File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Analysis/LoopNestAnalysis.cpp |
Warning: | line 87, column 56 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- LoopNestAnalysis.cpp - Loop Nest Analysis --------------------------==// | ||||
2 | // | ||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
6 | // | ||||
7 | //===----------------------------------------------------------------------===// | ||||
8 | /// | ||||
9 | /// \file | ||||
10 | /// The implementation for the loop nest analysis. | ||||
11 | /// | ||||
12 | //===----------------------------------------------------------------------===// | ||||
13 | |||||
14 | #include "llvm/Analysis/LoopNestAnalysis.h" | ||||
15 | #include "llvm/ADT/BreadthFirstIterator.h" | ||||
16 | #include "llvm/ADT/Statistic.h" | ||||
17 | #include "llvm/Analysis/PostDominators.h" | ||||
18 | #include "llvm/Analysis/ValueTracking.h" | ||||
19 | |||||
20 | using namespace llvm; | ||||
21 | |||||
22 | #define DEBUG_TYPE"loopnest" "loopnest" | ||||
23 | #ifndef NDEBUG1 | ||||
24 | static const char *VerboseDebug = DEBUG_TYPE"loopnest" "-verbose"; | ||||
25 | #endif | ||||
26 | |||||
27 | /// Determine whether the loops structure violates basic requirements for | ||||
28 | /// perfect nesting: | ||||
29 | /// - the inner loop should be the outer loop's only child | ||||
30 | /// - the outer loop header should 'flow' into the inner loop preheader | ||||
31 | /// or jump around the inner loop to the outer loop latch | ||||
32 | /// - if the inner loop latch exits the inner loop, it should 'flow' into | ||||
33 | /// the outer loop latch. | ||||
34 | /// Returns true if the loop structure satisfies the basic requirements and | ||||
35 | /// false otherwise. | ||||
36 | static bool checkLoopsStructure(const Loop &OuterLoop, const Loop &InnerLoop, | ||||
37 | ScalarEvolution &SE); | ||||
38 | |||||
39 | //===----------------------------------------------------------------------===// | ||||
40 | // LoopNest implementation | ||||
41 | // | ||||
42 | |||||
43 | LoopNest::LoopNest(Loop &Root, ScalarEvolution &SE) | ||||
44 | : MaxPerfectDepth(getMaxPerfectDepth(Root, SE)) { | ||||
45 | append_range(Loops, breadth_first(&Root)); | ||||
46 | } | ||||
47 | |||||
48 | std::unique_ptr<LoopNest> LoopNest::getLoopNest(Loop &Root, | ||||
49 | ScalarEvolution &SE) { | ||||
50 | return std::make_unique<LoopNest>(Root, SE); | ||||
51 | } | ||||
52 | |||||
53 | bool LoopNest::arePerfectlyNested(const Loop &OuterLoop, const Loop &InnerLoop, | ||||
54 | ScalarEvolution &SE) { | ||||
55 | assert(!OuterLoop.isInnermost() && "Outer loop should have subloops")((void)0); | ||||
56 | assert(!InnerLoop.isOutermost() && "Inner loop should have a parent")((void)0); | ||||
57 | LLVM_DEBUG(dbgs() << "Checking whether loop '" << OuterLoop.getName()do { } while (false) | ||||
58 | << "' and '" << InnerLoop.getName()do { } while (false) | ||||
59 | << "' are perfectly nested.\n")do { } while (false); | ||||
60 | |||||
61 | // Determine whether the loops structure satisfies the following requirements: | ||||
62 | // - the inner loop should be the outer loop's only child | ||||
63 | // - the outer loop header should 'flow' into the inner loop preheader | ||||
64 | // or jump around the inner loop to the outer loop latch | ||||
65 | // - if the inner loop latch exits the inner loop, it should 'flow' into | ||||
66 | // the outer loop latch. | ||||
67 | if (!checkLoopsStructure(OuterLoop, InnerLoop, SE)) { | ||||
68 | LLVM_DEBUG(dbgs() << "Not perfectly nested: invalid loop structure.\n")do { } while (false); | ||||
69 | return false; | ||||
70 | } | ||||
71 | |||||
72 | // Bail out if we cannot retrieve the outer loop bounds. | ||||
73 | auto OuterLoopLB = OuterLoop.getBounds(SE); | ||||
74 | if (OuterLoopLB == None) { | ||||
75 | LLVM_DEBUG(dbgs() << "Cannot compute loop bounds of OuterLoop: "do { } while (false) | ||||
76 | << OuterLoop << "\n";)do { } while (false); | ||||
77 | return false; | ||||
78 | } | ||||
79 | |||||
80 | // Identify the outer loop latch comparison instruction. | ||||
81 | const BasicBlock *Latch = OuterLoop.getLoopLatch(); | ||||
82 | assert(Latch && "Expecting a valid loop latch")((void)0); | ||||
83 | const BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); | ||||
