Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86/X86InstrInfo.cpp
Warning:line 3886, column 19
Value stored to 'NewMI' during its initialization is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name X86InstrInfo.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -fhalf-no-semantic-interposition -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -D PIC -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -D_RET_PROTECTOR -ret-protector -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86/X86InstrInfo.cpp
1//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the X86 implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86InstrInfo.h"
14#include "X86.h"
15#include "X86InstrBuilder.h"
16#include "X86InstrFoldTables.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Sequence.h"
22#include "llvm/CodeGen/LivePhysRegs.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/StackMaps.h"
31#include "llvm/IR/DebugInfoMetadata.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/MC/MCAsmInfo.h"
35#include "llvm/MC/MCExpr.h"
36#include "llvm/MC/MCInst.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/Target/TargetOptions.h"
42
43using namespace llvm;
44
45#define DEBUG_TYPE"x86-instr-info" "x86-instr-info"
46
47#define GET_INSTRINFO_CTOR_DTOR
48#include "X86GenInstrInfo.inc"
49
50static cl::opt<bool>
51 NoFusing("disable-spill-fusing",
52 cl::desc("Disable fusing of spill code into instructions"),
53 cl::Hidden);
54static cl::opt<bool>
55PrintFailedFusing("print-failed-fuse-candidates",
56 cl::desc("Print instructions that the allocator wants to"
57 " fuse, but the X86 backend currently can't"),
58 cl::Hidden);
59static cl::opt<bool>
60ReMatPICStubLoad("remat-pic-stub-load",
61 cl::desc("Re-materialize load from stub in PIC mode"),
62 cl::init(false), cl::Hidden);
63static cl::opt<unsigned>
64PartialRegUpdateClearance("partial-reg-update-clearance",
65 cl::desc("Clearance between two register writes "
66 "for inserting XOR to avoid partial "
67 "register update"),
68 cl::init(64), cl::Hidden);
69static cl::opt<unsigned>
70UndefRegClearance("undef-reg-clearance",
71 cl::desc("How many idle instructions we would like before "
72 "certain undef register reads"),
73 cl::init(128), cl::Hidden);
74
75
76// Pin the vtable to this file.
77void X86InstrInfo::anchor() {}
78
79X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
80 : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
81 : X86::ADJCALLSTACKDOWN32),
82 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
83 : X86::ADJCALLSTACKUP32),
84 X86::CATCHRET,
85 (STI.is64Bit() ? X86::RETQ : X86::RETL)),
86 Subtarget(STI), RI(STI.getTargetTriple()) {
87}
88
89bool
90X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
91 Register &SrcReg, Register &DstReg,
92 unsigned &SubIdx) const {
93 switch (MI.getOpcode()) {
94 default: break;
95 case X86::MOVSX16rr8:
96 case X86::MOVZX16rr8:
97 case X86::MOVSX32rr8:
98 case X86::MOVZX32rr8:
99 case X86::MOVSX64rr8:
100 if (!Subtarget.is64Bit())
101 // It's not always legal to reference the low 8-bit of the larger
102 // register in 32-bit mode.
103 return false;
104 LLVM_FALLTHROUGH[[gnu::fallthrough]];
105 case X86::MOVSX32rr16:
106 case X86::MOVZX32rr16:
107 case X86::MOVSX64rr16:
108 case X86::MOVSX64rr32: {
109 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
110 // Be conservative.
111 return false;
112 SrcReg = MI.getOperand(1).getReg();
113 DstReg = MI.getOperand(0).getReg();
114 switch (MI.getOpcode()) {
115 default: llvm_unreachable("Unreachable!")__builtin_unreachable();
116 case X86::MOVSX16rr8:
117 case X86::MOVZX16rr8:
118 case X86::MOVSX32rr8:
119 case X86::MOVZX32rr8:
120 case X86::MOVSX64rr8:
121 SubIdx = X86::sub_8bit;
122 break;
123 case X86::MOVSX32rr16:
124 case X86::MOVZX32rr16:
125 case X86::MOVSX64rr16:
126 SubIdx = X86::sub_16bit;
127 break;
128 case X86::MOVSX64rr32:
129 SubIdx = X86::sub_32bit;
130 break;
131 }
132 return true;
133 }
134 }
135 return false;
136}
137
138bool X86InstrInfo::isDataInvariant(MachineInstr &MI) {
139 switch (MI.getOpcode()) {
140 default:
141 // By default, assume that the instruction is not data invariant.
142 return false;
143
144 // Some target-independent operations that trivially lower to data-invariant
145 // instructions.
146 case TargetOpcode::COPY:
147 case TargetOpcode::INSERT_SUBREG:
148 case TargetOpcode::SUBREG_TO_REG:
149 return true;
150
151 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
152 // However, they set flags and are perhaps the most surprisingly constant
153 // time operations so we call them out here separately.
154 case X86::IMUL16rr:
155 case X86::IMUL16rri8:
156 case X86::IMUL16rri:
157 case X86::IMUL32rr:
158 case X86::IMUL32rri8:
159 case X86::IMUL32rri:
160 case X86::IMUL64rr:
161 case X86::IMUL64rri32:
162 case X86::IMUL64rri8:
163
164 // Bit scanning and counting instructions that are somewhat surprisingly
165 // constant time as they scan across bits and do other fairly complex
166 // operations like popcnt, but are believed to be constant time on x86.
167 // However, these set flags.
168 case X86::BSF16rr:
169 case X86::BSF32rr:
170 case X86::BSF64rr:
171 case X86::BSR16rr:
172 case X86::BSR32rr:
173 case X86::BSR64rr:
174 case X86::LZCNT16rr:
175 case X86::LZCNT32rr:
176 case X86::LZCNT64rr:
177 case X86::POPCNT16rr:
178 case X86::POPCNT32rr:
179 case X86::POPCNT64rr:
180 case X86::TZCNT16rr:
181 case X86::TZCNT32rr:
182 case X86::TZCNT64rr:
183
184 // Bit manipulation instructions are effectively combinations of basic
185 // arithmetic ops, and should still execute in constant time. These also
186 // set flags.
187 case X86::BLCFILL32rr:
188 case X86::BLCFILL64rr:
189 case X86::BLCI32rr:
190 case X86::BLCI64rr:
191 case X86::BLCIC32rr:
192 case X86::BLCIC64rr:
193 case X86::BLCMSK32rr:
194 case X86::BLCMSK64rr:
195 case X86::BLCS32rr:
196 case X86::BLCS64rr:
197 case X86::BLSFILL32rr:
198 case X86::BLSFILL64rr:
199 case X86::BLSI32rr:
200 case X86::BLSI64rr:
201 case X86::BLSIC32rr:
202 case X86::BLSIC64rr:
203 case X86::BLSMSK32rr:
204 case X86::BLSMSK64rr:
205 case X86::BLSR32rr:
206 case X86::BLSR64rr:
207 case X86::TZMSK32rr:
208 case X86::TZMSK64rr:
209
210 // Bit extracting and clearing instructions should execute in constant time,
211 // and set flags.
212 case X86::BEXTR32rr:
213 case X86::BEXTR64rr:
214 case X86::BEXTRI32ri:
215 case X86::BEXTRI64ri:
216 case X86::BZHI32rr:
217 case X86::BZHI64rr:
218
219 // Shift and rotate.
220 case X86::ROL8r1:
221 case X86::ROL16r1:
222 case X86::ROL32r1:
223 case X86::ROL64r1:
224 case X86::ROL8rCL:
225 case X86::ROL16rCL:
226 case X86::ROL32rCL:
227 case X86::ROL64rCL:
228 case X86::ROL8ri:
229 case X86::ROL16ri:
230 case X86::ROL32ri:
231 case X86::ROL64ri:
232 case X86::ROR8r1:
233 case X86::ROR16r1:
234 case X86::ROR32r1:
235 case X86::ROR64r1:
236 case X86::ROR8rCL:
237 case X86::ROR16rCL:
238 case X86::ROR32rCL:
239 case X86::ROR64rCL:
240 case X86::ROR8ri:
241 case X86::ROR16ri:
242 case X86::ROR32ri:
243 case X86::ROR64ri:
244 case X86::SAR8r1:
245 case X86::SAR16r1:
246 case X86::SAR32r1:
247 case X86::SAR64r1:
248 case X86::SAR8rCL:
249 case X86::SAR16rCL:
250 case X86::SAR32rCL:
251 case X86::SAR64rCL:
252 case X86::SAR8ri:
253 case X86::SAR16ri:
254 case X86::SAR32ri:
255 case X86::SAR64ri:
256 case X86::SHL8r1:
257 case X86::SHL16r1:
258 case X86::SHL32r1:
259 case X86::SHL64r1:
260 case X86::SHL8rCL:
261 case X86::SHL16rCL:
262 case X86::SHL32rCL:
263 case X86::SHL64rCL:
264 case X86::SHL8ri:
265 case X86::SHL16ri:
266 case X86::SHL32ri:
267 case X86::SHL64ri:
268 case X86::SHR8r1:
269 case X86::SHR16r1:
270 case X86::SHR32r1:
271 case X86::SHR64r1:
272 case X86::SHR8rCL:
273 case X86::SHR16rCL:
274 case X86::SHR32rCL:
275 case X86::SHR64rCL:
276 case X86::SHR8ri:
277 case X86::SHR16ri:
278 case X86::SHR32ri:
279 case X86::SHR64ri:
280 case X86::SHLD16rrCL:
281 case X86::SHLD32rrCL:
282 case X86::SHLD64rrCL:
283 case X86::SHLD16rri8:
284 case X86::SHLD32rri8:
285 case X86::SHLD64rri8:
286 case X86::SHRD16rrCL:
287 case X86::SHRD32rrCL:
288 case X86::SHRD64rrCL:
289 case X86::SHRD16rri8:
290 case X86::SHRD32rri8:
291 case X86::SHRD64rri8:
292
293 // Basic arithmetic is constant time on the input but does set flags.
294 case X86::ADC8rr:
295 case X86::ADC8ri:
296 case X86::ADC16rr:
297 case X86::ADC16ri:
298 case X86::ADC16ri8:
299 case X86::ADC32rr:
300 case X86::ADC32ri:
301 case X86::ADC32ri8:
302 case X86::ADC64rr:
303 case X86::ADC64ri8:
304 case X86::ADC64ri32:
305 case X86::ADD8rr:
306 case X86::ADD8ri:
307 case X86::ADD16rr:
308 case X86::ADD16ri:
309 case X86::ADD16ri8:
310 case X86::ADD32rr:
311 case X86::ADD32ri:
312 case X86::ADD32ri8:
313 case X86::ADD64rr:
314 case X86::ADD64ri8:
315 case X86::ADD64ri32:
316 case X86::AND8rr:
317 case X86::AND8ri:
318 case X86::AND16rr:
319 case X86::AND16ri:
320 case X86::AND16ri8:
321 case X86::AND32rr:
322 case X86::AND32ri:
323 case X86::AND32ri8:
324 case X86::AND64rr:
325 case X86::AND64ri8:
326 case X86::AND64ri32:
327 case X86::OR8rr:
328 case X86::OR8ri:
329 case X86::OR16rr:
330 case X86::OR16ri:
331 case X86::OR16ri8:
332 case X86::OR32rr:
333 case X86::OR32ri:
334 case X86::OR32ri8:
335 case X86::OR64rr:
336 case X86::OR64ri8:
337 case X86::OR64ri32:
338 case X86::SBB8rr:
339 case X86::SBB8ri:
340 case X86::SBB16rr:
341 case X86::SBB16ri:
342 case X86::SBB16ri8:
343 case X86::SBB32rr:
344 case X86::SBB32ri:
345 case X86::SBB32ri8:
346 case X86::SBB64rr:
347 case X86::SBB64ri8:
348 case X86::SBB64ri32:
349 case X86::SUB8rr:
350 case X86::SUB8ri:
351 case X86::SUB16rr:
352 case X86::SUB16ri:
353 case X86::SUB16ri8:
354 case X86::SUB32rr:
355 case X86::SUB32ri:
356 case X86::SUB32ri8:
357 case X86::SUB64rr:
358 case X86::SUB64ri8:
359 case X86::SUB64ri32:
360 case X86::XOR8rr:
361 case X86::XOR8ri:
362 case X86::XOR16rr:
363 case X86::XOR16ri:
364 case X86::XOR16ri8:
365 case X86::XOR32rr:
366 case X86::XOR32ri:
367 case X86::XOR32ri8:
368 case X86::XOR64rr:
369 case X86::XOR64ri8:
370 case X86::XOR64ri32:
371 // Arithmetic with just 32-bit and 64-bit variants and no immediates.
372 case X86::ADCX32rr:
373 case X86::ADCX64rr:
374 case X86::ADOX32rr:
375 case X86::ADOX64rr:
376 case X86::ANDN32rr:
377 case X86::ANDN64rr:
378 // Unary arithmetic operations.
379 case X86::DEC8r:
380 case X86::DEC16r:
381 case X86::DEC32r:
382 case X86::DEC64r:
383 case X86::INC8r:
384 case X86::INC16r:
385 case X86::INC32r:
386 case X86::INC64r:
387 case X86::NEG8r:
388 case X86::NEG16r:
389 case X86::NEG32r:
390 case X86::NEG64r:
391
392 // Unlike other arithmetic, NOT doesn't set EFLAGS.
393 case X86::NOT8r:
394 case X86::NOT16r:
395 case X86::NOT32r:
396 case X86::NOT64r:
397
398 // Various move instructions used to zero or sign extend things. Note that we
399 // intentionally don't support the _NOREX variants as we can't handle that
400 // register constraint anyways.
401 case X86::MOVSX16rr8:
402 case X86::MOVSX32rr8:
403 case X86::MOVSX32rr16:
404 case X86::MOVSX64rr8:
405 case X86::MOVSX64rr16:
406 case X86::MOVSX64rr32:
407 case X86::MOVZX16rr8:
408 case X86::MOVZX32rr8:
409 case X86::MOVZX32rr16:
410 case X86::MOVZX64rr8:
411 case X86::MOVZX64rr16:
412 case X86::MOV32rr:
413
414 // Arithmetic instructions that are both constant time and don't set flags.
415 case X86::RORX32ri:
416 case X86::RORX64ri:
417 case X86::SARX32rr:
418 case X86::SARX64rr:
419 case X86::SHLX32rr:
420 case X86::SHLX64rr:
421 case X86::SHRX32rr:
422 case X86::SHRX64rr:
423
424 // LEA doesn't actually access memory, and its arithmetic is constant time.
425 case X86::LEA16r:
426 case X86::LEA32r:
427 case X86::LEA64_32r:
428 case X86::LEA64r:
429 return true;
430 }
431}
432
433bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) {
434 switch (MI.getOpcode()) {
435 default:
436 // By default, assume that the load will immediately leak.
437 return false;
438
439 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
440 // However, they set flags and are perhaps the most surprisingly constant
441 // time operations so we call them out here separately.
442 case X86::IMUL16rm:
443 case X86::IMUL16rmi8:
444 case X86::IMUL16rmi:
445 case X86::IMUL32rm:
446 case X86::IMUL32rmi8:
447 case X86::IMUL32rmi:
448 case X86::IMUL64rm:
449 case X86::IMUL64rmi32:
450 case X86::IMUL64rmi8:
451
452 // Bit scanning and counting instructions that are somewhat surprisingly
453 // constant time as they scan across bits and do other fairly complex
454 // operations like popcnt, but are believed to be constant time on x86.
455 // However, these set flags.
456 case X86::BSF16rm:
457 case X86::BSF32rm:
458 case X86::BSF64rm:
459 case X86::BSR16rm:
460 case X86::BSR32rm:
461 case X86::BSR64rm:
462 case X86::LZCNT16rm:
463 case X86::LZCNT32rm:
464 case X86::LZCNT64rm:
465 case X86::POPCNT16rm:
466 case X86::POPCNT32rm:
467 case X86::POPCNT64rm:
468 case X86::TZCNT16rm:
469 case X86::TZCNT32rm:
470 case X86::TZCNT64rm:
471
472 // Bit manipulation instructions are effectively combinations of basic
473 // arithmetic ops, and should still execute in constant time. These also
474 // set flags.
475 case X86::BLCFILL32rm:
476 case X86::BLCFILL64rm:
477 case X86::BLCI32rm:
478 case X86::BLCI64rm:
479 case X86::BLCIC32rm:
480 case X86::BLCIC64rm:
481 case X86::BLCMSK32rm:
482 case X86::BLCMSK64rm:
483 case X86::BLCS32rm:
484 case X86::BLCS64rm:
485 case X86::BLSFILL32rm:
486 case X86::BLSFILL64rm:
487 case X86::BLSI32rm:
488 case X86::BLSI64rm:
489 case X86::BLSIC32rm:
490 case X86::BLSIC64rm:
491 case X86::BLSMSK32rm:
492 case X86::BLSMSK64rm:
493 case X86::BLSR32rm:
494 case X86::BLSR64rm:
495 case X86::TZMSK32rm:
496 case X86::TZMSK64rm:
497
498 // Bit extracting and clearing instructions should execute in constant time,
499 // and set flags.
500 case X86::BEXTR32rm:
501 case X86::BEXTR64rm:
502 case X86::BEXTRI32mi:
503 case X86::BEXTRI64mi:
504 case X86::BZHI32rm:
505 case X86::BZHI64rm:
506
507 // Basic arithmetic is constant time on the input but does set flags.
508 case X86::ADC8rm:
509 case X86::ADC16rm:
510 case X86::ADC32rm:
511 case X86::ADC64rm:
512 case X86::ADCX32rm:
513 case X86::ADCX64rm:
514 case X86::ADD8rm:
515 case X86::ADD16rm:
516 case X86::ADD32rm:
517 case X86::ADD64rm:
518 case X86::ADOX32rm:
519 case X86::ADOX64rm:
520 case X86::AND8rm:
521 case X86::AND16rm:
522 case X86::AND32rm:
523 case X86::AND64rm:
524 case X86::ANDN32rm:
525 case X86::ANDN64rm:
526 case X86::OR8rm:
527 case X86::OR16rm:
528 case X86::OR32rm:
529 case X86::OR64rm:
530 case X86::SBB8rm:
531 case X86::SBB16rm:
532 case X86::SBB32rm:
533 case X86::SBB64rm:
534 case X86::SUB8rm:
535 case X86::SUB16rm:
536 case X86::SUB32rm:
537 case X86::SUB64rm:
538 case X86::XOR8rm:
539 case X86::XOR16rm:
540 case X86::XOR32rm:
541 case X86::XOR64rm:
542
543 // Integer multiply w/o affecting flags is still believed to be constant
544 // time on x86. Called out separately as this is among the most surprising
545 // instructions to exhibit that behavior.
546 case X86::MULX32rm:
547 case X86::MULX64rm:
548
549 // Arithmetic instructions that are both constant time and don't set flags.
550 case X86::RORX32mi:
551 case X86::RORX64mi:
552 case X86::SARX32rm:
553 case X86::SARX64rm:
554 case X86::SHLX32rm:
555 case X86::SHLX64rm:
556 case X86::SHRX32rm:
557 case X86::SHRX64rm:
558
559 // Conversions are believed to be constant time and don't set flags.
560 case X86::CVTTSD2SI64rm:
561 case X86::VCVTTSD2SI64rm:
562 case X86::VCVTTSD2SI64Zrm:
563 case X86::CVTTSD2SIrm:
564 case X86::VCVTTSD2SIrm:
565 case X86::VCVTTSD2SIZrm:
566 case X86::CVTTSS2SI64rm:
567 case X86::VCVTTSS2SI64rm:
568 case X86::VCVTTSS2SI64Zrm:
569 case X86::CVTTSS2SIrm:
570 case X86::VCVTTSS2SIrm:
571 case X86::VCVTTSS2SIZrm:
572 case X86::CVTSI2SDrm:
573 case X86::VCVTSI2SDrm:
574 case X86::VCVTSI2SDZrm:
575 case X86::CVTSI2SSrm:
576 case X86::VCVTSI2SSrm:
577 case X86::VCVTSI2SSZrm:
578 case X86::CVTSI642SDrm:
579 case X86::VCVTSI642SDrm:
580 case X86::VCVTSI642SDZrm:
581 case X86::CVTSI642SSrm:
582 case X86::VCVTSI642SSrm:
583 case X86::VCVTSI642SSZrm:
584 case X86::CVTSS2SDrm:
585 case X86::VCVTSS2SDrm:
586 case X86::VCVTSS2SDZrm:
587 case X86::CVTSD2SSrm:
588 case X86::VCVTSD2SSrm:
589 case X86::VCVTSD2SSZrm:
590 // AVX512 added unsigned integer conversions.
591 case X86::VCVTTSD2USI64Zrm:
592 case X86::VCVTTSD2USIZrm:
593 case X86::VCVTTSS2USI64Zrm:
594 case X86::VCVTTSS2USIZrm:
595 case X86::VCVTUSI2SDZrm:
596 case X86::VCVTUSI642SDZrm:
597 case X86::VCVTUSI2SSZrm:
598 case X86::VCVTUSI642SSZrm:
599
600 // Loads to register don't set flags.
601 case X86::MOV8rm:
602 case X86::MOV8rm_NOREX:
603 case X86::MOV16rm:
604 case X86::MOV32rm:
605 case X86::MOV64rm:
606 case X86::MOVSX16rm8:
607 case X86::MOVSX32rm16:
608 case X86::MOVSX32rm8:
609 case X86::MOVSX32rm8_NOREX:
610 case X86::MOVSX64rm16:
611 case X86::MOVSX64rm32:
612 case X86::MOVSX64rm8:
613 case X86::MOVZX16rm8:
614 case X86::MOVZX32rm16:
615 case X86::MOVZX32rm8:
616 case X86::MOVZX32rm8_NOREX:
617 case X86::MOVZX64rm16:
618 case X86::MOVZX64rm8:
619 return true;
620 }
621}
622
623int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
624 const MachineFunction *MF = MI.getParent()->getParent();
625 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
626
627 if (isFrameInstr(MI)) {
628 int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
629 SPAdj -= getFrameAdjustment(MI);
630 if (!isFrameSetup(MI))
631 SPAdj = -SPAdj;
632 return SPAdj;
633 }
634
635 // To know whether a call adjusts the stack, we need information
636 // that is bound to the following ADJCALLSTACKUP pseudo.
637 // Look for the next ADJCALLSTACKUP that follows the call.
638 if (MI.isCall()) {
639 const MachineBasicBlock *MBB = MI.getParent();
640 auto I = ++MachineBasicBlock::const_iterator(MI);
641 for (auto E = MBB->end(); I != E; ++I) {
642 if (I->getOpcode() == getCallFrameDestroyOpcode() ||
643 I->isCall())
644 break;
645 }
646
647 // If we could not find a frame destroy opcode, then it has already
648 // been simplified, so we don't care.
649 if (I->getOpcode() != getCallFrameDestroyOpcode())
650 return 0;
651
652 return -(I->getOperand(1).getImm());
653 }
654
655 // Currently handle only PUSHes we can reasonably expect to see
656 // in call sequences
657 switch (MI.getOpcode()) {
658 default:
659 return 0;
660 case X86::PUSH32i8:
661 case X86::PUSH32r:
662 case X86::PUSH32rmm:
663 case X86::PUSH32rmr:
664 case X86::PUSHi32:
665 return 4;
666 case X86::PUSH64i8:
667 case X86::PUSH64r:
668 case X86::PUSH64rmm:
669 case X86::PUSH64rmr:
670 case X86::PUSH64i32:
671 return 8;
672 }
673}
674
675/// Return true and the FrameIndex if the specified
676/// operand and follow operands form a reference to the stack frame.
677bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
678 int &FrameIndex) const {
679 if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
680 MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
681 MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
682 MI.getOperand(Op + X86::AddrDisp).isImm() &&
683 MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
684 MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
685 MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
686 FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
687 return true;
688 }
689 return false;
690}
691
692static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
693 switch (Opcode) {
694 default:
695 return false;
696 case X86::MOV8rm:
697 case X86::KMOVBkm:
698 MemBytes = 1;
699 return true;
700 case X86::MOV16rm:
701 case X86::KMOVWkm:
702 MemBytes = 2;
703 return true;
704 case X86::MOV32rm:
705 case X86::MOVSSrm:
706 case X86::MOVSSrm_alt:
707 case X86::VMOVSSrm:
708 case X86::VMOVSSrm_alt:
709 case X86::VMOVSSZrm:
710 case X86::VMOVSSZrm_alt:
711 case X86::KMOVDkm:
712 MemBytes = 4;
713 return true;
714 case X86::MOV64rm:
715 case X86::LD_Fp64m:
716 case X86::MOVSDrm:
717 case X86::MOVSDrm_alt:
718 case X86::VMOVSDrm:
719 case X86::VMOVSDrm_alt:
720 case X86::VMOVSDZrm:
721 case X86::VMOVSDZrm_alt:
722 case X86::MMX_MOVD64rm:
723 case X86::MMX_MOVQ64rm:
724 case X86::KMOVQkm:
725 MemBytes = 8;
726 return true;
727 case X86::MOVAPSrm:
728 case X86::MOVUPSrm:
729 case X86::MOVAPDrm:
730 case X86::MOVUPDrm:
731 case X86::MOVDQArm:
732 case X86::MOVDQUrm:
733 case X86::VMOVAPSrm:
734 case X86::VMOVUPSrm:
735 case X86::VMOVAPDrm:
736 case X86::VMOVUPDrm:
737 case X86::VMOVDQArm:
738 case X86::VMOVDQUrm:
739 case X86::VMOVAPSZ128rm:
740 case X86::VMOVUPSZ128rm:
741 case X86::VMOVAPSZ128rm_NOVLX:
742 case X86::VMOVUPSZ128rm_NOVLX:
743 case X86::VMOVAPDZ128rm:
744 case X86::VMOVUPDZ128rm:
745 case X86::VMOVDQU8Z128rm:
746 case X86::VMOVDQU16Z128rm:
747 case X86::VMOVDQA32Z128rm:
748 case X86::VMOVDQU32Z128rm:
749 case X86::VMOVDQA64Z128rm:
750 case X86::VMOVDQU64Z128rm:
751 MemBytes = 16;
752 return true;
753 case X86::VMOVAPSYrm:
754 case X86::VMOVUPSYrm:
755 case X86::VMOVAPDYrm:
756 case X86::VMOVUPDYrm:
757 case X86::VMOVDQAYrm:
758 case X86::VMOVDQUYrm:
759 case X86::VMOVAPSZ256rm:
760 case X86::VMOVUPSZ256rm:
761 case X86::VMOVAPSZ256rm_NOVLX:
762 case X86::VMOVUPSZ256rm_NOVLX:
763 case X86::VMOVAPDZ256rm:
764 case X86::VMOVUPDZ256rm:
765 case X86::VMOVDQU8Z256rm:
766 case X86::VMOVDQU16Z256rm:
767 case X86::VMOVDQA32Z256rm:
768 case X86::VMOVDQU32Z256rm:
769 case X86::VMOVDQA64Z256rm:
770 case X86::VMOVDQU64Z256rm:
771 MemBytes = 32;
772 return true;
773 case X86::VMOVAPSZrm:
774 case X86::VMOVUPSZrm:
775 case X86::VMOVAPDZrm:
776 case X86::VMOVUPDZrm:
777 case X86::VMOVDQU8Zrm:
778 case X86::VMOVDQU16Zrm:
779 case X86::VMOVDQA32Zrm:
780 case X86::VMOVDQU32Zrm:
781 case X86::VMOVDQA64Zrm:
782 case X86::VMOVDQU64Zrm:
783 MemBytes = 64;
784 return true;
785 }
786}
787
788static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
789 switch (Opcode) {
790 default:
791 return false;
792 case X86::MOV8mr:
793 case X86::KMOVBmk:
794 MemBytes = 1;
795 return true;
796 case X86::MOV16mr:
797 case X86::KMOVWmk:
798 MemBytes = 2;
799 return true;
800 case X86::MOV32mr:
801 case X86::MOVSSmr:
802 case X86::VMOVSSmr:
803 case X86::VMOVSSZmr:
804 case X86::KMOVDmk:
805 MemBytes = 4;
806 return true;
807 case X86::MOV64mr:
808 case X86::ST_FpP64m:
809 case X86::MOVSDmr:
810 case X86::VMOVSDmr:
811 case X86::VMOVSDZmr:
812 case X86::MMX_MOVD64mr:
813 case X86::MMX_MOVQ64mr:
814 case X86::MMX_MOVNTQmr:
815 case X86::KMOVQmk:
816 MemBytes = 8;
817 return true;
818 case X86::MOVAPSmr:
819 case X86::MOVUPSmr:
820 case X86::MOVAPDmr:
821 case X86::MOVUPDmr:
822 case X86::MOVDQAmr:
823 case X86::MOVDQUmr:
824 case X86::VMOVAPSmr:
825 case X86::VMOVUPSmr:
826 case X86::VMOVAPDmr:
827 case X86::VMOVUPDmr:
828 case X86::VMOVDQAmr:
829 case X86::VMOVDQUmr:
830 case X86::VMOVUPSZ128mr:
831 case X86::VMOVAPSZ128mr:
832 case X86::VMOVUPSZ128mr_NOVLX:
833 case X86::VMOVAPSZ128mr_NOVLX:
834 case X86::VMOVUPDZ128mr:
835 case X86::VMOVAPDZ128mr:
836 case X86::VMOVDQA32Z128mr:
837 case X86::VMOVDQU32Z128mr:
838 case X86::VMOVDQA64Z128mr:
839 case X86::VMOVDQU64Z128mr:
840 case X86::VMOVDQU8Z128mr:
841 case X86::VMOVDQU16Z128mr:
842 MemBytes = 16;
843 return true;
844 case X86::VMOVUPSYmr:
845 case X86::VMOVAPSYmr:
846 case X86::VMOVUPDYmr:
847 case X86::VMOVAPDYmr:
848 case X86::VMOVDQUYmr:
849 case X86::VMOVDQAYmr:
850 case X86::VMOVUPSZ256mr:
851 case X86::VMOVAPSZ256mr:
852 case X86::VMOVUPSZ256mr_NOVLX:
853 case X86::VMOVAPSZ256mr_NOVLX:
854 case X86::VMOVUPDZ256mr:
855 case X86::VMOVAPDZ256mr:
856 case X86::VMOVDQU8Z256mr:
857 case X86::VMOVDQU16Z256mr:
858 case X86::VMOVDQA32Z256mr:
859 case X86::VMOVDQU32Z256mr:
860 case X86::VMOVDQA64Z256mr:
861 case X86::VMOVDQU64Z256mr:
862 MemBytes = 32;
863 return true;
864 case X86::VMOVUPSZmr:
865 case X86::VMOVAPSZmr:
866 case X86::VMOVUPDZmr:
867 case X86::VMOVAPDZmr:
868 case X86::VMOVDQU8Zmr:
869 case X86::VMOVDQU16Zmr:
870 case X86::VMOVDQA32Zmr:
871 case X86::VMOVDQU32Zmr:
872 case X86::VMOVDQA64Zmr:
873 case X86::VMOVDQU64Zmr:
874 MemBytes = 64;
875 return true;
876 }
877 return false;
878}
879
880unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
881 int &FrameIndex) const {
882 unsigned Dummy;
883 return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
884}
885
886unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
887 int &FrameIndex,
888 unsigned &MemBytes) const {
889 if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
890 if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
891 return MI.getOperand(0).getReg();
892 return 0;
893}
894
895unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
896 int &FrameIndex) const {
897 unsigned Dummy;
898 if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
899 unsigned Reg;
900 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
901 return Reg;
902 // Check for post-frame index elimination operations
903 SmallVector<const MachineMemOperand *, 1> Accesses;
904 if (hasLoadFromStackSlot(MI, Accesses)) {
905 FrameIndex =
906 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
907 ->getFrameIndex();
908 return MI.getOperand(0).getReg();
909 }
910 }
911 return 0;
912}
913
914unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
915 int &FrameIndex) const {
916 unsigned Dummy;
917 return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
918}
919
920unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
921 int &FrameIndex,
922 unsigned &MemBytes) const {
923 if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
924 if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
925 isFrameOperand(MI, 0, FrameIndex))
926 return MI.getOperand(X86::AddrNumOperands).getReg();
927 return 0;
928}
929
930unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
931 int &FrameIndex) const {
932 unsigned Dummy;
933 if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
934 unsigned Reg;
935 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
936 return Reg;
937 // Check for post-frame index elimination operations
938 SmallVector<const MachineMemOperand *, 1> Accesses;
939 if (hasStoreToStackSlot(MI, Accesses)) {
940 FrameIndex =
941 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
942 ->getFrameIndex();
943 return MI.getOperand(X86::AddrNumOperands).getReg();
944 }
945 }
946 return 0;
947}
948
949/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
950static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
951 // Don't waste compile time scanning use-def chains of physregs.
952 if (!BaseReg.isVirtual())
953 return false;
954 bool isPICBase = false;
955 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
956 E = MRI.def_instr_end(); I != E; ++I) {
957 MachineInstr *DefMI = &*I;
958 if (DefMI->getOpcode() != X86::MOVPC32r)
959 return false;
960 assert(!isPICBase && "More than one PIC base?")((void)0);
961 isPICBase = true;
962 }
963 return isPICBase;
964}
965
966bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
967 AAResults *AA) const {
968 switch (MI.getOpcode()) {
969 default:
970 // This function should only be called for opcodes with the ReMaterializable
971 // flag set.
972 llvm_unreachable("Unknown rematerializable operation!")__builtin_unreachable();
973 break;
974
975 case X86::LOAD_STACK_GUARD:
976 case X86::AVX1_SETALLONES:
977 case X86::AVX2_SETALLONES:
978 case X86::AVX512_128_SET0:
979 case X86::AVX512_256_SET0:
980 case X86::AVX512_512_SET0:
981 case X86::AVX512_512_SETALLONES:
982 case X86::AVX512_FsFLD0SD:
983 case X86::AVX512_FsFLD0SS:
984 case X86::AVX512_FsFLD0F128:
985 case X86::AVX_SET0:
986 case X86::FsFLD0SD:
987 case X86::FsFLD0SS:
988 case X86::FsFLD0F128:
989 case X86::KSET0D:
990 case X86::KSET0Q:
991 case X86::KSET0W:
992 case X86::KSET1D:
993 case X86::KSET1Q:
994 case X86::KSET1W:
995 case X86::MMX_SET0:
996 case X86::MOV32ImmSExti8:
997 case X86::MOV32r0:
998 case X86::MOV32r1:
999 case X86::MOV32r_1:
1000 case X86::MOV32ri64:
1001 case X86::MOV64ImmSExti8:
1002 case X86::V_SET0:
1003 case X86::V_SETALLONES:
1004 case X86::MOV16ri:
1005 case X86::MOV32ri:
1006 case X86::MOV64ri:
1007 case X86::MOV64ri32:
1008 case X86::MOV8ri:
1009 case X86::PTILEZEROV:
1010 return true;
1011
1012 case X86::MOV8rm:
1013 case X86::MOV8rm_NOREX:
1014 case X86::MOV16rm:
1015 case X86::MOV32rm:
1016 case X86::MOV64rm:
1017 case X86::MOVSSrm:
1018 case X86::MOVSSrm_alt:
1019 case X86::MOVSDrm:
1020 case X86::MOVSDrm_alt:
1021 case X86::MOVAPSrm:
1022 case X86::MOVUPSrm:
1023 case X86::MOVAPDrm:
1024 case X86::MOVUPDrm:
1025 case X86::MOVDQArm:
1026 case X86::MOVDQUrm:
1027 case X86::VMOVSSrm:
1028 case X86::VMOVSSrm_alt:
1029 case X86::VMOVSDrm:
1030 case X86::VMOVSDrm_alt:
1031 case X86::VMOVAPSrm:
1032 case X86::VMOVUPSrm:
1033 case X86::VMOVAPDrm:
1034 case X86::VMOVUPDrm:
1035 case X86::VMOVDQArm:
1036 case X86::VMOVDQUrm:
1037 case X86::VMOVAPSYrm:
1038 case X86::VMOVUPSYrm:
1039 case X86::VMOVAPDYrm:
1040 case X86::VMOVUPDYrm:
1041 case X86::VMOVDQAYrm:
1042 case X86::VMOVDQUYrm:
1043 case X86::MMX_MOVD64rm:
1044 case X86::MMX_MOVQ64rm:
1045 // AVX-512
1046 case X86::VMOVSSZrm:
1047 case X86::VMOVSSZrm_alt:
1048 case X86::VMOVSDZrm:
1049 case X86::VMOVSDZrm_alt:
1050 case X86::VMOVAPDZ128rm:
1051 case X86::VMOVAPDZ256rm:
1052 case X86::VMOVAPDZrm:
1053 case X86::VMOVAPSZ128rm:
1054 case X86::VMOVAPSZ256rm:
1055 case X86::VMOVAPSZ128rm_NOVLX:
1056 case X86::VMOVAPSZ256rm_NOVLX:
1057 case X86::VMOVAPSZrm:
1058 case X86::VMOVDQA32Z128rm:
1059 case X86::VMOVDQA32Z256rm:
1060 case X86::VMOVDQA32Zrm:
1061 case X86::VMOVDQA64Z128rm:
1062 case X86::VMOVDQA64Z256rm:
1063 case X86::VMOVDQA64Zrm:
1064 case X86::VMOVDQU16Z128rm:
1065 case X86::VMOVDQU16Z256rm:
1066 case X86::VMOVDQU16Zrm:
1067 case X86::VMOVDQU32Z128rm:
1068 case X86::VMOVDQU32Z256rm:
1069 case X86::VMOVDQU32Zrm:
1070 case X86::VMOVDQU64Z128rm:
1071 case X86::VMOVDQU64Z256rm:
1072 case X86::VMOVDQU64Zrm:
1073 case X86::VMOVDQU8Z128rm:
1074 case X86::VMOVDQU8Z256rm:
1075 case X86::VMOVDQU8Zrm:
1076 case X86::VMOVUPDZ128rm:
1077 case X86::VMOVUPDZ256rm:
1078 case X86::VMOVUPDZrm:
1079 case X86::VMOVUPSZ128rm:
1080 case X86::VMOVUPSZ256rm:
1081 case X86::VMOVUPSZ128rm_NOVLX:
1082 case X86::VMOVUPSZ256rm_NOVLX:
1083 case X86::VMOVUPSZrm: {
1084 // Loads from constant pools are trivially rematerializable.
1085 if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
1086 MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
1087 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
1088 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
1089 MI.isDereferenceableInvariantLoad(AA)) {
1090 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
1091 if (BaseReg == 0 || BaseReg == X86::RIP)
1092 return true;
1093 // Allow re-materialization of PIC load.
1094 if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
1095 return false;
1096 const MachineFunction &MF = *MI.getParent()->getParent();
1097 const MachineRegisterInfo &MRI = MF.getRegInfo();
1098 return regIsPICBase(BaseReg, MRI);
1099 }
1100 return false;
1101 }
1102
1103 case X86::LEA32r:
1104 case X86::LEA64r: {
1105 if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
1106 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
1107 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
1108 !MI.getOperand(1 + X86::AddrDisp).isReg()) {
1109 // lea fi#, lea GV, etc. are all rematerializable.
1110 if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
1111 return true;
1112 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
1113 if (BaseReg == 0)
1114 return true;
1115 // Allow re-materialization of lea PICBase + x.
1116 const MachineFunction &MF = *MI.getParent()->getParent();
1117 const MachineRegisterInfo &MRI = MF.getRegInfo();
1118 return regIsPICBase(BaseReg, MRI);
1119 }
1120 return false;
1121 }
1122 }
1123}
1124
1125void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1126 MachineBasicBlock::iterator I,
1127 Register DestReg, unsigned SubIdx,
1128 const MachineInstr &Orig,
1129 const TargetRegisterInfo &TRI) const {
1130 bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
1131 if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
1132 MachineBasicBlock::LQR_Dead) {
1133 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
1134 // effects.
1135 int Value;
1136 switch (Orig.getOpcode()) {
1137 case X86::MOV32r0: Value = 0; break;
1138 case X86::MOV32r1: Value = 1; break;
1139 case X86::MOV32r_1: Value = -1; break;
1140 default:
1141 llvm_unreachable("Unexpected instruction!")__builtin_unreachable();
1142 }
1143
1144 const DebugLoc &DL = Orig.getDebugLoc();
1145 BuildMI(MBB, I, DL, get(X86::MOV32ri))
1146 .add(Orig.getOperand(0))
1147 .addImm(Value);
1148 } else {
1149 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1150 MBB.insert(I, MI);
1151 }
1152
1153 MachineInstr &NewMI = *std::prev(I);
1154 NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1155}
1156
1157/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
1158bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
1159 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1160 MachineOperand &MO = MI.getOperand(i);
1161 if (MO.isReg() && MO.isDef() &&
1162 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1163 return true;
1164 }
1165 }
1166 return false;
1167}
1168
1169/// Check whether the shift count for a machine operand is non-zero.
1170inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
1171 unsigned ShiftAmtOperandIdx) {
1172 // The shift count is six bits with the REX.W prefix and five bits without.
1173 unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
1174 unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
1175 return Imm & ShiftCountMask;
1176}
1177
1178/// Check whether the given shift count is appropriate
1179/// can be represented by a LEA instruction.
