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
7991 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
7992 least NMATCH elements, and we set them to the offsets of the
7993 corresponding matched substrings.
7994
7995 EFLAGS specifies `execution flags' which affect matching: if
7996 REG_NOTBOL is set, then ^ does not match at the beginning of the
7997 string; if REG_NOTEOL is set, then $ does not match at the end.
7998
7999 We return 0 if we find a match and REG_NOMATCH if not. */
8000
8001int
8002regexecxregexec (const regex_t *preg, const char *string, size_t nmatch,
8003 regmatch_t pmatch[], int eflags)
8004{
8005 int ret;
8006 struct re_registers regs;
8007 regex_t private_preg;
8008 int len = strlen (string);
8009 boolean want_reg_info = !preg->no_sub && nmatch > 0;
1
Assuming field 'no_sub' is not equal to 0
8010
8011 private_preg = *preg;
8012
8013 private_preg.not_bol = !!(eflags & REG_NOTBOL1);
2
Assuming the condition is false
8014 private_preg.not_eol = !!(eflags & REG_NOTEOL(1 << 1));
3
Assuming the condition is false
8015
8016 /* The user has told us exactly how many registers to return
8017 information about, via `nmatch'. We have to pass that on to the
8018 matching routines. */
8019 private_preg.regs_allocated = REGS_FIXED2;
8020
8021 if (want_reg_info
3.1
'want_reg_info' is 0
3.1
'want_reg_info' is 0
)
4
Taking false branch
8022 {
8023 regs.num_regs = nmatch;
8024 regs.start = TALLOC (nmatch * 2, regoff_t)((regoff_t *) malloc ((nmatch * 2) * sizeof (regoff_t)));
8025 if (regs.start == NULL((void*)0))
8026 return (int) REG_NOMATCH;
8027 regs.end = regs.start + nmatch;
8028 }
8029
8030 /* Perform the searching operation. */
8031 ret = re_searchxre_search (&private_preg, string, len,
6
Calling 'xre_search'
8032 /* start: */ 0, /* range: */ len,
8033 want_reg_info
4.1
'want_reg_info' is 0
4.1
'want_reg_info' is 0
? &regs : (struct re_registers *) 0)
;
5
'?' condition is false
8034
8035 /* Copy the register information to the POSIX structure. */
8036 if (want_reg_info)
8037 {
8038 if (ret >= 0)
8039 {
8040 unsigned r;
8041
8042 for (r = 0; r < nmatch; r++)
8043 {
8044 pmatch[r].rm_so = regs.start[r];
8045 pmatch[r].rm_eo = regs.end[r];
8046 }
8047 }
8048
8049 /* If we needed the temporary register info, free the space now. */
8050 free (regs.start);
8051 }
8052
8053 /* We want zero return to mean success, unlike `re_search'. */
8054 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8055}
8056#ifdef _LIBC
8057weak_alias (__regexec, regexecxregexec)
8058#endif
8059
8060
8061/* Returns a message corresponding to an error code, ERRCODE, returned
8062 from either regcomp or regexec. We don't use PREG here. */
8063
8064size_t
8065regerrorxregerror (int errcode, const regex_t *preg ATTRIBUTE_UNUSED__attribute__ ((__unused__)),
8066 char *errbuf, size_t errbuf_size)
8067{
8068 const char *msg;
8069 size_t msg_size;
8070
8071 if (errcode < 0
8072 || errcode >= (int) (sizeof (re_error_msgid)
8073 / sizeof (re_error_msgid[0])))
8074 /* Only error codes returned by the rest of the code should be passed
8075 to this routine. If we are given anything else, or if other regex
8076 code generates an invalid error code, then the program has a bug.
8077 Dump core so we can fix it. */
8078 abort ();
8079
8080 msg = gettext (re_error_msgid[errcode])(re_error_msgid[errcode]);
8081
8082 msg_size = strlen (msg) + 1; /* Includes the null. */
8083
8084 if (errbuf_size != 0)
8085 {
8086 if (msg_size > errbuf_size)
8087 {
8088#if defined HAVE_MEMPCPY || defined _LIBC
8089 *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8090#else
8091 memcpy (errbuf, msg, errbuf_size - 1);
8092 errbuf[errbuf_size - 1] = 0;
8093#endif
8094 }
8095 else
8096 memcpy (errbuf, msg, msg_size);
8097 }
8098
8099 return msg_size;
8100}
8101#ifdef _LIBC
8102weak_alias (__regerror, regerrorxregerror)
8103#endif
8104
8105
8106/* Free dynamically allocated space used by PREG. */
8107
8108void
8109regfreexregfree (regex_t *preg)
8110{
8111 if (preg->buffer != NULL((void*)0))
8112 free (preg->buffer);
8113 preg->buffer = NULL((void*)0);
8114
8115 preg->allocated = 0;
8116 preg->used = 0;
8117
8118 if (preg->fastmap != NULL((void*)0))
8119 free (preg->fastmap);
8120 preg->fastmap = NULL((void*)0);
8121 preg->fastmap_accurate = 0;
8122
8123 if (preg->translate != NULL((void*)0))
8124 free (preg->translate);
8125 preg->translate = NULL((void*)0);
8126}
8127#ifdef _LIBC
8128weak_alias (__regfree, regfreexregfree)
8129#endif
8130
8131#endif /* not emacs */
8132
8133#endif /* not INSIDE_RECURSION */
8134
8135
8136#undef STORE_NUMBER
8137#undef STORE_NUMBER_AND_INCR
8138#undef EXTRACT_NUMBER
8139#undef EXTRACT_NUMBER_AND_INCR
8140
8141#undef DEBUG_PRINT_COMPILED_PATTERN
8142#undef DEBUG_PRINT_DOUBLE_STRING
8143
8144#undef INIT_FAIL_STACK
8145#undef RESET_FAIL_STACK
8146#undef DOUBLE_FAIL_STACK
8147#undef PUSH_PATTERN_OP
8148#undef PUSH_FAILURE_POINTER
8149#undef PUSH_FAILURE_INT
8150#undef PUSH_FAILURE_ELT
8151#undef POP_FAILURE_POINTER
8152#undef POP_FAILURE_INT
8153#undef POP_FAILURE_ELT
8154#undef DEBUG_PUSH
8155#undef DEBUG_POP
8156#undef PUSH_FAILURE_POINT
8157#undef POP_FAILURE_POINT
8158
8159#undef REG_UNSET_VALUE
8160#undef REG_UNSET
8161
8162#undef PATFETCH
8163#undef PATFETCH_RAW
8164#undef PATUNFETCH
8165#undef TRANSLATE
8166
8167#undef INIT_BUF_SIZE
8168#undef GET_BUFFER_SPACE
8169#undef BUF_PUSH
8170#undef BUF_PUSH_2
8171#undef BUF_PUSH_3
8172#undef STORE_JUMP
8173#undef STORE_JUMP2
8174#undef INSERT_JUMP
8175#undef INSERT_JUMP2
8176#undef EXTEND_BUFFER
8177#undef GET_UNSIGNED_NUMBER
8178#undef FREE_STACK_RETURN
8179
8180# undef POINTER_TO_OFFSET
8181# undef MATCHING_IN_FRST_STRING
8182# undef PREFETCH
8183# undef AT_STRINGS_BEG
8184# undef AT_STRINGS_END
8185# undef WORDCHAR_P
8186# undef FREE_VAR
8187# undef FREE_VARIABLES
8188# undef NO_HIGHEST_ACTIVE_REG
8189# undef NO_LOWEST_ACTIVE_REG
8190
8191# undef CHAR_T
8192# undef UCHAR_T
8193# undef COMPILED_BUFFER_VAR
8194# undef OFFSET_ADDRESS_SIZE
8195# undef CHAR_CLASS_SIZE
8196# undef PREFIX
8197# undef ARG_PREFIX
8198# undef PUT_CHAR
8199# undef BYTE
8200# undef WCHAR
8201
8202# define DEFINED_ONCE

/usr/src/gnu/lib/libiberty/src/regex.c

1/* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5
6 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
7 2002, 2005 Free Software Foundation, Inc.
8 This file is part of the GNU C Library.
9
10 The GNU C Library is free software; you can redistribute it and/or
11 modify it under the terms of the GNU Lesser General Public
12 License as published by the Free Software Foundation; either
13 version 2.1 of the License, or (at your option) any later version.
14
15 The GNU C Library is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 Lesser General Public License for more details.
19
20 You should have received a copy of the GNU Lesser General Public
21 License along with the GNU C Library; if not, write to the Free
22 Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301 USA. */
24
25/* This file has been modified for usage in libiberty. It includes "xregex.h"
26 instead of <regex.h>. The "xregex.h" header file renames all external
27 routines with an "x" prefix so they do not collide with the native regex
28 routines or with other components regex routines. */
29/* AIX requires this to be the first thing in the file. */
30#if defined _AIX && !defined __GNUC__4 && !defined REGEX_MALLOC
31 #pragma alloca
32#endif
33
34#undef _GNU_SOURCE
35#define _GNU_SOURCE
36
37#ifndef INSIDE_RECURSION
38# ifdef HAVE_CONFIG_H1
39# include <config.h>
40# endif
41#endif
42
43#include <ansidecl.h>
44
45#ifndef INSIDE_RECURSION
46
47# if defined STDC_HEADERS1 && !defined emacs
48# include <stddef.h>
49# else
50/* We need this for `regex.h', and perhaps for the Emacs include files. */
51# include <sys/types.h>
52# endif
53
54# define WIDE_CHAR_SUPPORT(HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC) (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
55
56/* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
58# if defined _LIBC || WIDE_CHAR_SUPPORT(HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
59/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60# include <wchar.h>
61# include <wctype.h>
62# endif
63
64# ifdef _LIBC
65/* We have to keep the namespace clean. */
66# define regfreexregfree(preg) __regfree (preg)
67# define regexecxregexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68# define regcompxregcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69# define regerrorxregerror(errcode, preg, errbuf, errbuf_size) \
70 __regerror(errcode, preg, errbuf, errbuf_size)
71# define re_set_registersxre_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73# define re_match_2xre_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75# define re_matchxre_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77# define re_searchxre_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79# define re_compile_patternxre_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81# define re_set_syntaxxre_set_syntax(syntax) __re_set_syntax (syntax)
82# define re_search_2xre_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84# define re_compile_fastmapxre_compile_fastmap(bufp) __re_compile_fastmap (bufp)
85
86# define btowc __btowc
87
88/* We are also using some library internals. */
89# include <locale/localeinfo.h>
90# include <locale/elem-hash.h>
91# include <langinfo.h>
92# include <locale/coll-lookup.h>
93# endif
94
95/* This is for other GNU distributions with internationalized messages. */
96# if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
97# include <libintl.h>
98# ifdef _LIBC
99# undef gettext
100# define gettext(msgid)(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
101# endif
102# else
103# define gettext(msgid)(msgid) (msgid)
104# endif
105
106# ifndef gettext_noop
107/* This define is so xgettext can find the internationalizable
108 strings. */
109# define gettext_noop(String)String String
110# endif
111
112/* The `emacs' switch turns on certain matching commands
113 that make sense only in Emacs. */
114# ifdef emacs
115
116# include "lisp.h"
117# include "buffer.h"
118# include "syntax.h"
119
120# else /* not emacs */
121
122/* If we are not linking with Emacs proper,
123 we can't use the relocating allocator
124 even if config.h says that we can. */
125# undef REL_ALLOC
126
127# if defined STDC_HEADERS1 || defined _LIBC
128# include <stdlib.h>
129# else
130char *malloc ();
131char *realloc ();
132# endif
133
134/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
135 If nothing else has been done, use the method below. */
136# ifdef INHIBIT_STRING_HEADER
137# if !(defined HAVE_BZERO1 && defined HAVE_BCOPY1)
138# if !defined bzero && !defined bcopy
139# undef INHIBIT_STRING_HEADER
140# endif
141# endif
142# endif
143
144/* This is the normal way of making sure we have a bcopy and a bzero.
145 This is used in most programs--a few other programs avoid this
146 by defining INHIBIT_STRING_HEADER. */
147# ifndef INHIBIT_STRING_HEADER
148# if defined HAVE_STRING_H1 || defined STDC_HEADERS1 || defined _LIBC
149# include <string.h>
150# ifndef bzero
151# ifndef _LIBC
152# define bzero(s, n)(memset (s, '\0', n), (s)) (memset (s, '\0', n), (s))
153# else
154# define bzero(s, n)(memset (s, '\0', n), (s)) __bzero (s, n)
155# endif
156# endif
157# else
158# include <strings.h>
159# ifndef memcmp
160# define memcmp(s1, s2, n) bcmp (s1, s2, n)
161# endif
162# ifndef memcpy
163# define memcpy(d, s, n) (bcopy (s, d, n), (d))
164# endif
165# endif
166# endif
167
168/* Define the syntax stuff for \<, \>, etc. */
169
170/* This must be nonzero for the wordchar and notwordchar pattern
171 commands in re_match_2. */
172# ifndef Sword1
173# define Sword1 1
174# endif
175
176# ifdef SWITCH_ENUM_BUG
177# define SWITCH_ENUM_CAST(x)(x) ((int)(x))
178# else
179# define SWITCH_ENUM_CAST(x)(x) (x)
180# endif
181
182# endif /* not emacs */
183
184# if defined _LIBC || HAVE_LIMITS_H1
185# include <limits.h>
186# endif
187
188# ifndef MB_LEN_MAX4
189# define MB_LEN_MAX4 1
190# endif
191
192/* Get the interface, including the syntax bits. */
193# include "xregex.h" /* change for libiberty */
194
195/* isalpha etc. are used for the character classes. */
196# include <ctype.h>
197
198/* Jim Meyering writes:
199
200 "... Some ctype macros are valid only for character codes that
201 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
202 using /bin/cc or gcc but without giving an ansi option). So, all
203 ctype uses should be through macros like ISPRINT... If
204 STDC_HEADERS is defined, then autoconf has verified that the ctype
205 macros don't need to be guarded with references to isascii. ...
206 Defining isascii to 1 should let any compiler worth its salt
207 eliminate the && through constant folding."
208 Solaris defines some of these symbols so we must undefine them first. */
209
210# undef ISASCII
211# if defined STDC_HEADERS1 || (!defined isascii && !defined HAVE_ISASCII)
212# define ISASCII(c)1 1
213# else
214# define ISASCII(c)1 isascii(c)
215# endif
216
217# ifdef isblank
218# define ISBLANK(c)((c) == ' ' || (c) == '\t') (ISASCII (c)1 && isblank (c))
219# else
220# define ISBLANK(c)((c) == ' ' || (c) == '\t') ((c) == ' ' || (c) == '\t')
221# endif
222# ifdef isgraph
223# define ISGRAPH(c)(1 && isprint (c) && !isspace (c)) (ISASCII (c)1 && isgraph (c))
224# else
225# define ISGRAPH(c)(1 && isprint (c) && !isspace (c)) (ISASCII (c)1 && isprint (c) && !isspace (c))
226# endif
227
228# undef ISPRINT
229# define ISPRINT(c)(1 && isprint (c)) (ISASCII (c)1 && isprint (c))
230# define ISDIGIT(c)(1 && isdigit (c)) (ISASCII (c)1 && isdigit (c))
231# define ISALNUM(c)(1 && isalnum (c)) (ISASCII (c)1 && isalnum (c))
232# define ISALPHA(c)(1 && isalpha (c)) (ISASCII (c)1 && isalpha (c))
233# define ISCNTRL(c)(1 && iscntrl (c)) (ISASCII (c)1 && iscntrl (c))
234# define ISLOWER(c)(1 && islower (c)) (ISASCII (c)1 && islower (c))
235# define ISPUNCT(c)(1 && ispunct (c)) (ISASCII (c)1 && ispunct (c))
236# define ISSPACE(c)(1 && isspace (c)) (ISASCII (c)1 && isspace (c))
237# define ISUPPER(c)(1 && isupper (c)) (ISASCII (c)1 && isupper (c))
238# define ISXDIGIT(c)(1 && isxdigit (c)) (ISASCII (c)1 && isxdigit (c))
239
240# ifdef _tolower
241# define TOLOWER(c)tolower(c) _tolower(c)
242# else
243# define TOLOWER(c)tolower(c) tolower(c)
244# endif
245
246# ifndef NULL((void*)0)
247# define NULL((void*)0) (void *)0
248# endif
249
250/* We remove any previous definition of `SIGN_EXTEND_CHAR',
251 since ours (we hope) works properly with all combinations of
252 machines, compilers, `char' and `unsigned char' argument types.
253 (Per Bothner suggested the basic approach.) */
254# undef SIGN_EXTEND_CHAR
255# if __STDC__1
256# define SIGN_EXTEND_CHAR(c)((signed char) (c)) ((signed char) (c))
257# else /* not __STDC__ */
258/* As in Harbison and Steele. */
259# define SIGN_EXTEND_CHAR(c)((signed char) (c)) ((((unsigned char) (c)) ^ 128) - 128)
260# endif
261
262# ifndef emacs
263/* How many characters in the character set. */
264# define CHAR_SET_SIZE256 256
265
266# ifdef SYNTAX_TABLE
267
268extern char *re_syntax_table;
269
270# else /* not SYNTAX_TABLE */
271
272static char re_syntax_table[CHAR_SET_SIZE256];
273
274static void init_syntax_once (void);
275
276static void
277init_syntax_once (void)
278{
279 register int c;
280 static int done = 0;
281
282 if (done)
283 return;
284 bzero (re_syntax_table, sizeof re_syntax_table)(memset (re_syntax_table, '\0', sizeof re_syntax_table), (re_syntax_table
))
;
285
286 for (c = 0; c < CHAR_SET_SIZE256; ++c)
287 if (ISALNUM (c)(1 && isalnum (c)))
288 re_syntax_table[c] = Sword1;
289
290 re_syntax_table['_'] = Sword1;
291
292 done = 1;
293}
294
295# endif /* not SYNTAX_TABLE */
296
297# define SYNTAX(c)re_syntax_table[(unsigned char) (c)] re_syntax_table[(unsigned char) (c)]
298
299# endif /* emacs */
300
301/* Integer type for pointers. */
302# if !defined _LIBC && !defined HAVE_UINTPTR_T1
303typedef unsigned long int uintptr_t;
304# endif
305
306/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
307 use `alloca' instead of `malloc'. This is because using malloc in
308 re_search* or re_match* could cause memory leaks when C-g is used in
309 Emacs; also, malloc is slower and causes storage fragmentation. On
310 the other hand, malloc is more portable, and easier to debug.
311
312 Because we sometimes use alloca, some routines have to be macros,
313 not functions -- `alloca'-allocated space disappears at the end of the
314 function it is called in. */
315
316# ifdef REGEX_MALLOC
317
318# define REGEX_ALLOCATEalloca malloc
319# define REGEX_REALLOCATE(source, osize, nsize)(destination = (char *) __builtin_alloca(nsize), memcpy (destination
, source, osize))
realloc (source, nsize)
320# define REGEX_FREE free
321
322# else /* not REGEX_MALLOC */
323
324/* Emacs already defines alloca, sometimes. */
325# ifndef alloca
326
327/* Make alloca work the best possible way. */
328# ifdef __GNUC__4
329# define alloca __builtin_alloca
330# else /* not __GNUC__ */
331# if HAVE_ALLOCA_H
332# include <alloca.h>
333# endif /* HAVE_ALLOCA_H */
334# endif /* not __GNUC__ */
335
336# endif /* not alloca */
337
338# define REGEX_ALLOCATEalloca alloca
339
340/* Assumes a `char *destination' variable. */
341# define REGEX_REALLOCATE(source, osize, nsize)(destination = (char *) __builtin_alloca(nsize), memcpy (destination
, source, osize))
\
342 (destination = (char *) alloca (nsize)__builtin_alloca(nsize), \
343 memcpy (destination, source, osize))
344
345/* No need to do anything to free, after alloca. */
346# define REGEX_FREE(arg)((void)0) ((void)0) /* Do nothing! But inhibit gcc warning. */
347
348# endif /* not REGEX_MALLOC */
349
350/* Define how to allocate the failure stack. */
351
352# if defined REL_ALLOC && defined REGEX_MALLOC
353
354# define REGEX_ALLOCATE_STACK(size)__builtin_alloca(size) \
355 r_alloc (&failure_stack_ptr, (size))
356# define REGEX_REALLOCATE_STACK(source, osize, nsize)(destination = (char *) __builtin_alloca(nsize), memcpy (destination
, source, osize))
\
357 r_re_alloc (&failure_stack_ptr, (nsize))
358# define REGEX_FREE_STACK(ptr) \
359 r_alloc_free (&failure_stack_ptr)
360
361# else /* not using relocating allocator */
362
363# ifdef REGEX_MALLOC
364
365# define REGEX_ALLOCATE_STACKalloca malloc
366# define REGEX_REALLOCATE_STACK(source, osize, nsize)(destination = (char *) __builtin_alloca(nsize), memcpy (destination
, source, osize))
realloc (source, nsize)
367# define REGEX_FREE_STACK free
368
369# else /* not REGEX_MALLOC */
370
371# define REGEX_ALLOCATE_STACKalloca alloca
372
373# define REGEX_REALLOCATE_STACK(source, osize, nsize)(destination = (char *) __builtin_alloca(nsize), memcpy (destination
, source, osize))
\
374 REGEX_REALLOCATE (source, osize, nsize)(destination = (char *) __builtin_alloca(nsize), memcpy (destination
, source, osize))
375/* No need to explicitly free anything. */
376# define REGEX_FREE_STACK(arg)
377
378# endif /* not REGEX_MALLOC */
379# endif /* not using relocating allocator */
380
381
382/* True if `size1' is non-NULL and PTR is pointing anywhere inside
383 `string1' or just past its end. This works if PTR is NULL, which is
384 a good thing. */
385# define FIRST_STRING_P(ptr)(size1 && string1 <= (ptr) && (ptr) <= string1
+ size1)
\
386 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
387
388/* (Re)Allocate N items of type T using malloc, or fail. */
389# define TALLOC(n, t)((t *) malloc ((n) * sizeof (t))) ((t *) malloc ((n) * sizeof (t)))
390# define RETALLOC(addr, n, t)((addr) = (t *) realloc (addr, (n) * sizeof (t))) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
391# define RETALLOC_IF(addr, n, t)if (addr) (((addr)) = (t *) realloc ((addr), ((n)) * sizeof (
t))); else (addr) = ((t *) malloc (((n)) * sizeof (t)))
\
392 if (addr) RETALLOC((addr), (n), t)(((addr)) = (t *) realloc ((addr), ((n)) * sizeof (t))); else (addr) = TALLOC ((n), t)((t *) malloc (((n)) * sizeof (t)))
393# define REGEX_TALLOC(n, t)((t *) __builtin_alloca((n) * sizeof (t))) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))__builtin_alloca((n) * sizeof (t)))
394
395# define BYTEWIDTH8 8 /* In bits. */
396
397# define STREQ(s1, s2)((strcmp (s1, s2) == 0)) ((strcmp (s1, s2) == 0))
398
399# undef MAX
400# undef MIN
401# define MAX(a, b)((a) > (b) ? (a) : (b)) ((a) > (b) ? (a) : (b))
402# define MIN(a, b)((a) < (b) ? (a) : (b)) ((a) < (b) ? (a) : (b))
403
404typedef char boolean;
405# define false0 0
406# define true1 1
407
408static reg_errcode_t byte_regex_compile (const char *pattern, size_t size,
409 reg_syntax_t syntax,
410 struct re_pattern_buffer *bufp);
411
412static int byte_re_match_2_internal (struct re_pattern_buffer *bufp,
413 const char *string1, int size1,
414 const char *string2, int size2,
415 int pos,
416 struct re_registers *regs,
417 int stop);
418static int byte_re_search_2 (struct re_pattern_buffer *bufp,
419 const char *string1, int size1,
420 const char *string2, int size2,
421 int startpos, int range,
422 struct re_registers *regs, int stop);
423static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp);
424
425#ifdef MBS_SUPPORT
426static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size,
427 reg_syntax_t syntax,
428 struct re_pattern_buffer *bufp);
429
430
431static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
432 const char *cstring1, int csize1,
433 const char *cstring2, int csize2,
434 int pos,
435 struct re_registers *regs,
436 int stop,
437 wchar_t *string1, int size1,
438 wchar_t *string2, int size2,
439 int *mbs_offset1, int *mbs_offset2);
440static int wcs_re_search_2 (struct re_pattern_buffer *bufp,
441 const char *string1, int size1,
442 const char *string2, int size2,
443 int startpos, int range,
444 struct re_registers *regs, int stop);
445static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp);
446#endif
447
448/* These are the command codes that appear in compiled regular
449 expressions. Some opcodes are followed by argument bytes. A
450 command code can specify any interpretation whatsoever for its
451 arguments. Zero bytes may appear in the compiled regular expression. */
452
453typedef enum
454{
455 no_op = 0,
456
457 /* Succeed right away--no more backtracking. */
458 succeed,
459
460 /* Followed by one byte giving n, then by n literal bytes. */
461 exactn,
462
463# ifdef MBS_SUPPORT
464 /* Same as exactn, but contains binary data. */
465 exactn_bin,
466# endif
467
468 /* Matches any (more or less) character. */
469 anychar,
470
471 /* Matches any one char belonging to specified set. First
472 following byte is number of bitmap bytes. Then come bytes
473 for a bitmap saying which chars are in. Bits in each byte
474 are ordered low-bit-first. A character is in the set if its
475 bit is 1. A character too large to have a bit in the map is
476 automatically not in the set. */
477 /* ifdef MBS_SUPPORT, following element is length of character
478 classes, length of collating symbols, length of equivalence
479 classes, length of character ranges, and length of characters.
480 Next, character class element, collating symbols elements,
481 equivalence class elements, range elements, and character
482 elements follow.
483 See regex_compile function. */
484 charset,
485
486 /* Same parameters as charset, but match any character that is
487 not one of those specified. */
488 charset_not,
489
490 /* Start remembering the text that is matched, for storing in a
491 register. Followed by one byte with the register number, in
492 the range 0 to one less than the pattern buffer's re_nsub
493 field. Then followed by one byte with the number of groups
494 inner to this one. (This last has to be part of the
495 start_memory only because we need it in the on_failure_jump
496 of re_match_2.) */
497 start_memory,
498
499 /* Stop remembering the text that is matched and store it in a
500 memory register. Followed by one byte with the register
501 number, in the range 0 to one less than `re_nsub' in the
502 pattern buffer, and one byte with the number of inner groups,
503 just like `start_memory'. (We need the number of inner
504 groups here because we don't have any easy way of finding the
505 corresponding start_memory when we're at a stop_memory.) */
506 stop_memory,
507
508 /* Match a duplicate of something remembered. Followed by one
509 byte containing the register number. */
510 duplicate,
511
512 /* Fail unless at beginning of line. */
513 begline,
514
515 /* Fail unless at end of line. */
516 endline,
517
518 /* Succeeds if at beginning of buffer (if emacs) or at beginning
519 of string to be matched (if not). */
520 begbuf,
521
522 /* Analogously, for end of buffer/string. */
523 endbuf,
524
525 /* Followed by two byte relative address to which to jump. */
526 jump,
527
528 /* Same as jump, but marks the end of an alternative. */
529 jump_past_alt,
530
531 /* Followed by two-byte relative address of place to resume at
532 in case of failure. */
533 /* ifdef MBS_SUPPORT, the size of address is 1. */
534 on_failure_jump,
535
536 /* Like on_failure_jump, but pushes a placeholder instead of the
537 current string position when executed. */
538 on_failure_keep_string_jump,
539
540 /* Throw away latest failure point and then jump to following
541 two-byte relative address. */
542 /* ifdef MBS_SUPPORT, the size of address is 1. */
543 pop_failure_jump,
544
545 /* Change to pop_failure_jump if know won't have to backtrack to
546 match; otherwise change to jump. This is used to jump
547 back to the beginning of a repeat. If what follows this jump
548 clearly won't match what the repeat does, such that we can be
549 sure that there is no use backtracking out of repetitions
550 already matched, then we change it to a pop_failure_jump.
551 Followed by two-byte address. */
552 /* ifdef MBS_SUPPORT, the size of address is 1. */
553 maybe_pop_jump,
554
555 /* Jump to following two-byte address, and push a dummy failure
556 point. This failure point will be thrown away if an attempt
557 is made to use it for a failure. A `+' construct makes this
558 before the first repeat. Also used as an intermediary kind
559 of jump when compiling an alternative. */
560 /* ifdef MBS_SUPPORT, the size of address is 1. */
561 dummy_failure_jump,
562
563 /* Push a dummy failure point and continue. Used at the end of
564 alternatives. */
565 push_dummy_failure,
566
567 /* Followed by two-byte relative address and two-byte number n.
568 After matching N times, jump to the address upon failure. */
569 /* ifdef MBS_SUPPORT, the size of address is 1. */
570 succeed_n,
571
572 /* Followed by two-byte relative address, and two-byte number n.