84 | assert(BI && BI->isConditional() &&((void)0) | ||||
85 | "Expecting loop latch terminator to be a branch instruction")((void)0); | ||||
86 | |||||
87 | const CmpInst *OuterLoopLatchCmp = dyn_cast<CmpInst>(BI->getCondition()); | ||||
| |||||
88 | DEBUG_WITH_TYPE(do { } while (false) | ||||
89 | VerboseDebug, if (OuterLoopLatchCmp) {do { } while (false) | ||||
90 | dbgs() << "Outer loop latch compare instruction: " << *OuterLoopLatchCmpdo { } while (false) | ||||
91 | << "\n";do { } while (false) | ||||
92 | })do { } while (false); | ||||
93 | |||||
94 | // Identify the inner loop guard instruction. | ||||
95 | BranchInst *InnerGuard = InnerLoop.getLoopGuardBranch(); | ||||
96 | const CmpInst *InnerLoopGuardCmp = | ||||
97 | (InnerGuard) ? dyn_cast<CmpInst>(InnerGuard->getCondition()) : nullptr; | ||||
98 | |||||
99 | DEBUG_WITH_TYPE(do { } while (false) | ||||
100 | VerboseDebug, if (InnerLoopGuardCmp) {do { } while (false) | ||||
101 | dbgs() << "Inner loop guard compare instruction: " << *InnerLoopGuardCmpdo { } while (false) | ||||
102 | << "\n";do { } while (false) | ||||
103 | })do { } while (false); | ||||
104 | |||||
105 | // Determine whether instructions in a basic block are one of: | ||||
106 | // - the inner loop guard comparison | ||||
107 | // - the outer loop latch comparison | ||||
108 | // - the outer loop induction variable increment | ||||
109 | // - a phi node, a cast or a branch | ||||
110 | auto containsOnlySafeInstructions = [&](const BasicBlock &BB) { | ||||
111 | return llvm::all_of(BB, [&](const Instruction &I) { | ||||
112 | bool isAllowed = isSafeToSpeculativelyExecute(&I) || isa<PHINode>(I) || | ||||
113 | isa<BranchInst>(I); | ||||
114 | if (!isAllowed) { | ||||
115 | DEBUG_WITH_TYPE(VerboseDebug, {do { } while (false) | ||||
116 | dbgs() << "Instruction: " << I << "\nin basic block: " << BBdo { } while (false) | ||||
117 | << " is considered unsafe.\n";do { } while (false) | ||||
118 | })do { } while (false); | ||||
119 | return false; | ||||
120 | } | ||||
121 | |||||
122 | // The only binary instruction allowed is the outer loop step instruction, | ||||
123 | // the only comparison instructions allowed are the inner loop guard | ||||
124 | // compare instruction and the outer loop latch compare instruction. | ||||
125 | if ((isa<BinaryOperator>(I) && &I != &OuterLoopLB->getStepInst()) || | ||||
126 | (isa<CmpInst>(I) && &I != OuterLoopLatchCmp && | ||||
127 | &I != InnerLoopGuardCmp)) { | ||||
128 | DEBUG_WITH_TYPE(VerboseDebug, {do { } while (false) | ||||
129 | dbgs() << "Instruction: " << I << "\nin basic block:" << BBdo { } while (false) | ||||
130 | << "is unsafe.\n";do { } while (false) | ||||
131 | })do { } while (false); | ||||
132 | return false; | ||||
133 | } | ||||
134 | return true; | ||||
135 | }); | ||||
136 | }; | ||||
137 | |||||
138 | // Check the code surrounding the inner loop for instructions that are deemed | ||||
139 | // unsafe. | ||||
140 | const BasicBlock *OuterLoopHeader = OuterLoop.getHeader(); | ||||
141 | const BasicBlock *OuterLoopLatch = OuterLoop.getLoopLatch(); | ||||
142 | const BasicBlock *InnerLoopPreHeader = InnerLoop.getLoopPreheader(); | ||||
143 | |||||
144 | if (!containsOnlySafeInstructions(*OuterLoopHeader) || | ||||
145 | !containsOnlySafeInstructions(*OuterLoopLatch) || | ||||
146 | (InnerLoopPreHeader != OuterLoopHeader && | ||||
147 | !containsOnlySafeInstructions(*InnerLoopPreHeader)) || | ||||
148 | !containsOnlySafeInstructions(*InnerLoop.getExitBlock())) { | ||||
149 | LLVM_DEBUG(dbgs() << "Not perfectly nested: code surrounding inner loop is "do { } while (false) | ||||
150 | "unsafe\n";)do { } while (false); | ||||
151 | return false; | ||||
152 | } | ||||
153 | |||||
154 | LLVM_DEBUG(dbgs() << "Loop '" << OuterLoop.getName() << "' and '"do { } while (false) | ||||
155 | << InnerLoop.getName() << "' are perfectly nested.\n")do { } while (false); | ||||
156 | |||||
157 | return true; | ||||
158 | } | ||||
159 | |||||
160 | SmallVector<LoopVectorTy, 4> | ||||
161 | LoopNest::getPerfectLoops(ScalarEvolution &SE) const { | ||||
162 | SmallVector<LoopVectorTy, 4> LV; | ||||
163 | LoopVectorTy PerfectNest; | ||||
164 | |||||
165 | for (Loop *L : depth_first(const_cast<Loop *>(Loops.front()))) { | ||||