1180inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
1181 // Left shift instructions can be transformed into load-effective-address
1182 // instructions if we can encode them appropriately.
1183 // A LEA instruction utilizes a SIB byte to encode its scale factor.
1184 // The SIB.scale field is two bits wide which means that we can encode any
1185 // shift amount less than 4.
1186 return ShAmt < 4 && ShAmt > 0;
1187}
1188
1189bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
1190 unsigned Opc, bool AllowSP, Register &NewSrc,
1191 bool &isKill, MachineOperand &ImplicitOp,
1192 LiveVariables *LV) const {
1193 MachineFunction &MF = *MI.getParent()->getParent();
1194 const TargetRegisterClass *RC;
1195 if (AllowSP) {
1196 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1197 } else {
1198 RC = Opc != X86::LEA32r ?
1199 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1200 }
1201 Register SrcReg = Src.getReg();
1202
1203 // For both LEA64 and LEA32 the register already has essentially the right
1204 // type (32-bit or 64-bit) we may just need to forbid SP.
1205 if (Opc != X86::LEA64_32r) {
1206 NewSrc = SrcReg;
1207 isKill = Src.isKill();
1208 assert(!Src.isUndef() && "Undef op doesn't need optimization")((void)0);
1209
1210 if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
1211 return false;
1212
1213 return true;
1214 }
1215
1216 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1217 // another we need to add 64-bit registers to the final MI.
1218 if (SrcReg.isPhysical()) {
1219 ImplicitOp = Src;
1220 ImplicitOp.setImplicit();
1221
1222 NewSrc = getX86SubSuperRegister(Src.getReg(), 64);
1223 isKill = Src.isKill();
1224 assert(!Src.isUndef() && "Undef op doesn't need optimization")((void)0);
1225 } else {
1226 // Virtual register of the wrong class, we have to create a temporary 64-bit
1227 // vreg to feed into the LEA.
1228 NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1229 MachineInstr *Copy =
1230 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1231 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1232 .add(Src);
1233
1234 // Which is obviously going to be dead after we're done with it.
1235 isKill = true;
1236
1237 if (LV)
1238 LV->replaceKillInstruction(SrcReg, MI, *Copy);
1239 }
1240
1241 // We've set all the parameters without issue.
1242 return true;
1243}
1244
1245MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(
1246 unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI,
1247 LiveVariables *LV, bool Is8BitOp) const {
1248 // We handle 8-bit adds and various 16-bit opcodes in the switch below.
1249 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1250 assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(((void)0)
1251 *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&((void)0)
1252 "Unexpected type for LEA transform")((void)0);
1253
1254 // TODO: For a 32-bit target, we need to adjust the LEA variables with
1255 // something like this:
1256 // Opcode = X86::LEA32r;
1257 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1258 // OutRegLEA =
1259 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
1260 // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
1261 if (!Subtarget.is64Bit())
1262 return nullptr;
1263
1264 unsigned Opcode = X86::LEA64_32r;
1265 Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1266 Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1267
1268 // Build and insert into an implicit UNDEF value. This is OK because
1269 // we will be shifting and then extracting the lower 8/16-bits.
1270 // This has the potential to cause partial register stall. e.g.
1271 // movw (%rbp,%rcx,2), %dx
1272 // leal -65(%rdx), %esi
1273 // But testing has shown this *does* help performance in 64-bit mode (at
1274 // least on modern x86 machines).
1275 MachineBasicBlock::iterator MBBI = MI.getIterator();
1276 Register Dest = MI.getOperand(0).getReg();
1277 Register Src = MI.getOperand(1).getReg();
1278 bool IsDead = MI.getOperand(0).isDead();
1279 bool IsKill = MI.getOperand(1).isKill();
1280 unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
1281 assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization")((void)0);
1282 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
1283 MachineInstr *InsMI =
1284 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1285 .addReg(InRegLEA, RegState::Define, SubReg)
1286 .addReg(Src, getKillRegState(IsKill));
1287
1288 MachineInstrBuilder MIB =
1289 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
1290 switch (MIOpc) {
1291 default: llvm_unreachable("Unreachable!")__builtin_unreachable();
1292 case X86::SHL8ri:
1293 case X86::SHL16ri: {
1294 unsigned ShAmt = MI.getOperand(2).getImm();
1295 MIB.addReg(0).addImm(1ULL << ShAmt)
1296 .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0);
1297 break;
1298 }
1299 case X86::INC8r:
1300 case X86::INC16r:
1301 addRegOffset(MIB, InRegLEA, true, 1);
1302 break;
1303 case X86::DEC8r:
1304 case X86::DEC16r:
1305 addRegOffset(MIB, InRegLEA, true, -1);
1306 break;
1307 case X86::ADD8ri:
1308 case X86::ADD8ri_DB:
1309 case X86::ADD16ri:
1310 case X86::ADD16ri8:
1311 case X86::ADD16ri_DB:
1312 case X86::ADD16ri8_DB:
1313 addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
1314 break;
1315 case X86::ADD8rr:
1316 case X86::ADD8rr_DB:
1317 case X86::ADD16rr:
1318 case X86::ADD16rr_DB: {
1319 Register Src2 = MI.getOperand(2).getReg();
1320 bool IsKill2 = MI.getOperand(2).isKill();
1321 assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization")((void)0);
1322 unsigned InRegLEA2 = 0;
1323 MachineInstr *InsMI2 = nullptr;
1324 if (Src == Src2) {
1325 // ADD8rr/ADD16rr killed %reg1028, %reg1028
1326 // just a single insert_subreg.
1327 addRegReg(MIB, InRegLEA, true, InRegLEA, false);
1328 } else {
1329 if (Subtarget.is64Bit())
1330 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1331 else
1332 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1333 // Build and insert into an implicit UNDEF value. This is OK because
1334 // we will be shifting and then extracting the lower 8/16-bits.
1335 BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA2);
1336 InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
1337 .addReg(InRegLEA2, RegState::Define, SubReg)
1338 .addReg(Src2, getKillRegState(IsKill2));
1339 addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
1340 }
1341 if (LV && IsKill2 && InsMI2)
1342 LV->replaceKillInstruction(Src2, MI, *InsMI2);
1343 break;
1344 }
1345 }
1346
1347 MachineInstr *NewMI = MIB;
1348 MachineInstr *ExtMI =
1349 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1350 .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
1351 .addReg(OutRegLEA, RegState::Kill, SubReg);
1352
1353 if (LV) {
1354 // Update live variables.
1355 LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
1356 LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
1357 if (IsKill)
1358 LV->replaceKillInstruction(Src, MI, *InsMI);
1359 if (IsDead)
1360 LV->replaceKillInstruction(Dest, MI, *ExtMI);
1361 }
1362
1363 return ExtMI;
1364}
1365
1366/// This method must be implemented by targets that
1367/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1368/// may be able to convert a two-address instruction into a true
1369/// three-address instruction on demand. This allows the X86 target (for
1370/// example) to convert ADD and SHL instructions into LEA instructions if they
1371/// would require register copies due to two-addressness.
1372///
1373/// This method returns a null pointer if the transformation cannot be
1374/// performed, otherwise it returns the new instruction.
1375///
1376MachineInstr *
1377X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1378 MachineInstr &MI, LiveVariables *LV) const {
1379 // The following opcodes also sets the condition code register(s). Only
1380 // convert them to equivalent lea if the condition code register def's
1381 // are dead!
1382 if (hasLiveCondCodeDef(MI))
1383 return nullptr;
1384
1385 MachineFunction &MF = *MI.getParent()->getParent();
1386 // All instructions input are two-addr instructions. Get the known operands.
1387 const MachineOperand &Dest = MI.getOperand(0);
1388 const MachineOperand &Src = MI.getOperand(1);
1389
1390 // Ideally, operations with undef should be folded before we get here, but we
1391 // can't guarantee it. Bail out because optimizing undefs is a waste of time.
1392 // Without this, we have to forward undef state to new register operands to
1393 // avoid machine verifier errors.
1394 if (Src.isUndef())
1395 return nullptr;
1396 if (MI.getNumOperands() > 2)
1397 if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
1398 return nullptr;
1399
1400 MachineInstr *NewMI = nullptr;
1401 bool Is64Bit = Subtarget.is64Bit();
1402
1403 bool Is8BitOp = false;
1404 unsigned MIOpc = MI.getOpcode();
1405 switch (MIOpc) {
1406 default: llvm_unreachable("Unreachable!")__builtin_unreachable();
1407 case X86::SHL64ri: {
1408 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!")((void)0);
1409 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1410 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1411
1412 // LEA can't handle RSP.
1413 if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
1414 Src.getReg(), &X86::GR64_NOSPRegClass))
1415 return nullptr;
1416
1417 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
1418 .add(Dest)
1419 .addReg(0)
1420 .addImm(1ULL << ShAmt)
1421 .add(Src)
1422 .addImm(0)
1423 .addReg(0);
1424 break;
1425 }
1426 case X86::SHL32ri: {
1427 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!")((void)0);
1428 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1429 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1430
1431 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1432
1433 // LEA can't handle ESP.
1434 bool isKill;
1435 Register SrcReg;
1436 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1437 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
1438 SrcReg, isKill, ImplicitOp, LV))
1439 return nullptr;
1440
1441 MachineInstrBuilder MIB =
1442 BuildMI(MF, MI.getDebugLoc(), get(Opc))
1443 .add(Dest)
1444 .addReg(0)
1445 .addImm(1ULL << ShAmt)
1446 .addReg(SrcReg, getKillRegState(isKill))
1447 .addImm(0)
1448 .addReg(0);
1449 if (ImplicitOp.getReg() != 0)
1450 MIB.add(ImplicitOp);
1451 NewMI = MIB;
1452
1453 break;
1454 }
1455 case X86::SHL8ri:
1456 Is8BitOp = true;
1457 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1458 case X86::SHL16ri: {
1459 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!")((void)0);
1460 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1461 if (!isTruncatedShiftCountForLEA(ShAmt))
1462 return nullptr;
1463 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1464 }
1465 case X86::INC64r:
1466 case X86::INC32r: {
1467 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!")((void)0);
1468 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
1469 (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1470 bool isKill;
1471 Register SrcReg;
1472 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1473 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
1474 ImplicitOp, LV))
1475 return nullptr;
1476
1477 MachineInstrBuilder MIB =
1478 BuildMI(MF, MI.getDebugLoc(), get(Opc))
1479 .add(Dest)
1480 .addReg(SrcReg, getKillRegState(isKill));
1481 if (ImplicitOp.getReg() != 0)
1482 MIB.add(ImplicitOp);
1483
1484 NewMI = addOffset(MIB, 1);
1485 break;
1486 }
1487 case X86::DEC64r:
1488 case X86::DEC32r: {
1489 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!")((void)0);
1490 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1491 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1492
1493 bool isKill;
1494 Register SrcReg;
1495 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1496 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
1497 ImplicitOp, LV))
1498 return nullptr;
1499
1500 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1501 .add(Dest)
1502 .addReg(SrcReg, getKillRegState(isKill));
1503 if (ImplicitOp.getReg() != 0)
1504 MIB.add(ImplicitOp);
1505
1506 NewMI = addOffset(MIB, -1);
1507
1508 break;
1509 }
1510 case X86::DEC8r:
1511 case X86::INC8r:
1512 Is8BitOp = true;
1513 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1514 case X86::DEC16r:
1515 case X86::INC16r:
1516 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1517 case X86::ADD64rr:
1518 case X86::ADD64rr_DB:
1519 case X86::ADD32rr:
1520 case X86::ADD32rr_DB: {
1521 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!")((void)0);
1522 unsigned Opc;
1523 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1524 Opc = X86::LEA64r;
1525 else
1526 Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1527
1528 bool isKill;
1529 Register SrcReg;
1530 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1531 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1532 SrcReg, isKill, ImplicitOp, LV))
1533 return nullptr;
1534
1535 const MachineOperand &Src2 = MI.getOperand(2);
1536 bool isKill2;
1537 Register SrcReg2;
1538 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1539 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
1540 SrcReg2, isKill2, ImplicitOp2, LV))
1541 return nullptr;
1542
1543 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1544 if (ImplicitOp.getReg() != 0)
1545 MIB.add(ImplicitOp);
1546 if (ImplicitOp2.getReg() != 0)
1547 MIB.add(ImplicitOp2);
1548
1549 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1550 if (LV && Src2.isKill())
1551 LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
1552 break;
1553 }
1554 case X86::ADD8rr:
1555 case X86::ADD8rr_DB:
1556 Is8BitOp = true;
1557 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1558 case X86::ADD16rr:
1559 case X86::ADD16rr_DB:
1560 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1561 case X86::ADD64ri32:
1562 case X86::ADD64ri8:
1563 case X86::ADD64ri32_DB:
1564 case X86::ADD64ri8_DB:
1565 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!")((void)0);
1566 NewMI = addOffset(
1567 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1568 MI.getOperand(2));
1569 break;
1570 case X86::ADD32ri:
1571 case X86::ADD32ri8:
1572 case X86::ADD32ri_DB:
1573 case X86::ADD32ri8_DB: {
1574 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!")((void)0);
1575 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1576
1577 bool isKill;
1578 Register SrcReg;
1579 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1580 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1581 SrcReg, isKill, ImplicitOp, LV))
1582 return nullptr;
1583
1584 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1585 .add(Dest)
1586 .addReg(SrcReg, getKillRegState(isKill));
1587 if (ImplicitOp.getReg() != 0)
1588 MIB.add(ImplicitOp);
1589
1590 NewMI = addOffset(MIB, MI.getOperand(2));
1591 break;
1592 }
1593 case X86::ADD8ri:
1594 case X86::ADD8ri_DB:
1595 Is8BitOp = true;
1596 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1597 case X86::ADD16ri:
1598 case X86::ADD16ri8:
1599 case X86::ADD16ri_DB:
1600 case X86::ADD16ri8_DB:
1601 return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1602 case X86::SUB8ri:
1603 case X86::SUB16ri8:
1604 case X86::SUB16ri:
1605 /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1606 return nullptr;
1607 case X86::SUB32ri8:
1608 case X86::SUB32ri: {
1609 if (!MI.getOperand(2).isImm())
1610 return nullptr;
1611 int64_t Imm = MI.getOperand(2).getImm();
1612 if (!isInt<32>(-Imm))
1613 return nullptr;
1614
1615 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!")((void)0);
1616 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1617
1618 bool isKill;
1619 Register SrcReg;
1620 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1621 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1622 SrcReg, isKill, ImplicitOp, LV))
1623 return nullptr;
1624
1625 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1626 .add(Dest)
1627 .addReg(SrcReg, getKillRegState(isKill));
1628 if (ImplicitOp.getReg() != 0)
1629 MIB.add(ImplicitOp);
1630
1631 NewMI = addOffset(MIB, -Imm);
1632 break;
1633 }
1634
1635 case X86::SUB64ri8:
1636 case X86::SUB64ri32: {
1637 if (!MI.getOperand(2).isImm())
1638 return nullptr;
1639 int64_t Imm = MI.getOperand(2).getImm();
1640 if (!isInt<32>(-Imm))
1641 return nullptr;
1642
1643 assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!")((void)0);
1644
1645 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
1646 get(X86::LEA64r)).add(Dest).add(Src);
1647 NewMI = addOffset(MIB, -Imm);
1648 break;
1649 }
1650
1651 case X86::VMOVDQU8Z128rmk:
1652 case X86::VMOVDQU8Z256rmk:
1653 case X86::VMOVDQU8Zrmk:
1654 case X86::VMOVDQU16Z128rmk:
1655 case X86::VMOVDQU16Z256rmk:
1656 case X86::VMOVDQU16Zrmk:
1657 case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1658 case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1659 case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk:
1660 case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1661 case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1662 case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk:
1663 case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk:
1664 case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk:
1665 case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk:
1666 case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk:
1667 case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk:
1668 case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk:
1669 case X86::VBROADCASTSDZ256rmk:
1670 case X86::VBROADCASTSDZrmk:
1671 case X86::VBROADCASTSSZ128rmk:
1672 case X86::VBROADCASTSSZ256rmk:
1673 case X86::VBROADCASTSSZrmk:
1674 case X86::VPBROADCASTDZ128rmk:
1675 case X86::VPBROADCASTDZ256rmk:
1676 case X86::VPBROADCASTDZrmk:
1677 case X86::VPBROADCASTQZ128rmk:
1678 case X86::VPBROADCASTQZ256rmk:
1679 case X86::VPBROADCASTQZrmk: {
1680 unsigned Opc;
1681 switch (MIOpc) {
1682 default: llvm_unreachable("Unreachable!")__builtin_unreachable();
1683 case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break;
1684 case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break;
1685 case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break;
1686 case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
1687 case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
1688 case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break;
1689 case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1690 case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1691 case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
1692 case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1693 case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1694 case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
1695 case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
1696 case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
1697 case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
1698 case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
1699 case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
1700 case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
1701 case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1702 case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1703 case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
1704 case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1705 case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1706 case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
1707 case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
1708 case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
1709 case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
1710 case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
1711 case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
1712 case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
1713 case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break;
1714 case X86::VBROADCASTSDZrmk: Opc = X86::VBLENDMPDZrmbk; break;
1715 case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break;
1716 case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break;
1717 case X86::VBROADCASTSSZrmk: Opc = X86::VBLENDMPSZrmbk; break;
1718 case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break;
1719 case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break;
1720 case X86::VPBROADCASTDZrmk: Opc = X86::VPBLENDMDZrmbk; break;
1721 case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break;
1722 case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break;
1723 case X86::VPBROADCASTQZrmk: Opc = X86::VPBLENDMQZrmbk; break;
1724 }
1725
1726 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1727 .add(Dest)
1728 .add(MI.getOperand(2))
1729 .add(Src)
1730 .add(MI.getOperand(3))
1731 .add(MI.getOperand(4))
1732 .add(MI.getOperand(5))
1733 .add(MI.getOperand(6))
1734 .add(MI.getOperand(7));
1735 break;
1736 }
1737
1738 case X86::VMOVDQU8Z128rrk:
1739 case X86::VMOVDQU8Z256rrk:
1740 case X86::VMOVDQU8Zrrk:
1741 case X86::VMOVDQU16Z128rrk:
1742 case X86::VMOVDQU16Z256rrk:
1743 case X86::VMOVDQU16Zrrk:
1744 case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1745 case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1746 case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk:
1747 case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1748 case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1749 case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk:
1750 case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk:
1751 case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk:
1752 case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk:
1753 case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk:
1754 case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk:
1755 case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: {
1756 unsigned Opc;
1757 switch (MIOpc) {
1758 default: llvm_unreachable("Unreachable!")__builtin_unreachable();
1759 case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break;
1760 case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break;
1761 case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break;
1762 case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1763 case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1764 case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break;
1765 case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1766 case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1767 case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
1768 case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1769 case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1770 case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
1771 case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
1772 case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
1773 case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
1774 case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
1775 case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
1776 case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
1777 case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1778 case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1779 case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
1780 case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1781 case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1782 case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
1783 case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
1784 case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
1785 case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
1786 case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
1787 case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
1788 case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
1789 }
1790
1791 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1792 .add(Dest)
1793 .add(MI.getOperand(2))
1794 .add(Src)
1795 .add(MI.getOperand(3));
1796 break;
1797 }
1798 }
1799
1800 if (!NewMI) return nullptr;
1801
1802 if (LV) { // Update live variables
1803 if (Src.isKill())
1804 LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
1805 if (Dest.isDead())
1806 LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
1807 }
1808
1809 MFI->insert(MI.getIterator(), NewMI); // Insert the new inst
1810 return NewMI;
1811}
1812
1813/// This determines which of three possible cases of a three source commute
1814/// the source indexes correspond to taking into account any mask operands.
1815/// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1816/// possible.
1817/// Case 0 - Possible to commute the first and second operands.
1818/// Case 1 - Possible to commute the first and third operands.
1819/// Case 2 - Possible to commute the second and third operands.
1820static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1821 unsigned SrcOpIdx2) {
1822 // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1823 if (SrcOpIdx1 > SrcOpIdx2)
1824 std::swap(SrcOpIdx1, SrcOpIdx2);
1825
1826 unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1827 if (X86II::isKMasked(TSFlags)) {
1828 Op2++;
1829 Op3++;
1830 }
1831
1832 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1833 return 0;
1834 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1835 return 1;
1836 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1837 return 2;
1838 llvm_unreachable("Unknown three src commute case.")__builtin_unreachable();
1839}
1840
1841unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1842 const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1843 const X86InstrFMA3Group &FMA3Group) const {
1844
1845 unsigned Opc = MI.getOpcode();
1846
1847 // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1848 // analysis. The commute optimization is legal only if all users of FMA*_Int
1849 // use only the lowest element of the FMA*_Int instruction. Such analysis are
1850 // not implemented yet. So, just return 0 in that case.
1851 // When such analysis are available this place will be the right place for
1852 // calling it.
1853 assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&((void)0)
1854 "Intrinsic instructions can't commute operand 1")((void)0);
1855
1856 // Determine which case this commute is or if it can't be done.
1857 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1858 SrcOpIdx2);
1859 assert(Case < 3 && "Unexpected case number!")((void)0);
1860
1861 // Define the FMA forms mapping array that helps to map input FMA form
1862 // to output FMA form to preserve the operation semantics after
1863 // commuting the operands.
1864 const unsigned Form132Index = 0;
1865 const unsigned Form213Index = 1;
1866 const unsigned Form231Index = 2;
1867 static const unsigned FormMapping[][3] = {
1868 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1869 // FMA132 A, C, b; ==> FMA231 C, A, b;
1870 // FMA213 B, A, c; ==> FMA213 A, B, c;
1871 // FMA231 C, A, b; ==> FMA132 A, C, b;
1872 { Form231Index, Form213Index, Form132Index },
1873 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1874 // FMA132 A, c, B; ==> FMA132 B, c, A;
1875 // FMA213 B, a, C; ==> FMA231 C, a, B;
1876 // FMA231 C, a, B; ==> FMA213 B, a, C;
1877 { Form132Index, Form231Index, Form213Index },
1878 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1879 // FMA132 a, C, B; ==> FMA213 a, B, C;
1880 // FMA213 b, A, C; ==> FMA132 b, C, A;
1881 // FMA231 c, A, B; ==> FMA231 c, B, A;
1882 { Form213Index, Form132Index, Form231Index }
1883 };
1884
1885 unsigned FMAForms[3];
1886 FMAForms[0] = FMA3Group.get132Opcode();
1887 FMAForms[1] = FMA3Group.get213Opcode();
1888 FMAForms[2] = FMA3Group.get231Opcode();
1889 unsigned FormIndex;
1890 for (FormIndex = 0; FormIndex < 3; FormIndex++)
1891 if (Opc == FMAForms[FormIndex])
1892 break;
1893
1894 // Everything is ready, just adjust the FMA opcode and return it.
1895 FormIndex = FormMapping[Case][FormIndex];
1896 return FMAForms[FormIndex];
1897}
1898
1899static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1900 unsigned SrcOpIdx2) {
1901 // Determine which case this commute is or if it can't be done.
1902 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1903 SrcOpIdx2);
1904 assert(Case < 3 && "Unexpected case value!")((void)0);
1905
1906 // For each case we need to swap two pairs of bits in the final immediate.
1907 static const uint8_t SwapMasks[3][4] = {
1908 { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1909 { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1910 { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1911 };
1912
1913 uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1914 // Clear out the bits we are swapping.
1915 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1916 SwapMasks[Case][2] | SwapMasks[Case][3]);
1917 // If the immediate had a bit of the pair set, then set the opposite bit.
1918 if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1919 if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1920 if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1921 if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1922 MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1923}
1924
1925// Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1926// commuted.
1927static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1928#define VPERM_CASES(Suffix) \
1929 case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
1930 case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
1931 case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
1932 case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
1933 case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
1934 case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
1935 case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
1936 case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
1937 case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
1938 case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
1939 case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
1940 case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
1941
1942#define VPERM_CASES_BROADCAST(Suffix) \
1943 VPERM_CASES(Suffix) \
1944 case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
1945 case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
1946 case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
1947 case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1948 case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1949 case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
1950
1951 switch (Opcode) {
1952 default: return false;
1953 VPERM_CASES(B)
1954 VPERM_CASES_BROADCAST(D)
1955 VPERM_CASES_BROADCAST(PD)
1956 VPERM_CASES_BROADCAST(PS)
1957 VPERM_CASES_BROADCAST(Q)
1958 VPERM_CASES(W)
1959 return true;
1960 }
1961#undef VPERM_CASES_BROADCAST
1962#undef VPERM_CASES
1963}
1964
1965// Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1966// from the I opcode to the T opcode and vice versa.
1967static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1968#define VPERM_CASES(Orig, New) \
1969 case X86::Orig##128rr: return X86::New##128rr; \
1970 case X86::Orig##128rrkz: return X86::New##128rrkz; \
1971 case X86::Orig##128rm: return X86::New##128rm; \
1972 case X86::Orig##128rmkz: return X86::New##128rmkz; \
1973 case X86::Orig##256rr: return X86::New##256rr; \
1974 case X86::Orig##256rrkz: return X86::New##256rrkz; \
1975 case X86::Orig##256rm: return X86::New##256rm; \
1976 case X86::Orig##256rmkz: return X86::New##256rmkz; \
1977 case X86::Orig##rr: return X86::New##rr; \
1978 case X86::Orig##rrkz: return X86::New##rrkz; \
1979 case X86::Orig##rm: return X86::New##rm; \
1980 case X86::Orig##rmkz: return X86::New##rmkz;
1981
1982#define VPERM_CASES_BROADCAST(Orig, New) \
1983 VPERM_CASES(Orig, New) \
1984 case X86::Orig##128rmb: return X86::New##128rmb; \
1985 case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1986 case X86::Orig##256rmb: return X86::New##256rmb; \
1987 case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1988 case X86::Orig##rmb: return X86::New##rmb; \
1989 case X86::Orig##rmbkz: return X86::New##rmbkz;
1990
1991 switch (Opcode) {
1992 VPERM_CASES(VPERMI2B, VPERMT2B)
1993 VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
1994 VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1995 VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1996 VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
1997 VPERM_CASES(VPERMI2W, VPERMT2W)
1998 VPERM_CASES(VPERMT2B, VPERMI2B)
1999 VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
2000 VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
2001 VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
2002 VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
2003 VPERM_CASES(VPERMT2W, VPERMI2W)
2004 }
2005
2006 llvm_unreachable("Unreachable!")__builtin_unreachable();
2007#undef VPERM_CASES_BROADCAST
2008#undef VPERM_CASES
2009}
2010
2011MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
2012 unsigned OpIdx1,
2013 unsigned OpIdx2) const {
2014 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
2015 if (NewMI)
2016 return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
2017 return MI;
2018 };
2019
2020 switch (MI.getOpcode()) {
2021 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2022 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
2023 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
2024 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2025 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2026 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
2027 unsigned Opc;
2028 unsigned Size;
2029 switch (MI.getOpcode()) {
2030 default: llvm_unreachable("Unreachable!")__builtin_unreachable();
2031 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2032 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2033 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2034 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
2035 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2036 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
2037 }
2038 unsigned Amt = MI.getOperand(3).getImm();
2039 auto &WorkingMI = cloneIfNew(MI);
2040 WorkingMI.setDesc(get(Opc));
2041 WorkingMI.getOperand(3).setImm(Size - Amt);
2042 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2043 OpIdx1, OpIdx2);
2044 }
2045 case X86::PFSUBrr:
2046 case X86::PFSUBRrr: {
2047 // PFSUB x, y: x = x - y
2048 // PFSUBR x, y: x = y - x
2049 unsigned Opc =
2050 (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
2051 auto &WorkingMI = cloneIfNew(MI);
2052 WorkingMI.setDesc(get(Opc));
2053 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2054 OpIdx1, OpIdx2);
2055 }
2056 case X86::BLENDPDrri:
2057 case X86::BLENDPSrri:
2058 case X86::VBLENDPDrri:
2059 case X86::VBLENDPSrri:
2060 // If we're optimizing for size, try to use MOVSD/MOVSS.
2061 if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
2062 unsigned Mask, Opc;
2063 switch (MI.getOpcode()) {
2064 default: llvm_unreachable("Unreachable!")__builtin_unreachable();
2065 case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break;
2066 case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break;
2067 case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
2068 case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
2069 }
2070 if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
2071 auto &WorkingMI = cloneIfNew(MI);
2072 WorkingMI.setDesc(get(Opc));
2073 WorkingMI.RemoveOperand(3);
2074 return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
2075 /*NewMI=*/false,
2076 OpIdx1, OpIdx2);
2077 }
2078 }
2079 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2080 case X86::PBLENDWrri:
2081 case X86::VBLENDPDYrri:
2082 case X86::VBLENDPSYrri:
2083 case X86::VPBLENDDrri:
2084 case X86::VPBLENDWrri:
2085 case X86::VPBLENDDYrri:
2086 case X86::VPBLENDWYrri:{
2087 int8_t Mask;
2088 switch (MI.getOpcode()) {
2089 default: llvm_unreachable("Unreachable!")__builtin_unreachable();
2090 case X86::BLENDPDrri: Mask = (int8_t)0x03; break;
2091 case X86::BLENDPSrri: Mask = (int8_t)0x0F; break;
2092 case X86::PBLENDWrri: Mask = (int8_t)0xFF; break;
2093 case X86::VBLENDPDrri: Mask = (int8_t)0x03; break;
2094 case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break;
2095 case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break;
2096 case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break;
2097 case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break;
2098 case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break;
2099 case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break;
2100 case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break;
2101 }
2102 // Only the least significant bits of Imm are used.
2103 // Using int8_t to ensure it will be sign extended to the int64_t that
2104 // setImm takes in order to match isel behavior.
2105 int8_t Imm = MI.getOperand(3).getImm() & Mask;
2106 auto &WorkingMI = cloneIfNew(MI);
2107 WorkingMI.getOperand(3).setImm(Mask ^ Imm);
2108 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2109 OpIdx1, OpIdx2);
2110 }
2111 case X86::INSERTPSrr:
2112 case X86::VINSERTPSrr:
2113 case X86::VINSERTPSZrr: {
2114 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
2115 unsigned ZMask = Imm & 15;
2116 unsigned DstIdx = (Imm >> 4) & 3;
2117 unsigned SrcIdx = (Imm >> 6) & 3;
2118
2119 // We can commute insertps if we zero 2 of the elements, the insertion is
2120 // "inline" and we don't override the insertion with a zero.
2121 if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
2122 countPopulation(ZMask) == 2) {
2123 unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
2124 assert(AltIdx < 4 && "Illegal insertion index")((void)0);
2125 unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
2126 auto &WorkingMI = cloneIfNew(MI);
2127 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
2128 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2129 OpIdx1, OpIdx2);
2130 }
2131 return nullptr;
2132 }
2133 case X86::MOVSDrr:
2134 case X86::MOVSSrr:
2135 case X86::VMOVSDrr:
2136 case X86::VMOVSSrr:{
2137 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
2138 if (Subtarget.hasSSE41()) {
2139 unsigned Mask, Opc;
2140 switch (MI.getOpcode()) {
2141 default: llvm_unreachable("Unreachable!")__builtin_unreachable();
2142 case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break;
2143 case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break;
2144 case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
2145 case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
2146 }
2147
2148 auto &WorkingMI = cloneIfNew(MI);
2149 WorkingMI.setDesc(get(Opc));
2150 WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
2151 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2152 OpIdx1, OpIdx2);
2153 }
2154
2155 // Convert to SHUFPD.
2156 assert(MI.getOpcode() == X86::MOVSDrr &&((void)0)
2157 "Can only commute MOVSDrr without SSE4.1")((void)0);
2158
2159 auto &WorkingMI = cloneIfNew(MI);
2160 WorkingMI.setDesc(get(X86::SHUFPDrri));
2161 WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
2162 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2163 OpIdx1, OpIdx2);
2164 }
2165 case X86::SHUFPDrri: {
2166 // Commute to MOVSD.
2167 assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!")((void)0);
2168 auto &WorkingMI = cloneIfNew(MI);
2169 WorkingMI.setDesc(get(X86::MOVSDrr));
2170 WorkingMI.RemoveOperand(3);
2171 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2172 OpIdx1, OpIdx2);
2173 }
2174 case X86::PCLMULQDQrr:
2175 case X86::VPCLMULQDQrr:
2176 case X86::VPCLMULQDQYrr:
2177 case X86::VPCLMULQDQZrr:
2178 case X86::VPCLMULQDQZ128rr:
2179 case X86::VPCLMULQDQZ256rr: {
2180 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2181 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2182 unsigned Imm = MI.getOperand(3).getImm();
2183 unsigned Src1Hi = Imm & 0x01;
2184 unsigned Src2Hi = Imm & 0x10;
2185 auto &WorkingMI = cloneIfNew(MI);
2186 WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
2187 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2188 OpIdx1, OpIdx2);
2189 }
2190 case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri:
2191 case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri:
2192 case X86::VPCMPBZrri: case X86::VPCMPUBZrri:
2193 case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri:
2194 case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri:
2195 case X86::VPCMPDZrri: case X86::VPCMPUDZrri:
2196 case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri:
2197 case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri:
2198 case X86::VPCMPQZrri: case X86::VPCMPUQZrri:
2199 case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri:
2200 case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri:
2201 case X86::VPCMPWZrri: case X86::VPCMPUWZrri:
2202 case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
2203 case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
2204 case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik:
2205 case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
2206 case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
2207 case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik:
2208 case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
2209 case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
2210 case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik:
2211 case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
2212 case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
2213 case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: {
2214 // Flip comparison mode immediate (if necessary).
2215 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
2216 Imm = X86::getSwappedVPCMPImm(Imm);
2217 auto &WorkingMI = cloneIfNew(MI);
2218 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
2219 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2220 OpIdx1, OpIdx2);
2221 }
2222 case X86::VPCOMBri: case X86::VPCOMUBri:
2223 case X86::VPCOMDri: case X86::VPCOMUDri:
2224 case X86::VPCOMQri: case X86::VPCOMUQri:
2225 case X86::VPCOMWri: case X86::VPCOMUWri: {
2226 // Flip comparison mode immediate (if necessary).
2227 unsigned Imm = MI.getOperand(3).getImm() & 0x7;
2228 Imm = X86::getSwappedVPCOMImm(Imm);
2229 auto &WorkingMI = cloneIfNew(MI);
2230 WorkingMI.getOperand(3).setImm(Imm);
2231 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2232 OpIdx1, OpIdx2);
2233 }
2234 case X86::VCMPSDZrr:
2235 case X86::VCMPSSZrr:
2236 case X86::VCMPPDZrri:
2237 case X86::VCMPPSZrri:
2238 case X86::VCMPPDZ128rri:
2239 case X86::VCMPPSZ128rri:
2240 case X86::VCMPPDZ256rri:
2241 case X86::VCMPPSZ256rri:
2242 case X86::VCMPPDZrrik:
2243 case X86::VCMPPSZrrik:
2244 case X86::VCMPPDZ128rrik:
2245 case X86::VCMPPSZ128rrik:
2246 case X86::VCMPPDZ256rrik:
2247 case X86::VCMPPSZ256rrik: {
2248 unsigned Imm =
2249 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
2250 Imm = X86::getSwappedVCMPImm(Imm);
2251 auto &WorkingMI = cloneIfNew(MI);
2252 WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
2253 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2254 OpIdx1, OpIdx2);
2255 }
2256 case X86::VPERM2F128rr:
2257 case X86::VPERM2I128rr: {
2258 // Flip permute source immediate.
2259 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
2260 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
2261 int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
2262 auto &WorkingMI = cloneIfNew(MI);
2263 WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
2264 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2265 OpIdx1, OpIdx2);
2266 }
2267 case X86::MOVHLPSrr:
2268 case X86::UNPCKHPDrr:
2269 case X86::VMOVHLPSrr:
2270 case X86::VUNPCKHPDrr:
2271 case X86::VMOVHLPSZrr:
2272 case X86::VUNPCKHPDZ128rr: {
2273 assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!")((void)0);
2274
2275 unsigned Opc = MI.getOpcode();
2276 switch (Opc) {
2277 default: llvm_unreachable("Unreachable!")__builtin_unreachable();
2278 case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break;
2279 case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break;
2280 case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break;
2281 case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break;
2282 case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break;
2283 case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break;
2284 }
2285 auto &WorkingMI = cloneIfNew(MI);
2286 WorkingMI.setDesc(get(Opc));
2287 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2288 OpIdx1, OpIdx2);
2289 }
2290 case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: {
2291 auto &WorkingMI = cloneIfNew(MI);
2292 unsigned OpNo = MI.getDesc().getNumOperands() - 1;
2293 X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
2294 WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
2295 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2296 OpIdx1, OpIdx2);
2297 }
2298 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
2299 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
2300 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
2301 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
2302 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
2303 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
2304 case X86::VPTERNLOGDZrrik:
2305 case X86::VPTERNLOGDZ128rrik:
2306 case X86::VPTERNLOGDZ256rrik:
2307 case X86::VPTERNLOGQZrrik:
2308 case X86::VPTERNLOGQZ128rrik:
2309 case X86::VPTERNLOGQZ256rrik:
2310 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
2311 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2312 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2313 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
2314 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2315 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2316 case X86::VPTERNLOGDZ128rmbi:
2317 case X86::VPTERNLOGDZ256rmbi:
2318 case X86::VPTERNLOGDZrmbi:
2319 case X86::VPTERNLOGQZ128rmbi:
2320 case X86::VPTERNLOGQZ256rmbi:
2321 case X86::VPTERNLOGQZrmbi:
2322 case X86::VPTERNLOGDZ128rmbikz:
2323 case X86::VPTERNLOGDZ256rmbikz:
2324 case X86::VPTERNLOGDZrmbikz:
2325 case X86::VPTERNLOGQZ128rmbikz:
2326 case X86::VPTERNLOGQZ256rmbikz:
2327 case X86::VPTERNLOGQZrmbikz: {
2328 auto &WorkingMI = cloneIfNew(MI);
2329 commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
2330 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2331 OpIdx1, OpIdx2);
2332 }
2333 default: {
2334 if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
2335 unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
2336 auto &WorkingMI = cloneIfNew(MI);
2337 WorkingMI.setDesc(get(Opc));
2338 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2339 OpIdx1, OpIdx2);
2340 }
2341
2342 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2343 MI.getDesc().TSFlags);
2344 if (FMA3Group) {
2345 unsigned Opc =
2346 getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
2347 auto &WorkingMI = cloneIfNew(MI);
2348 WorkingMI.setDesc(get(Opc));
2349 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2350 OpIdx1, OpIdx2);
2351 }
2352
2353 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2354 }
2355 }
2356}
2357
2358bool
2359X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
2360 unsigned &SrcOpIdx1,
2361 unsigned &SrcOpIdx2,
2362 bool IsIntrinsic) const {
2363 uint64_t TSFlags = MI.getDesc().TSFlags;
2364
2365 unsigned FirstCommutableVecOp = 1;
2366 unsigned LastCommutableVecOp = 3;
2367 unsigned KMaskOp = -1U;
2368 if (X86II::isKMasked(TSFlags)) {
2369 // For k-zero-masked operations it is Ok to commute the first vector
2370 // operand. Unless this is an intrinsic instruction.
2371 // For regular k-masked operations a conservative choice is done as the
2372 // elements of the first vector operand, for which the corresponding bit
2373 // in the k-mask operand is set to 0, are copied to the result of the
2374 // instruction.
2375 // TODO/FIXME: The commute still may be legal if it is known that the
2376 // k-mask operand is set to either all ones or all zeroes.
2377 // It is also Ok to commute the 1st operand if all users of MI use only
2378 // the elements enabled by the k-mask operand. For example,
2379 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
2380 // : v1[i];
2381 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
2382 // // Ok, to commute v1 in FMADD213PSZrk.
2383
2384 // The k-mask operand has index = 2 for masked and zero-masked operations.
2385 KMaskOp = 2;
2386
2387 // The operand with index = 1 is used as a source for those elements for
2388 // which the corresponding bit in the k-mask is set to 0.
2389 if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
2390 FirstCommutableVecOp = 3;
2391
2392 LastCommutableVecOp++;
2393 } else if (IsIntrinsic) {
2394 // Commuting the first operand of an intrinsic instruction isn't possible
2395 // unless we can prove that only the lowest element of the result is used.
2396 FirstCommutableVecOp = 2;
2397 }
2398
2399 if (isMem(MI, LastCommutableVecOp))
2400 LastCommutableVecOp--;
2401
2402 // Only the first RegOpsNum operands are commutable.
2403 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
2404 // that the operand is not specified/fixed.
2405 if (SrcOpIdx1 != CommuteAnyOperandIndex &&
2406 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
2407 SrcOpIdx1 == KMaskOp))
2408 return false;
2409 if (SrcOpIdx2 != CommuteAnyOperandIndex &&
2410 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
2411 SrcOpIdx2 == KMaskOp))
2412 return false;
2413
2414 // Look for two different register operands assumed to be commutable
2415 // regardless of the FMA opcode. The FMA opcode is adjusted later.