573 Jump to the address N times, then fail. */
574 /* ifdef MBS_SUPPORT, the size of address is 1. */
575 jump_n,
576
577 /* Set the following two-byte relative address to the
578 subsequent two-byte number. The address *includes* the two
579 bytes of number. */
580 /* ifdef MBS_SUPPORT, the size of address is 1. */
581 set_number_at,
582
583 wordchar, /* Matches any word-constituent character. */
584 notwordchar, /* Matches any char that is not a word-constituent. */
585
586 wordbeg, /* Succeeds if at word beginning. */
587 wordend, /* Succeeds if at word end. */
588
589 wordbound, /* Succeeds if at a word boundary. */
590 notwordbound /* Succeeds if not at a word boundary. */
591
592# ifdef emacs
593 ,before_dot, /* Succeeds if before point. */
594 at_dot, /* Succeeds if at point. */
595 after_dot, /* Succeeds if after point. */
596
597 /* Matches any character whose syntax is specified. Followed by
598 a byte which contains a syntax code, e.g., Sword. */
599 syntaxspec,
600
601 /* Matches any character whose syntax is not that specified. */
602 notsyntaxspec
603# endif /* emacs */
604} re_opcode_t;
605#endif /* not INSIDE_RECURSION */
606
607
608#ifdef BYTE
609# define CHAR_T char
610# define UCHAR_T unsigned char
611# define COMPILED_BUFFER_VAR bufp->buffer
612# define OFFSET_ADDRESS_SIZE 2
613# define PREFIX(name) byte_##name
614# define ARG_PREFIX(name) name
615# define PUT_CHAR(c) putchar (c)
616#else
617# ifdef WCHAR
618# define CHAR_T wchar_t
619# define UCHAR_T wchar_t
620# define COMPILED_BUFFER_VAR wc_buffer
621# define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
622# define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
623# define PREFIX(name) wcs_##name
624# define ARG_PREFIX(name) c##name
625/* Should we use wide stream?? */
626# define PUT_CHAR(c) printf ("%C", c);
627# define TRUE 1
628# define FALSE 0
629# else
630# ifdef MBS_SUPPORT
631# define WCHAR
632# define INSIDE_RECURSION
633# include "regex.c"
634# undef INSIDE_RECURSION
635# endif
636# define BYTE
637# define INSIDE_RECURSION
638# include "regex.c"
639# undef INSIDE_RECURSION
640# endif
641#endif
642
643#ifdef INSIDE_RECURSION
644/* Common operations on the compiled pattern. */
645
646/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
647/* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
648
649# ifdef WCHAR
650# define STORE_NUMBER(destination, number) \
651 do { \
652 *(destination) = (UCHAR_T)(number); \
653 } while (0)
654# else /* BYTE */
655# define STORE_NUMBER(destination, number) \
656 do { \
657 (destination)[0] = (number) & 0377; \
658 (destination)[1] = (number) >> 8; \
659 } while (0)
660# endif /* WCHAR */
661
662/* Same as STORE_NUMBER, except increment DESTINATION to
663 the byte after where the number is stored. Therefore, DESTINATION
664 must be an lvalue. */
665/* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
666
667# define STORE_NUMBER_AND_INCR(destination, number) \
668 do { \
669 STORE_NUMBER (destination, number); \
670 (destination) += OFFSET_ADDRESS_SIZE; \
671 } while (0)
672
673/* Put into DESTINATION a number stored in two contiguous bytes starting
674 at SOURCE. */
675/* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
676
677# ifdef WCHAR
678# define EXTRACT_NUMBER(destination, source) \
679 do { \
680 (destination) = *(source); \
681 } while (0)
682# else /* BYTE */
683# define EXTRACT_NUMBER(destination, source) \
684 do { \
685 (destination) = *(source) & 0377; \
686 (destination) += SIGN_EXTEND_CHAR (*((source) + 1))((signed char) (*((source) + 1))) << 8; \
687 } while (0)
688# endif
689
690# ifdef DEBUG
691static void PREFIX(extract_number) (int *dest, UCHAR_T *source);
692static void
693PREFIX(extract_number) (int *dest, UCHAR_T *source)
694{
695# ifdef WCHAR
696 *dest = *source;
697# else /* BYTE */
698 int temp = SIGN_EXTEND_CHAR (*(source + 1))((signed char) (*(source + 1)));
699 *dest = *source & 0377;
700 *dest += temp << 8;
701# endif
702}
703
704# ifndef EXTRACT_MACROS /* To debug the macros. */
705# undef EXTRACT_NUMBER
706# define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
707# endif /* not EXTRACT_MACROS */
708
709# endif /* DEBUG */
710
711/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
712 SOURCE must be an lvalue. */
713
714# define EXTRACT_NUMBER_AND_INCR(destination, source) \
715 do { \
716 EXTRACT_NUMBER (destination, source); \
717 (source) += OFFSET_ADDRESS_SIZE; \
718 } while (0)
719
720# ifdef DEBUG
721static void PREFIX(extract_number_and_incr) (int *destination,
722 UCHAR_T **source);
723static void
724PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source)
725{
726 PREFIX(extract_number) (destination, *source);
727 *source += OFFSET_ADDRESS_SIZE;
728}
729
730# ifndef EXTRACT_MACROS
731# undef EXTRACT_NUMBER_AND_INCR
732# define EXTRACT_NUMBER_AND_INCR(dest, src) \
733 PREFIX(extract_number_and_incr) (&dest, &src)
734# endif /* not EXTRACT_MACROS */
735
736# endif /* DEBUG */
737
738
739
740/* If DEBUG is defined, Regex prints many voluminous messages about what
741 it is doing (if the variable `debug' is nonzero). If linked with the
742 main program in `iregex.c', you can enter patterns and strings
743 interactively. And if linked with the main program in `main.c' and
744 the other test files, you can run the already-written tests. */
745
746# ifdef DEBUG
747
748# ifndef DEFINED_ONCE
749
750/* We use standard I/O for debugging. */
751# include <stdio.h>
752
753/* It is useful to test things that ``must'' be true when debugging. */
754# include <assert.h>
755
756static int debug;
757
758# define DEBUG_STATEMENT(e) e
759# define DEBUG_PRINT1(x) if (debug) printf (x)
760# define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
761# define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
762# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
763# endif /* not DEFINED_ONCE */
764
765# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
766 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
767# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
768 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
769
770
771/* Print the fastmap in human-readable form. */
772
773# ifndef DEFINED_ONCE
774void
775print_fastmap (char *fastmap)
776{
777 unsigned was_a_range = 0;
778 unsigned i = 0;
779
780 while (i < (1 << BYTEWIDTH8))
781 {
782 if (fastmap[i++])
783 {
784 was_a_range = 0;
785 putchar (i - 1);
786 while (i < (1 << BYTEWIDTH8) && fastmap[i])
787 {
788 was_a_range = 1;
789 i++;
790 }
791 if (was_a_range)
792 {
793 printf ("-");
794 putchar (i - 1);
795 }
796 }
797 }
798 putchar ('\n');
799}
800# endif /* not DEFINED_ONCE */
801
802
803/* Print a compiled pattern string in human-readable form, starting at
804 the START pointer into it and ending just before the pointer END. */
805
806void
807PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end)
808{
809 int mcnt, mcnt2;
810 UCHAR_T *p1;
811 UCHAR_T *p = start;
812 UCHAR_T *pend = end;
813
814 if (start == NULL((void*)0))
815 {
816 printf ("(null)\n");
817 return;
818 }
819
820 /* Loop over pattern commands. */
821 while (p < pend)
822 {
823# ifdef _LIBC
824 printf ("%td:\t", p - start);
825# else
826 printf ("%ld:\t", (long int) (p - start));
827# endif
828
829 switch ((re_opcode_t) *p++)
830 {
831 case no_op:
832 printf ("/no_op");
833 break;
834
835 case exactn:
836 mcnt = *p++;
837 printf ("/exactn/%d", mcnt);
838 do
839 {
840 putchar ('/');
841 PUT_CHAR (*p++);
842 }
843 while (--mcnt);
844 break;
845
846# ifdef MBS_SUPPORT
847 case exactn_bin:
848 mcnt = *p++;
849 printf ("/exactn_bin/%d", mcnt);
850 do
851 {
852 printf("/%lx", (long int) *p++);
853 }
854 while (--mcnt);
855 break;
856# endif /* MBS_SUPPORT */
857
858 case start_memory:
859 mcnt = *p++;
860 printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
861 break;
862
863 case stop_memory:
864 mcnt = *p++;
865 printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
866 break;
867
868 case duplicate:
869 printf ("/duplicate/%ld", (long int) *p++);
870 break;
871
872 case anychar:
873 printf ("/anychar");
874 break;
875
876 case charset:
877 case charset_not:
878 {
879# ifdef WCHAR
880 int i, length;
881 wchar_t *workp = p;
882 printf ("/charset [%s",
883 (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
884 p += 5;
885 length = *workp++; /* the length of char_classes */
886 for (i=0 ; i<length ; i++)
887 printf("[:%lx:]", (long int) *p++);
888 length = *workp++; /* the length of collating_symbol */
889 for (i=0 ; i<length ;)
890 {
891 printf("[.");
892 while(*p != 0)
893 PUT_CHAR((i++,*p++));
894 i++,p++;
895 printf(".]");
896 }
897 length = *workp++; /* the length of equivalence_class */
898 for (i=0 ; i<length ;)
899 {
900 printf("[=");
901 while(*p != 0)
902 PUT_CHAR((i++,*p++));
903 i++,p++;
904 printf("=]");
905 }
906 length = *workp++; /* the length of char_range */
907 for (i=0 ; i<length ; i++)
908 {
909 wchar_t range_start = *p++;
910 wchar_t range_end = *p++;
911 printf("%C-%C", range_start, range_end);
912 }
913 length = *workp++; /* the length of char */
914 for (i=0 ; i<length ; i++)
915 printf("%C", *p++);
916 putchar (']');
917# else
918 register int c, last = -100;
919 register int in_range = 0;
920
921 printf ("/charset [%s",
922 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
923
924 assert (p + *p < pend);
925
926 for (c = 0; c < 256; c++)
927 if (c / 8 < *p
928 && (p[1 + (c/8)] & (1 << (c % 8))))
929 {
930 /* Are we starting a range? */
931 if (last + 1 == c && ! in_range)
932 {
933 putchar ('-');
934 in_range = 1;
935 }
936 /* Have we broken a range? */
937 else if (last + 1 != c && in_range)
938 {
939 putchar (last);
940 in_range = 0;
941 }
942
943 if (! in_range)
944 putchar (c);
945
946 last = c;
947 }
948
949 if (in_range)
950 putchar (last);
951
952 putchar (']');
953
954 p += 1 + *p;
955# endif /* WCHAR */
956 }
957 break;
958
959 case begline:
960 printf ("/begline");
961 break;
962
963 case endline:
964 printf ("/endline");
965 break;
966
967 case on_failure_jump:
968 PREFIX(extract_number_and_incr) (&mcnt, &p);
969# ifdef _LIBC
970 printf ("/on_failure_jump to %td", p + mcnt - start);
971# else
972 printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
973# endif
974 break;
975
976 case on_failure_keep_string_jump:
977 PREFIX(extract_number_and_incr) (&mcnt, &p);
978# ifdef _LIBC
979 printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
980# else
981 printf ("/on_failure_keep_string_jump to %ld",
982 (long int) (p + mcnt - start));
983# endif
984 break;
985
986 case dummy_failure_jump:
987 PREFIX(extract_number_and_incr) (&mcnt, &p);
988# ifdef _LIBC
989 printf ("/dummy_failure_jump to %td", p + mcnt - start);
990# else
991 printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
992# endif
993 break;
994
995 case push_dummy_failure:
996 printf ("/push_dummy_failure");
997 break;
998
999 case maybe_pop_jump:
1000 PREFIX(extract_number_and_incr) (&mcnt, &p);
1001# ifdef _LIBC
1002 printf ("/maybe_pop_jump to %td", p + mcnt - start);
1003# else
1004 printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1005# endif
1006 break;
1007
1008 case pop_failure_jump:
1009 PREFIX(extract_number_and_incr) (&mcnt, &p);
1010# ifdef _LIBC
1011 printf ("/pop_failure_jump to %td", p + mcnt - start);
1012# else
1013 printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1014# endif
1015 break;
1016
1017 case jump_past_alt:
1018 PREFIX(extract_number_and_incr) (&mcnt, &p);
1019# ifdef _LIBC
1020 printf ("/jump_past_alt to %td", p + mcnt - start);
1021# else
1022 printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1023# endif
1024 break;
1025
1026 case jump:
1027 PREFIX(extract_number_and_incr) (&mcnt, &p);
1028# ifdef _LIBC
1029 printf ("/jump to %td", p + mcnt - start);
1030# else
1031 printf ("/jump to %ld", (long int) (p + mcnt - start));
1032# endif
1033 break;
1034
1035 case succeed_n:
1036 PREFIX(extract_number_and_incr) (&mcnt, &p);
1037 p1 = p + mcnt;
1038 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1039# ifdef _LIBC
1040 printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1041# else
1042 printf ("/succeed_n to %ld, %d times",
1043 (long int) (p1 - start), mcnt2);
1044# endif
1045 break;
1046
1047 case jump_n:
1048 PREFIX(extract_number_and_incr) (&mcnt, &p);
1049 p1 = p + mcnt;
1050 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1051 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1052 break;
1053
1054 case set_number_at:
1055 PREFIX(extract_number_and_incr) (&mcnt, &p);
1056 p1 = p + mcnt;
1057 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1058# ifdef _LIBC
1059 printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1060# else
1061 printf ("/set_number_at location %ld to %d",
1062 (long int) (p1 - start), mcnt2);
1063# endif
1064 break;
1065
1066 case wordbound:
1067 printf ("/wordbound");
1068 break;
1069
1070 case notwordbound:
1071 printf ("/notwordbound");
1072 break;
1073
1074 case wordbeg:
1075 printf ("/wordbeg");
1076 break;
1077
1078 case wordend:
1079 printf ("/wordend");
1080 break;
1081
1082# ifdef emacs
1083 case before_dot:
1084 printf ("/before_dot");
1085 break;
1086
1087 case at_dot:
1088 printf ("/at_dot");
1089 break;
1090
1091 case after_dot:
1092 printf ("/after_dot");
1093 break;
1094
1095 case syntaxspec:
1096 printf ("/syntaxspec");
1097 mcnt = *p++;
1098 printf ("/%d", mcnt);
1099 break;
1100
1101 case notsyntaxspec:
1102 printf ("/notsyntaxspec");
1103 mcnt = *p++;
1104 printf ("/%d", mcnt);
1105 break;
1106# endif /* emacs */
1107
1108 case wordchar:
1109 printf ("/wordchar");
1110 break;
1111
1112 case notwordchar:
1113 printf ("/notwordchar");
1114 break;
1115
1116 case begbuf:
1117 printf ("/begbuf");
1118 break;
1119
1120 case endbuf:
1121 printf ("/endbuf");
1122 break;
1123
1124 default:
1125 printf ("?%ld", (long int) *(p-1));
1126 }
1127
1128 putchar ('\n');
1129 }
1130
1131# ifdef _LIBC
1132 printf ("%td:\tend of pattern.\n", p - start);
1133# else
1134 printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1135# endif
1136}
1137
1138
1139void
1140PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp)
1141{
1142 UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1143
1144 PREFIX(print_partial_compiled_pattern) (buffer, buffer
1145 + bufp->used / sizeof(UCHAR_T));
1146 printf ("%ld bytes used/%ld bytes allocated.\n",
1147 bufp->used, bufp->allocated);
1148
1149 if (bufp->fastmap_accurate && bufp->fastmap)
1150 {
1151 printf ("fastmap: ");
1152 print_fastmap (bufp->fastmap);
1153 }
1154
1155# ifdef _LIBC
1156 printf ("re_nsub: %Zd\t", bufp->re_nsub);
1157# else
1158 printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1159# endif
1160 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1161 printf ("can_be_null: %d\t", bufp->can_be_null);
1162 printf ("newline_anchor: %d\n", bufp->newline_anchor);
1163 printf ("no_sub: %d\t", bufp->no_sub);
1164 printf ("not_bol: %d\t", bufp->not_bol);
1165 printf ("not_eol: %d\t", bufp->not_eol);
1166 printf ("syntax: %lx\n", bufp->syntax);
1167 /* Perhaps we should print the translate table? */
1168}
1169
1170
1171void
1172PREFIX(print_double_string) (const CHAR_T *where, const CHAR_T *string1,
1173 int size1, const CHAR_T *string2, int size2)
1174{
1175 int this_char;
1176
1177 if (where == NULL((void*)0))
1178 printf ("(null)");
1179 else
1180 {
1181 int cnt;
1182
1183 if (FIRST_STRING_P (where)(size1 && string1 <= (where) && (where) <=
string1 + size1)
)
1184 {
1185 for (this_char = where - string1; this_char < size1; this_char++)
1186 PUT_CHAR (string1[this_char]);
1187
1188 where = string2;
1189 }
1190
1191 cnt = 0;
1192 for (this_char = where - string2; this_char < size2; this_char++)
1193 {
1194 PUT_CHAR (string2[this_char]);
1195 if (++cnt > 100)
1196 {
1197 fputs ("...", stdout);
1198 break;
1199 }
1200 }
1201 }
1202}
1203
1204# ifndef DEFINED_ONCE
1205void
1206printchar (int c)
1207{
1208 putc (c, stderr);
1209}
1210# endif
1211
1212# else /* not DEBUG */
1213
1214# ifndef DEFINED_ONCE
1215# undef assert
1216# define assert(e)
1217
1218# define DEBUG_STATEMENT(e)
1219# define DEBUG_PRINT1(x)
1220# define DEBUG_PRINT2(x1, x2)
1221# define DEBUG_PRINT3(x1, x2, x3)
1222# define DEBUG_PRINT4(x1, x2, x3, x4)
1223# endif /* not DEFINED_ONCE */
1224# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1225# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1226
1227# endif /* not DEBUG */
1228
1229
1230
1231# ifdef WCHAR
1232/* This convert a multibyte string to a wide character string.
1233 And write their correspondances to offset_buffer(see below)
1234 and write whether each wchar_t is binary data to is_binary.
1235 This assume invalid multibyte sequences as binary data.
1236 We assume offset_buffer and is_binary is already allocated
1237 enough space. */
1238
1239static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1240 size_t len, int *offset_buffer,
1241 char *is_binary);
1242static size_t
1243convert_mbs_to_wcs (CHAR_T *dest, const unsigned char*src, size_t len,
1244 int *offset_buffer, char *is_binary)
1245 /* It hold correspondances between src(char string) and
1246 dest(wchar_t string) for optimization.
1247 e.g. src = "xxxyzz"
1248 dest = {'X', 'Y', 'Z'}
1249 (each "xxx", "y" and "zz" represent one multibyte character
1250 corresponding to 'X', 'Y' and 'Z'.)
1251 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1252 = {0, 3, 4, 6}
1253 */
1254{
1255 wchar_t *pdest = dest;
1256 const unsigned char *psrc = src;
1257 size_t wc_count = 0;
1258
1259 mbstate_t mbs;
1260 int i, consumed;
1261 size_t mb_remain = len;
1262 size_t mb_count = 0;
1263
1264 /* Initialize the conversion state. */
1265 memset (&mbs, 0, sizeof (mbstate_t));
1266
1267 offset_buffer[0] = 0;
1268 for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1269 psrc += consumed)
1270 {
1271#ifdef _LIBC
1272 consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1273#else
1274 consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1275#endif
1276
1277 if (consumed <= 0)
1278 /* failed to convert. maybe src contains binary data.
1279 So we consume 1 byte manualy. */
1280 {
1281 *pdest = *psrc;
1282 consumed = 1;
1283 is_binary[wc_count] = TRUE;
1284 }
1285 else
1286 is_binary[wc_count] = FALSE;
1287 /* In sjis encoding, we use yen sign as escape character in
1288 place of reverse solidus. So we convert 0x5c(yen sign in
1289 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1290 solidus in UCS2). */
1291 if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1292 *pdest = (wchar_t) *psrc;
1293
1294 offset_buffer[wc_count + 1] = mb_count += consumed;
1295 }
1296
1297 /* Fill remain of the buffer with sentinel. */
1298 for (i = wc_count + 1 ; i <= len ; i++)
1299 offset_buffer[i] = mb_count + 1;
1300
1301 return wc_count;
1302}
1303
1304# endif /* WCHAR */
1305
1306#else /* not INSIDE_RECURSION */
1307
1308/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1309 also be assigned to arbitrarily: each pattern buffer stores its own
1310 syntax, so it can be changed between regex compilations. */
1311/* This has no initializer because initialized variables in Emacs
1312 become read-only after dumping. */
1313reg_syntax_t re_syntax_optionsxre_syntax_options;
1314
1315
1316/* Specify the precise syntax of regexps for compilation. This provides
1317 for compatibility for various utilities which historically have
1318 different, incompatible syntaxes.
1319
1320 The argument SYNTAX is a bit mask comprised of the various bits
1321 defined in regex.h. We return the old syntax. */
1322
1323reg_syntax_t
1324re_set_syntaxxre_set_syntax (reg_syntax_t syntax)
1325{
1326 reg_syntax_t ret = re_syntax_optionsxre_syntax_options;
1327
1328 re_syntax_optionsxre_syntax_options = syntax;
1329# ifdef DEBUG
1330 if (syntax & RE_DEBUG((((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1)
)
1331 debug = 1;
1332 else if (debug) /* was on but now is not */
1333 debug = 0;
1334# endif /* DEBUG */
1335 return ret;
1336}
1337# ifdef _LIBC
1338weak_alias (__re_set_syntax, re_set_syntaxxre_set_syntax)
1339# endif
1340
1341/* This table gives an error message for each of the error codes listed
1342 in regex.h. Obviously the order here has to be same as there.
1343 POSIX doesn't require that we do anything for REG_NOERROR,
1344 but why not be nice? */
1345
1346static const char *re_error_msgid[] =
1347 {
1348 gettext_noop ("Success")"Success", /* REG_NOERROR */
1349 gettext_noop ("No match")"No match", /* REG_NOMATCH */
1350 gettext_noop ("Invalid regular expression")"Invalid regular expression", /* REG_BADPAT */
1351 gettext_noop ("Invalid collation character")"Invalid collation character", /* REG_ECOLLATE */
1352 gettext_noop ("Invalid character class name")"Invalid character class name", /* REG_ECTYPE */
1353 gettext_noop ("Trailing backslash")"Trailing backslash", /* REG_EESCAPE */
1354 gettext_noop ("Invalid back reference")"Invalid back reference", /* REG_ESUBREG */
1355 gettext_noop ("Unmatched [ or [^")"Unmatched [ or [^", /* REG_EBRACK */
1356 gettext_noop ("Unmatched ( or \\(")"Unmatched ( or \\(", /* REG_EPAREN */
1357 gettext_noop ("Unmatched \\{")"Unmatched \\{", /* REG_EBRACE */
1358 gettext_noop ("Invalid content of \\{\\}")"Invalid content of \\{\\}", /* REG_BADBR */
1359 gettext_noop ("Invalid range end")"Invalid range end", /* REG_ERANGE */
1360 gettext_noop ("Memory exhausted")"Memory exhausted", /* REG_ESPACE */
1361 gettext_noop ("Invalid preceding regular expression")"Invalid preceding regular expression", /* REG_BADRPT */
1362 gettext_noop ("Premature end of regular expression")"Premature end of regular expression", /* REG_EEND */
1363 gettext_noop ("Regular expression too big")"Regular expression too big", /* REG_ESIZE */
1364 gettext_noop ("Unmatched ) or \\)")"Unmatched ) or \\)" /* REG_ERPAREN */
1365 };
1366
1367#endif /* INSIDE_RECURSION */
1368
1369#ifndef DEFINED_ONCE
1370/* Avoiding alloca during matching, to placate r_alloc. */
1371
1372/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1373 searching and matching functions should not call alloca. On some
1374 systems, alloca is implemented in terms of malloc, and if we're
1375 using the relocating allocator routines, then malloc could cause a
1376 relocation, which might (if the strings being searched are in the
1377 ralloc heap) shift the data out from underneath the regexp
1378 routines.
1379
1380 Here's another reason to avoid allocation: Emacs
1381 processes input from X in a signal handler; processing X input may
1382 call malloc; if input arrives while a matching routine is calling
1383 malloc, then we're scrod. But Emacs can't just block input while
1384 calling matching routines; then we don't notice interrupts when
1385 they come in. So, Emacs blocks input around all regexp calls
1386 except the matching calls, which it leaves unprotected, in the
1387 faith that they will not malloc. */
1388
1389/* Normally, this is fine. */
1390# define MATCH_MAY_ALLOCATE
1391
1392/* When using GNU C, we are not REALLY using the C alloca, no matter
1393 what config.h may say. So don't take precautions for it. */
1394# ifdef __GNUC__4
1395# undef C_ALLOCA
1396# endif
1397
1398/* The match routines may not allocate if (1) they would do it with malloc
1399 and (2) it's not safe for them to use malloc.
1400 Note that if REL_ALLOC is defined, matching would not use malloc for the
1401 failure stack, but we would still use it for the register vectors;
1402 so REL_ALLOC should not affect this. */
1403# if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1404# undef MATCH_MAY_ALLOCATE
1405# endif
1406#endif /* not DEFINED_ONCE */
1407
1408#ifdef INSIDE_RECURSION
1409/* Failure stack declarations and macros; both re_compile_fastmap and
1410 re_match_2 use a failure stack. These have to be macros because of
1411 REGEX_ALLOCATE_STACK. */
1412
1413
1414/* Number of failure points for which to initially allocate space
1415 when matching. If this number is exceeded, we allocate more
1416 space, so it is not a hard limit. */
1417# ifndef INIT_FAILURE_ALLOC5
1418# define INIT_FAILURE_ALLOC5 5
1419# endif
1420
1421/* Roughly the maximum number of failure points on the stack. Would be
1422 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1423 This is a variable only so users of regex can assign to it; we never
1424 change it ourselves. */
1425
1426# ifdef INT_IS_16BIT
1427
1428# ifndef DEFINED_ONCE
1429# if defined MATCH_MAY_ALLOCATE
1430/* 4400 was enough to cause a crash on Alpha OSF/1,
1431 whose default stack limit is 2mb. */
1432long int re_max_failuresxre_max_failures = 4000;
1433# else
1434long int re_max_failuresxre_max_failures = 2000;
1435# endif
1436# endif
1437
1438union PREFIX(fail_stack_elt)
1439{
1440 UCHAR_T *pointer;
1441 long int integer;
1442};
1443
1444typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1445
1446typedef struct
1447{
1448 PREFIX(fail_stack_elt_t) *stack;
1449 unsigned long int size;
1450 unsigned long int avail; /* Offset of next open position. */
1451} PREFIX(fail_stack_type);
1452
1453# else /* not INT_IS_16BIT */
1454
1455# ifndef DEFINED_ONCE
1456# if defined MATCH_MAY_ALLOCATE
1457/* 4400 was enough to cause a crash on Alpha OSF/1,
1458 whose default stack limit is 2mb. */
1459int re_max_failuresxre_max_failures = 4000;
1460# else
1461int re_max_failuresxre_max_failures = 2000;
1462# endif
1463# endif
1464
1465union PREFIX(fail_stack_elt)
1466{
1467 UCHAR_T *pointer;
1468 int integer;
1469};
1470
1471typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1472
1473typedef struct
1474{
1475 PREFIX(fail_stack_elt_t) *stack;
1476 unsigned size;
1477 unsigned avail; /* Offset of next open position. */
1478} PREFIX(fail_stack_type);
1479
1480# endif /* INT_IS_16BIT */
1481
1482# ifndef DEFINED_ONCE
1483# define FAIL_STACK_EMPTY()(fail_stack.avail == 0) (fail_stack.avail == 0)
1484# define FAIL_STACK_PTR_EMPTY()(fail_stack_ptr->avail == 0) (fail_stack_ptr->avail == 0)
1485# define FAIL_STACK_FULL()(fail_stack.avail == fail_stack.size) (fail_stack.avail == fail_stack.size)
1486# endif
1487
1488
1489/* Define macros to initialize and free the failure stack.
1490 Do `return -2' if the alloc fails. */
1491
1492# ifdef MATCH_MAY_ALLOCATE
1493# define INIT_FAIL_STACK() \
1494 do { \
1495 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1496 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t)))__builtin_alloca(5 * sizeof (PREFIX(fail_stack_elt_t))); \
1497 \
1498 if (fail_stack.stack == NULL((void*)0)) \
1499 return -2; \
1500 \
1501 fail_stack.size = INIT_FAILURE_ALLOC5; \
1502 fail_stack.avail = 0; \
1503 } while (0)
1504
1505# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1506# else
1507# define INIT_FAIL_STACK() \
1508 do { \
1509 fail_stack.avail = 0; \
1510 } while (0)
1511
1512# define RESET_FAIL_STACK()
1513# endif
1514
1515
1516/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1517
1518 Return 1 if succeeds, and 0 if either ran out of memory
1519 allocating space for it or it was already too large.
1520
1521 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1522
1523# define DOUBLE_FAIL_STACK(fail_stack) \
1524 ((fail_stack).size > (unsigned) (re_max_failuresxre_max_failures * MAX_FAILURE_ITEMS(5 * 3 + 4)) \
1525 ? 0 \
1526 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1527 REGEX_REALLOCATE_STACK ((fail_stack).stack, \(destination = (char *) __builtin_alloca(((fail_stack).size <<
1) * sizeof (PREFIX(fail_stack_elt_t))), memcpy (destination
, (fail_stack).stack, (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t
))))
1528 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \(destination = (char *) __builtin_alloca(((fail_stack).size <<
1) * sizeof (PREFIX(fail_stack_elt_t))), memcpy (destination
, (fail_stack).stack, (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t
))))
1529 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t)))(destination = (char *) __builtin_alloca(((fail_stack).size <<
1) * sizeof (PREFIX(fail_stack_elt_t))), memcpy (destination
, (fail_stack).stack, (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t
))))
,\
1530 \
1531 (fail_stack).stack == NULL((void*)0) \
1532 ? 0 \
1533 : ((fail_stack).size <<= 1, \
1534 1)))
1535
1536
1537/* Push pointer POINTER on FAIL_STACK.
1538 Return 1 if was able to do so and 0 if ran out of memory allocating
1539 space to do so. */
1540# define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1541 ((FAIL_STACK_FULL ()(fail_stack.avail == fail_stack.size) \
1542 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1543 ? 0 \
1544 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1545 1))
1546
1547/* Push a pointer value onto the failure stack.
1548 Assumes the variable `fail_stack'. Probably should only
1549 be called from within `PUSH_FAILURE_POINT'. */
1550# define PUSH_FAILURE_POINTER(item) \
1551 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1552
1553/* This pushes an integer-valued item onto the failure stack.
1554 Assumes the variable `fail_stack'. Probably should only
1555 be called from within `PUSH_FAILURE_POINT'. */
1556# define PUSH_FAILURE_INT(item) \
1557 fail_stack.stack[fail_stack.avail++].integer = (item)
1558
1559/* Push a fail_stack_elt_t value onto the failure stack.
1560 Assumes the variable `fail_stack'. Probably should only
1561 be called from within `PUSH_FAILURE_POINT'. */
1562# define PUSH_FAILURE_ELT(item) \
1563 fail_stack.stack[fail_stack.avail++] = (item)
1564
1565/* These three POP... operations complement the three PUSH... operations.
1566 All assume that `fail_stack' is nonempty. */
1567# define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1568# define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1569# define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1570
1571/* Used to omit pushing failure point id's when we're not debugging. */
1572# ifdef DEBUG
1573# define DEBUG_PUSH PUSH_FAILURE_INT
1574# define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1575# else
1576# define DEBUG_PUSH(item)
1577# define DEBUG_POP(item_addr)
1578# endif
1579
1580
1581/* Push the information about the state we will need
1582 if we ever fail back to it.
1583
1584 Requires variables fail_stack, regstart, regend, reg_info, and
1585 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1586 be declared.
1587
1588 Does `return FAILURE_CODE' if runs out of memory. */
1589
1590# define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1591 do { \
1592 char *destination; \
1593 /* Must be int, so when we don't save any registers, the arithmetic \
1594 of 0 + -1 isn't done as unsigned. */ \
1595 /* Can't be int, since there is not a shred of a guarantee that int \
1596 is wide enough to hold a value of something to which pointer can \
1597 be assigned */ \
1598 active_reg_t this_reg; \
1599 \
1600 DEBUG_STATEMENT (failure_id++); \
1601 DEBUG_STATEMENT (nfailure_points_pushed++); \
1602 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1603 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1604 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1605 \
1606 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1607 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1608 \
1609 /* Ensure we have enough space allocated for what we will push. */ \
1610 while (REMAINING_AVAIL_SLOTS((fail_stack).size - (fail_stack).avail) < NUM_FAILURE_ITEMS(((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) +
4)
) \
1611 { \
1612 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1613 return failure_code; \
1614 \
1615 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1616 (fail_stack).size); \
1617 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1618 } \
1619 \
1620 /* Push the info, starting with the registers. */ \
1621 DEBUG_PRINT1 ("\n"); \
1622 \
1623 if (1) \
1624 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1625 this_reg++) \
1626 { \
1627 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1628 DEBUG_STATEMENT (num_regs_pushed++); \
1629 \
1630 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1631 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1632 \
1633 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1634 PUSH_FAILURE_POINTER (regend[this_reg]); \
1635 \
1636 DEBUG_PRINT2 (" info: %p\n ", \
1637 reg_info[this_reg].word.pointer); \
1638 DEBUG_PRINT2 (" match_null=%d", \
1639 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1640 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1641 DEBUG_PRINT2 (" matched_something=%d", \
1642 MATCHED_SOMETHING (reg_info[this_reg])); \
1643 DEBUG_PRINT2 (" ever_matched=%d", \
1644 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1645 DEBUG_PRINT1 ("\n"); \
1646 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1647 } \
1648 \
1649 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1650 PUSH_FAILURE_INT (lowest_active_reg); \
1651 \
1652 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1653 PUSH_FAILURE_INT (highest_active_reg); \
1654 \
1655 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1656 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1657 PUSH_FAILURE_POINTER (pattern_place); \
1658 \
1659 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1660 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1661 size2); \
1662 DEBUG_PRINT1 ("'\n"); \
1663 PUSH_FAILURE_POINTER (string_place); \
1664 \
1665 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1666 DEBUG_PUSH (failure_id); \
1667 } while (0)
1668
1669# ifndef DEFINED_ONCE
1670/* This is the number of items that are pushed and popped on the stack
1671 for each register. */
1672# define NUM_REG_ITEMS3 3
1673
1674/* Individual items aside from the registers. */
1675# ifdef DEBUG
1676# define NUM_NONREG_ITEMS4 5 /* Includes failure point id. */
1677# else
1678# define NUM_NONREG_ITEMS4 4
1679# endif
1680
1681/* We push at most this many items on the stack. */
1682/* We used to use (num_regs - 1), which is the number of registers
1683 this regexp will save; but that was changed to 5
1684 to avoid stack overflow for a regexp with lots of parens. */
1685# define MAX_FAILURE_ITEMS(5 * 3 + 4) (5 * NUM_REG_ITEMS3 + NUM_NONREG_ITEMS4)
1686
1687/* We actually push this many items. */
1688# define NUM_FAILURE_ITEMS(((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) +
4)
\
1689 (((0 \
1690 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1691 * NUM_REG_ITEMS3) \
1692 + NUM_NONREG_ITEMS4)
1693
1694/* How many items can still be added to the stack without overflowing it. */
1695# define REMAINING_AVAIL_SLOTS((fail_stack).size - (fail_stack).avail) ((fail_stack).size - (fail_stack).avail)
1696# endif /* not DEFINED_ONCE */
1697
1698
1699/* Pops what PUSH_FAIL_STACK pushes.
1700
1701 We restore into the parameters, all of which should be lvalues:
1702 STR -- the saved data position.
1703 PAT -- the saved pattern position.
1704 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1705 REGSTART, REGEND -- arrays of string positions.
1706 REG_INFO -- array of information about each subexpression.
1707
1708 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1709 `pend', `string1', `size1', `string2', and `size2'. */
1710# define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1711{ \
1712 DEBUG_STATEMENT (unsigned failure_id;) \
1713 active_reg_t this_reg; \
1714 const UCHAR_T *string_temp; \
1715 \
1716 assert (!FAIL_STACK_EMPTY ()); \
1717 \
1718 /* Remove failure points and point to how many regs pushed. */ \
1719 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1720 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1721 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1722 \
1723 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1724 \
1725 DEBUG_POP (&failure_id); \
1726 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1727 \
1728 /* If the saved string location is NULL, it came from an \
1729 on_failure_keep_string_jump opcode, and we want to throw away the \
1730 saved NULL, thus retaining our current position in the string. */ \
1731 string_temp = POP_FAILURE_POINTER (); \
1732 if (string_temp != NULL((void*)0)) \
1733 str = (const CHAR_T *) string_temp; \
1734 \
1735 DEBUG_PRINT2 (" Popping string %p: `", str); \
1736 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1737 DEBUG_PRINT1 ("'\n"); \
1738 \
1739 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1740 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1741 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1742 \
1743 /* Restore register info. */ \
1744 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1745 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1746 \
1747 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1748 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1749 \
1750 if (1) \
1751 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1752 { \
1753 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1754 \
1755 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1756 DEBUG_PRINT2 (" info: %p\n", \
1757 reg_info[this_reg].word.pointer); \
1758 \
1759 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1760 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1761 \
1762 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1763 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1764 } \
1765 else \
1766 { \
1767 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1768 { \
1769 reg_info[this_reg].word.integer = 0; \
1770 regend[this_reg] = 0; \
1771 regstart[this_reg] = 0; \
1772 } \
1773 highest_active_reg = high_reg; \
1774 } \
1775 \
1776 set_regs_matched_done = 0; \
1777 DEBUG_STATEMENT (nfailure_points_popped++); \
1778} /* POP_FAILURE_POINT */
1779
1780/* Structure for per-register (a.k.a. per-group) information.
1781 Other register information, such as the
1782 starting and ending positions (which are addresses), and the list of
1783 inner groups (which is a bits list) are maintained in separate
1784 variables.
1785
1786 We are making a (strictly speaking) nonportable assumption here: that
1787 the compiler will pack our bit fields into something that fits into
1788 the type of `word', i.e., is something that fits into one item on the
1789 failure stack. */
1790
1791
1792/* Declarations and macros for re_match_2. */
1793
1794typedef union
1795{
1796 PREFIX(fail_stack_elt_t) word;
1797 struct
1798 {
1799 /* This field is one if this group can match the empty string,
1800 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1801# define MATCH_NULL_UNSET_VALUE3 3
1802 unsigned match_null_string_p : 2;
1803 unsigned is_active : 1;
1804 unsigned matched_something : 1;
1805 unsigned ever_matched_something : 1;
1806 } bits;
1807} PREFIX(register_info_type);
1808
1809# ifndef DEFINED_ONCE
1810# define REG_MATCH_NULL_STRING_P(R)((R).bits.match_null_string_p) ((R).bits.match_null_string_p)
1811# define IS_ACTIVE(R)((R).bits.is_active) ((R).bits.is_active)
1812# define MATCHED_SOMETHING(R)((R).bits.matched_something) ((R).bits.matched_something)
1813# define EVER_MATCHED_SOMETHING(R)((R).bits.ever_matched_something) ((R).bits.ever_matched_something)
1814
1815
1816/* Call this when have matched a real character; it sets `matched' flags
1817 for the subexpressions which we are currently inside. Also records
1818 that those subexprs have matched. */
1819# define SET_REGS_MATCHED()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
\
1820 do \
1821 { \
1822 if (!set_regs_matched_done) \
1823 { \
1824 active_reg_t r; \
1825 set_regs_matched_done = 1; \
1826 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1827 { \
1828 MATCHED_SOMETHING (reg_info[r])((reg_info[r]).bits.matched_something) \
1829 = EVER_MATCHED_SOMETHING (reg_info[r])((reg_info[r]).bits.ever_matched_something) \
1830 = 1; \
1831 } \
1832 } \
1833 } \
1834 while (0)
1835# endif /* not DEFINED_ONCE */
1836
1837/* Registers are set to a sentinel when they haven't yet matched. */
1838static CHAR_T PREFIX(reg_unset_dummy);
1839# define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1840# define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1841
1842/* Subroutine declarations and macros for regex_compile. */
1843static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg);
1844static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc,
1845 int arg1, int arg2);
1846static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc,
1847 int arg, UCHAR_T *end);
1848static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc,
1849 int arg1, int arg2, UCHAR_T *end);
1850static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern,
1851 const CHAR_T *p,
1852 reg_syntax_t syntax);
1853static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p,
1854 const CHAR_T *pend,
1855 reg_syntax_t syntax);
1856# ifdef WCHAR
1857static reg_errcode_t wcs_compile_range (CHAR_T range_start,
1858 const CHAR_T **p_ptr,
1859 const CHAR_T *pend,
1860 char *translate,
1861 reg_syntax_t syntax,
1862 UCHAR_T *b,
1863 CHAR_T *char_set);
1864static void insert_space (int num, CHAR_T *loc, CHAR_T *end);
1865# else /* BYTE */
1866static reg_errcode_t byte_compile_range (unsigned int range_start,
1867 const char **p_ptr,
1868 const char *pend,
1869 char *translate,
1870 reg_syntax_t syntax,
1871 unsigned char *b);
1872# endif /* WCHAR */
1873
1874/* Fetch the next character in the uncompiled pattern---translating it
1875 if necessary. Also cast from a signed character in the constant
1876 string passed to us by the user to an unsigned char that we can use
1877 as an array index (in, e.g., `translate'). */
1878/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1879 because it is impossible to allocate 4GB array for some encodings
1880 which have 4 byte character_set like UCS4. */
1881# ifndef PATFETCH
1882# ifdef WCHAR
1883# define PATFETCH(c) \
1884 do {if (p == pend) return REG_EEND; \
1885 c = (UCHAR_T) *p++; \
1886 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1887 } while (0)
1888# else /* BYTE */
1889# define PATFETCH(c) \
1890 do {if (p == pend) return REG_EEND; \
1891 c = (unsigned char) *p++; \
1892 if (translate) c = (unsigned char) translate[c]; \
1893 } while (0)
1894# endif /* WCHAR */
1895# endif
1896
1897/* Fetch the next character in the uncompiled pattern, with no
1898 translation. */
1899# define PATFETCH_RAW(c) \
1900 do {if (p == pend) return REG_EEND; \
1901 c = (UCHAR_T) *p++; \
1902 } while (0)
1903
1904/* Go backwards one character in the pattern. */
1905# define PATUNFETCH p--
1906
1907
1908/* If `translate' is non-null, return translate[D], else just D. We
1909 cast the subscript to translate because some data is declared as
1910 `char *', to avoid warnings when a string constant is passed. But
1911 when we use a character as a subscript we must make it unsigned. */
1912/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1913 because it is impossible to allocate 4GB array for some encodings
1914 which have 4 byte character_set like UCS4. */
1915
1916# ifndef TRANSLATE
1917# ifdef WCHAR
1918# define TRANSLATE(d) \
1919 ((translate && ((UCHAR_T) (d)) <= 0xff) \
1920 ? (char) translate[(unsigned char) (d)] : (d))
1921# else /* BYTE */
1922# define TRANSLATE(d) \
1923 (translate ? (char) translate[(unsigned char) (d)] : (char) (d))
1924# endif /* WCHAR */
1925# endif
1926
1927
1928/* Macros for outputting the compiled pattern into `buffer'. */
1929
1930/* If the buffer isn't allocated when it comes in, use this. */
1931# define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
1932
1933/* Make sure we have at least N more bytes of space in buffer. */
1934# ifdef WCHAR
1935# define GET_BUFFER_SPACE(n) \
1936 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
1937 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
1938 EXTEND_BUFFER ()
1939# else /* BYTE */
1940# define GET_BUFFER_SPACE(n) \
1941 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1942 EXTEND_BUFFER ()
1943# endif /* WCHAR */
1944
1945/* Make sure we have one more byte of buffer space and then add C to it. */
1946# define BUF_PUSH(c) \
1947 do { \
1948 GET_BUFFER_SPACE (1); \
1949 *b++ = (UCHAR_T) (c); \
1950 } while (0)
1951
1952
1953/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1954# define BUF_PUSH_2(c1, c2) \
1955 do { \
1956 GET_BUFFER_SPACE (2); \
1957 *b++ = (UCHAR_T) (c1); \
1958 *b++ = (UCHAR_T) (c2); \
1959 } while (0)
1960
1961
1962/* As with BUF_PUSH_2, except for three bytes. */
1963# define BUF_PUSH_3(c1, c2, c3) \
1964 do { \
1965 GET_BUFFER_SPACE (3); \
1966 *b++ = (UCHAR_T) (c1); \
1967 *b++ = (UCHAR_T) (c2); \
1968 *b++ = (UCHAR_T) (c3); \
1969 } while (0)
1970
1971/* Store a jump with opcode OP at LOC to location TO. We store a
1972 relative address offset by the three bytes the jump itself occupies. */
1973# define STORE_JUMP(op, loc, to) \
1974 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1975
1976/* Likewise, for a two-argument jump. */
1977# define STORE_JUMP2(op, loc, to, arg) \
1978 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1979
1980/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1981# define INSERT_JUMP(op, loc, to) \
1982 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1983
1984/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1985# define INSERT_JUMP2(op, loc, to, arg) \
1986 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1987 arg, b)
1988
1989/* This is not an arbitrary limit: the arguments which represent offsets
1990 into the pattern are two bytes long. So if 2^16 bytes turns out to
1991 be too small, many things would have to change. */
1992/* Any other compiler which, like MSC, has allocation limit below 2^16
1993 bytes will have to use approach similar to what was done below for
1994 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1995 reallocating to 0 bytes. Such thing is not going to work too well.