166 | if (PerfectNest.empty()) | ||||
| |||||
167 | PerfectNest.push_back(L); | ||||
168 | |||||
169 | auto &SubLoops = L->getSubLoops(); | ||||
170 | if (SubLoops.size() == 1 && arePerfectlyNested(*L, *SubLoops.front(), SE)) { | ||||
171 | PerfectNest.push_back(SubLoops.front()); | ||||
172 | } else { | ||||
173 | LV.push_back(PerfectNest); | ||||
174 | PerfectNest.clear(); | ||||
175 | } | ||||
176 | } | ||||
177 | |||||
178 | return LV; | ||||
179 | } | ||||
180 | |||||
181 | unsigned LoopNest::getMaxPerfectDepth(const Loop &Root, ScalarEvolution &SE) { | ||||
182 | LLVM_DEBUG(dbgs() << "Get maximum perfect depth of loop nest rooted by loop '"do { } while (false) | ||||
183 | << Root.getName() << "'\n")do { } while (false); | ||||
184 | |||||
185 | const Loop *CurrentLoop = &Root; | ||||
186 | const auto *SubLoops = &CurrentLoop->getSubLoops(); | ||||
187 | unsigned CurrentDepth = 1; | ||||
188 | |||||
189 | while (SubLoops->size() == 1) { | ||||
190 | const Loop *InnerLoop = SubLoops->front(); | ||||
191 | if (!arePerfectlyNested(*CurrentLoop, *InnerLoop, SE)) { | ||||
192 | LLVM_DEBUG({do { } while (false) | ||||
193 | dbgs() << "Not a perfect nest: loop '" << CurrentLoop->getName()do { } while (false) | ||||
194 | << "' is not perfectly nested with loop '"do { } while (false) | ||||
195 | << InnerLoop->getName() << "'\n";do { } while (false) | ||||
196 | })do { } while (false); | ||||
197 | break; | ||||
198 | } | ||||
199 | |||||
200 | CurrentLoop = InnerLoop; | ||||
201 | SubLoops = &CurrentLoop->getSubLoops(); | ||||
202 | ++CurrentDepth; | ||||
203 | } | ||||
204 | |||||
205 | return CurrentDepth; | ||||
206 | } | ||||
207 | |||||
208 | const BasicBlock &LoopNest::skipEmptyBlockUntil(const BasicBlock *From, | ||||
209 | const BasicBlock *End, | ||||
210 | bool CheckUniquePred) { | ||||
211 | assert(From && "Expecting valid From")((void)0); | ||||
212 | assert(End && "Expecting valid End")((void)0); | ||||
213 | |||||
214 | if (From == End || !From->getUniqueSuccessor()) | ||||
215 | return *From; | ||||
216 | |||||
217 | auto IsEmpty = [](const BasicBlock *BB) { | ||||
218 | return (BB->getInstList().size() == 1); | ||||
219 | }; | ||||
220 | |||||
221 | // Visited is used to avoid running into an infinite loop. | ||||
222 | SmallPtrSet<const BasicBlock *, 4> Visited; | ||||
223 | const BasicBlock *BB = From->getUniqueSuccessor(); | ||||
224 | const BasicBlock *PredBB = From; | ||||
225 | while (BB && BB != End && IsEmpty(BB) && !Visited.count(BB) && | ||||
226 | (!CheckUniquePred || BB->getUniquePredecessor())) { | ||||
227 | Visited.insert(BB); | ||||
228 | PredBB = BB; | ||||
229 | BB = BB->getUniqueSuccessor(); | ||||
230 | } | ||||
231 | |||||
232 | return (BB == End) ? *End : *PredBB; | ||||
233 | } | ||||
234 | |||||
235 | static bool checkLoopsStructure(const Loop &OuterLoop, const Loop &InnerLoop, | ||||
236 | ScalarEvolution &SE) { | ||||
237 | // The inner loop must be the only outer loop's child. | ||||
238 | if ((OuterLoop.getSubLoops().size() != 1) || | ||||
239 | (InnerLoop.getParentLoop() != &OuterLoop)) | ||||
240 | return false; | ||||
241 | |||||
242 | // We expect loops in normal form which have a preheader, header, latch... | ||||
243 | if (!OuterLoop.isLoopSimplifyForm() || !InnerLoop.isLoopSimplifyForm()) | ||||
244 | return false; | ||||
245 | |||||
246 | const BasicBlock *OuterLoopHeader = OuterLoop.getHeader(); | ||||
247 | const BasicBlock *OuterLoopLatch = OuterLoop.getLoopLatch(); | ||||
248 | const BasicBlock *InnerLoopPreHeader = InnerLoop.getLoopPreheader(); | ||||
249 | const BasicBlock *InnerLoopLatch = InnerLoop.getLoopLatch(); | ||||
250 | const BasicBlock *InnerLoopExit = InnerLoop.getExitBlock(); | ||||
251 | |||||
252 | // We expect rotated loops. The inner loop should have a single exit block. | ||||
253 | if (OuterLoop.getExitingBlock() != OuterLoopLatch || | ||||
254 | InnerLoop.getExitingBlock() != InnerLoopLatch || !InnerLoopExit) | ||||
255 | return false; | ||||
256 | |||||
257 | // Returns whether the block `ExitBlock` contains at least one LCSSA Phi node. | ||||
258 | auto ContainsLCSSAPhi = [](const BasicBlock &ExitBlock) { | ||||
259 | return any_of(ExitBlock.phis(), [](const PHINode &PN) { | ||||
260 | return PN.getNumIncomingValues() == 1; | ||||
