Bug Summary

File:src/gnu/usr.bin/clang/llvm-tblgen/../../../llvm/llvm/utils/TableGen/X86RecognizableInstr.cpp
Warning:line 379, column 39
The left operand of '!=' is a garbage value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name X86RecognizableInstr.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/llvm-tblgen/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/llvm-tblgen/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/llvm-tblgen/../include -I /usr/src/gnu/usr.bin/clang/llvm-tblgen/obj -I /usr/src/gnu/usr.bin/clang/llvm-tblgen/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/llvm-tblgen/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/llvm-tblgen/../../../llvm/llvm/utils/TableGen/X86RecognizableInstr.cpp
1//===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is part of the X86 Disassembler Emitter.
10// It contains the implementation of a single recognizable instruction.
11// Documentation for the disassembler emitter in general can be found in
12// X86DisassemblerEmitter.h.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86RecognizableInstr.h"
17#include "X86DisassemblerShared.h"
18#include "X86ModRMFilters.h"
19#include "llvm/Support/ErrorHandling.h"
20#include <string>
21
22using namespace llvm;
23using namespace X86Disassembler;
24
25/// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
26/// Useful for switch statements and the like.
27///
28/// @param init - A reference to the BitsInit to be decoded.
29/// @return - The field, with the first bit in the BitsInit as the lowest
30/// order bit.
31static uint8_t byteFromBitsInit(BitsInit &init) {
32 int width = init.getNumBits();
33
34 assert(width <= 8 && "Field is too large for uint8_t!")((void)0);
35
36 int index;
37 uint8_t mask = 0x01;
38
39 uint8_t ret = 0;
40
41 for (index = 0; index < width; index++) {
42 if (cast<BitInit>(init.getBit(index))->getValue())
43 ret |= mask;
44
45 mask <<= 1;
46 }
47
48 return ret;
49}
50
51/// byteFromRec - Extract a value at most 8 bits in with from a Record given the
52/// name of the field.
53///
54/// @param rec - The record from which to extract the value.
55/// @param name - The name of the field in the record.
56/// @return - The field, as translated by byteFromBitsInit().
57static uint8_t byteFromRec(const Record* rec, StringRef name) {
58 BitsInit* bits = rec->getValueAsBitsInit(name);
59 return byteFromBitsInit(*bits);
60}
61
62RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
63 const CodeGenInstruction &insn,
64 InstrUID uid) {
65 UID = uid;
66
67 Rec = insn.TheDef;
68 Name = std::string(Rec->getName());
69 Spec = &tables.specForUID(UID);
70
71 if (!Rec->isSubClassOf("X86Inst")) {
72 ShouldBeEmitted = false;
73 return;
74 }
75
76 OpPrefix = byteFromRec(Rec, "OpPrefixBits");
77 OpMap = byteFromRec(Rec, "OpMapBits");
78 Opcode = byteFromRec(Rec, "Opcode");
79 Form = byteFromRec(Rec, "FormBits");
80 Encoding = byteFromRec(Rec, "OpEncBits");
81
82 OpSize = byteFromRec(Rec, "OpSizeBits");
83 AdSize = byteFromRec(Rec, "AdSizeBits");
84 HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix");
85 HasVEX_4V = Rec->getValueAsBit("hasVEX_4V");
86 HasVEX_W = Rec->getValueAsBit("HasVEX_W");
87 IgnoresVEX_W = Rec->getValueAsBit("IgnoresVEX_W");
88 IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L");
89 HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2");
90 HasEVEX_K = Rec->getValueAsBit("hasEVEX_K");
91 HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z");
92 HasEVEX_B = Rec->getValueAsBit("hasEVEX_B");
93 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly");
94 ForceDisassemble = Rec->getValueAsBit("ForceDisassemble");
95 CD8_Scale = byteFromRec(Rec, "CD8_Scale");
96
97 Name = std::string(Rec->getName());
98
99 Operands = &insn.Operands.OperandList;
100
101 HasVEX_LPrefix = Rec->getValueAsBit("hasVEX_L");
102
103 EncodeRC = HasEVEX_B &&
104 (Form == X86Local::MRMDestReg || Form == X86Local::MRMSrcReg);
105
106 // Check for 64-bit inst which does not require REX
107 Is32Bit = false;
108 Is64Bit = false;
109 // FIXME: Is there some better way to check for In64BitMode?
110 std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
111 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
112 if (Predicates[i]->getName().find("Not64Bit") != Name.npos ||
113 Predicates[i]->getName().find("In32Bit") != Name.npos) {
114 Is32Bit = true;
115 break;
116 }
117 if (Predicates[i]->getName().find("In64Bit") != Name.npos) {
118 Is64Bit = true;
119 break;
120 }
121 }
122
123 if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) {
124 ShouldBeEmitted = false;
125 return;
126 }
127
128 ShouldBeEmitted = true;
129}
130
131void RecognizableInstr::processInstr(DisassemblerTables &tables,
132 const CodeGenInstruction &insn,
133 InstrUID uid)
134{
135 // Ignore "asm parser only" instructions.
136 if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
137 return;
138
139 RecognizableInstr recogInstr(tables, insn, uid);
140
141 if (recogInstr.shouldBeEmitted()) {
142 recogInstr.emitInstructionSpecifier();
143 recogInstr.emitDecodePath(tables);
144 }
145}
146
147#define EVEX_KB(n)(HasEVEX_KZ && HasEVEX_B ? n_KZ_B : (HasEVEX_K &&
HasEVEX_B ? n_K_B : (HasEVEX_KZ ? n_KZ : (HasEVEX_K? n_K : (
HasEVEX_B ? n_B : n)))))
(HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \
148 (HasEVEX_K && HasEVEX_B ? n##_K_B : \
149 (HasEVEX_KZ ? n##_KZ : \
150 (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B0x80 : n)))))
151
152InstructionContext RecognizableInstr::insnContext() const {
153 InstructionContext insnContext;
154
155 if (Encoding == X86Local::EVEX) {
156 if (HasVEX_LPrefix && HasEVEX_L2Prefix) {
157 errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
158 llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled")__builtin_unreachable();
159 }
160 // VEX_L & VEX_W
161 if (!EncodeRC && HasVEX_LPrefix && HasVEX_W) {
162 if (OpPrefix == X86Local::PD)
163 insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_L_W_OPSIZE_KZ_B : (
HasEVEX_K && HasEVEX_B ? IC_EVEX_L_W_OPSIZE_K_B : (HasEVEX_KZ
? IC_EVEX_L_W_OPSIZE_KZ : (HasEVEX_K? IC_EVEX_L_W_OPSIZE_K :
(HasEVEX_B ? IC_EVEX_L_W_OPSIZE_B : IC_EVEX_L_W_OPSIZE)))))
;
164 else if (OpPrefix == X86Local::XS)
165 insnContext = EVEX_KB(IC_EVEX_L_W_XS)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_L_W_XS_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_L_W_XS_K_B : (HasEVEX_KZ ? IC_EVEX_L_W_XS_KZ
: (HasEVEX_K? IC_EVEX_L_W_XS_K : (HasEVEX_B ? IC_EVEX_L_W_XS_B
: IC_EVEX_L_W_XS)))))
;
166 else if (OpPrefix == X86Local::XD)
167 insnContext = EVEX_KB(IC_EVEX_L_W_XD)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_L_W_XD_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_L_W_XD_K_B : (HasEVEX_KZ ? IC_EVEX_L_W_XD_KZ
: (HasEVEX_K? IC_EVEX_L_W_XD_K : (HasEVEX_B ? IC_EVEX_L_W_XD_B
: IC_EVEX_L_W_XD)))))
;
168 else if (OpPrefix == X86Local::PS)
169 insnContext = EVEX_KB(IC_EVEX_L_W)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_L_W_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_L_W_K_B : (HasEVEX_KZ ? IC_EVEX_L_W_KZ
: (HasEVEX_K? IC_EVEX_L_W_K : (HasEVEX_B ? IC_EVEX_L_W_B : IC_EVEX_L_W
)))))
;
170 else {
171 errs() << "Instruction does not use a prefix: " << Name << "\n";
172 llvm_unreachable("Invalid prefix")__builtin_unreachable();
173 }
174 } else if (!EncodeRC && HasVEX_LPrefix) {
175 // VEX_L
176 if (OpPrefix == X86Local::PD)
177 insnContext = EVEX_KB(IC_EVEX_L_OPSIZE)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_L_OPSIZE_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_L_OPSIZE_K_B : (HasEVEX_KZ ? IC_EVEX_L_OPSIZE_KZ