1996 You have been warned!! */
1997# ifndef DEFINED_ONCE
1998# if defined _MSC_VER && !defined WIN32
1999/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2000 The REALLOC define eliminates a flurry of conversion warnings,
2001 but is not required. */
2002# define MAX_BUF_SIZE(1L << 16) 65500L
2003# define REALLOC(p,s)realloc ((p), (s)) realloc ((p), (size_t) (s))
2004# else
2005# define MAX_BUF_SIZE(1L << 16) (1L << 16)
2006# define REALLOC(p,s)realloc ((p), (s)) realloc ((p), (s))
2007# endif
2008
2009/* Extend the buffer by twice its current size via realloc and
2010 reset the pointers that pointed into the old block to point to the
2011 correct places in the new one. If extending the buffer results in it
2012 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2013# if __BOUNDED_POINTERS__
2014# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2015# define MOVE_BUFFER_POINTER(P)(P) += incr \
2016 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2017# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2018 else \
2019 { \
2020 SET_HIGH_BOUND (b); \
2021 SET_HIGH_BOUND (begalt); \
2022 if (fixup_alt_jump) \
2023 SET_HIGH_BOUND (fixup_alt_jump); \
2024 if (laststart) \
2025 SET_HIGH_BOUND (laststart); \
2026 if (pending_exact) \
2027 SET_HIGH_BOUND (pending_exact); \
2028 }
2029# else
2030# define MOVE_BUFFER_POINTER(P)(P) += incr (P) += incr
2031# define ELSE_EXTEND_BUFFER_HIGH_BOUND
2032# endif
2033# endif /* not DEFINED_ONCE */
2034
2035# ifdef WCHAR
2036# define EXTEND_BUFFER() \
2037 do { \
2038 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2039 int wchar_count; \
2040 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE(1L << 16)) \
2041 return REG_ESIZE; \
2042 bufp->allocated <<= 1; \
2043 if (bufp->allocated > MAX_BUF_SIZE(1L << 16)) \
2044 bufp->allocated = MAX_BUF_SIZE(1L << 16); \
2045 /* How many characters the new buffer can have? */ \
2046 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2047 if (wchar_count == 0) wchar_count = 1; \
2048 /* Truncate the buffer to CHAR_T align. */ \
2049 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2050 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T)((COMPILED_BUFFER_VAR) = (UCHAR_T *) realloc (COMPILED_BUFFER_VAR
, (wchar_count) * sizeof (UCHAR_T)))
; \
2051 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2052 if (COMPILED_BUFFER_VAR == NULL((void*)0)) \
2053 return REG_ESPACE; \
2054 /* If the buffer moved, move all the pointers into it. */ \
2055 if (old_buffer != COMPILED_BUFFER_VAR) \
2056 { \
2057 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2058 MOVE_BUFFER_POINTER (b)(b) += incr; \
2059 MOVE_BUFFER_POINTER (begalt)(begalt) += incr; \
2060 if (fixup_alt_jump) \
2061 MOVE_BUFFER_POINTER (fixup_alt_jump)(fixup_alt_jump) += incr; \
2062 if (laststart) \
2063 MOVE_BUFFER_POINTER (laststart)(laststart) += incr; \
2064 if (pending_exact) \
2065 MOVE_BUFFER_POINTER (pending_exact)(pending_exact) += incr; \
2066 } \
2067 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2068 } while (0)
2069# else /* BYTE */
2070# define EXTEND_BUFFER() \
2071 do { \
2072 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2073 if (bufp->allocated == MAX_BUF_SIZE(1L << 16)) \
2074 return REG_ESIZE; \
2075 bufp->allocated <<= 1; \
2076 if (bufp->allocated > MAX_BUF_SIZE(1L << 16)) \
2077 bufp->allocated = MAX_BUF_SIZE(1L << 16); \
2078 bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \realloc ((COMPILED_BUFFER_VAR), (bufp->allocated))
2079 bufp->allocated)realloc ((COMPILED_BUFFER_VAR), (bufp->allocated)); \
2080 if (COMPILED_BUFFER_VAR == NULL((void*)0)) \
2081 return REG_ESPACE; \
2082 /* If the buffer moved, move all the pointers into it. */ \
2083 if (old_buffer != COMPILED_BUFFER_VAR) \
2084 { \
2085 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2086 MOVE_BUFFER_POINTER (b)(b) += incr; \
2087 MOVE_BUFFER_POINTER (begalt)(begalt) += incr; \
2088 if (fixup_alt_jump) \
2089 MOVE_BUFFER_POINTER (fixup_alt_jump)(fixup_alt_jump) += incr; \
2090 if (laststart) \
2091 MOVE_BUFFER_POINTER (laststart)(laststart) += incr; \
2092 if (pending_exact) \
2093 MOVE_BUFFER_POINTER (pending_exact)(pending_exact) += incr; \
2094 } \
2095 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2096 } while (0)
2097# endif /* WCHAR */
2098
2099# ifndef DEFINED_ONCE
2100/* Since we have one byte reserved for the register number argument to
2101 {start,stop}_memory, the maximum number of groups we can report
2102 things about is what fits in that byte. */
2103# define MAX_REGNUM255 255
2104
2105/* But patterns can have more than `MAX_REGNUM' registers. We just
2106 ignore the excess. */
2107typedef unsigned regnum_t;
2108
2109
2110/* Macros for the compile stack. */
2111
2112/* Since offsets can go either forwards or backwards, this type needs to
2113 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2114/* int may be not enough when sizeof(int) == 2. */
2115typedef long pattern_offset_t;
2116
2117typedef struct
2118{
2119 pattern_offset_t begalt_offset;
2120 pattern_offset_t fixup_alt_jump;
2121 pattern_offset_t inner_group_offset;
2122 pattern_offset_t laststart_offset;
2123 regnum_t regnum;
2124} compile_stack_elt_t;
2125
2126
2127typedef struct
2128{
2129 compile_stack_elt_t *stack;
2130 unsigned size;
2131 unsigned avail; /* Offset of next open position. */
2132} compile_stack_type;
2133
2134
2135# define INIT_COMPILE_STACK_SIZE32 32
2136
2137# define COMPILE_STACK_EMPTY(compile_stack.avail == 0) (compile_stack.avail == 0)
2138# define COMPILE_STACK_FULL(compile_stack.avail == compile_stack.size) (compile_stack.avail == compile_stack.size)
2139
2140/* The next available element. */
2141# define COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]) (compile_stack.stack[compile_stack.avail])
2142
2143# endif /* not DEFINED_ONCE */
2144
2145/* Set the bit for character C in a list. */
2146# ifndef DEFINED_ONCE
2147# define SET_LIST_BIT(c)(b[((unsigned char) (c)) / 8] |= 1 << (((unsigned char)
c) % 8))
\
2148 (b[((unsigned char) (c)) / BYTEWIDTH8] \
2149 |= 1 << (((unsigned char) c) % BYTEWIDTH8))
2150# endif /* DEFINED_ONCE */
2151
2152/* Get the next unsigned number in the uncompiled pattern. */
2153# define GET_UNSIGNED_NUMBER(num) \
2154 { \
2155 while (p != pend) \
2156 { \
2157 PATFETCH (c); \
2158 if (c < '0' || c > '9') \
2159 break; \
2160 if (num <= RE_DUP_MAX(0x7fff)) \
2161 { \
2162 if (num < 0) \
2163 num = 0; \
2164 num = num * 10 + c - '0'; \
2165 } \
2166 } \
2167 }
2168
2169# ifndef DEFINED_ONCE
2170# if defined _LIBC || WIDE_CHAR_SUPPORT(HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
2171/* The GNU C library provides support for user-defined character classes
2172 and the functions from ISO C amendement 1. */
2173# ifdef CHARCLASS_NAME_MAX
2174# define CHAR_CLASS_MAX_LENGTH6 CHARCLASS_NAME_MAX
2175# else
2176/* This shouldn't happen but some implementation might still have this
2177 problem. Use a reasonable default value. */
2178# define CHAR_CLASS_MAX_LENGTH6 256
2179# endif
2180
2181# ifdef _LIBC
2182# define IS_CHAR_CLASS(string)(((strcmp (string, "alpha") == 0)) || ((strcmp (string, "upper"
) == 0)) || ((strcmp (string, "lower") == 0)) || ((strcmp (string
, "digit") == 0)) || ((strcmp (string, "alnum") == 0)) || ((strcmp
(string, "xdigit") == 0)) || ((strcmp (string, "space") == 0
)) || ((strcmp (string, "print") == 0)) || ((strcmp (string, "punct"
) == 0)) || ((strcmp (string, "graph") == 0)) || ((strcmp (string
, "cntrl") == 0)) || ((strcmp (string, "blank") == 0)))
__wctype (string)
2183# else
2184# define IS_CHAR_CLASS(string)(((strcmp (string, "alpha") == 0)) || ((strcmp (string, "upper"
) == 0)) || ((strcmp (string, "lower") == 0)) || ((strcmp (string
, "digit") == 0)) || ((strcmp (string, "alnum") == 0)) || ((strcmp
(string, "xdigit") == 0)) || ((strcmp (string, "space") == 0
)) || ((strcmp (string, "print") == 0)) || ((strcmp (string, "punct"
) == 0)) || ((strcmp (string, "graph") == 0)) || ((strcmp (string
, "cntrl") == 0)) || ((strcmp (string, "blank") == 0)))
wctype (string)
2185# endif
2186# else
2187# define CHAR_CLASS_MAX_LENGTH6 6 /* Namely, `xdigit'. */
2188
2189# define IS_CHAR_CLASS(string)(((strcmp (string, "alpha") == 0)) || ((strcmp (string, "upper"
) == 0)) || ((strcmp (string, "lower") == 0)) || ((strcmp (string
, "digit") == 0)) || ((strcmp (string, "alnum") == 0)) || ((strcmp
(string, "xdigit") == 0)) || ((strcmp (string, "space") == 0
)) || ((strcmp (string, "print") == 0)) || ((strcmp (string, "punct"
) == 0)) || ((strcmp (string, "graph") == 0)) || ((strcmp (string
, "cntrl") == 0)) || ((strcmp (string, "blank") == 0)))
\
2190 (STREQ (string, "alpha")((strcmp (string, "alpha") == 0)) || STREQ (string, "upper")((strcmp (string, "upper") == 0)) \
2191 || STREQ (string, "lower")((strcmp (string, "lower") == 0)) || STREQ (string, "digit")((strcmp (string, "digit") == 0)) \
2192 || STREQ (string, "alnum")((strcmp (string, "alnum") == 0)) || STREQ (string, "xdigit")((strcmp (string, "xdigit") == 0)) \
2193 || STREQ (string, "space")((strcmp (string, "space") == 0)) || STREQ (string, "print")((strcmp (string, "print") == 0)) \
2194 || STREQ (string, "punct")((strcmp (string, "punct") == 0)) || STREQ (string, "graph")((strcmp (string, "graph") == 0)) \
2195 || STREQ (string, "cntrl")((strcmp (string, "cntrl") == 0)) || STREQ (string, "blank")((strcmp (string, "blank") == 0)))
2196# endif
2197# endif /* DEFINED_ONCE */
2198
2199# ifndef MATCH_MAY_ALLOCATE
2200
2201/* If we cannot allocate large objects within re_match_2_internal,
2202 we make the fail stack and register vectors global.
2203 The fail stack, we grow to the maximum size when a regexp
2204 is compiled.
2205 The register vectors, we adjust in size each time we
2206 compile a regexp, according to the number of registers it needs. */
2207
2208static PREFIX(fail_stack_type) fail_stack;
2209
2210/* Size with which the following vectors are currently allocated.
2211 That is so we can make them bigger as needed,
2212 but never make them smaller. */
2213# ifdef DEFINED_ONCE
2214static int regs_allocated_size;
2215
2216static const char ** regstart, ** regend;
2217static const char ** old_regstart, ** old_regend;
2218static const char **best_regstart, **best_regend;
2219static const char **reg_dummy;
2220# endif /* DEFINED_ONCE */
2221
2222static PREFIX(register_info_type) *PREFIX(reg_info);
2223static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2224
2225/* Make the register vectors big enough for NUM_REGS registers,
2226 but don't make them smaller. */
2227
2228static void
2229PREFIX(regex_grow_registers) (int num_regs)
2230{
2231 if (num_regs > regs_allocated_size)
2232 {
2233 RETALLOC_IF (regstart, num_regs, const char *)if (regstart) (((regstart)) = (const char * *) realloc ((regstart
), ((num_regs)) * sizeof (const char *))); else (regstart) = (
(const char * *) malloc (((num_regs)) * sizeof (const char *)
))
;
2234 RETALLOC_IF (regend, num_regs, const char *)if (regend) (((regend)) = (const char * *) realloc ((regend),
((num_regs)) * sizeof (const char *))); else (regend) = ((const
char * *) malloc (((num_regs)) * sizeof (const char *)))
;
2235 RETALLOC_IF (old_regstart, num_regs, const char *)if (old_regstart) (((old_regstart)) = (const char * *) realloc
((old_regstart), ((num_regs)) * sizeof (const char *))); else
(old_regstart) = ((const char * *) malloc (((num_regs)) * sizeof
(const char *)))
;
2236 RETALLOC_IF (old_regend, num_regs, const char *)if (old_regend) (((old_regend)) = (const char * *) realloc ((
old_regend), ((num_regs)) * sizeof (const char *))); else (old_regend
) = ((const char * *) malloc (((num_regs)) * sizeof (const char
*)))
;
2237 RETALLOC_IF (best_regstart, num_regs, const char *)if (best_regstart) (((best_regstart)) = (const char * *) realloc
((best_regstart), ((num_regs)) * sizeof (const char *))); else
(best_regstart) = ((const char * *) malloc (((num_regs)) * sizeof
(const char *)))
;
2238 RETALLOC_IF (best_regend, num_regs, const char *)if (best_regend) (((best_regend)) = (const char * *) realloc (
(best_regend), ((num_regs)) * sizeof (const char *))); else (
best_regend) = ((const char * *) malloc (((num_regs)) * sizeof
(const char *)))
;
2239 RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type))if (PREFIX(reg_info)) (((PREFIX(reg_info))) = (PREFIX(register_info_type
) *) realloc ((PREFIX(reg_info)), ((num_regs)) * sizeof (PREFIX
(register_info_type)))); else (PREFIX(reg_info)) = ((PREFIX(register_info_type
) *) malloc (((num_regs)) * sizeof (PREFIX(register_info_type
))))
;
2240 RETALLOC_IF (reg_dummy, num_regs, const char *)if (reg_dummy) (((reg_dummy)) = (const char * *) realloc ((reg_dummy
), ((num_regs)) * sizeof (const char *))); else (reg_dummy) =
((const char * *) malloc (((num_regs)) * sizeof (const char *
)))
;
2241 RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type))if (PREFIX(reg_info_dummy)) (((PREFIX(reg_info_dummy))) = (PREFIX
(register_info_type) *) realloc ((PREFIX(reg_info_dummy)), ((
num_regs)) * sizeof (PREFIX(register_info_type)))); else (PREFIX
(reg_info_dummy)) = ((PREFIX(register_info_type) *) malloc ((
(num_regs)) * sizeof (PREFIX(register_info_type))))
;
2242
2243 regs_allocated_size = num_regs;
2244 }
2245}
2246
2247# endif /* not MATCH_MAY_ALLOCATE */
2248
2249# ifndef DEFINED_ONCE
2250static boolean group_in_compile_stack (compile_stack_type compile_stack,
2251 regnum_t regnum);
2252# endif /* not DEFINED_ONCE */
2253
2254/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2255 Returns one of error codes defined in `regex.h', or zero for success.
2256
2257 Assumes the `allocated' (and perhaps `buffer') and `translate'
2258 fields are set in BUFP on entry.
2259
2260 If it succeeds, results are put in BUFP (if it returns an error, the
2261 contents of BUFP are undefined):
2262 `buffer' is the compiled pattern;
2263 `syntax' is set to SYNTAX;
2264 `used' is set to the length of the compiled pattern;
2265 `fastmap_accurate' is zero;
2266 `re_nsub' is the number of subexpressions in PATTERN;
2267 `not_bol' and `not_eol' are zero;
2268
2269 The `fastmap' and `newline_anchor' fields are neither
2270 examined nor set. */
2271
2272/* Return, freeing storage we allocated. */
2273# ifdef WCHAR
2274# define FREE_STACK_RETURN(value) \
2275 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2276# else
2277# define FREE_STACK_RETURN(value) \
2278 return (free (compile_stack.stack), value)
2279# endif /* WCHAR */
2280
2281static reg_errcode_t
2282PREFIX(regex_compile) (const char *ARG_PREFIX(pattern),
2283 size_t ARG_PREFIX(size), reg_syntax_t syntax,
2284 struct re_pattern_buffer *bufp)
2285{
2286 /* We fetch characters from PATTERN here. Even though PATTERN is
2287 `char *' (i.e., signed), we declare these variables as unsigned, so
2288 they can be reliably used as array indices. */
2289 register UCHAR_T c, c1;
2290
2291#ifdef WCHAR
2292 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2293 CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2294 size_t size;
2295 /* offset buffer for optimization. See convert_mbs_to_wc. */
2296 int *mbs_offset = NULL((void*)0);
2297 /* It hold whether each wchar_t is binary data or not. */
2298 char *is_binary = NULL((void*)0);
2299 /* A flag whether exactn is handling binary data or not. */
2300 char is_exactn_bin = FALSE;
2301#endif /* WCHAR */
2302
2303 /* A random temporary spot in PATTERN. */
2304 const CHAR_T *p1;
2305
2306 /* Points to the end of the buffer, where we should append. */
2307 register UCHAR_T *b;
2308
2309 /* Keeps track of unclosed groups. */
2310 compile_stack_type compile_stack;
2311
2312 /* Points to the current (ending) position in the pattern. */
2313#ifdef WCHAR
2314 const CHAR_T *p;
2315 const CHAR_T *pend;
2316#else /* BYTE */
2317 const CHAR_T *p = pattern;
2318 const CHAR_T *pend = pattern + size;
2319#endif /* WCHAR */
2320
2321 /* How to translate the characters in the pattern. */
2322 RE_TRANSLATE_TYPEchar * translate = bufp->translate;
2323
2324 /* Address of the count-byte of the most recently inserted `exactn'
2325 command. This makes it possible to tell if a new exact-match
2326 character can be added to that command or if the character requires
2327 a new `exactn' command. */
2328 UCHAR_T *pending_exact = 0;
2329
2330 /* Address of start of the most recently finished expression.
2331 This tells, e.g., postfix * where to find the start of its
2332 operand. Reset at the beginning of groups and alternatives. */
2333 UCHAR_T *laststart = 0;
2334
2335 /* Address of beginning of regexp, or inside of last group. */
2336 UCHAR_T *begalt;
2337
2338 /* Address of the place where a forward jump should go to the end of
2339 the containing expression. Each alternative of an `or' -- except the
2340 last -- ends with a forward jump of this sort. */
2341 UCHAR_T *fixup_alt_jump = 0;
2342
2343 /* Counts open-groups as they are encountered. Remembered for the
2344 matching close-group on the compile stack, so the same register
2345 number is put in the stop_memory as the start_memory. */
2346 regnum_t regnum = 0;
2347
2348#ifdef WCHAR
2349 /* Initialize the wchar_t PATTERN and offset_buffer. */
2350 p = pend = pattern = TALLOC(csize + 1, CHAR_T)((CHAR_T *) malloc ((csize + 1) * sizeof (CHAR_T)));
2351 mbs_offset = TALLOC(csize + 1, int)((int *) malloc ((csize + 1) * sizeof (int)));
2352 is_binary = TALLOC(csize + 1, char)((char *) malloc ((csize + 1) * sizeof (char)));
2353 if (pattern == NULL((void*)0) || mbs_offset == NULL((void*)0) || is_binary == NULL((void*)0))
2354 {
2355 free(pattern);
2356 free(mbs_offset);
2357 free(is_binary);
2358 return REG_ESPACE;
2359 }
2360 pattern[csize] = L'\0'; /* sentinel */
2361 size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2362 pend = p + size;
2363 if (size < 0)
2364 {
2365 free(pattern);
2366 free(mbs_offset);
2367 free(is_binary);
2368 return REG_BADPAT;
2369 }
2370#endif
2371
2372#ifdef DEBUG
2373 DEBUG_PRINT1 ("\nCompiling pattern: ");
2374 if (debug)
2375 {
2376 unsigned debug_count;
2377
2378 for (debug_count = 0; debug_count < size; debug_count++)
2379 PUT_CHAR (pattern[debug_count]);
2380 putchar ('\n');
2381 }
2382#endif /* DEBUG */
2383
2384 /* Initialize the compile stack. */
2385 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t)((compile_stack_elt_t *) malloc ((32) * sizeof (compile_stack_elt_t
)))
;
2386 if (compile_stack.stack == NULL((void*)0))
2387 {
2388#ifdef WCHAR
2389 free(pattern);
2390 free(mbs_offset);
2391 free(is_binary);
2392#endif
2393 return REG_ESPACE;
2394 }
2395
2396 compile_stack.size = INIT_COMPILE_STACK_SIZE32;
2397 compile_stack.avail = 0;
2398
2399 /* Initialize the pattern buffer. */
2400 bufp->syntax = syntax;
2401 bufp->fastmap_accurate = 0;
2402 bufp->not_bol = bufp->not_eol = 0;
2403
2404 /* Set `used' to zero, so that if we return an error, the pattern
2405 printer (for debugging) will think there's no pattern. We reset it
2406 at the end. */
2407 bufp->used = 0;
2408
2409 /* Always count groups, whether or not bufp->no_sub is set. */
2410 bufp->re_nsub = 0;
2411
2412#if !defined emacs && !defined SYNTAX_TABLE
2413 /* Initialize the syntax table. */
2414 init_syntax_once ();
2415#endif
2416
2417 if (bufp->allocated == 0)
2418 {
2419 if (bufp->buffer)
2420 { /* If zero allocated, but buffer is non-null, try to realloc
2421 enough space. This loses if buffer's address is bogus, but
2422 that is the user's responsibility. */
2423#ifdef WCHAR
2424 /* Free bufp->buffer and allocate an array for wchar_t pattern
2425 buffer. */
2426 free(bufp->buffer);
2427 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),((UCHAR_T *) malloc ((INIT_BUF_SIZE/sizeof(UCHAR_T)) * sizeof
(UCHAR_T)))
2428 UCHAR_T)((UCHAR_T *) malloc ((INIT_BUF_SIZE/sizeof(UCHAR_T)) * sizeof
(UCHAR_T)))
;
2429#else
2430 RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T)((COMPILED_BUFFER_VAR) = (UCHAR_T *) realloc (COMPILED_BUFFER_VAR
, (INIT_BUF_SIZE) * sizeof (UCHAR_T)))
;
2431#endif /* WCHAR */
2432 }
2433 else
2434 { /* Caller did not allocate a buffer. Do it for them. */
2435 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),((UCHAR_T *) malloc ((INIT_BUF_SIZE / sizeof(UCHAR_T)) * sizeof
(UCHAR_T)))
2436 UCHAR_T)((UCHAR_T *) malloc ((INIT_BUF_SIZE / sizeof(UCHAR_T)) * sizeof
(UCHAR_T)))
;
2437 }
2438
2439 if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2440#ifdef WCHAR
2441 bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2442#endif /* WCHAR */
2443 bufp->allocated = INIT_BUF_SIZE;
2444 }
2445#ifdef WCHAR
2446 else
2447 COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2448#endif
2449
2450 begalt = b = COMPILED_BUFFER_VAR;
2451
2452 /* Loop through the uncompiled pattern until we're at the end. */
2453 while (p != pend)
2454 {
2455 PATFETCH (c);
2456
2457 switch (c)
2458 {
2459 case '^':
2460 {
2461 if ( /* If at start of pattern, it's an operator. */
2462 p == pattern + 1
2463 /* If context independent, it's an operator. */
2464 || syntax & RE_CONTEXT_INDEP_ANCHORS(((((unsigned long int) 1) << 1) << 1) << 1
)
2465 /* Otherwise, depends on what's come before. */
2466 || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2467 BUF_PUSH (begline);
2468 else
2469 goto normal_char;
2470 }
2471 break;
2472
2473
2474 case '$':
2475 {
2476 if ( /* If at end of pattern, it's an operator. */
2477 p == pend
2478 /* If context independent, it's an operator. */
2479 || syntax & RE_CONTEXT_INDEP_ANCHORS(((((unsigned long int) 1) << 1) << 1) << 1
)
2480 /* Otherwise, depends on what's next. */
2481 || PREFIX(at_endline_loc_p) (p, pend, syntax))
2482 BUF_PUSH (endline);
2483 else
2484 goto normal_char;
2485 }
2486 break;
2487
2488
2489 case '+':
2490 case '?':
2491 if ((syntax & RE_BK_PLUS_QM(((unsigned long int) 1) << 1))
2492 || (syntax & RE_LIMITED_OPS((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1)
))
2493 goto normal_char;
2494 handle_plus:
2495 case '*':
2496 /* If there is no previous pattern... */
2497 if (!laststart)
2498 {
2499 if (syntax & RE_CONTEXT_INVALID_OPS(((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1)
)
2500 FREE_STACK_RETURN (REG_BADRPT);
2501 else if (!(syntax & RE_CONTEXT_INDEP_OPS((((((unsigned long int) 1) << 1) << 1) << 1
) << 1)
))
2502 goto normal_char;
2503 }
2504
2505 {
2506 /* Are we optimizing this jump? */
2507 boolean keep_string_p = false0;
2508
2509 /* 1 means zero (many) matches is allowed. */
2510 char zero_times_ok = 0, many_times_ok = 0;
2511
2512 /* If there is a sequence of repetition chars, collapse it
2513 down to just one (the right one). We can't combine
2514 interval operators with these because of, e.g., `a{2}*',
2515 which should only match an even number of `a's. */
2516
2517 for (;;)
2518 {
2519 zero_times_ok |= c != '+';
2520 many_times_ok |= c != '?';
2521
2522 if (p == pend)
2523 break;
2524
2525 PATFETCH (c);
2526
2527 if (c == '*'
2528 || (!(syntax & RE_BK_PLUS_QM(((unsigned long int) 1) << 1)) && (c == '+' || c == '?')))
2529 ;
2530
2531 else if (syntax & RE_BK_PLUS_QM(((unsigned long int) 1) << 1) && c == '\\')
2532 {
2533 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2534
2535 PATFETCH (c1);
2536 if (!(c1 == '+' || c1 == '?'))
2537 {
2538 PATUNFETCH;
2539 PATUNFETCH;
2540 break;
2541 }
2542
2543 c = c1;
2544 }
2545 else
2546 {
2547 PATUNFETCH;
2548 break;
2549 }
2550
2551 /* If we get here, we found another repeat character. */
2552 }
2553
2554 /* Star, etc. applied to an empty pattern is equivalent
2555 to an empty pattern. */
2556 if (!laststart)
2557 break;
2558
2559 /* Now we know whether or not zero matches is allowed
2560 and also whether or not two or more matches is allowed. */
2561 if (many_times_ok)
2562 { /* More than one repetition is allowed, so put in at the
2563 end a backward relative jump from `b' to before the next
2564 jump we're going to put in below (which jumps from
2565 laststart to after this jump).
2566
2567 But if we are at the `*' in the exact sequence `.*\n',
2568 insert an unconditional jump backwards to the .,
2569 instead of the beginning of the loop. This way we only
2570 push a failure point once, instead of every time
2571 through the loop. */
2572 assert (p - 1 > pattern);
2573
2574 /* Allocate the space for the jump. */
2575 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2576
2577 /* We know we are not at the first character of the pattern,
2578 because laststart was nonzero. And we've already
2579 incremented `p', by the way, to be the character after
2580 the `*'. Do we have to do something analogous here
2581 for null bytes, because of RE_DOT_NOT_NULL? */
2582 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2583 && zero_times_ok
2584 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2585 && !(syntax & RE_DOT_NEWLINE((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1)
))
2586 { /* We have .*\n. */
2587 STORE_JUMP (jump, b, laststart);
2588 keep_string_p = true1;
2589 }
2590 else
2591 /* Anything else. */
2592 STORE_JUMP (maybe_pop_jump, b, laststart -
2593 (1 + OFFSET_ADDRESS_SIZE));
2594
2595 /* We've added more stuff to the buffer. */
2596 b += 1 + OFFSET_ADDRESS_SIZE;
2597 }
2598
2599 /* On failure, jump from laststart to b + 3, which will be the
2600 end of the buffer after this jump is inserted. */
2601 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2602 'b + 3'. */
2603 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2604 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2605 : on_failure_jump,
2606 laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2607 pending_exact = 0;
2608 b += 1 + OFFSET_ADDRESS_SIZE;
2609
2610 if (!zero_times_ok)
2611 {
2612 /* At least one repetition is required, so insert a
2613 `dummy_failure_jump' before the initial
2614 `on_failure_jump' instruction of the loop. This
2615 effects a skip over that instruction the first time
2616 we hit that loop. */
2617 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2618 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2619 2 + 2 * OFFSET_ADDRESS_SIZE);
2620 b += 1 + OFFSET_ADDRESS_SIZE;
2621 }
2622 }
2623 break;
2624
2625
2626 case '.':
2627 laststart = b;
2628 BUF_PUSH (anychar);
2629 break;
2630
2631
2632 case '[':
2633 {
2634 boolean had_char_class = false0;
2635#ifdef WCHAR
2636 CHAR_T range_start = 0xffffffff;
2637#else
2638 unsigned int range_start = 0xffffffff;
2639#endif
2640 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2641
2642#ifdef WCHAR
2643 /* We assume a charset(_not) structure as a wchar_t array.
2644 charset[0] = (re_opcode_t) charset(_not)
2645 charset[1] = l (= length of char_classes)
2646 charset[2] = m (= length of collating_symbols)
2647 charset[3] = n (= length of equivalence_classes)
2648 charset[4] = o (= length of char_ranges)
2649 charset[5] = p (= length of chars)
2650
2651 charset[6] = char_class (wctype_t)
2652 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2653 ...
2654 charset[l+5] = char_class (wctype_t)
2655
2656 charset[l+6] = collating_symbol (wchar_t)
2657 ...
2658 charset[l+m+5] = collating_symbol (wchar_t)
2659 ifdef _LIBC we use the index if
2660 _NL_COLLATE_SYMB_EXTRAMB instead of
2661 wchar_t string.
2662
2663 charset[l+m+6] = equivalence_classes (wchar_t)
2664 ...
2665 charset[l+m+n+5] = equivalence_classes (wchar_t)
2666 ifdef _LIBC we use the index in
2667 _NL_COLLATE_WEIGHT instead of
2668 wchar_t string.
2669
2670 charset[l+m+n+6] = range_start
2671 charset[l+m+n+7] = range_end
2672 ...
2673 charset[l+m+n+2o+4] = range_start
2674 charset[l+m+n+2o+5] = range_end
2675 ifdef _LIBC we use the value looked up
2676 in _NL_COLLATE_COLLSEQ instead of
2677 wchar_t character.
2678
2679 charset[l+m+n+2o+6] = char
2680 ...
2681 charset[l+m+n+2o+p+5] = char
2682
2683 */
2684
2685 /* We need at least 6 spaces: the opcode, the length of
2686 char_classes, the length of collating_symbols, the length of
2687 equivalence_classes, the length of char_ranges, the length of
2688 chars. */
2689 GET_BUFFER_SPACE (6);
2690
2691 /* Save b as laststart. And We use laststart as the pointer
2692 to the first element of the charset here.
2693 In other words, laststart[i] indicates charset[i]. */
2694 laststart = b;
2695
2696 /* We test `*p == '^' twice, instead of using an if
2697 statement, so we only need one BUF_PUSH. */
2698 BUF_PUSH (*p == '^' ? charset_not : charset);
2699 if (*p == '^')
2700 p++;
2701
2702 /* Push the length of char_classes, the length of
2703 collating_symbols, the length of equivalence_classes, the
2704 length of char_ranges and the length of chars. */
2705 BUF_PUSH_3 (0, 0, 0);
2706 BUF_PUSH_2 (0, 0);
2707
2708 /* Remember the first position in the bracket expression. */
2709 p1 = p;
2710
2711 /* charset_not matches newline according to a syntax bit. */
2712 if ((re_opcode_t) b[-6] == charset_not
2713 && (syntax & RE_HAT_LISTS_NOT_NEWLINE((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
)
))
2714 {
2715 BUF_PUSH('\n');
2716 laststart[5]++; /* Update the length of characters */
2717 }
2718
2719 /* Read in characters and ranges, setting map bits. */
2720 for (;;)
2721 {
2722 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2723
2724 PATFETCH (c);
2725
2726 /* \ might escape characters inside [...] and [^...]. */
2727 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS((unsigned long int) 1)) && c == '\\')
2728 {
2729 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2730
2731 PATFETCH (c1);
2732 BUF_PUSH(c1);
2733 laststart[5]++; /* Update the length of chars */
2734 range_start = c1;
2735 continue;
2736 }
2737
2738 /* Could be the end of the bracket expression. If it's
2739 not (i.e., when the bracket expression is `[]' so
2740 far), the ']' character bit gets set way below. */
2741 if (c == ']' && p != p1 + 1)
2742 break;
2743
2744 /* Look ahead to see if it's a range when the last thing
2745 was a character class. */
2746 if (had_char_class && c == '-' && *p != ']')
2747 FREE_STACK_RETURN (REG_ERANGE);
2748
2749 /* Look ahead to see if it's a range when the last thing
2750 was a character: if this is a hyphen not at the
2751 beginning or the end of a list, then it's the range
2752 operator. */
2753 if (c == '-'
2754 && !(p - 2 >= pattern && p[-2] == '[')
2755 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2756 && *p != ']')
2757 {
2758 reg_errcode_t ret;
2759 /* Allocate the space for range_start and range_end. */
2760 GET_BUFFER_SPACE (2);
2761 /* Update the pointer to indicate end of buffer. */
2762 b += 2;
2763 ret = wcs_compile_range (range_start, &p, pend, translate,
2764 syntax, b, laststart);
2765 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2766 range_start = 0xffffffff;
2767 }
2768 else if (p[0] == '-' && p[1] != ']')
2769 { /* This handles ranges made up of characters only. */
2770 reg_errcode_t ret;
2771
2772 /* Move past the `-'. */
2773 PATFETCH (c1);
2774 /* Allocate the space for range_start and range_end. */
2775 GET_BUFFER_SPACE (2);
2776 /* Update the pointer to indicate end of buffer. */
2777 b += 2;
2778 ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2779 laststart);
2780 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2781 range_start = 0xffffffff;
2782 }
2783
2784 /* See if we're at the beginning of a possible character
2785 class. */
2786 else if (syntax & RE_CHAR_CLASSES((((unsigned long int) 1) << 1) << 1) && c == '[' && *p == ':')
2787 { /* Leave room for the null. */
2788 char str[CHAR_CLASS_MAX_LENGTH6 + 1];
2789
2790 PATFETCH (c);
2791 c1 = 0;
2792
2793 /* If pattern is `[[:'. */
2794 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2795
2796 for (;;)
2797 {
2798 PATFETCH (c);
2799 if ((c == ':' && *p == ']') || p == pend)
2800 break;
2801 if (c1 < CHAR_CLASS_MAX_LENGTH6)
2802 str[c1++] = c;
2803 else
2804 /* This is in any case an invalid class name. */
2805 str[0] = '\0';
2806 }
2807 str[c1] = '\0';
2808
2809 /* If isn't a word bracketed by `[:' and `:]':
2810 undo the ending character, the letters, and leave
2811 the leading `:' and `[' (but store them as character). */
2812 if (c == ':' && *p == ']')
2813 {
2814 wctype_t wt;
2815 uintptr_t alignedp;
2816
2817 /* Query the character class as wctype_t. */
2818 wt = IS_CHAR_CLASS (str)(((strcmp (str, "alpha") == 0)) || ((strcmp (str, "upper") ==
0)) || ((strcmp (str, "lower") == 0)) || ((strcmp (str, "digit"
) == 0)) || ((strcmp (str, "alnum") == 0)) || ((strcmp (str, "xdigit"
) == 0)) || ((strcmp (str, "space") == 0)) || ((strcmp (str, "print"
) == 0)) || ((strcmp (str, "punct") == 0)) || ((strcmp (str, "graph"
) == 0)) || ((strcmp (str, "cntrl") == 0)) || ((strcmp (str, "blank"
) == 0)))
;
2819 if (wt == 0)
2820 FREE_STACK_RETURN (REG_ECTYPE);
2821
2822 /* Throw away the ] at the end of the character
2823 class. */
2824 PATFETCH (c);
2825
2826 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2827
2828 /* Allocate the space for character class. */
2829 GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2830 /* Update the pointer to indicate end of buffer. */
2831 b += CHAR_CLASS_SIZE;
2832 /* Move data which follow character classes
2833 not to violate the data. */
2834 insert_space(CHAR_CLASS_SIZE,
2835 laststart + 6 + laststart[1],
2836 b - 1);
2837 alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2838 + __alignof__(wctype_t) - 1)
2839 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2840 /* Store the character class. */
2841 *((wctype_t*)alignedp) = wt;
2842 /* Update length of char_classes */
2843 laststart[1] += CHAR_CLASS_SIZE;
2844
2845 had_char_class = true1;
2846 }
2847 else
2848 {
2849 c1++;
2850 while (c1--)
2851 PATUNFETCH;
2852 BUF_PUSH ('[');
2853 BUF_PUSH (':');
2854 laststart[5] += 2; /* Update the length of characters */
2855 range_start = ':';
2856 had_char_class = false0;
2857 }
2858 }
2859 else if (syntax & RE_CHAR_CLASSES((((unsigned long int) 1) << 1) << 1) && c == '[' && (*p == '='
2860 || *p == '.'))