261 | }); | ||||
262 | }; | ||||
263 | |||||
264 | // Returns whether the block `BB` qualifies for being an extra Phi block. The | ||||
265 | // extra Phi block is the additional block inserted after the exit block of an | ||||
266 | // "guarded" inner loop which contains "only" Phi nodes corresponding to the | ||||
267 | // LCSSA Phi nodes in the exit block. | ||||
268 | auto IsExtraPhiBlock = [&](const BasicBlock &BB) { | ||||
269 | return BB.getFirstNonPHI() == BB.getTerminator() && | ||||
270 | all_of(BB.phis(), [&](const PHINode &PN) { | ||||
271 | return all_of(PN.blocks(), [&](const BasicBlock *IncomingBlock) { | ||||
272 | return IncomingBlock == InnerLoopExit || | ||||
273 | IncomingBlock == OuterLoopHeader; | ||||
274 | }); | ||||
275 | }); | ||||
276 | }; | ||||
277 | |||||
278 | const BasicBlock *ExtraPhiBlock = nullptr; | ||||
279 | // Ensure the only branch that may exist between the loops is the inner loop | ||||
280 | // guard. | ||||
281 | if (OuterLoopHeader != InnerLoopPreHeader) { | ||||
282 | const BasicBlock &SingleSucc = | ||||
283 | LoopNest::skipEmptyBlockUntil(OuterLoopHeader, InnerLoopPreHeader); | ||||
284 | |||||
285 | // no conditional branch present | ||||
286 | if (&SingleSucc != InnerLoopPreHeader) { | ||||
287 | const BranchInst *BI = dyn_cast<BranchInst>(SingleSucc.getTerminator()); | ||||
288 | |||||
289 | if (!BI || BI != InnerLoop.getLoopGuardBranch()) | ||||
290 | return false; | ||||
291 | |||||
292 | bool InnerLoopExitContainsLCSSA = ContainsLCSSAPhi(*InnerLoopExit); | ||||
293 | |||||
294 | // The successors of the inner loop guard should be the inner loop | ||||
295 | // preheader or the outer loop latch possibly through empty blocks. | ||||
296 | for (const BasicBlock *Succ : BI->successors()) { | ||||
297 | const BasicBlock *PotentialInnerPreHeader = Succ; | ||||
298 | const BasicBlock *PotentialOuterLatch = Succ; | ||||
299 | |||||
300 | // Ensure the inner loop guard successor is empty before skipping | ||||
301 | // blocks. | ||||
302 | if (Succ->getInstList().size() == 1) { | ||||
303 | PotentialInnerPreHeader = | ||||
304 | &LoopNest::skipEmptyBlockUntil(Succ, InnerLoopPreHeader); | ||||
305 | PotentialOuterLatch = | ||||
306 | &LoopNest::skipEmptyBlockUntil(Succ, OuterLoopLatch); | ||||
307 | } | ||||
308 | |||||
309 | if (PotentialInnerPreHeader == InnerLoopPreHeader) | ||||
310 | continue; | ||||
311 | if (PotentialOuterLatch == OuterLoopLatch) | ||||
312 | continue; | ||||
313 | |||||
314 | // If `InnerLoopExit` contains LCSSA Phi instructions, additional block | ||||
315 | // may be inserted before the `OuterLoopLatch` to which `BI` jumps. The | ||||
316 | // loops are still considered perfectly nested if the extra block only | ||||
317 | // contains Phi instructions from InnerLoopExit and OuterLoopHeader. | ||||
318 | if (InnerLoopExitContainsLCSSA && IsExtraPhiBlock(*Succ) && | ||||
319 | Succ->getSingleSuccessor() == OuterLoopLatch) { | ||||
320 | // Points to the extra block so that we can reference it later in the | ||||
321 | // final check. We can also conclude that the inner loop is | ||||
322 | // guarded and there exists LCSSA Phi node in the exit block later if | ||||
323 | // we see a non-null `ExtraPhiBlock`. | ||||
324 | ExtraPhiBlock = Succ; | ||||
325 | continue; | ||||
326 | } | ||||
327 | |||||
328 | DEBUG_WITH_TYPE(VerboseDebug, {do { } while (false) | ||||
329 | dbgs() << "Inner loop guard successor " << Succ->getName()do { } while (false) | ||||
330 | << " doesn't lead to inner loop preheader or "do { } while (false) | ||||
331 | "outer loop latch.\n";do { } while (false) | ||||
332 | })do { } while (false); | ||||
333 | return false; | ||||
334 | } | ||||
335 | } | ||||
336 | } | ||||
337 | |||||
338 | // Ensure the inner loop exit block lead to the outer loop latch possibly | ||||
339 | // through empty blocks. | ||||
340 | if ((!ExtraPhiBlock
| ||||
341 | &LoopNest::skipEmptyBlockUntil(InnerLoop.getExitBlock(), | ||||
342 | ExtraPhiBlock) != ExtraPhiBlock) && | ||||
343 | (&LoopNest::skipEmptyBlockUntil(InnerLoop.getExitBlock(), | ||||
344 | OuterLoopLatch) != OuterLoopLatch)) { | ||||
345 | DEBUG_WITH_TYPE(do { } while (false) | ||||
346 | VerboseDebug,do { } while (false) | ||||
