Bug Summary

File:src/gnu/usr.bin/clang/llvm-objcopy/obj/ELFObject.cpp
Warning:line 2653, column 3
Value stored to 'Offset' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name ELFObject.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/llvm-objcopy/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/llvm-objcopy/obj/../include/llvm-objcopy -I /usr/src/gnu/usr.bin/clang/llvm-objcopy/../../../llvm/llvm/tools/llvm-objcopy -I /usr/src/gnu/usr.bin/clang/llvm-objcopy/../../../llvm/llvm/tools/llvm-objcopy/ELF -I /usr/src/gnu/usr.bin/clang/llvm-objcopy/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/llvm-objcopy/../include -I /usr/src/gnu/usr.bin/clang/llvm-objcopy/obj -I /usr/src/gnu/usr.bin/clang/llvm-objcopy/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/llvm-objcopy/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ ELFObject.cpp
1//===- Object.cpp ---------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "Object.h"
10#include "llvm/ADT/ArrayRef.h"
11#include "llvm/ADT/STLExtras.h"
12#include "llvm/ADT/StringRef.h"
13#include "llvm/ADT/Twine.h"
14#include "llvm/ADT/iterator_range.h"
15#include "llvm/BinaryFormat/ELF.h"
16#include "llvm/MC/MCTargetOptions.h"
17#include "llvm/Object/ELF.h"
18#include "llvm/Object/ELFObjectFile.h"
19#include "llvm/Support/Compression.h"
20#include "llvm/Support/Endian.h"
21#include "llvm/Support/ErrorHandling.h"
22#include "llvm/Support/FileOutputBuffer.h"
23#include "llvm/Support/Path.h"
24#include <algorithm>
25#include <cstddef>
26#include <cstdint>
27#include <iterator>
28#include <unordered_set>
29#include <utility>
30#include <vector>
31
32using namespace llvm;
33using namespace llvm::ELF;
34using namespace llvm::objcopy::elf;
35using namespace llvm::object;
36
37template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
38 uint8_t *B = reinterpret_cast<uint8_t *>(Buf->getBufferStart()) +
39 Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr);
40 Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
41 Phdr.p_type = Seg.Type;
42 Phdr.p_flags = Seg.Flags;
43 Phdr.p_offset = Seg.Offset;
44 Phdr.p_vaddr = Seg.VAddr;
45 Phdr.p_paddr = Seg.PAddr;
46 Phdr.p_filesz = Seg.FileSize;
47 Phdr.p_memsz = Seg.MemSize;
48 Phdr.p_align = Seg.Align;
49}
50
51Error SectionBase::removeSectionReferences(
52 bool, function_ref<bool(const SectionBase *)>) {
53 return Error::success();
54}
55
56Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)>) {
57 return Error::success();
58}
59
60Error SectionBase::initialize(SectionTableRef) { return Error::success(); }
61void SectionBase::finalize() {}
62void SectionBase::markSymbols() {}
63void SectionBase::replaceSectionReferences(
64 const DenseMap<SectionBase *, SectionBase *> &) {}
65void SectionBase::onRemove() {}
66
67template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
68 uint8_t *B =
69 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Sec.HeaderOffset;
70 Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
71 Shdr.sh_name = Sec.NameIndex;
72 Shdr.sh_type = Sec.Type;
73 Shdr.sh_flags = Sec.Flags;
74 Shdr.sh_addr = Sec.Addr;
75 Shdr.sh_offset = Sec.Offset;
76 Shdr.sh_size = Sec.Size;
77 Shdr.sh_link = Sec.Link;
78 Shdr.sh_info = Sec.Info;
79 Shdr.sh_addralign = Sec.Align;
80 Shdr.sh_entsize = Sec.EntrySize;
81}
82
83template <class ELFT> Error ELFSectionSizer<ELFT>::visit(Section &) {
84 return Error::success();
85}
86
87template <class ELFT> Error ELFSectionSizer<ELFT>::visit(OwnedDataSection &) {
88 return Error::success();
89}
90
91template <class ELFT> Error ELFSectionSizer<ELFT>::visit(StringTableSection &) {
92 return Error::success();
93}
94
95template <class ELFT>
96Error ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &) {
97 return Error::success();
98}
99
100template <class ELFT>
101Error ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) {
102 Sec.EntrySize = sizeof(Elf_Sym);
103 Sec.Size = Sec.Symbols.size() * Sec.EntrySize;
104 // Align to the largest field in Elf_Sym.