: (HasEVEX_K? IC_EVEX_L_OPSIZE_K : (HasEVEX_B ? IC_EVEX_L_OPSIZE_B
: IC_EVEX_L_OPSIZE)))))
;
178 else if (OpPrefix == X86Local::XS)
179 insnContext = EVEX_KB(IC_EVEX_L_XS)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_L_XS_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_L_XS_K_B : (HasEVEX_KZ ? IC_EVEX_L_XS_KZ
: (HasEVEX_K? IC_EVEX_L_XS_K : (HasEVEX_B ? IC_EVEX_L_XS_B :
IC_EVEX_L_XS)))))
;
180 else if (OpPrefix == X86Local::XD)
181 insnContext = EVEX_KB(IC_EVEX_L_XD)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_L_XD_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_L_XD_K_B : (HasEVEX_KZ ? IC_EVEX_L_XD_KZ
: (HasEVEX_K? IC_EVEX_L_XD_K : (HasEVEX_B ? IC_EVEX_L_XD_B :
IC_EVEX_L_XD)))))
;
182 else if (OpPrefix == X86Local::PS)
183 insnContext = EVEX_KB(IC_EVEX_L)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_L_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_L_K_B : (HasEVEX_KZ ? IC_EVEX_L_KZ
: (HasEVEX_K? IC_EVEX_L_K : (HasEVEX_B ? IC_EVEX_L_B : IC_EVEX_L
)))))
;
184 else {
185 errs() << "Instruction does not use a prefix: " << Name << "\n";
186 llvm_unreachable("Invalid prefix")__builtin_unreachable();
187 }
188 } else if (!EncodeRC && HasEVEX_L2Prefix && HasVEX_W) {
189 // EVEX_L2 & VEX_W
190 if (OpPrefix == X86Local::PD)
191 insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_L2_W_OPSIZE_KZ_B :
(HasEVEX_K && HasEVEX_B ? IC_EVEX_L2_W_OPSIZE_K_B : (
HasEVEX_KZ ? IC_EVEX_L2_W_OPSIZE_KZ : (HasEVEX_K? IC_EVEX_L2_W_OPSIZE_K
: (HasEVEX_B ? IC_EVEX_L2_W_OPSIZE_B : IC_EVEX_L2_W_OPSIZE))
)))
;
192 else if (OpPrefix == X86Local::XS)
193 insnContext = EVEX_KB(IC_EVEX_L2_W_XS)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_L2_W_XS_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_L2_W_XS_K_B : (HasEVEX_KZ ? IC_EVEX_L2_W_XS_KZ
: (HasEVEX_K? IC_EVEX_L2_W_XS_K : (HasEVEX_B ? IC_EVEX_L2_W_XS_B
: IC_EVEX_L2_W_XS)))))
;
194 else if (OpPrefix == X86Local::XD)
195 insnContext = EVEX_KB(IC_EVEX_L2_W_XD)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_L2_W_XD_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_L2_W_XD_K_B : (HasEVEX_KZ ? IC_EVEX_L2_W_XD_KZ
: (HasEVEX_K? IC_EVEX_L2_W_XD_K : (HasEVEX_B ? IC_EVEX_L2_W_XD_B
: IC_EVEX_L2_W_XD)))))
;
196 else if (OpPrefix == X86Local::PS)
197 insnContext = EVEX_KB(IC_EVEX_L2_W)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_L2_W_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_L2_W_K_B : (HasEVEX_KZ ? IC_EVEX_L2_W_KZ
: (HasEVEX_K? IC_EVEX_L2_W_K : (HasEVEX_B ? IC_EVEX_L2_W_B :
IC_EVEX_L2_W)))))
;
198 else {
199 errs() << "Instruction does not use a prefix: " << Name << "\n";
200 llvm_unreachable("Invalid prefix")__builtin_unreachable();
201 }
202 } else if (!EncodeRC && HasEVEX_L2Prefix) {
203 // EVEX_L2
204 if (OpPrefix == X86Local::PD)
205 insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_L2_OPSIZE_KZ_B : (
HasEVEX_K && HasEVEX_B ? IC_EVEX_L2_OPSIZE_K_B : (HasEVEX_KZ
? IC_EVEX_L2_OPSIZE_KZ : (HasEVEX_K? IC_EVEX_L2_OPSIZE_K : (
HasEVEX_B ? IC_EVEX_L2_OPSIZE_B : IC_EVEX_L2_OPSIZE)))))
;
206 else if (OpPrefix == X86Local::XD)
207 insnContext = EVEX_KB(IC_EVEX_L2_XD)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_L2_XD_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_L2_XD_K_B : (HasEVEX_KZ ? IC_EVEX_L2_XD_KZ
: (HasEVEX_K? IC_EVEX_L2_XD_K : (HasEVEX_B ? IC_EVEX_L2_XD_B
: IC_EVEX_L2_XD)))))
;
208 else if (OpPrefix == X86Local::XS)
209 insnContext = EVEX_KB(IC_EVEX_L2_XS)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_L2_XS_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_L2_XS_K_B : (HasEVEX_KZ ? IC_EVEX_L2_XS_KZ
: (HasEVEX_K? IC_EVEX_L2_XS_K : (HasEVEX_B ? IC_EVEX_L2_XS_B
: IC_EVEX_L2_XS)))))
;
210 else if (OpPrefix == X86Local::PS)
211 insnContext = EVEX_KB(IC_EVEX_L2)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_L2_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_L2_K_B : (HasEVEX_KZ ? IC_EVEX_L2_KZ
: (HasEVEX_K? IC_EVEX_L2_K : (HasEVEX_B ? IC_EVEX_L2_B : IC_EVEX_L2
)))))
;
212 else {
213 errs() << "Instruction does not use a prefix: " << Name << "\n";
214 llvm_unreachable("Invalid prefix")__builtin_unreachable();
215 }
216 }
217 else if (HasVEX_W) {
218 // VEX_W
219 if (OpPrefix == X86Local::PD)
220 insnContext = EVEX_KB(IC_EVEX_W_OPSIZE)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_W_OPSIZE_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_W_OPSIZE_K_B : (HasEVEX_KZ ? IC_EVEX_W_OPSIZE_KZ
: (HasEVEX_K? IC_EVEX_W_OPSIZE_K : (HasEVEX_B ? IC_EVEX_W_OPSIZE_B
: IC_EVEX_W_OPSIZE)))))
;
221 else if (OpPrefix == X86Local::XS)
222 insnContext = EVEX_KB(IC_EVEX_W_XS)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_W_XS_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_W_XS_K_B : (HasEVEX_KZ ? IC_EVEX_W_XS_KZ
: (HasEVEX_K? IC_EVEX_W_XS_K : (HasEVEX_B ? IC_EVEX_W_XS_B :
IC_EVEX_W_XS)))))
;
223 else if (OpPrefix == X86Local::XD)
224 insnContext = EVEX_KB(IC_EVEX_W_XD)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_W_XD_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_W_XD_K_B : (HasEVEX_KZ ? IC_EVEX_W_XD_KZ
: (HasEVEX_K? IC_EVEX_W_XD_K : (HasEVEX_B ? IC_EVEX_W_XD_B :
IC_EVEX_W_XD)))))
;
225 else if (OpPrefix == X86Local::PS)
226 insnContext = EVEX_KB(IC_EVEX_W)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_W_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_W_K_B : (HasEVEX_KZ ? IC_EVEX_W_KZ
: (HasEVEX_K? IC_EVEX_W_K : (HasEVEX_B ? IC_EVEX_W_B : IC_EVEX_W
)))))
;
227 else {
228 errs() << "Instruction does not use a prefix: " << Name << "\n";
229 llvm_unreachable("Invalid prefix")__builtin_unreachable();
230 }
231 }
232 // No L, no W
233 else if (OpPrefix == X86Local::PD)
234 insnContext = EVEX_KB(IC_EVEX_OPSIZE)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_OPSIZE_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_OPSIZE_K_B : (HasEVEX_KZ ? IC_EVEX_OPSIZE_KZ
: (HasEVEX_K? IC_EVEX_OPSIZE_K : (HasEVEX_B ? IC_EVEX_OPSIZE_B
: IC_EVEX_OPSIZE)))))
;
235 else if (OpPrefix == X86Local::XD)
236 insnContext = EVEX_KB(IC_EVEX_XD)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_XD_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_XD_K_B : (HasEVEX_KZ ? IC_EVEX_XD_KZ
: (HasEVEX_K? IC_EVEX_XD_K : (HasEVEX_B ? IC_EVEX_XD_B : IC_EVEX_XD
)))))
;
237 else if (OpPrefix == X86Local::XS)
238 insnContext = EVEX_KB(IC_EVEX_XS)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_XS_KZ_B : (HasEVEX_K
&& HasEVEX_B ? IC_EVEX_XS_K_B : (HasEVEX_KZ ? IC_EVEX_XS_KZ
: (HasEVEX_K? IC_EVEX_XS_K : (HasEVEX_B ? IC_EVEX_XS_B : IC_EVEX_XS
)))))
;
239 else if (OpPrefix == X86Local::PS)
240 insnContext = EVEX_KB(IC_EVEX)(HasEVEX_KZ && HasEVEX_B ? IC_EVEX_KZ_B : (HasEVEX_K &&
HasEVEX_B ? IC_EVEX_K_B : (HasEVEX_KZ ? IC_EVEX_KZ : (HasEVEX_K
? IC_EVEX_K : (HasEVEX_B ? IC_EVEX_B : IC_EVEX)))))
;
241 else {
242 errs() << "Instruction does not use a prefix: " << Name << "\n";
243 llvm_unreachable("Invalid prefix")__builtin_unreachable();
244 }
245 /// eof EVEX
246 } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
247 if (HasVEX_LPrefix && HasVEX_W) {
248 if (OpPrefix == X86Local::PD)
249 insnContext = IC_VEX_L_W_OPSIZE;
250 else if (OpPrefix == X86Local::XS)
251 insnContext = IC_VEX_L_W_XS;
252 else if (OpPrefix == X86Local::XD)
253 insnContext = IC_VEX_L_W_XD;
254 else if (OpPrefix == X86Local::PS)
255 insnContext = IC_VEX_L_W;
256 else {
257 errs() << "Instruction does not use a prefix: " << Name << "\n";