2861 {
2862 CHAR_T str[128]; /* Should be large enough. */
2863 CHAR_T delim = *p; /* '=' or '.' */
2864# ifdef _LIBC
2865 uint32_t nrules =
2866 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2867# endif
2868 PATFETCH (c);
2869 c1 = 0;
2870
2871 /* If pattern is `[[=' or '[[.'. */
2872 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2873
2874 for (;;)
2875 {
2876 PATFETCH (c);
2877 if ((c == delim && *p == ']') || p == pend)
2878 break;
2879 if (c1 < sizeof (str) - 1)
2880 str[c1++] = c;
2881 else
2882 /* This is in any case an invalid class name. */
2883 str[0] = '\0';
2884 }
2885 str[c1] = '\0';
2886
2887 if (c == delim && *p == ']' && str[0] != '\0')
2888 {
2889 unsigned int i, offset;
2890 /* If we have no collation data we use the default
2891 collation in which each character is in a class
2892 by itself. It also means that ASCII is the
2893 character set and therefore we cannot have character
2894 with more than one byte in the multibyte
2895 representation. */
2896
2897 /* If not defined _LIBC, we push the name and
2898 `\0' for the sake of matching performance. */
2899 int datasize = c1 + 1;
2900
2901# ifdef _LIBC
2902 int32_t idx = 0;
2903 if (nrules == 0)
2904# endif
2905 {
2906 if (c1 != 1)
2907 FREE_STACK_RETURN (REG_ECOLLATE);
2908 }
2909# ifdef _LIBC
2910 else
2911 {
2912 const int32_t *table;
2913 const int32_t *weights;
2914 const int32_t *extra;
2915 const int32_t *indirect;
2916 wint_t *cp;
2917
2918 /* This #include defines a local function! */
2919# include <locale/weightwc.h>
2920
2921 if(delim == '=')
2922 {
2923 /* We push the index for equivalence class. */
2924 cp = (wint_t*)str;
2925
2926 table = (const int32_t *)
2927 _NL_CURRENT (LC_COLLATE,
2928 _NL_COLLATE_TABLEWC);
2929 weights = (const int32_t *)
2930 _NL_CURRENT (LC_COLLATE,
2931 _NL_COLLATE_WEIGHTWC);
2932 extra = (const int32_t *)
2933 _NL_CURRENT (LC_COLLATE,
2934 _NL_COLLATE_EXTRAWC);
2935 indirect = (const int32_t *)
2936 _NL_CURRENT (LC_COLLATE,
2937 _NL_COLLATE_INDIRECTWC);
2938
2939 idx = findidx ((const wint_t**)&cp);
2940 if (idx == 0 || cp < (wint_t*) str + c1)
2941 /* This is no valid character. */
2942 FREE_STACK_RETURN (REG_ECOLLATE);
2943
2944 str[0] = (wchar_t)idx;
2945 }
2946 else /* delim == '.' */
2947 {
2948 /* We push collation sequence value
2949 for collating symbol. */
2950 int32_t table_size;
2951 const int32_t *symb_table;
2952 const unsigned char *extra;
2953 int32_t idx;
2954 int32_t elem;
2955 int32_t second;
2956 int32_t hash;
2957 char char_str[c1];
2958
2959 /* We have to convert the name to a single-byte
2960 string. This is possible since the names
2961 consist of ASCII characters and the internal
2962 representation is UCS4. */
2963 for (i = 0; i < c1; ++i)
2964 char_str[i] = str[i];
2965
2966 table_size =
2967 _NL_CURRENT_WORD (LC_COLLATE,
2968 _NL_COLLATE_SYMB_HASH_SIZEMB);
2969 symb_table = (const int32_t *)
2970 _NL_CURRENT (LC_COLLATE,
2971 _NL_COLLATE_SYMB_TABLEMB);
2972 extra = (const unsigned char *)
2973 _NL_CURRENT (LC_COLLATE,
2974 _NL_COLLATE_SYMB_EXTRAMB);
2975
2976 /* Locate the character in the hashing table. */
2977 hash = elem_hash (char_str, c1);
2978
2979 idx = 0;
2980 elem = hash % table_size;
2981 second = hash % (table_size - 2);
2982 while (symb_table[2 * elem] != 0)
2983 {
2984 /* First compare the hashing value. */
2985 if (symb_table[2 * elem] == hash
2986 && c1 == extra[symb_table[2 * elem + 1]]
2987 && memcmp (char_str,
2988 &extra[symb_table[2 * elem + 1]
2989 + 1], c1) == 0)
2990 {
2991 /* Yep, this is the entry. */
2992 idx = symb_table[2 * elem + 1];
2993 idx += 1 + extra[idx];
2994 break;
2995 }
2996
2997 /* Next entry. */
2998 elem += second;
2999 }
3000
3001 if (symb_table[2 * elem] != 0)
3002 {
3003 /* Compute the index of the byte sequence
3004 in the table. */
3005 idx += 1 + extra[idx];
3006 /* Adjust for the alignment. */
3007 idx = (idx + 3) & ~3;
3008
3009 str[0] = (wchar_t) idx + 4;
3010 }
3011 else if (symb_table[2 * elem] == 0 && c1 == 1)
3012 {
3013 /* No valid character. Match it as a
3014 single byte character. */
3015 had_char_class = false0;
3016 BUF_PUSH(str[0]);
3017 /* Update the length of characters */
3018 laststart[5]++;
3019 range_start = str[0];
3020
3021 /* Throw away the ] at the end of the
3022 collating symbol. */
3023 PATFETCH (c);
3024 /* exit from the switch block. */
3025 continue;
3026 }
3027 else
3028 FREE_STACK_RETURN (REG_ECOLLATE);
3029 }
3030 datasize = 1;
3031 }
3032# endif
3033 /* Throw away the ] at the end of the equivalence
3034 class (or collating symbol). */
3035 PATFETCH (c);
3036
3037 /* Allocate the space for the equivalence class
3038 (or collating symbol) (and '\0' if needed). */
3039 GET_BUFFER_SPACE(datasize);
3040 /* Update the pointer to indicate end of buffer. */
3041 b += datasize;
3042
3043 if (delim == '=')
3044 { /* equivalence class */
3045 /* Calculate the offset of char_ranges,
3046 which is next to equivalence_classes. */
3047 offset = laststart[1] + laststart[2]
3048 + laststart[3] +6;
3049 /* Insert space. */
3050 insert_space(datasize, laststart + offset, b - 1);
3051
3052 /* Write the equivalence_class and \0. */
3053 for (i = 0 ; i < datasize ; i++)
3054 laststart[offset + i] = str[i];
3055
3056 /* Update the length of equivalence_classes. */
3057 laststart[3] += datasize;
3058 had_char_class = true1;
3059 }
3060 else /* delim == '.' */
3061 { /* collating symbol */
3062 /* Calculate the offset of the equivalence_classes,
3063 which is next to collating_symbols. */
3064 offset = laststart[1] + laststart[2] + 6;
3065 /* Insert space and write the collationg_symbol
3066 and \0. */
3067 insert_space(datasize, laststart + offset, b-1);
3068 for (i = 0 ; i < datasize ; i++)
3069 laststart[offset + i] = str[i];
3070
3071 /* In re_match_2_internal if range_start < -1, we
3072 assume -range_start is the offset of the
3073 collating symbol which is specified as
3074 the character of the range start. So we assign
3075 -(laststart[1] + laststart[2] + 6) to
3076 range_start. */
3077 range_start = -(laststart[1] + laststart[2] + 6);
3078 /* Update the length of collating_symbol. */
3079 laststart[2] += datasize;
3080 had_char_class = false0;
3081 }
3082 }
3083 else
3084 {
3085 c1++;
3086 while (c1--)
3087 PATUNFETCH;
3088 BUF_PUSH ('[');
3089 BUF_PUSH (delim);
3090 laststart[5] += 2; /* Update the length of characters */
3091 range_start = delim;
3092 had_char_class = false0;
3093 }
3094 }
3095 else
3096 {
3097 had_char_class = false0;
3098 BUF_PUSH(c);
3099 laststart[5]++; /* Update the length of characters */
3100 range_start = c;
3101 }
3102 }
3103
3104#else /* BYTE */
3105 /* Ensure that we have enough space to push a charset: the
3106 opcode, the length count, and the bitset; 34 bytes in all. */
3107 GET_BUFFER_SPACE (34);
3108
3109 laststart = b;
3110
3111 /* We test `*p == '^' twice, instead of using an if
3112 statement, so we only need one BUF_PUSH. */
3113 BUF_PUSH (*p == '^' ? charset_not : charset);
3114 if (*p == '^')
3115 p++;
3116
3117 /* Remember the first position in the bracket expression. */
3118 p1 = p;
3119
3120 /* Push the number of bytes in the bitmap. */
3121 BUF_PUSH ((1 << BYTEWIDTH8) / BYTEWIDTH8);
3122
3123 /* Clear the whole map. */
3124 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH)(memset (b, '\0', (1 << 8) / 8), (b));
3125
3126 /* charset_not matches newline according to a syntax bit. */
3127 if ((re_opcode_t) b[-2] == charset_not
3128 && (syntax & RE_HAT_LISTS_NOT_NEWLINE((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
)
))
3129 SET_LIST_BIT ('\n')(b[((unsigned char) ('\n')) / 8] |= 1 << (((unsigned char
) '\n') % 8))
;
3130
3131 /* Read in characters and ranges, setting map bits. */
3132 for (;;)
3133 {
3134 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3135
3136 PATFETCH (c);
3137
3138 /* \ might escape characters inside [...] and [^...]. */
3139 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS((unsigned long int) 1)) && c == '\\')
3140 {
3141 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3142
3143 PATFETCH (c1);
3144 SET_LIST_BIT (c1)(b[((unsigned char) (c1)) / 8] |= 1 << (((unsigned char
) c1) % 8))
;
3145 range_start = c1;
3146 continue;
3147 }
3148
3149 /* Could be the end of the bracket expression. If it's
3150 not (i.e., when the bracket expression is `[]' so
3151 far), the ']' character bit gets set way below. */
3152 if (c == ']' && p != p1 + 1)
3153 break;
3154
3155 /* Look ahead to see if it's a range when the last thing
3156 was a character class. */
3157 if (had_char_class && c == '-' && *p != ']')
3158 FREE_STACK_RETURN (REG_ERANGE);
3159
3160 /* Look ahead to see if it's a range when the last thing
3161 was a character: if this is a hyphen not at the
3162 beginning or the end of a list, then it's the range
3163 operator. */
3164 if (c == '-'
3165 && !(p - 2 >= pattern && p[-2] == '[')
3166 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3167 && *p != ']')
3168 {
3169 reg_errcode_t ret
3170 = byte_compile_range (range_start, &p, pend, translate,
3171 syntax, b);
3172 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3173 range_start = 0xffffffff;
3174 }
3175
3176 else if (p[0] == '-' && p[1] != ']')
3177 { /* This handles ranges made up of characters only. */
3178 reg_errcode_t ret;
3179
3180 /* Move past the `-'. */
3181 PATFETCH (c1);
3182
3183 ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3184 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3185 range_start = 0xffffffff;
3186 }
3187
3188 /* See if we're at the beginning of a possible character
3189 class. */
3190
3191 else if (syntax & RE_CHAR_CLASSES((((unsigned long int) 1) << 1) << 1) && c == '[' && *p == ':')
3192 { /* Leave room for the null. */
3193 char str[CHAR_CLASS_MAX_LENGTH6 + 1];
3194
3195 PATFETCH (c);
3196 c1 = 0;
3197
3198 /* If pattern is `[[:'. */
3199 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3200
3201 for (;;)
3202 {
3203 PATFETCH (c);
3204 if ((c == ':' && *p == ']') || p == pend)
3205 break;
3206 if (c1 < CHAR_CLASS_MAX_LENGTH6)
3207 str[c1++] = c;
3208 else
3209 /* This is in any case an invalid class name. */
3210 str[0] = '\0';
3211 }
3212 str[c1] = '\0';
3213
3214 /* If isn't a word bracketed by `[:' and `:]':
3215 undo the ending character, the letters, and leave
3216 the leading `:' and `[' (but set bits for them). */
3217 if (c == ':' && *p == ']')
3218 {
3219# if defined _LIBC || WIDE_CHAR_SUPPORT(HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
3220 boolean is_lower = STREQ (str, "lower")((strcmp (str, "lower") == 0));
3221 boolean is_upper = STREQ (str, "upper")((strcmp (str, "upper") == 0));
3222 wctype_t wt;
3223 int ch;
3224
3225 wt = IS_CHAR_CLASS (str)(((strcmp (str, "alpha") == 0)) || ((strcmp (str, "upper") ==
0)) || ((strcmp (str, "lower") == 0)) || ((strcmp (str, "digit"
) == 0)) || ((strcmp (str, "alnum") == 0)) || ((strcmp (str, "xdigit"
) == 0)) || ((strcmp (str, "space") == 0)) || ((strcmp (str, "print"
) == 0)) || ((strcmp (str, "punct") == 0)) || ((strcmp (str, "graph"
) == 0)) || ((strcmp (str, "cntrl") == 0)) || ((strcmp (str, "blank"
) == 0)))
;
3226 if (wt == 0)
3227 FREE_STACK_RETURN (REG_ECTYPE);
3228
3229 /* Throw away the ] at the end of the character
3230 class. */
3231 PATFETCH (c);
3232
3233 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3234
3235 for (ch = 0; ch < 1 << BYTEWIDTH8; ++ch)
3236 {
3237# ifdef _LIBC
3238 if (__iswctype (__btowc (ch), wt))
3239 SET_LIST_BIT (ch)(b[((unsigned char) (ch)) / 8] |= 1 << (((unsigned char
) ch) % 8))
;
3240# else
3241 if (iswctype (btowc (ch), wt))
3242 SET_LIST_BIT (ch)(b[((unsigned char) (ch)) / 8] |= 1 << (((unsigned char
) ch) % 8))
;
3243# endif
3244
3245 if (translate && (is_upper || is_lower)
3246 && (ISUPPER (ch)(1 && isupper (ch)) || ISLOWER (ch)(1 && islower (ch))))
3247 SET_LIST_BIT (ch)(b[((unsigned char) (ch)) / 8] |= 1 << (((unsigned char
) ch) % 8))
;
3248 }
3249
3250 had_char_class = true1;
3251# else
3252 int ch;
3253 boolean is_alnum = STREQ (str, "alnum")((strcmp (str, "alnum") == 0));
3254 boolean is_alpha = STREQ (str, "alpha")((strcmp (str, "alpha") == 0));
3255 boolean is_blank = STREQ (str, "blank")((strcmp (str, "blank") == 0));
3256 boolean is_cntrl = STREQ (str, "cntrl")((strcmp (str, "cntrl") == 0));
3257 boolean is_digit = STREQ (str, "digit")((strcmp (str, "digit") == 0));
3258 boolean is_graph = STREQ (str, "graph")((strcmp (str, "graph") == 0));
3259 boolean is_lower = STREQ (str, "lower")((strcmp (str, "lower") == 0));
3260 boolean is_print = STREQ (str, "print")((strcmp (str, "print") == 0));
3261 boolean is_punct = STREQ (str, "punct")((strcmp (str, "punct") == 0));
3262 boolean is_space = STREQ (str, "space")((strcmp (str, "space") == 0));
3263 boolean is_upper = STREQ (str, "upper")((strcmp (str, "upper") == 0));
3264 boolean is_xdigit = STREQ (str, "xdigit")((strcmp (str, "xdigit") == 0));
3265
3266 if (!IS_CHAR_CLASS (str)(((strcmp (str, "alpha") == 0)) || ((strcmp (str, "upper") ==
0)) || ((strcmp (str, "lower") == 0)) || ((strcmp (str, "digit"
) == 0)) || ((strcmp (str, "alnum") == 0)) || ((strcmp (str, "xdigit"
) == 0)) || ((strcmp (str, "space") == 0)) || ((strcmp (str, "print"
) == 0)) || ((strcmp (str, "punct") == 0)) || ((strcmp (str, "graph"
) == 0)) || ((strcmp (str, "cntrl") == 0)) || ((strcmp (str, "blank"
) == 0)))
)
3267 FREE_STACK_RETURN (REG_ECTYPE);
3268
3269 /* Throw away the ] at the end of the character
3270 class. */
3271 PATFETCH (c);
3272
3273 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3274
3275 for (ch = 0; ch < 1 << BYTEWIDTH8; ch++)
3276 {
3277 /* This was split into 3 if's to
3278 avoid an arbitrary limit in some compiler. */
3279 if ( (is_alnum && ISALNUM (ch)(1 && isalnum (ch)))
3280 || (is_alpha && ISALPHA (ch)(1 && isalpha (ch)))
3281 || (is_blank && ISBLANK (ch)((ch) == ' ' || (ch) == '\t'))
3282 || (is_cntrl && ISCNTRL (ch)(1 && iscntrl (ch))))
3283 SET_LIST_BIT (ch)(b[((unsigned char) (ch)) / 8] |= 1 << (((unsigned char
) ch) % 8))
;
3284 if ( (is_digit && ISDIGIT (ch)(1 && isdigit (ch)))
3285 || (is_graph && ISGRAPH (ch)(1 && isprint (ch) && !isspace (ch)))
3286 || (is_lower && ISLOWER (ch)(1 && islower (ch)))
3287 || (is_print && ISPRINT (ch)(1 && isprint (ch))))
3288 SET_LIST_BIT (ch)(b[((unsigned char) (ch)) / 8] |= 1 << (((unsigned char
) ch) % 8))
;
3289 if ( (is_punct && ISPUNCT (ch)(1 && ispunct (ch)))
3290 || (is_space && ISSPACE (ch)(1 && isspace (ch)))
3291 || (is_upper && ISUPPER (ch)(1 && isupper (ch)))
3292 || (is_xdigit && ISXDIGIT (ch)(1 && isxdigit (ch))))
3293 SET_LIST_BIT (ch)(b[((unsigned char) (ch)) / 8] |= 1 << (((unsigned char
) ch) % 8))
;
3294 if ( translate && (is_upper || is_lower)
3295 && (ISUPPER (ch)(1 && isupper (ch)) || ISLOWER (ch)(1 && islower (ch))))
3296 SET_LIST_BIT (ch)(b[((unsigned char) (ch)) / 8] |= 1 << (((unsigned char
) ch) % 8))
;
3297 }
3298 had_char_class = true1;
3299# endif /* libc || wctype.h */
3300 }
3301 else
3302 {
3303 c1++;
3304 while (c1--)
3305 PATUNFETCH;
3306 SET_LIST_BIT ('[')(b[((unsigned char) ('[')) / 8] |= 1 << (((unsigned char
) '[') % 8))
;
3307 SET_LIST_BIT (':')(b[((unsigned char) (':')) / 8] |= 1 << (((unsigned char
) ':') % 8))
;
3308 range_start = ':';
3309 had_char_class = false0;
3310 }
3311 }
3312 else if (syntax & RE_CHAR_CLASSES((((unsigned long int) 1) << 1) << 1) && c == '[' && *p == '=')
3313 {
3314 unsigned char str[MB_LEN_MAX4 + 1];
3315# ifdef _LIBC
3316 uint32_t nrules =
3317 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3318# endif
3319
3320 PATFETCH (c);
3321 c1 = 0;
3322
3323 /* If pattern is `[[='. */
3324 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3325
3326 for (;;)
3327 {
3328 PATFETCH (c);
3329 if ((c == '=' && *p == ']') || p == pend)
3330 break;
3331 if (c1 < MB_LEN_MAX4)
3332 str[c1++] = c;
3333 else
3334 /* This is in any case an invalid class name. */
3335 str[0] = '\0';
3336 }
3337 str[c1] = '\0';
3338
3339 if (c == '=' && *p == ']' && str[0] != '\0')
3340 {
3341 /* If we have no collation data we use the default
3342 collation in which each character is in a class
3343 by itself. It also means that ASCII is the
3344 character set and therefore we cannot have character
3345 with more than one byte in the multibyte
3346 representation. */
3347# ifdef _LIBC
3348 if (nrules == 0)
3349# endif
3350 {
3351 if (c1 != 1)
3352 FREE_STACK_RETURN (REG_ECOLLATE);
3353
3354 /* Throw away the ] at the end of the equivalence
3355 class. */
3356 PATFETCH (c);
3357
3358 /* Set the bit for the character. */
3359 SET_LIST_BIT (str[0])(b[((unsigned char) (str[0])) / 8] |= 1 << (((unsigned char
) str[0]) % 8))
;
3360 }
3361# ifdef _LIBC
3362 else
3363 {
3364 /* Try to match the byte sequence in `str' against
3365 those known to the collate implementation.
3366 First find out whether the bytes in `str' are
3367 actually from exactly one character. */
3368 const int32_t *table;
3369 const unsigned char *weights;
3370 const unsigned char *extra;
3371 const int32_t *indirect;
3372 int32_t idx;
3373 const unsigned char *cp = str;
3374 int ch;
3375
3376 /* This #include defines a local function! */
3377# include <locale/weight.h>
3378
3379 table = (const int32_t *)
3380 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3381 weights = (const unsigned char *)
3382 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3383 extra = (const unsigned char *)
3384 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3385 indirect = (const int32_t *)
3386 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3387
3388 idx = findidx (&cp);
3389 if (idx == 0 || cp < str + c1)
3390 /* This is no valid character. */
3391 FREE_STACK_RETURN (REG_ECOLLATE);
3392
3393 /* Throw away the ] at the end of the equivalence
3394 class. */
3395 PATFETCH (c);
3396
3397 /* Now we have to go throught the whole table
3398 and find all characters which have the same
3399 first level weight.
3400
3401 XXX Note that this is not entirely correct.
3402 we would have to match multibyte sequences
3403 but this is not possible with the current
3404 implementation. */
3405 for (ch = 1; ch < 256; ++ch)
3406 /* XXX This test would have to be changed if we
3407 would allow matching multibyte sequences. */
3408 if (table[ch] > 0)
3409 {
3410 int32_t idx2 = table[ch];
3411 size_t len = weights[idx2];
3412
3413 /* Test whether the lenghts match. */
3414 if (weights[idx] == len)
3415 {
3416 /* They do. New compare the bytes of
3417 the weight. */
3418 size_t cnt = 0;
3419
3420 while (cnt < len
3421 && (weights[idx + 1 + cnt]
3422 == weights[idx2 + 1 + cnt]))
3423 ++cnt;
3424
3425 if (cnt == len)
3426 /* They match. Mark the character as
3427 acceptable. */
3428 SET_LIST_BIT (ch)(b[((unsigned char) (ch)) / 8] |= 1 << (((unsigned char
) ch) % 8))
;
3429 }
3430 }
3431 }
3432# endif
3433 had_char_class = true1;
3434 }
3435 else
3436 {
3437 c1++;
3438 while (c1--)
3439 PATUNFETCH;
3440 SET_LIST_BIT ('[')(b[((unsigned char) ('[')) / 8] |= 1 << (((unsigned char
) '[') % 8))
;
3441 SET_LIST_BIT ('=')(b[((unsigned char) ('=')) / 8] |= 1 << (((unsigned char
) '=') % 8))
;
3442 range_start = '=';
3443 had_char_class = false0;
3444 }
3445 }
3446 else if (syntax & RE_CHAR_CLASSES((((unsigned long int) 1) << 1) << 1) && c == '[' && *p == '.')
3447 {
3448 unsigned char str[128]; /* Should be large enough. */
3449# ifdef _LIBC
3450 uint32_t nrules =
3451 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3452# endif
3453
3454 PATFETCH (c);
3455 c1 = 0;
3456
3457 /* If pattern is `[[.'. */
3458 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3459
3460 for (;;)
3461 {
3462 PATFETCH (c);
3463 if ((c == '.' && *p == ']') || p == pend)
3464 break;
3465 if (c1 < sizeof (str))
3466 str[c1++] = c;
3467 else
3468 /* This is in any case an invalid class name. */
3469 str[0] = '\0';
3470 }
3471 str[c1] = '\0';
3472
3473 if (c == '.' && *p == ']' && str[0] != '\0')
3474 {
3475 /* If we have no collation data we use the default
3476 collation in which each character is the name
3477 for its own class which contains only the one
3478 character. It also means that ASCII is the
3479 character set and therefore we cannot have character
3480 with more than one byte in the multibyte
3481 representation. */
3482# ifdef _LIBC
3483 if (nrules == 0)
3484# endif
3485 {
3486 if (c1 != 1)
3487 FREE_STACK_RETURN (REG_ECOLLATE);
3488
3489 /* Throw away the ] at the end of the equivalence
3490 class. */
3491 PATFETCH (c);
3492
3493 /* Set the bit for the character. */
3494 SET_LIST_BIT (str[0])(b[((unsigned char) (str[0])) / 8] |= 1 << (((unsigned char
) str[0]) % 8))
;
3495 range_start = ((const unsigned char *) str)[0];
3496 }
3497# ifdef _LIBC
3498 else
3499 {
3500 /* Try to match the byte sequence in `str' against
3501 those known to the collate implementation.
3502 First find out whether the bytes in `str' are
3503 actually from exactly one character. */
3504 int32_t table_size;
3505 const int32_t *symb_table;
3506 const unsigned char *extra;
3507 int32_t idx;
3508 int32_t elem;
3509 int32_t second;
3510 int32_t hash;
3511
3512 table_size =
3513 _NL_CURRENT_WORD (LC_COLLATE,
3514 _NL_COLLATE_SYMB_HASH_SIZEMB);
3515 symb_table = (const int32_t *)
3516 _NL_CURRENT (LC_COLLATE,
3517 _NL_COLLATE_SYMB_TABLEMB);
3518 extra = (const unsigned char *)
3519 _NL_CURRENT (LC_COLLATE,
3520 _NL_COLLATE_SYMB_EXTRAMB);
3521
3522 /* Locate the character in the hashing table. */
3523 hash = elem_hash (str, c1);
3524
3525 idx = 0;
3526 elem = hash % table_size;
3527 second = hash % (table_size - 2);
3528 while (symb_table[2 * elem] != 0)
3529 {
3530 /* First compare the hashing value. */
3531 if (symb_table[2 * elem] == hash
3532 && c1 == extra[symb_table[2 * elem + 1]]
3533 && memcmp (str,
3534 &extra[symb_table[2 * elem + 1]
3535 + 1],
3536 c1) == 0)
3537 {
3538 /* Yep, this is the entry. */
3539 idx = symb_table[2 * elem + 1];
3540 idx += 1 + extra[idx];
3541 break;
3542 }
3543
3544 /* Next entry. */
3545 elem += second;
3546 }
3547
3548 if (symb_table[2 * elem] == 0)
3549 /* This is no valid character. */
3550 FREE_STACK_RETURN (REG_ECOLLATE);
3551
3552 /* Throw away the ] at the end of the equivalence
3553 class. */
3554 PATFETCH (c);
3555
3556 /* Now add the multibyte character(s) we found
3557 to the accept list.
3558
3559 XXX Note that this is not entirely correct.
3560 we would have to match multibyte sequences
3561 but this is not possible with the current
3562 implementation. Also, we have to match
3563 collating symbols, which expand to more than
3564 one file, as a whole and not allow the
3565 individual bytes. */
3566 c1 = extra[idx++];
3567 if (c1 == 1)
3568 range_start = extra[idx];
3569 while (c1-- > 0)
3570 {
3571 SET_LIST_BIT (extra[idx])(b[((unsigned char) (extra[idx])) / 8] |= 1 << (((unsigned
char) extra[idx]) % 8))
;
3572 ++idx;
3573 }
3574 }
3575# endif
3576 had_char_class = false0;
3577 }
3578 else
3579 {
3580 c1++;
3581 while (c1--)
3582 PATUNFETCH;
3583 SET_LIST_BIT ('[')(b[((unsigned char) ('[')) / 8] |= 1 << (((unsigned char
) '[') % 8))
;
3584 SET_LIST_BIT ('.')(b[((unsigned char) ('.')) / 8] |= 1 << (((unsigned char
) '.') % 8))
;
3585 range_start = '.';
3586 had_char_class = false0;
3587 }
3588 }
3589 else
3590 {
3591 had_char_class = false0;
3592 SET_LIST_BIT (c)(b[((unsigned char) (c)) / 8] |= 1 << (((unsigned char)
c) % 8))
;
3593 range_start = c;
3594 }
3595 }
3596
3597 /* Discard any (non)matching list bytes that are all 0 at the
3598 end of the map. Decrease the map-length byte too. */
3599 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3600 b[-1]--;
3601 b += b[-1];
3602#endif /* WCHAR */
3603 }
3604 break;
3605
3606
3607 case '(':
3608 if (syntax & RE_NO_BK_PARENS(((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
)
3609 goto handle_open;
3610 else
3611 goto normal_char;
3612
3613
3614 case ')':
3615 if (syntax & RE_NO_BK_PARENS(((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
)
3616 goto handle_close;
3617 else
3618 goto normal_char;
3619
3620
3621 case '\n':
3622 if (syntax & RE_NEWLINE_ALT(((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1)
)
3623 goto handle_alt;
3624 else
3625 goto normal_char;
3626
3627
3628 case '|':
3629 if (syntax & RE_NO_BK_VBAR(((((((((((((((((unsigned long int) 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1)
)
3630 goto handle_alt;
3631 else
3632 goto normal_char;
3633
3634
3635 case '{':
3636 if (syntax & RE_INTERVALS(((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1)
&& syntax & RE_NO_BK_BRACES((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1)
)
3637 goto handle_interval;
3638 else
3639 goto normal_char;
3640
3641
3642 case '\\':
3643 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3644
3645 /* Do not translate the character after the \, so that we can
3646 distinguish, e.g., \B from \b, even if we normally would
3647 translate, e.g., B to b. */
3648 PATFETCH_RAW (c);
3649
3650 switch (c)
3651 {
3652 case '(':
3653 if (syntax & RE_NO_BK_PARENS(((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
)
3654 goto normal_backslash;
3655
3656 handle_open:
3657 bufp->re_nsub++;
3658 regnum++;
3659
3660 if (COMPILE_STACK_FULL(compile_stack.avail == compile_stack.size))
3661 {
3662 RETALLOC (compile_stack.stack, compile_stack.size << 1,((compile_stack.stack) = (compile_stack_elt_t *) realloc (compile_stack
.stack, (compile_stack.size << 1) * sizeof (compile_stack_elt_t
)))
3663 compile_stack_elt_t)((compile_stack.stack) = (compile_stack_elt_t *) realloc (compile_stack
.stack, (compile_stack.size << 1) * sizeof (compile_stack_elt_t
)))
;
3664 if (compile_stack.stack == NULL((void*)0)) return REG_ESPACE;
3665
3666 compile_stack.size <<= 1;
3667 }
3668
3669 /* These are the values to restore when we hit end of this
3670 group. They are all relative offsets, so that if the
3671 whole pattern moves because of realloc, they will still
3672 be valid. */
3673 COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).begalt_offset = begalt - COMPILED_BUFFER_VAR;
3674 COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).fixup_alt_jump
3675 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3676 COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).laststart_offset = b - COMPILED_BUFFER_VAR;
3677 COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).regnum = regnum;
3678
3679 /* We will eventually replace the 0 with the number of
3680 groups inner to this one. But do not push a
3681 start_memory for groups beyond the last one we can
3682 represent in the compiled pattern. */
3683 if (regnum <= MAX_REGNUM255)
3684 {
3685 COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).inner_group_offset = b
3686 - COMPILED_BUFFER_VAR + 2;
3687 BUF_PUSH_3 (start_memory, regnum, 0);
3688 }
3689
3690 compile_stack.avail++;
3691
3692 fixup_alt_jump = 0;
3693 laststart = 0;
3694 begalt = b;
3695 /* If we've reached MAX_REGNUM groups, then this open
3696 won't actually generate any code, so we'll have to
3697 clear pending_exact explicitly. */
3698 pending_exact = 0;
3699 break;
3700
3701
3702 case ')':
3703 if (syntax & RE_NO_BK_PARENS(((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
) goto normal_backslash;
3704
3705 if (COMPILE_STACK_EMPTY(compile_stack.avail == 0))
3706 {
3707 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD(((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1)
)
3708 goto normal_backslash;
3709 else
3710 FREE_STACK_RETURN (REG_ERPAREN);
3711 }
3712
3713 handle_close:
3714 if (fixup_alt_jump)
3715 { /* Push a dummy failure point at the end of the
3716 alternative for a possible future
3717 `pop_failure_jump' to pop. See comments at
3718 `push_dummy_failure' in `re_match_2'. */
3719 BUF_PUSH (push_dummy_failure);
3720
3721 /* We allocated space for this jump when we assigned
3722 to `fixup_alt_jump', in the `handle_alt' case below. */
3723 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3724 }
3725
3726 /* See similar code for backslashed left paren above. */
3727 if (COMPILE_STACK_EMPTY(compile_stack.avail == 0))
3728 {
3729 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD(((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1)
)
3730 goto normal_char;
3731 else
3732 FREE_STACK_RETURN (REG_ERPAREN);
3733 }
3734
3735 /* Since we just checked for an empty stack above, this
3736 ``can't happen''. */
3737 assert (compile_stack.avail != 0);
3738 {
3739 /* We don't just want to restore into `regnum', because
3740 later groups should continue to be numbered higher,
3741 as in `(ab)c(de)' -- the second group is #2. */
3742 regnum_t this_group_regnum;
3743
3744 compile_stack.avail--;
3745 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).begalt_offset;
3746 fixup_alt_jump
3747 = COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).fixup_alt_jump
3748 ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).fixup_alt_jump - 1
3749 : 0;
3750 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).laststart_offset;
3751 this_group_regnum = COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).regnum;
3752 /* If we've reached MAX_REGNUM groups, then this open
3753 won't actually generate any code, so we'll have to
3754 clear pending_exact explicitly. */
3755 pending_exact = 0;
3756
3757 /* We're at the end of the group, so now we know how many
3758 groups were inside this one. */
3759 if (this_group_regnum <= MAX_REGNUM255)
3760 {
3761 UCHAR_T *inner_group_loc
3762 = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).inner_group_offset;
3763
3764 *inner_group_loc = regnum - this_group_regnum;
3765 BUF_PUSH_3 (stop_memory, this_group_regnum,
3766 regnum - this_group_regnum);
3767 }
3768 }
3769 break;
3770
3771
3772 case '|': /* `\|'. */
3773 if (syntax & RE_LIMITED_OPS((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1)
|| syntax & RE_NO_BK_VBAR(((((((((((((((((unsigned long int) 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1)
)
3774 goto normal_backslash;
3775 handle_alt:
3776 if (syntax & RE_LIMITED_OPS((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1)
)
3777 goto normal_char;
3778
3779 /* Insert before the previous alternative a jump which
3780 jumps to this alternative if the former fails. */
3781 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3782 INSERT_JUMP (on_failure_jump, begalt,
3783 b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3784 pending_exact = 0;
3785 b += 1 + OFFSET_ADDRESS_SIZE;
3786
3787 /* The alternative before this one has a jump after it
3788 which gets executed if it gets matched. Adjust that
3789 jump so it will jump to this alternative's analogous
3790 jump (put in below, which in turn will jump to the next
3791 (if any) alternative's such jump, etc.). The last such
3792 jump jumps to the correct final destination. A picture:
3793 _____ _____
3794 | | | |
3795 | v | v
3796 a | b | c
3797
3798 If we are at `b', then fixup_alt_jump right now points to a
3799 three-byte space after `a'. We'll put in the jump, set
3800 fixup_alt_jump to right after `b', and leave behind three
3801 bytes which we'll fill in when we get to after `c'. */
3802
3803 if (fixup_alt_jump)
3804 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3805
3806 /* Mark and leave space for a jump after this alternative,
3807 to be filled in later either by next alternative or
3808 when know we're at the end of a series of alternatives. */
3809 fixup_alt_jump = b;
3810 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3811 b += 1 + OFFSET_ADDRESS_SIZE;
3812
3813 laststart = 0;
3814 begalt = b;
3815 break;
3816
3817
3818 case '{':
3819 /* If \{ is a literal. */
3820 if (!(syntax & RE_INTERVALS(((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1)
)
3821 /* If we're at `\{' and it's not the open-interval
3822 operator. */
3823 || (syntax & RE_NO_BK_BRACES((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1)
))
3824 goto normal_backslash;
3825
3826 handle_interval:
3827 {
3828 /* If got here, then the syntax allows intervals. */
3829
3830 /* At least (most) this many matches must be made. */
3831 int lower_bound = -1, upper_bound = -1;
3832
3833 /* Place in the uncompiled pattern (i.e., just after
3834 the '{') to go back to if the interval is invalid. */
3835 const CHAR_T *beg_interval = p;
3836
3837 if (p == pend)
3838 goto invalid_interval;
3839
3840 GET_UNSIGNED_NUMBER (lower_bound);
3841
3842 if (c == ',')
3843 {
3844 GET_UNSIGNED_NUMBER (upper_bound);
3845 if (upper_bound < 0)
3846 upper_bound = RE_DUP_MAX(0x7fff);
3847 }
3848 else
3849 /* Interval such as `{1}' => match exactly once. */
3850 upper_bound = lower_bound;
3851
3852 if (! (0 <= lower_bound && lower_bound <= upper_bound))
3853 goto invalid_interval;
3854
3855 if (!(syntax & RE_NO_BK_BRACES((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1)
))
3856 {
3857 if (c != '\\' || p == pend)
3858 goto invalid_interval;
3859 PATFETCH (c);
3860 }
3861
3862 if (c != '}')
3863 goto invalid_interval;
3864
3865 /* If it's invalid to have no preceding re. */
3866 if (!laststart)
3867 {
3868 if (syntax & RE_CONTEXT_INVALID_OPS(((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1)
3869 && !(syntax & RE_INVALID_INTERVAL_ORD(((((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1)
))
3870 FREE_STACK_RETURN (REG_BADRPT);
3871 else if (syntax & RE_CONTEXT_INDEP_OPS((((((unsigned long int) 1) << 1) << 1) << 1
) << 1)
)
3872 laststart = b;
3873 else
3874 goto unfetch_interval;
3875 }
3876
3877 /* We just parsed a valid interval. */
3878
3879 if (RE_DUP_MAX(0x7fff) < upper_bound)
3880 FREE_STACK_RETURN (REG_BADBR);
3881
3882 /* If the upper bound is zero, don't want to succeed at
3883 all; jump from `laststart' to `b + 3', which will be
3884 the end of the buffer after we insert the jump. */
3885 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3886 instead of 'b + 3'. */
3887 if (upper_bound == 0)
3888 {
3889 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3890 INSERT_JUMP (jump, laststart, b + 1
3891 + OFFSET_ADDRESS_SIZE);
3892 b += 1 + OFFSET_ADDRESS_SIZE;
3893 }
3894
3895 /* Otherwise, we have a nontrivial interval. When
3896 we're all done, the pattern will look like:
3897 set_number_at <jump count> <upper bound>
3898 set_number_at <succeed_n count> <lower bound>
3899 succeed_n <after jump addr> <succeed_n count>
3900 <body of loop>
3901 jump_n <succeed_n addr> <jump count>
3902 (The upper bound and `jump_n' are omitted if
3903 `upper_bound' is 1, though.) */
3904 else
3905 { /* If the upper bound is > 1, we need to insert
3906 more at the end of the loop. */
3907 unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3908 (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3909
3910 GET_BUFFER_SPACE (nbytes);
3911
3912 /* Initialize lower bound of the `succeed_n', even
3913 though it will be set during matching by its
3914 attendant `set_number_at' (inserted next),
3915 because `re_compile_fastmap' needs to know.