105 Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
106 return Error::success();
107}
108
109template <class ELFT>
110Error ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) {
111 Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela);
112 Sec.Size = Sec.Relocations.size() * Sec.EntrySize;
113 // Align to the largest field in Elf_Rel(a).
114 Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
115 return Error::success();
116}
117
118template <class ELFT>
119Error ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &) {
120 return Error::success();
121}
122
123template <class ELFT> Error ELFSectionSizer<ELFT>::visit(GroupSection &Sec) {
124 Sec.Size = sizeof(Elf_Word) + Sec.GroupMembers.size() * sizeof(Elf_Word);
125 return Error::success();
126}
127
128template <class ELFT>
129Error ELFSectionSizer<ELFT>::visit(SectionIndexSection &) {
130 return Error::success();
131}
132
133template <class ELFT> Error ELFSectionSizer<ELFT>::visit(CompressedSection &) {
134 return Error::success();
135}
136
137template <class ELFT>
138Error ELFSectionSizer<ELFT>::visit(DecompressedSection &) {
139 return Error::success();
140}
141
142Error BinarySectionWriter::visit(const SectionIndexSection &Sec) {
143 return createStringError(errc::operation_not_permitted,
144 "cannot write symbol section index table '" +
145 Sec.Name + "' ");
146}
147
148Error BinarySectionWriter::visit(const SymbolTableSection &Sec) {
149 return createStringError(errc::operation_not_permitted,
150 "cannot write symbol table '" + Sec.Name +
151 "' out to binary");
152}
153
154Error BinarySectionWriter::visit(const RelocationSection &Sec) {
155 return createStringError(errc::operation_not_permitted,
156 "cannot write relocation section '" + Sec.Name +
157 "' out to binary");
158}
159
160Error BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
161 return createStringError(errc::operation_not_permitted,
162 "cannot write '" + Sec.Name + "' out to binary");
163}
164
165Error BinarySectionWriter::visit(const GroupSection &Sec) {
166 return createStringError(errc::operation_not_permitted,
167 "cannot write '" + Sec.Name + "' out to binary");
168}
169
170Error SectionWriter::visit(const Section &Sec) {
171 if (Sec.Type != SHT_NOBITS)
172 llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
173
174 return Error::success();
175}
176
177static bool addressOverflows32bit(uint64_t Addr) {
178 // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok
179 return Addr > UINT32_MAX0xffffffffU && Addr + 0x80000000 > UINT32_MAX0xffffffffU;
180}
181
182template <class T> static T checkedGetHex(StringRef S) {
183 T Value;
184 bool Fail = S.getAsInteger(16, Value);
185 assert(!Fail)((void)0);
186 (void)Fail;
187 return Value;
188}
189
190// Fills exactly Len bytes of buffer with hexadecimal characters
191// representing value 'X'
192template <class T, class Iterator>
193static Iterator toHexStr(T X, Iterator It, size_t Len) {
194 // Fill range with '0'
195 std::fill(It, It + Len, '0');
196
197 for (long I = Len - 1; I >= 0; --I) {
198 unsigned char Mod = static_cast<unsigned char>(X) & 15;
199 *(It + I) = hexdigit(Mod, false);
200 X >>= 4;
201 }
202 assert(X == 0)((void)0);
203 return It + Len;
204}
205
206uint8_t IHexRecord::getChecksum(StringRef S) {
207 assert((S.size() & 1) == 0)((void)0);
208 uint8_t Checksum = 0;
209 while (!S.empty()) {
210 Checksum += checkedGetHex<uint8_t>(S.take_front(2));
211 S = S.drop_front(2);
212 }
213 return -Checksum;
214}
215
216IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr,
217 ArrayRef<uint8_t> Data) {
218 IHexLineData Line(getLineLength(Data.size()));
219 assert(Line.size())((void)0);
220 auto Iter = Line.begin();
221 *Iter++ = ':';
222 Iter = toHexStr(Data.size(), Iter, 2);
223 Iter = toHexStr(Addr, Iter, 4);
224 Iter = toHexStr(Type, Iter, 2);
225 for (uint8_t X : Data)
226 Iter = toHexStr(X, Iter, 2);
227 StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter));
228 Iter = toHexStr(getChecksum(S), Iter, 2);
229 *Iter++ = '\r';
230 *Iter++ = '\n';
231 assert(Iter == Line.end())((void)0);
232 return Line;
233}
234
235static Error checkRecord(const IHexRecord &R) {
236 switch (R.Type) {
237 case IHexRecord::Data:
238 if (R.HexData.size() == 0)
239 return createStringError(
240 errc::invalid_argument,
241 "zero data length is not allowed for data records");
242 break;
243 case IHexRecord::EndOfFile:
244 break;
245 case IHexRecord::SegmentAddr:
246 // 20-bit segment address. Data length must be 2 bytes
247 // (4 bytes in hex)
248 if (R.HexData.size() != 4)
249 return createStringError(
250 errc::invalid_argument,
251 "segment address data should be 2 bytes in size");
252 break;
253 case IHexRecord::StartAddr80x86:
254 case IHexRecord::StartAddr:
255 if (R.HexData.size() != 8)
256 return createStringError(errc::invalid_argument,
257 "start address data should be 4 bytes in size");
258 // According to Intel HEX specification '03' record
259 // only specifies the code address within the 20-bit
260 // segmented address space of the 8086/80186. This
261 // means 12 high order bits should be zeroes.