258 llvm_unreachable("Invalid prefix")__builtin_unreachable();
259 }
260 } else if (OpPrefix == X86Local::PD && HasVEX_LPrefix)
261 insnContext = IC_VEX_L_OPSIZE;
262 else if (OpPrefix == X86Local::PD && HasVEX_W)
263 insnContext = IC_VEX_W_OPSIZE;
264 else if (OpPrefix == X86Local::PD && Is64Bit &&
265 AdSize == X86Local::AdSize32)
266 insnContext = IC_64BIT_VEX_OPSIZE_ADSIZE;
267 else if (OpPrefix == X86Local::PD && Is64Bit)
268 insnContext = IC_64BIT_VEX_OPSIZE;
269 else if (OpPrefix == X86Local::PD)
270 insnContext = IC_VEX_OPSIZE;
271 else if (HasVEX_LPrefix && OpPrefix == X86Local::XS)
272 insnContext = IC_VEX_L_XS;
273 else if (HasVEX_LPrefix && OpPrefix == X86Local::XD)
274 insnContext = IC_VEX_L_XD;
275 else if (HasVEX_W && OpPrefix == X86Local::XS)
276 insnContext = IC_VEX_W_XS;
277 else if (HasVEX_W && OpPrefix == X86Local::XD)
278 insnContext = IC_VEX_W_XD;
279 else if (HasVEX_W && OpPrefix == X86Local::PS)
280 insnContext = IC_VEX_W;
281 else if (HasVEX_LPrefix && OpPrefix == X86Local::PS)
282 insnContext = IC_VEX_L;
283 else if (OpPrefix == X86Local::XD)
284 insnContext = IC_VEX_XD;
285 else if (OpPrefix == X86Local::XS)
286 insnContext = IC_VEX_XS;
287 else if (OpPrefix == X86Local::PS)
288 insnContext = IC_VEX;
289 else {
290 errs() << "Instruction does not use a prefix: " << Name << "\n";
291 llvm_unreachable("Invalid prefix")__builtin_unreachable();
292 }
293 } else if (Is64Bit || HasREX_WPrefix || AdSize == X86Local::AdSize64) {
294 if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
295 insnContext = IC_64BIT_REXW_OPSIZE;
296 else if (HasREX_WPrefix && AdSize == X86Local::AdSize32)
297 insnContext = IC_64BIT_REXW_ADSIZE;
298 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
299 insnContext = IC_64BIT_XD_OPSIZE;
300 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
301 insnContext = IC_64BIT_XS_OPSIZE;
302 else if (AdSize == X86Local::AdSize32 && OpPrefix == X86Local::PD)
303 insnContext = IC_64BIT_OPSIZE_ADSIZE;
304 else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32)
305 insnContext = IC_64BIT_OPSIZE_ADSIZE;
306 else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
307 insnContext = IC_64BIT_OPSIZE;
308 else if (AdSize == X86Local::AdSize32)
309 insnContext = IC_64BIT_ADSIZE;
310 else if (HasREX_WPrefix && OpPrefix == X86Local::XS)
311 insnContext = IC_64BIT_REXW_XS;
312 else if (HasREX_WPrefix && OpPrefix == X86Local::XD)
313 insnContext = IC_64BIT_REXW_XD;
314 else if (OpPrefix == X86Local::XD)
315 insnContext = IC_64BIT_XD;
316 else if (OpPrefix == X86Local::XS)
317 insnContext = IC_64BIT_XS;
318 else if (HasREX_WPrefix)
319 insnContext = IC_64BIT_REXW;
320 else
321 insnContext = IC_64BIT;
322 } else {
323 if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
324 insnContext = IC_XD_OPSIZE;
325 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
326 insnContext = IC_XS_OPSIZE;
327 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XD)
328 insnContext = IC_XD_ADSIZE;
329 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XS)
330 insnContext = IC_XS_ADSIZE;
331 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::PD)
332 insnContext = IC_OPSIZE_ADSIZE;
333 else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16)
334 insnContext = IC_OPSIZE_ADSIZE;
335 else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
336 insnContext = IC_OPSIZE;
337 else if (AdSize == X86Local::AdSize16)
338 insnContext = IC_ADSIZE;
339 else if (OpPrefix == X86Local::XD)
340 insnContext = IC_XD;
341 else if (OpPrefix == X86Local::XS)
342 insnContext = IC_XS;
343 else
344 insnContext = IC;
345 }
346
347 return insnContext;
348}
349
350void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
351 // The scaling factor for AVX512 compressed displacement encoding is an
352 // instruction attribute. Adjust the ModRM encoding type to include the
353 // scale for compressed displacement.
354 if ((encoding != ENCODING_RM &&
355 encoding != ENCODING_VSIB &&
356 encoding != ENCODING_SIB) ||CD8_Scale == 0)
357 return;
358 encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
359 assert(((encoding >= ENCODING_RM && encoding <= ENCODING_RM_CD64) ||((void)0)
360 (encoding == ENCODING_SIB) ||((void)0)
361 (encoding >= ENCODING_VSIB && encoding <= ENCODING_VSIB_CD64)) &&((void)0)
362 "Invalid CDisp scaling")((void)0);
363}
364
365void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
366 unsigned &physicalOperandIndex,
367 unsigned numPhysicalOperands,
368 const unsigned *operandMapping,
369 OperandEncoding (*encodingFromString)
370 (const std::string&,
371 uint8_t OpSize)) {
372 if (optional
6.1
'optional' is false
) {
7
Taking false branch
373 if (physicalOperandIndex >= numPhysicalOperands)
374 return;
375 } else {
376 assert(physicalOperandIndex < numPhysicalOperands)((void)0);
377 }
378
379 while (operandMapping[operandIndex] != operandIndex) {
8
The left operand of '!=' is a garbage value
380 Spec->operands[operandIndex].encoding = ENCODING_DUP;
381 Spec->operands[operandIndex].type =
382 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
383 ++operandIndex;
384 }
385
386 StringRef typeName = (*Operands)[operandIndex].Rec->getName();
387
388 OperandEncoding encoding = encodingFromString(std::string(typeName), OpSize);
389 // Adjust the encoding type for an operand based on the instruction.
390 adjustOperandEncoding(encoding);
391 Spec->operands[operandIndex].encoding = encoding;
392 Spec->operands[operandIndex].type =
393 typeFromString(std::string(typeName), HasREX_WPrefix, OpSize);
394
395 ++operandIndex;
396 ++physicalOperandIndex;
397}
398
399void RecognizableInstr::emitInstructionSpecifier() {
400 Spec->name = Name;
401
402 Spec->insnContext = insnContext();
403
404 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
405
406 unsigned numOperands = OperandList.size();
407 unsigned numPhysicalOperands = 0;
408
409 // operandMapping maps from operands in OperandList to their originals.
410 // If operandMapping[i] != i, then the entry is a duplicate.
411 unsigned operandMapping[X86_MAX_OPERANDS];
412 assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough")((void)0);
413
414 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
1
Assuming 'operandIndex' is >= 'numOperands'
2
Loop condition is false. Execution continues on line 448
415 if (!OperandList[operandIndex].Constraints.empty()) {
416 const CGIOperandList::ConstraintInfo &Constraint =
417 OperandList[operandIndex].Constraints[0];
418 if (Constraint.isTied()) {
419 operandMapping[operandIndex] = operandIndex;
420 operandMapping[Constraint.getTiedOperand()] = operandIndex;
421 } else {
422 ++numPhysicalOperands;
423 operandMapping[operandIndex] = operandIndex;
424 }
425 } else {
426 ++numPhysicalOperands;
427 operandMapping[operandIndex] = operandIndex;
428 }
429 }
430
431#define HANDLE_OPERAND(class) \
432 handleOperand(false, \
433 operandIndex, \
434 physicalOperandIndex, \
435 numPhysicalOperands, \
436 operandMapping, \
437 class##EncodingFromString);
438
439#define HANDLE_OPTIONAL(class) \
440 handleOperand(true, \
441 operandIndex, \
442 physicalOperandIndex, \
443 numPhysicalOperands, \
444 operandMapping, \
445 class##EncodingFromString);
446
447 // operandIndex should always be < numOperands
448 unsigned operandIndex = 0;
3
'operandIndex' initialized to 0
449 // physicalOperandIndex should always be < numPhysicalOperands
450 unsigned physicalOperandIndex = 0;
451
452#ifndef NDEBUG1
453 // Given the set of prefix bits, how many additional operands does the
454 // instruction have?