3916 Jump to the `jump_n' we might insert below. */
3917 INSERT_JUMP2 (succeed_n, laststart,
3918 b + 1 + 2 * OFFSET_ADDRESS_SIZE
3919 + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3920 , lower_bound);
3921 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3922
3923 /* Code to initialize the lower bound. Insert
3924 before the `succeed_n'. The `5' is the last two
3925 bytes of this `set_number_at', plus 3 bytes of
3926 the following `succeed_n'. */
3927 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3928 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3929 of the following `succeed_n'. */
3930 PREFIX(insert_op2) (set_number_at, laststart, 1
3931 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3932 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3933
3934 if (upper_bound > 1)
3935 { /* More than one repetition is allowed, so
3936 append a backward jump to the `succeed_n'
3937 that starts this interval.
3938
3939 When we've reached this during matching,
3940 we'll have matched the interval once, so
3941 jump back only `upper_bound - 1' times. */
3942 STORE_JUMP2 (jump_n, b, laststart
3943 + 2 * OFFSET_ADDRESS_SIZE + 1,
3944 upper_bound - 1);
3945 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3946
3947 /* The location we want to set is the second
3948 parameter of the `jump_n'; that is `b-2' as
3949 an absolute address. `laststart' will be
3950 the `set_number_at' we're about to insert;
3951 `laststart+3' the number to set, the source
3952 for the relative address. But we are
3953 inserting into the middle of the pattern --
3954 so everything is getting moved up by 5.
3955 Conclusion: (b - 2) - (laststart + 3) + 5,
3956 i.e., b - laststart.
3957
3958 We insert this at the beginning of the loop
3959 so that if we fail during matching, we'll
3960 reinitialize the bounds. */
3961 PREFIX(insert_op2) (set_number_at, laststart,
3962 b - laststart,
3963 upper_bound - 1, b);
3964 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3965 }
3966 }
3967 pending_exact = 0;
3968 break;
3969
3970 invalid_interval:
3971 if (!(syntax & RE_INVALID_INTERVAL_ORD(((((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1)
))
3972 FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3973 unfetch_interval:
3974 /* Match the characters as literals. */
3975 p = beg_interval;
3976 c = '{';
3977 if (syntax & RE_NO_BK_BRACES((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1)
)
3978 goto normal_char;
3979 else
3980 goto normal_backslash;
3981 }
3982
3983#ifdef emacs
3984 /* There is no way to specify the before_dot and after_dot
3985 operators. rms says this is ok. --karl */
3986 case '=':
3987 BUF_PUSH (at_dot);
3988 break;
3989
3990 case 's':
3991 laststart = b;
3992 PATFETCH (c);
3993 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3994 break;
3995
3996 case 'S':
3997 laststart = b;
3998 PATFETCH (c);
3999 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4000 break;
4001#endif /* emacs */
4002
4003
4004 case 'w':
4005 if (syntax & RE_NO_GNU_OPS(((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1)
)
4006 goto normal_char;
4007 laststart = b;
4008 BUF_PUSH (wordchar);
4009 break;
4010
4011
4012 case 'W':
4013 if (syntax & RE_NO_GNU_OPS(((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1)
)
4014 goto normal_char;
4015 laststart = b;
4016 BUF_PUSH (notwordchar);
4017 break;
4018
4019
4020 case '<':
4021 if (syntax & RE_NO_GNU_OPS(((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1)
)
4022 goto normal_char;
4023 BUF_PUSH (wordbeg);
4024 break;
4025
4026 case '>':
4027 if (syntax & RE_NO_GNU_OPS(((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1)
)
4028 goto normal_char;
4029 BUF_PUSH (wordend);
4030 break;
4031
4032 case 'b':
4033 if (syntax & RE_NO_GNU_OPS(((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1)
)
4034 goto normal_char;
4035 BUF_PUSH (wordbound);
4036 break;
4037
4038 case 'B':
4039 if (syntax & RE_NO_GNU_OPS(((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1)
)
4040 goto normal_char;
4041 BUF_PUSH (notwordbound);
4042 break;
4043
4044 case '`':
4045 if (syntax & RE_NO_GNU_OPS(((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1)
)
4046 goto normal_char;
4047 BUF_PUSH (begbuf);
4048 break;
4049
4050 case '\'':
4051 if (syntax & RE_NO_GNU_OPS(((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1)
)
4052 goto normal_char;
4053 BUF_PUSH (endbuf);
4054 break;
4055
4056 case '1': case '2': case '3': case '4': case '5':
4057 case '6': case '7': case '8': case '9':
4058 if (syntax & RE_NO_BK_REFS((((((((((((((((unsigned long int) 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1)
)
4059 goto normal_char;
4060
4061 c1 = c - '0';
4062
4063 if (c1 > regnum)
4064 FREE_STACK_RETURN (REG_ESUBREG);
4065
4066 /* Can't back reference to a subexpression if inside of it. */
4067 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4068 goto normal_char;
4069
4070 laststart = b;
4071 BUF_PUSH_2 (duplicate, c1);
4072 break;
4073
4074
4075 case '+':
4076 case '?':
4077 if (syntax & RE_BK_PLUS_QM(((unsigned long int) 1) << 1))
4078 goto handle_plus;
4079 else
4080 goto normal_backslash;
4081
4082 default:
4083 normal_backslash:
4084 /* You might think it would be useful for \ to mean
4085 not to translate; but if we don't translate it
4086 it will never match anything. */
4087 c = TRANSLATE (c);
4088 goto normal_char;
4089 }
4090 break;
4091
4092
4093 default:
4094 /* Expects the character in `c'. */
4095 normal_char:
4096 /* If no exactn currently being built. */
4097 if (!pending_exact
4098#ifdef WCHAR
4099 /* If last exactn handle binary(or character) and
4100 new exactn handle character(or binary). */
4101 || is_exactn_bin != is_binary[p - 1 - pattern]
4102#endif /* WCHAR */
4103
4104 /* If last exactn not at current position. */
4105 || pending_exact + *pending_exact + 1 != b
4106
4107 /* We have only one byte following the exactn for the count. */
4108 || *pending_exact == (1 << BYTEWIDTH8) - 1
4109
4110 /* If followed by a repetition operator. */
4111 || *p == '*' || *p == '^'
4112 || ((syntax & RE_BK_PLUS_QM(((unsigned long int) 1) << 1))
4113 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4114 : (*p == '+' || *p == '?'))
4115 || ((syntax & RE_INTERVALS(((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1)
)
4116 && ((syntax & RE_NO_BK_BRACES((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1)
)
4117 ? *p == '{'
4118 : (p[0] == '\\' && p[1] == '{'))))
4119 {
4120 /* Start building a new exactn. */
4121
4122 laststart = b;
4123
4124#ifdef WCHAR
4125 /* Is this exactn binary data or character? */
4126 is_exactn_bin = is_binary[p - 1 - pattern];
4127 if (is_exactn_bin)
4128 BUF_PUSH_2 (exactn_bin, 0);
4129 else
4130 BUF_PUSH_2 (exactn, 0);
4131#else
4132 BUF_PUSH_2 (exactn, 0);
4133#endif /* WCHAR */
4134 pending_exact = b - 1;
4135 }
4136
4137 BUF_PUSH (c);
4138 (*pending_exact)++;
4139 break;
4140 } /* switch (c) */
4141 } /* while p != pend */
4142
4143
4144 /* Through the pattern now. */
4145
4146 if (fixup_alt_jump)
4147 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4148
4149 if (!COMPILE_STACK_EMPTY(compile_stack.avail == 0))
4150 FREE_STACK_RETURN (REG_EPAREN);
4151
4152 /* If we don't want backtracking, force success
4153 the first time we reach the end of the compiled pattern. */
4154 if (syntax & RE_NO_POSIX_BACKTRACKING((((((((((((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1)
)
4155 BUF_PUSH (succeed);
4156
4157#ifdef WCHAR
4158 free (pattern);
4159 free (mbs_offset);
4160 free (is_binary);
4161#endif
4162 free (compile_stack.stack);
4163
4164 /* We have succeeded; set the length of the buffer. */
4165#ifdef WCHAR
4166 bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4167#else
4168 bufp->used = b - bufp->buffer;
4169#endif
4170
4171#ifdef DEBUG
4172 if (debug)
4173 {
4174 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4175 PREFIX(print_compiled_pattern) (bufp);
4176 }
4177#endif /* DEBUG */
4178
4179#ifndef MATCH_MAY_ALLOCATE
4180 /* Initialize the failure stack to the largest possible stack. This
4181 isn't necessary unless we're trying to avoid calling alloca in
4182 the search and match routines. */
4183 {
4184 int num_regs = bufp->re_nsub + 1;
4185
4186 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4187 is strictly greater than re_max_failures, the largest possible stack
4188 is 2 * re_max_failures failure points. */
4189 if (fail_stack.size < (2 * re_max_failuresxre_max_failures * MAX_FAILURE_ITEMS(5 * 3 + 4)))
4190 {
4191 fail_stack.size = (2 * re_max_failuresxre_max_failures * MAX_FAILURE_ITEMS(5 * 3 + 4));
4192
4193# ifdef emacs
4194 if (! fail_stack.stack)
4195 fail_stack.stack
4196 = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4197 * sizeof (PREFIX(fail_stack_elt_t)));
4198 else
4199 fail_stack.stack
4200 = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4201 (fail_stack.size
4202 * sizeof (PREFIX(fail_stack_elt_t))));
4203# else /* not emacs */
4204 if (! fail_stack.stack)
4205 fail_stack.stack
4206 = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4207 * sizeof (PREFIX(fail_stack_elt_t)));
4208 else
4209 fail_stack.stack
4210 = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4211 (fail_stack.size
4212 * sizeof (PREFIX(fail_stack_elt_t))));
4213# endif /* not emacs */
4214 }
4215
4216 PREFIX(regex_grow_registers) (num_regs);
4217 }
4218#endif /* not MATCH_MAY_ALLOCATE */
4219
4220 return REG_NOERROR;
4221} /* regex_compile */
4222
4223/* Subroutines for `regex_compile'. */
4224
4225/* Store OP at LOC followed by two-byte integer parameter ARG. */
4226/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4227
4228static void
4229PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg)
4230{
4231 *loc = (UCHAR_T) op;
4232 STORE_NUMBER (loc + 1, arg);
4233}
4234
4235
4236/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4237/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4238
4239static void
4240PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2)
4241{
4242 *loc = (UCHAR_T) op;
4243 STORE_NUMBER (loc + 1, arg1);
4244 STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4245}
4246
4247
4248/* Copy the bytes from LOC to END to open up three bytes of space at LOC
4249 for OP followed by two-byte integer parameter ARG. */
4250/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4251
4252static void
4253PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end)
4254{
4255 register UCHAR_T *pfrom = end;
4256 register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4257
4258 while (pfrom != loc)
4259 *--pto = *--pfrom;
4260
4261 PREFIX(store_op1) (op, loc, arg);
4262}
4263
4264
4265/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4266/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4267
4268static void
4269PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1,
4270 int arg2, UCHAR_T *end)
4271{
4272 register UCHAR_T *pfrom = end;
4273 register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4274
4275 while (pfrom != loc)
4276 *--pto = *--pfrom;
4277
4278 PREFIX(store_op2) (op, loc, arg1, arg2);
4279}
4280
4281
4282/* P points to just after a ^ in PATTERN. Return true if that ^ comes
4283 after an alternative or a begin-subexpression. We assume there is at
4284 least one character before the ^. */
4285
4286static boolean
4287PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p,
4288 reg_syntax_t syntax)
4289{
4290 const CHAR_T *prev = p - 2;
4291 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4292
4293 return
4294 /* After a subexpression? */
4295 (*prev == '(' && (syntax & RE_NO_BK_PARENS(((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
|| prev_prev_backslash))
4296 /* After an alternative? */
4297 || (*prev == '|' && (syntax & RE_NO_BK_VBAR(((((((((((((((((unsigned long int) 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1)
|| prev_prev_backslash));
4298}
4299
4300
4301/* The dual of at_begline_loc_p. This one is for $. We assume there is
4302 at least one character after the $, i.e., `P < PEND'. */
4303
4304static boolean
4305PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend,
4306 reg_syntax_t syntax)
4307{
4308 const CHAR_T *next = p;
4309 boolean next_backslash = *next == '\\';
4310 const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4311
4312 return
4313 /* Before a subexpression? */
4314 (syntax & RE_NO_BK_PARENS(((((((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
? *next == ')'
4315 : next_backslash && next_next && *next_next == ')')
4316 /* Before an alternative? */
4317 || (syntax & RE_NO_BK_VBAR(((((((((((((((((unsigned long int) 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1)
? *next == '|'
4318 : next_backslash && next_next && *next_next == '|');
4319}
4320
4321#else /* not INSIDE_RECURSION */
4322
4323/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4324 false if it's not. */
4325
4326static boolean
4327group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
4328{
4329 int this_element;
4330
4331 for (this_element = compile_stack.avail - 1;
4332 this_element >= 0;
4333 this_element--)
4334 if (compile_stack.stack[this_element].regnum == regnum)
4335 return true1;
4336
4337 return false0;
4338}
4339#endif /* not INSIDE_RECURSION */
4340
4341#ifdef INSIDE_RECURSION
4342
4343#ifdef WCHAR
4344/* This insert space, which size is "num", into the pattern at "loc".
4345 "end" must point the end of the allocated buffer. */
4346static void
4347insert_space (int num, CHAR_T *loc, CHAR_T *end)
4348{
4349 register CHAR_T *pto = end;
4350 register CHAR_T *pfrom = end - num;
4351
4352 while (pfrom >= loc)
4353 *pto-- = *pfrom--;
4354}
4355#endif /* WCHAR */
4356
4357#ifdef WCHAR
4358static reg_errcode_t
4359wcs_compile_range (CHAR_T range_start_char, const CHAR_T **p_ptr,
4360 const CHAR_T *pend, RE_TRANSLATE_TYPEchar * translate,
4361 reg_syntax_t syntax, CHAR_T *b, CHAR_T *char_set)
4362{
4363 const CHAR_T *p = *p_ptr;
4364 CHAR_T range_start, range_end;
4365 reg_errcode_t ret;
4366# ifdef _LIBC
4367 uint32_t nrules;
4368 uint32_t start_val, end_val;
4369# endif
4370 if (p == pend)
4371 return REG_ERANGE;
4372
4373# ifdef _LIBC
4374 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4375 if (nrules != 0)
4376 {
4377 const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4378 _NL_COLLATE_COLLSEQWC);
4379 const unsigned char *extra = (const unsigned char *)
4380 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4381
4382 if (range_start_char < -1)
4383 {
4384 /* range_start is a collating symbol. */
4385 int32_t *wextra;
4386 /* Retreive the index and get collation sequence value. */
4387 wextra = (int32_t*)(extra + char_set[-range_start_char]);
4388 start_val = wextra[1 + *wextra];
4389 }
4390 else
4391 start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4392
4393 end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4394
4395 /* Report an error if the range is empty and the syntax prohibits
4396 this. */
4397 ret = ((syntax & RE_NO_EMPTY_RANGES((((((((((((((((((unsigned long int) 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1)
)
4398 && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4399
4400 /* Insert space to the end of the char_ranges. */
4401 insert_space(2, b - char_set[5] - 2, b - 1);
4402 *(b - char_set[5] - 2) = (wchar_t)start_val;
4403 *(b - char_set[5] - 1) = (wchar_t)end_val;
4404 char_set[4]++; /* ranges_index */
4405 }
4406 else
4407# endif
4408 {
4409 range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4410 range_start_char;
4411 range_end = TRANSLATE (p[0]);
4412 /* Report an error if the range is empty and the syntax prohibits
4413 this. */
4414 ret = ((syntax & RE_NO_EMPTY_RANGES((((((((((((((((((unsigned long int) 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1)
)
4415 && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4416
4417 /* Insert space to the end of the char_ranges. */
4418 insert_space(2, b - char_set[5] - 2, b - 1);
4419 *(b - char_set[5] - 2) = range_start;
4420 *(b - char_set[5] - 1) = range_end;
4421 char_set[4]++; /* ranges_index */
4422 }
4423 /* Have to increment the pointer into the pattern string, so the
4424 caller isn't still at the ending character. */
4425 (*p_ptr)++;
4426
4427 return ret;
4428}
4429#else /* BYTE */
4430/* Read the ending character of a range (in a bracket expression) from the
4431 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4432 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4433 Then we set the translation of all bits between the starting and
4434 ending characters (inclusive) in the compiled pattern B.
4435
4436 Return an error code.
4437
4438 We use these short variable names so we can use the same macros as
4439 `regex_compile' itself. */
4440
4441static reg_errcode_t
4442byte_compile_range (unsigned int range_start_char, const char **p_ptr,
4443 const char *pend, RE_TRANSLATE_TYPEchar * translate,
4444 reg_syntax_t syntax, unsigned char *b)
4445{
4446 unsigned this_char;
4447 const char *p = *p_ptr;
4448 reg_errcode_t ret;
4449# if _LIBC
4450 const unsigned char *collseq;
4451 unsigned int start_colseq;
4452 unsigned int end_colseq;
4453# else
4454 unsigned end_char;
4455# endif
4456
4457 if (p == pend)
4458 return REG_ERANGE;
4459
4460 /* Have to increment the pointer into the pattern string, so the
4461 caller isn't still at the ending character. */
4462 (*p_ptr)++;
4463
4464 /* Report an error if the range is empty and the syntax prohibits this. */
4465 ret = syntax & RE_NO_EMPTY_RANGES((((((((((((((((((unsigned long int) 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1)
? REG_ERANGE : REG_NOERROR;
4466
4467# if _LIBC
4468 collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4469 _NL_COLLATE_COLLSEQMB);
4470
4471 start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4472 end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4473 for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4474 {
4475 unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4476
4477 if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4478 {
4479 SET_LIST_BIT (TRANSLATE (this_char))(b[((unsigned char) (TRANSLATE (this_char))) / 8] |= 1 <<
(((unsigned char) TRANSLATE (this_char)) % 8))
;
4480 ret = REG_NOERROR;
4481 }
4482 }
4483# else
4484 /* Here we see why `this_char' has to be larger than an `unsigned
4485 char' -- we would otherwise go into an infinite loop, since all
4486 characters <= 0xff. */
4487 range_start_char = TRANSLATE (range_start_char);
4488 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4489 and some compilers cast it to int implicitly, so following for_loop
4490 may fall to (almost) infinite loop.
4491 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4492 To avoid this, we cast p[0] to unsigned int and truncate it. */
4493 end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH8) - 1));
4494
4495 for (this_char = range_start_char; this_char <= end_char; ++this_char)
4496 {
4497 SET_LIST_BIT (TRANSLATE (this_char))(b[((unsigned char) (TRANSLATE (this_char))) / 8] |= 1 <<
(((unsigned char) TRANSLATE (this_char)) % 8))
;
4498 ret = REG_NOERROR;
4499 }
4500# endif
4501
4502 return ret;
4503}
4504#endif /* WCHAR */
4505
4506/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4507 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4508 characters can start a string that matches the pattern. This fastmap
4509 is used by re_search to skip quickly over impossible starting points.
4510
4511 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4512 area as BUFP->fastmap.
4513
4514 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4515 the pattern buffer.
4516
4517 Returns 0 if we succeed, -2 if an internal error. */
4518
4519#ifdef WCHAR
4520/* local function for re_compile_fastmap.
4521 truncate wchar_t character to char. */
4522static unsigned char truncate_wchar (CHAR_T c);
4523
4524static unsigned char
4525truncate_wchar (CHAR_T c)
4526{
4527 unsigned char buf[MB_CUR_MAX__mb_cur_max()];
4528 mbstate_t state;
4529 int retval;
4530 memset (&state, '\0', sizeof (state));
4531# ifdef _LIBC
4532 retval = __wcrtomb (buf, c, &state);
4533# else
4534 retval = wcrtomb (buf, c, &state);
4535# endif
4536 return retval > 0 ? buf[0] : (unsigned char) c;
4537}
4538#endif /* WCHAR */
4539
4540static int
4541PREFIX(re_compile_fastmapxre_compile_fastmap) (struct re_pattern_buffer *bufp)
4542{
4543 int j, k;
4544#ifdef MATCH_MAY_ALLOCATE
4545 PREFIX(fail_stack_type) fail_stack;
4546#endif
4547#ifndef REGEX_MALLOC
4548 char *destination;
4549#endif
4550
4551 register char *fastmap = bufp->fastmap;
4552
4553#ifdef WCHAR
4554 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4555 pattern to (char*) in regex_compile. */
4556 UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4557 register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4558#else /* BYTE */
4559 UCHAR_T *pattern = bufp->buffer;
4560 register UCHAR_T *pend = pattern + bufp->used;
4561#endif /* WCHAR */
4562 UCHAR_T *p = pattern;
4563
4564#ifdef REL_ALLOC
4565 /* This holds the pointer to the failure stack, when
4566 it is allocated relocatably. */
4567 fail_stack_elt_t *failure_stack_ptr;
4568#endif
4569
4570 /* Assume that each path through the pattern can be null until
4571 proven otherwise. We set this false at the bottom of switch
4572 statement, to which we get only if a particular path doesn't
4573 match the empty string. */
4574 boolean path_can_be_null = true1;
4575
4576 /* We aren't doing a `succeed_n' to begin with. */
4577 boolean succeed_n_p = false0;
4578
4579 assert (fastmap != NULL && p != NULL);
4580
4581 INIT_FAIL_STACK ();
4582 bzero (fastmap, 1 << BYTEWIDTH)(memset (fastmap, '\0', 1 << 8), (fastmap)); /* Assume nothing's valid. */
4583 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4584 bufp->can_be_null = 0;
4585
4586 while (1)
4587 {
4588 if (p == pend || *p == (UCHAR_T) succeed)
4589 {
4590 /* We have reached the (effective) end of pattern. */
4591 if (!FAIL_STACK_EMPTY ()(fail_stack.avail == 0))
4592 {
4593 bufp->can_be_null |= path_can_be_null;
4594
4595 /* Reset for next path. */
4596 path_can_be_null = true1;
4597
4598 p = fail_stack.stack[--fail_stack.avail].pointer;
4599
4600 continue;
4601 }
4602 else
4603 break;
4604 }
4605
4606 /* We should never be about to go beyond the end of the pattern. */
4607 assert (p < pend);
4608
4609 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)((re_opcode_t) *p++))
4610 {
4611
4612 /* I guess the idea here is to simply not bother with a fastmap
4613 if a backreference is used, since it's too hard to figure out
4614 the fastmap for the corresponding group. Setting
4615 `can_be_null' stops `re_search_2' from using the fastmap, so
4616 that is all we do. */
4617 case duplicate:
4618 bufp->can_be_null = 1;
4619 goto done;
4620
4621
4622 /* Following are the cases which match a character. These end
4623 with `break'. */
4624
4625#ifdef WCHAR
4626 case exactn:
4627 fastmap[truncate_wchar(p[1])] = 1;
4628 break;
4629#else /* BYTE */
4630 case exactn:
4631 fastmap[p[1]] = 1;
4632 break;
4633#endif /* WCHAR */
4634#ifdef MBS_SUPPORT
4635 case exactn_bin:
4636 fastmap[p[1]] = 1;
4637 break;
4638#endif
4639
4640#ifdef WCHAR
4641 /* It is hard to distinguish fastmap from (multi byte) characters
4642 which depends on current locale. */
4643 case charset:
4644 case charset_not:
4645 case wordchar:
4646 case notwordchar:
4647 bufp->can_be_null = 1;
4648 goto done;
4649#else /* BYTE */
4650 case charset:
4651 for (j = *p++ * BYTEWIDTH8 - 1; j >= 0; j--)
4652 if (p[j / BYTEWIDTH8] & (1 << (j % BYTEWIDTH8)))
4653 fastmap[j] = 1;
4654 break;
4655
4656
4657 case charset_not:
4658 /* Chars beyond end of map must be allowed. */
4659 for (j = *p * BYTEWIDTH8; j < (1 << BYTEWIDTH8); j++)
4660 fastmap[j] = 1;
4661
4662 for (j = *p++ * BYTEWIDTH8 - 1; j >= 0; j--)
4663 if (!(p[j / BYTEWIDTH8] & (1 << (j % BYTEWIDTH8))))
4664 fastmap[j] = 1;
4665 break;
4666
4667
4668 case wordchar:
4669 for (j = 0; j < (1 << BYTEWIDTH8); j++)
4670 if (SYNTAX (j)re_syntax_table[(unsigned char) (j)] == Sword1)
4671 fastmap[j] = 1;
4672 break;
4673
4674
4675 case notwordchar:
4676 for (j = 0; j < (1 << BYTEWIDTH8); j++)
4677 if (SYNTAX (j)re_syntax_table[(unsigned char) (j)] != Sword1)
4678 fastmap[j] = 1;
4679 break;
4680#endif /* WCHAR */
4681
4682 case anychar:
4683 {
4684 int fastmap_newline = fastmap['\n'];
4685
4686 /* `.' matches anything ... */
4687 for (j = 0; j < (1 << BYTEWIDTH8); j++)
4688 fastmap[j] = 1;
4689
4690 /* ... except perhaps newline. */
4691 if (!(bufp->syntax & RE_DOT_NEWLINE((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1)
))
4692 fastmap['\n'] = fastmap_newline;
4693
4694 /* Return if we have already set `can_be_null'; if we have,
4695 then the fastmap is irrelevant. Something's wrong here. */
4696 else if (bufp->can_be_null)
4697 goto done;
4698
4699 /* Otherwise, have to check alternative paths. */
4700 break;
4701 }
4702
4703#ifdef emacs
4704 case syntaxspec:
4705 k = *p++;
4706 for (j = 0; j < (1 << BYTEWIDTH8); j++)
4707 if (SYNTAX (j)re_syntax_table[(unsigned char) (j)] == (enum syntaxcode) k)
4708 fastmap[j] = 1;
4709 break;
4710
4711
4712 case notsyntaxspec:
4713 k = *p++;
4714 for (j = 0; j < (1 << BYTEWIDTH8); j++)
4715 if (SYNTAX (j)re_syntax_table[(unsigned char) (j)] != (enum syntaxcode) k)
4716 fastmap[j] = 1;
4717 break;
4718
4719
4720 /* All cases after this match the empty string. These end with
4721 `continue'. */
4722
4723
4724 case before_dot:
4725 case at_dot:
4726 case after_dot:
4727 continue;
4728#endif /* emacs */
4729
4730
4731 case no_op:
4732 case begline:
4733 case endline:
4734 case begbuf:
4735 case endbuf:
4736 case wordbound:
4737 case notwordbound:
4738 case wordbeg:
4739 case wordend:
4740 case push_dummy_failure:
4741 continue;
4742
4743
4744 case jump_n:
4745 case pop_failure_jump:
4746 case maybe_pop_jump:
4747 case jump:
4748 case jump_past_alt:
4749 case dummy_failure_jump:
4750 EXTRACT_NUMBER_AND_INCR (j, p);
4751 p += j;
4752 if (j > 0)
4753 continue;
4754
4755 /* Jump backward implies we just went through the body of a
4756 loop and matched nothing. Opcode jumped to should be
4757 `on_failure_jump' or `succeed_n'. Just treat it like an
4758 ordinary jump. For a * loop, it has pushed its failure
4759 point already; if so, discard that as redundant. */
4760 if ((re_opcode_t) *p != on_failure_jump
4761 && (re_opcode_t) *p != succeed_n)
4762 continue;
4763
4764 p++;
4765 EXTRACT_NUMBER_AND_INCR (j, p);
4766 p += j;
4767
4768 /* If what's on the stack is where we are now, pop it. */
4769 if (!FAIL_STACK_EMPTY ()(fail_stack.avail == 0)
4770 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4771 fail_stack.avail--;
4772
4773 continue;
4774
4775
4776 case on_failure_jump:
4777 case on_failure_keep_string_jump:
4778 handle_on_failure_jump:
4779 EXTRACT_NUMBER_AND_INCR (j, p);
4780
4781 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4782 end of the pattern. We don't want to push such a point,
4783 since when we restore it above, entering the switch will
4784 increment `p' past the end of the pattern. We don't need
4785 to push such a point since we obviously won't find any more
4786 fastmap entries beyond `pend'. Such a pattern can match
4787 the null string, though. */
4788 if (p + j < pend)
4789 {
4790 if (!PUSH_PATTERN_OP (p + j, fail_stack))
4791 {
4792 RESET_FAIL_STACK ();
4793 return -2;
4794 }
4795 }
4796 else
4797 bufp->can_be_null = 1;
4798
4799 if (succeed_n_p)
4800 {
4801 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
4802 succeed_n_p = false0;
4803 }
4804
4805 continue;
4806
4807
4808 case succeed_n:
4809 /* Get to the number of times to succeed. */
4810 p += OFFSET_ADDRESS_SIZE;
4811
4812 /* Increment p past the n for when k != 0. */
4813 EXTRACT_NUMBER_AND_INCR (k, p);
4814 if (k == 0)
4815 {
4816 p -= 2 * OFFSET_ADDRESS_SIZE;
4817 succeed_n_p = true1; /* Spaghetti code alert. */
4818 goto handle_on_failure_jump;
4819 }
4820 continue;
4821
4822
4823 case set_number_at:
4824 p += 2 * OFFSET_ADDRESS_SIZE;
4825 continue;
4826
4827
4828 case start_memory:
4829 case stop_memory:
4830 p += 2;
4831 continue;
4832
4833
4834 default:
4835 abort (); /* We have listed all the cases. */
4836 } /* switch *p++ */
4837
4838 /* Getting here means we have found the possible starting
4839 characters for one path of the pattern -- and that the empty
4840 string does not match. We need not follow this path further.
4841 Instead, look at the next alternative (remembered on the
4842 stack), or quit if no more. The test at the top of the loop
4843 does these things. */
4844 path_can_be_null = false0;
4845 p = pend;
4846 } /* while p */
4847
4848 /* Set `can_be_null' for the last path (also the first path, if the
4849 pattern is empty). */
4850 bufp->can_be_null |= path_can_be_null;
4851
4852 done:
4853 RESET_FAIL_STACK ();
4854 return 0;
4855}
4856
4857#else /* not INSIDE_RECURSION */
4858
4859int
4860re_compile_fastmapxre_compile_fastmap (struct re_pattern_buffer *bufp)
4861{
4862# ifdef MBS_SUPPORT
4863 if (MB_CUR_MAX__mb_cur_max() != 1)
4864 return wcs_re_compile_fastmap(bufp);
4865 else
4866# endif
4867 return byte_re_compile_fastmap(bufp);
4868} /* re_compile_fastmap */
4869#ifdef _LIBC
4870weak_alias (__re_compile_fastmap, re_compile_fastmapxre_compile_fastmap)
4871#endif
4872
4873
4874/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4875 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4876 this memory for recording register information. STARTS and ENDS
4877 must be allocated using the malloc library routine, and must each
4878 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4879
4880 If NUM_REGS == 0, then subsequent matches should allocate their own
4881 register data.
4882
4883 Unless this function is called, the first search or match using
4884 PATTERN_BUFFER will allocate its own register data, without
4885 freeing the old data. */
4886
4887void
4888re_set_registersxre_set_registers (struct re_pattern_buffer *bufp,
4889 struct re_registers *regs, unsigned num_regs,
4890 regoff_t *starts, regoff_t *ends)
4891{
4892 if (num_regs)
4893 {
4894 bufp->regs_allocated = REGS_REALLOCATE1;
4895 regs->num_regs = num_regs;
4896 regs->start = starts;
4897 regs->end = ends;
4898 }
4899 else
4900 {
4901 bufp->regs_allocated = REGS_UNALLOCATED0;
4902 regs->num_regs = 0;
4903 regs->start = regs->end = (regoff_t *) 0;
4904 }
4905}
4906#ifdef _LIBC
4907weak_alias (__re_set_registers, re_set_registersxre_set_registers)
4908#endif
4909
4910/* Searching routines. */
4911
4912/* Like re_search_2, below, but only one string is specified, and
4913 doesn't let you say where to stop matching. */
4914
4915int
4916re_searchxre_search (struct re_pattern_buffer *bufp, const char *string, int size,
4917 int startpos, int range, struct re_registers *regs)
4918{
4919 return re_search_2xre_search_2 (bufp, NULL((void*)0), 0, string, size, startpos, range,
4920 regs, size);
4921}
4922#ifdef _LIBC
4923weak_alias (__re_search, re_searchxre_search)
4924#endif
4925
4926
4927/* Using the compiled pattern in BUFP->buffer, first tries to match the
4928 virtual concatenation of STRING1 and STRING2, starting first at index
4929 STARTPOS, then at STARTPOS + 1, and so on.
4930
4931 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4932
4933 RANGE is how far to scan while trying to match. RANGE = 0 means try
4934 only at STARTPOS; in general, the last start tried is STARTPOS +
4935 RANGE.
4936
4937 In REGS, return the indices of the virtual concatenation of STRING1
4938 and STRING2 that matched the entire BUFP->buffer and its contained
4939 subexpressions.
4940
4941 Do not consider matching one past the index STOP in the virtual
4942 concatenation of STRING1 and STRING2.