262 if (R.Type == IHexRecord::StartAddr80x86 &&
263 R.HexData.take_front(3) != "000")
264 return createStringError(errc::invalid_argument,
265 "start address exceeds 20 bit for 80x86");
266 break;
267 case IHexRecord::ExtendedAddr:
268 // 16-31 bits of linear base address
269 if (R.HexData.size() != 4)
270 return createStringError(
271 errc::invalid_argument,
272 "extended address data should be 2 bytes in size");
273 break;
274 default:
275 // Unknown record type
276 return createStringError(errc::invalid_argument, "unknown record type: %u",
277 static_cast<unsigned>(R.Type));
278 }
279 return Error::success();
280}
281
282// Checks that IHEX line contains valid characters.
283// This allows converting hexadecimal data to integers
284// without extra verification.
285static Error checkChars(StringRef Line) {
286 assert(!Line.empty())((void)0);
287 if (Line[0] != ':')
288 return createStringError(errc::invalid_argument,
289 "missing ':' in the beginning of line.");
290
291 for (size_t Pos = 1; Pos < Line.size(); ++Pos)
292 if (hexDigitValue(Line[Pos]) == -1U)
293 return createStringError(errc::invalid_argument,
294 "invalid character at position %zu.", Pos + 1);
295 return Error::success();
296}
297
298Expected<IHexRecord> IHexRecord::parse(StringRef Line) {
299 assert(!Line.empty())((void)0);
300
301 // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC'
302 if (Line.size() < 11)
303 return createStringError(errc::invalid_argument,
304 "line is too short: %zu chars.", Line.size());
305
306 if (Error E = checkChars(Line))
307 return std::move(E);
308
309 IHexRecord Rec;
310 size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2));
311 if (Line.size() != getLength(DataLen))
312 return createStringError(errc::invalid_argument,
313 "invalid line length %zu (should be %zu)",
314 Line.size(), getLength(DataLen));
315
316 Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4));
317 Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2));
318 Rec.HexData = Line.substr(9, DataLen * 2);
319
320 if (getChecksum(Line.drop_front(1)) != 0)
321 return createStringError(errc::invalid_argument, "incorrect checksum.");
322 if (Error E = checkRecord(Rec))
323 return std::move(E);
324 return Rec;
325}
326
327static uint64_t sectionPhysicalAddr(const SectionBase *Sec) {
328 Segment *Seg = Sec->ParentSegment;
329 if (Seg && Seg->Type != ELF::PT_LOAD)
330 Seg = nullptr;
331 return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset
332 : Sec->Addr;
333}
334
335void IHexSectionWriterBase::writeSection(const SectionBase *Sec,
336 ArrayRef<uint8_t> Data) {
337 assert(Data.size() == Sec->Size)((void)0);
338 const uint32_t ChunkSize = 16;
339 uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU;
340 while (!Data.empty()) {
341 uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize);
342 if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) {
343 if (Addr > 0xFFFFFU) {
344 // Write extended address record, zeroing segment address
345 // if needed.