455 unsigned additionalOperands = 0;
456 if (HasVEX_4V)
457 ++additionalOperands;
458 if (HasEVEX_K)
459 ++additionalOperands;
460#endif
461
462 switch (Form) {
4
Control jumps to 'case RawFrmImm16:' at line 713
463 default: llvm_unreachable("Unhandled form")__builtin_unreachable();
464 case X86Local::PrefixByte:
465 return;
466 case X86Local::RawFrmSrc:
467 HANDLE_OPERAND(relocation);
468 return;
469 case X86Local::RawFrmDst:
470 HANDLE_OPERAND(relocation);
471 return;
472 case X86Local::RawFrmDstSrc:
473 HANDLE_OPERAND(relocation);
474 HANDLE_OPERAND(relocation);
475 return;
476 case X86Local::RawFrm:
477 // Operand 1 (optional) is an address or immediate.
478 assert(numPhysicalOperands <= 1 &&((void)0)
479 "Unexpected number of operands for RawFrm")((void)0);
480 HANDLE_OPTIONAL(relocation)
481 break;
482 case X86Local::RawFrmMemOffs:
483 // Operand 1 is an address.
484 HANDLE_OPERAND(relocation);
485 break;
486 case X86Local::AddRegFrm:
487 // Operand 1 is added to the opcode.
488 // Operand 2 (optional) is an address.
489 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&((void)0)
490 "Unexpected number of operands for AddRegFrm")((void)0);
491 HANDLE_OPERAND(opcodeModifier)
492 HANDLE_OPTIONAL(relocation)
493 break;
494 case X86Local::AddCCFrm:
495 // Operand 1 (optional) is an address or immediate.
496 assert(numPhysicalOperands == 2 &&((void)0)
497 "Unexpected number of operands for AddCCFrm")((void)0);
498 HANDLE_OPERAND(relocation)
499 HANDLE_OPERAND(opcodeModifier)
500 break;
501 case X86Local::MRMDestReg:
502 // Operand 1 is a register operand in the R/M field.
503 // - In AVX512 there may be a mask operand here -
504 // Operand 2 is a register operand in the Reg/Opcode field.
505 // - In AVX, there is a register operand in the VEX.vvvv field here -
506 // Operand 3 (optional) is an immediate.
507 assert(numPhysicalOperands >= 2 + additionalOperands &&((void)0)
508 numPhysicalOperands <= 3 + additionalOperands &&((void)0)
509 "Unexpected number of operands for MRMDestRegFrm")((void)0);
510
511 HANDLE_OPERAND(rmRegister)
512 if (HasEVEX_K)
513 HANDLE_OPERAND(writemaskRegister)
514
515 if (HasVEX_4V)
516 // FIXME: In AVX, the register below becomes the one encoded
517 // in ModRMVEX and the one above the one in the VEX.VVVV field
518 HANDLE_OPERAND(vvvvRegister)
519
520 HANDLE_OPERAND(roRegister)
521 HANDLE_OPTIONAL(immediate)
522 break;
523 case X86Local::MRMDestMem:
524 case X86Local::MRMDestMemFSIB:
525 // Operand 1 is a memory operand (possibly SIB-extended)
526 // Operand 2 is a register operand in the Reg/Opcode field.
527 // - In AVX, there is a register operand in the VEX.vvvv field here -
528 // Operand 3 (optional) is an immediate.
529 assert(numPhysicalOperands >= 2 + additionalOperands &&((void)0)
530 numPhysicalOperands <= 3 + additionalOperands &&((void)0)
531 "Unexpected number of operands for MRMDestMemFrm with VEX_4V")((void)0);
532
533 HANDLE_OPERAND(memory)
534
535 if (HasEVEX_K)
536 HANDLE_OPERAND(writemaskRegister)
537
538 if (HasVEX_4V)
539 // FIXME: In AVX, the register below becomes the one encoded
540 // in ModRMVEX and the one above the one in the VEX.VVVV field
541 HANDLE_OPERAND(vvvvRegister)
542
543 HANDLE_OPERAND(roRegister)
544 HANDLE_OPTIONAL(immediate)
545 break;
546 case X86Local::MRMSrcReg:
547 // Operand 1 is a register operand in the Reg/Opcode field.
548 // Operand 2 is a register operand in the R/M field.
549 // - In AVX, there is a register operand in the VEX.vvvv field here -
550 // Operand 3 (optional) is an immediate.
551 // Operand 4 (optional) is an immediate.
552
553 assert(numPhysicalOperands >= 2 + additionalOperands &&((void)0)
554 numPhysicalOperands <= 4 + additionalOperands &&((void)0)
555 "Unexpected number of operands for MRMSrcRegFrm")((void)0);
556
557 HANDLE_OPERAND(roRegister)
558
559 if (HasEVEX_K)
560 HANDLE_OPERAND(writemaskRegister)
561
562 if (HasVEX_4V)
563 // FIXME: In AVX, the register below becomes the one encoded
564 // in ModRMVEX and the one above the one in the VEX.VVVV field
565 HANDLE_OPERAND(vvvvRegister)
566
567 HANDLE_OPERAND(rmRegister)
568 HANDLE_OPTIONAL(immediate)
569 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
570 break;
571 case X86Local::MRMSrcReg4VOp3:
572 assert(numPhysicalOperands == 3 &&((void)0)
573 "Unexpected number of operands for MRMSrcReg4VOp3Frm")((void)0);
574 HANDLE_OPERAND(roRegister)
575 HANDLE_OPERAND(rmRegister)
576 HANDLE_OPERAND(vvvvRegister)
577 break;
578 case X86Local::MRMSrcRegOp4:
579 assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&((void)0)
580 "Unexpected number of operands for MRMSrcRegOp4Frm")((void)0);
581 HANDLE_OPERAND(roRegister)
582 HANDLE_OPERAND(vvvvRegister)
583 HANDLE_OPERAND(immediate) // Register in imm[7:4]
584 HANDLE_OPERAND(rmRegister)
585 HANDLE_OPTIONAL(immediate)
586 break;
587 case X86Local::MRMSrcRegCC:
588 assert(numPhysicalOperands == 3 &&((void)0)
589 "Unexpected number of operands for MRMSrcRegCC")((void)0);
590 HANDLE_OPERAND(roRegister)
591 HANDLE_OPERAND(rmRegister)
592 HANDLE_OPERAND(opcodeModifier)
593 break;
594 case X86Local::MRMSrcMem:
595 case X86Local::MRMSrcMemFSIB:
596 // Operand 1 is a register operand in the Reg/Opcode field.
597 // Operand 2 is a memory operand (possibly SIB-extended)
598 // - In AVX, there is a register operand in the VEX.vvvv field here -
599 // Operand 3 (optional) is an immediate.
600
601 assert(numPhysicalOperands >= 2 + additionalOperands &&((void)0)
602 numPhysicalOperands <= 4 + additionalOperands &&((void)0)
603 "Unexpected number of operands for MRMSrcMemFrm")((void)0);
604
605 HANDLE_OPERAND(roRegister)
606
607 if (HasEVEX_K)
608 HANDLE_OPERAND(writemaskRegister)
609
610 if (HasVEX_4V)
611 // FIXME: In AVX, the register below becomes the one encoded
612 // in ModRMVEX and the one above the one in the VEX.VVVV field
613 HANDLE_OPERAND(vvvvRegister)
614
615 HANDLE_OPERAND(memory)
616 HANDLE_OPTIONAL(immediate)
617 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
618 break;
619 case X86Local::MRMSrcMem4VOp3:
620 assert(numPhysicalOperands == 3 &&((void)0)
621 "Unexpected number of operands for MRMSrcMem4VOp3Frm")((void)0);
622 HANDLE_OPERAND(roRegister)
623 HANDLE_OPERAND(memory)
624 HANDLE_OPERAND(vvvvRegister)
625 break;
626 case X86Local::MRMSrcMemOp4:
627 assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&((void)0)
628 "Unexpected number of operands for MRMSrcMemOp4Frm")((void)0);
629 HANDLE_OPERAND(roRegister)
630 HANDLE_OPERAND(vvvvRegister)
631 HANDLE_OPERAND(immediate) // Register in imm[7:4]
632 HANDLE_OPERAND(memory)
633 HANDLE_OPTIONAL(immediate)
634 break;
635 case X86Local::MRMSrcMemCC:
636 assert(numPhysicalOperands == 3 &&((void)0)
637 "Unexpected number of operands for MRMSrcMemCC")((void)0);
638 HANDLE_OPERAND(roRegister)
639 HANDLE_OPERAND(memory)
640 HANDLE_OPERAND(opcodeModifier)
641 break;
642 case X86Local::MRMXrCC:
643 assert(numPhysicalOperands == 2 &&((void)0)
644 "Unexpected number of operands for MRMXrCC")((void)0);
645 HANDLE_OPERAND(rmRegister)
646 HANDLE_OPERAND(opcodeModifier)
647 break;
648 case X86Local::MRMr0:
649 // Operand 1 is a register operand in the R/M field.