2416 if (SrcOpIdx1 == CommuteAnyOperandIndex ||
2417 SrcOpIdx2 == CommuteAnyOperandIndex) {
2418 unsigned CommutableOpIdx2 = SrcOpIdx2;
2419
2420 // At least one of operands to be commuted is not specified and
2421 // this method is free to choose appropriate commutable operands.
2422 if (SrcOpIdx1 == SrcOpIdx2)
2423 // Both of operands are not fixed. By default set one of commutable
2424 // operands to the last register operand of the instruction.
2425 CommutableOpIdx2 = LastCommutableVecOp;
2426 else if (SrcOpIdx2 == CommuteAnyOperandIndex)
2427 // Only one of operands is not fixed.
2428 CommutableOpIdx2 = SrcOpIdx1;
2429
2430 // CommutableOpIdx2 is well defined now. Let's choose another commutable
2431 // operand and assign its index to CommutableOpIdx1.
2432 Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
2433
2434 unsigned CommutableOpIdx1;
2435 for (CommutableOpIdx1 = LastCommutableVecOp;
2436 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
2437 // Just ignore and skip the k-mask operand.
2438 if (CommutableOpIdx1 == KMaskOp)
2439 continue;
2440
2441 // The commuted operands must have different registers.
2442 // Otherwise, the commute transformation does not change anything and
2443 // is useless then.
2444 if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
2445 break;
2446 }
2447
2448 // No appropriate commutable operands were found.
2449 if (CommutableOpIdx1 < FirstCommutableVecOp)
2450 return false;
2451
2452 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
2453 // to return those values.
2454 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2455 CommutableOpIdx1, CommutableOpIdx2))
2456 return false;
2457 }
2458
2459 return true;
2460}
2461
2462bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
2463 unsigned &SrcOpIdx1,
2464 unsigned &SrcOpIdx2) const {
2465 const MCInstrDesc &Desc = MI.getDesc();
2466 if (!Desc.isCommutable())
2467 return false;
2468
2469 switch (MI.getOpcode()) {
2470 case X86::CMPSDrr:
2471 case X86::CMPSSrr:
2472 case X86::CMPPDrri:
2473 case X86::CMPPSrri:
2474 case X86::VCMPSDrr:
2475 case X86::VCMPSSrr:
2476 case X86::VCMPPDrri:
2477 case X86::VCMPPSrri:
2478 case X86::VCMPPDYrri:
2479 case X86::VCMPPSYrri:
2480 case X86::VCMPSDZrr:
2481 case X86::VCMPSSZrr:
2482 case X86::VCMPPDZrri:
2483 case X86::VCMPPSZrri:
2484 case X86::VCMPPDZ128rri:
2485 case X86::VCMPPSZ128rri:
2486 case X86::VCMPPDZ256rri:
2487 case X86::VCMPPSZ256rri:
2488 case X86::VCMPPDZrrik:
2489 case X86::VCMPPSZrrik:
2490 case X86::VCMPPDZ128rrik:
2491 case X86::VCMPPSZ128rrik:
2492 case X86::VCMPPDZ256rrik:
2493 case X86::VCMPPSZ256rrik: {
2494 unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2495
2496 // Float comparison can be safely commuted for
2497 // Ordered/Unordered/Equal/NotEqual tests
2498 unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2499 switch (Imm) {
2500 default:
2501 // EVEX versions can be commuted.
2502 if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2503 break;
2504 return false;
2505 case 0x00: // EQUAL
2506 case 0x03: // UNORDERED
2507 case 0x04: // NOT EQUAL
2508 case 0x07: // ORDERED
2509 break;
2510 }
2511
2512 // The indices of the commutable operands are 1 and 2 (or 2 and 3
2513 // when masked).
2514 // Assign them to the returned operand indices here.
2515 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2516 2 + OpOffset);
2517 }
2518 case X86::MOVSSrr:
2519 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2520 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2521 // AVX implies sse4.1.
2522 if (Subtarget.hasSSE41())
2523 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2524 return false;
2525 case X86::SHUFPDrri:
2526 // We can commute this to MOVSD.
2527 if (MI.getOperand(3).getImm() == 0x02)
2528 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2529 return false;
2530 case X86::MOVHLPSrr:
2531 case X86::UNPCKHPDrr:
2532 case X86::VMOVHLPSrr:
2533 case X86::VUNPCKHPDrr:
2534 case X86::VMOVHLPSZrr:
2535 case X86::VUNPCKHPDZ128rr:
2536 if (Subtarget.hasSSE2())
2537 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2538 return false;
2539 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
2540 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
2541 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
2542 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
2543 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
2544 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
2545 case X86::VPTERNLOGDZrrik:
2546 case X86::VPTERNLOGDZ128rrik:
2547 case X86::VPTERNLOGDZ256rrik:
2548 case X86::VPTERNLOGQZrrik:
2549 case X86::VPTERNLOGQZ128rrik:
2550 case X86::VPTERNLOGQZ256rrik:
2551 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
2552 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2553 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2554 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
2555 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2556 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2557 case X86::VPTERNLOGDZ128rmbi:
2558 case X86::VPTERNLOGDZ256rmbi:
2559 case X86::VPTERNLOGDZrmbi:
2560 case X86::VPTERNLOGQZ128rmbi:
2561 case X86::VPTERNLOGQZ256rmbi:
2562 case X86::VPTERNLOGQZrmbi:
2563 case X86::VPTERNLOGDZ128rmbikz:
2564 case X86::VPTERNLOGDZ256rmbikz:
2565 case X86::VPTERNLOGDZrmbikz:
2566 case X86::VPTERNLOGQZ128rmbikz:
2567 case X86::VPTERNLOGQZ256rmbikz:
2568 case X86::VPTERNLOGQZrmbikz:
2569 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2570 case X86::VPDPWSSDYrr:
2571 case X86::VPDPWSSDrr:
2572 case X86::VPDPWSSDSYrr:
2573 case X86::VPDPWSSDSrr:
2574 case X86::VPDPWSSDZ128r:
2575 case X86::VPDPWSSDZ128rk:
2576 case X86::VPDPWSSDZ128rkz:
2577 case X86::VPDPWSSDZ256r:
2578 case X86::VPDPWSSDZ256rk:
2579 case X86::VPDPWSSDZ256rkz:
2580 case X86::VPDPWSSDZr:
2581 case X86::VPDPWSSDZrk:
2582 case X86::VPDPWSSDZrkz:
2583 case X86::VPDPWSSDSZ128r:
2584 case X86::VPDPWSSDSZ128rk:
2585 case X86::VPDPWSSDSZ128rkz:
2586 case X86::VPDPWSSDSZ256r:
2587 case X86::VPDPWSSDSZ256rk:
2588 case X86::VPDPWSSDSZ256rkz:
2589 case X86::VPDPWSSDSZr:
2590 case X86::VPDPWSSDSZrk:
2591 case X86::VPDPWSSDSZrkz:
2592 case X86::VPMADD52HUQZ128r:
2593 case X86::VPMADD52HUQZ128rk:
2594 case X86::VPMADD52HUQZ128rkz:
2595 case X86::VPMADD52HUQZ256r:
2596 case X86::VPMADD52HUQZ256rk:
2597 case X86::VPMADD52HUQZ256rkz:
2598 case X86::VPMADD52HUQZr:
2599 case X86::VPMADD52HUQZrk:
2600 case X86::VPMADD52HUQZrkz:
2601 case X86::VPMADD52LUQZ128r:
2602 case X86::VPMADD52LUQZ128rk:
2603 case X86::VPMADD52LUQZ128rkz:
2604 case X86::VPMADD52LUQZ256r:
2605 case X86::VPMADD52LUQZ256rk:
2606 case X86::VPMADD52LUQZ256rkz:
2607 case X86::VPMADD52LUQZr:
2608 case X86::VPMADD52LUQZrk:
2609 case X86::VPMADD52LUQZrkz: {
2610 unsigned CommutableOpIdx1 = 2;
2611 unsigned CommutableOpIdx2 = 3;
2612 if (X86II::isKMasked(Desc.TSFlags)) {
2613 // Skip the mask register.
2614 ++CommutableOpIdx1;
2615 ++CommutableOpIdx2;
2616 }
2617 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2618 CommutableOpIdx1, CommutableOpIdx2))
2619 return false;
2620 if (!MI.getOperand(SrcOpIdx1).isReg() ||
2621 !MI.getOperand(SrcOpIdx2).isReg())
2622 // No idea.
2623 return false;
2624 return true;
2625 }
2626
2627 default:
2628 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2629 MI.getDesc().TSFlags);
2630 if (FMA3Group)
2631 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2632 FMA3Group->isIntrinsic());
2633
2634 // Handled masked instructions since we need to skip over the mask input
2635 // and the preserved input.
2636 if (X86II::isKMasked(Desc.TSFlags)) {
2637 // First assume that the first input is the mask operand and skip past it.
2638 unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2639 unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2640 // Check if the first input is tied. If there isn't one then we only
2641 // need to skip the mask operand which we did above.
2642 if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2643 MCOI::TIED_TO) != -1)) {
2644 // If this is zero masking instruction with a tied operand, we need to
2645 // move the first index back to the first input since this must
2646 // be a 3 input instruction and we want the first two non-mask inputs.
2647 // Otherwise this is a 2 input instruction with a preserved input and
2648 // mask, so we need to move the indices to skip one more input.
2649 if (X86II::isKMergeMasked(Desc.TSFlags)) {
2650 ++CommutableOpIdx1;
2651 ++CommutableOpIdx2;
2652 } else {
2653 --CommutableOpIdx1;
2654 }
2655 }
2656
2657 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2658 CommutableOpIdx1, CommutableOpIdx2))
2659 return false;
2660
2661 if (!MI.getOperand(SrcOpIdx1).isReg() ||
2662 !MI.getOperand(SrcOpIdx2).isReg())
2663 // No idea.
2664 return false;
2665 return true;
2666 }
2667
2668 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2669 }
2670 return false;
2671}
2672
2673static bool isConvertibleLEA(MachineInstr *MI) {
2674 unsigned Opcode = MI->getOpcode();
2675 if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
2676 Opcode != X86::LEA64_32r)
2677 return false;
2678
2679 const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt);
2680 const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp);
2681 const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg);
2682
2683 if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
2684 Scale.getImm() > 1)
2685 return false;
2686
2687 return true;
2688}
2689
2690bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const {
2691 // Currently we're interested in following sequence only.
2692 // r3 = lea r1, r2
2693 // r5 = add r3, r4
2694 // Both r3 and r4 are killed in add, we hope the add instruction has the
2695 // operand order
2696 // r5 = add r4, r3
2697 // So later in X86FixupLEAs the lea instruction can be rewritten as add.
2698 unsigned Opcode = MI.getOpcode();
2699 if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
2700 return false;
2701
2702 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2703 Register Reg1 = MI.getOperand(1).getReg();
2704 Register Reg2 = MI.getOperand(2).getReg();
2705
2706 // Check if Reg1 comes from LEA in the same MBB.
2707 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) {
2708 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2709 Commute = true;
2710 return true;
2711 }
2712 }
2713
2714 // Check if Reg2 comes from LEA in the same MBB.
2715 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) {
2716 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2717 Commute = false;
2718 return true;
2719 }
2720 }
2721
2722 return false;
2723}
2724
2725X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
2726 switch (MI.getOpcode()) {
2727 default: return X86::COND_INVALID;
2728 case X86::JCC_1:
2729 return static_cast<X86::CondCode>(
2730 MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2731 }
2732}
2733
2734/// Return condition code of a SETCC opcode.
2735X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
2736 switch (MI.getOpcode()) {
2737 default: return X86::COND_INVALID;
2738 case X86::SETCCr: case X86::SETCCm:
2739 return static_cast<X86::CondCode>(
2740 MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2741 }
2742}
2743
2744/// Return condition code of a CMov opcode.
2745X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
2746 switch (MI.getOpcode()) {
2747 default: return X86::COND_INVALID;
2748 case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr:
2749 case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm:
2750 return static_cast<X86::CondCode>(
2751 MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2752 }
2753}
2754
2755/// Return the inverse of the specified condition,
2756/// e.g. turning COND_E to COND_NE.
2757X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2758 switch (CC) {
2759 default: llvm_unreachable("Illegal condition code!")__builtin_unreachable();
2760 case X86::COND_E: return X86::COND_NE;
2761 case X86::COND_NE: return X86::COND_E;
2762 case X86::COND_L: return X86::COND_GE;
2763 case X86::COND_LE: return X86::COND_G;
2764 case X86::COND_G: return X86::COND_LE;
2765 case X86::COND_GE: return X86::COND_L;
2766 case X86::COND_B: return X86::COND_AE;
2767 case X86::COND_BE: return X86::COND_A;
2768 case X86::COND_A: return X86::COND_BE;
2769 case X86::COND_AE: return X86::COND_B;
2770 case X86::COND_S: return X86::COND_NS;
2771 case X86::COND_NS: return X86::COND_S;
2772 case X86::COND_P: return X86::COND_NP;
2773 case X86::COND_NP: return X86::COND_P;
2774 case X86::COND_O: return X86::COND_NO;
2775 case X86::COND_NO: return X86::COND_O;
2776 case X86::COND_NE_OR_P: return X86::COND_E_AND_NP;
2777 case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2778 }
2779}
2780
2781/// Assuming the flags are set by MI(a,b), return the condition code if we
2782/// modify the instructions such that flags are set by MI(b,a).
2783static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2784 switch (CC) {
2785 default: return X86::COND_INVALID;
2786 case X86::COND_E: return X86::COND_E;
2787 case X86::COND_NE: return X86::COND_NE;
2788 case X86::COND_L: return X86::COND_G;
2789 case X86::COND_LE: return X86::COND_GE;
2790 case X86::COND_G: return X86::COND_L;
2791 case X86::COND_GE: return X86::COND_LE;
2792 case X86::COND_B: return X86::COND_A;
2793 case X86::COND_BE: return X86::COND_AE;
2794 case X86::COND_A: return X86::COND_B;
2795 case X86::COND_AE: return X86::COND_BE;
2796 }
2797}
2798
2799std::pair<X86::CondCode, bool>
2800X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2801 X86::CondCode CC = X86::COND_INVALID;
2802 bool NeedSwap = false;
2803 switch (Predicate) {
2804 default: break;
2805 // Floating-point Predicates
2806 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
2807 case CmpInst::FCMP_OLT: NeedSwap = true; LLVM_FALLTHROUGH[[gnu::fallthrough]];
2808 case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
2809 case CmpInst::FCMP_OLE: NeedSwap = true; LLVM_FALLTHROUGH[[gnu::fallthrough]];
2810 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
2811 case CmpInst::FCMP_UGT: NeedSwap = true; LLVM_FALLTHROUGH[[gnu::fallthrough]];
2812 case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
2813 case CmpInst::FCMP_UGE: NeedSwap = true; LLVM_FALLTHROUGH[[gnu::fallthrough]];
2814 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
2815 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
2816 case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
2817 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
2818 case CmpInst::FCMP_OEQ: LLVM_FALLTHROUGH[[gnu::fallthrough]];
2819 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2820
2821 // Integer Predicates
2822 case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
2823 case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
2824 case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
2825 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
2826 case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
2827 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
2828 case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
2829 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
2830 case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
2831 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
2832 }
2833
2834 return std::make_pair(CC, NeedSwap);
2835}
2836
2837/// Return a setcc opcode based on whether it has memory operand.
2838unsigned X86::getSETOpc(bool HasMemoryOperand) {
2839 return HasMemoryOperand ? X86::SETCCr : X86::SETCCm;
2840}
2841
2842/// Return a cmov opcode for the given register size in bytes, and operand type.
2843unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2844 switch(RegBytes) {
2845 default: llvm_unreachable("Illegal register size!")__builtin_unreachable();
2846 case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2847 case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2848 case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
2849 }
2850}
2851
2852/// Get the VPCMP immediate for the given condition.
2853unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2854 switch (CC) {
2855 default: llvm_unreachable("Unexpected SETCC condition")__builtin_unreachable();
2856 case ISD::SETNE: return 4;
2857 case ISD::SETEQ: return 0;
2858 case ISD::SETULT:
2859 case ISD::SETLT: return 1;
2860 case ISD::SETUGT:
2861 case ISD::SETGT: return 6;
2862 case ISD::SETUGE:
2863 case ISD::SETGE: return 5;
2864 case ISD::SETULE:
2865 case ISD::SETLE: return 2;
2866 }
2867}
2868
2869/// Get the VPCMP immediate if the operands are swapped.
2870unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2871 switch (Imm) {
2872 default: llvm_unreachable("Unreachable!")__builtin_unreachable();
2873 case 0x01: Imm = 0x06; break; // LT -> NLE
2874 case 0x02: Imm = 0x05; break; // LE -> NLT
2875 case 0x05: Imm = 0x02; break; // NLT -> LE
2876 case 0x06: Imm = 0x01; break; // NLE -> LT
2877 case 0x00: // EQ
2878 case 0x03: // FALSE
2879 case 0x04: // NE
2880 case 0x07: // TRUE
2881 break;
2882 }
2883
2884 return Imm;
2885}
2886
2887/// Get the VPCOM immediate if the operands are swapped.
2888unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2889 switch (Imm) {
2890 default: llvm_unreachable("Unreachable!")__builtin_unreachable();
2891 case 0x00: Imm = 0x02; break; // LT -> GT
2892 case 0x01: Imm = 0x03; break; // LE -> GE
2893 case 0x02: Imm = 0x00; break; // GT -> LT
2894 case 0x03: Imm = 0x01; break; // GE -> LE
2895 case 0x04: // EQ
2896 case 0x05: // NE
2897 case 0x06: // FALSE
2898 case 0x07: // TRUE
2899 break;
2900 }
2901
2902 return Imm;
2903}
2904
2905/// Get the VCMP immediate if the operands are swapped.
2906unsigned X86::getSwappedVCMPImm(unsigned Imm) {
2907 // Only need the lower 2 bits to distinquish.
2908 switch (Imm & 0x3) {
2909 default: llvm_unreachable("Unreachable!")__builtin_unreachable();
2910 case 0x00: case 0x03:
2911 // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
2912 break;
2913 case 0x01: case 0x02:
2914 // Need to toggle bits 3:0. Bit 4 stays the same.
2915 Imm ^= 0xf;
2916 break;
2917 }
2918
2919 return Imm;
2920}
2921
2922bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2923 switch (MI.getOpcode()) {
2924 case X86::TCRETURNdi:
2925 case X86::TCRETURNri:
2926 case X86::TCRETURNmi:
2927 case X86::TCRETURNdi64:
2928 case X86::TCRETURNri64:
2929 case X86::TCRETURNmi64:
2930 return true;
2931 default:
2932 return false;
2933 }
2934}
2935
2936bool X86InstrInfo::canMakeTailCallConditional(
2937 SmallVectorImpl<MachineOperand> &BranchCond,
2938 const MachineInstr &TailCall) const {
2939 if (TailCall.getOpcode() != X86::TCRETURNdi &&
2940 TailCall.getOpcode() != X86::TCRETURNdi64) {
2941 // Only direct calls can be done with a conditional branch.
2942 return false;
2943 }
2944
2945 const MachineFunction *MF = TailCall.getParent()->getParent();
2946 if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2947 // Conditional tail calls confuse the Win64 unwinder.
2948 return false;
2949 }
2950
2951 assert(BranchCond.size() == 1)((void)0);
2952 if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2953 // Can't make a conditional tail call with this condition.
2954 return false;
2955 }
2956
2957 const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2958 if (X86FI->getTCReturnAddrDelta() != 0 ||
2959 TailCall.getOperand(1).getImm() != 0) {
2960 // A conditional tail call cannot do any stack adjustment.
2961 return false;
2962 }
2963
2964 return true;
2965}
2966
2967void X86InstrInfo::replaceBranchWithTailCall(
2968 MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
2969 const MachineInstr &TailCall) const {
2970 assert(canMakeTailCallConditional(BranchCond, TailCall))((void)0);
2971
2972 MachineBasicBlock::iterator I = MBB.end();
2973 while (I != MBB.begin()) {
2974 --I;
2975 if (I->isDebugInstr())
2976 continue;
2977 if (!I->isBranch())
2978 assert(0 && "Can't find the branch to replace!")((void)0);
2979
2980 X86::CondCode CC = X86::getCondFromBranch(*I);
2981 assert(BranchCond.size() == 1)((void)0);
2982 if (CC != BranchCond[0].getImm())
2983 continue;
2984
2985 break;
2986 }
2987
2988 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
2989 : X86::TCRETURNdi64cc;
2990
2991 auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
2992 MIB->addOperand(TailCall.getOperand(0)); // Destination.
2993 MIB.addImm(0); // Stack offset (not used).
2994 MIB->addOperand(BranchCond[0]); // Condition.
2995 MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
2996
2997 // Add implicit uses and defs of all live regs potentially clobbered by the
2998 // call. This way they still appear live across the call.
2999 LivePhysRegs LiveRegs(getRegisterInfo());
3000 LiveRegs.addLiveOuts(MBB);
3001 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
3002 LiveRegs.stepForward(*MIB, Clobbers);
3003 for (const auto &C : Clobbers) {
3004 MIB.addReg(C.first, RegState::Implicit);
3005 MIB.addReg(C.first, RegState::Implicit | RegState::Define);
3006 }
3007
3008 I->eraseFromParent();
3009}
3010
3011// Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
3012// not be a fallthrough MBB now due to layout changes). Return nullptr if the
3013// fallthrough MBB cannot be identified.
3014static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
3015 MachineBasicBlock *TBB) {
3016 // Look for non-EHPad successors other than TBB. If we find exactly one, it
3017 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
3018 // and fallthrough MBB. If we find more than one, we cannot identify the
3019 // fallthrough MBB and should return nullptr.
3020 MachineBasicBlock *FallthroughBB = nullptr;
3021 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
3022 if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB))
3023 continue;
3024 // Return a nullptr if we found more than one fallthrough successor.
3025 if (FallthroughBB && FallthroughBB != TBB)
3026 return nullptr;
3027 FallthroughBB = *SI;
3028 }
3029 return FallthroughBB;
3030}
3031
3032bool X86InstrInfo::AnalyzeBranchImpl(
3033 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
3034 SmallVectorImpl<MachineOperand> &Cond,
3035 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
3036
3037 // Start from the bottom of the block and work up, examining the
3038 // terminator instructions.
3039 MachineBasicBlock::iterator I = MBB.end();
3040 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3041 while (I != MBB.begin()) {
3042 --I;
3043 if (I->isDebugInstr())
3044 continue;
3045
3046 // Working from the bottom, when we see a non-terminator instruction, we're
3047 // done.
3048 if (!isUnpredicatedTerminator(*I))
3049 break;
3050
3051 // A terminator that isn't a branch can't easily be handled by this
3052 // analysis.
3053 if (!I->isBranch())
3054 return true;
3055
3056 // Handle unconditional branches.
3057 if (I->getOpcode() == X86::JMP_1) {
3058 UnCondBrIter = I;
3059
3060 if (!AllowModify) {
3061 TBB = I->getOperand(0).getMBB();
3062 continue;
3063 }
3064
3065 // If the block has any instructions after a JMP, delete them.
3066 while (std::next(I) != MBB.end())
3067 std::next(I)->eraseFromParent();
3068
3069 Cond.clear();
3070 FBB = nullptr;
3071
3072 // Delete the JMP if it's equivalent to a fall-through.
3073 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3074 TBB = nullptr;
3075 I->eraseFromParent();
3076 I = MBB.end();
3077 UnCondBrIter = MBB.end();
3078 continue;
3079 }
3080
3081 // TBB is used to indicate the unconditional destination.
3082 TBB = I->getOperand(0).getMBB();
3083 continue;
3084 }
3085
3086 // Handle conditional branches.
3087 X86::CondCode BranchCode = X86::getCondFromBranch(*I);
3088 if (BranchCode == X86::COND_INVALID)
3089 return true; // Can't handle indirect branch.
3090
3091 // In practice we should never have an undef eflags operand, if we do
3092 // abort here as we are not prepared to preserve the flag.
3093 if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
3094 return true;
3095
3096 // Working from the bottom, handle the first conditional branch.
3097 if (Cond.empty()) {
3098 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
3099 if (AllowModify && UnCondBrIter != MBB.end() &&
3100 MBB.isLayoutSuccessor(TargetBB)) {
3101 // If we can modify the code and it ends in something like:
3102 //
3103 // jCC L1
3104 // jmp L2
3105 // L1:
3106 // ...
3107 // L2:
3108 //
3109 // Then we can change this to:
3110 //
3111 // jnCC L2
3112 // L1:
3113 // ...
3114 // L2:
3115 //
3116 // Which is a bit more efficient.
3117 // We conditionally jump to the fall-through block.
3118 BranchCode = GetOppositeBranchCondition(BranchCode);
3119 MachineBasicBlock::iterator OldInst = I;
3120
3121 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
3122 .addMBB(UnCondBrIter->getOperand(0).getMBB())
3123 .addImm(BranchCode);
3124 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
3125 .addMBB(TargetBB);
3126
3127 OldInst->eraseFromParent();
3128 UnCondBrIter->eraseFromParent();
3129
3130 // Restart the analysis.
3131 UnCondBrIter = MBB.end();
3132 I = MBB.end();
3133 continue;
3134 }
3135
3136 FBB = TBB;
3137 TBB = I->getOperand(0).getMBB();
3138 Cond.push_back(MachineOperand::CreateImm(BranchCode));
3139 CondBranches.push_back(&*I);
3140 continue;
3141 }
3142
3143 // Handle subsequent conditional branches. Only handle the case where all
3144 // conditional branches branch to the same destination and their condition
3145 // opcodes fit one of the special multi-branch idioms.
3146 assert(Cond.size() == 1)((void)0);
3147 assert(TBB)((void)0);
3148
3149 // If the conditions are the same, we can leave them alone.
3150 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3151 auto NewTBB = I->getOperand(0).getMBB();
3152 if (OldBranchCode == BranchCode && TBB == NewTBB)
3153 continue;
3154
3155 // If they differ, see if they fit one of the known patterns. Theoretically,
3156 // we could handle more patterns here, but we shouldn't expect to see them
3157 // if instruction selection has done a reasonable job.
3158 if (TBB == NewTBB &&
3159 ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
3160 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
3161 BranchCode = X86::COND_NE_OR_P;
3162 } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
3163 (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
3164 if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
3165 return true;
3166
3167 // X86::COND_E_AND_NP usually has two different branch destinations.
3168 //
3169 // JP B1
3170 // JE B2
3171 // JMP B1
3172 // B1:
3173 // B2:
3174 //
3175 // Here this condition branches to B2 only if NP && E. It has another
3176 // equivalent form:
3177 //
3178 // JNE B1
3179 // JNP B2
3180 // JMP B1
3181 // B1:
3182 // B2:
3183 //
3184 // Similarly it branches to B2 only if E && NP. That is why this condition
3185 // is named with COND_E_AND_NP.
3186 BranchCode = X86::COND_E_AND_NP;
3187 } else
3188 return true;
3189
3190 // Update the MachineOperand.
3191 Cond[0].setImm(BranchCode);
3192 CondBranches.push_back(&*I);
3193 }
3194
3195 return false;
3196}
3197
3198bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
3199 MachineBasicBlock *&TBB,
3200 MachineBasicBlock *&FBB,
3201 SmallVectorImpl<MachineOperand> &Cond,
3202 bool AllowModify) const {
3203 SmallVector<MachineInstr *, 4> CondBranches;
3204 return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
3205}
3206
3207bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
3208 MachineBranchPredicate &MBP,
3209 bool AllowModify) const {
3210 using namespace std::placeholders;
3211
3212 SmallVector<MachineOperand, 4> Cond;
3213 SmallVector<MachineInstr *, 4> CondBranches;
3214 if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
3215 AllowModify))
3216 return true;
3217
3218 if (Cond.size() != 1)
3219 return true;
3220
3221 assert(MBP.TrueDest && "expected!")((void)0);
3222
3223 if (!MBP.FalseDest)
3224 MBP.FalseDest = MBB.getNextNode();
3225
3226 const TargetRegisterInfo *TRI = &getRegisterInfo();
3227
3228 MachineInstr *ConditionDef = nullptr;
3229 bool SingleUseCondition = true;
3230
3231 for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
3232 if (I->modifiesRegister(X86::EFLAGS, TRI)) {
3233 ConditionDef = &*I;
3234 break;
3235 }
3236
3237 if (I->readsRegister(X86::EFLAGS, TRI))
3238 SingleUseCondition = false;
3239 }
3240
3241 if (!ConditionDef)
3242 return true;
3243
3244 if (SingleUseCondition) {
3245 for (auto *Succ : MBB.successors())
3246 if (Succ->isLiveIn(X86::EFLAGS))
3247 SingleUseCondition = false;
3248 }
3249
3250 MBP.ConditionDef = ConditionDef;
3251 MBP.SingleUseCondition = SingleUseCondition;
3252
3253 // Currently we only recognize the simple pattern:
3254 //
3255 // test %reg, %reg
3256 // je %label
3257 //
3258 const unsigned TestOpcode =
3259 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
3260
3261 if (ConditionDef->getOpcode() == TestOpcode &&
3262 ConditionDef->getNumOperands() == 3 &&
3263 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
3264 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
3265 MBP.LHS = ConditionDef->getOperand(0);
3266 MBP.RHS = MachineOperand::CreateImm(0);
3267 MBP.Predicate = Cond[0].getImm() == X86::COND_NE
3268 ? MachineBranchPredicate::PRED_NE
3269 : MachineBranchPredicate::PRED_EQ;
3270 return false;
3271 }
3272
3273 return true;
3274}
3275
3276unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
3277 int *BytesRemoved) const {
3278 assert(!BytesRemoved && "code size not handled")((void)0);
3279
3280 MachineBasicBlock::iterator I = MBB.end();
3281 unsigned Count = 0;
3282
3283 while (I != MBB.begin()) {
3284 --I;
3285 if (I->isDebugInstr())
3286 continue;
3287 if (I->getOpcode() != X86::JMP_1 &&
3288 X86::getCondFromBranch(*I) == X86::COND_INVALID)
3289 break;
3290 // Remove the branch.
3291 I->eraseFromParent();
3292 I = MBB.end();
3293 ++Count;
3294 }
3295
3296 return Count;
3297}
3298
3299unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
3300 MachineBasicBlock *TBB,
3301 MachineBasicBlock *FBB,
3302 ArrayRef<MachineOperand> Cond,
3303 const DebugLoc &DL,
3304 int *BytesAdded) const {
3305 // Shouldn't be a fall through.
3306 assert(TBB && "insertBranch must not be told to insert a fallthrough")((void)0);
3307 assert((Cond.size() == 1 || Cond.size() == 0) &&((void)0)
3308 "X86 branch conditions have one component!")((void)0);
3309 assert(!BytesAdded && "code size not handled")((void)0);
3310
3311 if (Cond.empty()) {
3312 // Unconditional branch?
3313 assert(!FBB && "Unconditional branch with multiple successors!")((void)0);
3314 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
3315 return 1;
3316 }
3317
3318 // If FBB is null, it is implied to be a fall-through block.
3319 bool FallThru = FBB == nullptr;
3320
3321 // Conditional branch.
3322 unsigned Count = 0;
3323 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3324 switch (CC) {
3325 case X86::COND_NE_OR_P:
3326 // Synthesize NE_OR_P with two branches.
3327 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
3328 ++Count;
3329 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
3330 ++Count;
3331 break;
3332 case X86::COND_E_AND_NP:
3333 // Use the next block of MBB as FBB if it is null.
3334 if (FBB == nullptr) {
3335 FBB = getFallThroughMBB(&MBB, TBB);
3336 assert(FBB && "MBB cannot be the last block in function when the false "((void)0)
3337 "body is a fall-through.")((void)0);
3338 }
3339 // Synthesize COND_E_AND_NP with two branches.
3340 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
3341 ++Count;
3342 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
3343 ++Count;
3344 break;
3345 default: {
3346 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
3347 ++Count;
3348 }
3349 }
3350 if (!FallThru) {
3351 // Two-way Conditional branch. Insert the second branch.
3352 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
3353 ++Count;
3354 }
3355 return Count;
3356}
3357
3358bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
3359 ArrayRef<MachineOperand> Cond,
3360 Register DstReg, Register TrueReg,
3361 Register FalseReg, int &CondCycles,
3362 int &TrueCycles, int &FalseCycles) const {
3363 // Not all subtargets have cmov instructions.
3364 if (!Subtarget.hasCMov())
3365 return false;
3366 if (Cond.size() != 1)
3367 return false;
3368 // We cannot do the composite conditions, at least not in SSA form.
3369 if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
3370 return false;
3371
3372 // Check register classes.
3373 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3374 const TargetRegisterClass *RC =
3375 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
3376 if (!RC)
3377 return false;
3378
3379 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
3380 if (X86::GR16RegClass.hasSubClassEq(RC) ||
3381 X86::GR32RegClass.hasSubClassEq(RC) ||
3382 X86::GR64RegClass.hasSubClassEq(RC)) {
3383 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
3384 // Bridge. Probably Ivy Bridge as well.
3385 CondCycles = 2;
3386 TrueCycles = 2;
3387 FalseCycles = 2;
3388 return true;
3389 }
3390
3391 // Can't do vectors.
3392 return false;
3393}
3394
3395void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
3396 MachineBasicBlock::iterator I,
3397 const DebugLoc &DL, Register DstReg,
3398 ArrayRef<MachineOperand> Cond, Register TrueReg,
3399 Register FalseReg) const {
3400 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3401 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
3402 const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
3403 assert(Cond.size() == 1 && "Invalid Cond array")((void)0);
3404 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
3405 false /*HasMemoryOperand*/);
3406 BuildMI(MBB, I, DL, get(Opc), DstReg)
3407 .addReg(FalseReg)
3408 .addReg(TrueReg)
3409 .addImm(Cond[0].getImm());
3410}
3411
3412/// Test if the given register is a physical h register.
3413static bool isHReg(unsigned Reg) {
3414 return X86::GR8_ABCD_HRegClass.contains(Reg);
3415}
3416
3417// Try and copy between VR128/VR64 and GR64 registers.
3418static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
3419 const X86Subtarget &Subtarget) {
3420 bool HasAVX = Subtarget.hasAVX();
3421 bool HasAVX512 = Subtarget.hasAVX512();
3422
3423 // SrcReg(MaskReg) -> DestReg(GR64)
3424 // SrcReg(MaskReg) -> DestReg(GR32)
3425
3426 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3427 if (X86::VK16RegClass.contains(SrcReg)) {
3428 if (X86::GR64RegClass.contains(DestReg)) {
3429 assert(Subtarget.hasBWI())((void)0);
3430 return X86::KMOVQrk;
3431 }
3432 if (X86::GR32RegClass.contains(DestReg))
3433 return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
3434 }
3435
3436 // SrcReg(GR64) -> DestReg(MaskReg)
3437 // SrcReg(GR32) -> DestReg(MaskReg)
3438
3439 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3440 if (X86::VK16RegClass.contains(DestReg)) {
3441 if (X86::GR64RegClass.contains(SrcReg)) {
3442 assert(Subtarget.hasBWI())((void)0);
3443 return X86::KMOVQkr;
3444 }
3445 if (X86::GR32RegClass.contains(SrcReg))
3446 return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
3447 }
3448
3449
3450 // SrcReg(VR128) -> DestReg(GR64)
3451 // SrcReg(VR64) -> DestReg(GR64)
3452 // SrcReg(GR64) -> DestReg(VR128)
3453 // SrcReg(GR64) -> DestReg(VR64)
3454
3455 if (X86::GR64RegClass.contains(DestReg)) {
3456 if (X86::VR128XRegClass.contains(SrcReg))
3457 // Copy from a VR128 register to a GR64 register.
3458 return HasAVX512 ? X86::VMOVPQIto64Zrr :
3459 HasAVX ? X86::VMOVPQIto64rr :
3460 X86::MOVPQIto64rr;
3461 if (X86::VR64RegClass.contains(SrcReg))
3462 // Copy from a VR64 register to a GR64 register.
3463 return X86::MMX_MOVD64from64rr;
3464 } else if (X86::GR64RegClass.contains(SrcReg)) {
3465 // Copy from a GR64 register to a VR128 register.
3466 if (X86::VR128XRegClass.contains(DestReg))
3467 return HasAVX512 ? X86::VMOV64toPQIZrr :
3468 HasAVX ? X86::VMOV64toPQIrr :
3469 X86::MOV64toPQIrr;
3470 // Copy from a GR64 register to a VR64 register.
3471 if (X86::VR64RegClass.contains(DestReg))
3472 return X86::MMX_MOVD64to64rr;
3473 }
3474
3475 // SrcReg(VR128) -> DestReg(GR32)
3476 // SrcReg(GR32) -> DestReg(VR128)
3477
3478 if (X86::GR32RegClass.contains(DestReg) &&
3479 X86::VR128XRegClass.contains(SrcReg))
3480 // Copy from a VR128 register to a GR32 register.
3481 return HasAVX512 ? X86::VMOVPDI2DIZrr :
3482 HasAVX ? X86::VMOVPDI2DIrr :
3483 X86::MOVPDI2DIrr;
3484
3485 if (X86::VR128XRegClass.contains(DestReg) &&
3486 X86::GR32RegClass.contains(SrcReg))
3487 // Copy from a VR128 register to a VR128 register.
3488 return HasAVX512 ? X86::VMOVDI2PDIZrr :
3489 HasAVX ? X86::VMOVDI2PDIrr :
3490 X86::MOVDI2PDIrr;
3491 return 0;
3492}
3493
3494void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3495 MachineBasicBlock::iterator MI,
3496 const DebugLoc &DL, MCRegister DestReg,
3497 MCRegister SrcReg, bool KillSrc) const {
3498 // First deal with the normal symmetric copies.
3499 bool HasAVX = Subtarget.hasAVX();
3500 bool HasVLX = Subtarget.hasVLX();
3501 unsigned Opc = 0;
3502 if (X86::GR64RegClass.contains(DestReg, SrcReg))
3503 Opc = X86::MOV64rr;
3504 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3505 Opc = X86::MOV32rr;
3506 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3507 Opc = X86::MOV16rr;
3508 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3509 // Copying to or from a physical H register on x86-64 requires a NOREX
3510 // move. Otherwise use a normal move.
3511 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3512 Subtarget.is64Bit()) {
3513 Opc = X86::MOV8rr_NOREX;
3514 // Both operands must be encodable without an REX prefix.
3515 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&((void)0)
3516 "8-bit H register can not be copied outside GR8_NOREX")((void)0);
3517 } else
3518 Opc = X86::MOV8rr;
3519 }
3520 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3521 Opc = X86::MMX_MOVQ64rr;
3522 else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
3523 if (HasVLX)
3524 Opc = X86::VMOVAPSZ128rr;
3525 else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3526 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3527 else {
3528 // If this an extended register and we don't have VLX we need to use a
3529 // 512-bit move.
3530 Opc = X86::VMOVAPSZrr;
3531 const TargetRegisterInfo *TRI = &getRegisterInfo();
3532 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
3533 &X86::VR512RegClass);
3534 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
3535 &X86::VR512RegClass);
3536 }
3537 } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
3538 if (HasVLX)
3539 Opc = X86::VMOVAPSZ256rr;
3540 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3541 Opc = X86::VMOVAPSYrr;
3542 else {
3543 // If this an extended register and we don't have VLX we need to use a
3544 // 512-bit move.
3545 Opc = X86::VMOVAPSZrr;
3546 const TargetRegisterInfo *TRI = &getRegisterInfo();
3547 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
3548 &X86::VR512RegClass);
3549 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
3550 &X86::VR512RegClass);
3551 }
3552 } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
3553 Opc = X86::VMOVAPSZrr;
3554 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3555 else if (X86::VK16RegClass.contains(DestReg, SrcReg))
3556 Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
3557 if (!Opc)
3558 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3559
3560 if (Opc) {
3561 BuildMI(MBB, MI, DL, get(Opc), DestReg)
3562 .addReg(SrcReg, getKillRegState(KillSrc));
3563 return;
3564 }
3565
3566 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
3567 // FIXME: We use a fatal error here because historically LLVM has tried
3568 // lower some of these physreg copies and we want to ensure we get
3569 // reasonable bug reports if someone encounters a case no other testing
3570 // found. This path should be removed after the LLVM 7 release.
3571 report_fatal_error("Unable to copy EFLAGS physical register!");
3572 }
3573
3574 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "do { } while (false)
3575 << RI.getName(DestReg) << '\n')do { } while (false);
3576 report_fatal_error("Cannot emit physreg copy instruction");
3577}
3578
3579Optional<DestSourcePair>
3580X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
3581 if (MI.isMoveReg())
3582 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
3583 return None;
3584}
3585
3586static unsigned getLoadStoreRegOpcode(Register Reg,
3587 const TargetRegisterClass *RC,
3588 bool IsStackAligned,
3589 const X86Subtarget &STI, bool load) {
3590 bool HasAVX = STI.hasAVX();
3591 bool HasAVX512 = STI.hasAVX512();
3592 bool HasVLX = STI.hasVLX();
3593
3594 switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
3595 default:
3596 llvm_unreachable("Unknown spill size")__builtin_unreachable();
3597 case 1:
3598 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass")((void)0);
3599 if (STI.is64Bit())
3600 // Copying to or from a physical H register on x86-64 requires a NOREX
3601 // move. Otherwise use a normal move.