347 | dbgs() << "Inner loop exit block " << *InnerLoopExitdo { } while (false) | ||||
348 | << " does not directly lead to the outer loop latch.\n";)do { } while (false); | ||||
349 | return false; | ||||
350 | } | ||||
351 | |||||
352 | return true; | ||||
353 | } | ||||
354 | |||||
355 | AnalysisKey LoopNestAnalysis::Key; | ||||
356 | |||||
357 | raw_ostream &llvm::operator<<(raw_ostream &OS, const LoopNest &LN) { | ||||
358 | OS << "IsPerfect="; | ||||
359 | if (LN.getMaxPerfectDepth() == LN.getNestDepth()) | ||||
360 | OS << "true"; | ||||
361 | else | ||||
362 | OS << "false"; | ||||
363 | OS << ", Depth=" << LN.getNestDepth(); | ||||
364 | OS << ", OutermostLoop: " << LN.getOutermostLoop().getName(); | ||||
365 | OS << ", Loops: ( "; | ||||
366 | for (const Loop *L : LN.getLoops()) | ||||
367 | OS << L->getName() << " "; | ||||
368 | OS << ")"; | ||||
369 | |||||
370 | return OS; | ||||
371 | } | ||||
372 | |||||
373 | //===----------------------------------------------------------------------===// | ||||
374 | // LoopNestPrinterPass implementation | ||||
375 | // | ||||
376 | |||||
377 | PreservedAnalyses LoopNestPrinterPass::run(Loop &L, LoopAnalysisManager &AM, | ||||
378 | LoopStandardAnalysisResults &AR, | ||||
379 | LPMUpdater &U) { | ||||
380 | if (auto LN = LoopNest::getLoopNest(L, AR.SE)) | ||||
381 | OS << *LN << "\n"; | ||||
382 | |||||
383 | return PreservedAnalyses::all(); | ||||
384 | } |
1 | //===- Optional.h - Simple variant for passing optional values --*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file provides Optional, a template class modeled in the spirit of |
10 | // OCaml's 'opt' variant. The idea is to strongly type whether or not |
11 | // a value can be optional. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_ADT_OPTIONAL_H |
16 | #define LLVM_ADT_OPTIONAL_H |
17 | |
18 | #include "llvm/ADT/Hashing.h" |
19 | #include "llvm/ADT/None.h" |
20 | #include "llvm/ADT/STLForwardCompat.h" |
21 | #include "llvm/Support/Compiler.h" |
22 | #include "llvm/Support/type_traits.h" |
23 | #include <cassert> |
24 | #include <memory> |
25 | #include <new> |
26 | #include <utility> |
27 | |
28 | namespace llvm { |
29 | |
30 | class raw_ostream; |
31 | |
32 | namespace optional_detail { |
33 | |
34 | /// Storage for any type. |
35 | // |
36 | // The specialization condition intentionally uses |
37 | // llvm::is_trivially_copy_constructible instead of |
38 | // std::is_trivially_copy_constructible. GCC versions prior to 7.4 may |
39 | // instantiate the copy constructor of `T` when |
40 | // std::is_trivially_copy_constructible is instantiated. This causes |
41 | // compilation to fail if we query the trivially copy constructible property of |
42 | // a class which is not copy constructible. |
43 | // |
44 | // The current implementation of OptionalStorage insists that in order to use |
45 | // the trivial specialization, the value_type must be trivially copy |
46 | // constructible and trivially copy assignable due to =default implementations |
47 | // of the copy/move constructor/assignment. It does not follow that this is |
48 | // necessarily the case std::is_trivially_copyable is true (hence the expanded |
49 | // specialization condition). |
50 | // |
51 | // The move constructible / assignable conditions emulate the remaining behavior |
52 | // of std::is_trivially_copyable. |
53 | template <typename T, bool = (llvm::is_trivially_copy_constructible<T>::value && |
54 | std::is_trivially_copy_assignable<T>::value && |
55 | (std::is_trivially_move_constructible<T>::value || |
56 | !std::is_move_constructible<T>::value) && |
57 | (std::is_trivially_move_assignable<T>::value || |
58 | !std::is_move_assignable<T>::value))> |
59 | class OptionalStorage { |
60 | union { |
61 | char empty; |
62 | T value; |
63 | }; |
64 | bool hasVal; |
65 | |
66 | public: |
67 | ~OptionalStorage() { reset(); } |
68 | |
69 | constexpr OptionalStorage() noexcept : empty(), hasVal(false) {} |
70 | |
71 | constexpr OptionalStorage(OptionalStorage const &other) : OptionalStorage() { |
72 | if (other.hasValue()) { |
73 | emplace(other.value); |
74 | } |
75 | } |
76 | constexpr OptionalStorage(OptionalStorage &&other) : OptionalStorage() { |
77 | if (other.hasValue()) { |
78 | emplace(std::move(other.value)); |
79 | } |
80 | } |