650 HANDLE_OPERAND(roRegister)
651 break;
652 case X86Local::MRMXr:
653 case X86Local::MRM0r:
654 case X86Local::MRM1r:
655 case X86Local::MRM2r:
656 case X86Local::MRM3r:
657 case X86Local::MRM4r:
658 case X86Local::MRM5r:
659 case X86Local::MRM6r:
660 case X86Local::MRM7r:
661 // Operand 1 is a register operand in the R/M field.
662 // Operand 2 (optional) is an immediate or relocation.
663 // Operand 3 (optional) is an immediate.
664 assert(numPhysicalOperands >= 0 + additionalOperands &&((void)0)
665 numPhysicalOperands <= 3 + additionalOperands &&((void)0)
666 "Unexpected number of operands for MRMnr")((void)0);
667
668 if (HasVEX_4V)
669 HANDLE_OPERAND(vvvvRegister)
670
671 if (HasEVEX_K)
672 HANDLE_OPERAND(writemaskRegister)
673 HANDLE_OPTIONAL(rmRegister)
674 HANDLE_OPTIONAL(relocation)
675 HANDLE_OPTIONAL(immediate)
676 break;
677 case X86Local::MRMXmCC:
678 assert(numPhysicalOperands == 2 &&((void)0)
679 "Unexpected number of operands for MRMXm")((void)0);
680 HANDLE_OPERAND(memory)
681 HANDLE_OPERAND(opcodeModifier)
682 break;
683 case X86Local::MRMXm:
684 case X86Local::MRM0m:
685 case X86Local::MRM1m:
686 case X86Local::MRM2m:
687 case X86Local::MRM3m:
688 case X86Local::MRM4m:
689 case X86Local::MRM5m:
690 case X86Local::MRM6m:
691 case X86Local::MRM7m:
692 // Operand 1 is a memory operand (possibly SIB-extended)
693 // Operand 2 (optional) is an immediate or relocation.
694 assert(numPhysicalOperands >= 1 + additionalOperands &&((void)0)
695 numPhysicalOperands <= 2 + additionalOperands &&((void)0)
696 "Unexpected number of operands for MRMnm")((void)0);
697
698 if (HasVEX_4V)
699 HANDLE_OPERAND(vvvvRegister)
700 if (HasEVEX_K)
701 HANDLE_OPERAND(writemaskRegister)
702 HANDLE_OPERAND(memory)
703 HANDLE_OPTIONAL(relocation)
704 break;
705 case X86Local::RawFrmImm8:
706 // operand 1 is a 16-bit immediate
707 // operand 2 is an 8-bit immediate
708 assert(numPhysicalOperands == 2 &&((void)0)
709 "Unexpected number of operands for X86Local::RawFrmImm8")((void)0);
710 HANDLE_OPERAND(immediate)
711 HANDLE_OPERAND(immediate)
712 break;
713 case X86Local::RawFrmImm16:
714 // operand 1 is a 16-bit immediate
715 // operand 2 is a 16-bit immediate
716 HANDLE_OPERAND(immediate)
5
Passing value via 2nd parameter 'operandIndex'
6
Calling 'RecognizableInstr::handleOperand'
717 HANDLE_OPERAND(immediate)
718 break;
719 case X86Local::MRM0X:
720 case X86Local::MRM1X:
721 case X86Local::MRM2X:
722 case X86Local::MRM3X:
723 case X86Local::MRM4X:
724 case X86Local::MRM5X:
725 case X86Local::MRM6X:
726 case X86Local::MRM7X:
727#define MAP(from, to) case X86Local::MRM_##from:
728 X86_INSTR_MRM_MAPPINGMAP(C0, 64) MAP(C1, 65) MAP(C2, 66) MAP(C3, 67) MAP(C4, 68) MAP
(C5, 69) MAP(C6, 70) MAP(C7, 71) MAP(C8, 72) MAP(C9, 73) MAP(
CA, 74) MAP(CB, 75) MAP(CC, 76) MAP(CD, 77) MAP(CE, 78) MAP(CF
, 79) MAP(D0, 80) MAP(D1, 81) MAP(D2, 82) MAP(D3, 83) MAP(D4,
84) MAP(D5, 85) MAP(D6, 86) MAP(D7, 87) MAP(D8, 88) MAP(D9, 89
) MAP(DA, 90) MAP(DB, 91) MAP(DC, 92) MAP(DD, 93) MAP(DE, 94)
MAP(DF, 95) MAP(E0, 96) MAP(E1, 97) MAP(E2, 98) MAP(E3, 99) MAP
(E4, 100) MAP(E5, 101) MAP(E6, 102) MAP(E7, 103) MAP(E8, 104)
MAP(E9, 105) MAP(EA, 106) MAP(EB, 107) MAP(EC, 108) MAP(ED, 109
) MAP(EE, 110) MAP(EF, 111) MAP(F0, 112) MAP(F1, 113) MAP(F2,
114) MAP(F3, 115) MAP(F4, 116) MAP(F5, 117) MAP(F6, 118) MAP
(F7, 119) MAP(F8, 120) MAP(F9, 121) MAP(FA, 122) MAP(FB, 123)
MAP(FC, 124) MAP(FD, 125) MAP(FE, 126) MAP(FF, 127)
729#undef MAP
730 HANDLE_OPTIONAL(relocation)
731 break;
732 }
733
734#undef HANDLE_OPERAND
735#undef HANDLE_OPTIONAL
736}
737
738void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
739 // Special cases where the LLVM tables are not complete
740
741#define MAP(from, to) \
742 case X86Local::MRM_##from:
743
744 llvm::Optional<OpcodeType> opcodeType;
745 switch (OpMap) {
746 default: llvm_unreachable("Invalid map!")__builtin_unreachable();
747 case X86Local::OB: opcodeType = ONEBYTE; break;
748 case X86Local::TB: opcodeType = TWOBYTE; break;
749 case X86Local::T8: opcodeType = THREEBYTE_38; break;
750 case X86Local::TA: opcodeType = THREEBYTE_3A; break;
751 case X86Local::XOP8: opcodeType = XOP8_MAP; break;
752 case X86Local::XOP9: opcodeType = XOP9_MAP; break;
753 case X86Local::XOPA: opcodeType = XOPA_MAP; break;
754 case X86Local::ThreeDNow: opcodeType = THREEDNOW_MAP; break;
755 }
756
757 std::unique_ptr<ModRMFilter> filter;
758 switch (Form) {
759 default: llvm_unreachable("Invalid form!")__builtin_unreachable();
760 case X86Local::Pseudo: llvm_unreachable("Pseudo should not be emitted!")__builtin_unreachable();
761 case X86Local::RawFrm:
762 case X86Local::AddRegFrm:
763 case X86Local::RawFrmMemOffs:
764 case X86Local::RawFrmSrc:
765 case X86Local::RawFrmDst:
766 case X86Local::RawFrmDstSrc:
767 case X86Local::RawFrmImm8:
768 case X86Local::RawFrmImm16:
769 case X86Local::AddCCFrm:
770 case X86Local::PrefixByte:
771 filter = std::make_unique<DumbFilter>();
772 break;
773 case X86Local::MRMDestReg:
774 case X86Local::MRMSrcReg:
775 case X86Local::MRMSrcReg4VOp3:
776 case X86Local::MRMSrcRegOp4:
777 case X86Local::MRMSrcRegCC:
778 case X86Local::MRMXrCC:
779 case X86Local::MRMXr:
780 filter = std::make_unique<ModFilter>(true);
781 break;
782 case X86Local::MRMDestMem:
783 case X86Local::MRMDestMemFSIB:
784 case X86Local::MRMSrcMem:
785 case X86Local::MRMSrcMemFSIB:
786 case X86Local::MRMSrcMem4VOp3:
787 case X86Local::MRMSrcMemOp4:
788 case X86Local::MRMSrcMemCC:
789 case X86Local::MRMXmCC:
790 case X86Local::MRMXm:
791 filter = std::make_unique<ModFilter>(false);
792 break;
793 case X86Local::MRM0r: case X86Local::MRM1r:
794 case X86Local::MRM2r: case X86Local::MRM3r:
795 case X86Local::MRM4r: case X86Local::MRM5r:
796 case X86Local::MRM6r: case X86Local::MRM7r:
797 filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0r);
798 break;
799 case X86Local::MRM0X: case X86Local::MRM1X:
800 case X86Local::MRM2X: case X86Local::MRM3X:
801 case X86Local::MRM4X: case X86Local::MRM5X:
802 case X86Local::MRM6X: case X86Local::MRM7X:
803 filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0X);
804 break;
805 case X86Local::MRMr0:
806 filter = std::make_unique<ExtendedRMFilter>(true, Form - X86Local::MRMr0);
807 break;
808 case X86Local::MRM0m: case X86Local::MRM1m:
809 case X86Local::MRM2m: case X86Local::MRM3m:
810 case X86Local::MRM4m: case X86Local::MRM5m:
811 case X86Local::MRM6m: case X86Local::MRM7m:
812 filter = std::make_unique<ExtendedFilter>(false, Form - X86Local::MRM0m);
813 break;
814 X86_INSTR_MRM_MAPPINGMAP(C0, 64) MAP(C1, 65) MAP(C2, 66) MAP(C3, 67) MAP(C4, 68) MAP
(C5, 69) MAP(C6, 70) MAP(C7, 71) MAP(C8, 72) MAP(C9, 73) MAP(
CA, 74) MAP(CB, 75) MAP(CC, 76) MAP(CD, 77) MAP(CE, 78) MAP(CF
, 79) MAP(D0, 80) MAP(D1, 81) MAP(D2, 82) MAP(D3, 83) MAP(D4,
84) MAP(D5, 85) MAP(D6, 86) MAP(D7, 87) MAP(D8, 88) MAP(D9, 89
) MAP(DA, 90) MAP(DB, 91) MAP(DC, 92) MAP(DD, 93) MAP(DE, 94)
MAP(DF, 95) MAP(E0, 96) MAP(E1, 97) MAP(E2, 98) MAP(E3, 99) MAP
(E4, 100) MAP(E5, 101) MAP(E6, 102) MAP(E7, 103) MAP(E8, 104)
MAP(E9, 105) MAP(EA, 106) MAP(EB, 107) MAP(EC, 108) MAP(ED, 109
) MAP(EE, 110) MAP(EF, 111) MAP(F0, 112) MAP(F1, 113) MAP(F2,
114) MAP(F3, 115) MAP(F4, 116) MAP(F5, 117) MAP(F6, 118) MAP
(F7, 119) MAP(F8, 120) MAP(F9, 121) MAP(FA, 122) MAP(FB, 123)
MAP(FC, 124) MAP(FD, 125) MAP(FE, 126) MAP(FF, 127)
815 filter = std::make_unique<ExactFilter>(0xC0 + Form - X86Local::MRM_C0);
816 break;
817 } // switch (Form)
818
819 uint8_t opcodeToSet = Opcode;
820
821 unsigned AddressSize = 0;
822 switch (AdSize) {
823 case X86Local::AdSize16: AddressSize = 16; break;
824 case X86Local::AdSize32: AddressSize = 32; break;
825 case X86Local::AdSize64: AddressSize = 64; break;
826 }
827
828 assert(opcodeType && "Opcode type not set")((void)0);
829 assert(filter && "Filter not set")((void)0);
830
831 if (Form == X86Local::AddRegFrm || Form == X86Local::MRMSrcRegCC ||
832 Form == X86Local::MRMSrcMemCC || Form == X86Local::MRMXrCC ||
833 Form == X86Local::MRMXmCC || Form == X86Local::AddCCFrm) {
834 unsigned Count = Form == X86Local::AddRegFrm ? 8 : 16;
835 assert(((opcodeToSet % Count) == 0) && "ADDREG_FRM opcode not aligned")((void)0);
836
837 uint8_t currentOpcode;
838
839 for (currentOpcode = opcodeToSet; currentOpcode < opcodeToSet + Count;
840 ++currentOpcode)
841 tables.setTableFields(*opcodeType, insnContext(), currentOpcode, *filter,
842 UID, Is32Bit, OpPrefix == 0,
843 IgnoresVEX_L || EncodeRC,
844 IgnoresVEX_W, AddressSize);
845 } else {
846 tables.setTableFields(*opcodeType, insnContext(), opcodeToSet, *filter, UID,
847 Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC,
848 IgnoresVEX_W, AddressSize);
849 }
850
851#undef MAP
852}
853
854#define TYPE(str, type) if (s == str) return type;
855OperandType RecognizableInstr::typeFromString(const std::string &s,
856 bool hasREX_WPrefix,
857 uint8_t OpSize) {
858 if(hasREX_WPrefix) {
859 // For instructions with a REX_W prefix, a declared 32-bit register encoding
860 // is special.
861 TYPE("GR32", TYPE_R32)
862 }
863 if(OpSize == X86Local::OpSize16) {
864 // For OpSize16 instructions, a declared 16-bit register or
865 // immediate encoding is special.
866 TYPE("GR16", TYPE_Rv)
867 } else if(OpSize == X86Local::OpSize32) {
868 // For OpSize32 instructions, a declared 32-bit register or
869 // immediate encoding is special.
870 TYPE("GR32", TYPE_Rv)
871 }
872 TYPE("i16mem", TYPE_M)
873 TYPE("i16imm", TYPE_IMM)
874 TYPE("i16i8imm", TYPE_IMM)
875 TYPE("GR16", TYPE_R16)
876 TYPE("GR16orGR32orGR64", TYPE_R16)
877 TYPE("i32mem", TYPE_M)
878 TYPE("i32imm", TYPE_IMM)
879 TYPE("i32i8imm", TYPE_IMM)
880 TYPE("GR32", TYPE_R32)
881 TYPE("GR32orGR64", TYPE_R32)
882 TYPE("i64mem", TYPE_M)
883 TYPE("i64i32imm", TYPE_IMM)
884 TYPE("i64i8imm", TYPE_IMM)
885 TYPE("GR64", TYPE_R64)
886 TYPE("i8mem", TYPE_M)
887 TYPE("i8imm", TYPE_IMM)
888 TYPE("u4imm", TYPE_UIMM8)
889 TYPE("u8imm", TYPE_UIMM8)
890 TYPE("i16u8imm", TYPE_UIMM8)
891 TYPE("i32u8imm", TYPE_UIMM8)
892 TYPE("i64u8imm", TYPE_UIMM8)
893 TYPE("GR8", TYPE_R8)
894 TYPE("VR128", TYPE_XMM)
895 TYPE("VR128X", TYPE_XMM)
896 TYPE("f128mem", TYPE_M)
897 TYPE("f256mem", TYPE_M)
898 TYPE("f512mem", TYPE_M)
899 TYPE("FR128", TYPE_XMM)
900 TYPE("FR64", TYPE_XMM)
901 TYPE("FR64X", TYPE_XMM)
902 TYPE("f64mem", TYPE_M)
903 TYPE("sdmem", TYPE_M)
904 TYPE("FR32", TYPE_XMM)
905 TYPE("FR32X", TYPE_XMM)
906 TYPE("f32mem", TYPE_M)
907 TYPE("ssmem", TYPE_M)
908 TYPE("RST", TYPE_ST)
909 TYPE("RSTi", TYPE_ST)
910 TYPE("i128mem", TYPE_M)
911 TYPE("i256mem", TYPE_M)
912 TYPE("i512mem", TYPE_M)
913 TYPE("i64i32imm_brtarget", TYPE_REL)
914 TYPE("i16imm_brtarget", TYPE_REL)
915 TYPE("i32imm_brtarget", TYPE_REL)
916 TYPE("ccode", TYPE_IMM)
917 TYPE("AVX512RC", TYPE_IMM)
918 TYPE("brtarget32", TYPE_REL)
919 TYPE("brtarget16", TYPE_REL)
920 TYPE("brtarget8", TYPE_REL)
921 TYPE("f80mem", TYPE_M)
922 TYPE("lea64_32mem", TYPE_M)
923 TYPE("lea64mem", TYPE_M)
924 TYPE("VR64", TYPE_MM64)
925 TYPE("i64imm", TYPE_IMM)
926 TYPE("anymem", TYPE_M)
927 TYPE("opaquemem", TYPE_M)
928 TYPE("sibmem", TYPE_MSIB)
929 TYPE("SEGMENT_REG", TYPE_SEGMENTREG)
930 TYPE("DEBUG_REG", TYPE_DEBUGREG)
931 TYPE("CONTROL_REG", TYPE_CONTROLREG)
932 TYPE("srcidx8", TYPE_SRCIDX)
933 TYPE("srcidx16", TYPE_SRCIDX)
934 TYPE("srcidx32", TYPE_SRCIDX)
935 TYPE("srcidx64", TYPE_SRCIDX)
936 TYPE("dstidx8", TYPE_DSTIDX)
937 TYPE("dstidx16", TYPE_DSTIDX)
938 TYPE("dstidx32", TYPE_DSTIDX)
939 TYPE("dstidx64", TYPE_DSTIDX)
940 TYPE("offset16_8", TYPE_MOFFS)
941 TYPE("offset16_16", TYPE_MOFFS)
942 TYPE("offset16_32", TYPE_MOFFS)
943 TYPE("offset32_8", TYPE_MOFFS)
944 TYPE("offset32_16", TYPE_MOFFS)
945 TYPE("offset32_32", TYPE_MOFFS)
946 TYPE("offset32_64", TYPE_MOFFS)
947 TYPE("offset64_8", TYPE_MOFFS)
948 TYPE("offset64_16", TYPE_MOFFS)
949 TYPE("offset64_32", TYPE_MOFFS)
950 TYPE("offset64_64", TYPE_MOFFS)