3602 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3603 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3604 return load ? X86::MOV8rm : X86::MOV8mr;
3605 case 2:
3606 if (X86::VK16RegClass.hasSubClassEq(RC))
3607 return load ? X86::KMOVWkm : X86::KMOVWmk;
3608 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass")((void)0);
3609 return load ? X86::MOV16rm : X86::MOV16mr;
3610 case 4:
3611 if (X86::GR32RegClass.hasSubClassEq(RC))
3612 return load ? X86::MOV32rm : X86::MOV32mr;
3613 if (X86::FR32XRegClass.hasSubClassEq(RC))
3614 return load ?
3615 (HasAVX512 ? X86::VMOVSSZrm_alt :
3616 HasAVX ? X86::VMOVSSrm_alt :
3617 X86::MOVSSrm_alt) :
3618 (HasAVX512 ? X86::VMOVSSZmr :
3619 HasAVX ? X86::VMOVSSmr :
3620 X86::MOVSSmr);
3621 if (X86::RFP32RegClass.hasSubClassEq(RC))
3622 return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3623 if (X86::VK32RegClass.hasSubClassEq(RC)) {
3624 assert(STI.hasBWI() && "KMOVD requires BWI")((void)0);
3625 return load ? X86::KMOVDkm : X86::KMOVDmk;
3626 }
3627 // All of these mask pair classes have the same spill size, the same kind
3628 // of kmov instructions can be used with all of them.
3629 if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
3630 X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
3631 X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
3632 X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
3633 X86::VK16PAIRRegClass.hasSubClassEq(RC))
3634 return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
3635 llvm_unreachable("Unknown 4-byte regclass")__builtin_unreachable();
3636 case 8:
3637 if (X86::GR64RegClass.hasSubClassEq(RC))
3638 return load ? X86::MOV64rm : X86::MOV64mr;
3639 if (X86::FR64XRegClass.hasSubClassEq(RC))
3640 return load ?
3641 (HasAVX512 ? X86::VMOVSDZrm_alt :
3642 HasAVX ? X86::VMOVSDrm_alt :
3643 X86::MOVSDrm_alt) :
3644 (HasAVX512 ? X86::VMOVSDZmr :
3645 HasAVX ? X86::VMOVSDmr :
3646 X86::MOVSDmr);
3647 if (X86::VR64RegClass.hasSubClassEq(RC))
3648 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3649 if (X86::RFP64RegClass.hasSubClassEq(RC))
3650 return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3651 if (X86::VK64RegClass.hasSubClassEq(RC)) {
3652 assert(STI.hasBWI() && "KMOVQ requires BWI")((void)0);
3653 return load ? X86::KMOVQkm : X86::KMOVQmk;
3654 }
3655 llvm_unreachable("Unknown 8-byte regclass")__builtin_unreachable();
3656 case 10:
3657 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass")((void)0);
3658 return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3659 case 16: {
3660 if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3661 // If stack is realigned we can use aligned stores.
3662 if (IsStackAligned)
3663 return load ?
3664 (HasVLX ? X86::VMOVAPSZ128rm :
3665 HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3666 HasAVX ? X86::VMOVAPSrm :
3667 X86::MOVAPSrm):
3668 (HasVLX ? X86::VMOVAPSZ128mr :
3669 HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3670 HasAVX ? X86::VMOVAPSmr :
3671 X86::MOVAPSmr);
3672 else
3673 return load ?
3674 (HasVLX ? X86::VMOVUPSZ128rm :
3675 HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3676 HasAVX ? X86::VMOVUPSrm :
3677 X86::MOVUPSrm):
3678 (HasVLX ? X86::VMOVUPSZ128mr :
3679 HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3680 HasAVX ? X86::VMOVUPSmr :
3681 X86::MOVUPSmr);
3682 }
3683 if (X86::BNDRRegClass.hasSubClassEq(RC)) {
3684 if (STI.is64Bit())
3685 return load ? X86::BNDMOV64rm : X86::BNDMOV64mr;
3686 else
3687 return load ? X86::BNDMOV32rm : X86::BNDMOV32mr;
3688 }
3689 llvm_unreachable("Unknown 16-byte regclass")__builtin_unreachable();
3690 }
3691 case 32:
3692 assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass")((void)0);
3693 // If stack is realigned we can use aligned stores.
3694 if (IsStackAligned)
3695 return load ?
3696 (HasVLX ? X86::VMOVAPSZ256rm :
3697 HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3698 X86::VMOVAPSYrm) :
3699 (HasVLX ? X86::VMOVAPSZ256mr :
3700 HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3701 X86::VMOVAPSYmr);
3702 else
3703 return load ?
3704 (HasVLX ? X86::VMOVUPSZ256rm :
3705 HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3706 X86::VMOVUPSYrm) :
3707 (HasVLX ? X86::VMOVUPSZ256mr :
3708 HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3709 X86::VMOVUPSYmr);
3710 case 64:
3711 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass")((void)0);
3712 assert(STI.hasAVX512() && "Using 512-bit register requires AVX512")((void)0);
3713 if (IsStackAligned)
3714 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3715 else
3716 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3717 }
3718}
3719
3720Optional<ExtAddrMode>
3721X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
3722 const TargetRegisterInfo *TRI) const {
3723 const MCInstrDesc &Desc = MemI.getDesc();
3724 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3725 if (MemRefBegin < 0)
3726 return None;
3727
3728 MemRefBegin += X86II::getOperandBias(Desc);
3729
3730 auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
3731 if (!BaseOp.isReg()) // Can be an MO_FrameIndex
3732 return None;
3733
3734 const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
3735 // Displacement can be symbolic
3736 if (!DispMO.isImm())
3737 return None;
3738
3739 ExtAddrMode AM;
3740 AM.BaseReg = BaseOp.getReg();
3741 AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
3742 AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
3743 AM.Displacement = DispMO.getImm();
3744 return AM;
3745}
3746
3747bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
3748 const Register Reg,
3749 int64_t &ImmVal) const {
3750 if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri)
3751 return false;
3752 // Mov Src can be a global address.
3753 if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg)
3754 return false;
3755 ImmVal = MI.getOperand(1).getImm();
3756 return true;
3757}
3758
3759bool X86InstrInfo::preservesZeroValueInReg(
3760 const MachineInstr *MI, const Register NullValueReg,
3761 const TargetRegisterInfo *TRI) const {
3762 if (!MI->modifiesRegister(NullValueReg, TRI))
3763 return true;
3764 switch (MI->getOpcode()) {
3765 // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
3766 // X.
3767 case X86::SHR64ri:
3768 case X86::SHR32ri:
3769 case X86::SHL64ri:
3770 case X86::SHL32ri:
3771 assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&((void)0)
3772 "expected for shift opcode!")((void)0);
3773 return MI->getOperand(0).getReg() == NullValueReg &&
3774 MI->getOperand(1).getReg() == NullValueReg;
3775 // Zero extend of a sub-reg of NullValueReg into itself does not change the
3776 // null value.
3777 case X86::MOV32rr:
3778 return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
3779 return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
3780 });
3781 default:
3782 return false;
3783 }
3784 llvm_unreachable("Should be handled above!")__builtin_unreachable();
3785}
3786
3787bool X86InstrInfo::getMemOperandsWithOffsetWidth(
3788 const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps,
3789 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
3790 const TargetRegisterInfo *TRI) const {
3791 const MCInstrDesc &Desc = MemOp.getDesc();
3792 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3793 if (MemRefBegin < 0)
3794 return false;
3795
3796 MemRefBegin += X86II::getOperandBias(Desc);
3797
3798 const MachineOperand *BaseOp =
3799 &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3800 if (!BaseOp->isReg()) // Can be an MO_FrameIndex
3801 return false;
3802
3803 if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3804 return false;
3805
3806 if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3807 X86::NoRegister)
3808 return false;
3809
3810 const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3811
3812 // Displacement can be symbolic
3813 if (!DispMO.isImm())
3814 return false;
3815
3816 Offset = DispMO.getImm();
3817
3818 if (!BaseOp->isReg())
3819 return false;
3820
3821 OffsetIsScalable = false;
3822 // FIXME: Relying on memoperands() may not be right thing to do here. Check
3823 // with X86 maintainers, and fix it accordingly. For now, it is ok, since
3824 // there is no use of `Width` for X86 back-end at the moment.
3825 Width =
3826 !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
3827 BaseOps.push_back(BaseOp);
3828 return true;
3829}
3830
3831static unsigned getStoreRegOpcode(Register SrcReg,
3832 const TargetRegisterClass *RC,
3833 bool IsStackAligned,
3834 const X86Subtarget &STI) {
3835 return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
3836}
3837
3838static unsigned getLoadRegOpcode(Register DestReg,
3839 const TargetRegisterClass *RC,
3840 bool IsStackAligned, const X86Subtarget &STI) {
3841 return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
3842}
3843
3844void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3845 MachineBasicBlock::iterator MI,
3846 Register SrcReg, bool isKill, int FrameIdx,
3847 const TargetRegisterClass *RC,
3848 const TargetRegisterInfo *TRI) const {
3849 const MachineFunction &MF = *MBB.getParent();
3850 const MachineFrameInfo &MFI = MF.getFrameInfo();
3851 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&((void)0)
3852 "Stack slot too small for store")((void)0);
3853 if (RC->getID() == X86::TILERegClassID) {
3854 unsigned Opc = X86::TILESTORED;
3855 // tilestored %tmm, (%sp, %idx)
3856 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3857 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3858 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3859 MachineInstr *NewMI =
3860 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3861 .addReg(SrcReg, getKillRegState(isKill));
3862 MachineOperand &MO = NewMI->getOperand(2);
3863 MO.setReg(VirtReg);
3864 MO.setIsKill(true);
3865 } else {
3866 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3867 bool isAligned =
3868 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
3869 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
3870 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3871 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3872 .addReg(SrcReg, getKillRegState(isKill));
3873 }
3874}
3875
3876void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3877 MachineBasicBlock::iterator MI,
3878 Register DestReg, int FrameIdx,
3879 const TargetRegisterClass *RC,
3880 const TargetRegisterInfo *TRI) const {
3881 if (RC->getID() == X86::TILERegClassID) {
3882 unsigned Opc = X86::TILELOADD;
3883 // tileloadd (%sp, %idx), %tmm
3884 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3885 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3886 MachineInstr *NewMI =
Value stored to 'NewMI' during its initialization is never read
3887 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3888 NewMI = addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3889 FrameIdx);
3890 MachineOperand &MO = NewMI->getOperand(3);
3891 MO.setReg(VirtReg);
3892 MO.setIsKill(true);
3893 } else {
3894 const MachineFunction &MF = *MBB.getParent();
3895 const MachineFrameInfo &MFI = MF.getFrameInfo();
3896 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3897 bool isAligned =
3898 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
3899 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
3900 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3901 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3902 FrameIdx);
3903 }
3904}
3905
3906bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
3907 Register &SrcReg2, int &CmpMask,
3908 int &CmpValue) const {
3909 switch (MI.getOpcode()) {
3910 default: break;
3911 case X86::CMP64ri32:
3912 case X86::CMP64ri8:
3913 case X86::CMP32ri:
3914 case X86::CMP32ri8:
3915 case X86::CMP16ri:
3916 case X86::CMP16ri8:
3917 case X86::CMP8ri:
3918 SrcReg = MI.getOperand(0).getReg();
3919 SrcReg2 = 0;
3920 if (MI.getOperand(1).isImm()) {
3921 CmpMask = ~0;
3922 CmpValue = MI.getOperand(1).getImm();
3923 } else {
3924 CmpMask = CmpValue = 0;
3925 }
3926 return true;
3927 // A SUB can be used to perform comparison.
3928 case X86::SUB64rm:
3929 case X86::SUB32rm:
3930 case X86::SUB16rm:
3931 case X86::SUB8rm:
3932 SrcReg = MI.getOperand(1).getReg();
3933 SrcReg2 = 0;
3934 CmpMask = 0;
3935 CmpValue = 0;
3936 return true;
3937 case X86::SUB64rr:
3938 case X86::SUB32rr:
3939 case X86::SUB16rr:
3940 case X86::SUB8rr:
3941 SrcReg = MI.getOperand(1).getReg();
3942 SrcReg2 = MI.getOperand(2).getReg();
3943 CmpMask = 0;
3944 CmpValue = 0;
3945 return true;
3946 case X86::SUB64ri32:
3947 case X86::SUB64ri8:
3948 case X86::SUB32ri:
3949 case X86::SUB32ri8:
3950 case X86::SUB16ri:
3951 case X86::SUB16ri8:
3952 case X86::SUB8ri:
3953 SrcReg = MI.getOperand(1).getReg();
3954 SrcReg2 = 0;
3955 if (MI.getOperand(2).isImm()) {
3956 CmpMask = ~0;
3957 CmpValue = MI.getOperand(2).getImm();
3958 } else {
3959 CmpMask = CmpValue = 0;
3960 }
3961 return true;
3962 case X86::CMP64rr:
3963 case X86::CMP32rr:
3964 case X86::CMP16rr:
3965 case X86::CMP8rr:
3966 SrcReg = MI.getOperand(0).getReg();
3967 SrcReg2 = MI.getOperand(1).getReg();
3968 CmpMask = 0;
3969 CmpValue = 0;
3970 return true;
3971 case X86::TEST8rr:
3972 case X86::TEST16rr:
3973 case X86::TEST32rr:
3974 case X86::TEST64rr:
3975 SrcReg = MI.getOperand(0).getReg();
3976 if (MI.getOperand(1).getReg() != SrcReg)
3977 return false;
3978 // Compare against zero.
3979 SrcReg2 = 0;
3980 CmpMask = ~0;
3981 CmpValue = 0;
3982 return true;
3983 }
3984 return false;
3985}
3986
3987/// Check whether the first instruction, whose only
3988/// purpose is to update flags, can be made redundant.
3989/// CMPrr can be made redundant by SUBrr if the operands are the same.
3990/// This function can be extended later on.
3991/// SrcReg, SrcRegs: register operands for FlagI.
3992/// ImmValue: immediate for FlagI if it takes an immediate.
3993inline static bool isRedundantFlagInstr(const MachineInstr &FlagI,
3994 Register SrcReg, Register SrcReg2,
3995 int ImmMask, int ImmValue,
3996 const MachineInstr &OI) {
3997 if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) ||
3998 (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) ||
3999 (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) ||
4000 (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) &&
4001 ((OI.getOperand(1).getReg() == SrcReg &&
4002 OI.getOperand(2).getReg() == SrcReg2) ||
4003 (OI.getOperand(1).getReg() == SrcReg2 &&
4004 OI.getOperand(2).getReg() == SrcReg)))
4005 return true;
4006
4007 if (ImmMask != 0 &&
4008 ((FlagI.getOpcode() == X86::CMP64ri32 &&
4009 OI.getOpcode() == X86::SUB64ri32) ||
4010 (FlagI.getOpcode() == X86::CMP64ri8 &&
4011 OI.getOpcode() == X86::SUB64ri8) ||
4012 (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) ||
4013 (FlagI.getOpcode() == X86::CMP32ri8 &&
4014 OI.getOpcode() == X86::SUB32ri8) ||
4015 (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) ||
4016 (FlagI.getOpcode() == X86::CMP16ri8 &&
4017 OI.getOpcode() == X86::SUB16ri8) ||
4018 (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) &&
4019 OI.getOperand(1).getReg() == SrcReg &&
4020 OI.getOperand(2).getImm() == ImmValue)
4021 return true;
4022 return false;
4023}
4024
4025/// Check whether the definition can be converted
4026/// to remove a comparison against zero.
4027inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
4028 bool &ClearsOverflowFlag) {
4029 NoSignFlag = false;
4030 ClearsOverflowFlag = false;
4031
4032 switch (MI.getOpcode()) {
4033 default: return false;
4034
4035 // The shift instructions only modify ZF if their shift count is non-zero.
4036 // N.B.: The processor truncates the shift count depending on the encoding.
4037 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
4038 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
4039 return getTruncatedShiftCount(MI, 2) != 0;
4040
4041 // Some left shift instructions can be turned into LEA instructions but only
4042 // if their flags aren't used. Avoid transforming such instructions.
4043 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
4044 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4045 if (isTruncatedShiftCountForLEA(ShAmt)) return false;
4046 return ShAmt != 0;
4047 }
4048
4049 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
4050 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
4051 return getTruncatedShiftCount(MI, 3) != 0;
4052
4053 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
4054 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
4055 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
4056 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
4057 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
4058 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
4059 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
4060 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
4061 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
4062 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
4063 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
4064 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
4065 case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
4066 case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8:
4067 case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr:
4068 case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm:
4069 case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm:
4070 case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
4071 case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8:
4072 case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr:
4073 case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm:
4074 case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm:
4075 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
4076 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
4077 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
4078 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
4079 case X86::LZCNT16rr: case X86::LZCNT16rm:
4080 case X86::LZCNT32rr: case X86::LZCNT32rm:
4081 case X86::LZCNT64rr: case X86::LZCNT64rm:
4082 case X86::POPCNT16rr:case X86::POPCNT16rm:
4083 case X86::POPCNT32rr:case X86::POPCNT32rm:
4084 case X86::POPCNT64rr:case X86::POPCNT64rm:
4085 case X86::TZCNT16rr: case X86::TZCNT16rm:
4086 case X86::TZCNT32rr: case X86::TZCNT32rm:
4087 case X86::TZCNT64rr: case X86::TZCNT64rm:
4088 return true;
4089 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
4090 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
4091 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
4092 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
4093 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
4094 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
4095 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
4096 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
4097 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
4098 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
4099 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
4100 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
4101 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
4102 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
4103 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
4104 case X86::ANDN32rr: case X86::ANDN32rm:
4105 case X86::ANDN64rr: case X86::ANDN64rm:
4106 case X86::BLSI32rr: case X86::BLSI32rm:
4107 case X86::BLSI64rr: case X86::BLSI64rm:
4108 case X86::BLSMSK32rr: case X86::BLSMSK32rm:
4109 case X86::BLSMSK64rr: case X86::BLSMSK64rm:
4110 case X86::BLSR32rr: case X86::BLSR32rm:
4111 case X86::BLSR64rr: case X86::BLSR64rm:
4112 case X86::BLCFILL32rr: case X86::BLCFILL32rm:
4113 case X86::BLCFILL64rr: case X86::BLCFILL64rm:
4114 case X86::BLCI32rr: case X86::BLCI32rm:
4115 case X86::BLCI64rr: case X86::BLCI64rm:
4116 case X86::BLCIC32rr: case X86::BLCIC32rm:
4117 case X86::BLCIC64rr: case X86::BLCIC64rm:
4118 case X86::BLCMSK32rr: case X86::BLCMSK32rm:
4119 case X86::BLCMSK64rr: case X86::BLCMSK64rm:
4120 case X86::BLCS32rr: case X86::BLCS32rm:
4121 case X86::BLCS64rr: case X86::BLCS64rm:
4122 case X86::BLSFILL32rr: case X86::BLSFILL32rm:
4123 case X86::BLSFILL64rr: case X86::BLSFILL64rm:
4124 case X86::BLSIC32rr: case X86::BLSIC32rm:
4125 case X86::BLSIC64rr: case X86::BLSIC64rm:
4126 case X86::BZHI32rr: case X86::BZHI32rm:
4127 case X86::BZHI64rr: case X86::BZHI64rm:
4128 case X86::T1MSKC32rr: case X86::T1MSKC32rm:
4129 case X86::T1MSKC64rr: case X86::T1MSKC64rm:
4130 case X86::TZMSK32rr: case X86::TZMSK32rm:
4131 case X86::TZMSK64rr: case X86::TZMSK64rm:
4132 // These instructions clear the overflow flag just like TEST.
4133 // FIXME: These are not the only instructions in this switch that clear the
4134 // overflow flag.
4135 ClearsOverflowFlag = true;
4136 return true;
4137 case X86::BEXTR32rr: case X86::BEXTR64rr:
4138 case X86::BEXTR32rm: case X86::BEXTR64rm:
4139 case X86::BEXTRI32ri: case X86::BEXTRI32mi:
4140 case X86::BEXTRI64ri: case X86::BEXTRI64mi:
4141 // BEXTR doesn't update the sign flag so we can't use it. It does clear
4142 // the overflow flag, but that's not useful without the sign flag.
4143 NoSignFlag = true;
4144 return true;
4145 }
4146}
4147
4148/// Check whether the use can be converted to remove a comparison against zero.
4149static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
4150 switch (MI.getOpcode()) {
4151 default: return X86::COND_INVALID;
4152 case X86::NEG8r:
4153 case X86::NEG16r:
4154 case X86::NEG32r:
4155 case X86::NEG64r:
4156 return X86::COND_AE;
4157 case X86::LZCNT16rr:
4158 case X86::LZCNT32rr:
4159 case X86::LZCNT64rr:
4160 return X86::COND_B;
4161 case X86::POPCNT16rr:
4162 case X86::POPCNT32rr:
4163 case X86::POPCNT64rr:
4164 return X86::COND_E;
4165 case X86::TZCNT16rr:
4166 case X86::TZCNT32rr:
4167 case X86::TZCNT64rr:
4168 return X86::COND_B;
4169 case X86::BSF16rr:
4170 case X86::BSF32rr:
4171 case X86::BSF64rr:
4172 case X86::BSR16rr:
4173 case X86::BSR32rr:
4174 case X86::BSR64rr:
4175 return X86::COND_E;
4176 case X86::BLSI32rr:
4177 case X86::BLSI64rr:
4178 return X86::COND_AE;
4179 case X86::BLSR32rr:
4180 case X86::BLSR64rr:
4181 case X86::BLSMSK32rr:
4182 case X86::BLSMSK64rr:
4183 return X86::COND_B;
4184 // TODO: TBM instructions.
4185 }
4186}
4187
4188/// Check if there exists an earlier instruction that
4189/// operates on the same source operands and sets flags in the same way as
4190/// Compare; remove Compare if possible.
4191bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
4192 Register SrcReg2, int CmpMask,
4193 int CmpValue,
4194 const MachineRegisterInfo *MRI) const {
4195 // Check whether we can replace SUB with CMP.
4196 switch (CmpInstr.getOpcode()) {
4197 default: break;
4198 case X86::SUB64ri32:
4199 case X86::SUB64ri8:
4200 case X86::SUB32ri:
4201 case X86::SUB32ri8:
4202 case X86::SUB16ri:
4203 case X86::SUB16ri8:
4204 case X86::SUB8ri:
4205 case X86::SUB64rm:
4206 case X86::SUB32rm:
4207 case X86::SUB16rm:
4208 case X86::SUB8rm:
4209 case X86::SUB64rr:
4210 case X86::SUB32rr:
4211 case X86::SUB16rr:
4212 case X86::SUB8rr: {
4213 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
4214 return false;
4215 // There is no use of the destination register, we can replace SUB with CMP.
4216 unsigned NewOpcode = 0;
4217 switch (CmpInstr.getOpcode()) {
4218 default: llvm_unreachable("Unreachable!")__builtin_unreachable();
4219 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
4220 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
4221 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
4222 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
4223 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
4224 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
4225 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
4226 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
4227 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
4228 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
4229 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
4230 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
4231 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
4232 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
4233 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
4234 }
4235 CmpInstr.setDesc(get(NewOpcode));
4236 CmpInstr.RemoveOperand(0);
4237 // Mutating this instruction invalidates any debug data associated with it.
4238 CmpInstr.dropDebugNumber();
4239 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
4240 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
4241 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
4242 return false;
4243 }
4244 }
4245
4246 // Get the unique definition of SrcReg.
4247 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
4248 if (!MI) return false;
4249
4250 // CmpInstr is the first instruction of the BB.
4251 MachineBasicBlock::iterator I = CmpInstr, Def = MI;
4252
4253 // If we are comparing against zero, check whether we can use MI to update
4254 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
4255 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
4256 if (IsCmpZero && MI->getParent() != CmpInstr.getParent())
4257 return false;
4258
4259 // If we have a use of the source register between the def and our compare
4260 // instruction we can eliminate the compare iff the use sets EFLAGS in the
4261 // right way.
4262 bool ShouldUpdateCC = false;
4263 bool NoSignFlag = false;
4264 bool ClearsOverflowFlag = false;
4265 X86::CondCode NewCC = X86::COND_INVALID;
4266 if (IsCmpZero && !isDefConvertible(*MI, NoSignFlag, ClearsOverflowFlag)) {
4267 // Scan forward from the use until we hit the use we're looking for or the
4268 // compare instruction.
4269 for (MachineBasicBlock::iterator J = MI;; ++J) {
4270 // Do we have a convertible instruction?
4271 NewCC = isUseDefConvertible(*J);
4272 if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
4273 J->getOperand(1).getReg() == SrcReg) {
4274 assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!")((void)0);
4275 ShouldUpdateCC = true; // Update CC later on.
4276 // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
4277 // with the new def.
4278 Def = J;
4279 MI = &*Def;
4280 break;
4281 }
4282
4283 if (J == I)
4284 return false;
4285 }
4286 }
4287
4288 // We are searching for an earlier instruction that can make CmpInstr
4289 // redundant and that instruction will be saved in Sub.
4290 MachineInstr *Sub = nullptr;
4291 const TargetRegisterInfo *TRI = &getRegisterInfo();
4292
4293 // We iterate backward, starting from the instruction before CmpInstr and
4294 // stop when reaching the definition of a source register or done with the BB.
4295 // RI points to the instruction before CmpInstr.
4296 // If the definition is in this basic block, RE points to the definition;
4297 // otherwise, RE is the rend of the basic block.
4298 MachineBasicBlock::reverse_iterator
4299 RI = ++I.getReverse(),
4300 RE = CmpInstr.getParent() == MI->getParent()
4301 ? Def.getReverse() /* points to MI */
4302 : CmpInstr.getParent()->rend();
4303 MachineInstr *Movr0Inst = nullptr;
4304 for (; RI != RE; ++RI) {
4305 MachineInstr &Instr = *RI;
4306 // Check whether CmpInstr can be made redundant by the current instruction.
4307 if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask,
4308 CmpValue, Instr)) {
4309 Sub = &Instr;
4310 break;
4311 }
4312
4313 if (Instr.modifiesRegister(X86::EFLAGS, TRI) ||
4314 Instr.readsRegister(X86::EFLAGS, TRI)) {
4315 // This instruction modifies or uses EFLAGS.
4316
4317 // MOV32r0 etc. are implemented with xor which clobbers condition code.
4318 // They are safe to move up, if the definition to EFLAGS is dead and
4319 // earlier instructions do not read or write EFLAGS.
4320 if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 &&
4321 Instr.registerDefIsDead(X86::EFLAGS, TRI)) {
4322 Movr0Inst = &Instr;
4323 continue;
4324 }
4325
4326 // We can't remove CmpInstr.
4327 return false;
4328 }
4329 }
4330
4331 // Return false if no candidates exist.
4332 if (!IsCmpZero && !Sub)
4333 return false;
4334
4335 bool IsSwapped =
4336 (SrcReg2 != 0 && Sub && Sub->getOperand(1).getReg() == SrcReg2 &&
4337 Sub->getOperand(2).getReg() == SrcReg);
4338
4339 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
4340 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
4341 // If we are done with the basic block, we need to check whether EFLAGS is
4342 // live-out.
4343 bool IsSafe = false;
4344 SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
4345 MachineBasicBlock::iterator E = CmpInstr.getParent()->end();
4346 for (++I; I != E; ++I) {
4347 const MachineInstr &Instr = *I;
4348 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
4349 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
4350 // We should check the usage if this instruction uses and updates EFLAGS.
4351 if (!UseEFLAGS && ModifyEFLAGS) {
4352 // It is safe to remove CmpInstr if EFLAGS is updated again.
4353 IsSafe = true;
4354 break;
4355 }
4356 if (!UseEFLAGS && !ModifyEFLAGS)
4357 continue;
4358
4359 // EFLAGS is used by this instruction.
4360 X86::CondCode OldCC = X86::COND_INVALID;
4361 if (IsCmpZero || IsSwapped) {
4362 // We decode the condition code from opcode.
4363 if (Instr.isBranch())
4364 OldCC = X86::getCondFromBranch(Instr);
4365 else {
4366 OldCC = X86::getCondFromSETCC(Instr);
4367 if (OldCC == X86::COND_INVALID)
4368 OldCC = X86::getCondFromCMov(Instr);
4369 }
4370 if (OldCC == X86::COND_INVALID) return false;
4371 }
4372 X86::CondCode ReplacementCC = X86::COND_INVALID;
4373 if (IsCmpZero) {
4374 switch (OldCC) {
4375 default: break;
4376 case X86::COND_A: case X86::COND_AE:
4377 case X86::COND_B: case X86::COND_BE:
4378 // CF is used, we can't perform this optimization.
4379 return false;
4380 case X86::COND_G: case X86::COND_GE:
4381 case X86::COND_L: case X86::COND_LE:
4382 case X86::COND_O: case X86::COND_NO:
4383 // If OF is used, the instruction needs to clear it like CmpZero does.
4384 if (!ClearsOverflowFlag)
4385 return false;
4386 break;
4387 case X86::COND_S: case X86::COND_NS:
4388 // If SF is used, but the instruction doesn't update the SF, then we
4389 // can't do the optimization.
4390 if (NoSignFlag)
4391 return false;
4392 break;
4393 }
4394
4395 // If we're updating the condition code check if we have to reverse the
4396 // condition.
4397 if (ShouldUpdateCC)
4398 switch (OldCC) {
4399 default:
4400 return false;
4401 case X86::COND_E:
4402 ReplacementCC = NewCC;
4403 break;
4404 case X86::COND_NE:
4405 ReplacementCC = GetOppositeBranchCondition(NewCC);
4406 break;
4407 }
4408 } else if (IsSwapped) {
4409 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
4410 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
4411 // We swap the condition code and synthesize the new opcode.
4412 ReplacementCC = getSwappedCondition(OldCC);
4413 if (ReplacementCC == X86::COND_INVALID) return false;
4414 }
4415
4416 if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) {
4417 // Push the MachineInstr to OpsToUpdate.
4418 // If it is safe to remove CmpInstr, the condition code of these
4419 // instructions will be modified.
4420 OpsToUpdate.push_back(std::make_pair(&*I, ReplacementCC));
4421 }
4422 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
4423 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
4424 IsSafe = true;
4425 break;
4426 }
4427 }
4428
4429 // If EFLAGS is not killed nor re-defined, we should check whether it is
4430 // live-out. If it is live-out, do not optimize.
4431 if ((IsCmpZero || IsSwapped) && !IsSafe) {
4432 MachineBasicBlock *MBB = CmpInstr.getParent();
4433 for (MachineBasicBlock *Successor : MBB->successors())
4434 if (Successor->isLiveIn(X86::EFLAGS))
4435 return false;
4436 }
4437
4438 // The instruction to be updated is either Sub or MI.
4439 Sub = IsCmpZero ? MI : Sub;
4440 // Move Movr0Inst to the appropriate place before Sub.
4441 if (Movr0Inst) {
4442 // Look backwards until we find a def that doesn't use the current EFLAGS.
4443 Def = Sub;
4444 MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(),
4445 InsertE = Sub->getParent()->rend();
4446 for (; InsertI != InsertE; ++InsertI) {
4447 MachineInstr *Instr = &*InsertI;
4448 if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
4449 Instr->modifiesRegister(X86::EFLAGS, TRI)) {
4450 Sub->getParent()->remove(Movr0Inst);
4451 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
4452 Movr0Inst);
4453 break;
4454 }
4455 }
4456 if (InsertI == InsertE)
4457 return false;
4458 }
4459
4460 // Make sure Sub instruction defines EFLAGS and mark the def live.
4461 MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
4462 assert(FlagDef && "Unable to locate a def EFLAGS operand")((void)0);
4463 FlagDef->setIsDead(false);
4464
4465 CmpInstr.eraseFromParent();
4466
4467 // Modify the condition code of instructions in OpsToUpdate.
4468 for (auto &Op : OpsToUpdate) {
4469 Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
4470 .setImm(Op.second);
4471 }
4472 return true;
4473}
4474
4475/// Try to remove the load by folding it to a register
4476/// operand at the use. We fold the load instructions if load defines a virtual
4477/// register, the virtual register is used once in the same BB, and the
4478/// instructions in-between do not load or store, and have no side effects.
4479MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
4480 const MachineRegisterInfo *MRI,
4481 Register &FoldAsLoadDefReg,
4482 MachineInstr *&DefMI) const {
4483 // Check whether we can move DefMI here.
4484 DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
4485 assert(DefMI)((void)0);
4486 bool SawStore = false;
4487 if (!DefMI->isSafeToMove(nullptr, SawStore))
4488 return nullptr;
4489
4490 // Collect information about virtual register operands of MI.
4491 SmallVector<unsigned, 1> SrcOperandIds;
4492 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4493 MachineOperand &MO = MI.getOperand(i);
4494 if (!MO.isReg())
4495 continue;
4496 Register Reg = MO.getReg();
4497 if (Reg != FoldAsLoadDefReg)
4498 continue;
4499 // Do not fold if we have a subreg use or a def.
4500 if (MO.getSubReg() || MO.isDef())
4501 return nullptr;
4502 SrcOperandIds.push_back(i);
4503 }
4504 if (SrcOperandIds.empty())
4505 return nullptr;
4506
4507 // Check whether we can fold the def into SrcOperandId.
4508 if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
4509 FoldAsLoadDefReg = 0;
4510 return FoldMI;
4511 }
4512
4513 return nullptr;
4514}
4515
4516/// Expand a single-def pseudo instruction to a two-addr
4517/// instruction with two undef reads of the register being defined.
4518/// This is used for mapping:
4519/// %xmm4 = V_SET0
4520/// to:
4521/// %xmm4 = PXORrr undef %xmm4, undef %xmm4
4522///
4523static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
4524 const MCInstrDesc &Desc) {
4525 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.")((void)0);
4526 Register Reg = MIB.getReg(0);
4527 MIB->setDesc(Desc);
4528
4529 // MachineInstr::addOperand() will insert explicit operands before any
4530 // implicit operands.
4531 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4532 // But we don't trust that.
4533 assert(MIB.getReg(1) == Reg &&((void)0)
4534 MIB.getReg(2) == Reg && "Misplaced operand")((void)0);
4535 return true;
4536}
4537
4538/// Expand a single-def pseudo instruction to a two-addr
4539/// instruction with two %k0 reads.
4540/// This is used for mapping:
4541/// %k4 = K_SET1
4542/// to:
4543/// %k4 = KXNORrr %k0, %k0
4544static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc,
4545 Register Reg) {
4546 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.")((void)0);
4547 MIB->setDesc(Desc);
4548 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4549 return true;
4550}
4551
4552static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
4553 bool MinusOne) {
4554 MachineBasicBlock &MBB = *MIB->getParent();
4555 const DebugLoc &DL = MIB->getDebugLoc();
4556 Register Reg = MIB.getReg(0);
4557
4558 // Insert the XOR.
4559 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
4560 .addReg(Reg, RegState::Undef)
4561 .addReg(Reg, RegState::Undef);
4562
4563 // Turn the pseudo into an INC or DEC.
4564 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
4565 MIB.addReg(Reg);
4566
4567 return true;
4568}
4569
4570static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
4571 const TargetInstrInfo &TII,
4572 const X86Subtarget &Subtarget) {
4573 MachineBasicBlock &MBB = *MIB->getParent();
4574 const DebugLoc &DL = MIB->getDebugLoc();
4575 int64_t Imm = MIB->getOperand(1).getImm();
4576 assert(Imm != 0 && "Using push/pop for 0 is not efficient.")((void)0);
4577 MachineBasicBlock::iterator I = MIB.getInstr();
4578
4579 int StackAdjustment;
4580
4581 if (Subtarget.is64Bit()) {
4582 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||((void)0)
4583 MIB->getOpcode() == X86::MOV32ImmSExti8)((void)0);
4584
4585 // Can't use push/pop lowering if the function might write to the red zone.
4586 X86MachineFunctionInfo *X86FI =
4587 MBB.getParent()->getInfo<X86MachineFunctionInfo>();
4588 if (X86FI->getUsesRedZone()) {
4589 MIB->setDesc(TII.get(MIB->getOpcode() ==
4590 X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
4591 return true;
4592 }
4593
4594 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
4595 // widen the register if necessary.
4596 StackAdjustment = 8;
4597 BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
4598 MIB->setDesc(TII.get(X86::POP64r));
4599 MIB->getOperand(0)
4600 .setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
4601 } else {
4602 assert(MIB->getOpcode() == X86::MOV32ImmSExti8)((void)0);
4603 StackAdjustment = 4;
4604 BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
4605 MIB->setDesc(TII.get(X86::POP32r));
4606 }
4607 MIB->RemoveOperand(1);
4608 MIB->addImplicitDefUseOperands(*MBB.getParent());
4609
4610 // Build CFI if necessary.
4611 MachineFunction &MF = *MBB.getParent();
4612 const X86FrameLowering *TFL = Subtarget.getFrameLowering();
4613 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
4614 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
4615 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
4616 if (EmitCFI) {
4617 TFL->BuildCFI(MBB, I, DL,
4618 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
4619 TFL->BuildCFI(MBB, std::next(I), DL,
4620 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
4621 }
4622
4623 return true;
4624}
4625
4626// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4627// code sequence is needed for other targets.
4628static void expandLoadStackGuard(MachineInstrBuilder &MIB,
4629 const TargetInstrInfo &TII) {
4630 MachineBasicBlock &MBB = *MIB->getParent();
4631 const DebugLoc &DL = MIB->getDebugLoc();
4632 Register Reg = MIB.getReg(0);
4633 const GlobalValue *GV =
4634 cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
4635 auto Flags = MachineMemOperand::MOLoad |
4636 MachineMemOperand::MODereferenceable |
4637 MachineMemOperand::MOInvariant;
4638 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4639 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
4640 MachineBasicBlock::iterator I = MIB.getInstr();
4641
4642 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
4643 .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
4644 .addMemOperand(MMO);
4645 MIB->setDebugLoc(DL);
4646 MIB->setDesc(TII.get(X86::MOV64rm));
4647 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4648}
4649
4650static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
4651 MachineBasicBlock &MBB = *MIB->getParent();
4652 MachineFunction &MF = *MBB.getParent();
4653 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
4654 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
4655 unsigned XorOp =
4656 MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
4657 MIB->setDesc(TII.get(XorOp));
4658 MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
4659 return true;
4660}
4661
4662// This is used to handle spills for 128/256-bit registers when we have AVX512,
4663// but not VLX. If it uses an extended register we need to use an instruction
4664// that loads the lower 128/256-bit, but is available with only AVX512F.
4665static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
4666 const TargetRegisterInfo *TRI,
4667 const MCInstrDesc &LoadDesc,
4668 const MCInstrDesc &BroadcastDesc,
4669 unsigned SubIdx) {
4670 Register DestReg = MIB.getReg(0);
4671 // Check if DestReg is XMM16-31 or YMM16-31.
4672 if (TRI->getEncodingValue(DestReg) < 16) {
4673 // We can use a normal VEX encoded load.
4674 MIB->setDesc(LoadDesc);
4675 } else {
4676 // Use a 128/256-bit VBROADCAST instruction.
4677 MIB->setDesc(BroadcastDesc);
4678 // Change the destination to a 512-bit register.
4679 DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
4680 MIB->getOperand(0).setReg(DestReg);
4681 }
4682 return true;
4683}
4684
4685// This is used to handle spills for 128/256-bit registers when we have AVX512,
4686// but not VLX. If it uses an extended register we need to use an instruction
4687// that stores the lower 128/256-bit, but is available with only AVX512F.
4688static bool expandNOVLXStore(MachineInstrBuilder &MIB,
4689 const TargetRegisterInfo *TRI,
4690 const MCInstrDesc &StoreDesc,
4691 const MCInstrDesc &ExtractDesc,
4692 unsigned SubIdx) {
4693 Register SrcReg = MIB.getReg(X86::AddrNumOperands);
4694 // Check if DestReg is XMM16-31 or YMM16-31.
4695 if (TRI->getEncodingValue(SrcReg) < 16) {
4696 // We can use a normal VEX encoded store.
4697 MIB->setDesc(StoreDesc);
4698 } else {
4699 // Use a VEXTRACTF instruction.
4700 MIB->setDesc(ExtractDesc);
4701 // Change the destination to a 512-bit register.
4702 SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
4703 MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
4704 MIB.addImm(0x0); // Append immediate to extract from the lower bits.
4705 }
4706
4707 return true;
4708}
4709
4710static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
4711 MIB->setDesc(Desc);
4712 int64_t ShiftAmt = MIB->getOperand(2).getImm();
4713 // Temporarily remove the immediate so we can add another source register.
4714 MIB->RemoveOperand(2);
4715 // Add the register. Don't copy the kill flag if there is one.
4716 MIB.addReg(MIB.getReg(1),
4717 getUndefRegState(MIB->getOperand(1).isUndef()));
4718 // Add back the immediate.