4943
4944 We return either the position in the strings at which the match was
4945 found, -1 if no match, or -2 if error (such as failure
4946 stack overflow). */
4947
4948int
4949re_search_2xre_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
4950 const char *string2, int size2, int startpos, int range,
4951 struct re_registers *regs, int stop)
4952{
4953# ifdef MBS_SUPPORT
4954 if (MB_CUR_MAX__mb_cur_max() != 1)
4955 return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4956 range, regs, stop);
4957 else
4958# endif
4959 return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4960 range, regs, stop);
4961} /* re_search_2 */
4962#ifdef _LIBC
4963weak_alias (__re_search_2, re_search_2xre_search_2)
4964#endif
4965
4966#endif /* not INSIDE_RECURSION */
4967
4968#ifdef INSIDE_RECURSION
4969
4970#ifdef MATCH_MAY_ALLOCATE
4971# define FREE_VAR(var) if (var) REGEX_FREE (var)((void)0); var = NULL((void*)0)
4972#else
4973# define FREE_VAR(var) if (var) free (var); var = NULL((void*)0)
4974#endif
4975
4976#ifdef WCHAR
4977# define MAX_ALLOCA_SIZE 2000
4978
4979# define FREE_WCS_BUFFERS() \
4980 do { \
4981 if (size1 > MAX_ALLOCA_SIZE) \
4982 { \
4983 free (wcs_string1); \
4984 free (mbs_offset1); \
4985 } \
4986 else \
4987 { \
4988 FREE_VAR (wcs_string1); \
4989 FREE_VAR (mbs_offset1); \
4990 } \
4991 if (size2 > MAX_ALLOCA_SIZE) \
4992 { \
4993 free (wcs_string2); \
4994 free (mbs_offset2); \
4995 } \
4996 else \
4997 { \
4998 FREE_VAR (wcs_string2); \
4999 FREE_VAR (mbs_offset2); \
5000 } \
5001 } while (0)
5002
5003#endif
5004
5005
5006static int
5007PREFIX(re_search_2xre_search_2) (struct re_pattern_buffer *bufp, const char *string1,
5008 int size1, const char *string2, int size2,
5009 int startpos, int range,
5010 struct re_registers *regs, int stop)
5011{
5012 int val;
5013 register char *fastmap = bufp->fastmap;
5014 register RE_TRANSLATE_TYPEchar * translate = bufp->translate;
5015 int total_size = size1 + size2;
5016 int endpos = startpos + range;
5017#ifdef WCHAR
5018 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5019 wchar_t *wcs_string1 = NULL((void*)0), *wcs_string2 = NULL((void*)0);
5020 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5021 int wcs_size1 = 0, wcs_size2 = 0;
5022 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5023 int *mbs_offset1 = NULL((void*)0), *mbs_offset2 = NULL((void*)0);
5024 /* They hold whether each wchar_t is binary data or not. */
5025 char *is_binary = NULL((void*)0);
5026#endif /* WCHAR */
5027
5028 /* Check for out-of-range STARTPOS. */
5029 if (startpos
8.1
'startpos' is >= 0
8.1
'startpos' is >= 0
< 0 || startpos
8.2
'startpos' is <= 'total_size'
8.2
'startpos' is <= 'total_size'
> total_size)
9
Taking false branch
5030 return -1;
5031
5032 /* Fix up RANGE if it might eventually take us outside
5033 the virtual concatenation of STRING1 and STRING2.
5034 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5035 if (endpos
9.1
'endpos' is >= 0
9.1
'endpos' is >= 0
< 0)
10
Taking false branch
5036 range = 0 - startpos;
5037 else if (endpos
10.1
'endpos' is <= 'total_size'
10.1
'endpos' is <= 'total_size'
> total_size)
11
Taking false branch
5038 range = total_size - startpos;
5039
5040 /* If the search isn't to be a backwards one, don't waste time in a
5041 search for a pattern that must be anchored. */
5042 if (bufp->used > 0 && range > 0
12
Assuming field 'used' is <= 0
5043 && ((re_opcode_t) bufp->buffer[0] == begbuf
5044 /* `begline' is like `begbuf' if it cannot match at newlines. */
5045 || ((re_opcode_t) bufp->buffer[0] == begline
5046 && !bufp->newline_anchor)))
5047 {
5048 if (startpos > 0)
5049 return -1;
5050 else
5051 range = 1;
5052 }
5053
5054#ifdef emacs
5055 /* In a forward search for something that starts with \=.
5056 don't keep searching past point. */
5057 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5058 {
5059 range = PT - startpos;
5060 if (range <= 0)
5061 return -1;
5062 }
5063#endif /* emacs */
5064
5065 /* Update the fastmap now if not correct already. */
5066 if (fastmap && !bufp->fastmap_accurate)
13
Assuming 'fastmap' is non-null
14
Assuming field 'fastmap_accurate' is not equal to 0
15
Taking false branch
5067 if (re_compile_fastmapxre_compile_fastmap (bufp) == -2)
5068 return -2;
5069
5070#ifdef WCHAR
5071 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5072 fill them with converted string. */
5073 if (size1 != 0)
5074 {
5075 if (size1 > MAX_ALLOCA_SIZE)
5076 {
5077 wcs_string1 = TALLOC (size1 + 1, CHAR_T)((CHAR_T *) malloc ((size1 + 1) * sizeof (CHAR_T)));
5078 mbs_offset1 = TALLOC (size1 + 1, int)((int *) malloc ((size1 + 1) * sizeof (int)));
5079 is_binary = TALLOC (size1 + 1, char)((char *) malloc ((size1 + 1) * sizeof (char)));
5080 }
5081 else
5082 {
5083 wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T)((CHAR_T *) __builtin_alloca((size1 + 1) * sizeof (CHAR_T)));
5084 mbs_offset1 = REGEX_TALLOC (size1 + 1, int)((int *) __builtin_alloca((size1 + 1) * sizeof (int)));
5085 is_binary = REGEX_TALLOC (size1 + 1, char)((char *) __builtin_alloca((size1 + 1) * sizeof (char)));
5086 }
5087 if (!wcs_string1 || !mbs_offset1 || !is_binary)
5088 {
5089 if (size1 > MAX_ALLOCA_SIZE)
5090 {
5091 free (wcs_string1);
5092 free (mbs_offset1);
5093 free (is_binary);
5094 }
5095 else
5096 {
5097 FREE_VAR (wcs_string1);
5098 FREE_VAR (mbs_offset1);
5099 FREE_VAR (is_binary);
5100 }
5101 return -2;
5102 }
5103 wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5104 mbs_offset1, is_binary);
5105 wcs_string1[wcs_size1] = L'\0'; /* for a sentinel */
5106 if (size1 > MAX_ALLOCA_SIZE)
5107 free (is_binary);
5108 else
5109 FREE_VAR (is_binary);
5110 }
5111 if (size2 != 0)
5112 {
5113 if (size2 > MAX_ALLOCA_SIZE)
5114 {
5115 wcs_string2 = TALLOC (size2 + 1, CHAR_T)((CHAR_T *) malloc ((size2 + 1) * sizeof (CHAR_T)));
5116 mbs_offset2 = TALLOC (size2 + 1, int)((int *) malloc ((size2 + 1) * sizeof (int)));
5117 is_binary = TALLOC (size2 + 1, char)((char *) malloc ((size2 + 1) * sizeof (char)));
5118 }
5119 else
5120 {
5121 wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T)((CHAR_T *) __builtin_alloca((size2 + 1) * sizeof (CHAR_T)));
5122 mbs_offset2 = REGEX_TALLOC (size2 + 1, int)((int *) __builtin_alloca((size2 + 1) * sizeof (int)));
5123 is_binary = REGEX_TALLOC (size2 + 1, char)((char *) __builtin_alloca((size2 + 1) * sizeof (char)));
5124 }
5125 if (!wcs_string2 || !mbs_offset2 || !is_binary)
5126 {
5127 FREE_WCS_BUFFERS ();
5128 if (size2 > MAX_ALLOCA_SIZE)
5129 free (is_binary);
5130 else
5131 FREE_VAR (is_binary);
5132 return -2;
5133 }
5134 wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5135 mbs_offset2, is_binary);
5136 wcs_string2[wcs_size2] = L'\0'; /* for a sentinel */
5137 if (size2 > MAX_ALLOCA_SIZE)
5138 free (is_binary);
5139 else
5140 FREE_VAR (is_binary);
5141 }
5142#endif /* WCHAR */
5143
5144
5145 /* Loop through the string, looking for a place to start matching. */
5146 for (;;)
16
Loop condition is true. Entering loop body
34
Loop condition is true. Entering loop body
5147 {
5148 /* If a fastmap is supplied, skip quickly over characters that
5149 cannot be the start of a match. If the pattern can match the
5150 null string, however, we don't need to skip characters; we want
5151 the first null string. */
5152 if (fastmap
16.1
'fastmap' is non-null
34.1
'fastmap' is non-null
16.1
'fastmap' is non-null
34.1
'fastmap' is non-null
&& startpos < total_size && !bufp->can_be_null)
17
Assuming 'startpos' is < 'total_size'
18
Assuming field 'can_be_null' is 0
19
Taking true branch
35
Assuming 'startpos' is < 'total_size'
36
Assuming field 'can_be_null' is 0
37
Taking true branch
5153 {
5154 if (range
19.1
'range' is > 0
19.1
'range' is > 0
> 0
) /* Searching forwards. */
20
Taking true branch
38
Assuming 'range' is > 0
39
Taking true branch
5155 {
5156 register const char *d;
5157 register int lim = 0;
5158 int irange = range;
5159
5160 if (startpos
20.1
'startpos' is >= 'size1'
20.1
'startpos' is >= 'size1'
< size1
&& startpos + range >= size1)
40
Assuming 'startpos' is < 'size1'
41
Assuming the condition is false
42
Taking false branch
5161 lim = range - (size1 - startpos);
5162
5163 d = (startpos
20.2
'startpos' is >= 'size1'
42.1
'startpos' is < 'size1'
20.2
'startpos' is >= 'size1'
42.1
'startpos' is < 'size1'
>= size1 ? string2 - size1 : string1) + startpos;
21
'?' condition is true
43
'?' condition is false
5164
5165 /* Written out as an if-else to avoid testing `translate'
5166 inside the loop. */
5167 if (translate
43.1
'translate' is non-null
43.1
'translate' is non-null
)
22
Assuming 'translate' is non-null
23
Taking true branch
44
Taking true branch
5168 while (range
23.1
'range' is > 'lim'
44.1
'range' is > 'lim'
23.1
'range' is > 'lim'
44.1
'range' is > 'lim'
> lim
24
Loop condition is true. Entering loop body
25
Assuming 'range' is > 'lim'
26
Loop condition is false. Execution continues on line 5176
5169 && !fastmap[(unsigned char)
5170 translate[(unsigned char) *d++]])
45
Null pointer value stored to 'd'
46
Dereference of null pointer
5171 range--;
5172 else
5173 while (range > lim && !fastmap[(unsigned char) *d++])
5174 range--;
5175
5176 startpos += irange - range;
5177 }
5178 else /* Searching backwards. */
5179 {
5180 register CHAR_T c = (size1 == 0 || startpos >= size1
5181 ? string2[startpos - size1]
5182 : string1[startpos]);
5183
5184 if (!fastmap[(unsigned char) TRANSLATE (c)])
5185 goto advance;
5186 }
5187 }
5188
5189 /* If can't match the null string, and that's all we have left, fail. */
5190 if (range
26.1
'range' is >= 0
26.1
'range' is >= 0
>= 0 && startpos == total_size && fastmap
27
Assuming 'startpos' is not equal to 'total_size'
5191 && !bufp->can_be_null)
5192 {
5193#ifdef WCHAR
5194 FREE_WCS_BUFFERS ();
5195#endif
5196 return -1;
5197 }
5198
5199#ifdef WCHAR
5200 val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5201 size2, startpos, regs, stop,
5202 wcs_string1, wcs_size1,
5203 wcs_string2, wcs_size2,
5204 mbs_offset1, mbs_offset2);
5205#else /* BYTE */
5206 val = byte_re_match_2_internal (bufp, string1, size1, string2,
5207 size2, startpos, regs, stop);
5208#endif /* BYTE */
5209
5210#ifndef REGEX_MALLOC
5211# ifdef C_ALLOCA
5212 alloca (0)__builtin_alloca(0);
5213# endif
5214#endif
5215
5216 if (val >= 0)
28
Assuming 'val' is < 0
29
Taking false branch
5217 {
5218#ifdef WCHAR
5219 FREE_WCS_BUFFERS ();
5220#endif
5221 return startpos;
5222 }
5223
5224 if (val == -2)
30
Assuming the condition is false
31
Taking false branch
5225 {
5226#ifdef WCHAR
5227 FREE_WCS_BUFFERS ();
5228#endif
5229 return -2;
5230 }
5231
5232 advance:
5233 if (!range
31.1
'range' is not equal to 0
31.1
'range' is not equal to 0
)
32
Taking false branch
5234 break;
5235 else if (range
32.1
'range' is > 0
32.1
'range' is > 0
> 0)
33
Taking true branch
5236 {
5237 range--;
5238 startpos++;
5239 }
5240 else
5241 {
5242 range++;
5243 startpos--;
5244 }
5245 }
5246#ifdef WCHAR
5247 FREE_WCS_BUFFERS ();
5248#endif
5249 return -1;
5250}
5251
5252#ifdef WCHAR
5253/* This converts PTR, a pointer into one of the search wchar_t strings
5254 `string1' and `string2' into an multibyte string offset from the
5255 beginning of that string. We use mbs_offset to optimize.
5256 See convert_mbs_to_wcs. */
5257# define POINTER_TO_OFFSET(ptr) \
5258 (FIRST_STRING_P (ptr)(size1 && string1 <= (ptr) && (ptr) <= string1
+ size1)
\
5259 ? ((regoff_t)(mbs_offset1 != NULL((void*)0)? mbs_offset1[(ptr)-string1] : 0)) \
5260 : ((regoff_t)((mbs_offset2 != NULL((void*)0)? mbs_offset2[(ptr)-string2] : 0) \
5261 + csize1)))
5262#else /* BYTE */
5263/* This converts PTR, a pointer into one of the search strings `string1'
5264 and `string2' into an offset from the beginning of that string. */
5265# define POINTER_TO_OFFSET(ptr) \
5266 (FIRST_STRING_P (ptr)(size1 && string1 <= (ptr) && (ptr) <= string1
+ size1)
\
5267 ? ((regoff_t) ((ptr) - string1)) \
5268 : ((regoff_t) ((ptr) - string2 + size1)))
5269#endif /* WCHAR */
5270
5271/* Macros for dealing with the split strings in re_match_2. */
5272
5273#define MATCHING_IN_FIRST_STRING(dend == end_match_1) (dend == end_match_1)
5274
5275/* Call before fetching a character with *d. This switches over to
5276 string2 if necessary. */
5277#define PREFETCH() \
5278 while (d == dend) \
5279 { \
5280 /* End of string2 => fail. */ \
5281 if (dend == end_match_2) \
5282 goto fail; \
5283 /* End of string1 => advance to string2. */ \
5284 d = string2; \
5285 dend = end_match_2; \
5286 }
5287
5288/* Test if at very beginning or at very end of the virtual concatenation
5289 of `string1' and `string2'. If only one string, it's `string2'. */
5290#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5291#define AT_STRINGS_END(d) ((d) == end2)
5292
5293
5294/* Test if D points to a character which is word-constituent. We have
5295 two special cases to check for: if past the end of string1, look at
5296 the first character in string2; and if before the beginning of
5297 string2, look at the last character in string1. */
5298#ifdef WCHAR
5299/* Use internationalized API instead of SYNTAX. */
5300# define WORDCHAR_P(d) \
5301 (iswalnum ((wint_t)((d) == end1 ? *string2 \
5302 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5303 || ((d) == end1 ? *string2 \
5304 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5305#else /* BYTE */
5306# define WORDCHAR_P(d) \
5307 (SYNTAX ((d) == end1 ? *string2 \re_syntax_table[(unsigned char) ((d) == end1 ? *string2 : (d)
== string2 - 1 ? *(end1 - 1) : *(d))]
5308 : (d) == string2 - 1 ? *(end1 - 1) : *(d))re_syntax_table[(unsigned char) ((d) == end1 ? *string2 : (d)
== string2 - 1 ? *(end1 - 1) : *(d))]
\
5309 == Sword1)
5310#endif /* WCHAR */
5311
5312/* Disabled due to a compiler bug -- see comment at case wordbound */
5313#if 0
5314/* Test if the character before D and the one at D differ with respect
5315 to being word-constituent. */
5316#define AT_WORD_BOUNDARY(d) \
5317 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5318 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5319#endif
5320
5321/* Free everything we malloc. */
5322#ifdef MATCH_MAY_ALLOCATE
5323# ifdef WCHAR
5324# define FREE_VARIABLES() \
5325 do { \
5326 REGEX_FREE_STACK (fail_stack.stack); \
5327 FREE_VAR (regstart); \
5328 FREE_VAR (regend); \
5329 FREE_VAR (old_regstart); \
5330 FREE_VAR (old_regend); \
5331 FREE_VAR (best_regstart); \
5332 FREE_VAR (best_regend); \
5333 FREE_VAR (reg_info); \
5334 FREE_VAR (reg_dummy); \
5335 FREE_VAR (reg_info_dummy); \
5336 if (!cant_free_wcs_buf) \
5337 { \
5338 FREE_VAR (string1); \
5339 FREE_VAR (string2); \
5340 FREE_VAR (mbs_offset1); \
5341 FREE_VAR (mbs_offset2); \
5342 } \
5343 } while (0)
5344# else /* BYTE */
5345# define FREE_VARIABLES() \
5346 do { \
5347 REGEX_FREE_STACK (fail_stack.stack); \
5348 FREE_VAR (regstart); \
5349 FREE_VAR (regend); \
5350 FREE_VAR (old_regstart); \
5351 FREE_VAR (old_regend); \
5352 FREE_VAR (best_regstart); \
5353 FREE_VAR (best_regend); \
5354 FREE_VAR (reg_info); \
5355 FREE_VAR (reg_dummy); \
5356 FREE_VAR (reg_info_dummy); \
5357 } while (0)
5358# endif /* WCHAR */
5359#else
5360# ifdef WCHAR
5361# define FREE_VARIABLES() \
5362 do { \
5363 if (!cant_free_wcs_buf) \
5364 { \
5365 FREE_VAR (string1); \
5366 FREE_VAR (string2); \
5367 FREE_VAR (mbs_offset1); \
5368 FREE_VAR (mbs_offset2); \
5369 } \
5370 } while (0)
5371# else /* BYTE */
5372# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5373# endif /* WCHAR */
5374#endif /* not MATCH_MAY_ALLOCATE */
5375
5376/* These values must meet several constraints. They must not be valid
5377 register values; since we have a limit of 255 registers (because
5378 we use only one byte in the pattern for the register number), we can
5379 use numbers larger than 255. They must differ by 1, because of
5380 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5381 be larger than the value for the highest register, so we do not try
5382 to actually save any registers when none are active. */
5383#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH8)
5384#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5385
5386#else /* not INSIDE_RECURSION */
5387/* Matching routines. */
5388
5389#ifndef emacs /* Emacs never uses this. */
5390/* re_match is like re_match_2 except it takes only a single string. */
5391
5392int
5393re_matchxre_match (struct re_pattern_buffer *bufp, const char *string,
5394 int size, int pos, struct re_registers *regs)
5395{
5396 int result;
5397# ifdef MBS_SUPPORT
5398 if (MB_CUR_MAX__mb_cur_max() != 1)
5399 result = wcs_re_match_2_internal (bufp, NULL((void*)0), 0, string, size,
5400 pos, regs, size,
5401 NULL((void*)0), 0, NULL((void*)0), 0, NULL((void*)0), NULL((void*)0));
5402 else
5403# endif
5404 result = byte_re_match_2_internal (bufp, NULL((void*)0), 0, string, size,
5405 pos, regs, size);
5406# ifndef REGEX_MALLOC
5407# ifdef C_ALLOCA
5408 alloca (0)__builtin_alloca(0);
5409# endif
5410# endif
5411 return result;
5412}
5413# ifdef _LIBC
5414weak_alias (__re_match, re_matchxre_match)
5415# endif
5416#endif /* not emacs */
5417
5418#endif /* not INSIDE_RECURSION */
5419
5420#ifdef INSIDE_RECURSION
5421static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p,
5422 UCHAR_T *end,
5423 PREFIX(register_info_type) *reg_info);
5424static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p,
5425 UCHAR_T *end,
5426 PREFIX(register_info_type) *reg_info);
5427static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p,
5428 UCHAR_T *end,
5429 PREFIX(register_info_type) *reg_info);
5430static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
5431 int len, char *translate);
5432#else /* not INSIDE_RECURSION */
5433
5434/* re_match_2 matches the compiled pattern in BUFP against the
5435 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5436 and SIZE2, respectively). We start matching at POS, and stop
5437 matching at STOP.
5438
5439 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5440 store offsets for the substring each group matched in REGS. See the
5441 documentation for exactly how many groups we fill.
5442
5443 We return -1 if no match, -2 if an internal error (such as the
5444 failure stack overflowing). Otherwise, we return the length of the
5445 matched substring. */
5446
5447int
5448re_match_2xre_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
5449 const char *string2, int size2, int pos,
5450 struct re_registers *regs, int stop)
5451{
5452 int result;
5453# ifdef MBS_SUPPORT
5454 if (MB_CUR_MAX__mb_cur_max() != 1)
5455 result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5456 pos, regs, stop,
5457 NULL((void*)0), 0, NULL((void*)0), 0, NULL((void*)0), NULL((void*)0));
5458 else
5459# endif
5460 result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5461 pos, regs, stop);
5462
5463#ifndef REGEX_MALLOC
5464# ifdef C_ALLOCA
5465 alloca (0)__builtin_alloca(0);
5466# endif
5467#endif
5468 return result;
5469}
5470#ifdef _LIBC
5471weak_alias (__re_match_2, re_match_2xre_match_2)
5472#endif
5473
5474#endif /* not INSIDE_RECURSION */
5475
5476#ifdef INSIDE_RECURSION
5477
5478#ifdef WCHAR
5479static int count_mbs_length (int *, int);
5480
5481/* This check the substring (from 0, to length) of the multibyte string,
5482 to which offset_buffer correspond. And count how many wchar_t_characters
5483 the substring occupy. We use offset_buffer to optimization.
5484 See convert_mbs_to_wcs. */
5485
5486static int
5487count_mbs_length(int *offset_buffer, int length)
5488{
5489 int upper, lower;
5490
5491 /* Check whether the size is valid. */
5492 if (length < 0)
5493 return -1;
5494
5495 if (offset_buffer == NULL((void*)0))
5496 return 0;
5497
5498 /* If there are no multibyte character, offset_buffer[i] == i.
5499 Optmize for this case. */
5500 if (offset_buffer[length] == length)
5501 return length;
5502
5503 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5504 upper = length;
5505 lower = 0;
5506
5507 while (true1)
5508 {
5509 int middle = (lower + upper) / 2;
5510 if (middle == lower || middle == upper)
5511 break;
5512 if (offset_buffer[middle] > length)
5513 upper = middle;
5514 else if (offset_buffer[middle] < length)
5515 lower = middle;
5516 else
5517 return middle;
5518 }
5519
5520 return -1;
5521}
5522#endif /* WCHAR */
5523
5524/* This is a separate function so that we can force an alloca cleanup
5525 afterwards. */
5526#ifdef WCHAR
5527static int
5528wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
5529 const char *cstring1, int csize1,
5530 const char *cstring2, int csize2,
5531 int pos,
5532 struct re_registers *regs,
5533 int stop,
5534 /* string1 == string2 == NULL means string1/2, size1/2 and
5535 mbs_offset1/2 need seting up in this function. */
5536 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5537 wchar_t *string1, int size1,
5538 wchar_t *string2, int size2,
5539 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5540 int *mbs_offset1, int *mbs_offset2)
5541#else /* BYTE */
5542static int
5543byte_re_match_2_internal (struct re_pattern_buffer *bufp,
5544 const char *string1, int size1,
5545 const char *string2, int size2,
5546 int pos,
5547 struct re_registers *regs, int stop)
5548#endif /* BYTE */
5549{
5550 /* General temporaries. */
5551 int mcnt;
5552 UCHAR_T *p1;
5553#ifdef WCHAR
5554 /* They hold whether each wchar_t is binary data or not. */
5555 char *is_binary = NULL((void*)0);
5556 /* If true, we can't free string1/2, mbs_offset1/2. */
5557 int cant_free_wcs_buf = 1;
5558#endif /* WCHAR */
5559
5560 /* Just past the end of the corresponding string. */
5561 const CHAR_T *end1, *end2;
5562
5563 /* Pointers into string1 and string2, just past the last characters in
5564 each to consider matching. */
5565 const CHAR_T *end_match_1, *end_match_2;
5566
5567 /* Where we are in the data, and the end of the current string. */
5568 const CHAR_T *d, *dend;
5569
5570 /* Where we are in the pattern, and the end of the pattern. */
5571#ifdef WCHAR
5572 UCHAR_T *pattern, *p;
5573 register UCHAR_T *pend;
5574#else /* BYTE */
5575 UCHAR_T *p = bufp->buffer;
5576 register UCHAR_T *pend = p + bufp->used;
5577#endif /* WCHAR */
5578
5579 /* Mark the opcode just after a start_memory, so we can test for an
5580 empty subpattern when we get to the stop_memory. */
5581 UCHAR_T *just_past_start_mem = 0;
5582
5583 /* We use this to map every character in the string. */
5584 RE_TRANSLATE_TYPEchar * translate = bufp->translate;
5585
5586 /* Failure point stack. Each place that can handle a failure further
5587 down the line pushes a failure point on this stack. It consists of
5588 restart, regend, and reg_info for all registers corresponding to
5589 the subexpressions we're currently inside, plus the number of such
5590 registers, and, finally, two char *'s. The first char * is where
5591 to resume scanning the pattern; the second one is where to resume
5592 scanning the strings. If the latter is zero, the failure point is
5593 a ``dummy''; if a failure happens and the failure point is a dummy,
5594 it gets discarded and the next next one is tried. */
5595#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5596 PREFIX(fail_stack_type) fail_stack;
5597#endif
5598#ifdef DEBUG
5599 static unsigned failure_id;
5600 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5601#endif
5602
5603#ifdef REL_ALLOC
5604 /* This holds the pointer to the failure stack, when
5605 it is allocated relocatably. */
5606 fail_stack_elt_t *failure_stack_ptr;
5607#endif
5608
5609 /* We fill all the registers internally, independent of what we
5610 return, for use in backreferences. The number here includes
5611 an element for register zero. */
5612 size_t num_regs = bufp->re_nsub + 1;
5613
5614 /* The currently active registers. */
5615 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5616 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5617
5618 /* Information on the contents of registers. These are pointers into
5619 the input strings; they record just what was matched (on this
5620 attempt) by a subexpression part of the pattern, that is, the
5621 regnum-th regstart pointer points to where in the pattern we began
5622 matching and the regnum-th regend points to right after where we
5623 stopped matching the regnum-th subexpression. (The zeroth register
5624 keeps track of what the whole pattern matches.) */
5625#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5626 const CHAR_T **regstart, **regend;
5627#endif
5628
5629 /* If a group that's operated upon by a repetition operator fails to
5630 match anything, then the register for its start will need to be
5631 restored because it will have been set to wherever in the string we
5632 are when we last see its open-group operator. Similarly for a
5633 register's end. */
5634#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5635 const CHAR_T **old_regstart, **old_regend;
5636#endif
5637
5638 /* The is_active field of reg_info helps us keep track of which (possibly
5639 nested) subexpressions we are currently in. The matched_something
5640 field of reg_info[reg_num] helps us tell whether or not we have
5641 matched any of the pattern so far this time through the reg_num-th
5642 subexpression. These two fields get reset each time through any
5643 loop their register is in. */
5644#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5645 PREFIX(register_info_type) *reg_info;
5646#endif
5647
5648 /* The following record the register info as found in the above
5649 variables when we find a match better than any we've seen before.
5650 This happens as we backtrack through the failure points, which in
5651 turn happens only if we have not yet matched the entire string. */
5652 unsigned best_regs_set = false0;
5653#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5654 const CHAR_T **best_regstart, **best_regend;
5655#endif
5656
5657 /* Logically, this is `best_regend[0]'. But we don't want to have to
5658 allocate space for that if we're not allocating space for anything
5659 else (see below). Also, we never need info about register 0 for
5660 any of the other register vectors, and it seems rather a kludge to
5661 treat `best_regend' differently than the rest. So we keep track of
5662 the end of the best match so far in a separate variable. We
5663 initialize this to NULL so that when we backtrack the first time
5664 and need to test it, it's not garbage. */
5665 const CHAR_T *match_end = NULL((void*)0);
5666
5667 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5668 int set_regs_matched_done = 0;
5669
5670 /* Used when we pop values we don't care about. */
5671#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5672 const CHAR_T **reg_dummy;
5673 PREFIX(register_info_type) *reg_info_dummy;
5674#endif
5675
5676#ifdef DEBUG
5677 /* Counts the total number of registers pushed. */
5678 unsigned num_regs_pushed = 0;
5679#endif
5680
5681 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5682
5683 INIT_FAIL_STACK ();
5684
5685#ifdef MATCH_MAY_ALLOCATE
5686 /* Do not bother to initialize all the register variables if there are
5687 no groups in the pattern, as it takes a fair amount of time. If
5688 there are groups, we include space for register 0 (the whole
5689 pattern), even though we never use it, since it simplifies the
5690 array indexing. We should fix this. */
5691 if (bufp->re_nsub)
5692 {
5693 regstart = REGEX_TALLOC (num_regs, const CHAR_T *)((const CHAR_T * *) __builtin_alloca((num_regs) * sizeof (const
CHAR_T *)))
;
5694 regend = REGEX_TALLOC (num_regs, const CHAR_T *)((const CHAR_T * *) __builtin_alloca((num_regs) * sizeof (const
CHAR_T *)))
;
5695 old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *)((const CHAR_T * *) __builtin_alloca((num_regs) * sizeof (const
CHAR_T *)))
;
5696 old_regend = REGEX_TALLOC (num_regs, const CHAR_T *)((const CHAR_T * *) __builtin_alloca((num_regs) * sizeof (const
CHAR_T *)))
;
5697 best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *)((const CHAR_T * *) __builtin_alloca((num_regs) * sizeof (const
CHAR_T *)))
;
5698 best_regend = REGEX_TALLOC (num_regs, const CHAR_T *)((const CHAR_T * *) __builtin_alloca((num_regs) * sizeof (const
CHAR_T *)))
;
5699 reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type))((PREFIX(register_info_type) *) __builtin_alloca((num_regs) *
sizeof (PREFIX(register_info_type))))
;
5700 reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *)((const CHAR_T * *) __builtin_alloca((num_regs) * sizeof (const
CHAR_T *)))
;
5701 reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type))((PREFIX(register_info_type) *) __builtin_alloca((num_regs) *
sizeof (PREFIX(register_info_type))))
;
5702
5703 if (!(regstart && regend && old_regstart && old_regend && reg_info
5704 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5705 {
5706 FREE_VARIABLES ();
5707 return -2;
5708 }
5709 }
5710 else
5711 {
5712 /* We must initialize all our variables to NULL, so that
5713 `FREE_VARIABLES' doesn't try to free them. */
5714 regstart = regend = old_regstart = old_regend = best_regstart
5715 = best_regend = reg_dummy = NULL((void*)0);
5716 reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL((void*)0);
5717 }
5718#endif /* MATCH_MAY_ALLOCATE */
5719
5720 /* The starting position is bogus. */
5721#ifdef WCHAR
5722 if (pos < 0 || pos > csize1 + csize2)
5723#else /* BYTE */
5724 if (pos < 0 || pos > size1 + size2)
5725#endif
5726 {
5727 FREE_VARIABLES ();
5728 return -1;
5729 }
5730
5731#ifdef WCHAR
5732 /* Allocate wchar_t array for string1 and string2 and
5733 fill them with converted string. */
5734 if (string1 == NULL((void*)0) && string2 == NULL((void*)0))
5735 {
5736 /* We need seting up buffers here. */
5737
5738 /* We must free wcs buffers in this function. */
5739 cant_free_wcs_buf = 0;
5740
5741 if (csize1 != 0)
5742 {
5743 string1 = REGEX_TALLOC (csize1 + 1, CHAR_T)((CHAR_T *) __builtin_alloca((csize1 + 1) * sizeof (CHAR_T)));
5744 mbs_offset1 = REGEX_TALLOC (csize1 + 1, int)((int *) __builtin_alloca((csize1 + 1) * sizeof (int)));
5745 is_binary = REGEX_TALLOC (csize1 + 1, char)((char *) __builtin_alloca((csize1 + 1) * sizeof (char)));
5746 if (!string1 || !mbs_offset1 || !is_binary)
5747 {
5748 FREE_VAR (string1);
5749 FREE_VAR (mbs_offset1);
5750 FREE_VAR (is_binary);
5751 return -2;
5752 }
5753 }
5754 if (csize2 != 0)
5755 {
5756 string2 = REGEX_TALLOC (csize2 + 1, CHAR_T)((CHAR_T *) __builtin_alloca((csize2 + 1) * sizeof (CHAR_T)));
5757 mbs_offset2 = REGEX_TALLOC (csize2 + 1, int)((int *) __builtin_alloca((csize2 + 1) * sizeof (int)));
5758 is_binary = REGEX_TALLOC (csize2 + 1, char)((char *) __builtin_alloca((csize2 + 1) * sizeof (char)));
5759 if (!string2 || !mbs_offset2 || !is_binary)
5760 {
5761 FREE_VAR (string1);
5762 FREE_VAR (mbs_offset1);
5763 FREE_VAR (string2);
5764 FREE_VAR (mbs_offset2);
5765 FREE_VAR (is_binary);
5766 return -2;
5767 }
5768 size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5769 mbs_offset2, is_binary);
5770 string2[size2] = L'\0'; /* for a sentinel */
5771 FREE_VAR (is_binary);
5772 }
5773 }
5774
5775 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5776 pattern to (char*) in regex_compile. */
5777 p = pattern = (CHAR_T*)bufp->buffer;
5778 pend = (CHAR_T*)(bufp->buffer + bufp->used);
5779
5780#endif /* WCHAR */
5781
5782 /* Initialize subexpression text positions to -1 to mark ones that no
5783 start_memory/stop_memory has been seen for. Also initialize the
5784 register information struct. */
5785 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5786 {
5787 regstart[mcnt] = regend[mcnt]
5788 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5789
5790 REG_MATCH_NULL_STRING_P (reg_info[mcnt])((reg_info[mcnt]).bits.match_null_string_p) = MATCH_NULL_UNSET_VALUE3;
5791 IS_ACTIVE (reg_info[mcnt])((reg_info[mcnt]).bits.is_active) = 0;
5792 MATCHED_SOMETHING (reg_info[mcnt])((reg_info[mcnt]).bits.matched_something) = 0;
5793 EVER_MATCHED_SOMETHING (reg_info[mcnt])((reg_info[mcnt]).bits.ever_matched_something) = 0;
5794 }
5795
5796 /* We move `string1' into `string2' if the latter's empty -- but not if
5797 `string1' is null. */
5798 if (size2 == 0 && string1 != NULL((void*)0))
5799 {
5800 string2 = string1;
5801 size2 = size1;
5802 string1 = 0;
5803 size1 = 0;
5804#ifdef WCHAR
5805 mbs_offset2 = mbs_offset1;
5806 csize2 = csize1;
5807 mbs_offset1 = NULL((void*)0);
5808 csize1 = 0;
5809#endif
5810 }
5811 end1 = string1 + size1;
5812 end2 = string2 + size2;
5813
5814 /* Compute where to stop matching, within the two strings. */
5815#ifdef WCHAR
5816 if (stop <= csize1)
5817 {
5818 mcnt = count_mbs_length(mbs_offset1, stop);
5819 end_match_1 = string1 + mcnt;
5820 end_match_2 = string2;
5821 }
5822 else
5823 {
5824 if (stop > csize1 + csize2)
5825 stop = csize1 + csize2;
5826 end_match_1 = end1;
5827 mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5828 end_match_2 = string2 + mcnt;
5829 }
5830 if (mcnt < 0)
5831 { /* count_mbs_length return error. */
5832 FREE_VARIABLES ();
5833 return -1;
5834 }
5835#else
5836 if (stop <= size1)
5837 {
5838 end_match_1 = string1 + stop;
5839 end_match_2 = string2;
5840 }
5841 else
5842 {
5843 end_match_1 = end1;
5844 end_match_2 = string2 + stop - size1;
5845 }
5846#endif /* WCHAR */
5847
5848 /* `p' scans through the pattern as `d' scans through the data.