346 if (SegmentAddr != 0)
347 SegmentAddr = writeSegmentAddr(0U);
348 BaseAddr = writeBaseAddr(Addr);
349 } else {
350 // We can still remain 16-bit
351 SegmentAddr = writeSegmentAddr(Addr);
352 }
353 }
354 uint64_t SegOffset = Addr - BaseAddr - SegmentAddr;
355 assert(SegOffset <= 0xFFFFU)((void)0);
356 DataSize = std::min(DataSize, 0x10000U - SegOffset);
357 writeData(0, SegOffset, Data.take_front(DataSize));
358 Addr += DataSize;
359 Data = Data.drop_front(DataSize);
360 }
361}
362
363uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) {
364 assert(Addr <= 0xFFFFFU)((void)0);
365 uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0};
366 writeData(2, 0, Data);
367 return Addr & 0xF0000U;
368}
369
370uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) {
371 assert(Addr <= 0xFFFFFFFFU)((void)0);
372 uint64_t Base = Addr & 0xFFFF0000U;
373 uint8_t Data[] = {static_cast<uint8_t>(Base >> 24),
374 static_cast<uint8_t>((Base >> 16) & 0xFF)};
375 writeData(4, 0, Data);
376 return Base;
377}
378
379void IHexSectionWriterBase::writeData(uint8_t, uint16_t,
380 ArrayRef<uint8_t> Data) {
381 Offset += IHexRecord::getLineLength(Data.size());
382}
383
384Error IHexSectionWriterBase::visit(const Section &Sec) {
385 writeSection(&Sec, Sec.Contents);
386 return Error::success();
387}
388
389Error IHexSectionWriterBase::visit(const OwnedDataSection &Sec) {
390 writeSection(&Sec, Sec.Data);
391 return Error::success();
392}
393
394Error IHexSectionWriterBase::visit(const StringTableSection &Sec) {
395 // Check that sizer has already done its work
396 assert(Sec.Size == Sec.StrTabBuilder.getSize())((void)0);
397 // We are free to pass an invalid pointer to writeSection as long
398 // as we don't actually write any data. The real writer class has
399 // to override this method .
400 writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)});
401 return Error::success();
402}
403
404Error IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) {
405 writeSection(&Sec, Sec.Contents);
406 return Error::success();
407}
408
409void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr,
410 ArrayRef<uint8_t> Data) {
411 IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data);
412 memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size());
413 Offset += HexData.size();
414}
415
416Error IHexSectionWriter::visit(const StringTableSection &Sec) {
417 assert(Sec.Size == Sec.StrTabBuilder.getSize())((void)0);
418 std::vector<uint8_t> Data(Sec.Size);
419 Sec.StrTabBuilder.write(Data.data());
420 writeSection(&Sec, Data);
421 return Error::success();
422}
423
424Error Section::accept(SectionVisitor &Visitor) const {
425 return Visitor.visit(*this);
426}
427
428Error Section::accept(MutableSectionVisitor &Visitor) {
429 return Visitor.visit(*this);
430}
431
432Error SectionWriter::visit(const OwnedDataSection &Sec) {
433 llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset);
434 return Error::success();
435}
436
437static constexpr std::array<uint8_t, 4> ZlibGnuMagic = {{'Z', 'L', 'I', 'B'}};
438
439static bool isDataGnuCompressed(ArrayRef<uint8_t> Data) {
440 return Data.size() > ZlibGnuMagic.size() &&
441 std::equal(ZlibGnuMagic.begin(), ZlibGnuMagic.end(), Data.data());
442}
443
444template <class ELFT>
445static std::tuple<uint64_t, uint64_t>
446getDecompressedSizeAndAlignment(ArrayRef<uint8_t> Data) {
447 const bool IsGnuDebug = isDataGnuCompressed(Data);
448 const uint64_t DecompressedSize =
449 IsGnuDebug
450 ? support::endian::read64be(Data.data() + ZlibGnuMagic.size())
451 : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())->ch_size;
452 const uint64_t DecompressedAlign =
453 IsGnuDebug ? 1
454 : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())
455 ->ch_addralign;
456
457 return std::make_tuple(DecompressedSize, DecompressedAlign);
458}
459
460template <class ELFT>
461Error ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) {