4719 MIB.addImm(ShiftAmt);
4720 return true;
4721}
4722
4723bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
4724 bool HasAVX = Subtarget.hasAVX();
4725 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4726 switch (MI.getOpcode()) {
4727 case X86::MOV32r0:
4728 return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4729 case X86::MOV32r1:
4730 return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
4731 case X86::MOV32r_1:
4732 return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
4733 case X86::MOV32ImmSExti8:
4734 case X86::MOV64ImmSExti8:
4735 return ExpandMOVImmSExti8(MIB, *this, Subtarget);
4736 case X86::SETB_C32r:
4737 return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4738 case X86::SETB_C64r:
4739 return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4740 case X86::MMX_SET0:
4741 return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr));
4742 case X86::V_SET0:
4743 case X86::FsFLD0SS:
4744 case X86::FsFLD0SD:
4745 case X86::FsFLD0F128:
4746 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4747 case X86::AVX_SET0: {
4748 assert(HasAVX && "AVX not supported")((void)0);
4749 const TargetRegisterInfo *TRI = &getRegisterInfo();
4750 Register SrcReg = MIB.getReg(0);
4751 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4752 MIB->getOperand(0).setReg(XReg);
4753 Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4754 MIB.addReg(SrcReg, RegState::ImplicitDefine);
4755 return true;
4756 }
4757 case X86::AVX512_128_SET0:
4758 case X86::AVX512_FsFLD0SS:
4759 case X86::AVX512_FsFLD0SD:
4760 case X86::AVX512_FsFLD0F128: {
4761 bool HasVLX = Subtarget.hasVLX();
4762 Register SrcReg = MIB.getReg(0);
4763 const TargetRegisterInfo *TRI = &getRegisterInfo();
4764 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4765 return Expand2AddrUndef(MIB,
4766 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4767 // Extended register without VLX. Use a larger XOR.
4768 SrcReg =
4769 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4770 MIB->getOperand(0).setReg(SrcReg);
4771 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4772 }
4773 case X86::AVX512_256_SET0:
4774 case X86::AVX512_512_SET0: {
4775 bool HasVLX = Subtarget.hasVLX();
4776 Register SrcReg = MIB.getReg(0);
4777 const TargetRegisterInfo *TRI = &getRegisterInfo();
4778 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4779 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4780 MIB->getOperand(0).setReg(XReg);
4781 Expand2AddrUndef(MIB,
4782 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4783 MIB.addReg(SrcReg, RegState::ImplicitDefine);
4784 return true;
4785 }
4786 if (MI.getOpcode() == X86::AVX512_256_SET0) {
4787 // No VLX so we must reference a zmm.
4788 unsigned ZReg =
4789 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4790 MIB->getOperand(0).setReg(ZReg);
4791 }
4792 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4793 }
4794 case X86::V_SETALLONES:
4795 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4796 case X86::AVX2_SETALLONES:
4797 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4798 case X86::AVX1_SETALLONES: {
4799 Register Reg = MIB.getReg(0);
4800 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4801 MIB->setDesc(get(X86::VCMPPSYrri));
4802 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
4803 return true;
4804 }
4805 case X86::AVX512_512_SETALLONES: {
4806 Register Reg = MIB.getReg(0);
4807 MIB->setDesc(get(X86::VPTERNLOGDZrri));
4808 // VPTERNLOGD needs 3 register inputs and an immediate.
4809 // 0xff will return 1s for any input.
4810 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
4811 .addReg(Reg, RegState::Undef).addImm(0xff);
4812 return true;
4813 }
4814 case X86::AVX512_512_SEXT_MASK_32:
4815 case X86::AVX512_512_SEXT_MASK_64: {
4816 Register Reg = MIB.getReg(0);
4817 Register MaskReg = MIB.getReg(1);
4818 unsigned MaskState = getRegState(MIB->getOperand(1));
4819 unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
4820 X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
4821 MI.RemoveOperand(1);
4822 MIB->setDesc(get(Opc));
4823 // VPTERNLOG needs 3 register inputs and an immediate.
4824 // 0xff will return 1s for any input.
4825 MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
4826 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
4827 return true;
4828 }
4829 case X86::VMOVAPSZ128rm_NOVLX:
4830 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
4831 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4832 case X86::VMOVUPSZ128rm_NOVLX:
4833 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
4834 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4835 case X86::VMOVAPSZ256rm_NOVLX:
4836 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
4837 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4838 case X86::VMOVUPSZ256rm_NOVLX:
4839 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
4840 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4841 case X86::VMOVAPSZ128mr_NOVLX:
4842 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
4843 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4844 case X86::VMOVUPSZ128mr_NOVLX:
4845 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
4846 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4847 case X86::VMOVAPSZ256mr_NOVLX:
4848 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
4849 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4850 case X86::VMOVUPSZ256mr_NOVLX:
4851 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
4852 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4853 case X86::MOV32ri64: {
4854 Register Reg = MIB.getReg(0);
4855 Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
4856 MI.setDesc(get(X86::MOV32ri));
4857 MIB->getOperand(0).setReg(Reg32);
4858 MIB.addReg(Reg, RegState::ImplicitDefine);
4859 return true;
4860 }
4861
4862 // KNL does not recognize dependency-breaking idioms for mask registers,
4863 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4864 // Using %k0 as the undef input register is a performance heuristic based
4865 // on the assumption that %k0 is used less frequently than the other mask
4866 // registers, since it is not usable as a write mask.
4867 // FIXME: A more advanced approach would be to choose the best input mask
4868 // register based on context.
4869 case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
4870 case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
4871 case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
4872 case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
4873 case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
4874 case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
4875 case TargetOpcode::LOAD_STACK_GUARD:
4876 expandLoadStackGuard(MIB, *this);
4877 return true;
4878 case X86::XOR64_FP:
4879 case X86::XOR32_FP:
4880 return expandXorFP(MIB, *this);
4881 case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
4882 case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
4883 case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
4884 case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
4885 case X86::ADD8rr_DB: MIB->setDesc(get(X86::OR8rr)); break;
4886 case X86::ADD16rr_DB: MIB->setDesc(get(X86::OR16rr)); break;
4887 case X86::ADD32rr_DB: MIB->setDesc(get(X86::OR32rr)); break;
4888 case X86::ADD64rr_DB: MIB->setDesc(get(X86::OR64rr)); break;
4889 case X86::ADD8ri_DB: MIB->setDesc(get(X86::OR8ri)); break;
4890 case X86::ADD16ri_DB: MIB->setDesc(get(X86::OR16ri)); break;
4891 case X86::ADD32ri_DB: MIB->setDesc(get(X86::OR32ri)); break;
4892 case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
4893 case X86::ADD16ri8_DB: MIB->setDesc(get(X86::OR16ri8)); break;
4894 case X86::ADD32ri8_DB: MIB->setDesc(get(X86::OR32ri8)); break;
4895 case X86::ADD64ri8_DB: MIB->setDesc(get(X86::OR64ri8)); break;
4896 }
4897 return false;
4898}
4899
4900/// Return true for all instructions that only update
4901/// the first 32 or 64-bits of the destination register and leave the rest
4902/// unmodified. This can be used to avoid folding loads if the instructions
4903/// only update part of the destination register, and the non-updated part is
4904/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4905/// instructions breaks the partial register dependency and it can improve
4906/// performance. e.g.:
4907///
4908/// movss (%rdi), %xmm0
4909/// cvtss2sd %xmm0, %xmm0
4910///
4911/// Instead of
4912/// cvtss2sd (%rdi), %xmm0
4913///
4914/// FIXME: This should be turned into a TSFlags.
4915///
4916static bool hasPartialRegUpdate(unsigned Opcode,
4917 const X86Subtarget &Subtarget,
4918 bool ForLoadFold = false) {
4919 switch (Opcode) {
4920 case X86::CVTSI2SSrr:
4921 case X86::CVTSI2SSrm:
4922 case X86::CVTSI642SSrr:
4923 case X86::CVTSI642SSrm:
4924 case X86::CVTSI2SDrr:
4925 case X86::CVTSI2SDrm:
4926 case X86::CVTSI642SDrr:
4927 case X86::CVTSI642SDrm:
4928 // Load folding won't effect the undef register update since the input is
4929 // a GPR.
4930 return !ForLoadFold;
4931 case X86::CVTSD2SSrr:
4932 case X86::CVTSD2SSrm:
4933 case X86::CVTSS2SDrr:
4934 case X86::CVTSS2SDrm:
4935 case X86::MOVHPDrm:
4936 case X86::MOVHPSrm:
4937 case X86::MOVLPDrm:
4938 case X86::MOVLPSrm:
4939 case X86::RCPSSr:
4940 case X86::RCPSSm:
4941 case X86::RCPSSr_Int:
4942 case X86::RCPSSm_Int:
4943 case X86::ROUNDSDr:
4944 case X86::ROUNDSDm:
4945 case X86::ROUNDSSr:
4946 case X86::ROUNDSSm:
4947 case X86::RSQRTSSr:
4948 case X86::RSQRTSSm:
4949 case X86::RSQRTSSr_Int:
4950 case X86::RSQRTSSm_Int:
4951 case X86::SQRTSSr:
4952 case X86::SQRTSSm:
4953 case X86::SQRTSSr_Int:
4954 case X86::SQRTSSm_Int:
4955 case X86::SQRTSDr:
4956 case X86::SQRTSDm:
4957 case X86::SQRTSDr_Int:
4958 case X86::SQRTSDm_Int:
4959 return true;
4960 // GPR
4961 case X86::POPCNT32rm:
4962 case X86::POPCNT32rr:
4963 case X86::POPCNT64rm:
4964 case X86::POPCNT64rr:
4965 return Subtarget.hasPOPCNTFalseDeps();
4966 case X86::LZCNT32rm:
4967 case X86::LZCNT32rr:
4968 case X86::LZCNT64rm:
4969 case X86::LZCNT64rr:
4970 case X86::TZCNT32rm:
4971 case X86::TZCNT32rr:
4972 case X86::TZCNT64rm:
4973 case X86::TZCNT64rr:
4974 return Subtarget.hasLZCNTFalseDeps();
4975 }
4976
4977 return false;
4978}
4979
4980/// Inform the BreakFalseDeps pass how many idle
4981/// instructions we would like before a partial register update.
4982unsigned X86InstrInfo::getPartialRegUpdateClearance(
4983 const MachineInstr &MI, unsigned OpNum,
4984 const TargetRegisterInfo *TRI) const {
4985 if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
4986 return 0;
4987
4988 // If MI is marked as reading Reg, the partial register update is wanted.
4989 const MachineOperand &MO = MI.getOperand(0);
4990 Register Reg = MO.getReg();
4991 if (Reg.isVirtual()) {
4992 if (MO.readsReg() || MI.readsVirtualRegister(Reg))
4993 return 0;
4994 } else {
4995 if (MI.readsRegister(Reg, TRI))
4996 return 0;
4997 }
4998
4999 // If any instructions in the clearance range are reading Reg, insert a
5000 // dependency breaking instruction, which is inexpensive and is likely to
5001 // be hidden in other instruction's cycles.
5002 return PartialRegUpdateClearance;
5003}
5004
5005// Return true for any instruction the copies the high bits of the first source
5006// operand into the unused high bits of the destination operand.
5007// Also returns true for instructions that have two inputs where one may
5008// be undef and we want it to use the same register as the other input.
5009static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
5010 bool ForLoadFold = false) {
5011 // Set the OpNum parameter to the first source operand.
5012 switch (Opcode) {
5013 case X86::MMX_PUNPCKHBWirr:
5014 case X86::MMX_PUNPCKHWDirr:
5015 case X86::MMX_PUNPCKHDQirr:
5016 case X86::MMX_PUNPCKLBWirr:
5017 case X86::MMX_PUNPCKLWDirr:
5018 case X86::MMX_PUNPCKLDQirr:
5019 case X86::MOVHLPSrr:
5020 case X86::PACKSSWBrr:
5021 case X86::PACKUSWBrr:
5022 case X86::PACKSSDWrr:
5023 case X86::PACKUSDWrr:
5024 case X86::PUNPCKHBWrr:
5025 case X86::PUNPCKLBWrr:
5026 case X86::PUNPCKHWDrr:
5027 case X86::PUNPCKLWDrr:
5028 case X86::PUNPCKHDQrr:
5029 case X86::PUNPCKLDQrr:
5030 case X86::PUNPCKHQDQrr:
5031 case X86::PUNPCKLQDQrr:
5032 case X86::SHUFPDrri:
5033 case X86::SHUFPSrri:
5034 // These instructions are sometimes used with an undef first or second
5035 // source. Return true here so BreakFalseDeps will assign this source to the
5036 // same register as the first source to avoid a false dependency.
5037 // Operand 1 of these instructions is tied so they're separate from their
5038 // VEX counterparts.
5039 return OpNum == 2 && !ForLoadFold;
5040
5041 case X86::VMOVLHPSrr:
5042 case X86::VMOVLHPSZrr:
5043 case X86::VPACKSSWBrr:
5044 case X86::VPACKUSWBrr:
5045 case X86::VPACKSSDWrr:
5046 case X86::VPACKUSDWrr:
5047 case X86::VPACKSSWBZ128rr:
5048 case X86::VPACKUSWBZ128rr:
5049 case X86::VPACKSSDWZ128rr:
5050 case X86::VPACKUSDWZ128rr:
5051 case X86::VPERM2F128rr:
5052 case X86::VPERM2I128rr:
5053 case X86::VSHUFF32X4Z256rri:
5054 case X86::VSHUFF32X4Zrri:
5055 case X86::VSHUFF64X2Z256rri:
5056 case X86::VSHUFF64X2Zrri:
5057 case X86::VSHUFI32X4Z256rri:
5058 case X86::VSHUFI32X4Zrri:
5059 case X86::VSHUFI64X2Z256rri:
5060 case X86::VSHUFI64X2Zrri:
5061 case X86::VPUNPCKHBWrr:
5062 case X86::VPUNPCKLBWrr:
5063 case X86::VPUNPCKHBWYrr:
5064 case X86::VPUNPCKLBWYrr:
5065 case X86::VPUNPCKHBWZ128rr:
5066 case X86::VPUNPCKLBWZ128rr:
5067 case X86::VPUNPCKHBWZ256rr:
5068 case X86::VPUNPCKLBWZ256rr:
5069 case X86::VPUNPCKHBWZrr:
5070 case X86::VPUNPCKLBWZrr:
5071 case X86::VPUNPCKHWDrr:
5072 case X86::VPUNPCKLWDrr:
5073 case X86::VPUNPCKHWDYrr:
5074 case X86::VPUNPCKLWDYrr:
5075 case X86::VPUNPCKHWDZ128rr:
5076 case X86::VPUNPCKLWDZ128rr:
5077 case X86::VPUNPCKHWDZ256rr:
5078 case X86::VPUNPCKLWDZ256rr:
5079 case X86::VPUNPCKHWDZrr:
5080 case X86::VPUNPCKLWDZrr:
5081 case X86::VPUNPCKHDQrr:
5082 case X86::VPUNPCKLDQrr:
5083 case X86::VPUNPCKHDQYrr:
5084 case X86::VPUNPCKLDQYrr:
5085 case X86::VPUNPCKHDQZ128rr:
5086 case X86::VPUNPCKLDQZ128rr:
5087 case X86::VPUNPCKHDQZ256rr:
5088 case X86::VPUNPCKLDQZ256rr:
5089 case X86::VPUNPCKHDQZrr:
5090 case X86::VPUNPCKLDQZrr:
5091 case X86::VPUNPCKHQDQrr:
5092 case X86::VPUNPCKLQDQrr:
5093 case X86::VPUNPCKHQDQYrr:
5094 case X86::VPUNPCKLQDQYrr:
5095 case X86::VPUNPCKHQDQZ128rr:
5096 case X86::VPUNPCKLQDQZ128rr:
5097 case X86::VPUNPCKHQDQZ256rr:
5098 case X86::VPUNPCKLQDQZ256rr:
5099 case X86::VPUNPCKHQDQZrr:
5100 case X86::VPUNPCKLQDQZrr:
5101 // These instructions are sometimes used with an undef first or second
5102 // source. Return true here so BreakFalseDeps will assign this source to the
5103 // same register as the first source to avoid a false dependency.
5104 return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
5105
5106 case X86::VCVTSI2SSrr:
5107 case X86::VCVTSI2SSrm:
5108 case X86::VCVTSI2SSrr_Int:
5109 case X86::VCVTSI2SSrm_Int:
5110 case X86::VCVTSI642SSrr:
5111 case X86::VCVTSI642SSrm:
5112 case X86::VCVTSI642SSrr_Int:
5113 case X86::VCVTSI642SSrm_Int:
5114 case X86::VCVTSI2SDrr:
5115 case X86::VCVTSI2SDrm:
5116 case X86::VCVTSI2SDrr_Int:
5117 case X86::VCVTSI2SDrm_Int:
5118 case X86::VCVTSI642SDrr:
5119 case X86::VCVTSI642SDrm:
5120 case X86::VCVTSI642SDrr_Int:
5121 case X86::VCVTSI642SDrm_Int:
5122 // AVX-512
5123 case X86::VCVTSI2SSZrr:
5124 case X86::VCVTSI2SSZrm:
5125 case X86::VCVTSI2SSZrr_Int:
5126 case X86::VCVTSI2SSZrrb_Int:
5127 case X86::VCVTSI2SSZrm_Int:
5128 case X86::VCVTSI642SSZrr:
5129 case X86::VCVTSI642SSZrm:
5130 case X86::VCVTSI642SSZrr_Int:
5131 case X86::VCVTSI642SSZrrb_Int:
5132 case X86::VCVTSI642SSZrm_Int:
5133 case X86::VCVTSI2SDZrr:
5134 case X86::VCVTSI2SDZrm:
5135 case X86::VCVTSI2SDZrr_Int:
5136 case X86::VCVTSI2SDZrm_Int:
5137 case X86::VCVTSI642SDZrr:
5138 case X86::VCVTSI642SDZrm:
5139 case X86::VCVTSI642SDZrr_Int:
5140 case X86::VCVTSI642SDZrrb_Int:
5141 case X86::VCVTSI642SDZrm_Int:
5142 case X86::VCVTUSI2SSZrr:
5143 case X86::VCVTUSI2SSZrm:
5144 case X86::VCVTUSI2SSZrr_Int:
5145 case X86::VCVTUSI2SSZrrb_Int:
5146 case X86::VCVTUSI2SSZrm_Int:
5147 case X86::VCVTUSI642SSZrr:
5148 case X86::VCVTUSI642SSZrm:
5149 case X86::VCVTUSI642SSZrr_Int:
5150 case X86::VCVTUSI642SSZrrb_Int:
5151 case X86::VCVTUSI642SSZrm_Int:
5152 case X86::VCVTUSI2SDZrr:
5153 case X86::VCVTUSI2SDZrm:
5154 case X86::VCVTUSI2SDZrr_Int:
5155 case X86::VCVTUSI2SDZrm_Int:
5156 case X86::VCVTUSI642SDZrr:
5157 case X86::VCVTUSI642SDZrm:
5158 case X86::VCVTUSI642SDZrr_Int:
5159 case X86::VCVTUSI642SDZrrb_Int:
5160 case X86::VCVTUSI642SDZrm_Int:
5161 // Load folding won't effect the undef register update since the input is
5162 // a GPR.
5163 return OpNum == 1 && !ForLoadFold;
5164 case X86::VCVTSD2SSrr:
5165 case X86::VCVTSD2SSrm:
5166 case X86::VCVTSD2SSrr_Int:
5167 case X86::VCVTSD2SSrm_Int:
5168 case X86::VCVTSS2SDrr:
5169 case X86::VCVTSS2SDrm:
5170 case X86::VCVTSS2SDrr_Int:
5171 case X86::VCVTSS2SDrm_Int:
5172 case X86::VRCPSSr:
5173 case X86::VRCPSSr_Int:
5174 case X86::VRCPSSm:
5175 case X86::VRCPSSm_Int:
5176 case X86::VROUNDSDr:
5177 case X86::VROUNDSDm:
5178 case X86::VROUNDSDr_Int:
5179 case X86::VROUNDSDm_Int:
5180 case X86::VROUNDSSr:
5181 case X86::VROUNDSSm:
5182 case X86::VROUNDSSr_Int:
5183 case X86::VROUNDSSm_Int:
5184 case X86::VRSQRTSSr:
5185 case X86::VRSQRTSSr_Int:
5186 case X86::VRSQRTSSm:
5187 case X86::VRSQRTSSm_Int:
5188 case X86::VSQRTSSr:
5189 case X86::VSQRTSSr_Int:
5190 case X86::VSQRTSSm:
5191 case X86::VSQRTSSm_Int:
5192 case X86::VSQRTSDr:
5193 case X86::VSQRTSDr_Int:
5194 case X86::VSQRTSDm:
5195 case X86::VSQRTSDm_Int:
5196 // AVX-512
5197 case X86::VCVTSD2SSZrr:
5198 case X86::VCVTSD2SSZrr_Int:
5199 case X86::VCVTSD2SSZrrb_Int:
5200 case X86::VCVTSD2SSZrm:
5201 case X86::VCVTSD2SSZrm_Int:
5202 case X86::VCVTSS2SDZrr:
5203 case X86::VCVTSS2SDZrr_Int:
5204 case X86::VCVTSS2SDZrrb_Int:
5205 case X86::VCVTSS2SDZrm:
5206 case X86::VCVTSS2SDZrm_Int:
5207 case X86::VGETEXPSDZr:
5208 case X86::VGETEXPSDZrb:
5209 case X86::VGETEXPSDZm:
5210 case X86::VGETEXPSSZr:
5211 case X86::VGETEXPSSZrb:
5212 case X86::VGETEXPSSZm:
5213 case X86::VGETMANTSDZrri:
5214 case X86::VGETMANTSDZrrib:
5215 case X86::VGETMANTSDZrmi:
5216 case X86::VGETMANTSSZrri:
5217 case X86::VGETMANTSSZrrib:
5218 case X86::VGETMANTSSZrmi:
5219 case X86::VRNDSCALESDZr:
5220 case X86::VRNDSCALESDZr_Int:
5221 case X86::VRNDSCALESDZrb_Int:
5222 case X86::VRNDSCALESDZm:
5223 case X86::VRNDSCALESDZm_Int:
5224 case X86::VRNDSCALESSZr:
5225 case X86::VRNDSCALESSZr_Int:
5226 case X86::VRNDSCALESSZrb_Int:
5227 case X86::VRNDSCALESSZm:
5228 case X86::VRNDSCALESSZm_Int:
5229 case X86::VRCP14SDZrr:
5230 case X86::VRCP14SDZrm:
5231 case X86::VRCP14SSZrr:
5232 case X86::VRCP14SSZrm:
5233 case X86::VRCP28SDZr:
5234 case X86::VRCP28SDZrb:
5235 case X86::VRCP28SDZm:
5236 case X86::VRCP28SSZr:
5237 case X86::VRCP28SSZrb:
5238 case X86::VRCP28SSZm:
5239 case X86::VREDUCESSZrmi:
5240 case X86::VREDUCESSZrri:
5241 case X86::VREDUCESSZrrib:
5242 case X86::VRSQRT14SDZrr:
5243 case X86::VRSQRT14SDZrm:
5244 case X86::VRSQRT14SSZrr:
5245 case X86::VRSQRT14SSZrm:
5246 case X86::VRSQRT28SDZr:
5247 case X86::VRSQRT28SDZrb:
5248 case X86::VRSQRT28SDZm:
5249 case X86::VRSQRT28SSZr:
5250 case X86::VRSQRT28SSZrb:
5251 case X86::VRSQRT28SSZm:
5252 case X86::VSQRTSSZr:
5253 case X86::VSQRTSSZr_Int:
5254 case X86::VSQRTSSZrb_Int:
5255 case X86::VSQRTSSZm:
5256 case X86::VSQRTSSZm_Int:
5257 case X86::VSQRTSDZr:
5258 case X86::VSQRTSDZr_Int:
5259 case X86::VSQRTSDZrb_Int:
5260 case X86::VSQRTSDZm:
5261 case X86::VSQRTSDZm_Int:
5262 return OpNum == 1;
5263 case X86::VMOVSSZrrk:
5264 case X86::VMOVSDZrrk:
5265 return OpNum == 3 && !ForLoadFold;
5266 case X86::VMOVSSZrrkz:
5267 case X86::VMOVSDZrrkz:
5268 return OpNum == 2 && !ForLoadFold;
5269 }
5270
5271 return false;
5272}
5273
5274/// Inform the BreakFalseDeps pass how many idle instructions we would like
5275/// before certain undef register reads.
5276///
5277/// This catches the VCVTSI2SD family of instructions:
5278///
5279/// vcvtsi2sdq %rax, undef %xmm0, %xmm14
5280///
5281/// We should to be careful *not* to catch VXOR idioms which are presumably
5282/// handled specially in the pipeline:
5283///
5284/// vxorps undef %xmm1, undef %xmm1, %xmm1
5285///
5286/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
5287/// high bits that are passed-through are not live.
5288unsigned
5289X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
5290 const TargetRegisterInfo *TRI) const {
5291 const MachineOperand &MO = MI.getOperand(OpNum);
5292 if (Register::isPhysicalRegister(MO.getReg()) &&
5293 hasUndefRegUpdate(MI.getOpcode(), OpNum))
5294 return UndefRegClearance;
5295
5296 return 0;
5297}
5298
5299void X86InstrInfo::breakPartialRegDependency(
5300 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5301 Register Reg = MI.getOperand(OpNum).getReg();
5302 // If MI kills this register, the false dependence is already broken.
5303 if (MI.killsRegister(Reg, TRI))
5304 return;
5305
5306 if (X86::VR128RegClass.contains(Reg)) {
5307 // These instructions are all floating point domain, so xorps is the best
5308 // choice.
5309 unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
5310 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
5311 .addReg(Reg, RegState::Undef)
5312 .addReg(Reg, RegState::Undef);
5313 MI.addRegisterKilled(Reg, TRI, true);
5314 } else if (X86::VR256RegClass.contains(Reg)) {
5315 // Use vxorps to clear the full ymm register.
5316 // It wants to read and write the xmm sub-register.
5317 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5318 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
5319 .addReg(XReg, RegState::Undef)
5320 .addReg(XReg, RegState::Undef)
5321 .addReg(Reg, RegState::ImplicitDefine);
5322 MI.addRegisterKilled(Reg, TRI, true);
5323 } else if (X86::GR64RegClass.contains(Reg)) {
5324 // Using XOR32rr because it has shorter encoding and zeros up the upper bits
5325 // as well.
5326 Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
5327 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
5328 .addReg(XReg, RegState::Undef)
5329 .addReg(XReg, RegState::Undef)
5330 .addReg(Reg, RegState::ImplicitDefine);
5331 MI.addRegisterKilled(Reg, TRI, true);
5332 } else if (X86::GR32RegClass.contains(Reg)) {
5333 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
5334 .addReg(Reg, RegState::Undef)
5335 .addReg(Reg, RegState::Undef);
5336 MI.addRegisterKilled(Reg, TRI, true);
5337 }
5338}
5339
5340static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
5341 int PtrOffset = 0) {
5342 unsigned NumAddrOps = MOs.size();
5343
5344 if (NumAddrOps < 4) {
5345 // FrameIndex only - add an immediate offset (whether its zero or not).
5346 for (unsigned i = 0; i != NumAddrOps; ++i)
5347 MIB.add(MOs[i]);
5348 addOffset(MIB, PtrOffset);
5349 } else {
5350 // General Memory Addressing - we need to add any offset to an existing
5351 // offset.
5352 assert(MOs.size() == 5 && "Unexpected memory operand list length")((void)0);
5353 for (unsigned i = 0; i != NumAddrOps; ++i) {
5354 const MachineOperand &MO = MOs[i];
5355 if (i == 3 && PtrOffset != 0) {
5356 MIB.addDisp(MO, PtrOffset);
5357 } else {
5358 MIB.add(MO);
5359 }
5360 }
5361 }
5362}
5363
5364static void updateOperandRegConstraints(MachineFunction &MF,
5365 MachineInstr &NewMI,
5366 const TargetInstrInfo &TII) {
5367 MachineRegisterInfo &MRI = MF.getRegInfo();
5368 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
5369
5370 for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
5371 MachineOperand &MO = NewMI.getOperand(Idx);
5372 // We only need to update constraints on virtual register operands.
5373 if (!MO.isReg())
5374 continue;
5375 Register Reg = MO.getReg();
5376 if (!Reg.isVirtual())
5377 continue;
5378
5379 auto *NewRC = MRI.constrainRegClass(
5380 Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
5381 if (!NewRC) {
5382 LLVM_DEBUG(do { } while (false)
5383 dbgs() << "WARNING: Unable to update register constraint for operand "do { } while (false)
5384 << Idx << " of instruction:\n";do { } while (false)
5385 NewMI.dump(); dbgs() << "\n")do { } while (false);
5386 }
5387 }
5388}
5389
5390static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
5391 ArrayRef<MachineOperand> MOs,
5392 MachineBasicBlock::iterator InsertPt,
5393 MachineInstr &MI,
5394 const TargetInstrInfo &TII) {
5395 // Create the base instruction with the memory operand as the first part.
5396 // Omit the implicit operands, something BuildMI can't do.
5397 MachineInstr *NewMI =
5398 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5399 MachineInstrBuilder MIB(MF, NewMI);
5400 addOperands(MIB, MOs);
5401
5402 // Loop over the rest of the ri operands, converting them over.
5403 unsigned NumOps = MI.getDesc().getNumOperands() - 2;
5404 for (unsigned i = 0; i != NumOps; ++i) {
5405 MachineOperand &MO = MI.getOperand(i + 2);
5406 MIB.add(MO);
5407 }
5408 for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
5409 MachineOperand &MO = MI.getOperand(i);
5410 MIB.add(MO);
5411 }
5412
5413 updateOperandRegConstraints(MF, *NewMI, TII);
5414
5415 MachineBasicBlock *MBB = InsertPt->getParent();
5416 MBB->insert(InsertPt, NewMI);
5417
5418 return MIB;
5419}
5420
5421static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
5422 unsigned OpNo, ArrayRef<MachineOperand> MOs,
5423 MachineBasicBlock::iterator InsertPt,
5424 MachineInstr &MI, const TargetInstrInfo &TII,
5425 int PtrOffset = 0) {
5426 // Omit the implicit operands, something BuildMI can't do.
5427 MachineInstr *NewMI =
5428 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5429 MachineInstrBuilder MIB(MF, NewMI);
5430
5431 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5432 MachineOperand &MO = MI.getOperand(i);
5433 if (i == OpNo) {
5434 assert(MO.isReg() && "Expected to fold into reg operand!")((void)0);
5435 addOperands(MIB, MOs, PtrOffset);
5436 } else {
5437 MIB.add(MO);
5438 }
5439 }
5440
5441 updateOperandRegConstraints(MF, *NewMI, TII);
5442
5443 // Copy the NoFPExcept flag from the instruction we're fusing.
5444 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
5445 NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
5446
5447 MachineBasicBlock *MBB = InsertPt->getParent();
5448 MBB->insert(InsertPt, NewMI);
5449
5450 return MIB;
5451}
5452
5453static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
5454 ArrayRef<MachineOperand> MOs,
5455 MachineBasicBlock::iterator InsertPt,
5456 MachineInstr &MI) {
5457 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
5458 MI.getDebugLoc(), TII.get(Opcode));
5459 addOperands(MIB, MOs);
5460 return MIB.addImm(0);
5461}
5462
5463MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
5464 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
5465 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
5466 unsigned Size, Align Alignment) const {
5467 switch (MI.getOpcode()) {
5468 case X86::INSERTPSrr:
5469 case X86::VINSERTPSrr:
5470 case X86::VINSERTPSZrr:
5471 // Attempt to convert the load of inserted vector into a fold load
5472 // of a single float.
5473 if (OpNum == 2) {
5474 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
5475 unsigned ZMask = Imm & 15;
5476 unsigned DstIdx = (Imm >> 4) & 3;
5477 unsigned SrcIdx = (Imm >> 6) & 3;
5478
5479 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5480 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5481 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5482 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) {
5483 int PtrOffset = SrcIdx * 4;
5484 unsigned NewImm = (DstIdx << 4) | ZMask;
5485 unsigned NewOpCode =
5486 (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
5487 (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm :
5488 X86::INSERTPSrm;
5489 MachineInstr *NewMI =
5490 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
5491 NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
5492 return NewMI;
5493 }
5494 }
5495 break;
5496 case X86::MOVHLPSrr:
5497 case X86::VMOVHLPSrr:
5498 case X86::VMOVHLPSZrr:
5499 // Move the upper 64-bits of the second operand to the lower 64-bits.
5500 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
5501 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
5502 if (OpNum == 2) {
5503 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5504 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5505 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5506 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
5507 unsigned NewOpCode =
5508 (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
5509 (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm :
5510 X86::MOVLPSrm;
5511 MachineInstr *NewMI =
5512 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
5513 return NewMI;
5514 }
5515 }
5516 break;
5517 case X86::UNPCKLPDrr:
5518 // If we won't be able to fold this to the memory form of UNPCKL, use
5519 // MOVHPD instead. Done as custom because we can't have this in the load
5520 // table twice.
5521 if (OpNum == 2) {
5522 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5523 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5524 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5525 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
5526 MachineInstr *NewMI =
5527 FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
5528 return NewMI;
5529 }
5530 }
5531 break;
5532 }
5533
5534 return nullptr;
5535}
5536
5537static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
5538 MachineInstr &MI) {
5539 if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) ||
5540 !MI.getOperand(1).isReg())
5541 return false;
5542
5543 // The are two cases we need to handle depending on where in the pipeline
5544 // the folding attempt is being made.
5545 // -Register has the undef flag set.
5546 // -Register is produced by the IMPLICIT_DEF instruction.
5547
5548 if (MI.getOperand(1).isUndef())
5549 return true;
5550
5551 MachineRegisterInfo &RegInfo = MF.getRegInfo();
5552 MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
5553 return VRegDef && VRegDef->isImplicitDef();
5554}
5555
5556MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5557 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
5558 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
5559 unsigned Size, Align Alignment, bool AllowCommute) const {
5560 bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
5561 bool isTwoAddrFold = false;
5562
5563 // For CPUs that favor the register form of a call or push,
5564 // do not fold loads into calls or pushes, unless optimizing for size
5565 // aggressively.
5566 if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
5567 (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
5568 MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
5569 MI.getOpcode() == X86::PUSH64r))
5570 return nullptr;
5571
5572 // Avoid partial and undef register update stalls unless optimizing for size.
5573 if (!MF.getFunction().hasOptSize() &&
5574 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5575 shouldPreventUndefRegUpdateMemFold(MF, MI)))
5576 return nullptr;
5577
5578 unsigned NumOps = MI.getDesc().getNumOperands();
5579 bool isTwoAddr =
5580 NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
5581
5582 // FIXME: AsmPrinter doesn't know how to handle
5583 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
5584 if (MI.getOpcode() == X86::ADD32ri &&
5585 MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
5586 return nullptr;
5587
5588 // GOTTPOFF relocation loads can only be folded into add instructions.
5589 // FIXME: Need to exclude other relocations that only support specific
5590 // instructions.
5591 if (MOs.size() == X86::AddrNumOperands &&
5592 MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
5593 MI.getOpcode() != X86::ADD64rr)
5594 return nullptr;
5595
5596 MachineInstr *NewMI = nullptr;
5597
5598 // Attempt to fold any custom cases we have.
5599 if (MachineInstr *CustomMI = foldMemoryOperandCustom(
5600 MF, MI, OpNum, MOs, InsertPt, Size, Alignment))
5601 return CustomMI;
5602
5603 const X86MemoryFoldTableEntry *I = nullptr;
5604
5605 // Folding a memory location into the two-address part of a two-address
5606 // instruction is different than folding it other places. It requires
5607 // replacing the *two* registers with the memory location.
5608 if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
5609 MI.getOperand(1).isReg() &&
5610 MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
5611 I = lookupTwoAddrFoldTable(MI.getOpcode());
5612 isTwoAddrFold = true;
5613 } else {
5614 if (OpNum == 0) {
5615 if (MI.getOpcode() == X86::MOV32r0) {
5616 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
5617 if (NewMI)
5618 return NewMI;
5619 }
5620 }
5621
5622 I = lookupFoldTable(MI.getOpcode(), OpNum);
5623 }
5624
5625 if (I != nullptr) {
5626 unsigned Opcode = I->DstOp;
5627 bool FoldedLoad =
5628 isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0;
5629 bool FoldedStore =
5630 isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE);
5631 MaybeAlign MinAlign =
5632 decodeMaybeAlign((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT);
5633 if (MinAlign && Alignment < *MinAlign)
5634 return nullptr;
5635 bool NarrowToMOV32rm = false;
5636 if (Size) {
5637 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5638 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
5639 &RI, MF);
5640 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5641 // Check if it's safe to fold the load. If the size of the object is
5642 // narrower than the load width, then it's not.
5643 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
5644 if (FoldedLoad && Size < RCSize) {
5645 // If this is a 64-bit load, but the spill slot is 32, then we can do
5646 // a 32-bit load which is implicitly zero-extended. This likely is
5647 // due to live interval analysis remat'ing a load from stack slot.
5648 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
5649 return nullptr;
5650 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
5651 return nullptr;
5652 Opcode = X86::MOV32rm;
5653 NarrowToMOV32rm = true;
5654 }
5655 // For stores, make sure the size of the object is equal to the size of
5656 // the store. If the object is larger, the extra bits would be garbage. If
5657 // the object is smaller we might overwrite another object or fault.
5658 if (FoldedStore && Size != RCSize)
5659 return nullptr;
5660 }
5661
5662 if (isTwoAddrFold)
5663 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
5664 else
5665 NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
5666
5667 if (NarrowToMOV32rm) {
5668 // If this is the special case where we use a MOV32rm to load a 32-bit
5669 // value and zero-extend the top bits. Change the destination register
5670 // to a 32-bit one.
5671 Register DstReg = NewMI->getOperand(0).getReg();
5672 if (DstReg.isPhysical())
5673 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
5674 else
5675 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
5676 }
5677 return NewMI;
5678 }
5679
5680 // If the instruction and target operand are commutable, commute the
5681 // instruction and try again.
5682 if (AllowCommute) {
5683 unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
5684 if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
5685 bool HasDef = MI.getDesc().getNumDefs();
5686 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
5687 Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
5688 Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
5689 bool Tied1 =
5690 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
5691 bool Tied2 =
5692 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
5693
5694 // If either of the commutable operands are tied to the destination
5695 // then we can not commute + fold.
5696 if ((HasDef && Reg0 == Reg1 && Tied1) ||
5697 (HasDef && Reg0 == Reg2 && Tied2))
5698 return nullptr;
5699
5700 MachineInstr *CommutedMI =
5701 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
5702 if (!CommutedMI) {
5703 // Unable to commute.
5704 return nullptr;
5705 }
5706 if (CommutedMI != &MI) {
5707 // New instruction. We can't fold from this.
5708 CommutedMI->eraseFromParent();
5709 return nullptr;
5710 }
5711
5712 // Attempt to fold with the commuted version of the instruction.
5713 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
5714 Alignment, /*AllowCommute=*/false);
5715 if (NewMI)
5716 return NewMI;
5717
5718 // Folding failed again - undo the commute before returning.
5719 MachineInstr *UncommutedMI =
5720 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
5721 if (!UncommutedMI) {
5722 // Unable to commute.
5723 return nullptr;
5724 }
5725 if (UncommutedMI != &MI) {
5726 // New instruction. It doesn't need to be kept.
5727 UncommutedMI->eraseFromParent();
5728 return nullptr;
5729 }
5730
5731 // Return here to prevent duplicate fuse failure report.
5732 return nullptr;
5733 }
5734 }
5735
5736 // No fusion
5737 if (PrintFailedFusing && !MI.isCopy())
5738 dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
5739 return nullptr;
5740}
5741
5742MachineInstr *
5743X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
5744 ArrayRef<unsigned> Ops,
5745 MachineBasicBlock::iterator InsertPt,
5746 int FrameIndex, LiveIntervals *LIS,
5747 VirtRegMap *VRM) const {
5748 // Check switch flag
5749 if (NoFusing)
5750 return nullptr;
5751
5752 // Avoid partial and undef register update stalls unless optimizing for size.
5753 if (!MF.getFunction().hasOptSize() &&
5754 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5755 shouldPreventUndefRegUpdateMemFold(MF, MI)))
5756 return nullptr;
5757
5758 // Don't fold subreg spills, or reloads that use a high subreg.
5759 for (auto Op : Ops) {
5760 MachineOperand &MO = MI.getOperand(Op);
5761 auto SubReg = MO.getSubReg();
5762 if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
5763 return nullptr;
5764 }
5765
5766 const MachineFrameInfo &MFI = MF.getFrameInfo();
5767 unsigned Size = MFI.getObjectSize(FrameIndex);
5768 Align Alignment = MFI.getObjectAlign(FrameIndex);
5769 // If the function stack isn't realigned we don't want to fold instructions
5770 // that need increased alignment.