951 TYPE("VR256", TYPE_YMM)
952 TYPE("VR256X", TYPE_YMM)
953 TYPE("VR512", TYPE_ZMM)
954 TYPE("VK1", TYPE_VK)
955 TYPE("VK1WM", TYPE_VK)
956 TYPE("VK2", TYPE_VK)
957 TYPE("VK2WM", TYPE_VK)
958 TYPE("VK4", TYPE_VK)
959 TYPE("VK4WM", TYPE_VK)
960 TYPE("VK8", TYPE_VK)
961 TYPE("VK8WM", TYPE_VK)
962 TYPE("VK16", TYPE_VK)
963 TYPE("VK16WM", TYPE_VK)
964 TYPE("VK32", TYPE_VK)
965 TYPE("VK32WM", TYPE_VK)
966 TYPE("VK64", TYPE_VK)
967 TYPE("VK64WM", TYPE_VK)
968 TYPE("VK1Pair", TYPE_VK_PAIR)
969 TYPE("VK2Pair", TYPE_VK_PAIR)
970 TYPE("VK4Pair", TYPE_VK_PAIR)
971 TYPE("VK8Pair", TYPE_VK_PAIR)
972 TYPE("VK16Pair", TYPE_VK_PAIR)
973 TYPE("vx64mem", TYPE_MVSIBX)
974 TYPE("vx128mem", TYPE_MVSIBX)
975 TYPE("vx256mem", TYPE_MVSIBX)
976 TYPE("vy128mem", TYPE_MVSIBY)
977 TYPE("vy256mem", TYPE_MVSIBY)
978 TYPE("vx64xmem", TYPE_MVSIBX)
979 TYPE("vx128xmem", TYPE_MVSIBX)
980 TYPE("vx256xmem", TYPE_MVSIBX)
981 TYPE("vy128xmem", TYPE_MVSIBY)
982 TYPE("vy256xmem", TYPE_MVSIBY)
983 TYPE("vy512xmem", TYPE_MVSIBY)
984 TYPE("vz256mem", TYPE_MVSIBZ)
985 TYPE("vz512mem", TYPE_MVSIBZ)
986 TYPE("BNDR", TYPE_BNDR)
987 TYPE("TILE", TYPE_TMM)
988 errs() << "Unhandled type string " << s << "\n";
989 llvm_unreachable("Unhandled type string")__builtin_unreachable();
990}
991#undef TYPE
992
993#define ENCODING(str, encoding) if (s == str) return encoding;
994OperandEncoding
995RecognizableInstr::immediateEncodingFromString(const std::string &s,
996 uint8_t OpSize) {
997 if(OpSize != X86Local::OpSize16) {
998 // For instructions without an OpSize prefix, a declared 16-bit register or
999 // immediate encoding is special.
1000 ENCODING("i16imm", ENCODING_IW)
1001 }
1002 ENCODING("i32i8imm", ENCODING_IB)
1003 ENCODING("AVX512RC", ENCODING_IRC)
1004 ENCODING("i16imm", ENCODING_Iv)
1005 ENCODING("i16i8imm", ENCODING_IB)
1006 ENCODING("i32imm", ENCODING_Iv)
1007 ENCODING("i64i32imm", ENCODING_ID)
1008 ENCODING("i64i8imm", ENCODING_IB)
1009 ENCODING("i8imm", ENCODING_IB)
1010 ENCODING("u4imm", ENCODING_IB)
1011 ENCODING("u8imm", ENCODING_IB)
1012 ENCODING("i16u8imm", ENCODING_IB)
1013 ENCODING("i32u8imm", ENCODING_IB)
1014 ENCODING("i64u8imm", ENCODING_IB)
1015 // This is not a typo. Instructions like BLENDVPD put
1016 // register IDs in 8-bit immediates nowadays.
1017 ENCODING("FR32", ENCODING_IB)
1018 ENCODING("FR64", ENCODING_IB)
1019 ENCODING("FR128", ENCODING_IB)
1020 ENCODING("VR128", ENCODING_IB)
1021 ENCODING("VR256", ENCODING_IB)
1022 ENCODING("FR32X", ENCODING_IB)
1023 ENCODING("FR64X", ENCODING_IB)
1024 ENCODING("VR128X", ENCODING_IB)
1025 ENCODING("VR256X", ENCODING_IB)
1026 ENCODING("VR512", ENCODING_IB)
1027 ENCODING("TILE", ENCODING_IB)
1028 errs() << "Unhandled immediate encoding " << s << "\n";
1029 llvm_unreachable("Unhandled immediate encoding")__builtin_unreachable();
1030}
1031
1032OperandEncoding
1033RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
1034 uint8_t OpSize) {
1035 ENCODING("RST", ENCODING_FP)
1036 ENCODING("RSTi", ENCODING_FP)
1037 ENCODING("GR16", ENCODING_RM)
1038 ENCODING("GR16orGR32orGR64",ENCODING_RM)
1039 ENCODING("GR32", ENCODING_RM)
1040 ENCODING("GR32orGR64", ENCODING_RM)
1041 ENCODING("GR64", ENCODING_RM)
1042 ENCODING("GR8", ENCODING_RM)
1043 ENCODING("VR128", ENCODING_RM)
1044 ENCODING("VR128X", ENCODING_RM)
1045 ENCODING("FR128", ENCODING_RM)
1046 ENCODING("FR64", ENCODING_RM)
1047 ENCODING("FR32", ENCODING_RM)
1048 ENCODING("FR64X", ENCODING_RM)
1049 ENCODING("FR32X", ENCODING_RM)
1050 ENCODING("VR64", ENCODING_RM)
1051 ENCODING("VR256", ENCODING_RM)
1052 ENCODING("VR256X", ENCODING_RM)
1053 ENCODING("VR512", ENCODING_RM)
1054 ENCODING("VK1", ENCODING_RM)
1055 ENCODING("VK2", ENCODING_RM)
1056 ENCODING("VK4", ENCODING_RM)
1057 ENCODING("VK8", ENCODING_RM)
1058 ENCODING("VK16", ENCODING_RM)
1059 ENCODING("VK32", ENCODING_RM)
1060 ENCODING("VK64", ENCODING_RM)
1061 ENCODING("VK1PAIR", ENCODING_RM)
1062 ENCODING("VK2PAIR", ENCODING_RM)
1063 ENCODING("VK4PAIR", ENCODING_RM)
1064 ENCODING("VK8PAIR", ENCODING_RM)
1065 ENCODING("VK16PAIR", ENCODING_RM)
1066 ENCODING("BNDR", ENCODING_RM)
1067 ENCODING("TILE", ENCODING_RM)
1068 errs() << "Unhandled R/M register encoding " << s << "\n";
1069 llvm_unreachable("Unhandled R/M register encoding")__builtin_unreachable();
1070}
1071
1072OperandEncoding
1073RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
1074 uint8_t OpSize) {
1075 ENCODING("GR16", ENCODING_REG)
1076 ENCODING("GR16orGR32orGR64",ENCODING_REG)
1077 ENCODING("GR32", ENCODING_REG)
1078 ENCODING("GR32orGR64", ENCODING_REG)
1079 ENCODING("GR64", ENCODING_REG)
1080 ENCODING("GR8", ENCODING_REG)
1081 ENCODING("VR128", ENCODING_REG)
1082 ENCODING("FR128", ENCODING_REG)
1083 ENCODING("FR64", ENCODING_REG)
1084 ENCODING("FR32", ENCODING_REG)
1085 ENCODING("VR64", ENCODING_REG)
1086 ENCODING("SEGMENT_REG", ENCODING_REG)
1087 ENCODING("DEBUG_REG", ENCODING_REG)
1088 ENCODING("CONTROL_REG", ENCODING_REG)
1089 ENCODING("VR256", ENCODING_REG)
1090 ENCODING("VR256X", ENCODING_REG)
1091 ENCODING("VR128X", ENCODING_REG)
1092 ENCODING("FR64X", ENCODING_REG)
1093 ENCODING("FR32X", ENCODING_REG)
1094 ENCODING("VR512", ENCODING_REG)
1095 ENCODING("VK1", ENCODING_REG)
1096 ENCODING("VK2", ENCODING_REG)
1097 ENCODING("VK4", ENCODING_REG)
1098 ENCODING("VK8", ENCODING_REG)
1099 ENCODING("VK16", ENCODING_REG)
1100 ENCODING("VK32", ENCODING_REG)
1101 ENCODING("VK64", ENCODING_REG)
1102 ENCODING("VK1Pair", ENCODING_REG)
1103 ENCODING("VK2Pair", ENCODING_REG)
1104 ENCODING("VK4Pair", ENCODING_REG)
1105 ENCODING("VK8Pair", ENCODING_REG)
1106 ENCODING("VK16Pair", ENCODING_REG)
1107 ENCODING("VK1WM", ENCODING_REG)
1108 ENCODING("VK2WM", ENCODING_REG)
1109 ENCODING("VK4WM", ENCODING_REG)
1110 ENCODING("VK8WM", ENCODING_REG)
1111 ENCODING("VK16WM", ENCODING_REG)
1112 ENCODING("VK32WM", ENCODING_REG)
1113 ENCODING("VK64WM", ENCODING_REG)
1114 ENCODING("BNDR", ENCODING_REG)
1115 ENCODING("TILE", ENCODING_REG)