462 const size_t DataOffset = isDataGnuCompressed(Sec.OriginalData)
463 ? (ZlibGnuMagic.size() + sizeof(Sec.Size))
464 : sizeof(Elf_Chdr_Impl<ELFT>);
465
466 StringRef CompressedContent(
467 reinterpret_cast<const char *>(Sec.OriginalData.data()) + DataOffset,
468 Sec.OriginalData.size() - DataOffset);
469
470 SmallVector<char, 128> DecompressedContent;
471 if (Error Err = zlib::uncompress(CompressedContent, DecompressedContent,
472 static_cast<size_t>(Sec.Size)))
473 return createStringError(errc::invalid_argument,
474 "'" + Sec.Name + "': " + toString(std::move(Err)));
475
476 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
477 std::copy(DecompressedContent.begin(), DecompressedContent.end(), Buf);
478
479 return Error::success();
480}
481
482Error BinarySectionWriter::visit(const DecompressedSection &Sec) {
483 return createStringError(errc::operation_not_permitted,
484 "cannot write compressed section '" + Sec.Name +
485 "' ");
486}
487
488Error DecompressedSection::accept(SectionVisitor &Visitor) const {
489 return Visitor.visit(*this);
490}
491
492Error DecompressedSection::accept(MutableSectionVisitor &Visitor) {
493 return Visitor.visit(*this);
494}
495
496Error OwnedDataSection::accept(SectionVisitor &Visitor) const {
497 return Visitor.visit(*this);
498}
499
500Error OwnedDataSection::accept(MutableSectionVisitor &Visitor) {
501 return Visitor.visit(*this);
502}
503
504void OwnedDataSection::appendHexData(StringRef HexData) {
505 assert((HexData.size() & 1) == 0)((void)0);
506 while (!HexData.empty()) {
507 Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2)));
508 HexData = HexData.drop_front(2);
509 }
510 Size = Data.size();
511}
512
513Error BinarySectionWriter::visit(const CompressedSection &Sec) {
514 return createStringError(errc::operation_not_permitted,
515 "cannot write compressed section '" + Sec.Name +
516 "' ");
517}
518
519template <class ELFT>
520Error ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) {
521 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
522 if (Sec.CompressionType == DebugCompressionType::None) {
523 std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
524 return Error::success();
525 }
526
527 if (Sec.CompressionType == DebugCompressionType::GNU) {
528 const char *Magic = "ZLIB";
529 memcpy(Buf, Magic, strlen(Magic));
530 Buf += strlen(Magic);
531 const uint64_t DecompressedSize =
532 support::endian::read64be(&Sec.DecompressedSize);
533 memcpy(Buf, &DecompressedSize, sizeof(DecompressedSize));
534 Buf += sizeof(DecompressedSize);
535 } else {
536 Elf_Chdr_Impl<ELFT> Chdr;
537 Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB;
538 Chdr.ch_size = Sec.DecompressedSize;
539 Chdr.ch_addralign = Sec.DecompressedAlign;
540 memcpy(Buf, &Chdr, sizeof(Chdr));
541 Buf += sizeof(Chdr);
542 }
543
544 std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf);
545 return Error::success();
546}
547
548Expected<CompressedSection>
549CompressedSection::create(const SectionBase &Sec,
550 DebugCompressionType CompressionType) {
551 Error Err = Error::success();
552 CompressedSection Section(Sec, CompressionType, Err);
553
554 if (Err)
555 return std::move(Err);
556
557 return Section;
558}
559Expected<CompressedSection>
560CompressedSection::create(ArrayRef<uint8_t> CompressedData,
561 uint64_t DecompressedSize,
562 uint64_t DecompressedAlign) {
563 return CompressedSection(CompressedData, DecompressedSize, DecompressedAlign);
564}
565
566CompressedSection::CompressedSection(const SectionBase &Sec,
567 DebugCompressionType CompressionType,
568 Error &OutErr)
569 : SectionBase(Sec), CompressionType(CompressionType),
570 DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) {
571 ErrorAsOutParameter EAO(&OutErr);
572
573 if (Error Err = zlib::compress(
574 StringRef(reinterpret_cast<const char *>(OriginalData.data()),
575 OriginalData.size()),
576 CompressedData)) {
577 OutErr = createStringError(llvm::errc::invalid_argument,