5771 if (!RI.hasStackRealignment(MF))
5772 Alignment =
5773 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
5774 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5775 unsigned NewOpc = 0;
5776 unsigned RCSize = 0;
5777 switch (MI.getOpcode()) {
5778 default: return nullptr;
5779 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
5780 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
5781 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
5782 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
5783 }
5784 // Check if it's safe to fold the load. If the size of the object is
5785 // narrower than the load width, then it's not.
5786 if (Size < RCSize)
5787 return nullptr;
5788 // Change to CMPXXri r, 0 first.
5789 MI.setDesc(get(NewOpc));
5790 MI.getOperand(1).ChangeToImmediate(0);
5791 } else if (Ops.size() != 1)
5792 return nullptr;
5793
5794 return foldMemoryOperandImpl(MF, MI, Ops[0],
5795 MachineOperand::CreateFI(FrameIndex), InsertPt,
5796 Size, Alignment, /*AllowCommute=*/true);
5797}
5798
5799/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
5800/// because the latter uses contents that wouldn't be defined in the folded
5801/// version. For instance, this transformation isn't legal:
5802/// movss (%rdi), %xmm0
5803/// addps %xmm0, %xmm0
5804/// ->
5805/// addps (%rdi), %xmm0
5806///
5807/// But this one is:
5808/// movss (%rdi), %xmm0
5809/// addss %xmm0, %xmm0
5810/// ->
5811/// addss (%rdi), %xmm0
5812///
5813static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
5814 const MachineInstr &UserMI,
5815 const MachineFunction &MF) {
5816 unsigned Opc = LoadMI.getOpcode();
5817 unsigned UserOpc = UserMI.getOpcode();
5818 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5819 const TargetRegisterClass *RC =
5820 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
5821 unsigned RegSize = TRI.getRegSizeInBits(*RC);
5822
5823 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
5824 Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
5825 Opc == X86::VMOVSSZrm_alt) &&
5826 RegSize > 32) {
5827 // These instructions only load 32 bits, we can't fold them if the
5828 // destination register is wider than 32 bits (4 bytes), and its user
5829 // instruction isn't scalar (SS).
5830 switch (UserOpc) {
5831 case X86::CVTSS2SDrr_Int:
5832 case X86::VCVTSS2SDrr_Int:
5833 case X86::VCVTSS2SDZrr_Int:
5834 case X86::VCVTSS2SDZrr_Intk:
5835 case X86::VCVTSS2SDZrr_Intkz:
5836 case X86::CVTSS2SIrr_Int: case X86::CVTSS2SI64rr_Int:
5837 case X86::VCVTSS2SIrr_Int: case X86::VCVTSS2SI64rr_Int:
5838 case X86::VCVTSS2SIZrr_Int: case X86::VCVTSS2SI64Zrr_Int:
5839 case X86::CVTTSS2SIrr_Int: case X86::CVTTSS2SI64rr_Int:
5840 case X86::VCVTTSS2SIrr_Int: case X86::VCVTTSS2SI64rr_Int:
5841 case X86::VCVTTSS2SIZrr_Int: case X86::VCVTTSS2SI64Zrr_Int:
5842 case X86::VCVTSS2USIZrr_Int: case X86::VCVTSS2USI64Zrr_Int:
5843 case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int:
5844 case X86::RCPSSr_Int: case X86::VRCPSSr_Int:
5845 case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int:
5846 case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int:
5847 case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int:
5848 case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int:
5849 case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
5850 case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
5851 case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
5852 case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
5853 case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
5854 case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
5855 case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int:
5856 case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
5857 case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
5858 case X86::VCMPSSZrr_Intk:
5859 case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
5860 case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
5861 case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
5862 case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
5863 case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz:
5864 case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
5865 case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int:
5866 case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int:
5867 case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int:
5868 case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int:
5869 case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int:
5870 case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int:
5871 case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int:
5872 case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int:
5873 case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
5874 case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
5875 case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
5876 case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
5877 case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
5878 case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
5879 case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
5880 case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
5881 case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
5882 case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
5883 case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
5884 case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
5885 case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
5886 case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
5887 case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
5888 case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
5889 case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
5890 case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
5891 case X86::VFIXUPIMMSSZrri:
5892 case X86::VFIXUPIMMSSZrrik:
5893 case X86::VFIXUPIMMSSZrrikz:
5894 case X86::VFPCLASSSSZrr:
5895 case X86::VFPCLASSSSZrrk:
5896 case X86::VGETEXPSSZr:
5897 case X86::VGETEXPSSZrk:
5898 case X86::VGETEXPSSZrkz:
5899 case X86::VGETMANTSSZrri:
5900 case X86::VGETMANTSSZrrik:
5901 case X86::VGETMANTSSZrrikz:
5902 case X86::VRANGESSZrri:
5903 case X86::VRANGESSZrrik:
5904 case X86::VRANGESSZrrikz:
5905 case X86::VRCP14SSZrr:
5906 case X86::VRCP14SSZrrk:
5907 case X86::VRCP14SSZrrkz:
5908 case X86::VRCP28SSZr:
5909 case X86::VRCP28SSZrk:
5910 case X86::VRCP28SSZrkz:
5911 case X86::VREDUCESSZrri:
5912 case X86::VREDUCESSZrrik:
5913 case X86::VREDUCESSZrrikz:
5914 case X86::VRNDSCALESSZr_Int:
5915 case X86::VRNDSCALESSZr_Intk:
5916 case X86::VRNDSCALESSZr_Intkz:
5917 case X86::VRSQRT14SSZrr:
5918 case X86::VRSQRT14SSZrrk:
5919 case X86::VRSQRT14SSZrrkz:
5920 case X86::VRSQRT28SSZr:
5921 case X86::VRSQRT28SSZrk:
5922 case X86::VRSQRT28SSZrkz:
5923 case X86::VSCALEFSSZrr:
5924 case X86::VSCALEFSSZrrk:
5925 case X86::VSCALEFSSZrrkz:
5926 return false;
5927 default:
5928 return true;
5929 }
5930 }
5931
5932 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
5933 Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
5934 Opc == X86::VMOVSDZrm_alt) &&
5935 RegSize > 64) {
5936 // These instructions only load 64 bits, we can't fold them if the
5937 // destination register is wider than 64 bits (8 bytes), and its user
5938 // instruction isn't scalar (SD).
5939 switch (UserOpc) {
5940 case X86::CVTSD2SSrr_Int:
5941 case X86::VCVTSD2SSrr_Int:
5942 case X86::VCVTSD2SSZrr_Int:
5943 case X86::VCVTSD2SSZrr_Intk:
5944 case X86::VCVTSD2SSZrr_Intkz:
5945 case X86::CVTSD2SIrr_Int: case X86::CVTSD2SI64rr_Int:
5946 case X86::VCVTSD2SIrr_Int: case X86::VCVTSD2SI64rr_Int:
5947 case X86::VCVTSD2SIZrr_Int: case X86::VCVTSD2SI64Zrr_Int:
5948 case X86::CVTTSD2SIrr_Int: case X86::CVTTSD2SI64rr_Int:
5949 case X86::VCVTTSD2SIrr_Int: case X86::VCVTTSD2SI64rr_Int:
5950 case X86::VCVTTSD2SIZrr_Int: case X86::VCVTTSD2SI64Zrr_Int:
5951 case X86::VCVTSD2USIZrr_Int: case X86::VCVTSD2USI64Zrr_Int:
5952 case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int:
5953 case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int:
5954 case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int:
5955 case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int:
5956 case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
5957 case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
5958 case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
5959 case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
5960 case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
5961 case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
5962 case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int:
5963 case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
5964 case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
5965 case X86::VCMPSDZrr_Intk:
5966 case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
5967 case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
5968 case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
5969 case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
5970 case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz:
5971 case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
5972 case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int:
5973 case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int:
5974 case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int:
5975 case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int:
5976 case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int:
5977 case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int:
5978 case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int:
5979 case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int:
5980 case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
5981 case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
5982 case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
5983 case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
5984 case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
5985 case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
5986 case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
5987 case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
5988 case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
5989 case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
5990 case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
5991 case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
5992 case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
5993 case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
5994 case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
5995 case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
5996 case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
5997 case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
5998 case X86::VFIXUPIMMSDZrri:
5999 case X86::VFIXUPIMMSDZrrik:
6000 case X86::VFIXUPIMMSDZrrikz:
6001 case X86::VFPCLASSSDZrr:
6002 case X86::VFPCLASSSDZrrk:
6003 case X86::VGETEXPSDZr:
6004 case X86::VGETEXPSDZrk:
6005 case X86::VGETEXPSDZrkz:
6006 case X86::VGETMANTSDZrri:
6007 case X86::VGETMANTSDZrrik:
6008 case X86::VGETMANTSDZrrikz:
6009 case X86::VRANGESDZrri:
6010 case X86::VRANGESDZrrik:
6011 case X86::VRANGESDZrrikz:
6012 case X86::VRCP14SDZrr:
6013 case X86::VRCP14SDZrrk:
6014 case X86::VRCP14SDZrrkz:
6015 case X86::VRCP28SDZr:
6016 case X86::VRCP28SDZrk:
6017 case X86::VRCP28SDZrkz:
6018 case X86::VREDUCESDZrri:
6019 case X86::VREDUCESDZrrik:
6020 case X86::VREDUCESDZrrikz:
6021 case X86::VRNDSCALESDZr_Int:
6022 case X86::VRNDSCALESDZr_Intk:
6023 case X86::VRNDSCALESDZr_Intkz:
6024 case X86::VRSQRT14SDZrr:
6025 case X86::VRSQRT14SDZrrk:
6026 case X86::VRSQRT14SDZrrkz:
6027 case X86::VRSQRT28SDZr:
6028 case X86::VRSQRT28SDZrk:
6029 case X86::VRSQRT28SDZrkz:
6030 case X86::VSCALEFSDZrr:
6031 case X86::VSCALEFSDZrrk:
6032 case X86::VSCALEFSDZrrkz:
6033 return false;
6034 default:
6035 return true;
6036 }
6037 }
6038
6039 return false;
6040}
6041
6042MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
6043 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
6044 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
6045 LiveIntervals *LIS) const {
6046
6047 // TODO: Support the case where LoadMI loads a wide register, but MI
6048 // only uses a subreg.
6049 for (auto Op : Ops) {
6050 if (MI.getOperand(Op).getSubReg())
6051 return nullptr;
6052 }
6053
6054 // If loading from a FrameIndex, fold directly from the FrameIndex.
6055 unsigned NumOps = LoadMI.getDesc().getNumOperands();
6056 int FrameIndex;
6057 if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
6058 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6059 return nullptr;
6060 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
6061 }
6062
6063 // Check switch flag
6064 if (NoFusing) return nullptr;
6065
6066 // Avoid partial and undef register update stalls unless optimizing for size.
6067 if (!MF.getFunction().hasOptSize() &&
6068 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6069 shouldPreventUndefRegUpdateMemFold(MF, MI)))
6070 return nullptr;
6071
6072 // Determine the alignment of the load.
6073 Align Alignment;
6074 if (LoadMI.hasOneMemOperand())
6075 Alignment = (*LoadMI.memoperands_begin())->getAlign();
6076 else
6077 switch (LoadMI.getOpcode()) {
6078 case X86::AVX512_512_SET0:
6079 case X86::AVX512_512_SETALLONES:
6080 Alignment = Align(64);
6081 break;
6082 case X86::AVX2_SETALLONES:
6083 case X86::AVX1_SETALLONES:
6084 case X86::AVX_SET0:
6085 case X86::AVX512_256_SET0:
6086 Alignment = Align(32);
6087 break;
6088 case X86::V_SET0:
6089 case X86::V_SETALLONES:
6090 case X86::AVX512_128_SET0:
6091 case X86::FsFLD0F128:
6092 case X86::AVX512_FsFLD0F128:
6093 Alignment = Align(16);
6094 break;
6095 case X86::MMX_SET0:
6096 case X86::FsFLD0SD:
6097 case X86::AVX512_FsFLD0SD:
6098 Alignment = Align(8);
6099 break;
6100 case X86::FsFLD0SS:
6101 case X86::AVX512_FsFLD0SS:
6102 Alignment = Align(4);
6103 break;
6104 default:
6105 return nullptr;
6106 }
6107 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
6108 unsigned NewOpc = 0;
6109 switch (MI.getOpcode()) {
6110 default: return nullptr;
6111 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
6112 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
6113 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
6114 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
6115 }
6116 // Change to CMPXXri r, 0 first.
6117 MI.setDesc(get(NewOpc));
6118 MI.getOperand(1).ChangeToImmediate(0);
6119 } else if (Ops.size() != 1)
6120 return nullptr;
6121
6122 // Make sure the subregisters match.
6123 // Otherwise we risk changing the size of the load.
6124 if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
6125 return nullptr;
6126
6127 SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
6128 switch (LoadMI.getOpcode()) {
6129 case X86::MMX_SET0:
6130 case X86::V_SET0:
6131 case X86::V_SETALLONES:
6132 case X86::AVX2_SETALLONES:
6133 case X86::AVX1_SETALLONES:
6134 case X86::AVX_SET0:
6135 case X86::AVX512_128_SET0:
6136 case X86::AVX512_256_SET0:
6137 case X86::AVX512_512_SET0:
6138 case X86::AVX512_512_SETALLONES:
6139 case X86::FsFLD0SD:
6140 case X86::AVX512_FsFLD0SD:
6141 case X86::FsFLD0SS:
6142 case X86::AVX512_FsFLD0SS:
6143 case X86::FsFLD0F128:
6144 case X86::AVX512_FsFLD0F128: {
6145 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
6146 // Create a constant-pool entry and operands to load from it.
6147
6148 // Medium and large mode can't fold loads this way.
6149 if (MF.getTarget().getCodeModel() != CodeModel::Small &&
6150 MF.getTarget().getCodeModel() != CodeModel::Kernel)
6151 return nullptr;
6152
6153 // x86-32 PIC requires a PIC base register for constant pools.
6154 unsigned PICBase = 0;
6155 // Since we're using Small or Kernel code model, we can always use
6156 // RIP-relative addressing for a smaller encoding.
6157 if (Subtarget.is64Bit()) {
6158 PICBase = X86::RIP;
6159 } else if (MF.getTarget().isPositionIndependent()) {
6160 // FIXME: PICBase = getGlobalBaseReg(&MF);
6161 // This doesn't work for several reasons.
6162 // 1. GlobalBaseReg may have been spilled.
6163 // 2. It may not be live at MI.
6164 return nullptr;
6165 }
6166
6167 // Create a constant-pool entry.
6168 MachineConstantPool &MCP = *MF.getConstantPool();
6169 Type *Ty;
6170 unsigned Opc = LoadMI.getOpcode();
6171 if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
6172 Ty = Type::getFloatTy(MF.getFunction().getContext());
6173 else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
6174 Ty = Type::getDoubleTy(MF.getFunction().getContext());
6175 else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
6176 Ty = Type::getFP128Ty(MF.getFunction().getContext());
6177 else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
6178 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6179 16);
6180 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
6181 Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
6182 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6183 8);
6184 else if (Opc == X86::MMX_SET0)
6185 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6186 2);
6187 else
6188 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6189 4);
6190
6191 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
6192 Opc == X86::AVX512_512_SETALLONES ||
6193 Opc == X86::AVX1_SETALLONES);
6194 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
6195 Constant::getNullValue(Ty);
6196 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
6197
6198 // Create operands to load from the constant pool entry.
6199 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
6200 MOs.push_back(MachineOperand::CreateImm(1));
6201 MOs.push_back(MachineOperand::CreateReg(0, false));
6202 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
6203 MOs.push_back(MachineOperand::CreateReg(0, false));
6204 break;
6205 }
6206 default: {
6207 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6208 return nullptr;
6209
6210 // Folding a normal load. Just copy the load's address operands.
6211 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
6212 LoadMI.operands_begin() + NumOps);
6213 break;
6214 }
6215 }
6216 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
6217 /*Size=*/0, Alignment, /*AllowCommute=*/true);
6218}
6219
6220static SmallVector<MachineMemOperand *, 2>
6221extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6222 SmallVector<MachineMemOperand *, 2> LoadMMOs;
6223
6224 for (MachineMemOperand *MMO : MMOs) {
6225 if (!MMO->isLoad())
6226 continue;
6227
6228 if (!MMO->isStore()) {
6229 // Reuse the MMO.
6230 LoadMMOs.push_back(MMO);
6231 } else {
6232 // Clone the MMO and unset the store flag.
6233 LoadMMOs.push_back(MF.getMachineMemOperand(
6234 MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
6235 }
6236 }
6237
6238 return LoadMMOs;
6239}
6240
6241static SmallVector<MachineMemOperand *, 2>
6242extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6243 SmallVector<MachineMemOperand *, 2> StoreMMOs;
6244
6245 for (MachineMemOperand *MMO : MMOs) {
6246 if (!MMO->isStore())
6247 continue;
6248
6249 if (!MMO->isLoad()) {
6250 // Reuse the MMO.
6251 StoreMMOs.push_back(MMO);
6252 } else {
6253 // Clone the MMO and unset the load flag.
6254 StoreMMOs.push_back(MF.getMachineMemOperand(
6255 MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
6256 }
6257 }
6258
6259 return StoreMMOs;
6260}
6261
6262static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
6263 const TargetRegisterClass *RC,
6264 const X86Subtarget &STI) {
6265 assert(STI.hasAVX512() && "Expected at least AVX512!")((void)0);
6266 unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
6267 assert((SpillSize == 64 || STI.hasVLX()) &&((void)0)
6268 "Can't broadcast less than 64 bytes without AVX512VL!")((void)0);
6269
6270 switch (I->Flags & TB_BCAST_MASK) {
6271 default: llvm_unreachable("Unexpected broadcast type!")__builtin_unreachable();
6272 case TB_BCAST_D:
6273 switch (SpillSize) {
6274 default: llvm_unreachable("Unknown spill size")__builtin_unreachable();
6275 case 16: return X86::VPBROADCASTDZ128rm;
6276 case 32: return X86::VPBROADCASTDZ256rm;
6277 case 64: return X86::VPBROADCASTDZrm;
6278 }
6279 break;
6280 case TB_BCAST_Q:
6281 switch (SpillSize) {
6282 default: llvm_unreachable("Unknown spill size")__builtin_unreachable();
6283 case 16: return X86::VPBROADCASTQZ128rm;
6284 case 32: return X86::VPBROADCASTQZ256rm;
6285 case 64: return X86::VPBROADCASTQZrm;
6286 }
6287 break;
6288 case TB_BCAST_SS:
6289 switch (SpillSize) {
6290 default: llvm_unreachable("Unknown spill size")__builtin_unreachable();
6291 case 16: return X86::VBROADCASTSSZ128rm;
6292 case 32: return X86::VBROADCASTSSZ256rm;
6293 case 64: return X86::VBROADCASTSSZrm;
6294 }
6295 break;
6296 case TB_BCAST_SD:
6297 switch (SpillSize) {
6298 default: llvm_unreachable("Unknown spill size")__builtin_unreachable();
6299 case 16: return X86::VMOVDDUPZ128rm;
6300 case 32: return X86::VBROADCASTSDZ256rm;
6301 case 64: return X86::VBROADCASTSDZrm;
6302 }
6303 break;
6304 }
6305}
6306
6307bool X86InstrInfo::unfoldMemoryOperand(
6308 MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
6309 bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
6310 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
6311 if (I == nullptr)
6312 return false;
6313 unsigned Opc = I->DstOp;
6314 unsigned Index = I->Flags & TB_INDEX_MASK;
6315 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6316 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6317 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
6318 if (UnfoldLoad && !FoldedLoad)
6319 return false;
6320 UnfoldLoad &= FoldedLoad;
6321 if (UnfoldStore && !FoldedStore)
6322 return false;
6323 UnfoldStore &= FoldedStore;
6324
6325 const MCInstrDesc &MCID = get(Opc);
6326
6327 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
6328 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6329 // TODO: Check if 32-byte or greater accesses are slow too?
6330 if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
6331 Subtarget.isUnalignedMem16Slow())
6332 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
6333 // conservatively assume the address is unaligned. That's bad for
6334 // performance.
6335 return false;
6336 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
6337 SmallVector<MachineOperand,2> BeforeOps;
6338 SmallVector<MachineOperand,2> AfterOps;
6339 SmallVector<MachineOperand,4> ImpOps;
6340 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
6341 MachineOperand &Op = MI.getOperand(i);
6342 if (i >= Index && i < Index + X86::AddrNumOperands)
6343 AddrOps.push_back(Op);
6344 else if (Op.isReg() && Op.isImplicit())
6345 ImpOps.push_back(Op);
6346 else if (i < Index)
6347 BeforeOps.push_back(Op);
6348 else if (i > Index)
6349 AfterOps.push_back(Op);
6350 }
6351
6352 // Emit the load or broadcast instruction.
6353 if (UnfoldLoad) {
6354 auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
6355
6356 unsigned Opc;
6357 if (FoldedBCast) {
6358 Opc = getBroadcastOpcode(I, RC, Subtarget);
6359 } else {
6360 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6361 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6362 Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
6363 }
6364
6365 DebugLoc DL;
6366 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
6367 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
6368 MIB.add(AddrOps[i]);
6369 MIB.setMemRefs(MMOs);
6370 NewMIs.push_back(MIB);
6371
6372 if (UnfoldStore) {
6373 // Address operands cannot be marked isKill.
6374 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
6375 MachineOperand &MO = NewMIs[0]->getOperand(i);
6376 if (MO.isReg())
6377 MO.setIsKill(false);
6378 }
6379 }
6380 }
6381
6382 // Emit the data processing instruction.
6383 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
6384 MachineInstrBuilder MIB(MF, DataMI);
6385
6386 if (FoldedStore)
6387 MIB.addReg(Reg, RegState::Define);
6388 for (MachineOperand &BeforeOp : BeforeOps)
6389 MIB.add(BeforeOp);
6390 if (FoldedLoad)
6391 MIB.addReg(Reg);
6392 for (MachineOperand &AfterOp : AfterOps)
6393 MIB.add(AfterOp);
6394 for (MachineOperand &ImpOp : ImpOps) {
6395 MIB.addReg(ImpOp.getReg(),
6396 getDefRegState(ImpOp.isDef()) |
6397 RegState::Implicit |
6398 getKillRegState(ImpOp.isKill()) |
6399 getDeadRegState(ImpOp.isDead()) |
6400 getUndefRegState(ImpOp.isUndef()));
6401 }
6402 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
6403 switch (DataMI->getOpcode()) {
6404 default: break;
6405 case X86::CMP64ri32:
6406 case X86::CMP64ri8:
6407 case X86::CMP32ri:
6408 case X86::CMP32ri8:
6409 case X86::CMP16ri:
6410 case X86::CMP16ri8:
6411 case X86::CMP8ri: {
6412 MachineOperand &MO0 = DataMI->getOperand(0);
6413 MachineOperand &MO1 = DataMI->getOperand(1);
6414 if (MO1.isImm() && MO1.getImm() == 0) {
6415 unsigned NewOpc;
6416 switch (DataMI->getOpcode()) {
6417 default: llvm_unreachable("Unreachable!")__builtin_unreachable();
6418 case X86::CMP64ri8:
6419 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
6420 case X86::CMP32ri8:
6421 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
6422 case X86::CMP16ri8:
6423 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
6424 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
6425 }
6426 DataMI->setDesc(get(NewOpc));
6427 MO1.ChangeToRegister(MO0.getReg(), false);
6428 }
6429 }
6430 }
6431 NewMIs.push_back(DataMI);
6432
6433 // Emit the store instruction.
6434 if (UnfoldStore) {
6435 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
6436 auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
6437 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
6438 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6439 unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
6440 DebugLoc DL;
6441 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
6442 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
6443 MIB.add(AddrOps[i]);
6444 MIB.addReg(Reg, RegState::Kill);
6445 MIB.setMemRefs(MMOs);
6446 NewMIs.push_back(MIB);
6447 }
6448
6449 return true;
6450}
6451
6452bool
6453X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
6454 SmallVectorImpl<SDNode*> &NewNodes) const {
6455 if (!N->isMachineOpcode())
6456 return false;
6457
6458 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
6459 if (I == nullptr)
6460 return false;
6461 unsigned Opc = I->DstOp;
6462 unsigned Index = I->Flags & TB_INDEX_MASK;
6463 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6464 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6465 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
6466 const MCInstrDesc &MCID = get(Opc);
6467 MachineFunction &MF = DAG.getMachineFunction();
6468 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6469 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
6470 unsigned NumDefs = MCID.NumDefs;
6471 std::vector<SDValue> AddrOps;
6472 std::vector<SDValue> BeforeOps;
6473 std::vector<SDValue> AfterOps;
6474 SDLoc dl(N);
6475 unsigned NumOps = N->getNumOperands();
6476 for (unsigned i = 0; i != NumOps-1; ++i) {
6477 SDValue Op = N->getOperand(i);
6478 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
6479 AddrOps.push_back(Op);
6480 else if (i < Index-NumDefs)
6481 BeforeOps.push_back(Op);
6482 else if (i > Index-NumDefs)
6483 AfterOps.push_back(Op);
6484 }
6485 SDValue Chain = N->getOperand(NumOps-1);
6486 AddrOps.push_back(Chain);
6487
6488 // Emit the load instruction.
6489 SDNode *Load = nullptr;
6490 if (FoldedLoad) {
6491 EVT VT = *TRI.legalclasstypes_begin(*RC);
6492 auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
6493 if (MMOs.empty() && RC == &X86::VR128RegClass &&
6494 Subtarget.isUnalignedMem16Slow())
6495 // Do not introduce a slow unaligned load.
6496 return false;
6497 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
6498 // memory access is slow above.
6499
6500 unsigned Opc;
6501 if (FoldedBCast) {
6502 Opc = getBroadcastOpcode(I, RC, Subtarget);
6503 } else {
6504 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6505 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6506 Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
6507 }
6508
6509 Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
6510 NewNodes.push_back(Load);
6511
6512 // Preserve memory reference information.
6513 DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
6514 }
6515
6516 // Emit the data processing instruction.
6517 std::vector<EVT> VTs;
6518 const TargetRegisterClass *DstRC = nullptr;
6519 if (MCID.getNumDefs() > 0) {
6520 DstRC = getRegClass(MCID, 0, &RI, MF);
6521 VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
6522 }
6523 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
6524 EVT VT = N->getValueType(i);
6525 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
6526 VTs.push_back(VT);
6527 }
6528 if (Load)
6529 BeforeOps.push_back(SDValue(Load, 0));
6530 llvm::append_range(BeforeOps, AfterOps);
6531 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
6532 switch (Opc) {
6533 default: break;
6534 case X86::CMP64ri32:
6535 case X86::CMP64ri8:
6536 case X86::CMP32ri:
6537 case X86::CMP32ri8:
6538 case X86::CMP16ri:
6539 case X86::CMP16ri8:
6540 case X86::CMP8ri:
6541 if (isNullConstant(BeforeOps[1])) {
6542 switch (Opc) {
6543 default: llvm_unreachable("Unreachable!")__builtin_unreachable();
6544 case X86::CMP64ri8:
6545 case X86::CMP64ri32: Opc = X86::TEST64rr; break;
6546 case X86::CMP32ri8:
6547 case X86::CMP32ri: Opc = X86::TEST32rr; break;
6548 case X86::CMP16ri8:
6549 case X86::CMP16ri: Opc = X86::TEST16rr; break;
6550 case X86::CMP8ri: Opc = X86::TEST8rr; break;
6551 }
6552 BeforeOps[1] = BeforeOps[0];
6553 }
6554 }
6555 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
6556 NewNodes.push_back(NewNode);
6557
6558 // Emit the store instruction.
6559 if (FoldedStore) {
6560 AddrOps.pop_back();
6561 AddrOps.push_back(SDValue(NewNode, 0));
6562 AddrOps.push_back(Chain);
6563 auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
6564 if (MMOs.empty() && RC == &X86::VR128RegClass &&
6565 Subtarget.isUnalignedMem16Slow())
6566 // Do not introduce a slow unaligned store.
6567 return false;
6568 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
6569 // memory access is slow above.
6570 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6571 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6572 SDNode *Store =
6573 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
6574 dl, MVT::Other, AddrOps);
6575 NewNodes.push_back(Store);
6576
6577 // Preserve memory reference information.
6578 DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
6579 }
6580
6581 return true;
6582}
6583
6584unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
6585 bool UnfoldLoad, bool UnfoldStore,
6586 unsigned *LoadRegIndex) const {
6587 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
6588 if (I == nullptr)
6589 return 0;
6590 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6591 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6592 if (UnfoldLoad && !FoldedLoad)
6593 return 0;
6594 if (UnfoldStore && !FoldedStore)
6595 return 0;
6596 if (LoadRegIndex)
6597 *LoadRegIndex = I->Flags & TB_INDEX_MASK;
6598 return I->DstOp;
6599}
6600
6601bool
6602X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
6603 int64_t &Offset1, int64_t &Offset2) const {
6604 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
6605 return false;
6606 unsigned Opc1 = Load1->getMachineOpcode();
6607 unsigned Opc2 = Load2->getMachineOpcode();
6608 switch (Opc1) {
6609 default: return false;
6610 case X86::MOV8rm:
6611 case X86::MOV16rm:
6612 case X86::MOV32rm:
6613 case X86::MOV64rm:
6614 case X86::LD_Fp32m:
6615 case X86::LD_Fp64m:
6616 case X86::LD_Fp80m:
6617 case X86::MOVSSrm:
6618 case X86::MOVSSrm_alt:
6619 case X86::MOVSDrm:
6620 case X86::MOVSDrm_alt:
6621 case X86::MMX_MOVD64rm:
6622 case X86::MMX_MOVQ64rm:
6623 case X86::MOVAPSrm:
6624 case X86::MOVUPSrm:
6625 case X86::MOVAPDrm:
6626 case X86::MOVUPDrm:
6627 case X86::MOVDQArm:
6628 case X86::MOVDQUrm:
6629 // AVX load instructions
6630 case X86::VMOVSSrm:
6631 case X86::VMOVSSrm_alt:
6632 case X86::VMOVSDrm:
6633 case X86::VMOVSDrm_alt:
6634 case X86::VMOVAPSrm:
6635 case X86::VMOVUPSrm:
6636 case X86::VMOVAPDrm:
6637 case X86::VMOVUPDrm:
6638 case X86::VMOVDQArm:
6639 case X86::VMOVDQUrm:
6640 case X86::VMOVAPSYrm:
6641 case X86::VMOVUPSYrm:
6642 case X86::VMOVAPDYrm:
6643 case X86::VMOVUPDYrm:
6644 case X86::VMOVDQAYrm:
6645 case X86::VMOVDQUYrm:
6646 // AVX512 load instructions
6647 case X86::VMOVSSZrm:
6648 case X86::VMOVSSZrm_alt:
6649 case X86::VMOVSDZrm:
6650 case X86::VMOVSDZrm_alt:
6651 case X86::VMOVAPSZ128rm:
6652 case X86::VMOVUPSZ128rm:
6653 case X86::VMOVAPSZ128rm_NOVLX:
6654 case X86::VMOVUPSZ128rm_NOVLX:
6655 case X86::VMOVAPDZ128rm:
6656 case X86::VMOVUPDZ128rm:
6657 case X86::VMOVDQU8Z128rm:
6658 case X86::VMOVDQU16Z128rm:
6659 case X86::VMOVDQA32Z128rm:
6660 case X86::VMOVDQU32Z128rm:
6661 case X86::VMOVDQA64Z128rm:
6662 case X86::VMOVDQU64Z128rm:
6663 case X86::VMOVAPSZ256rm:
6664 case X86::VMOVUPSZ256rm:
6665 case X86::VMOVAPSZ256rm_NOVLX:
6666 case X86::VMOVUPSZ256rm_NOVLX:
6667 case X86::VMOVAPDZ256rm:
6668 case X86::VMOVUPDZ256rm:
6669 case X86::VMOVDQU8Z256rm:
6670 case X86::VMOVDQU16Z256rm:
6671 case X86::VMOVDQA32Z256rm:
6672 case X86::VMOVDQU32Z256rm:
6673 case X86::VMOVDQA64Z256rm:
6674 case X86::VMOVDQU64Z256rm:
6675 case X86::VMOVAPSZrm:
6676 case X86::VMOVUPSZrm:
6677 case X86::VMOVAPDZrm:
6678 case X86::VMOVUPDZrm:
6679 case X86::VMOVDQU8Zrm:
6680 case X86::VMOVDQU16Zrm:
6681 case X86::VMOVDQA32Zrm:
6682 case X86::VMOVDQU32Zrm:
6683 case X86::VMOVDQA64Zrm:
6684 case X86::VMOVDQU64Zrm:
6685 case X86::KMOVBkm:
6686 case X86::KMOVWkm:
6687 case X86::KMOVDkm:
6688 case X86::KMOVQkm:
6689 break;
6690 }
6691 switch (Opc2) {
6692 default: return false;
6693 case X86::MOV8rm:
6694 case X86::MOV16rm:
6695 case X86::MOV32rm:
6696 case X86::MOV64rm:
6697 case X86::LD_Fp32m:
6698 case X86::LD_Fp64m:
6699 case X86::LD_Fp80m:
6700 case X86::MOVSSrm:
6701 case X86::MOVSSrm_alt:
6702 case X86::MOVSDrm:
6703 case X86::MOVSDrm_alt:
6704 case X86::MMX_MOVD64rm:
6705 case X86::MMX_MOVQ64rm:
6706 case X86::MOVAPSrm:
6707 case X86::MOVUPSrm:
6708 case X86::MOVAPDrm:
6709 case X86::MOVUPDrm:
6710 case X86::MOVDQArm:
6711 case X86::MOVDQUrm:
6712 // AVX load instructions
6713 case X86::VMOVSSrm:
6714 case X86::VMOVSSrm_alt:
6715 case X86::VMOVSDrm:
6716 case X86::VMOVSDrm_alt:
6717 case X86::VMOVAPSrm:
6718 case X86::VMOVUPSrm:
6719 case X86::VMOVAPDrm:
6720 case X86::VMOVUPDrm:
6721 case X86::VMOVDQArm:
6722 case X86::VMOVDQUrm:
6723 case X86::VMOVAPSYrm:
6724 case X86::VMOVUPSYrm:
6725 case X86::VMOVAPDYrm:
6726 case X86::VMOVUPDYrm:
6727 case X86::VMOVDQAYrm:
6728 case X86::VMOVDQUYrm:
6729 // AVX512 load instructions
6730 case X86::VMOVSSZrm:
6731 case X86::VMOVSSZrm_alt:
6732 case X86::VMOVSDZrm:
6733 case X86::VMOVSDZrm_alt:
6734 case X86::VMOVAPSZ128rm:
6735 case X86::VMOVUPSZ128rm:
6736 case X86::VMOVAPSZ128rm_NOVLX:
6737 case X86::VMOVUPSZ128rm_NOVLX:
6738 case X86::VMOVAPDZ128rm:
6739 case X86::VMOVUPDZ128rm:
6740 case X86::VMOVDQU8Z128rm:
6741 case X86::VMOVDQU16Z128rm:
6742 case X86::VMOVDQA32Z128rm:
6743 case X86::VMOVDQU32Z128rm:
6744 case X86::VMOVDQA64Z128rm:
6745 case X86::VMOVDQU64Z128rm:
6746 case X86::VMOVAPSZ256rm:
6747 case X86::VMOVUPSZ256rm:
6748 case X86::VMOVAPSZ256rm_NOVLX:
6749 case X86::VMOVUPSZ256rm_NOVLX:
6750 case X86::VMOVAPDZ256rm:
6751 case X86::VMOVUPDZ256rm:
6752 case X86::VMOVDQU8Z256rm:
6753 case X86::VMOVDQU16Z256rm:
6754 case X86::VMOVDQA32Z256rm:
6755 case X86::VMOVDQU32Z256rm:
6756 case X86::VMOVDQA64Z256rm:
6757 case X86::VMOVDQU64Z256rm:
6758 case X86::VMOVAPSZrm:
6759 case X86::VMOVUPSZrm:
6760 case X86::VMOVAPDZrm:
6761 case X86::VMOVUPDZrm:
6762 case X86::VMOVDQU8Zrm:
6763 case X86::VMOVDQU16Zrm:
6764 case X86::VMOVDQA32Zrm:
6765 case X86::VMOVDQU32Zrm:
6766 case X86::VMOVDQA64Zrm:
6767 case X86::VMOVDQU64Zrm:
6768 case X86::KMOVBkm:
6769 case X86::KMOVWkm:
6770 case X86::KMOVDkm:
6771 case X86::KMOVQkm:
6772 break;
6773 }
6774
6775 // Lambda to check if both the loads have the same value for an operand index.
6776 auto HasSameOp = [&](int I) {
6777 return Load1->getOperand(I) == Load2->getOperand(I);
6778 };
6779
6780 // All operands except the displacement should match.
6781 if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
6782 !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
6783 return false;
6784
6785 // Chain Operand must be the same.
6786 if (!HasSameOp(5))
6787 return false;
6788
6789 // Now let's examine if the displacements are constants.
6790 auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
6791 auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
6792 if (!Disp1 || !Disp2)
6793 return false;
6794
6795 Offset1 = Disp1->getSExtValue();
6796 Offset2 = Disp2->getSExtValue();
6797 return true;
6798}
6799
6800bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
6801 int64_t Offset1, int64_t Offset2,
6802 unsigned NumLoads) const {
6803 assert(Offset2 > Offset1)((void)0);
6804 if ((Offset2 - Offset1) / 8 > 64)
6805 return false;
6806
6807 unsigned Opc1 = Load1->getMachineOpcode();
6808 unsigned Opc2 = Load2->getMachineOpcode();
6809 if (Opc1 != Opc2)
6810 return false; // FIXME: overly conservative?
6811
6812 switch (Opc1) {
6813 default: break;
6814 case X86::LD_Fp32m:
6815 case X86::LD_Fp64m:
6816 case X86::LD_Fp80m:
6817 case X86::MMX_MOVD64rm:
6818 case X86::MMX_MOVQ64rm:
6819 return false;
6820 }
6821
6822 EVT VT = Load1->getValueType(0);
6823 switch (VT.getSimpleVT().SimpleTy) {
6824 default:
6825 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
6826 // have 16 of them to play with.
6827 if (Subtarget.is64Bit()) {
6828 if (NumLoads >= 3)
6829 return false;
6830 } else if (NumLoads) {
6831 return false;
6832 }
6833 break;
6834 case MVT::i8:
6835 case MVT::i16:
6836 case MVT::i32:
6837 case MVT::i64:
6838 case MVT::f32:
6839 case MVT::f64:
6840 if (NumLoads)
6841 return false;
6842 break;
6843 }
6844
6845 return true;
6846}
6847
6848bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
6849 const MachineBasicBlock *MBB,
6850 const MachineFunction &MF) const {
6851
6852 // ENDBR instructions should not be scheduled around.
6853 unsigned Opcode = MI.getOpcode();
6854 if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
6855 Opcode == X86::LDTILECFG)
6856 return true;
6857
6858 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
6859}
6860
6861bool X86InstrInfo::
6862reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
6863 assert(Cond.size() == 1 && "Invalid X86 branch condition!")((void)0);
6864 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
6865 Cond[0].setImm(GetOppositeBranchCondition(CC));
6866 return false;
6867}
6868
6869bool X86InstrInfo::
6870isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
6871 // FIXME: Return false for x87 stack register classes for now. We can't
6872 // allow any loads of these registers before FpGet_ST0_80.
6873 return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
6874 RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
6875 RC == &X86::RFP80RegClass);
6876}
6877
6878/// Return a virtual register initialized with the
6879/// the global base register value. Output instructions required to
6880/// initialize the register in the function entry block, if necessary.
6881///
6882/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
6883///
6884unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
6885 assert((!Subtarget.is64Bit() ||((void)0)
6886 MF->getTarget().getCodeModel() == CodeModel::Medium ||((void)0)
6887 MF->getTarget().getCodeModel() == CodeModel::Large) &&((void)0)
6888 "X86-64 PIC uses RIP relative addressing")((void)0);
6889
6890 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
6891 Register GlobalBaseReg = X86FI->getGlobalBaseReg();
6892 if (GlobalBaseReg != 0)
6893 return GlobalBaseReg;
6894
6895 // Create the register. The code to initialize it is inserted
6896 // later, by the CGBR pass (below).
6897 MachineRegisterInfo &RegInfo = MF->getRegInfo();
6898 GlobalBaseReg = RegInfo.createVirtualRegister(
6899 Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
6900 X86FI->setGlobalBaseReg(GlobalBaseReg);
6901 return GlobalBaseReg;
6902}
6903
6904// These are the replaceable SSE instructions. Some of these have Int variants
6905// that we don't include here. We don't want to replace instructions selected
6906// by intrinsics.