5849 `dend' is the end of the input string that `d' points within. `d'
5850 is advanced into the following input string whenever necessary, but
5851 this happens before fetching; therefore, at the beginning of the
5852 loop, `d' can be pointing at the end of a string, but it cannot
5853 equal `string2'. */
5854#ifdef WCHAR
5855 if (size1 > 0 && pos <= csize1)
5856 {
5857 mcnt = count_mbs_length(mbs_offset1, pos);
5858 d = string1 + mcnt;
5859 dend = end_match_1;
5860 }
5861 else
5862 {
5863 mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5864 d = string2 + mcnt;
5865 dend = end_match_2;
5866 }
5867
5868 if (mcnt < 0)
5869 { /* count_mbs_length return error. */
5870 FREE_VARIABLES ();
5871 return -1;
5872 }
5873#else
5874 if (size1 > 0 && pos <= size1)
5875 {
5876 d = string1 + pos;
5877 dend = end_match_1;
5878 }
5879 else
5880 {
5881 d = string2 + pos - size1;
5882 dend = end_match_2;
5883 }
5884#endif /* WCHAR */
5885
5886 DEBUG_PRINT1 ("The compiled pattern is:\n");
5887 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5888 DEBUG_PRINT1 ("The string to match is: `");
5889 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5890 DEBUG_PRINT1 ("'\n");
5891
5892 /* This loops over pattern commands. It exits by returning from the
5893 function if the match is complete, or it drops through if the match
5894 fails at this starting point in the input data. */
5895 for (;;)
5896 {
5897#ifdef _LIBC
5898 DEBUG_PRINT2 ("\n%p: ", p);
5899#else
5900 DEBUG_PRINT2 ("\n0x%x: ", p);
5901#endif
5902
5903 if (p == pend)
5904 { /* End of pattern means we might have succeeded. */
5905 DEBUG_PRINT1 ("end of pattern ... ");
5906
5907 /* If we haven't matched the entire string, and we want the
5908 longest match, try backtracking. */
5909 if (d != end_match_2)
5910 {
5911 /* 1 if this match ends in the same string (string1 or string2)
5912 as the best previous match. */
5913 boolean same_str_p = (FIRST_STRING_P (match_end)(size1 && string1 <= (match_end) && (match_end
) <= string1 + size1)
5914 == MATCHING_IN_FIRST_STRING(dend == end_match_1));
5915 /* 1 if this match is the best seen so far. */
5916 boolean best_match_p;
5917
5918 /* AIX compiler got confused when this was combined
5919 with the previous declaration. */
5920 if (same_str_p)
5921 best_match_p = d > match_end;
5922 else
5923 best_match_p = !MATCHING_IN_FIRST_STRING(dend == end_match_1);
5924
5925 DEBUG_PRINT1 ("backtracking.\n");
5926
5927 if (!FAIL_STACK_EMPTY ()(fail_stack.avail == 0))
5928 { /* More failure points to try. */
5929
5930 /* If exceeds best match so far, save it. */
5931 if (!best_regs_set || best_match_p)
5932 {
5933 best_regs_set = true1;
5934 match_end = d;
5935
5936 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5937
5938 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5939 {
5940 best_regstart[mcnt] = regstart[mcnt];
5941 best_regend[mcnt] = regend[mcnt];
5942 }
5943 }
5944 goto fail;
5945 }
5946
5947 /* If no failure points, don't restore garbage. And if
5948 last match is real best match, don't restore second
5949 best one. */
5950 else if (best_regs_set && !best_match_p)
5951 {
5952 restore_best_regs:
5953 /* Restore best match. It may happen that `dend ==
5954 end_match_1' while the restored d is in string2.
5955 For example, the pattern `x.*y.*z' against the
5956 strings `x-' and `y-z-', if the two strings are
5957 not consecutive in memory. */
5958 DEBUG_PRINT1 ("Restoring best registers.\n");
5959
5960 d = match_end;
5961 dend = ((d >= string1 && d <= end1)
5962 ? end_match_1 : end_match_2);
5963
5964 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5965 {
5966 regstart[mcnt] = best_regstart[mcnt];
5967 regend[mcnt] = best_regend[mcnt];
5968 }
5969 }
5970 } /* d != end_match_2 */
5971
5972 succeed_label:
5973 DEBUG_PRINT1 ("Accepting match.\n");
5974 /* If caller wants register contents data back, do it. */
5975 if (regs && !bufp->no_sub)
5976 {
5977 /* Have the register data arrays been allocated? */
5978 if (bufp->regs_allocated == REGS_UNALLOCATED0)
5979 { /* No. So allocate them with malloc. We need one
5980 extra element beyond `num_regs' for the `-1' marker
5981 GNU code uses. */
5982 regs->num_regs = MAX (RE_NREGS, num_regs + 1)((30) > (num_regs + 1) ? (30) : (num_regs + 1));
5983 regs->start = TALLOC (regs->num_regs, regoff_t)((regoff_t *) malloc ((regs->num_regs) * sizeof (regoff_t)
))
;
5984 regs->end = TALLOC (regs->num_regs, regoff_t)((regoff_t *) malloc ((regs->num_regs) * sizeof (regoff_t)
))
;
5985 if (regs->start == NULL((void*)0) || regs->end == NULL((void*)0))
5986 {
5987 FREE_VARIABLES ();
5988 return -2;
5989 }
5990 bufp->regs_allocated = REGS_REALLOCATE1;
5991 }
5992 else if (bufp->regs_allocated == REGS_REALLOCATE1)
5993 { /* Yes. If we need more elements than were already
5994 allocated, reallocate them. If we need fewer, just
5995 leave it alone. */
5996 if (regs->num_regs < num_regs + 1)
5997 {
5998 regs->num_regs = num_regs + 1;
5999 RETALLOC (regs->start, regs->num_regs, regoff_t)((regs->start) = (regoff_t *) realloc (regs->start, (regs
->num_regs) * sizeof (regoff_t)))
;
6000 RETALLOC (regs->end, regs->num_regs, regoff_t)((regs->end) = (regoff_t *) realloc (regs->end, (regs->
num_regs) * sizeof (regoff_t)))
;
6001 if (regs->start == NULL((void*)0) || regs->end == NULL((void*)0))
6002 {
6003 FREE_VARIABLES ();
6004 return -2;
6005 }
6006 }
6007 }
6008 else
6009 {
6010 /* These braces fend off a "empty body in an else-statement"
6011 warning under GCC when assert expands to nothing. */
6012 assert (bufp->regs_allocated == REGS_FIXED);
6013 }
6014
6015 /* Convert the pointer data in `regstart' and `regend' to
6016 indices. Register zero has to be set differently,
6017 since we haven't kept track of any info for it. */
6018 if (regs->num_regs > 0)
6019 {
6020 regs->start[0] = pos;
6021#ifdef WCHAR
6022 if (MATCHING_IN_FIRST_STRING(dend == end_match_1))
6023 regs->end[0] = mbs_offset1 != NULL((void*)0) ?
6024 mbs_offset1[d-string1] : 0;
6025 else
6026 regs->end[0] = csize1 + (mbs_offset2 != NULL((void*)0) ?
6027 mbs_offset2[d-string2] : 0);
6028#else
6029 regs->end[0] = (MATCHING_IN_FIRST_STRING(dend == end_match_1)
6030 ? ((regoff_t) (d - string1))
6031 : ((regoff_t) (d - string2 + size1)));
6032#endif /* WCHAR */
6033 }
6034
6035 /* Go through the first `min (num_regs, regs->num_regs)'
6036 registers, since that is all we initialized. */
6037 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs)((num_regs) < (regs->num_regs) ? (num_regs) : (regs->
num_regs))
;
6038 mcnt++)
6039 {
6040 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6041 regs->start[mcnt] = regs->end[mcnt] = -1;
6042 else
6043 {
6044 regs->start[mcnt]
6045 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6046 regs->end[mcnt]
6047 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6048 }
6049 }
6050
6051 /* If the regs structure we return has more elements than
6052 were in the pattern, set the extra elements to -1. If
6053 we (re)allocated the registers, this is the case,
6054 because we always allocate enough to have at least one
6055 -1 at the end. */
6056 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6057 regs->start[mcnt] = regs->end[mcnt] = -1;
6058 } /* regs && !bufp->no_sub */
6059
6060 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6061 nfailure_points_pushed, nfailure_points_popped,
6062 nfailure_points_pushed - nfailure_points_popped);
6063 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6064
6065#ifdef WCHAR
6066 if (MATCHING_IN_FIRST_STRING(dend == end_match_1))
6067 mcnt = mbs_offset1 != NULL((void*)0) ? mbs_offset1[d-string1] : 0;
6068 else
6069 mcnt = (mbs_offset2 != NULL((void*)0) ? mbs_offset2[d-string2] : 0) +
6070 csize1;
6071 mcnt -= pos;
6072#else
6073 mcnt = d - pos - (MATCHING_IN_FIRST_STRING(dend == end_match_1)
6074 ? string1
6075 : string2 - size1);
6076#endif /* WCHAR */
6077
6078 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6079
6080 FREE_VARIABLES ();
6081 return mcnt;
6082 }
6083
6084 /* Otherwise match next pattern command. */
6085 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)((re_opcode_t) *p++))
6086 {
6087 /* Ignore these. Used to ignore the n of succeed_n's which
6088 currently have n == 0. */
6089 case no_op:
6090 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6091 break;
6092
6093 case succeed:
6094 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6095 goto succeed_label;
6096
6097 /* Match the next n pattern characters exactly. The following
6098 byte in the pattern defines n, and the n bytes after that
6099 are the characters to match. */
6100 case exactn:
6101#ifdef MBS_SUPPORT
6102 case exactn_bin:
6103#endif
6104 mcnt = *p++;
6105 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6106
6107 /* This is written out as an if-else so we don't waste time
6108 testing `translate' inside the loop. */
6109 if (translate)
6110 {
6111 do
6112 {
6113 PREFETCH ();
6114#ifdef WCHAR
6115 if (*d <= 0xff)
6116 {
6117 if ((UCHAR_T) translate[(unsigned char) *d++]
6118 != (UCHAR_T) *p++)
6119 goto fail;
6120 }
6121 else
6122 {
6123 if (*d++ != (CHAR_T) *p++)
6124 goto fail;
6125 }
6126#else
6127 if ((UCHAR_T) translate[(unsigned char) *d++]
6128 != (UCHAR_T) *p++)
6129 goto fail;
6130#endif /* WCHAR */
6131 }
6132 while (--mcnt);
6133 }
6134 else
6135 {
6136 do
6137 {
6138 PREFETCH ();
6139 if (*d++ != (CHAR_T) *p++) goto fail;
6140 }
6141 while (--mcnt);
6142 }
6143 SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
;
6144 break;
6145
6146
6147 /* Match any character except possibly a newline or a null. */
6148 case anychar:
6149 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6150
6151 PREFETCH ();
6152
6153 if ((!(bufp->syntax & RE_DOT_NEWLINE((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1)
) && TRANSLATE (*d) == '\n')
6154 || (bufp->syntax & RE_DOT_NOT_NULL(((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1)
&& TRANSLATE (*d) == '\000'))
6155 goto fail;
6156
6157 SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
;
6158 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d);
6159 d++;
6160 break;
6161
6162
6163 case charset:
6164 case charset_not:
6165 {
6166 register UCHAR_T c;
6167#ifdef WCHAR
6168 unsigned int i, char_class_length, coll_symbol_length,
6169 equiv_class_length, ranges_length, chars_length, length;
6170 CHAR_T *workp, *workp2, *charset_top;
6171#define WORK_BUFFER_SIZE 128
6172 CHAR_T str_buf[WORK_BUFFER_SIZE];
6173# ifdef _LIBC
6174 uint32_t nrules;
6175# endif /* _LIBC */
6176#endif /* WCHAR */
6177 boolean negate = (re_opcode_t) *(p - 1) == charset_not;
6178
6179 DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate ? "_not" : "");
6180 PREFETCH ();
6181 c = TRANSLATE (*d); /* The character to match. */
6182#ifdef WCHAR
6183# ifdef _LIBC
6184 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6185# endif /* _LIBC */
6186 charset_top = p - 1;
6187 char_class_length = *p++;
6188 coll_symbol_length = *p++;
6189 equiv_class_length = *p++;
6190 ranges_length = *p++;
6191 chars_length = *p++;
6192 /* p points charset[6], so the address of the next instruction
6193 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6194 where l=length of char_classes, m=length of collating_symbol,
6195 n=equivalence_class, o=length of char_range,
6196 p'=length of character. */
6197 workp = p;
6198 /* Update p to indicate the next instruction. */
6199 p += char_class_length + coll_symbol_length+ equiv_class_length +
6200 2*ranges_length + chars_length;
6201
6202 /* match with char_class? */
6203 for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6204 {
6205 wctype_t wctype;
6206 uintptr_t alignedp = ((uintptr_t)workp
6207 + __alignof__(wctype_t) - 1)
6208 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6209 wctype = *((wctype_t*)alignedp);
6210 workp += CHAR_CLASS_SIZE;
6211# ifdef _LIBC
6212 if (__iswctype((wint_t)c, wctype))
6213 goto char_set_matched;
6214# else
6215 if (iswctype((wint_t)c, wctype))
6216 goto char_set_matched;
6217# endif
6218 }
6219
6220 /* match with collating_symbol? */
6221# ifdef _LIBC
6222 if (nrules != 0)
6223 {
6224 const unsigned char *extra = (const unsigned char *)
6225 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6226
6227 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6228 workp++)
6229 {
6230 int32_t *wextra;
6231 wextra = (int32_t*)(extra + *workp++);
6232 for (i = 0; i < *wextra; ++i)
6233 if (TRANSLATE(d[i]) != wextra[1 + i])
6234 break;
6235
6236 if (i == *wextra)
6237 {
6238 /* Update d, however d will be incremented at
6239 char_set_matched:, we decrement d here. */
6240 d += i - 1;
6241 goto char_set_matched;
6242 }
6243 }
6244 }
6245 else /* (nrules == 0) */
6246# endif
6247 /* If we can't look up collation data, we use wcscoll
6248 instead. */
6249 {
6250 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6251 {
6252 const CHAR_T *backup_d = d, *backup_dend = dend;
6253# ifdef _LIBC
6254 length = __wcslen (workp);
6255# else
6256 length = wcslen (workp);
6257# endif
6258
6259 /* If wcscoll(the collating symbol, whole string) > 0,
6260 any substring of the string never match with the
6261 collating symbol. */
6262# ifdef _LIBC
6263 if (__wcscoll (workp, d) > 0)
6264# else
6265 if (wcscoll (workp, d) > 0)
6266# endif
6267 {
6268 workp += length + 1;
6269 continue;
6270 }
6271
6272 /* First, we compare the collating symbol with
6273 the first character of the string.
6274 If it don't match, we add the next character to
6275 the compare buffer in turn. */
6276 for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6277 {
6278 int match;
6279 if (d == dend)
6280 {
6281 if (dend == end_match_2)
6282 break;
6283 d = string2;
6284 dend = end_match_2;
6285 }
6286
6287 /* add next character to the compare buffer. */
6288 str_buf[i] = TRANSLATE(*d);
6289 str_buf[i+1] = '\0';
6290
6291# ifdef _LIBC
6292 match = __wcscoll (workp, str_buf);
6293# else
6294 match = wcscoll (workp, str_buf);
6295# endif
6296 if (match == 0)
6297 goto char_set_matched;
6298
6299 if (match < 0)
6300 /* (str_buf > workp) indicate (str_buf + X > workp),
6301 because for all X (str_buf + X > str_buf).
6302 So we don't need continue this loop. */
6303 break;
6304
6305 /* Otherwise(str_buf < workp),
6306 (str_buf+next_character) may equals (workp).
6307 So we continue this loop. */
6308 }
6309 /* not matched */
6310 d = backup_d;
6311 dend = backup_dend;
6312 workp += length + 1;
6313 }
6314 }
6315 /* match with equivalence_class? */
6316# ifdef _LIBC
6317 if (nrules != 0)
6318 {
6319 const CHAR_T *backup_d = d, *backup_dend = dend;
6320 /* Try to match the equivalence class against
6321 those known to the collate implementation. */
6322 const int32_t *table;
6323 const int32_t *weights;
6324 const int32_t *extra;
6325 const int32_t *indirect;
6326 int32_t idx, idx2;
6327 wint_t *cp;
6328 size_t len;
6329
6330 /* This #include defines a local function! */
6331# include <locale/weightwc.h>
6332
6333 table = (const int32_t *)
6334 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6335 weights = (const wint_t *)
6336 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6337 extra = (const wint_t *)
6338 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6339 indirect = (const int32_t *)
6340 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6341
6342 /* Write 1 collating element to str_buf, and
6343 get its index. */
6344 idx2 = 0;
6345
6346 for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6347 {
6348 cp = (wint_t*)str_buf;
6349 if (d == dend)
6350 {
6351 if (dend == end_match_2)
6352 break;
6353 d = string2;
6354 dend = end_match_2;
6355 }
6356 str_buf[i] = TRANSLATE(*(d+i));
6357 str_buf[i+1] = '\0'; /* sentinel */
6358 idx2 = findidx ((const wint_t**)&cp);
6359 }
6360
6361 /* Update d, however d will be incremented at
6362 char_set_matched:, we decrement d here. */
6363 d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6364 if (d >= dend)
6365 {
6366 if (dend == end_match_2)
6367 d = dend;
6368 else
6369 {
6370 d = string2;
6371 dend = end_match_2;
6372 }
6373 }
6374
6375 len = weights[idx2];
6376
6377 for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6378 workp++)
6379 {
6380 idx = (int32_t)*workp;
6381 /* We already checked idx != 0 in regex_compile. */
6382
6383 if (idx2 != 0 && len == weights[idx])
6384 {
6385 int cnt = 0;
6386 while (cnt < len && (weights[idx + 1 + cnt]
6387 == weights[idx2 + 1 + cnt]))
6388 ++cnt;
6389
6390 if (cnt == len)
6391 goto char_set_matched;
6392 }
6393 }
6394 /* not matched */
6395 d = backup_d;
6396 dend = backup_dend;
6397 }
6398 else /* (nrules == 0) */
6399# endif
6400 /* If we can't look up collation data, we use wcscoll
6401 instead. */
6402 {
6403 for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6404 {
6405 const CHAR_T *backup_d = d, *backup_dend = dend;
6406# ifdef _LIBC
6407 length = __wcslen (workp);
6408# else
6409 length = wcslen (workp);
6410# endif
6411
6412 /* If wcscoll(the collating symbol, whole string) > 0,
6413 any substring of the string never match with the
6414 collating symbol. */
6415# ifdef _LIBC
6416 if (__wcscoll (workp, d) > 0)
6417# else
6418 if (wcscoll (workp, d) > 0)
6419# endif
6420 {
6421 workp += length + 1;
6422 break;
6423 }
6424
6425 /* First, we compare the equivalence class with
6426 the first character of the string.
6427 If it don't match, we add the next character to
6428 the compare buffer in turn. */
6429 for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6430 {
6431 int match;
6432 if (d == dend)
6433 {
6434 if (dend == end_match_2)
6435 break;
6436 d = string2;
6437 dend = end_match_2;
6438 }
6439
6440 /* add next character to the compare buffer. */
6441 str_buf[i] = TRANSLATE(*d);
6442 str_buf[i+1] = '\0';
6443
6444# ifdef _LIBC
6445 match = __wcscoll (workp, str_buf);
6446# else
6447 match = wcscoll (workp, str_buf);
6448# endif
6449
6450 if (match == 0)
6451 goto char_set_matched;
6452
6453 if (match < 0)
6454 /* (str_buf > workp) indicate (str_buf + X > workp),
6455 because for all X (str_buf + X > str_buf).
6456 So we don't need continue this loop. */
6457 break;
6458
6459 /* Otherwise(str_buf < workp),
6460 (str_buf+next_character) may equals (workp).
6461 So we continue this loop. */
6462 }
6463 /* not matched */
6464 d = backup_d;
6465 dend = backup_dend;
6466 workp += length + 1;
6467 }
6468 }
6469
6470 /* match with char_range? */
6471# ifdef _LIBC
6472 if (nrules != 0)
6473 {
6474 uint32_t collseqval;
6475 const char *collseq = (const char *)
6476 _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6477
6478 collseqval = collseq_table_lookup (collseq, c);
6479
6480 for (; workp < p - chars_length ;)
6481 {
6482 uint32_t start_val, end_val;
6483
6484 /* We already compute the collation sequence value
6485 of the characters (or collating symbols). */
6486 start_val = (uint32_t) *workp++; /* range_start */
6487 end_val = (uint32_t) *workp++; /* range_end */
6488
6489 if (start_val <= collseqval && collseqval <= end_val)
6490 goto char_set_matched;
6491 }
6492 }
6493 else
6494# endif
6495 {
6496 /* We set range_start_char at str_buf[0], range_end_char
6497 at str_buf[4], and compared char at str_buf[2]. */
6498 str_buf[1] = 0;
6499 str_buf[2] = c;
6500 str_buf[3] = 0;
6501 str_buf[5] = 0;
6502 for (; workp < p - chars_length ;)
6503 {
6504 wchar_t *range_start_char, *range_end_char;
6505
6506 /* match if (range_start_char <= c <= range_end_char). */
6507
6508 /* If range_start(or end) < 0, we assume -range_start(end)
6509 is the offset of the collating symbol which is specified
6510 as the character of the range start(end). */
6511
6512 /* range_start */
6513 if (*workp < 0)
6514 range_start_char = charset_top - (*workp++);
6515 else
6516 {
6517 str_buf[0] = *workp++;
6518 range_start_char = str_buf;
6519 }
6520
6521 /* range_end */
6522 if (*workp < 0)
6523 range_end_char = charset_top - (*workp++);
6524 else
6525 {
6526 str_buf[4] = *workp++;
6527 range_end_char = str_buf + 4;
6528 }
6529
6530# ifdef _LIBC
6531 if (__wcscoll (range_start_char, str_buf+2) <= 0
6532 && __wcscoll (str_buf+2, range_end_char) <= 0)
6533# else
6534 if (wcscoll (range_start_char, str_buf+2) <= 0
6535 && wcscoll (str_buf+2, range_end_char) <= 0)
6536# endif
6537 goto char_set_matched;
6538 }
6539 }
6540
6541 /* match with char? */
6542 for (; workp < p ; workp++)
6543 if (c == *workp)
6544 goto char_set_matched;
6545
6546 negate = !negate;
6547
6548 char_set_matched:
6549 if (negate) goto fail;
6550#else
6551 /* Cast to `unsigned' instead of `unsigned char' in case the
6552 bit list is a full 32 bytes long. */
6553 if (c < (unsigned) (*p * BYTEWIDTH8)
6554 && p[1 + c / BYTEWIDTH8] & (1 << (c % BYTEWIDTH8)))
6555 negate = !negate;
6556
6557 p += 1 + *p;
6558
6559 if (!negate) goto fail;
6560#undef WORK_BUFFER_SIZE
6561#endif /* WCHAR */
6562 SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
;
6563 d++;
6564 break;
6565 }
6566
6567
6568 /* The beginning of a group is represented by start_memory.
6569 The arguments are the register number in the next byte, and the
6570 number of groups inner to this one in the next. The text
6571 matched within the group is recorded (in the internal
6572 registers data structure) under the register number. */
6573 case start_memory:
6574 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6575 (long int) *p, (long int) p[1]);
6576
6577 /* Find out if this group can match the empty string. */
6578 p1 = p; /* To send to group_match_null_string_p. */
6579
6580 if (REG_MATCH_NULL_STRING_P (reg_info[*p])((reg_info[*p]).bits.match_null_string_p) == MATCH_NULL_UNSET_VALUE3)
6581 REG_MATCH_NULL_STRING_P (reg_info[*p])((reg_info[*p]).bits.match_null_string_p)
6582 = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6583
6584 /* Save the position in the string where we were the last time
6585 we were at this open-group operator in case the group is
6586 operated upon by a repetition operator, e.g., with `(a*)*b'
6587 against `ab'; then we want to ignore where we are now in
6588 the string in case this attempt to match fails. */
6589 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])((reg_info[*p]).bits.match_null_string_p)
6590 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6591 : regstart[*p];
6592 DEBUG_PRINT2 (" old_regstart: %d\n",
6593 POINTER_TO_OFFSET (old_regstart[*p]));
6594
6595 regstart[*p] = d;
6596 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6597
6598 IS_ACTIVE (reg_info[*p])((reg_info[*p]).bits.is_active) = 1;
6599 MATCHED_SOMETHING (reg_info[*p])((reg_info[*p]).bits.matched_something) = 0;
6600
6601 /* Clear this whenever we change the register activity status. */
6602 set_regs_matched_done = 0;
6603
6604 /* This is the new highest active register. */
6605 highest_active_reg = *p;
6606
6607 /* If nothing was active before, this is the new lowest active
6608 register. */
6609 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6610 lowest_active_reg = *p;
6611
6612 /* Move past the register number and inner group count. */
6613 p += 2;
6614 just_past_start_mem = p;
6615
6616 break;
6617
6618
6619 /* The stop_memory opcode represents the end of a group. Its
6620 arguments are the same as start_memory's: the register
6621 number, and the number of inner groups. */
6622 case stop_memory:
6623 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6624 (long int) *p, (long int) p[1]);
6625
6626 /* We need to save the string position the last time we were at
6627 this close-group operator in case the group is operated
6628 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6629 against `aba'; then we want to ignore where we are now in
6630 the string in case this attempt to match fails. */
6631 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])((reg_info[*p]).bits.match_null_string_p)
6632 ? REG_UNSET (regend[*p]) ? d : regend[*p]
6633 : regend[*p];
6634 DEBUG_PRINT2 (" old_regend: %d\n",
6635 POINTER_TO_OFFSET (old_regend[*p]));
6636
6637 regend[*p] = d;
6638 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6639
6640 /* This register isn't active anymore. */
6641 IS_ACTIVE (reg_info[*p])((reg_info[*p]).bits.is_active) = 0;
6642
6643 /* Clear this whenever we change the register activity status. */
6644 set_regs_matched_done = 0;
6645
6646 /* If this was the only register active, nothing is active
6647 anymore. */
6648 if (lowest_active_reg == highest_active_reg)
6649 {
6650 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6651 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6652 }
6653 else
6654 { /* We must scan for the new highest active register, since
6655 it isn't necessarily one less than now: consider
6656 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6657 new highest active register is 1. */
6658 UCHAR_T r = *p - 1;
6659 while (r > 0 && !IS_ACTIVE (reg_info[r])((reg_info[r]).bits.is_active))
6660 r--;
6661
6662 /* If we end up at register zero, that means that we saved
6663 the registers as the result of an `on_failure_jump', not
6664 a `start_memory', and we jumped to past the innermost
6665 `stop_memory'. For example, in ((.)*) we save
6666 registers 1 and 2 as a result of the *, but when we pop
6667 back to the second ), we are at the stop_memory 1.
6668 Thus, nothing is active. */
6669 if (r == 0)
6670 {
6671 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6672 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6673 }
6674 else
6675 highest_active_reg = r;
6676 }
6677
6678 /* If just failed to match something this time around with a
6679 group that's operated on by a repetition operator, try to
6680 force exit from the ``loop'', and restore the register
6681 information for this group that we had before trying this
6682 last match. */
6683 if ((!MATCHED_SOMETHING (reg_info[*p])((reg_info[*p]).bits.matched_something)
6684 || just_past_start_mem == p - 1)
6685 && (p + 2) < pend)
6686 {
6687 boolean is_a_jump_n = false0;
6688
6689 p1 = p + 2;
6690 mcnt = 0;
6691 switch ((re_opcode_t) *p1++)
6692 {
6693 case jump_n:
6694 is_a_jump_n = true1;
6695 case pop_failure_jump:
6696 case maybe_pop_jump:
6697 case jump:
6698 case dummy_failure_jump:
6699 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6700 if (is_a_jump_n)
6701 p1 += OFFSET_ADDRESS_SIZE;
6702 break;
6703
6704 default:
6705 /* do nothing */ ;
6706 }
6707 p1 += mcnt;
6708
6709 /* If the next operation is a jump backwards in the pattern
6710 to an on_failure_jump right before the start_memory
6711 corresponding to this stop_memory, exit from the loop
6712 by forcing a failure after pushing on the stack the
6713 on_failure_jump's jump in the pattern, and d. */
6714 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6715 && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6716 && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6717 {
6718 /* If this group ever matched anything, then restore
6719 what its registers were before trying this last
6720 failed match, e.g., with `(a*)*b' against `ab' for
6721 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6722 against `aba' for regend[3].
6723
6724 Also restore the registers for inner groups for,
6725 e.g., `((a*)(b*))*' against `aba' (register 3 would
6726 otherwise get trashed). */
6727
6728 if (EVER_MATCHED_SOMETHING (reg_info[*p])((reg_info[*p]).bits.ever_matched_something))
6729 {
6730 unsigned r;
6731
6732 EVER_MATCHED_SOMETHING (reg_info[*p])((reg_info[*p]).bits.ever_matched_something) = 0;
6733
6734 /* Restore this and inner groups' (if any) registers. */
6735 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6736 r++)
6737 {
6738 regstart[r] = old_regstart[r];
6739
6740 /* xx why this test? */
6741 if (old_regend[r] >= regstart[r])
6742 regend[r] = old_regend[r];
6743 }
6744 }
6745 p1++;
6746 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6747 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6748
6749 goto fail;
6750 }
6751 }
6752
6753 /* Move past the register number and the inner group count. */
6754 p += 2;
6755 break;
6756
6757
6758 /* \<digit> has been turned into a `duplicate' command which is
6759 followed by the numeric value of <digit> as the register number. */
6760 case duplicate:
6761 {
6762 register const CHAR_T *d2, *dend2;
6763 int regno = *p++; /* Get which register to match against. */
6764 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6765
6766 /* Can't back reference a group which we've never matched. */
6767 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6768 goto fail;
6769
6770 /* Where in input to try to start matching. */
6771 d2 = regstart[regno];
6772
6773 /* Where to stop matching; if both the place to start and
6774 the place to stop matching are in the same string, then
6775 set to the place to stop, otherwise, for now have to use
6776 the end of the first string. */
6777
6778 dend2 = ((FIRST_STRING_P (regstart[regno])(size1 && string1 <= (regstart[regno]) && (
regstart[regno]) <= string1 + size1)
6779 == FIRST_STRING_P (regend[regno])(size1 && string1 <= (regend[regno]) && (regend
[regno]) <= string1 + size1)
)
6780 ? regend[regno] : end_match_1);
6781 for (;;)
6782 {
6783 /* If necessary, advance to next segment in register
6784 contents. */
6785 while (d2 == dend2)
6786 {
6787 if (dend2 == end_match_2) break;
6788 if (dend2 == regend[regno]) break;
6789
6790 /* End of string1 => advance to string2. */
6791 d2 = string2;
6792 dend2 = regend[regno];
6793 }
6794 /* At end of register contents => success */
6795 if (d2 == dend2) break;
6796
6797 /* If necessary, advance to next segment in data. */
6798 PREFETCH ();
6799
6800 /* How many characters left in this segment to match. */
6801 mcnt = dend - d;
6802
6803 /* Want how many consecutive characters we can match in
6804 one shot, so, if necessary, adjust the count. */
6805 if (mcnt > dend2 - d2)
6806 mcnt = dend2 - d2;
6807
6808 /* Compare that many; failure if mismatch, else move
6809 past them. */
6810 if (translate
6811 ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6812 : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6813 goto fail;
6814 d += mcnt, d2 += mcnt;
6815
6816 /* Do this because we've match some characters. */
6817 SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
;
6818 }
6819 }
6820 break;
6821
6822
6823 /* begline matches the empty string at the beginning of the string
6824 (unless `not_bol' is set in `bufp'), and, if
6825 `newline_anchor' is set, after newlines. */
6826 case begline:
6827 DEBUG_PRINT1 ("EXECUTING begline.\n");
6828
6829 if (AT_STRINGS_BEG (d))
6830 {
6831 if (!bufp->not_bol) break;
6832 }
6833 else if (d[-1] == '\n' && bufp->newline_anchor)
6834 {
6835 break;
6836 }
6837 /* In all other cases, we fail. */
6838 goto fail;
6839
6840
6841 /* endline is the dual of begline. */
6842 case endline:
6843 DEBUG_PRINT1 ("EXECUTING endline.\n");
6844
6845 if (AT_STRINGS_END (d))
6846 {
6847 if (!bufp->not_eol) break;
6848 }
6849
6850 /* We have to ``prefetch'' the next character. */
6851 else if ((d == end1 ? *string2 : *d) == '\n'
6852 && bufp->newline_anchor)
6853 {
6854 break;
6855 }
6856 goto fail;
6857
6858
6859 /* Match at the very beginning of the data. */
6860 case begbuf:
6861 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6862 if (AT_STRINGS_BEG (d))
6863 break;
6864 goto fail;
6865
6866
6867 /* Match at the very end of the data. */
6868 case endbuf:
6869 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6870 if (AT_STRINGS_END (d))
6871 break;
6872 goto fail;
6873
6874
6875 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
6876 pushes NULL as the value for the string on the stack. Then
6877 `pop_failure_point' will keep the current value for the
6878 string, instead of restoring it. To see why, consider
6879 matching `foo\nbar' against `.*\n'. The .* matches the foo;
6880 then the . fails against the \n. But the next thing we want
6881 to do is match the \n against the \n; if we restored the
6882 string value, we would be back at the foo.
6883
6884 Because this is used only in specific cases, we don't need to
6885 check all the things that `on_failure_jump' does, to make
6886 sure the right things get saved on the stack. Hence we don't
6887 share its code. The only reason to push anything on the
6888 stack at all is that otherwise we would have to change
6889 `anychar's code to do something besides goto fail in this
6890 case; that seems worse than this. */
6891 case on_failure_keep_string_jump:
6892 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6893
6894 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6895#ifdef _LIBC
6896 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6897#else
6898 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6899#endif
6900
6901 PUSH_FAILURE_POINT (p + mcnt, NULL((void*)0), -2);
6902 break;
6903
6904
6905 /* Uses of on_failure_jump:
6906
6907 Each alternative starts with an on_failure_jump that points
6908 to the beginning of the next alternative. Each alternative
6909 except the last ends with a jump that in effect jumps past
6910 the rest of the alternatives. (They really jump to the
6911 ending jump of the following alternative, because tensioning
6912 these jumps is a hassle.)
6913
6914 Repeats start with an on_failure_jump that points past both
6915 the repetition text and either the following jump or
6916 pop_failure_jump back to this on_failure_jump. */
6917 case on_failure_jump:
6918 on_failure:
6919 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6920
6921 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6922#ifdef _LIBC
6923 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
6924#else
6925 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
6926#endif
6927
6928 /* If this on_failure_jump comes right before a group (i.e.,
6929 the original * applied to a group), save the information
6930 for that group and all inner ones, so that if we fail back
6931 to this point, the group's information will be correct.
6932 For example, in \(a*\)*\1, we need the preceding group,
6933 and in \(zz\(a*\)b*\)\2, we need the inner group. */
6934
6935 /* We can't use `p' to check ahead because we push
6936 a failure point to `p + mcnt' after we do this. */
6937 p1 = p;
6938
6939 /* We need to skip no_op's before we look for the
6940 start_memory in case this on_failure_jump is happening as
6941 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6942 against aba. */
6943 while (p1 < pend && (re_opcode_t) *p1 == no_op)
6944 p1++;
6945
6946 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
6947 {
6948 /* We have a new highest active register now. This will
6949 get reset at the start_memory we are about to get to,
6950 but we will have saved all the registers relevant to
6951 this repetition op, as described above. */
6952 highest_active_reg = *(p1 + 1) + *(p1 + 2);
6953 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6954 lowest_active_reg = *(p1 + 1);
6955 }
6956
6957 DEBUG_PRINT1 (":\n");
6958 PUSH_FAILURE_POINT (p + mcnt, d, -2);
6959 break;
6960
6961
6962 /* A smart repeat ends with `maybe_pop_jump'.
6963 We change it to either `pop_failure_jump' or `jump'. */
6964 case maybe_pop_jump:
6965 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6966 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
6967 {
6968 register UCHAR_T *p2 = p;
6969
6970 /* Compare the beginning of the repeat with what in the
6971 pattern follows its end. If we can establish that there
6972 is nothing that they would both match, i.e., that we
6973 would have to backtrack because of (as in, e.g., `a*a')
6974 then we can change to pop_failure_jump, because we'll
6975 never have to backtrack.
6976
6977 This is not true in the case of alternatives: in
6978 `(a|ab)*' we do need to backtrack to the `ab' alternative
6979 (e.g., if the string was `ab'). But instead of trying to
6980 detect that here, the alternative has put on a dummy
6981 failure point which is what we will end up popping. */
6982
6983 /* Skip over open/close-group commands.