81 | |
82 | template <class... Args> |
83 | constexpr explicit OptionalStorage(in_place_t, Args &&... args) |
84 | : value(std::forward<Args>(args)...), hasVal(true) {} |
85 | |
86 | void reset() noexcept { |
87 | if (hasVal) { |
88 | value.~T(); |
89 | hasVal = false; |
90 | } |
91 | } |
92 | |
93 | constexpr bool hasValue() const noexcept { return hasVal; } |
94 | |
95 | T &getValue() LLVM_LVALUE_FUNCTION& noexcept { |
96 | assert(hasVal)((void)0); |
97 | return value; |
98 | } |
99 | constexpr T const &getValue() const LLVM_LVALUE_FUNCTION& noexcept { |
100 | assert(hasVal)((void)0); |
101 | return value; |
102 | } |
103 | #if LLVM_HAS_RVALUE_REFERENCE_THIS1 |
104 | T &&getValue() && noexcept { |
105 | assert(hasVal)((void)0); |
106 | return std::move(value); |
107 | } |
108 | #endif |
109 | |
110 | template <class... Args> void emplace(Args &&... args) { |
111 | reset(); |
112 | ::new ((void *)std::addressof(value)) T(std::forward<Args>(args)...); |
113 | hasVal = true; |
114 | } |
115 | |
116 | OptionalStorage &operator=(T const &y) { |
117 | if (hasValue()) { |
118 | value = y; |
119 | } else { |
120 | ::new ((void *)std::addressof(value)) T(y); |
121 | hasVal = true; |
122 | } |
123 | return *this; |
124 | } |
125 | OptionalStorage &operator=(T &&y) { |
126 | if (hasValue()) { |
127 | value = std::move(y); |
128 | } else { |
129 | ::new ((void *)std::addressof(value)) T(std::move(y)); |
130 | hasVal = true; |
131 | } |
132 | return *this; |
133 | } |
134 | |
135 | OptionalStorage &operator=(OptionalStorage const &other) { |
136 | if (other.hasValue()) { |
137 | if (hasValue()) { |
138 | value = other.value; |
139 | } else { |
140 | ::new ((void *)std::addressof(value)) T(other.value); |
141 | hasVal = true; |
142 | } |
143 | } else { |
144 | reset(); |
145 | } |
146 | return *this; |
147 | } |
148 | |
149 | OptionalStorage &operator=(OptionalStorage &&other) { |
150 | if (other.hasValue()) { |
151 | if (hasValue()) { |
152 | value = std::move(other.value); |
153 | } else { |
154 | ::new ((void *)std::addressof(value)) T(std::move(other.value)); |
155 | hasVal = true; |
156 | } |
157 | } else { |
158 | reset(); |
159 | } |
160 | return *this; |
161 | } |
162 | }; |
163 | |
164 | template <typename T> class OptionalStorage<T, true> { |
165 | union { |
166 | char empty; |
167 | T value; |
168 | }; |
169 | bool hasVal = false; |
170 | |
171 | public: |
172 | ~OptionalStorage() = default; |
173 | |
174 | constexpr OptionalStorage() noexcept : empty{} {} |
175 | |
176 | constexpr OptionalStorage(OptionalStorage const &other) = default; |
177 | constexpr OptionalStorage(OptionalStorage &&other) = default; |
178 | |
179 | OptionalStorage &operator=(OptionalStorage const &other) = default; |
180 | OptionalStorage &operator=(OptionalStorage &&other) = default; |
181 | |
182 | template <class... Args> |
183 | constexpr explicit OptionalStorage(in_place_t, Args &&... args) |
184 | : value(std::forward<Args>(args)...), hasVal(true) {} |
185 | |
186 | void reset() noexcept { |
187 | if (hasVal) { |
188 | value.~T(); |
189 | hasVal = false; |
190 | } |
191 | } |
192 | |
193 | constexpr bool hasValue() const noexcept { return hasVal; } |
194 | |
195 | T &getValue() LLVM_LVALUE_FUNCTION& noexcept { |
196 | assert(hasVal)((void)0); |
197 | return value; |
198 | } |
199 | constexpr T const &getValue() const LLVM_LVALUE_FUNCTION& noexcept { |
200 | assert(hasVal)((void)0); |
201 | return value; |
202 | } |
203 | #if LLVM_HAS_RVALUE_REFERENCE_THIS1 |
204 | T &&getValue() && noexcept { |
205 | assert(hasVal)((void)0); |
206 | return std::move(value); |
207 | } |
208 | #endif |
209 | |
210 | template <class... Args> void emplace(Args &&... args) { |
211 | reset(); |
212 | ::new ((void *)std::addressof(value)) T(std::forward<Args>(args)...); |
213 | hasVal = true; |
214 | } |
215 | |
216 | OptionalStorage &operator=(T const &y) { |
217 | if (hasValue()) { |
218 | value = y; |
219 | } else { |
220 | ::new ((void *)std::addressof(value)) T(y); |
221 | hasVal = true; |
222 | } |
223 | return *this; |
224 | } |
225 | OptionalStorage &operator=(T &&y) { |
226 | if (hasValue()) { |
227 | value = std::move(y); |
228 | } else { |
229 | ::new ((void *)std::addressof(value)) T(std::move(y)); |
230 | hasVal = true; |
231 | } |