1116 errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1117 llvm_unreachable("Unhandled reg/opcode register encoding")__builtin_unreachable();
1118}
1119
1120OperandEncoding
1121RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
1122 uint8_t OpSize) {
1123 ENCODING("GR32", ENCODING_VVVV)
1124 ENCODING("GR64", ENCODING_VVVV)
1125 ENCODING("FR32", ENCODING_VVVV)
1126 ENCODING("FR128", ENCODING_VVVV)
1127 ENCODING("FR64", ENCODING_VVVV)
1128 ENCODING("VR128", ENCODING_VVVV)
1129 ENCODING("VR256", ENCODING_VVVV)
1130 ENCODING("FR32X", ENCODING_VVVV)
1131 ENCODING("FR64X", ENCODING_VVVV)
1132 ENCODING("VR128X", ENCODING_VVVV)
1133 ENCODING("VR256X", ENCODING_VVVV)
1134 ENCODING("VR512", ENCODING_VVVV)
1135 ENCODING("VK1", ENCODING_VVVV)
1136 ENCODING("VK2", ENCODING_VVVV)
1137 ENCODING("VK4", ENCODING_VVVV)
1138 ENCODING("VK8", ENCODING_VVVV)
1139 ENCODING("VK16", ENCODING_VVVV)
1140 ENCODING("VK32", ENCODING_VVVV)
1141 ENCODING("VK64", ENCODING_VVVV)
1142 ENCODING("VK1PAIR", ENCODING_VVVV)
1143 ENCODING("VK2PAIR", ENCODING_VVVV)
1144 ENCODING("VK4PAIR", ENCODING_VVVV)
1145 ENCODING("VK8PAIR", ENCODING_VVVV)
1146 ENCODING("VK16PAIR", ENCODING_VVVV)
1147 ENCODING("TILE", ENCODING_VVVV)
1148 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1149 llvm_unreachable("Unhandled VEX.vvvv register encoding")__builtin_unreachable();
1150}
1151
1152OperandEncoding
1153RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
1154 uint8_t OpSize) {
1155 ENCODING("VK1WM", ENCODING_WRITEMASK)
1156 ENCODING("VK2WM", ENCODING_WRITEMASK)
1157 ENCODING("VK4WM", ENCODING_WRITEMASK)
1158 ENCODING("VK8WM", ENCODING_WRITEMASK)
1159 ENCODING("VK16WM", ENCODING_WRITEMASK)
1160 ENCODING("VK32WM", ENCODING_WRITEMASK)
1161 ENCODING("VK64WM", ENCODING_WRITEMASK)
1162 errs() << "Unhandled mask register encoding " << s << "\n";
1163 llvm_unreachable("Unhandled mask register encoding")__builtin_unreachable();
1164}
1165
1166OperandEncoding
1167RecognizableInstr::memoryEncodingFromString(const std::string &s,
1168 uint8_t OpSize) {
1169 ENCODING("i16mem", ENCODING_RM)
1170 ENCODING("i32mem", ENCODING_RM)
1171 ENCODING("i64mem", ENCODING_RM)
1172 ENCODING("i8mem", ENCODING_RM)
1173 ENCODING("ssmem", ENCODING_RM)
1174 ENCODING("sdmem", ENCODING_RM)
1175 ENCODING("f128mem", ENCODING_RM)
1176 ENCODING("f256mem", ENCODING_RM)
1177 ENCODING("f512mem", ENCODING_RM)
1178 ENCODING("f64mem", ENCODING_RM)
1179 ENCODING("f32mem", ENCODING_RM)
1180 ENCODING("i128mem", ENCODING_RM)
1181 ENCODING("i256mem", ENCODING_RM)
1182 ENCODING("i512mem", ENCODING_RM)
1183 ENCODING("f80mem", ENCODING_RM)
1184 ENCODING("lea64_32mem", ENCODING_RM)
1185 ENCODING("lea64mem", ENCODING_RM)
1186 ENCODING("anymem", ENCODING_RM)
1187 ENCODING("opaquemem", ENCODING_RM)
1188 ENCODING("sibmem", ENCODING_SIB)
1189 ENCODING("vx64mem", ENCODING_VSIB)
1190 ENCODING("vx128mem", ENCODING_VSIB)
1191 ENCODING("vx256mem", ENCODING_VSIB)
1192 ENCODING("vy128mem", ENCODING_VSIB)
1193 ENCODING("vy256mem", ENCODING_VSIB)
1194 ENCODING("vx64xmem", ENCODING_VSIB)
1195 ENCODING("vx128xmem", ENCODING_VSIB)
1196 ENCODING("vx256xmem", ENCODING_VSIB)
1197 ENCODING("vy128xmem", ENCODING_VSIB)
1198 ENCODING("vy256xmem", ENCODING_VSIB)
1199 ENCODING("vy512xmem", ENCODING_VSIB)
1200 ENCODING("vz256mem", ENCODING_VSIB)
1201 ENCODING("vz512mem", ENCODING_VSIB)
1202 errs() << "Unhandled memory encoding " << s << "\n";
1203 llvm_unreachable("Unhandled memory encoding")__builtin_unreachable();
1204}
1205
1206OperandEncoding
1207RecognizableInstr::relocationEncodingFromString(const std::string &s,
1208 uint8_t OpSize) {
1209 if(OpSize != X86Local::OpSize16) {
1210 // For instructions without an OpSize prefix, a declared 16-bit register or
1211 // immediate encoding is special.
1212 ENCODING("i16imm", ENCODING_IW)
1213 }
1214 ENCODING("i16imm", ENCODING_Iv)
1215 ENCODING("i16i8imm", ENCODING_IB)
1216 ENCODING("i32imm", ENCODING_Iv)
1217 ENCODING("i32i8imm", ENCODING_IB)
1218 ENCODING("i64i32imm", ENCODING_ID)
1219 ENCODING("i64i8imm", ENCODING_IB)
1220 ENCODING("i8imm", ENCODING_IB)
1221 ENCODING("u8imm", ENCODING_IB)
1222 ENCODING("i16u8imm", ENCODING_IB)
1223 ENCODING("i32u8imm", ENCODING_IB)
1224 ENCODING("i64u8imm", ENCODING_IB)
1225 ENCODING("i64i32imm_brtarget", ENCODING_ID)
1226 ENCODING("i16imm_brtarget", ENCODING_IW)
1227 ENCODING("i32imm_brtarget", ENCODING_ID)
1228 ENCODING("brtarget32", ENCODING_ID)
1229 ENCODING("brtarget16", ENCODING_IW)
1230 ENCODING("brtarget8", ENCODING_IB)
1231 ENCODING("i64imm", ENCODING_IO)
1232 ENCODING("offset16_8", ENCODING_Ia)
1233 ENCODING("offset16_16", ENCODING_Ia)
1234 ENCODING("offset16_32", ENCODING_Ia)
1235 ENCODING("offset32_8", ENCODING_Ia)
1236 ENCODING("offset32_16", ENCODING_Ia)
1237 ENCODING("offset32_32", ENCODING_Ia)
1238 ENCODING("offset32_64", ENCODING_Ia)
1239 ENCODING("offset64_8", ENCODING_Ia)
1240 ENCODING("offset64_16", ENCODING_Ia)
1241 ENCODING("offset64_32", ENCODING_Ia)
1242 ENCODING("offset64_64", ENCODING_Ia)
1243 ENCODING("srcidx8", ENCODING_SI)
1244 ENCODING("srcidx16", ENCODING_SI)
1245 ENCODING("srcidx32", ENCODING_SI)
1246 ENCODING("srcidx64", ENCODING_SI)
1247 ENCODING("dstidx8", ENCODING_DI)
1248 ENCODING("dstidx16", ENCODING_DI)
1249 ENCODING("dstidx32", ENCODING_DI)
1250 ENCODING("dstidx64", ENCODING_DI)
1251 errs() << "Unhandled relocation encoding " << s << "\n";
1252 llvm_unreachable("Unhandled relocation encoding")__builtin_unreachable();
1253}
1254
1255OperandEncoding
1256RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
1257 uint8_t OpSize) {
1258 ENCODING("GR32", ENCODING_Rv)
1259 ENCODING("GR64", ENCODING_RO)
1260 ENCODING("GR16", ENCODING_Rv)
1261 ENCODING("GR8", ENCODING_RB)
1262 ENCODING("ccode", ENCODING_CC)
1263 errs() << "Unhandled opcode modifier encoding " << s << "\n";
1264 llvm_unreachable("Unhandled opcode modifier encoding")__builtin_unreachable();
1265}
1266#undef ENCODING