578 "'" + Name + "': " + toString(std::move(Err)));
579 return;
580 }
581
582 size_t ChdrSize;
583 if (CompressionType == DebugCompressionType::GNU) {
584 Name = ".z" + Sec.Name.substr(1);
585 ChdrSize = sizeof("ZLIB") - 1 + sizeof(uint64_t);
586 } else {
587 Flags |= ELF::SHF_COMPRESSED;
588 ChdrSize =
589 std::max(std::max(sizeof(object::Elf_Chdr_Impl<object::ELF64LE>),
590 sizeof(object::Elf_Chdr_Impl<object::ELF64BE>)),
591 std::max(sizeof(object::Elf_Chdr_Impl<object::ELF32LE>),
592 sizeof(object::Elf_Chdr_Impl<object::ELF32BE>)));
593 }
594 Size = ChdrSize + CompressedData.size();
595 Align = 8;
596}
597
598CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData,
599 uint64_t DecompressedSize,
600 uint64_t DecompressedAlign)
601 : CompressionType(DebugCompressionType::None),
602 DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) {
603 OriginalData = CompressedData;
604}
605
606Error CompressedSection::accept(SectionVisitor &Visitor) const {
607 return Visitor.visit(*this);
608}
609
610Error CompressedSection::accept(MutableSectionVisitor &Visitor) {
611 return Visitor.visit(*this);
612}
613
614void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); }
615
616uint32_t StringTableSection::findIndex(StringRef Name) const {
617 return StrTabBuilder.getOffset(Name);
618}
619
620void StringTableSection::prepareForLayout() {
621 StrTabBuilder.finalize();
622 Size = StrTabBuilder.getSize();
623}
624
625Error SectionWriter::visit(const StringTableSection &Sec) {
626 Sec.StrTabBuilder.write(reinterpret_cast<uint8_t *>(Out.getBufferStart()) +
627 Sec.Offset);
628 return Error::success();
629}
630
631Error StringTableSection::accept(SectionVisitor &Visitor) const {
632 return Visitor.visit(*this);
633}
634
635Error StringTableSection::accept(MutableSectionVisitor &Visitor) {
636 return Visitor.visit(*this);
637}
638
639template <class ELFT>
640Error ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
641 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
642 llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf));
643 return Error::success();
644}
645
646Error SectionIndexSection::initialize(SectionTableRef SecTable) {
647 Size = 0;
648 Expected<SymbolTableSection *> Sec =
649 SecTable.getSectionOfType<SymbolTableSection>(
650 Link,
651 "Link field value " + Twine(Link) + " in section " + Name +
652 " is invalid",
653 "Link field value " + Twine(Link) + " in section " + Name +
654 " is not a symbol table");
655 if (!Sec)
656 return Sec.takeError();
657
658 setSymTab(*Sec);
659 Symbols->setShndxTable(this);
660 return Error::success();
661}
662
663void SectionIndexSection::finalize() { Link = Symbols->Index; }
664
665Error SectionIndexSection::accept(SectionVisitor &Visitor) const {
666 return Visitor.visit(*this);
667}
668
669Error SectionIndexSection::accept(MutableSectionVisitor &Visitor) {
670 return Visitor.visit(*this);
671}
672
673static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
674 switch (Index) {
675 case SHN_ABS:
676 case SHN_COMMON:
677 return true;
678 }
679
680 if (Machine == EM_AMDGPU) {
681 return Index == SHN_AMDGPU_LDS;
682 }
683
684 if (Machine == EM_HEXAGON) {
685 switch (Index) {
686 case SHN_HEXAGON_SCOMMON:
687 case SHN_HEXAGON_SCOMMON_1:
688 case SHN_HEXAGON_SCOMMON_2:
689 case SHN_HEXAGON_SCOMMON_4:
690 case SHN_HEXAGON_SCOMMON_8:
691 return true;
692 }
693 }
694 return false;
695}
696
697// Large indexes force us to clarify exactly what this function should do. This
698// function should return the value that will appear in st_shndx when written
699// out.
700uint16_t Symbol::getShndx() const {
701 if (DefinedIn != nullptr) {
702 if (DefinedIn->Index >= SHN_LORESERVE)
703 return SHN_XINDEX;
704 return DefinedIn->Index;
705 }
706
707 if (ShndxType == SYMBOL_SIMPLE_INDEX) {
708 // This means that we don't have a defined section but we do need to
709 // output a legitimate section index.