6907static const uint16_t ReplaceableInstrs[][3] = {
6908 //PackedSingle PackedDouble PackedInt
6909 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
6910 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
6911 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
6912 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
6913 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
6914 { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr },
6915 { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr },
6916 { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr },
6917 { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm },
6918 { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
6919 { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm },
6920 { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
6921 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
6922 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
6923 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
6924 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
6925 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
6926 { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
6927 { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
6928 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
6929 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
6930 { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
6931 { X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
6932 { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
6933 { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
6934 { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
6935 { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
6936 { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
6937 { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
6938 { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
6939 { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
6940 // AVX 128-bit support
6941 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
6942 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
6943 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
6944 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
6945 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
6946 { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr },
6947 { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr },
6948 { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr },
6949 { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm },
6950 { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
6951 { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm },
6952 { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
6953 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
6954 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
6955 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
6956 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
6957 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
6958 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
6959 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
6960 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
6961 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
6962 { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
6963 { X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
6964 { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
6965 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
6966 { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
6967 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
6968 { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
6969 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
6970 { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
6971 { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
6972 // AVX 256-bit support
6973 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
6974 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
6975 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
6976 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
6977 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
6978 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr },
6979 { X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm },
6980 { X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr },
6981 { X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi },
6982 { X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri },
6983 // AVX512 support
6984 { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr },
6985 { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
6986 { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
6987 { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr },
6988 { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr },
6989 { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr },
6990 { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm },
6991 { X86::VMOVSDZrm_alt, X86::VMOVSDZrm_alt, X86::VMOVQI2PQIZrm },
6992 { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm },
6993 { X86::VMOVSSZrm_alt, X86::VMOVSSZrm_alt, X86::VMOVDI2PDIZrm },
6994 { X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr },
6995 { X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm },
6996 { X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr },
6997 { X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm },
6998 { X86::VBROADCASTSSZrr, X86::VBROADCASTSSZrr, X86::VPBROADCASTDZrr },
6999 { X86::VBROADCASTSSZrm, X86::VBROADCASTSSZrm, X86::VPBROADCASTDZrm },
7000 { X86::VMOVDDUPZ128rr, X86::VMOVDDUPZ128rr, X86::VPBROADCASTQZ128rr },
7001 { X86::VMOVDDUPZ128rm, X86::VMOVDDUPZ128rm, X86::VPBROADCASTQZ128rm },
7002 { X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr },
7003 { X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm },
7004 { X86::VBROADCASTSDZrr, X86::VBROADCASTSDZrr, X86::VPBROADCASTQZrr },
7005 { X86::VBROADCASTSDZrm, X86::VBROADCASTSDZrm, X86::VPBROADCASTQZrm },
7006 { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr },
7007 { X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm },
7008 { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr },
7009 { X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm },
7010 { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr },
7011 { X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm },
7012 { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr },
7013 { X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm },
7014 { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
7015 { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
7016 { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
7017 { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
7018 { X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr },
7019 { X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr },
7020 { X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr },
7021 { X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr },
7022 { X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr },
7023 { X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr },
7024 { X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr },
7025 { X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr },
7026 { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
7027 { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
7028 { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
7029 { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
7030 { X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi },
7031 { X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri },
7032 { X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi },
7033 { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri },
7034 { X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi },
7035 { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri },
7036 { X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi },
7037 { X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri },
7038 { X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm },
7039 { X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr },
7040 { X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi },
7041 { X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri },
7042 { X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm },
7043 { X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr },
7044 { X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm },
7045 { X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr },
7046 { X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi },
7047 { X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri },
7048 { X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm },
7049 { X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr },
7050 { X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm },
7051 { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr },
7052 { X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm },
7053 { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr },
7054 { X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm },
7055 { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr },
7056 { X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm },
7057 { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr },
7058 { X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm },
7059 { X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr },
7060 { X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm },
7061 { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr },
7062 { X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm },
7063 { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr },
7064 { X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm },
7065 { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr },
7066 { X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm },
7067 { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr },
7068 { X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm },
7069 { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr },
7070 { X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm },
7071 { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr },
7072 { X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm },
7073 { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr },
7074 { X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr },
7075 { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr },
7076};
7077
7078static const uint16_t ReplaceableInstrsAVX2[][3] = {
7079 //PackedSingle PackedDouble PackedInt
7080 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
7081 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
7082 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
7083 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
7084 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
7085 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
7086 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
7087 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
7088 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
7089 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
7090 { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
7091 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
7092 { X86::VMOVDDUPrm, X86::VMOVDDUPrm, X86::VPBROADCASTQrm},
7093 { X86::VMOVDDUPrr, X86::VMOVDDUPrr, X86::VPBROADCASTQrr},
7094 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
7095 { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
7096 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
7097 { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
7098 { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 },
7099 { X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri },
7100 { X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi },
7101 { X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi },
7102 { X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri },
7103 { X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm },
7104 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr },
7105 { X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm },
7106 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr },
7107 { X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm },
7108 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr },
7109 { X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm },
7110 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr },
7111};
7112
7113static const uint16_t ReplaceableInstrsFP[][3] = {
7114 //PackedSingle PackedDouble
7115 { X86::MOVLPSrm, X86::MOVLPDrm, X86::INSTRUCTION_LIST_END },
7116 { X86::MOVHPSrm, X86::MOVHPDrm, X86::INSTRUCTION_LIST_END },
7117 { X86::MOVHPSmr, X86::MOVHPDmr, X86::INSTRUCTION_LIST_END },
7118 { X86::VMOVLPSrm, X86::VMOVLPDrm, X86::INSTRUCTION_LIST_END },
7119 { X86::VMOVHPSrm, X86::VMOVHPDrm, X86::INSTRUCTION_LIST_END },
7120 { X86::VMOVHPSmr, X86::VMOVHPDmr, X86::INSTRUCTION_LIST_END },
7121 { X86::VMOVLPSZ128rm, X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
7122 { X86::VMOVHPSZ128rm, X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
7123 { X86::VMOVHPSZ128mr, X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
7124};
7125
7126static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
7127 //PackedSingle PackedDouble PackedInt
7128 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
7129 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
7130 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
7131 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
7132};
7133
7134static const uint16_t ReplaceableInstrsAVX512[][4] = {
7135 // Two integer columns for 64-bit and 32-bit elements.
7136 //PackedSingle PackedDouble PackedInt PackedInt
7137 { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr },
7138 { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm },
7139 { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr },
7140 { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr },
7141 { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm },
7142 { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr },
7143 { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm },
7144 { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr },
7145 { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr },
7146 { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm },
7147 { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr },
7148 { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm },
7149 { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr },
7150 { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr },
7151 { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm },
7152};
7153
7154static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
7155 // Two integer columns for 64-bit and 32-bit elements.
7156 //PackedSingle PackedDouble PackedInt PackedInt
7157 { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7158 { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7159 { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
7160 { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
7161 { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm },
7162 { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr },
7163 { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
7164 { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
7165 { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7166 { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7167 { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
7168 { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
7169 { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm },
7170 { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr },
7171 { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
7172 { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
7173 { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm },
7174 { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr },
7175 { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm },
7176 { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr },
7177 { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm },
7178 { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr },
7179 { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm },
7180 { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr },
7181};
7182
7183static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
7184 // Two integer columns for 64-bit and 32-bit elements.
7185 //PackedSingle PackedDouble
7186 //PackedInt PackedInt
7187 { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk,
7188 X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk },
7189 { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
7190 X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
7191 { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk,
7192 X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk },
7193 { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
7194 X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
7195 { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk,
7196 X86::VPANDQZ128rmk, X86::VPANDDZ128rmk },
7197 { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz,
7198 X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz },
7199 { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk,
7200 X86::VPANDQZ128rrk, X86::VPANDDZ128rrk },
7201 { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz,
7202 X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz },
7203 { X86::VORPSZ128rmk, X86::VORPDZ128rmk,
7204 X86::VPORQZ128rmk, X86::VPORDZ128rmk },
7205 { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz,
7206 X86::VPORQZ128rmkz, X86::VPORDZ128rmkz },
7207 { X86::VORPSZ128rrk, X86::VORPDZ128rrk,
7208 X86::VPORQZ128rrk, X86::VPORDZ128rrk },
7209 { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz,
7210 X86::VPORQZ128rrkz, X86::VPORDZ128rrkz },
7211 { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk,
7212 X86::VPXORQZ128rmk, X86::VPXORDZ128rmk },
7213 { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz,
7214 X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz },
7215 { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk,
7216 X86::VPXORQZ128rrk, X86::VPXORDZ128rrk },
7217 { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz,
7218 X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz },
7219 { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk,
7220 X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk },
7221 { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
7222 X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
7223 { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk,
7224 X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk },
7225 { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
7226 X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
7227 { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk,
7228 X86::VPANDQZ256rmk, X86::VPANDDZ256rmk },
7229 { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz,
7230 X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz },
7231 { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk,
7232 X86::VPANDQZ256rrk, X86::VPANDDZ256rrk },
7233 { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz,
7234 X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz },
7235 { X86::VORPSZ256rmk, X86::VORPDZ256rmk,
7236 X86::VPORQZ256rmk, X86::VPORDZ256rmk },
7237 { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz,
7238 X86::VPORQZ256rmkz, X86::VPORDZ256rmkz },
7239 { X86::VORPSZ256rrk, X86::VORPDZ256rrk,
7240 X86::VPORQZ256rrk, X86::VPORDZ256rrk },
7241 { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz,
7242 X86::VPORQZ256rrkz, X86::VPORDZ256rrkz },
7243 { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk,
7244 X86::VPXORQZ256rmk, X86::VPXORDZ256rmk },
7245 { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz,
7246 X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz },
7247 { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk,
7248 X86::VPXORQZ256rrk, X86::VPXORDZ256rrk },
7249 { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz,
7250 X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz },
7251 { X86::VANDNPSZrmk, X86::VANDNPDZrmk,
7252 X86::VPANDNQZrmk, X86::VPANDNDZrmk },
7253 { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz,
7254 X86::VPANDNQZrmkz, X86::VPANDNDZrmkz },
7255 { X86::VANDNPSZrrk, X86::VANDNPDZrrk,
7256 X86::VPANDNQZrrk, X86::VPANDNDZrrk },
7257 { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz,
7258 X86::VPANDNQZrrkz, X86::VPANDNDZrrkz },
7259 { X86::VANDPSZrmk, X86::VANDPDZrmk,
7260 X86::VPANDQZrmk, X86::VPANDDZrmk },
7261 { X86::VANDPSZrmkz, X86::VANDPDZrmkz,
7262 X86::VPANDQZrmkz, X86::VPANDDZrmkz },
7263 { X86::VANDPSZrrk, X86::VANDPDZrrk,
7264 X86::VPANDQZrrk, X86::VPANDDZrrk },
7265 { X86::VANDPSZrrkz, X86::VANDPDZrrkz,
7266 X86::VPANDQZrrkz, X86::VPANDDZrrkz },
7267 { X86::VORPSZrmk, X86::VORPDZrmk,
7268 X86::VPORQZrmk, X86::VPORDZrmk },
7269 { X86::VORPSZrmkz, X86::VORPDZrmkz,
7270 X86::VPORQZrmkz, X86::VPORDZrmkz },
7271 { X86::VORPSZrrk, X86::VORPDZrrk,
7272 X86::VPORQZrrk, X86::VPORDZrrk },
7273 { X86::VORPSZrrkz, X86::VORPDZrrkz,
7274 X86::VPORQZrrkz, X86::VPORDZrrkz },
7275 { X86::VXORPSZrmk, X86::VXORPDZrmk,
7276 X86::VPXORQZrmk, X86::VPXORDZrmk },
7277 { X86::VXORPSZrmkz, X86::VXORPDZrmkz,
7278 X86::VPXORQZrmkz, X86::VPXORDZrmkz },
7279 { X86::VXORPSZrrk, X86::VXORPDZrrk,
7280 X86::VPXORQZrrk, X86::VPXORDZrrk },
7281 { X86::VXORPSZrrkz, X86::VXORPDZrrkz,
7282 X86::VPXORQZrrkz, X86::VPXORDZrrkz },
7283 // Broadcast loads can be handled the same as masked operations to avoid
7284 // changing element size.
7285 { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb,
7286 X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb },
7287 { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb,
7288 X86::VPANDQZ128rmb, X86::VPANDDZ128rmb },
7289 { X86::VORPSZ128rmb, X86::VORPDZ128rmb,
7290 X86::VPORQZ128rmb, X86::VPORDZ128rmb },
7291 { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb,
7292 X86::VPXORQZ128rmb, X86::VPXORDZ128rmb },
7293 { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb,
7294 X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb },
7295 { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb,
7296 X86::VPANDQZ256rmb, X86::VPANDDZ256rmb },
7297 { X86::VORPSZ256rmb, X86::VORPDZ256rmb,
7298 X86::VPORQZ256rmb, X86::VPORDZ256rmb },
7299 { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb,
7300 X86::VPXORQZ256rmb, X86::VPXORDZ256rmb },
7301 { X86::VANDNPSZrmb, X86::VANDNPDZrmb,
7302 X86::VPANDNQZrmb, X86::VPANDNDZrmb },
7303 { X86::VANDPSZrmb, X86::VANDPDZrmb,
7304 X86::VPANDQZrmb, X86::VPANDDZrmb },
7305 { X86::VANDPSZrmb, X86::VANDPDZrmb,
7306 X86::VPANDQZrmb, X86::VPANDDZrmb },
7307 { X86::VORPSZrmb, X86::VORPDZrmb,
7308 X86::VPORQZrmb, X86::VPORDZrmb },
7309 { X86::VXORPSZrmb, X86::VXORPDZrmb,
7310 X86::VPXORQZrmb, X86::VPXORDZrmb },
7311 { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
7312 X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
7313 { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk,
7314 X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk },
7315 { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk,
7316 X86::VPORQZ128rmbk, X86::VPORDZ128rmbk },
7317 { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk,
7318 X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk },
7319 { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
7320 X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
7321 { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk,
7322 X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk },
7323 { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk,
7324 X86::VPORQZ256rmbk, X86::VPORDZ256rmbk },
7325 { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk,
7326 X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk },
7327 { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk,
7328 X86::VPANDNQZrmbk, X86::VPANDNDZrmbk },
7329 { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
7330 X86::VPANDQZrmbk, X86::VPANDDZrmbk },
7331 { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
7332 X86::VPANDQZrmbk, X86::VPANDDZrmbk },
7333 { X86::VORPSZrmbk, X86::VORPDZrmbk,
7334 X86::VPORQZrmbk, X86::VPORDZrmbk },
7335 { X86::VXORPSZrmbk, X86::VXORPDZrmbk,
7336 X86::VPXORQZrmbk, X86::VPXORDZrmbk },
7337 { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
7338 X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
7339 { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
7340 X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
7341 { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz,
7342 X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz },
7343 { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
7344 X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
7345 { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
7346 X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
7347 { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
7348 X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
7349 { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz,
7350 X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz },
7351 { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
7352 X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
7353 { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz,
7354 X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz },
7355 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
7356 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
7357 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
7358 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
7359 { X86::VORPSZrmbkz, X86::VORPDZrmbkz,
7360 X86::VPORQZrmbkz, X86::VPORDZrmbkz },
7361 { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz,
7362 X86::VPXORQZrmbkz, X86::VPXORDZrmbkz },
7363};
7364
7365// NOTE: These should only be used by the custom domain methods.
7366static const uint16_t ReplaceableBlendInstrs[][3] = {
7367 //PackedSingle PackedDouble PackedInt
7368 { X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi },
7369 { X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri },
7370 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi },
7371 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri },
7372 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi },
7373 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri },
7374};
7375static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
7376 //PackedSingle PackedDouble PackedInt
7377 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi },
7378 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri },
7379 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi },
7380 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri },
7381};
7382
7383// Special table for changing EVEX logic instructions to VEX.
7384// TODO: Should we run EVEX->VEX earlier?
7385static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
7386 // Two integer columns for 64-bit and 32-bit elements.
7387 //PackedSingle PackedDouble PackedInt PackedInt
7388 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7389 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7390 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
7391 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
7392 { X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm },
7393 { X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr },
7394 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
7395 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
7396 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7397 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7398 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
7399 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
7400 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm },
7401 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr },
7402 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
7403 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
7404};
7405
7406// FIXME: Some shuffle and unpack instructions have equivalents in different
7407// domains, but they require a bit more work than just switching opcodes.
7408
7409static const uint16_t *lookup(unsigned opcode, unsigned domain,
7410 ArrayRef<uint16_t[3]> Table) {
7411 for (const uint16_t (&Row)[3] : Table)
7412 if (Row[domain-1] == opcode)
7413 return Row;
7414 return nullptr;
7415}
7416
7417static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
7418 ArrayRef<uint16_t[4]> Table) {
7419 // If this is the integer domain make sure to check both integer columns.
7420 for (const uint16_t (&Row)[4] : Table)
7421 if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
7422 return Row;
7423 return nullptr;
7424}
7425
7426// Helper to attempt to widen/narrow blend masks.
7427static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
7428 unsigned NewWidth, unsigned *pNewMask = nullptr) {
7429 assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&((void)0)
7430 "Illegal blend mask scale")((void)0);
7431 unsigned NewMask = 0;
7432
7433 if ((OldWidth % NewWidth) == 0) {
7434 unsigned Scale = OldWidth / NewWidth;
7435 unsigned SubMask = (1u << Scale) - 1;
7436 for (unsigned i = 0; i != NewWidth; ++i) {
7437 unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
7438 if (Sub == SubMask)
7439 NewMask |= (1u << i);
7440 else if (Sub != 0x0)
7441 return false;
7442 }
7443 } else {
7444 unsigned Scale = NewWidth / OldWidth;
7445 unsigned SubMask = (1u << Scale) - 1;
7446 for (unsigned i = 0; i != OldWidth; ++i) {
7447 if (OldMask & (1 << i)) {
7448 NewMask |= (SubMask << (i * Scale));
7449 }
7450 }
7451 }
7452
7453 if (pNewMask)
7454 *pNewMask = NewMask;
7455 return true;
7456}
7457
7458uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
7459 unsigned Opcode = MI.getOpcode();
7460 unsigned NumOperands = MI.getDesc().getNumOperands();
7461
7462 auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
7463 uint16_t validDomains = 0;
7464 if (MI.getOperand(NumOperands - 1).isImm()) {
7465 unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
7466 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
7467 validDomains |= 0x2; // PackedSingle
7468 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
7469 validDomains |= 0x4; // PackedDouble
7470 if (!Is256 || Subtarget.hasAVX2())
7471 validDomains |= 0x8; // PackedInt
7472 }
7473 return validDomains;
7474 };
7475
7476 switch (Opcode) {
7477 case X86::BLENDPDrmi:
7478 case X86::BLENDPDrri:
7479 case X86::VBLENDPDrmi:
7480 case X86::VBLENDPDrri:
7481 return GetBlendDomains(2, false);
7482 case X86::VBLENDPDYrmi:
7483 case X86::VBLENDPDYrri:
7484 return GetBlendDomains(4, true);
7485 case X86::BLENDPSrmi:
7486 case X86::BLENDPSrri:
7487 case X86::VBLENDPSrmi:
7488 case X86::VBLENDPSrri:
7489 case X86::VPBLENDDrmi:
7490 case X86::VPBLENDDrri:
7491 return GetBlendDomains(4, false);
7492 case X86::VBLENDPSYrmi:
7493 case X86::VBLENDPSYrri:
7494 case X86::VPBLENDDYrmi:
7495 case X86::VPBLENDDYrri:
7496 return GetBlendDomains(8, true);
7497 case X86::PBLENDWrmi:
7498 case X86::PBLENDWrri:
7499 case X86::VPBLENDWrmi:
7500 case X86::VPBLENDWrri:
7501 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
7502 case X86::VPBLENDWYrmi:
7503 case X86::VPBLENDWYrri:
7504 return GetBlendDomains(8, false);
7505 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
7506 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
7507 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
7508 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
7509 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
7510 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
7511 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
7512 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
7513 case X86::VPORDZ128rr: case X86::VPORDZ128rm:
7514 case X86::VPORDZ256rr: case X86::VPORDZ256rm:
7515 case X86::VPORQZ128rr: case X86::VPORQZ128rm:
7516 case X86::VPORQZ256rr: case X86::VPORQZ256rm:
7517 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
7518 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
7519 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
7520 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm:
7521 // If we don't have DQI see if we can still switch from an EVEX integer
7522 // instruction to a VEX floating point instruction.
7523 if (Subtarget.hasDQI())
7524 return 0;
7525
7526 if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
7527 return 0;
7528 if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
7529 return 0;
7530 // Register forms will have 3 operands. Memory form will have more.
7531 if (NumOperands == 3 &&
7532 RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
7533 return 0;
7534
7535 // All domains are valid.
7536 return 0xe;
7537 case X86::MOVHLPSrr:
7538 // We can swap domains when both inputs are the same register.
7539 // FIXME: This doesn't catch all the cases we would like. If the input
7540 // register isn't KILLed by the instruction, the two address instruction
7541 // pass puts a COPY on one input. The other input uses the original
7542 // register. This prevents the same physical register from being used by
7543 // both inputs.
7544 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
7545 MI.getOperand(0).getSubReg() == 0 &&
7546 MI.getOperand(1).getSubReg() == 0 &&
7547 MI.getOperand(2).getSubReg() == 0)
7548 return 0x6;
7549 return 0;
7550 case X86::SHUFPDrri:
7551 return 0x6;
7552 }
7553 return 0;
7554}
7555
7556bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
7557 unsigned Domain) const {
7558 assert(Domain > 0 && Domain < 4 && "Invalid execution domain")((void)0);
7559 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
7560 assert(dom && "Not an SSE instruction")((void)0);
7561
7562 unsigned Opcode = MI.getOpcode();
7563 unsigned NumOperands = MI.getDesc().getNumOperands();
7564
7565 auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
7566 if (MI.getOperand(NumOperands - 1).isImm()) {
7567 unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
7568 Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
7569 unsigned NewImm = Imm;
7570
7571 const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
7572 if (!table)
7573 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
7574
7575 if (Domain == 1) { // PackedSingle
7576 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
7577 } else if (Domain == 2) { // PackedDouble
7578 AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
7579 } else if (Domain == 3) { // PackedInt
7580 if (Subtarget.hasAVX2()) {
7581 // If we are already VPBLENDW use that, else use VPBLENDD.
7582 if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
7583 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
7584 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
7585 }
7586 } else {
7587 assert(!Is256 && "128-bit vector expected")((void)0);
7588 AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
7589 }
7590 }
7591
7592 assert(table && table[Domain - 1] && "Unknown domain op")((void)0);
7593 MI.setDesc(get(table[Domain - 1]));
7594 MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
7595 }
7596 return true;
7597 };
7598
7599 switch (Opcode) {
7600 case X86::BLENDPDrmi:
7601 case X86::BLENDPDrri:
7602 case X86::VBLENDPDrmi:
7603 case X86::VBLENDPDrri:
7604 return SetBlendDomain(2, false);
7605 case X86::VBLENDPDYrmi:
7606 case X86::VBLENDPDYrri:
7607 return SetBlendDomain(4, true);
7608 case X86::BLENDPSrmi:
7609 case X86::BLENDPSrri:
7610 case X86::VBLENDPSrmi:
7611 case X86::VBLENDPSrri:
7612 case X86::VPBLENDDrmi:
7613 case X86::VPBLENDDrri:
7614 return SetBlendDomain(4, false);
7615 case X86::VBLENDPSYrmi:
7616 case X86::VBLENDPSYrri:
7617 case X86::VPBLENDDYrmi:
7618 case X86::VPBLENDDYrri:
7619 return SetBlendDomain(8, true);
7620 case X86::PBLENDWrmi:
7621 case X86::PBLENDWrri:
7622 case X86::VPBLENDWrmi:
7623 case X86::VPBLENDWrri:
7624 return SetBlendDomain(8, false);
7625 case X86::VPBLENDWYrmi:
7626 case X86::VPBLENDWYrri:
7627 return SetBlendDomain(16, true);
7628 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
7629 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
7630 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
7631 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
7632 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
7633 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
7634 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
7635 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
7636 case X86::VPORDZ128rr: case X86::VPORDZ128rm:
7637 case X86::VPORDZ256rr: case X86::VPORDZ256rm:
7638 case X86::VPORQZ128rr: case X86::VPORQZ128rm:
7639 case X86::VPORQZ256rr: case X86::VPORQZ256rm:
7640 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
7641 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
7642 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
7643 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: {
7644 // Without DQI, convert EVEX instructions to VEX instructions.
7645 if (Subtarget.hasDQI())
7646 return false;
7647
7648 const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
7649 ReplaceableCustomAVX512LogicInstrs);
7650 assert(table && "Instruction not found in table?")((void)0);
7651 // Don't change integer Q instructions to D instructions and
7652 // use D intructions if we started with a PS instruction.
7653 if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
7654 Domain = 4;
7655 MI.setDesc(get(table[Domain - 1]));
7656 return true;
7657 }
7658 case X86::UNPCKHPDrr:
7659 case X86::MOVHLPSrr:
7660 // We just need to commute the instruction which will switch the domains.
7661 if (Domain != dom && Domain != 3 &&
7662 MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
7663 MI.getOperand(0).getSubReg() == 0 &&
7664 MI.getOperand(1).getSubReg() == 0 &&
7665 MI.getOperand(2).getSubReg() == 0) {
7666 commuteInstruction(MI, false);
7667 return true;
7668 }
7669 // We must always return true for MOVHLPSrr.
7670 if (Opcode == X86::MOVHLPSrr)
7671 return true;
7672 break;
7673 case X86::SHUFPDrri: {
7674 if (Domain == 1) {
7675 unsigned Imm = MI.getOperand(3).getImm();
7676 unsigned NewImm = 0x44;
7677 if (Imm & 1) NewImm |= 0x0a;
7678 if (Imm & 2) NewImm |= 0xa0;
7679 MI.getOperand(3).setImm(NewImm);
7680 MI.setDesc(get(X86::SHUFPSrri));
7681 }
7682 return true;
7683 }
7684 }
7685 return false;
7686}
7687
7688std::pair<uint16_t, uint16_t>
7689X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
7690 uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
7691 unsigned opcode = MI.getOpcode();
7692 uint16_t validDomains = 0;
7693 if (domain) {
7694 // Attempt to match for custom instructions.
7695 validDomains = getExecutionDomainCustom(MI);
7696 if (validDomains)
7697 return std::make_pair(domain, validDomains);
7698
7699 if (lookup(opcode, domain, ReplaceableInstrs)) {
7700 validDomains = 0xe;
7701 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
7702 validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
7703 } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
7704 validDomains = 0x6;
7705 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
7706 // Insert/extract instructions should only effect domain if AVX2
7707 // is enabled.
7708 if (!Subtarget.hasAVX2())
7709 return std::make_pair(0, 0);
7710 validDomains = 0xe;
7711 } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
7712 validDomains = 0xe;
7713 } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
7714 ReplaceableInstrsAVX512DQ)) {
7715 validDomains = 0xe;
7716 } else if (Subtarget.hasDQI()) {
7717 if (const uint16_t *table = lookupAVX512(opcode, domain,
7718 ReplaceableInstrsAVX512DQMasked)) {
7719 if (domain == 1 || (domain == 3 && table[3] == opcode))
7720 validDomains = 0xa;
7721 else
7722 validDomains = 0xc;
7723 }
7724 }
7725 }
7726 return std::make_pair(domain, validDomains);
7727}
7728
7729void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
7730 assert(Domain>0 && Domain<4 && "Invalid execution domain")((void)0);
7731 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
7732 assert(dom && "Not an SSE instruction")((void)0);
7733
7734 // Attempt to match for custom instructions.
7735 if (setExecutionDomainCustom(MI, Domain))
7736 return;
7737
7738 const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
7739 if (!table) { // try the other table
7740 assert((Subtarget.hasAVX2() || Domain < 3) &&((void)0)
7741 "256-bit vector operations only available in AVX2")((void)0);
7742 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
7743 }
7744 if (!table) { // try the FP table
7745 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
7746 assert((!table || Domain < 3) &&((void)0)
7747 "Can only select PackedSingle or PackedDouble")((void)0);
7748 }
7749 if (!table) { // try the other table
7750 assert(Subtarget.hasAVX2() &&((void)0)
7751 "256-bit insert/extract only available in AVX2")((void)0);
7752 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
7753 }
7754 if (!table) { // try the AVX512 table
7755 assert(Subtarget.hasAVX512() && "Requires AVX-512")((void)0);
7756 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
7757 // Don't change integer Q instructions to D instructions.
7758 if (table && Domain == 3 && table[3] == MI.getOpcode())
7759 Domain = 4;
7760 }
7761 if (!table) { // try the AVX512DQ table
7762 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ")((void)0);
7763 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
7764 // Don't change integer Q instructions to D instructions and
7765 // use D instructions if we started with a PS instruction.
7766 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
7767 Domain = 4;
7768 }
7769 if (!table) { // try the AVX512DQMasked table
7770 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ")((void)0);
7771 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
7772 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
7773 Domain = 4;
7774 }
7775 assert(table && "Cannot change domain")((void)0);
7776 MI.setDesc(get(table[Domain - 1]));
7777}
7778
7779/// Return the noop instruction to use for a noop.
7780MCInst X86InstrInfo::getNop() const {
7781 MCInst Nop;
7782 Nop.setOpcode(X86::NOOP);
7783 return Nop;
7784}
7785
7786bool X86InstrInfo::isHighLatencyDef(int opc) const {
7787 switch (opc) {
7788 default: return false;
7789 case X86::DIVPDrm:
7790 case X86::DIVPDrr:
7791 case X86::DIVPSrm:
7792 case X86::DIVPSrr:
7793 case X86::DIVSDrm:
7794 case X86::DIVSDrm_Int:
7795 case X86::DIVSDrr:
7796 case X86::DIVSDrr_Int:
7797 case X86::DIVSSrm:
7798 case X86::DIVSSrm_Int:
7799 case X86::DIVSSrr:
7800 case X86::DIVSSrr_Int:
7801 case X86::SQRTPDm:
7802 case X86::SQRTPDr:
7803 case X86::SQRTPSm:
7804 case X86::SQRTPSr:
7805 case X86::SQRTSDm:
7806 case X86::SQRTSDm_Int:
7807 case X86::SQRTSDr:
7808 case X86::SQRTSDr_Int:
7809 case X86::SQRTSSm:
7810 case X86::SQRTSSm_Int:
7811 case X86::SQRTSSr:
7812 case X86::SQRTSSr_Int:
7813 // AVX instructions with high latency
7814 case X86::VDIVPDrm:
7815 case X86::VDIVPDrr:
7816 case X86::VDIVPDYrm:
7817 case X86::VDIVPDYrr:
7818 case X86::VDIVPSrm:
7819 case X86::VDIVPSrr:
7820 case X86::VDIVPSYrm:
7821 case X86::VDIVPSYrr:
7822 case X86::VDIVSDrm:
7823 case X86::VDIVSDrm_Int:
7824 case X86::VDIVSDrr:
7825 case X86::VDIVSDrr_Int:
7826 case X86::VDIVSSrm:
7827 case X86::VDIVSSrm_Int:
7828 case X86::VDIVSSrr:
7829 case X86::VDIVSSrr_Int:
7830 case X86::VSQRTPDm:
7831 case X86::VSQRTPDr:
7832 case X86::VSQRTPDYm:
7833 case X86::VSQRTPDYr:
7834 case X86::VSQRTPSm:
7835 case X86::VSQRTPSr:
7836 case X86::VSQRTPSYm:
7837 case X86::VSQRTPSYr:
7838 case X86::VSQRTSDm:
7839 case X86::VSQRTSDm_Int:
7840 case X86::VSQRTSDr:
7841 case X86::VSQRTSDr_Int:
7842 case X86::VSQRTSSm:
7843 case X86::VSQRTSSm_Int:
7844 case X86::VSQRTSSr:
7845 case X86::VSQRTSSr_Int:
7846 // AVX512 instructions with high latency
7847 case X86::VDIVPDZ128rm:
7848 case X86::VDIVPDZ128rmb:
7849 case X86::VDIVPDZ128rmbk:
7850 case X86::VDIVPDZ128rmbkz:
7851 case X86::VDIVPDZ128rmk:
7852 case X86::VDIVPDZ128rmkz:
7853 case X86::VDIVPDZ128rr:
7854 case X86::VDIVPDZ128rrk:
7855 case X86::VDIVPDZ128rrkz:
7856 case X86::VDIVPDZ256rm:
7857 case X86::VDIVPDZ256rmb:
7858 case X86::VDIVPDZ256rmbk:
7859 case X86::VDIVPDZ256rmbkz:
7860 case X86::VDIVPDZ256rmk:
7861 case X86::VDIVPDZ256rmkz:
7862 case X86::VDIVPDZ256rr:
7863 case X86::VDIVPDZ256rrk:
7864 case X86::VDIVPDZ256rrkz:
7865 case X86::VDIVPDZrrb:
7866 case X86::VDIVPDZrrbk:
7867 case X86::VDIVPDZrrbkz:
7868 case X86::VDIVPDZrm:
7869 case X86::VDIVPDZrmb:
7870 case X86::VDIVPDZrmbk:
7871 case X86::VDIVPDZrmbkz:
7872 case X86::VDIVPDZrmk:
7873 case X86::VDIVPDZrmkz:
7874 case X86::VDIVPDZrr:
7875 case X86::VDIVPDZrrk:
7876 case X86::VDIVPDZrrkz:
7877 case X86::VDIVPSZ128rm:
7878 case X86::VDIVPSZ128rmb:
7879 case X86::VDIVPSZ128rmbk:
7880 case X86::VDIVPSZ128rmbkz:
7881 case X86::VDIVPSZ128rmk:
7882 case X86::VDIVPSZ128rmkz:
7883 case X86::VDIVPSZ128rr:
7884 case X86::VDIVPSZ128rrk:
7885 case X86::VDIVPSZ128rrkz:
7886 case X86::VDIVPSZ256rm:
7887 case X86::VDIVPSZ256rmb:
7888 case X86::VDIVPSZ256rmbk:
7889 case X86::VDIVPSZ256rmbkz:
7890 case X86::VDIVPSZ256rmk:
7891 case X86::VDIVPSZ256rmkz:
7892 case X86::VDIVPSZ256rr:
7893 case X86::VDIVPSZ256rrk:
7894 case X86::VDIVPSZ256rrkz:
7895 case X86::VDIVPSZrrb:
7896 case X86::VDIVPSZrrbk:
7897 case X86::VDIVPSZrrbkz:
7898 case X86::VDIVPSZrm:
7899 case X86::VDIVPSZrmb:
7900 case X86::VDIVPSZrmbk:
7901 case X86::VDIVPSZrmbkz:
7902 case X86::VDIVPSZrmk:
7903 case X86::VDIVPSZrmkz:
7904 case X86::VDIVPSZrr:
7905 case X86::VDIVPSZrrk:
7906 case X86::VDIVPSZrrkz:
7907 case X86::VDIVSDZrm:
7908 case X86::VDIVSDZrr:
7909 case X86::VDIVSDZrm_Int:
7910 case X86::VDIVSDZrm_Intk:
7911 case X86::VDIVSDZrm_Intkz:
7912 case X86::VDIVSDZrr_Int:
7913 case X86::VDIVSDZrr_Intk:
7914 case X86::VDIVSDZrr_Intkz:
7915 case X86::VDIVSDZrrb_Int:
7916 case X86::VDIVSDZrrb_Intk:
7917 case X86::VDIVSDZrrb_Intkz:
7918 case X86::VDIVSSZrm:
7919 case X86::VDIVSSZrr:
7920 case X86::VDIVSSZrm_Int:
7921 case X86::VDIVSSZrm_Intk:
7922 case X86::VDIVSSZrm_Intkz:
7923 case X86::VDIVSSZrr_Int:
7924 case X86::VDIVSSZrr_Intk:
7925 case X86::VDIVSSZrr_Intkz:
7926 case X86::VDIVSSZrrb_Int:
7927 case X86::VDIVSSZrrb_Intk:
7928 case X86::VDIVSSZrrb_Intkz:
7929 case X86::VSQRTPDZ128m:
7930 case X86::VSQRTPDZ128mb:
7931 case X86::VSQRTPDZ128mbk:
7932 case X86::VSQRTPDZ128mbkz:
7933 case X86::VSQRTPDZ128mk:
7934 case X86::VSQRTPDZ128mkz:
7935 case X86::VSQRTPDZ128r:
7936 case X86::VSQRTPDZ128rk:
7937 case X86::VSQRTPDZ128rkz:
7938 case X86::VSQRTPDZ256m:
7939 case X86::VSQRTPDZ256mb:
7940 case X86::VSQRTPDZ256mbk:
7941 case X86::VSQRTPDZ256mbkz:
7942 case X86::VSQRTPDZ256mk:
7943 case X86::VSQRTPDZ256mkz:
7944 case X86::VSQRTPDZ256r:
7945 case X86::VSQRTPDZ256rk:
7946 case X86::VSQRTPDZ256rkz:
7947 case X86::VSQRTPDZm:
7948 case X86::VSQRTPDZmb:
7949 case X86::VSQRTPDZmbk:
7950 case X86::VSQRTPDZmbkz:
7951 case X86::VSQRTPDZmk:
7952 case X86::VSQRTPDZmkz:
7953 case X86::VSQRTPDZr:
7954 case X86::VSQRTPDZrb:
7955 case X86::VSQRTPDZrbk:
7956 case X86::VSQRTPDZrbkz:
7957 case X86::VSQRTPDZrk:
7958 case X86::VSQRTPDZrkz:
7959 case X86::VSQRTPSZ128m:
7960 case X86::VSQRTPSZ128mb:
7961 case X86::VSQRTPSZ128mbk:
7962 case X86::VSQRTPSZ128mbkz:
7963 case X86::VSQRTPSZ128mk:
7964 case X86::VSQRTPSZ128mkz:
7965 case X86::VSQRTPSZ128r:
7966 case X86::VSQRTPSZ128rk:
7967 case X86::VSQRTPSZ128rkz:
7968 case X86::VSQRTPSZ256m:
7969 case X86::VSQRTPSZ256mb:
7970 case X86::VSQRTPSZ256mbk:
7971 case X86::VSQRTPSZ256mbkz:
7972 case X86::VSQRTPSZ256mk:
7973 case X86::VSQRTPSZ256mkz:
7974 case X86::VSQRTPSZ256r:
7975 case X86::VSQRTPSZ256rk:
7976 case X86::VSQRTPSZ256rkz:
7977 case X86::VSQRTPSZm:
7978 case X86::VSQRTPSZmb:
7979 case X86::VSQRTPSZmbk:
7980 case X86::VSQRTPSZmbkz:
7981 case X86::VSQRTPSZmk:
7982 case X86::VSQRTPSZmkz:
7983 case X86::VSQRTPSZr:
7984 case X86::VSQRTPSZrb:
7985 case X86::VSQRTPSZrbk:
7986 case X86::VSQRTPSZrbkz:
7987 case X86::VSQRTPSZrk:
7988 case X86::VSQRTPSZrkz:
7989 case X86::VSQRTSDZm:
7990 case X86::VSQRTSDZm_Int:
7991 case X86::VSQRTSDZm_Intk:
7992 case X86::VSQRTSDZm_Intkz:
7993 case X86::VSQRTSDZr:
7994 case X86::VSQRTSDZr_Int:
7995 case X86::VSQRTSDZr_Intk:
7996 case X86::VSQRTSDZr_Intkz:
7997 case X86::VSQRTSDZrb_Int:
7998 case X86::VSQRTSDZrb_Intk:
7999 case X86::VSQRTSDZrb_Intkz:
8000 case X86::VSQRTSSZm:
8001 case X86::VSQRTSSZm_Int:
8002 case X86::VSQRTSSZm_Intk:
8003 case X86::VSQRTSSZm_Intkz:
8004 case X86::VSQRTSSZr:
8005 case X86::VSQRTSSZr_Int:
8006 case X86::VSQRTSSZr_Intk:
8007 case X86::VSQRTSSZr_Intkz:
8008 case X86::VSQRTSSZrb_Int:
8009 case X86::VSQRTSSZrb_Intk:
8010 case X86::VSQRTSSZrb_Intkz:
8011
8012 case X86::VGATHERDPDYrm:
8013 case X86::VGATHERDPDZ128rm:
8014 case X86::VGATHERDPDZ256rm:
8015 case X86::VGATHERDPDZrm:
8016 case X86::VGATHERDPDrm:
8017 case X86::VGATHERDPSYrm:
8018 case X86::VGATHERDPSZ128rm:
8019 case X86::VGATHERDPSZ256rm:
8020 case X86::VGATHERDPSZrm:
8021 case X86::VGATHERDPSrm:
8022 case X86::VGATHERPF0DPDm:
8023 case X86::VGATHERPF0DPSm:
8024 case X86::VGATHERPF0QPDm:
8025 case X86::VGATHERPF0QPSm:
8026 case X86::VGATHERPF1DPDm:
8027 case X86::VGATHERPF1DPSm:
8028 case X86::VGATHERPF1QPDm:
8029 case X86::VGATHERPF1QPSm:
8030 case X86::VGATHERQPDYrm:
8031 case X86::VGATHERQPDZ128rm:
8032 case X86::VGATHERQPDZ256rm:
8033 case X86::VGATHERQPDZrm:
8034 case X86::VGATHERQPDrm:
8035 case X86::VGATHERQPSYrm:
8036 case X86::VGATHERQPSZ128rm:
8037 case X86::VGATHERQPSZ256rm:
8038 case X86::VGATHERQPSZrm:
8039 case X86::VGATHERQPSrm:
8040 case X86::VPGATHERDDYrm:
8041 case X86::VPGATHERDDZ128rm:
8042 case X86::VPGATHERDDZ256rm:
8043 case X86::VPGATHERDDZrm:
8044 case X86::VPGATHERDDrm:
8045 case X86::VPGATHERDQYrm:
8046 case X86::VPGATHERDQZ128rm:
8047 case X86::VPGATHERDQZ256rm:
8048 case X86::VPGATHERDQZrm:
8049 case X86::VPGATHERDQrm:
8050 case X86::VPGATHERQDYrm:
8051 case X86::VPGATHERQDZ128rm:
8052 case X86::VPGATHERQDZ256rm:
8053 case X86::VPGATHERQDZrm:
8054 case X86::VPGATHERQDrm:
8055 case X86::VPGATHERQQYrm:
8056 case X86::VPGATHERQQZ128rm:
8057 case X86::VPGATHERQQZ256rm:
8058 case X86::VPGATHERQQZrm:
8059 case X86::VPGATHERQQrm:
8060 case X86::VSCATTERDPDZ128mr:
8061 case X86::VSCATTERDPDZ256mr:
8062 case X86::VSCATTERDPDZmr:
8063 case X86::VSCATTERDPSZ128mr:
8064 case X86::VSCATTERDPSZ256mr:
8065 case X86::VSCATTERDPSZmr:
8066 case X86::VSCATTERPF0DPDm:
8067 case X86::VSCATTERPF0DPSm:
8068 case X86::VSCATTERPF0QPDm:
8069 case X86::VSCATTERPF0QPSm:
8070 case X86::VSCATTERPF1DPDm:
8071 case X86::VSCATTERPF1DPSm:
8072 case X86::VSCATTERPF1QPDm:
8073 case X86::VSCATTERPF1QPSm:
8074 case X86::VSCATTERQPDZ128mr:
8075 case X86::VSCATTERQPDZ256mr:
8076 case X86::VSCATTERQPDZmr:
8077 case X86::VSCATTERQPSZ128mr:
8078 case X86::VSCATTERQPSZ256mr:
8079 case X86::VSCATTERQPSZmr:
8080 case X86::VPSCATTERDDZ128mr:
8081 case X86::VPSCATTERDDZ256mr:
8082 case X86::VPSCATTERDDZmr:
8083 case X86::VPSCATTERDQZ128mr:
8084 case X86::VPSCATTERDQZ256mr:
8085 case X86::VPSCATTERDQZmr:
8086 case X86::VPSCATTERQDZ128mr:
8087 case X86::VPSCATTERQDZ256mr:
8088 case X86::VPSCATTERQDZmr:
8089 case X86::VPSCATTERQQZ128mr:
8090 case X86::VPSCATTERQQZ256mr:
8091 case X86::VPSCATTERQQZmr:
8092 return true;
8093 }
8094}
8095
8096bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
8097 const MachineRegisterInfo *MRI,
8098 const MachineInstr &DefMI,
8099 unsigned DefIdx,
8100 const MachineInstr &UseMI,
8101 unsigned UseIdx) const {
8102 return isHighLatencyDef(DefMI.getOpcode());
8103}
8104
8105bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
8106 const MachineBasicBlock *MBB) const {
8107 assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&((void)0)
8108 Inst.getNumDefs() <= 2 && "Reassociation needs binary operators")((void)0);
8109
8110 // Integer binary math/logic instructions have a third source operand:
8111 // the EFLAGS register. That operand must be both defined here and never
8112 // used; ie, it must be dead. If the EFLAGS operand is live, then we can
8113 // not change anything because rearranging the operands could affect other
8114 // instructions that depend on the exact status flags (zero, sign, etc.)