6984 If what follows this loop is a ...+ construct,
6985 look at what begins its body, since we will have to
6986 match at least one of that. */
6987 while (1)
6988 {
6989 if (p2 + 2 < pend
6990 && ((re_opcode_t) *p2 == stop_memory
6991 || (re_opcode_t) *p2 == start_memory))
6992 p2 += 3;
6993 else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
6994 && (re_opcode_t) *p2 == dummy_failure_jump)
6995 p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
6996 else
6997 break;
6998 }
6999
7000 p1 = p + mcnt;
7001 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7002 to the `maybe_finalize_jump' of this case. Examine what
7003 follows. */
7004
7005 /* If we're at the end of the pattern, we can change. */
7006 if (p2 == pend)
7007 {
7008 /* Consider what happens when matching ":\(.*\)"
7009 against ":/". I don't really understand this code
7010 yet. */
7011 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7012 pop_failure_jump;
7013 DEBUG_PRINT1
7014 (" End of pattern: change to `pop_failure_jump'.\n");
7015 }
7016
7017 else if ((re_opcode_t) *p2 == exactn
7018#ifdef MBS_SUPPORT
7019 || (re_opcode_t) *p2 == exactn_bin
7020#endif
7021 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7022 {
7023 register UCHAR_T c
7024 = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7025
7026 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7027#ifdef MBS_SUPPORT
7028 || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7029#endif
7030 ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7031 {
7032 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7033 pop_failure_jump;
7034#ifdef WCHAR
7035 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7036 (wint_t) c,
7037 (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7038#else
7039 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7040 (char) c,
7041 (char) p1[3+OFFSET_ADDRESS_SIZE]);
7042#endif
7043 }
7044
7045#ifndef WCHAR
7046 else if ((re_opcode_t) p1[3] == charset
7047 || (re_opcode_t) p1[3] == charset_not)
7048 {
7049 int negate = (re_opcode_t) p1[3] == charset_not;
7050
7051 if (c < (unsigned) (p1[4] * BYTEWIDTH8)
7052 && p1[5 + c / BYTEWIDTH8] & (1 << (c % BYTEWIDTH8)))
7053 negate = !negate;
7054
7055 /* `negate' is equal to 1 if c would match, which means
7056 that we can't change to pop_failure_jump. */
7057 if (!negate)
7058 {
7059 p[-3] = (unsigned char) pop_failure_jump;
7060 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7061 }
7062 }
7063#endif /* not WCHAR */
7064 }
7065#ifndef WCHAR
7066 else if ((re_opcode_t) *p2 == charset)
7067 {
7068 /* We win if the first character of the loop is not part
7069 of the charset. */
7070 if ((re_opcode_t) p1[3] == exactn
7071 && ! ((int) p2[1] * BYTEWIDTH8 > (int) p1[5]
7072 && (p2[2 + p1[5] / BYTEWIDTH8]
7073 & (1 << (p1[5] % BYTEWIDTH8)))))
7074 {
7075 p[-3] = (unsigned char) pop_failure_jump;
7076 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7077 }
7078
7079 else if ((re_opcode_t) p1[3] == charset_not)
7080 {
7081 int idx;
7082 /* We win if the charset_not inside the loop
7083 lists every character listed in the charset after. */
7084 for (idx = 0; idx < (int) p2[1]; idx++)
7085 if (! (p2[2 + idx] == 0
7086 || (idx < (int) p1[4]
7087 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7088 break;
7089
7090 if (idx == p2[1])
7091 {
7092 p[-3] = (unsigned char) pop_failure_jump;
7093 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7094 }
7095 }
7096 else if ((re_opcode_t) p1[3] == charset)
7097 {
7098 int idx;
7099 /* We win if the charset inside the loop
7100 has no overlap with the one after the loop. */
7101 for (idx = 0;
7102 idx < (int) p2[1] && idx < (int) p1[4];
7103 idx++)
7104 if ((p2[2 + idx] & p1[5 + idx]) != 0)
7105 break;
7106
7107 if (idx == p2[1] || idx == p1[4])
7108 {
7109 p[-3] = (unsigned char) pop_failure_jump;
7110 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7111 }
7112 }
7113 }
7114#endif /* not WCHAR */
7115 }
7116 p -= OFFSET_ADDRESS_SIZE; /* Point at relative address again. */
7117 if ((re_opcode_t) p[-1] != pop_failure_jump)
7118 {
7119 p[-1] = (UCHAR_T) jump;
7120 DEBUG_PRINT1 (" Match => jump.\n");
7121 goto unconditional_jump;
7122 }
7123 /* Note fall through. */
7124
7125
7126 /* The end of a simple repeat has a pop_failure_jump back to
7127 its matching on_failure_jump, where the latter will push a
7128 failure point. The pop_failure_jump takes off failure
7129 points put on by this pop_failure_jump's matching
7130 on_failure_jump; we got through the pattern to here from the
7131 matching on_failure_jump, so didn't fail. */
7132 case pop_failure_jump:
7133 {
7134 /* We need to pass separate storage for the lowest and
7135 highest registers, even though we don't care about the
7136 actual values. Otherwise, we will restore only one
7137 register from the stack, since lowest will == highest in
7138 `pop_failure_point'. */
7139 active_reg_t dummy_low_reg, dummy_high_reg;
7140 UCHAR_T *pdummy = NULL((void*)0);
7141 const CHAR_T *sdummy = NULL((void*)0);
7142
7143 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7144 POP_FAILURE_POINT (sdummy, pdummy,
7145 dummy_low_reg, dummy_high_reg,
7146 reg_dummy, reg_dummy, reg_info_dummy);
7147 }
7148 /* Note fall through. */
7149
7150 unconditional_jump:
7151#ifdef _LIBC
7152 DEBUG_PRINT2 ("\n%p: ", p);
7153#else
7154 DEBUG_PRINT2 ("\n0x%x: ", p);
7155#endif
7156 /* Note fall through. */
7157
7158 /* Unconditionally jump (without popping any failure points). */
7159 case jump:
7160 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
7161 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7162 p += mcnt; /* Do the jump. */
7163#ifdef _LIBC
7164 DEBUG_PRINT2 ("(to %p).\n", p);
7165#else
7166 DEBUG_PRINT2 ("(to 0x%x).\n", p);
7167#endif
7168 break;
7169
7170
7171 /* We need this opcode so we can detect where alternatives end
7172 in `group_match_null_string_p' et al. */
7173 case jump_past_alt:
7174 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7175 goto unconditional_jump;
7176
7177
7178 /* Normally, the on_failure_jump pushes a failure point, which
7179 then gets popped at pop_failure_jump. We will end up at
7180 pop_failure_jump, also, and with a pattern of, say, `a+', we
7181 are skipping over the on_failure_jump, so we have to push
7182 something meaningless for pop_failure_jump to pop. */
7183 case dummy_failure_jump:
7184 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7185 /* It doesn't matter what we push for the string here. What
7186 the code at `fail' tests is the value for the pattern. */
7187 PUSH_FAILURE_POINT (NULL((void*)0), NULL((void*)0), -2);
7188 goto unconditional_jump;
7189
7190
7191 /* At the end of an alternative, we need to push a dummy failure
7192 point in case we are followed by a `pop_failure_jump', because
7193 we don't want the failure point for the alternative to be
7194 popped. For example, matching `(a|ab)*' against `aab'
7195 requires that we match the `ab' alternative. */
7196 case push_dummy_failure:
7197 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7198 /* See comments just above at `dummy_failure_jump' about the
7199 two zeroes. */
7200 PUSH_FAILURE_POINT (NULL((void*)0), NULL((void*)0), -2);
7201 break;
7202
7203 /* Have to succeed matching what follows at least n times.
7204 After that, handle like `on_failure_jump'. */
7205 case succeed_n:
7206 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7207 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7208
7209 assert (mcnt >= 0);
7210 /* Originally, this is how many times we HAVE to succeed. */
7211 if (mcnt > 0)
7212 {
7213 mcnt--;
7214 p += OFFSET_ADDRESS_SIZE;
7215 STORE_NUMBER_AND_INCR (p, mcnt);
7216#ifdef _LIBC
7217 DEBUG_PRINT3 (" Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7218 , mcnt);
7219#else
7220 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7221 , mcnt);
7222#endif
7223 }
7224 else if (mcnt == 0)
7225 {
7226#ifdef _LIBC
7227 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7228 p + OFFSET_ADDRESS_SIZE);
7229#else
7230 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7231 p + OFFSET_ADDRESS_SIZE);
7232#endif /* _LIBC */
7233
7234#ifdef WCHAR
7235 p[1] = (UCHAR_T) no_op;
7236#else
7237 p[2] = (UCHAR_T) no_op;
7238 p[3] = (UCHAR_T) no_op;
7239#endif /* WCHAR */
7240 goto on_failure;
7241 }
7242 break;
7243
7244 case jump_n:
7245 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7246 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7247
7248 /* Originally, this is how many times we CAN jump. */
7249 if (mcnt)
7250 {
7251 mcnt--;
7252 STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7253
7254#ifdef _LIBC
7255 DEBUG_PRINT3 (" Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7256 mcnt);
7257#else
7258 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7259 mcnt);
7260#endif /* _LIBC */
7261 goto unconditional_jump;
7262 }
7263 /* If don't have to jump any more, skip over the rest of command. */
7264 else
7265 p += 2 * OFFSET_ADDRESS_SIZE;
7266 break;
7267
7268 case set_number_at:
7269 {
7270 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7271
7272 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7273 p1 = p + mcnt;
7274 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7275#ifdef _LIBC
7276 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
7277#else
7278 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
7279#endif
7280 STORE_NUMBER (p1, mcnt);
7281 break;
7282 }
7283
7284#if 0
7285 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7286 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7287 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7288 macro and introducing temporary variables works around the bug. */
7289
7290 case wordbound:
7291 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7292 if (AT_WORD_BOUNDARY (d))
7293 break;
7294 goto fail;
7295
7296 case notwordbound:
7297 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7298 if (AT_WORD_BOUNDARY (d))
7299 goto fail;
7300 break;
7301#else
7302 case wordbound:
7303 {
7304 boolean prevchar, thischar;
7305
7306 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7307 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7308 break;
7309
7310 prevchar = WORDCHAR_P (d - 1);
7311 thischar = WORDCHAR_P (d);
7312 if (prevchar != thischar)
7313 break;
7314 goto fail;
7315 }
7316
7317 case notwordbound:
7318 {
7319 boolean prevchar, thischar;
7320
7321 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7322 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7323 goto fail;
7324
7325 prevchar = WORDCHAR_P (d - 1);
7326 thischar = WORDCHAR_P (d);
7327 if (prevchar != thischar)
7328 goto fail;
7329 break;
7330 }
7331#endif
7332
7333 case wordbeg:
7334 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7335 if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7336 && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7337 break;
7338 goto fail;
7339
7340 case wordend:
7341 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7342 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7343 && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7344 break;
7345 goto fail;
7346
7347#ifdef emacs
7348 case before_dot:
7349 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7350 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7351 goto fail;
7352 break;
7353
7354 case at_dot:
7355 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7356 if (PTR_CHAR_POS ((unsigned char *) d) != point)
7357 goto fail;
7358 break;
7359
7360 case after_dot:
7361 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7362 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7363 goto fail;
7364 break;
7365
7366 case syntaxspec:
7367 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7368 mcnt = *p++;
7369 goto matchsyntax;
7370
7371 case wordchar:
7372 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7373 mcnt = (int) Sword1;
7374 matchsyntax:
7375 PREFETCH ();
7376 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7377 d++;
7378 if (SYNTAX (d[-1])re_syntax_table[(unsigned char) (d[-1])] != (enum syntaxcode) mcnt)
7379 goto fail;
7380 SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
;
7381 break;
7382
7383 case notsyntaxspec:
7384 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7385 mcnt = *p++;
7386 goto matchnotsyntax;
7387
7388 case notwordchar:
7389 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7390 mcnt = (int) Sword1;
7391 matchnotsyntax:
7392 PREFETCH ();
7393 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7394 d++;
7395 if (SYNTAX (d[-1])re_syntax_table[(unsigned char) (d[-1])] == (enum syntaxcode) mcnt)
7396 goto fail;
7397 SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
;
7398 break;
7399
7400#else /* not emacs */
7401 case wordchar:
7402 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7403 PREFETCH ();
7404 if (!WORDCHAR_P (d))
7405 goto fail;
7406 SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
;
7407 d++;
7408 break;
7409
7410 case notwordchar:
7411 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7412 PREFETCH ();
7413 if (WORDCHAR_P (d))
7414 goto fail;
7415 SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { active_reg_t r; set_regs_matched_done
= 1; for (r = lowest_active_reg; r <= highest_active_reg;
r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r
]).bits.ever_matched_something) = 1; } } } while (0)
;
7416 d++;
7417 break;
7418#endif /* not emacs */
7419
7420 default:
7421 abort ();
7422 }
7423 continue; /* Successfully executed one pattern command; keep going. */
7424
7425
7426 /* We goto here if a matching operation fails. */
7427 fail:
7428 if (!FAIL_STACK_EMPTY ()(fail_stack.avail == 0))
7429 { /* A restart point is known. Restore to that state. */
7430 DEBUG_PRINT1 ("\nFAIL:\n");
7431 POP_FAILURE_POINT (d, p,
7432 lowest_active_reg, highest_active_reg,
7433 regstart, regend, reg_info);
7434
7435 /* If this failure point is a dummy, try the next one. */
7436 if (!p)
7437 goto fail;
7438
7439 /* If we failed to the end of the pattern, don't examine *p. */
7440 assert (p <= pend);
7441 if (p < pend)
7442 {
7443 boolean is_a_jump_n = false0;
7444
7445 /* If failed to a backwards jump that's part of a repetition
7446 loop, need to pop this failure point and use the next one. */
7447 switch ((re_opcode_t) *p)
7448 {
7449 case jump_n:
7450 is_a_jump_n = true1;
7451 case maybe_pop_jump:
7452 case pop_failure_jump:
7453 case jump:
7454 p1 = p + 1;
7455 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7456 p1 += mcnt;
7457
7458 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7459 || (!is_a_jump_n
7460 && (re_opcode_t) *p1 == on_failure_jump))
7461 goto fail;
7462 break;
7463 default:
7464 /* do nothing */ ;
7465 }
7466 }
7467
7468 if (d >= string1 && d <= end1)
7469 dend = end_match_1;
7470 }
7471 else
7472 break; /* Matching at this starting point really fails. */
7473 } /* for (;;) */
7474
7475 if (best_regs_set)
7476 goto restore_best_regs;
7477
7478 FREE_VARIABLES ();
7479
7480 return -1; /* Failure to match. */
7481} /* re_match_2 */
7482
7483/* Subroutine definitions for re_match_2. */
7484
7485
7486/* We are passed P pointing to a register number after a start_memory.
7487
7488 Return true if the pattern up to the corresponding stop_memory can
7489 match the empty string, and false otherwise.
7490
7491 If we find the matching stop_memory, sets P to point to one past its number.
7492 Otherwise, sets P to an undefined byte less than or equal to END.
7493
7494 We don't handle duplicates properly (yet). */
7495
7496static boolean
7497PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7498 PREFIX(register_info_type) *reg_info)
7499{
7500 int mcnt;
7501 /* Point to after the args to the start_memory. */
7502 UCHAR_T *p1 = *p + 2;
7503
7504 while (p1 < end)
7505 {
7506 /* Skip over opcodes that can match nothing, and return true or
7507 false, as appropriate, when we get to one that can't, or to the
7508 matching stop_memory. */
7509
7510 switch ((re_opcode_t) *p1)
7511 {
7512 /* Could be either a loop or a series of alternatives. */
7513 case on_failure_jump:
7514 p1++;
7515 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7516
7517 /* If the next operation is not a jump backwards in the
7518 pattern. */
7519
7520 if (mcnt >= 0)
7521 {
7522 /* Go through the on_failure_jumps of the alternatives,
7523 seeing if any of the alternatives cannot match nothing.
7524 The last alternative starts with only a jump,
7525 whereas the rest start with on_failure_jump and end
7526 with a jump, e.g., here is the pattern for `a|b|c':
7527
7528 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7529 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7530 /exactn/1/c
7531
7532 So, we have to first go through the first (n-1)
7533 alternatives and then deal with the last one separately. */
7534
7535
7536 /* Deal with the first (n-1) alternatives, which start
7537 with an on_failure_jump (see above) that jumps to right
7538 past a jump_past_alt. */
7539
7540 while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7541 jump_past_alt)
7542 {
7543 /* `mcnt' holds how many bytes long the alternative
7544 is, including the ending `jump_past_alt' and
7545 its number. */
7546
7547 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7548 (1 + OFFSET_ADDRESS_SIZE),
7549 reg_info))
7550 return false0;
7551
7552 /* Move to right after this alternative, including the
7553 jump_past_alt. */
7554 p1 += mcnt;
7555
7556 /* Break if it's the beginning of an n-th alternative
7557 that doesn't begin with an on_failure_jump. */
7558 if ((re_opcode_t) *p1 != on_failure_jump)
7559 break;
7560
7561 /* Still have to check that it's not an n-th
7562 alternative that starts with an on_failure_jump. */
7563 p1++;
7564 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7565 if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7566 jump_past_alt)
7567 {
7568 /* Get to the beginning of the n-th alternative. */
7569 p1 -= 1 + OFFSET_ADDRESS_SIZE;
7570 break;
7571 }
7572 }
7573
7574 /* Deal with the last alternative: go back and get number
7575 of the `jump_past_alt' just before it. `mcnt' contains
7576 the length of the alternative. */
7577 EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7578
7579 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7580 return false0;
7581
7582 p1 += mcnt; /* Get past the n-th alternative. */
7583 } /* if mcnt > 0 */
7584 break;
7585
7586
7587 case stop_memory:
7588 assert (p1[1] == **p);
7589 *p = p1 + 2;
7590 return true1;
7591
7592
7593 default:
7594 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7595 return false0;
7596 }
7597 } /* while p1 < end */
7598
7599 return false0;
7600} /* group_match_null_string_p */
7601
7602
7603/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7604 It expects P to be the first byte of a single alternative and END one
7605 byte past the last. The alternative can contain groups. */
7606
7607static boolean
7608PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end,
7609 PREFIX(register_info_type) *reg_info)
7610{
7611 int mcnt;
7612 UCHAR_T *p1 = p;
7613
7614 while (p1 < end)
7615 {
7616 /* Skip over opcodes that can match nothing, and break when we get
7617 to one that can't. */
7618
7619 switch ((re_opcode_t) *p1)
7620 {
7621 /* It's a loop. */
7622 case on_failure_jump:
7623 p1++;
7624 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7625 p1 += mcnt;
7626 break;
7627
7628 default:
7629 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7630 return false0;
7631 }
7632 } /* while p1 < end */
7633
7634 return true1;
7635} /* alt_match_null_string_p */
7636
7637
7638/* Deals with the ops common to group_match_null_string_p and
7639 alt_match_null_string_p.
7640
7641 Sets P to one after the op and its arguments, if any. */
7642
7643static boolean
7644PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7645 PREFIX(register_info_type) *reg_info)
7646{
7647 int mcnt;
7648 boolean ret;
7649 int reg_no;
7650 UCHAR_T *p1 = *p;
7651
7652 switch ((re_opcode_t) *p1++)
7653 {
7654 case no_op:
7655 case begline:
7656 case endline:
7657 case begbuf:
7658 case endbuf:
7659 case wordbeg:
7660 case wordend:
7661 case wordbound:
7662 case notwordbound:
7663#ifdef emacs
7664 case before_dot:
7665 case at_dot:
7666 case after_dot:
7667#endif
7668 break;
7669
7670 case start_memory:
7671 reg_no = *p1;
7672 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7673 ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7674
7675 /* Have to set this here in case we're checking a group which
7676 contains a group and a back reference to it. */
7677
7678 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no])((reg_info[reg_no]).bits.match_null_string_p) == MATCH_NULL_UNSET_VALUE3)
7679 REG_MATCH_NULL_STRING_P (reg_info[reg_no])((reg_info[reg_no]).bits.match_null_string_p) = ret;
7680
7681 if (!ret)
7682 return false0;
7683 break;
7684
7685 /* If this is an optimized succeed_n for zero times, make the jump. */
7686 case jump:
7687 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7688 if (mcnt >= 0)
7689 p1 += mcnt;
7690 else
7691 return false0;
7692 break;
7693
7694 case succeed_n:
7695 /* Get to the number of times to succeed. */
7696 p1 += OFFSET_ADDRESS_SIZE;
7697 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7698
7699 if (mcnt == 0)
7700 {
7701 p1 -= 2 * OFFSET_ADDRESS_SIZE;
7702 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7703 p1 += mcnt;
7704 }
7705 else
7706 return false0;
7707 break;
7708
7709 case duplicate:
7710 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])((reg_info[*p1]).bits.match_null_string_p))
7711 return false0;
7712 break;
7713
7714 case set_number_at:
7715 p1 += 2 * OFFSET_ADDRESS_SIZE;
7716
7717 default:
7718 /* All other opcodes mean we cannot match the empty string. */
7719 return false0;
7720 }
7721
7722 *p = p1;
7723 return true1;
7724} /* common_op_match_null_string_p */
7725
7726
7727/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7728 bytes; nonzero otherwise. */
7729
7730static int
7731PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, register int len,
7732 RE_TRANSLATE_TYPEchar * translate)
7733{
7734 register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7735 register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7736 while (len)
7737 {
7738#ifdef WCHAR
7739 if (((*p1<=0xff)?translate[*p1++]:*p1++)
7740 != ((*p2<=0xff)?translate[*p2++]:*p2++))
7741 return 1;
7742#else /* BYTE */
7743 if (translate[*p1++] != translate[*p2++]) return 1;
7744#endif /* WCHAR */
7745 len--;
7746 }
7747 return 0;
7748}
7749
7750
7751#else /* not INSIDE_RECURSION */
7752
7753/* Entry points for GNU code. */
7754
7755/* re_compile_pattern is the GNU regular expression compiler: it
7756 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7757 Returns 0 if the pattern was valid, otherwise an error string.
7758
7759 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7760 are set in BUFP on entry.
7761
7762 We call regex_compile to do the actual compilation. */
7763
7764const char *
7765re_compile_patternxre_compile_pattern (const char *pattern, size_t length,
7766 struct re_pattern_buffer *bufp)
7767{
7768 reg_errcode_t ret;
7769
7770 /* GNU code is written to assume at least RE_NREGS registers will be set
7771 (and at least one extra will be -1). */
7772 bufp->regs_allocated = REGS_UNALLOCATED0;
7773
7774 /* And GNU code determines whether or not to get register information
7775 by passing null for the REGS argument to re_match, etc., not by
7776 setting no_sub. */
7777 bufp->no_sub = 0;
7778
7779 /* Match anchors at newline. */
7780 bufp->newline_anchor = 1;
7781
7782# ifdef MBS_SUPPORT
7783 if (MB_CUR_MAX__mb_cur_max() != 1)
7784 ret = wcs_regex_compile (pattern, length, re_syntax_optionsxre_syntax_options, bufp);
7785 else
7786# endif
7787 ret = byte_regex_compile (pattern, length, re_syntax_optionsxre_syntax_options, bufp);
7788
7789 if (!ret)
7790 return NULL((void*)0);
7791 return gettext (re_error_msgid[(int) ret])(re_error_msgid[(int) ret]);
7792}
7793#ifdef _LIBC
7794weak_alias (__re_compile_pattern, re_compile_patternxre_compile_pattern)
7795#endif
7796
7797/* Entry points compatible with 4.2 BSD regex library. We don't define
7798 them unless specifically requested. */
7799
7800#if defined _REGEX_RE_COMP || defined _LIBC
7801
7802/* BSD has one and only one pattern buffer. */
7803static struct re_pattern_buffer re_comp_buf;
7804
7805char *
7806#ifdef _LIBC
7807/* Make these definitions weak in libc, so POSIX programs can redefine
7808 these names if they don't use our functions, and still use
7809 regcomp/regexec below without link errors. */
7810weak_function
7811#endif
7812re_compxre_comp (const char *s)
7813{
7814 reg_errcode_t ret;
7815
7816 if (!s)
7817 {
7818 if (!re_comp_buf.buffer)
7819 return (char *) gettext ("No previous regular expression")("No previous regular expression");
7820 return 0;
7821 }
7822
7823 if (!re_comp_buf.buffer)
7824 {
7825 re_comp_buf.buffer = (unsigned char *) malloc (200);
7826 if (re_comp_buf.buffer == NULL((void*)0))
7827 return (char *) gettext (re_error_msgid[(int) REG_ESPACE])(re_error_msgid[(int) REG_ESPACE]);
7828 re_comp_buf.allocated = 200;
7829
7830 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH8);
7831 if (re_comp_buf.fastmap == NULL((void*)0))
7832 return (char *) gettext (re_error_msgid[(int) REG_ESPACE])(re_error_msgid[(int) REG_ESPACE]);
7833 }
7834
7835 /* Since `re_exec' always passes NULL for the `regs' argument, we
7836 don't need to initialize the pattern buffer fields which affect it. */
7837
7838 /* Match anchors at newlines. */
7839 re_comp_buf.newline_anchor = 1;
7840
7841# ifdef MBS_SUPPORT
7842 if (MB_CUR_MAX__mb_cur_max() != 1)
7843 ret = wcs_regex_compile (s, strlen (s), re_syntax_optionsxre_syntax_options, &re_comp_buf);
7844 else
7845# endif
7846 ret = byte_regex_compile (s, strlen (s), re_syntax_optionsxre_syntax_options, &re_comp_buf);
7847
7848 if (!ret)
7849 return NULL((void*)0);
7850
7851 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
7852 return (char *) gettext (re_error_msgid[(int) ret])(re_error_msgid[(int) ret]);
7853}
7854
7855
7856int
7857#ifdef _LIBC
7858weak_function
7859#endif
7860re_execxre_exec (const char *s)
7861{
7862 const int len = strlen (s);
7863 return
7864 0 <= re_searchxre_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
7865}
7866
7867#endif /* _REGEX_RE_COMP */
7868
7869/* POSIX.2 functions. Don't define these for Emacs. */
7870
7871#ifndef emacs
7872
7873/* regcomp takes a regular expression as a string and compiles it.
7874
7875 PREG is a regex_t *. We do not expect any fields to be initialized,
7876 since POSIX says we shouldn't. Thus, we set
7877
7878 `buffer' to the compiled pattern;
7879 `used' to the length of the compiled pattern;
7880 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7881 REG_EXTENDED bit in CFLAGS is set; otherwise, to
7882 RE_SYNTAX_POSIX_BASIC;
7883 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7884 `fastmap' to an allocated space for the fastmap;
7885 `fastmap_accurate' to zero;
7886 `re_nsub' to the number of subexpressions in PATTERN.
7887
7888 PATTERN is the address of the pattern string.
7889
7890 CFLAGS is a series of bits which affect compilation.
7891
7892 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7893 use POSIX basic syntax.
7894
7895 If REG_NEWLINE is set, then . and [^...] don't match newline.
7896 Also, regexec will try a match beginning after every newline.
7897
7898 If REG_ICASE is set, then we considers upper- and lowercase
7899 versions of letters to be equivalent when matching.
7900
7901 If REG_NOSUB is set, then when PREG is passed to regexec, that
7902 routine will report only success or failure, and nothing about the
7903 registers.
7904
7905 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
7906 the return codes and their meanings.) */
7907
7908int
7909regcompxregcomp (regex_t *preg, const char *pattern, int cflags)
7910{
7911 reg_errcode_t ret;
7912 reg_syntax_t syntax
7913 = (cflags & REG_EXTENDED1) ?
7914 RE_SYNTAX_POSIX_EXTENDED((((((unsigned long int) 1) << 1) << 1) | (((((((
(unsigned long int) 1) << 1) << 1) << 1) <<
1) << 1) << 1) | (((((((((unsigned long int) 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) | (((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) | ((((((((((((((((((unsigned long int
) 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1)) | (((((unsigned long int) 1) << 1) <<
1) << 1) | ((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) | ((((((((((((((unsigned long int
) 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) | (((((((((((((((unsigned long int)
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) | (((((((((((((((((unsigned
long int) 1) << 1) << 1) << 1) << 1)
<< 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) | (((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) | (((((((((((((((((((unsigned long
int) 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1) << 1))
: RE_SYNTAX_POSIX_BASIC((((((unsigned long int) 1) << 1) << 1) | (((((((
(unsigned long int) 1) << 1) << 1) << 1) <<
1) << 1) << 1) | (((((((((unsigned long int) 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) | (((((((((((unsigned long int) 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) | ((((((((((((((((((unsigned long int
) 1) << 1) << 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
) << 1) << 1) << 1) << 1) << 1)
<< 1)) | (((unsigned long int) 1) << 1))
;
7915
7916 /* regex_compile will allocate the space for the compiled pattern. */
7917 preg->buffer = 0;
7918 preg->allocated = 0;
7919 preg->used = 0;
7920
7921 /* Try to allocate space for the fastmap. */
7922 preg->fastmap = (char *) malloc (1 << BYTEWIDTH8);
7923
7924 if (cflags & REG_ICASE(1 << 1))
7925 {
7926 int i;
7927
7928 preg->translate
7929 = (RE_TRANSLATE_TYPEchar *) malloc (CHAR_SET_SIZE256
7930 * sizeof (*(RE_TRANSLATE_TYPEchar *)0));
7931 if (preg->translate == NULL((void*)0))
7932 return (int) REG_ESPACE;
7933
7934 /* Map uppercase characters to corresponding lowercase ones. */
7935 for (i = 0; i < CHAR_SET_SIZE256; i++)
7936 preg->translate[i] = ISUPPER (i)(1 && isupper (i)) ? TOLOWER (i)tolower(i) : i;
7937 }
7938 else
7939 preg->translate = NULL((void*)0);
7940
7941 /* If REG_NEWLINE is set, newlines are treated differently. */
7942 if (cflags & REG_NEWLINE((1 << 1) << 1))
7943 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
7944 syntax &= ~RE_DOT_NEWLINE((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1)
;
7945 syntax |= RE_HAT_LISTS_NOT_NEWLINE((((((((((unsigned long int) 1) << 1) << 1) <<
1) << 1) << 1) << 1) << 1) << 1
)
;
7946 /* It also changes the matching behavior. */
7947 preg->newline_anchor = 1;
7948 }
7949 else
7950 preg->newline_anchor = 0;
7951
7952 preg->no_sub = !!(cflags & REG_NOSUB(((1 << 1) << 1) << 1));
7953
7954 /* POSIX says a null character in the pattern terminates it, so we
7955 can use strlen here in compiling the pattern. */
7956# ifdef MBS_SUPPORT
7957 if (MB_CUR_MAX__mb_cur_max() != 1)
7958 ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
7959 else
7960# endif
7961 ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
7962
7963 /* POSIX doesn't distinguish between an unmatched open-group and an
7964 unmatched close-group: both are REG_EPAREN. */
7965 if (ret == REG_ERPAREN) ret = REG_EPAREN;
7966
7967 if (ret == REG_NOERROR && preg->fastmap)
7968 {
7969 /* Compute the fastmap now, since regexec cannot modify the pattern
7970 buffer. */
7971 if (re_compile_fastmapxre_compile_fastmap (preg) == -2)
7972 {
7973 /* Some error occurred while computing the fastmap, just forget
7974 about it. */
7975 free (preg->fastmap);
7976 preg->fastmap = NULL((void*)0);
7977 }
7978 }
7979
7980 return (int) ret;
7981}
7982#ifdef _LIBC
7983weak_alias (__regcomp, regcompxregcomp)
7984#endif
7985
7986
7987/* regexec searches for a given pattern, specified by PREG, in the
7988 string STRING.
7989
7990 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
7991 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
7992 least NMATCH elements, and we set them to the offsets of the
7993 corresponding matched substrings.
7994
7995 EFLAGS specifies `execution flags' which affect matching: if
7996 REG_NOTBOL is set, then ^ does not match at the beginning of the
7997 string; if REG_NOTEOL is set, then $ does not match at the end.
7998
7999 We return 0 if we find a match and REG_NOMATCH if not. */
8000
8001int
8002regexecxregexec (const regex_t *preg, const char *string, size_t nmatch,
8003 regmatch_t pmatch[], int eflags)
8004{
8005 int ret;
8006 struct re_registers regs;
8007 regex_t private_preg;
8008 int len = strlen (string);
8009 boolean want_reg_info = !preg->no_sub && nmatch > 0;
8010
8011 private_preg = *preg;
8012
8013 private_preg.not_bol = !!(eflags & REG_NOTBOL1);
8014 private_preg.not_eol = !!(eflags & REG_NOTEOL(1 << 1));
8015
8016 /* The user has told us exactly how many registers to return
8017 information about, via `nmatch'. We have to pass that on to the
8018 matching routines. */
8019 private_preg.regs_allocated = REGS_FIXED2;
8020
8021 if (want_reg_info)
8022 {
8023 regs.num_regs = nmatch;
8024 regs.start = TALLOC (nmatch * 2, regoff_t)((regoff_t *) malloc ((nmatch * 2) * sizeof (regoff_t)));
8025 if (regs.start == NULL((void*)0))
8026 return (int) REG_NOMATCH;
8027 regs.end = regs.start + nmatch;
8028 }
8029
8030 /* Perform the searching operation. */
8031 ret = re_searchxre_search (&private_preg, string, len,
8032 /* start: */ 0, /* range: */ len,
8033 want_reg_info ? &regs : (struct re_registers *) 0);
8034
8035 /* Copy the register information to the POSIX structure. */
8036 if (want_reg_info)
8037 {
8038 if (ret >= 0)
8039 {
8040 unsigned r;
8041
8042 for (r = 0; r < nmatch; r++)
8043 {
8044 pmatch[r].rm_so = regs.start[r];
8045 pmatch[r].rm_eo = regs.end[r];
8046 }
8047 }
8048
8049 /* If we needed the temporary register info, free the space now. */
8050 free (regs.start);
8051 }
8052
8053 /* We want zero return to mean success, unlike `re_search'. */
8054 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8055}
8056#ifdef _LIBC
8057weak_alias (__regexec, regexecxregexec)
8058#endif
8059
8060
8061/* Returns a message corresponding to an error code, ERRCODE, returned
8062 from either regcomp or regexec. We don't use PREG here. */
8063
8064size_t
8065regerrorxregerror (int errcode, const regex_t *preg ATTRIBUTE_UNUSED__attribute__ ((__unused__)),
8066 char *errbuf, size_t errbuf_size)
8067{
8068 const char *msg;
8069 size_t msg_size;
8070
8071 if (errcode < 0
8072 || errcode >= (int) (sizeof (re_error_msgid)
8073 / sizeof (re_error_msgid[0])))
8074 /* Only error codes returned by the rest of the code should be passed
8075 to this routine. If we are given anything else, or if other regex
8076 code generates an invalid error code, then the program has a bug.
8077 Dump core so we can fix it. */
8078 abort ();
8079
8080 msg = gettext (re_error_msgid[errcode])(re_error_msgid[errcode]);
8081
8082 msg_size = strlen (msg) + 1; /* Includes the null. */
8083
8084 if (errbuf_size != 0)
8085 {
8086 if (msg_size > errbuf_size)
8087 {
8088#if defined HAVE_MEMPCPY || defined _LIBC
8089 *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8090#else
8091 memcpy (errbuf, msg, errbuf_size - 1);
8092 errbuf[errbuf_size - 1] = 0;
8093#endif
8094 }
8095 else
8096 memcpy (errbuf, msg, msg_size);
8097 }
8098
8099 return msg_size;
8100}
8101#ifdef _LIBC
8102weak_alias (__regerror, regerrorxregerror)
8103#endif
8104
8105
8106/* Free dynamically allocated space used by PREG. */
8107
8108void
8109regfreexregfree (regex_t *preg)
8110{
8111 if (preg->buffer != NULL((void*)0))
8112 free (preg->buffer);
8113 preg->buffer = NULL((void*)0);
8114
8115 preg->allocated = 0;
8116 preg->used = 0;
8117
8118 if (preg->fastmap != NULL((void*)0))
8119 free (preg->fastmap);
8120 preg->fastmap = NULL((void*)0);
8121 preg->fastmap_accurate = 0;
8122
8123 if (preg->translate != NULL((void*)0))
8124 free (preg->translate);
8125 preg->translate = NULL((void*)0);
8126}
8127#ifdef _LIBC
8128weak_alias (__regfree, regfreexregfree)
8129#endif
8130
8131#endif /* not emacs */
8132
8133#endif /* not INSIDE_RECURSION */
8134
8135
8136#undef STORE_NUMBER
8137#undef STORE_NUMBER_AND_INCR
8138#undef EXTRACT_NUMBER
8139#undef EXTRACT_NUMBER_AND_INCR
8140
8141#undef DEBUG_PRINT_COMPILED_PATTERN
8142#undef DEBUG_PRINT_DOUBLE_STRING
8143
8144#undef INIT_FAIL_STACK
8145#undef RESET_FAIL_STACK
8146#undef DOUBLE_FAIL_STACK
8147#undef PUSH_PATTERN_OP
8148#undef PUSH_FAILURE_POINTER
8149#undef PUSH_FAILURE_INT
8150#undef PUSH_FAILURE_ELT
8151#undef POP_FAILURE_POINTER
8152#undef POP_FAILURE_INT
8153#undef POP_FAILURE_ELT
8154#undef DEBUG_PUSH
8155#undef DEBUG_POP
8156#undef PUSH_FAILURE_POINT
8157#undef POP_FAILURE_POINT
8158
8159#undef REG_UNSET_VALUE
8160#undef REG_UNSET
8161
8162#undef PATFETCH
8163#undef PATFETCH_RAW
8164#undef PATUNFETCH
8165#undef TRANSLATE
8166
8167#undef INIT_BUF_SIZE
8168#undef GET_BUFFER_SPACE
8169#undef BUF_PUSH
8170#undef BUF_PUSH_2
8171#undef BUF_PUSH_3
8172#undef STORE_JUMP
8173#undef STORE_JUMP2
8174#undef INSERT_JUMP
8175#undef INSERT_JUMP2
8176#undef EXTEND_BUFFER
8177#undef GET_UNSIGNED_NUMBER
8178#undef FREE_STACK_RETURN
8179
8180# undef POINTER_TO_OFFSET
8181# undef MATCHING_IN_FRST_STRING
8182# undef PREFETCH
8183# undef AT_STRINGS_BEG
8184# undef AT_STRINGS_END
8185# undef WORDCHAR_P
8186# undef FREE_VAR
8187# undef FREE_VARIABLES
8188# undef NO_HIGHEST_ACTIVE_REG
8189# undef NO_LOWEST_ACTIVE_REG
8190
8191# undef CHAR_T
8192# undef UCHAR_T
8193# undef COMPILED_BUFFER_VAR
8194# undef OFFSET_ADDRESS_SIZE
8195# undef CHAR_CLASS_SIZE
8196# undef PREFIX
8197# undef ARG_PREFIX
8198# undef PUT_CHAR
8199# undef BYTE
8200# undef WCHAR
8201
8202# define DEFINED_ONCE