232 | return *this; |
233 | } |
234 | }; |
235 | |
236 | } // namespace optional_detail |
237 | |
238 | template <typename T> class Optional { |
239 | optional_detail::OptionalStorage<T> Storage; |
240 | |
241 | public: |
242 | using value_type = T; |
243 | |
244 | constexpr Optional() {} |
245 | constexpr Optional(NoneType) {} |
246 | |
247 | constexpr Optional(const T &y) : Storage(in_place, y) {} |
248 | constexpr Optional(const Optional &O) = default; |
249 | |
250 | constexpr Optional(T &&y) : Storage(in_place, std::move(y)) {} |
251 | constexpr Optional(Optional &&O) = default; |
252 | |
253 | template <typename... ArgTypes> |
254 | constexpr Optional(in_place_t, ArgTypes &&...Args) |
255 | : Storage(in_place, std::forward<ArgTypes>(Args)...) {} |
256 | |
257 | Optional &operator=(T &&y) { |
258 | Storage = std::move(y); |
259 | return *this; |
260 | } |
261 | Optional &operator=(Optional &&O) = default; |
262 | |
263 | /// Create a new object by constructing it in place with the given arguments. |
264 | template <typename... ArgTypes> void emplace(ArgTypes &&... Args) { |
265 | Storage.emplace(std::forward<ArgTypes>(Args)...); |
266 | } |
267 | |
268 | static constexpr Optional create(const T *y) { |
269 | return y ? Optional(*y) : Optional(); |
270 | } |
271 | |
272 | Optional &operator=(const T &y) { |
273 | Storage = y; |
274 | return *this; |
275 | } |
276 | Optional &operator=(const Optional &O) = default; |
277 | |
278 | void reset() { Storage.reset(); } |
279 | |
280 | constexpr const T *getPointer() const { return &Storage.getValue(); } |
281 | T *getPointer() { return &Storage.getValue(); } |
282 | constexpr const T &getValue() const LLVM_LVALUE_FUNCTION& { |
283 | return Storage.getValue(); |
284 | } |
285 | T &getValue() LLVM_LVALUE_FUNCTION& { return Storage.getValue(); } |
286 | |
287 | constexpr explicit operator bool() const { return hasValue(); } |
288 | constexpr bool hasValue() const { return Storage.hasValue(); } |
289 | constexpr const T *operator->() const { return getPointer(); } |
290 | T *operator->() { return getPointer(); } |
291 | constexpr const T &operator*() const LLVM_LVALUE_FUNCTION& { |
292 | return getValue(); |
293 | } |
294 | T &operator*() LLVM_LVALUE_FUNCTION& { return getValue(); } |
295 | |
296 | template <typename U> |
297 | constexpr T getValueOr(U &&value) const LLVM_LVALUE_FUNCTION& { |
298 | return hasValue() ? getValue() : std::forward<U>(value); |
299 | } |
300 | |
301 | /// Apply a function to the value if present; otherwise return None. |
302 | template <class Function> |
303 | auto map(const Function &F) const LLVM_LVALUE_FUNCTION& |
304 | -> Optional<decltype(F(getValue()))> { |
305 | if (*this) return F(getValue()); |
306 | return None; |
307 | } |
308 | |
309 | #if LLVM_HAS_RVALUE_REFERENCE_THIS1 |
310 | T &&getValue() && { return std::move(Storage.getValue()); } |
311 | T &&operator*() && { return std::move(Storage.getValue()); } |
312 | |
313 | template <typename U> |
314 | T getValueOr(U &&value) && { |
315 | return hasValue() ? std::move(getValue()) : std::forward<U>(value); |
316 | } |
317 | |
318 | /// Apply a function to the value if present; otherwise return None. |
319 | template <class Function> |
320 | auto map(const Function &F) && |
321 | -> Optional<decltype(F(std::move(*this).getValue()))> { |
322 | if (*this) return F(std::move(*this).getValue()); |
323 | return None; |
324 | } |
325 | #endif |
326 | }; |
327 | |
328 | template <class T> llvm::hash_code hash_value(const Optional<T> &O) { |
329 | return O ? hash_combine(true, *O) : hash_value(false); |
330 | } |
331 | |
332 | template <typename T, typename U> |
333 | constexpr bool operator==(const Optional<T> &X, const Optional<U> &Y) { |
334 | if (X && Y) |
335 | return *X == *Y; |
336 | return X.hasValue() == Y.hasValue(); |
337 | } |
338 | |
339 | template <typename T, typename U> |
340 | constexpr bool operator!=(const Optional<T> &X, const Optional<U> &Y) { |
341 | return !(X == Y); |
342 | } |
343 | |
344 | template <typename T, typename U> |
345 | constexpr bool operator<(const Optional<T> &X, const Optional<U> &Y) { |
346 | if (X && Y) |
347 | return *X < *Y; |
348 | return X.hasValue() < Y.hasValue(); |
349 | } |
350 | |
351 | template <typename T, typename U> |