8115 // that are set by using these particular operands with this operation.
8116 const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
8117 assert((Inst.getNumDefs() == 1 || FlagDef) &&((void)0)
8118 "Implicit def isn't flags?")((void)0);
8119 if (FlagDef && !FlagDef->isDead())
8120 return false;
8121
8122 return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
8123}
8124
8125// TODO: There are many more machine instruction opcodes to match:
8126// 1. Other data types (integer, vectors)
8127// 2. Other math / logic operations (xor, or)
8128// 3. Other forms of the same operation (intrinsics and other variants)
8129bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
8130 switch (Inst.getOpcode()) {
8131 case X86::AND8rr:
8132 case X86::AND16rr:
8133 case X86::AND32rr:
8134 case X86::AND64rr:
8135 case X86::OR8rr:
8136 case X86::OR16rr:
8137 case X86::OR32rr:
8138 case X86::OR64rr:
8139 case X86::XOR8rr:
8140 case X86::XOR16rr:
8141 case X86::XOR32rr:
8142 case X86::XOR64rr:
8143 case X86::IMUL16rr:
8144 case X86::IMUL32rr:
8145 case X86::IMUL64rr:
8146 case X86::PANDrr:
8147 case X86::PORrr:
8148 case X86::PXORrr:
8149 case X86::ANDPDrr:
8150 case X86::ANDPSrr:
8151 case X86::ORPDrr:
8152 case X86::ORPSrr:
8153 case X86::XORPDrr:
8154 case X86::XORPSrr:
8155 case X86::PADDBrr:
8156 case X86::PADDWrr:
8157 case X86::PADDDrr:
8158 case X86::PADDQrr:
8159 case X86::PMULLWrr:
8160 case X86::PMULLDrr:
8161 case X86::PMAXSBrr:
8162 case X86::PMAXSDrr:
8163 case X86::PMAXSWrr:
8164 case X86::PMAXUBrr:
8165 case X86::PMAXUDrr:
8166 case X86::PMAXUWrr:
8167 case X86::PMINSBrr:
8168 case X86::PMINSDrr:
8169 case X86::PMINSWrr:
8170 case X86::PMINUBrr:
8171 case X86::PMINUDrr:
8172 case X86::PMINUWrr:
8173 case X86::VPANDrr:
8174 case X86::VPANDYrr:
8175 case X86::VPANDDZ128rr:
8176 case X86::VPANDDZ256rr:
8177 case X86::VPANDDZrr:
8178 case X86::VPANDQZ128rr:
8179 case X86::VPANDQZ256rr:
8180 case X86::VPANDQZrr:
8181 case X86::VPORrr:
8182 case X86::VPORYrr:
8183 case X86::VPORDZ128rr:
8184 case X86::VPORDZ256rr:
8185 case X86::VPORDZrr:
8186 case X86::VPORQZ128rr:
8187 case X86::VPORQZ256rr:
8188 case X86::VPORQZrr:
8189 case X86::VPXORrr:
8190 case X86::VPXORYrr:
8191 case X86::VPXORDZ128rr:
8192 case X86::VPXORDZ256rr:
8193 case X86::VPXORDZrr:
8194 case X86::VPXORQZ128rr:
8195 case X86::VPXORQZ256rr:
8196 case X86::VPXORQZrr:
8197 case X86::VANDPDrr:
8198 case X86::VANDPSrr:
8199 case X86::VANDPDYrr:
8200 case X86::VANDPSYrr:
8201 case X86::VANDPDZ128rr:
8202 case X86::VANDPSZ128rr:
8203 case X86::VANDPDZ256rr:
8204 case X86::VANDPSZ256rr:
8205 case X86::VANDPDZrr:
8206 case X86::VANDPSZrr:
8207 case X86::VORPDrr:
8208 case X86::VORPSrr:
8209 case X86::VORPDYrr:
8210 case X86::VORPSYrr:
8211 case X86::VORPDZ128rr:
8212 case X86::VORPSZ128rr:
8213 case X86::VORPDZ256rr:
8214 case X86::VORPSZ256rr:
8215 case X86::VORPDZrr:
8216 case X86::VORPSZrr:
8217 case X86::VXORPDrr:
8218 case X86::VXORPSrr:
8219 case X86::VXORPDYrr:
8220 case X86::VXORPSYrr:
8221 case X86::VXORPDZ128rr:
8222 case X86::VXORPSZ128rr:
8223 case X86::VXORPDZ256rr:
8224 case X86::VXORPSZ256rr:
8225 case X86::VXORPDZrr:
8226 case X86::VXORPSZrr:
8227 case X86::KADDBrr:
8228 case X86::KADDWrr:
8229 case X86::KADDDrr:
8230 case X86::KADDQrr:
8231 case X86::KANDBrr:
8232 case X86::KANDWrr:
8233 case X86::KANDDrr:
8234 case X86::KANDQrr:
8235 case X86::KORBrr:
8236 case X86::KORWrr:
8237 case X86::KORDrr:
8238 case X86::KORQrr:
8239 case X86::KXORBrr:
8240 case X86::KXORWrr:
8241 case X86::KXORDrr:
8242 case X86::KXORQrr:
8243 case X86::VPADDBrr:
8244 case X86::VPADDWrr:
8245 case X86::VPADDDrr:
8246 case X86::VPADDQrr:
8247 case X86::VPADDBYrr:
8248 case X86::VPADDWYrr:
8249 case X86::VPADDDYrr:
8250 case X86::VPADDQYrr:
8251 case X86::VPADDBZ128rr:
8252 case X86::VPADDWZ128rr:
8253 case X86::VPADDDZ128rr:
8254 case X86::VPADDQZ128rr:
8255 case X86::VPADDBZ256rr:
8256 case X86::VPADDWZ256rr:
8257 case X86::VPADDDZ256rr:
8258 case X86::VPADDQZ256rr:
8259 case X86::VPADDBZrr:
8260 case X86::VPADDWZrr:
8261 case X86::VPADDDZrr:
8262 case X86::VPADDQZrr:
8263 case X86::VPMULLWrr:
8264 case X86::VPMULLWYrr:
8265 case X86::VPMULLWZ128rr:
8266 case X86::VPMULLWZ256rr:
8267 case X86::VPMULLWZrr:
8268 case X86::VPMULLDrr:
8269 case X86::VPMULLDYrr:
8270 case X86::VPMULLDZ128rr:
8271 case X86::VPMULLDZ256rr:
8272 case X86::VPMULLDZrr:
8273 case X86::VPMULLQZ128rr:
8274 case X86::VPMULLQZ256rr:
8275 case X86::VPMULLQZrr:
8276 case X86::VPMAXSBrr:
8277 case X86::VPMAXSBYrr:
8278 case X86::VPMAXSBZ128rr:
8279 case X86::VPMAXSBZ256rr:
8280 case X86::VPMAXSBZrr:
8281 case X86::VPMAXSDrr:
8282 case X86::VPMAXSDYrr:
8283 case X86::VPMAXSDZ128rr:
8284 case X86::VPMAXSDZ256rr:
8285 case X86::VPMAXSDZrr:
8286 case X86::VPMAXSQZ128rr:
8287 case X86::VPMAXSQZ256rr:
8288 case X86::VPMAXSQZrr:
8289 case X86::VPMAXSWrr:
8290 case X86::VPMAXSWYrr:
8291 case X86::VPMAXSWZ128rr:
8292 case X86::VPMAXSWZ256rr:
8293 case X86::VPMAXSWZrr:
8294 case X86::VPMAXUBrr:
8295 case X86::VPMAXUBYrr:
8296 case X86::VPMAXUBZ128rr:
8297 case X86::VPMAXUBZ256rr:
8298 case X86::VPMAXUBZrr:
8299 case X86::VPMAXUDrr:
8300 case X86::VPMAXUDYrr:
8301 case X86::VPMAXUDZ128rr:
8302 case X86::VPMAXUDZ256rr:
8303 case X86::VPMAXUDZrr:
8304 case X86::VPMAXUQZ128rr:
8305 case X86::VPMAXUQZ256rr:
8306 case X86::VPMAXUQZrr:
8307 case X86::VPMAXUWrr:
8308 case X86::VPMAXUWYrr:
8309 case X86::VPMAXUWZ128rr:
8310 case X86::VPMAXUWZ256rr:
8311 case X86::VPMAXUWZrr:
8312 case X86::VPMINSBrr:
8313 case X86::VPMINSBYrr:
8314 case X86::VPMINSBZ128rr:
8315 case X86::VPMINSBZ256rr:
8316 case X86::VPMINSBZrr:
8317 case X86::VPMINSDrr:
8318 case X86::VPMINSDYrr:
8319 case X86::VPMINSDZ128rr:
8320 case X86::VPMINSDZ256rr:
8321 case X86::VPMINSDZrr:
8322 case X86::VPMINSQZ128rr:
8323 case X86::VPMINSQZ256rr:
8324 case X86::VPMINSQZrr:
8325 case X86::VPMINSWrr:
8326 case X86::VPMINSWYrr:
8327 case X86::VPMINSWZ128rr:
8328 case X86::VPMINSWZ256rr:
8329 case X86::VPMINSWZrr:
8330 case X86::VPMINUBrr:
8331 case X86::VPMINUBYrr:
8332 case X86::VPMINUBZ128rr:
8333 case X86::VPMINUBZ256rr:
8334 case X86::VPMINUBZrr:
8335 case X86::VPMINUDrr:
8336 case X86::VPMINUDYrr:
8337 case X86::VPMINUDZ128rr:
8338 case X86::VPMINUDZ256rr:
8339 case X86::VPMINUDZrr:
8340 case X86::VPMINUQZ128rr:
8341 case X86::VPMINUQZ256rr:
8342 case X86::VPMINUQZrr:
8343 case X86::VPMINUWrr:
8344 case X86::VPMINUWYrr:
8345 case X86::VPMINUWZ128rr:
8346 case X86::VPMINUWZ256rr:
8347 case X86::VPMINUWZrr:
8348 // Normal min/max instructions are not commutative because of NaN and signed
8349 // zero semantics, but these are. Thus, there's no need to check for global
8350 // relaxed math; the instructions themselves have the properties we need.
8351 case X86::MAXCPDrr:
8352 case X86::MAXCPSrr:
8353 case X86::MAXCSDrr:
8354 case X86::MAXCSSrr:
8355 case X86::MINCPDrr:
8356 case X86::MINCPSrr:
8357 case X86::MINCSDrr:
8358 case X86::MINCSSrr:
8359 case X86::VMAXCPDrr:
8360 case X86::VMAXCPSrr:
8361 case X86::VMAXCPDYrr:
8362 case X86::VMAXCPSYrr:
8363 case X86::VMAXCPDZ128rr:
8364 case X86::VMAXCPSZ128rr:
8365 case X86::VMAXCPDZ256rr:
8366 case X86::VMAXCPSZ256rr:
8367 case X86::VMAXCPDZrr:
8368 case X86::VMAXCPSZrr:
8369 case X86::VMAXCSDrr:
8370 case X86::VMAXCSSrr:
8371 case X86::VMAXCSDZrr:
8372 case X86::VMAXCSSZrr:
8373 case X86::VMINCPDrr:
8374 case X86::VMINCPSrr:
8375 case X86::VMINCPDYrr:
8376 case X86::VMINCPSYrr:
8377 case X86::VMINCPDZ128rr:
8378 case X86::VMINCPSZ128rr:
8379 case X86::VMINCPDZ256rr:
8380 case X86::VMINCPSZ256rr:
8381 case X86::VMINCPDZrr:
8382 case X86::VMINCPSZrr:
8383 case X86::VMINCSDrr:
8384 case X86::VMINCSSrr:
8385 case X86::VMINCSDZrr:
8386 case X86::VMINCSSZrr:
8387 return true;
8388 case X86::ADDPDrr:
8389 case X86::ADDPSrr:
8390 case X86::ADDSDrr:
8391 case X86::ADDSSrr:
8392 case X86::MULPDrr:
8393 case X86::MULPSrr:
8394 case X86::MULSDrr:
8395 case X86::MULSSrr:
8396 case X86::VADDPDrr:
8397 case X86::VADDPSrr:
8398 case X86::VADDPDYrr:
8399 case X86::VADDPSYrr:
8400 case X86::VADDPDZ128rr:
8401 case X86::VADDPSZ128rr:
8402 case X86::VADDPDZ256rr:
8403 case X86::VADDPSZ256rr:
8404 case X86::VADDPDZrr:
8405 case X86::VADDPSZrr:
8406 case X86::VADDSDrr:
8407 case X86::VADDSSrr:
8408 case X86::VADDSDZrr:
8409 case X86::VADDSSZrr:
8410 case X86::VMULPDrr:
8411 case X86::VMULPSrr:
8412 case X86::VMULPDYrr:
8413 case X86::VMULPSYrr:
8414 case X86::VMULPDZ128rr:
8415 case X86::VMULPSZ128rr:
8416 case X86::VMULPDZ256rr:
8417 case X86::VMULPSZ256rr:
8418 case X86::VMULPDZrr:
8419 case X86::VMULPSZrr:
8420 case X86::VMULSDrr:
8421 case X86::VMULSSrr:
8422 case X86::VMULSDZrr:
8423 case X86::VMULSSZrr:
8424 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
8425 Inst.getFlag(MachineInstr::MIFlag::FmNsz);
8426 default:
8427 return false;
8428 }
8429}
8430
8431/// If \p DescribedReg overlaps with the MOVrr instruction's destination
8432/// register then, if possible, describe the value in terms of the source
8433/// register.
8434static Optional<ParamLoadedValue>
8435describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
8436 const TargetRegisterInfo *TRI) {
8437 Register DestReg = MI.getOperand(0).getReg();
8438 Register SrcReg = MI.getOperand(1).getReg();
8439
8440 auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
8441
8442 // If the described register is the destination, just return the source.
8443 if (DestReg == DescribedReg)
8444 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
8445
8446 // If the described register is a sub-register of the destination register,
8447 // then pick out the source register's corresponding sub-register.
8448 if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
8449 Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
8450 return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
8451 }
8452
8453 // The remaining case to consider is when the described register is a
8454 // super-register of the destination register. MOV8rr and MOV16rr does not
8455 // write to any of the other bytes in the register, meaning that we'd have to
8456 // describe the value using a combination of the source register and the
8457 // non-overlapping bits in the described register, which is not currently
8458 // possible.
8459 if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
8460 !TRI->isSuperRegister(DestReg, DescribedReg))
8461 return None;
8462
8463 assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case")((void)0);
8464 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
8465}
8466
8467Optional<ParamLoadedValue>
8468X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
8469 const MachineOperand *Op = nullptr;
8470 DIExpression *Expr = nullptr;
8471
8472 const TargetRegisterInfo *TRI = &getRegisterInfo();
8473
8474 switch (MI.getOpcode()) {
8475 case X86::LEA32r:
8476 case X86::LEA64r:
8477 case X86::LEA64_32r: {
8478 // We may need to describe a 64-bit parameter with a 32-bit LEA.
8479 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
8480 return None;
8481
8482 // Operand 4 could be global address. For now we do not support
8483 // such situation.
8484 if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
8485 return None;
8486
8487 const MachineOperand &Op1 = MI.getOperand(1);
8488 const MachineOperand &Op2 = MI.getOperand(3);
8489 assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister ||((void)0)
8490 Register::isPhysicalRegister(Op2.getReg())))((void)0);
8491
8492 // Omit situations like:
8493 // %rsi = lea %rsi, 4, ...
8494 if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
8495 Op2.getReg() == MI.getOperand(0).getReg())
8496 return None;
8497 else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
8498 TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
8499 (Op2.getReg() != X86::NoRegister &&
8500 TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
8501 return None;
8502
8503 int64_t Coef = MI.getOperand(2).getImm();
8504 int64_t Offset = MI.getOperand(4).getImm();
8505 SmallVector<uint64_t, 8> Ops;
8506
8507 if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
8508 Op = &Op1;
8509 } else if (Op1.isFI())
8510 Op = &Op1;
8511
8512 if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
8513 Ops.push_back(dwarf::DW_OP_constu);
8514 Ops.push_back(Coef + 1);
8515 Ops.push_back(dwarf::DW_OP_mul);
8516 } else {
8517 if (Op && Op2.getReg() != X86::NoRegister) {
8518 int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
8519 if (dwarfReg < 0)
8520 return None;
8521 else if (dwarfReg < 32) {
8522 Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
8523 Ops.push_back(0);
8524 } else {
8525 Ops.push_back(dwarf::DW_OP_bregx);
8526 Ops.push_back(dwarfReg);
8527 Ops.push_back(0);
8528 }
8529 } else if (!Op) {
8530 assert(Op2.getReg() != X86::NoRegister)((void)0);
8531 Op = &Op2;
8532 }
8533
8534 if (Coef > 1) {
8535 assert(Op2.getReg() != X86::NoRegister)((void)0);
8536 Ops.push_back(dwarf::DW_OP_constu);
8537 Ops.push_back(Coef);
8538 Ops.push_back(dwarf::DW_OP_mul);
8539 }
8540
8541 if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
8542 Op2.getReg() != X86::NoRegister) {
8543 Ops.push_back(dwarf::DW_OP_plus);
8544 }
8545 }
8546
8547 DIExpression::appendOffset(Ops, Offset);
8548 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
8549
8550 return ParamLoadedValue(*Op, Expr);;
8551 }
8552 case X86::MOV8ri:
8553 case X86::MOV16ri:
8554 // TODO: Handle MOV8ri and MOV16ri.
8555 return None;
8556 case X86::MOV32ri:
8557 case X86::MOV64ri:
8558 case X86::MOV64ri32:
8559 // MOV32ri may be used for producing zero-extended 32-bit immediates in
8560 // 64-bit parameters, so we need to consider super-registers.
8561 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
8562 return None;
8563 return ParamLoadedValue(MI.getOperand(1), Expr);
8564 case X86::MOV8rr:
8565 case X86::MOV16rr:
8566 case X86::MOV32rr:
8567 case X86::MOV64rr:
8568 return describeMOVrrLoadedValue(MI, Reg, TRI);
8569 case X86::XOR32rr: {
8570 // 64-bit parameters are zero-materialized using XOR32rr, so also consider
8571 // super-registers.
8572 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
8573 return None;
8574 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
8575 return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
8576 return None;
8577 }
8578 case X86::MOVSX64rr32: {
8579 // We may need to describe the lower 32 bits of the MOVSX; for example, in
8580 // cases like this:
8581 //
8582 // $ebx = [...]
8583 // $rdi = MOVSX64rr32 $ebx
8584 // $esi = MOV32rr $edi
8585 if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
8586 return None;
8587
8588 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
8589
8590 // If the described register is the destination register we need to
8591 // sign-extend the source register from 32 bits. The other case we handle
8592 // is when the described register is the 32-bit sub-register of the
8593 // destination register, in case we just need to return the source
8594 // register.
8595 if (Reg == MI.getOperand(0).getReg())
8596 Expr = DIExpression::appendExt(Expr, 32, 64, true);
8597 else
8598 assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&((void)0)
8599 "Unhandled sub-register case for MOVSX64rr32")((void)0);
8600
8601 return ParamLoadedValue(MI.getOperand(1), Expr);
8602 }
8603 default:
8604 assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction")((void)0);
8605 return TargetInstrInfo::describeLoadedValue(MI, Reg);
8606 }
8607}
8608
8609/// This is an architecture-specific helper function of reassociateOps.
8610/// Set special operand attributes for new instructions after reassociation.
8611void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
8612 MachineInstr &OldMI2,
8613 MachineInstr &NewMI1,
8614 MachineInstr &NewMI2) const {
8615 // Propagate FP flags from the original instructions.
8616 // But clear poison-generating flags because those may not be valid now.
8617 // TODO: There should be a helper function for copying only fast-math-flags.
8618 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
8619 NewMI1.setFlags(IntersectedFlags);
8620 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
8621 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
8622 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
8623
8624 NewMI2.setFlags(IntersectedFlags);
8625 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
8626 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
8627 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
8628
8629 // Integer instructions may define an implicit EFLAGS dest register operand.
8630 MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
8631 MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
8632
8633 assert(!OldFlagDef1 == !OldFlagDef2 &&((void)0)
8634 "Unexpected instruction type for reassociation")((void)0);
8635
8636 if (!OldFlagDef1 || !OldFlagDef2)
8637 return;
8638
8639 assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&((void)0)
8640 "Must have dead EFLAGS operand in reassociable instruction")((void)0);
8641
8642 MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
8643 MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
8644
8645 assert(NewFlagDef1 && NewFlagDef2 &&((void)0)
8646 "Unexpected operand in reassociable instruction")((void)0);
8647
8648 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
8649 // of this pass or other passes. The EFLAGS operands must be dead in these new
8650 // instructions because the EFLAGS operands in the original instructions must
8651 // be dead in order for reassociation to occur.
8652 NewFlagDef1->setIsDead();
8653 NewFlagDef2->setIsDead();
8654}
8655
8656std::pair<unsigned, unsigned>
8657X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
8658 return std::make_pair(TF, 0u);
8659}
8660
8661ArrayRef<std::pair<unsigned, const char *>>
8662X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
8663 using namespace X86II;
8664 static const std::pair<unsigned, const char *> TargetFlags[] = {
8665 {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
8666 {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
8667 {MO_GOT, "x86-got"},
8668 {MO_GOTOFF, "x86-gotoff"},
8669 {MO_GOTPCREL, "x86-gotpcrel"},
8670 {MO_PLT, "x86-plt"},
8671 {MO_TLSGD, "x86-tlsgd"},
8672 {MO_TLSLD, "x86-tlsld"},
8673 {MO_TLSLDM, "x86-tlsldm"},
8674 {MO_GOTTPOFF, "x86-gottpoff"},
8675 {MO_INDNTPOFF, "x86-indntpoff"},
8676 {MO_TPOFF, "x86-tpoff"},
8677 {MO_DTPOFF, "x86-dtpoff"},
8678 {MO_NTPOFF, "x86-ntpoff"},
8679 {MO_GOTNTPOFF, "x86-gotntpoff"},
8680 {MO_DLLIMPORT, "x86-dllimport"},
8681 {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
8682 {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
8683 {MO_TLVP, "x86-tlvp"},
8684 {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
8685 {MO_SECREL, "x86-secrel"},
8686 {MO_COFFSTUB, "x86-coffstub"}};
8687 return makeArrayRef(TargetFlags);
8688}
8689
8690namespace {
8691 /// Create Global Base Reg pass. This initializes the PIC
8692 /// global base register for x86-32.
8693 struct CGBR : public MachineFunctionPass {
8694 static char ID;
8695 CGBR() : MachineFunctionPass(ID) {}
8696
8697 bool runOnMachineFunction(MachineFunction &MF) override {
8698 const X86TargetMachine *TM =
8699 static_cast<const X86TargetMachine *>(&MF.getTarget());
8700 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
8701
8702 // Don't do anything in the 64-bit small and kernel code models. They use
8703 // RIP-relative addressing for everything.
8704 if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
8705 TM->getCodeModel() == CodeModel::Kernel))
8706 return false;
8707
8708 // Only emit a global base reg in PIC mode.
8709 if (!TM->isPositionIndependent())
8710 return false;
8711
8712 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
8713 Register GlobalBaseReg = X86FI->getGlobalBaseReg();
8714
8715 // If we didn't need a GlobalBaseReg, don't insert code.
8716 if (GlobalBaseReg == 0)
8717 return false;
8718
8719 // Insert the set of GlobalBaseReg into the first MBB of the function
8720 MachineBasicBlock &FirstMBB = MF.front();
8721 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
8722 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
8723 MachineRegisterInfo &RegInfo = MF.getRegInfo();
8724 const X86InstrInfo *TII = STI.getInstrInfo();
8725
8726 Register PC;
8727 if (STI.isPICStyleGOT())
8728 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
8729 else
8730 PC = GlobalBaseReg;
8731
8732 if (STI.is64Bit()) {
8733 if (TM->getCodeModel() == CodeModel::Medium) {
8734 // In the medium code model, use a RIP-relative LEA to materialize the
8735 // GOT.
8736 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
8737 .addReg(X86::RIP)
8738 .addImm(0)
8739 .addReg(0)
8740 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
8741 .addReg(0);
8742 } else if (TM->getCodeModel() == CodeModel::Large) {
8743 // In the large code model, we are aiming for this code, though the
8744 // register allocation may vary:
8745 // leaq .LN$pb(%rip), %rax
8746 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
8747 // addq %rcx, %rax
8748 // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
8749 Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
8750 Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
8751 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
8752 .addReg(X86::RIP)
8753 .addImm(0)
8754 .addReg(0)
8755 .addSym(MF.getPICBaseSymbol())
8756 .addReg(0);
8757 std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
8758 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
8759 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
8760 X86II::MO_PIC_BASE_OFFSET);
8761 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
8762 .addReg(PBReg, RegState::Kill)
8763 .addReg(GOTReg, RegState::Kill);
8764 } else {
8765 llvm_unreachable("unexpected code model")__builtin_unreachable();
8766 }
8767 } else {
8768 // Operand of MovePCtoStack is completely ignored by asm printer. It's
8769 // only used in JIT code emission as displacement to pc.
8770 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
8771
8772 // If we're using vanilla 'GOT' PIC style, we should use relative
8773 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
8774 if (STI.isPICStyleGOT()) {
8775 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
8776 // %some_register
8777 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
8778 .addReg(PC)
8779 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
8780 X86II::MO_GOT_ABSOLUTE_ADDRESS);
8781 }
8782 }
8783
8784 return true;
8785 }
8786
8787 StringRef getPassName() const override {
8788 return "X86 PIC Global Base Reg Initialization";
8789 }
8790
8791 void getAnalysisUsage(AnalysisUsage &AU) const override {
8792 AU.setPreservesCFG();
8793 MachineFunctionPass::getAnalysisUsage(AU);
8794 }
8795 };
8796} // namespace
8797
8798char CGBR::ID = 0;
8799FunctionPass*
8800llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
8801
8802namespace {
8803 struct LDTLSCleanup : public MachineFunctionPass {
8804 static char ID;
8805 LDTLSCleanup() : MachineFunctionPass(ID) {}
8806
8807 bool runOnMachineFunction(MachineFunction &MF) override {
8808 if (skipFunction(MF.getFunction()))
8809 return false;
8810
8811 X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
8812 if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
8813 // No point folding accesses if there isn't at least two.
8814 return false;
8815 }
8816
8817 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
8818 return VisitNode(DT->getRootNode(), 0);
8819 }
8820
8821 // Visit the dominator subtree rooted at Node in pre-order.
8822 // If TLSBaseAddrReg is non-null, then use that to replace any
8823 // TLS_base_addr instructions. Otherwise, create the register
8824 // when the first such instruction is seen, and then use it
8825 // as we encounter more instructions.
8826 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
8827 MachineBasicBlock *BB = Node->getBlock();
8828 bool Changed = false;
8829
8830 // Traverse the current block.
8831 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
8832 ++I) {
8833 switch (I->getOpcode()) {
8834 case X86::TLS_base_addr32:
8835 case X86::TLS_base_addr64:
8836 if (TLSBaseAddrReg)
8837 I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
8838 else
8839 I = SetRegister(*I, &TLSBaseAddrReg);
8840 Changed = true;
8841 break;
8842 default:
8843 break;
8844 }
8845 }
8846
8847 // Visit the children of this block in the dominator tree.
8848 for (auto I = Node->begin(), E = Node->end(); I != E; ++I) {
8849 Changed |= VisitNode(*I, TLSBaseAddrReg);
8850 }
8851
8852 return Changed;
8853 }
8854
8855 // Replace the TLS_base_addr instruction I with a copy from
8856 // TLSBaseAddrReg, returning the new instruction.
8857 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
8858 unsigned TLSBaseAddrReg) {
8859 MachineFunction *MF = I.getParent()->getParent();
8860 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
8861 const bool is64Bit = STI.is64Bit();
8862 const X86InstrInfo *TII = STI.getInstrInfo();
8863
8864 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
8865 MachineInstr *Copy =
8866 BuildMI(*I.getParent(), I, I.getDebugLoc(),
8867 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
8868 .addReg(TLSBaseAddrReg);
8869
8870 // Erase the TLS_base_addr instruction.
8871 I.eraseFromParent();
8872
8873 return Copy;
8874 }
8875
8876 // Create a virtual register in *TLSBaseAddrReg, and populate it by
8877 // inserting a copy instruction after I. Returns the new instruction.
8878 MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
8879 MachineFunction *MF = I.getParent()->getParent();
8880 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
8881 const bool is64Bit = STI.is64Bit();
8882 const X86InstrInfo *TII = STI.getInstrInfo();
8883
8884 // Create a virtual register for the TLS base address.
8885 MachineRegisterInfo &RegInfo = MF->getRegInfo();
8886 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
8887 ? &X86::GR64RegClass
8888 : &X86::GR32RegClass);
8889
8890 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
8891 MachineInstr *Next = I.getNextNode();
8892 MachineInstr *Copy =
8893 BuildMI(*I.getParent(), Next, I.getDebugLoc(),
8894 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
8895 .addReg(is64Bit ? X86::RAX : X86::EAX);
8896
8897 return Copy;
8898 }
8899
8900 StringRef getPassName() const override {
8901 return "Local Dynamic TLS Access Clean-up";
8902 }
8903
8904 void getAnalysisUsage(AnalysisUsage &AU) const override {
8905 AU.setPreservesCFG();
8906 AU.addRequired<MachineDominatorTree>();
8907 MachineFunctionPass::getAnalysisUsage(AU);
8908 }
8909 };
8910}
8911
8912char LDTLSCleanup::ID = 0;
8913FunctionPass*
8914llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
8915
8916/// Constants defining how certain sequences should be outlined.
8917///
8918/// \p MachineOutlinerDefault implies that the function is called with a call
8919/// instruction, and a return must be emitted for the outlined function frame.
8920///
8921/// That is,
8922///
8923/// I1 OUTLINED_FUNCTION:
8924/// I2 --> call OUTLINED_FUNCTION I1
8925/// I3 I2
8926/// I3
8927/// ret
8928///
8929/// * Call construction overhead: 1 (call instruction)
8930/// * Frame construction overhead: 1 (return instruction)
8931///
8932/// \p MachineOutlinerTailCall implies that the function is being tail called.
8933/// A jump is emitted instead of a call, and the return is already present in
8934/// the outlined sequence. That is,
8935///
8936/// I1 OUTLINED_FUNCTION:
8937/// I2 --> jmp OUTLINED_FUNCTION I1
8938/// ret I2
8939/// ret
8940///
8941/// * Call construction overhead: 1 (jump instruction)
8942/// * Frame construction overhead: 0 (don't need to return)
8943///
8944enum MachineOutlinerClass {
8945 MachineOutlinerDefault,
8946 MachineOutlinerTailCall
8947};
8948
8949outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
8950 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
8951 unsigned SequenceSize =
8952 std::accumulate(RepeatedSequenceLocs[0].front(),
8953 std::next(RepeatedSequenceLocs[0].back()), 0,
8954 [](unsigned Sum, const MachineInstr &MI) {
8955 // FIXME: x86 doesn't implement getInstSizeInBytes, so
8956 // we can't tell the cost. Just assume each instruction
8957 // is one byte.
8958 if (MI.isDebugInstr() || MI.isKill())
8959 return Sum;
8960 return Sum + 1;
8961 });
8962
8963 // We check to see if CFI Instructions are present, and if they are
8964 // we find the number of CFI Instructions in the candidates.
8965 unsigned CFICount = 0;
8966 MachineBasicBlock::iterator MBBI = RepeatedSequenceLocs[0].front();
8967 for (unsigned Loc = RepeatedSequenceLocs[0].getStartIdx();
8968 Loc < RepeatedSequenceLocs[0].getEndIdx() + 1; Loc++) {
8969 const std::vector<MCCFIInstruction> &CFIInstructions =
8970 RepeatedSequenceLocs[0].getMF()->getFrameInstructions();
8971 if (MBBI->isCFIInstruction()) {
8972 unsigned CFIIndex = MBBI->getOperand(0).getCFIIndex();
8973 MCCFIInstruction CFI = CFIInstructions[CFIIndex];
8974 CFICount++;
8975 }
8976 MBBI++;
8977 }
8978
8979 // We compare the number of found CFI Instructions to the number of CFI
8980 // instructions in the parent function for each candidate. We must check this
8981 // since if we outline one of the CFI instructions in a function, we have to
8982 // outline them all for correctness. If we do not, the address offsets will be
8983 // incorrect between the two sections of the program.
8984 for (outliner::Candidate &C : RepeatedSequenceLocs) {
8985 std::vector<MCCFIInstruction> CFIInstructions =
8986 C.getMF()->getFrameInstructions();
8987
8988 if (CFICount > 0 && CFICount != CFIInstructions.size())
8989 return outliner::OutlinedFunction();
8990 }
8991
8992 // FIXME: Use real size in bytes for call and ret instructions.
8993 if (RepeatedSequenceLocs[0].back()->isTerminator()) {
8994 for (outliner::Candidate &C : RepeatedSequenceLocs)
8995 C.setCallInfo(MachineOutlinerTailCall, 1);
8996
8997 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
8998 0, // Number of bytes to emit frame.
8999 MachineOutlinerTailCall // Type of frame.
9000 );
9001 }
9002
9003 if (CFICount > 0)
9004 return outliner::OutlinedFunction();
9005
9006 for (outliner::Candidate &C : RepeatedSequenceLocs)
9007 C.setCallInfo(MachineOutlinerDefault, 1);
9008
9009 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
9010 MachineOutlinerDefault);
9011}
9012
9013bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
9014 bool OutlineFromLinkOnceODRs) const {
9015 const Function &F = MF.getFunction();
9016
9017 // Does the function use a red zone? If it does, then we can't risk messing
9018 // with the stack.
9019 if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
9020 // It could have a red zone. If it does, then we don't want to touch it.
9021 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
9022 if (!X86FI || X86FI->getUsesRedZone())
9023 return false;
9024 }
9025
9026 // If we *don't* want to outline from things that could potentially be deduped
9027 // then return false.
9028 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
9029 return false;
9030
9031 // This function is viable for outlining, so return true.
9032 return true;
9033}
9034
9035outliner::InstrType
9036X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
9037 MachineInstr &MI = *MIT;
9038 // Don't allow debug values to impact outlining type.
9039 if (MI.isDebugInstr() || MI.isIndirectDebugValue())
9040 return outliner::InstrType::Invisible;
9041
9042 // At this point, KILL instructions don't really tell us much so we can go
9043 // ahead and skip over them.
9044 if (MI.isKill())
9045 return outliner::InstrType::Invisible;
9046
9047 // Is this a tail call? If yes, we can outline as a tail call.
9048 if (isTailCall(MI))
9049 return outliner::InstrType::Legal;
9050
9051 // Is this the terminator of a basic block?
9052 if (MI.isTerminator() || MI.isReturn()) {
9053
9054 // Does its parent have any successors in its MachineFunction?
9055 if (MI.getParent()->succ_empty())
9056 return outliner::InstrType::Legal;
9057
9058 // It does, so we can't tail call it.
9059 return outliner::InstrType::Illegal;
9060 }
9061
9062 // Don't outline anything that modifies or reads from the stack pointer.
9063 //
9064 // FIXME: There are instructions which are being manually built without
9065 // explicit uses/defs so we also have to check the MCInstrDesc. We should be
9066 // able to remove the extra checks once those are fixed up. For example,
9067 // sometimes we might get something like %rax = POP64r 1. This won't be
9068 // caught by modifiesRegister or readsRegister even though the instruction
9069 // really ought to be formed so that modifiesRegister/readsRegister would
9070 // catch it.
9071 if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
9072 MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
9073 MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
9074 return outliner::InstrType::Illegal;
9075
9076 // Outlined calls change the instruction pointer, so don't read from it.
9077 if (MI.readsRegister(X86::RIP, &RI) ||
9078 MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
9079 MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
9080 return outliner::InstrType::Illegal;
9081
9082 // Positions can't safely be outlined.
9083 if (MI.isPosition())
9084 return outliner::InstrType::Illegal;
9085
9086 // Make sure none of the operands of this instruction do anything tricky.
9087 for (const MachineOperand &MOP : MI.operands())
9088 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
9089 MOP.isTargetIndex())
9090 return outliner::InstrType::Illegal;
9091
9092 return outliner::InstrType::Legal;
9093}
9094
9095void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
9096 MachineFunction &MF,
9097 const outliner::OutlinedFunction &OF)
9098 const {
9099 // If we're a tail call, we already have a return, so don't do anything.
9100 if (OF.FrameConstructionID == MachineOutlinerTailCall)
9101 return;
9102
9103 // We're a normal call, so our sequence doesn't have a return instruction.
9104 // Add it in.
9105 MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
9106 MBB.insert(MBB.end(), retq);
9107}
9108
9109MachineBasicBlock::iterator
9110X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
9111 MachineBasicBlock::iterator &It,
9112 MachineFunction &MF,
9113 const outliner::Candidate &C) const {
9114 // Is it a tail call?
9115 if (C.CallConstructionID == MachineOutlinerTailCall) {
9116 // Yes, just insert a JMP.
9117 It = MBB.insert(It,
9118 BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
9119 .addGlobalAddress(M.getNamedValue(MF.getName())));
9120 } else {
9121 // No, insert a call.
9122 It = MBB.insert(It,
9123 BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
9124 .addGlobalAddress(M.getNamedValue(MF.getName())));
9125 }
9126
9127 return It;
9128}
9129
9130#define GET_INSTRINFO_HELPERS
9131#include "X86GenInstrInfo.inc"