352 | constexpr bool operator<=(const Optional<T> &X, const Optional<U> &Y) { |
353 | return !(Y < X); |
354 | } |
355 | |
356 | template <typename T, typename U> |
357 | constexpr bool operator>(const Optional<T> &X, const Optional<U> &Y) { |
358 | return Y < X; |
359 | } |
360 | |
361 | template <typename T, typename U> |
362 | constexpr bool operator>=(const Optional<T> &X, const Optional<U> &Y) { |
363 | return !(X < Y); |
364 | } |
365 | |
366 | template <typename T> |
367 | constexpr bool operator==(const Optional<T> &X, NoneType) { |
368 | return !X; |
369 | } |
370 | |
371 | template <typename T> |
372 | constexpr bool operator==(NoneType, const Optional<T> &X) { |
373 | return X == None; |
374 | } |
375 | |
376 | template <typename T> |
377 | constexpr bool operator!=(const Optional<T> &X, NoneType) { |
378 | return !(X == None); |
379 | } |
380 | |
381 | template <typename T> |
382 | constexpr bool operator!=(NoneType, const Optional<T> &X) { |
383 | return X != None; |
384 | } |
385 | |
386 | template <typename T> constexpr bool operator<(const Optional<T> &, NoneType) { |
387 | return false; |
388 | } |
389 | |
390 | template <typename T> constexpr bool operator<(NoneType, const Optional<T> &X) { |
391 | return X.hasValue(); |
392 | } |
393 | |
394 | template <typename T> |
395 | constexpr bool operator<=(const Optional<T> &X, NoneType) { |
396 | return !(None < X); |
397 | } |
398 | |
399 | template <typename T> |
400 | constexpr bool operator<=(NoneType, const Optional<T> &X) { |
401 | return !(X < None); |
402 | } |
403 | |
404 | template <typename T> constexpr bool operator>(const Optional<T> &X, NoneType) { |
405 | return None < X; |
406 | } |
407 | |
408 | template <typename T> constexpr bool operator>(NoneType, const Optional<T> &X) { |
409 | return X < None; |
410 | } |
411 | |
412 | template <typename T> |
413 | constexpr bool operator>=(const Optional<T> &X, NoneType) { |
414 | return None <= X; |
415 | } |
416 | |
417 | template <typename T> |
418 | constexpr bool operator>=(NoneType, const Optional<T> &X) { |
419 | return X <= None; |
420 | } |
421 | |
422 | template <typename T> |
423 | constexpr bool operator==(const Optional<T> &X, const T &Y) { |
424 | return X && *X == Y; |
425 | } |
426 | |
427 | template <typename T> |
428 | constexpr bool operator==(const T &X, const Optional<T> &Y) { |
429 | return Y && X == *Y; |
430 | } |
431 | |
432 | template <typename T> |
433 | constexpr bool operator!=(const Optional<T> &X, const T &Y) { |
434 | return !(X == Y); |
435 | } |
436 | |
437 | template <typename T> |
438 | constexpr bool operator!=(const T &X, const Optional<T> &Y) { |
439 | return !(X == Y); |
440 | } |
441 | |
442 | template <typename T> |
443 | constexpr bool operator<(const Optional<T> &X, const T &Y) { |
444 | return !X || *X < Y; |
445 | } |
446 | |
447 | template <typename T> |
448 | constexpr bool operator<(const T &X, const Optional<T> &Y) { |
449 | return Y && X < *Y; |
450 | } |
451 | |
452 | template <typename T> |
453 | constexpr bool operator<=(const Optional<T> &X, const T &Y) { |
454 | return !(Y < X); |
455 | } |
456 | |
457 | template <typename T> |
458 | constexpr bool operator<=(const T &X, const Optional<T> &Y) { |
459 | return !(Y < X); |
460 | } |
461 | |
462 | template <typename T> |
463 | constexpr bool operator>(const Optional<T> &X, const T &Y) { |
464 | return Y < X; |
465 | } |
466 | |
467 | template <typename T> |
468 | constexpr bool operator>(const T &X, const Optional<T> &Y) { |
469 | return Y < X; |
470 | } |
471 | |
472 | template <typename T> |
473 | constexpr bool operator>=(const Optional<T> &X, const T &Y) { |
474 | return !(X < Y); |
475 | } |
476 | |
477 | template <typename T> |
478 | constexpr bool operator>=(const T &X, const Optional<T> &Y) { |
479 | return !(X < Y); |
480 | } |
481 | |
482 | raw_ostream &operator<<(raw_ostream &OS, NoneType); |
483 | |
484 | template <typename T, typename = decltype(std::declval<raw_ostream &>() |
485 | << std::declval<const T &>())> |
486 | raw_ostream &operator<<(raw_ostream &OS, const Optional<T> &O) { |
487 | if (O) |
488 | OS << *O; |
489 | else |
490 | OS << None; |
491 | return OS; |
492 | } |
493 | |
494 | } // end namespace llvm |
495 | |
496 | #endif // LLVM_ADT_OPTIONAL_H |