710 return SHN_UNDEF;
711 }
712
713 assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON ||((void)0)
714 (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) ||((void)0)
715 (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS))((void)0);
716 return static_cast<uint16_t>(ShndxType);
717}
718
719bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; }
720
721void SymbolTableSection::assignIndices() {
722 uint32_t Index = 0;
723 for (auto &Sym : Symbols)
724 Sym->Index = Index++;
725}
726
727void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type,
728 SectionBase *DefinedIn, uint64_t Value,
729 uint8_t Visibility, uint16_t Shndx,
730 uint64_t SymbolSize) {
731 Symbol Sym;
732 Sym.Name = Name.str();
733 Sym.Binding = Bind;
734 Sym.Type = Type;
735 Sym.DefinedIn = DefinedIn;
736 if (DefinedIn != nullptr)
737 DefinedIn->HasSymbol = true;
738 if (DefinedIn == nullptr) {
739 if (Shndx >= SHN_LORESERVE)
740 Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
741 else
742 Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
743 }
744 Sym.Value = Value;
745 Sym.Visibility = Visibility;
746 Sym.Size = SymbolSize;
747 Sym.Index = Symbols.size();
748 Symbols.emplace_back(std::make_unique<Symbol>(Sym));
749 Size += this->EntrySize;
750}
751
752Error SymbolTableSection::removeSectionReferences(
753 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
754 if (ToRemove(SectionIndexTable))
755 SectionIndexTable = nullptr;
756 if (ToRemove(SymbolNames)) {
757 if (!AllowBrokenLinks)
758 return createStringError(
759 llvm::errc::invalid_argument,
760 "string table '%s' cannot be removed because it is "
761 "referenced by the symbol table '%s'",
762 SymbolNames->Name.data(), this->Name.data());
763 SymbolNames = nullptr;
764 }
765 return removeSymbols(
766 [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); });
767}
768
769void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
770 std::for_each(std::begin(Symbols) + 1, std::end(Symbols),
771 [Callable](SymPtr &Sym) { Callable(*Sym); });
772 std::stable_partition(
773 std::begin(Symbols), std::end(Symbols),
774 [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
775 assignIndices();
776}
777
778Error SymbolTableSection::removeSymbols(
779 function_ref<bool(const Symbol &)> ToRemove) {
780 Symbols.erase(
781 std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
782 [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
783 std::end(Symbols));
784 Size = Symbols.size() * EntrySize;
785 assignIndices();
786 return Error::success();
787}
788
789void SymbolTableSection::replaceSectionReferences(
790 const DenseMap<SectionBase *, SectionBase *> &FromTo) {
791 for (std::unique_ptr<Symbol> &Sym : Symbols)
792 if (SectionBase *To = FromTo.lookup(Sym->DefinedIn))
793 Sym->DefinedIn = To;
794}
795
796Error SymbolTableSection::initialize(SectionTableRef SecTable) {
797 Size = 0;
798 Expected<StringTableSection *> Sec =
799 SecTable.getSectionOfType<StringTableSection>(
800 Link,
801 "Symbol table has link index of " + Twine(Link) +
802 " which is not a valid index",
803 "Symbol table has link index of " + Twine(Link) +
804 " which is not a string table");
805 if (!Sec)
806 return Sec.takeError();
807
808 setStrTab(*Sec);
809 return Error::success();
810}
811
812void SymbolTableSection::finalize() {
813 uint32_t MaxLocalIndex = 0;
814 for (std::unique_ptr<Symbol> &Sym : Symbols) {
815 Sym->NameIndex =
816 SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name);
817 if (Sym->Binding == STB_LOCAL)
818 MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
819 }
820 // Now we need to set the Link and Info fields.
821 Link = SymbolNames == nullptr ? 0 : SymbolNames->Index;
822 Info = MaxLocalIndex + 1;
823}
824
825void SymbolTableSection::prepareForLayout() {
826 // Reserve proper amount of space in section index table, so we can
827 // layout sections correctly. We will fill the table with correct
828 // indexes later in fillShdnxTable.
829 if (SectionIndexTable)
830 SectionIndexTable->reserve(Symbols.size());
831
832 // Add all of our strings to SymbolNames so that SymbolNames has the right
833 // size before layout is decided.
834 // If the symbol names section has been removed, don't try to add strings to
835 // the table.
836 if (SymbolNames != nullptr)
837 for (std::unique_ptr<Symbol> &Sym : Symbols)
838 SymbolNames->addString(Sym->Name);
839}
840
841void SymbolTableSection::fillShndxTable() {
842 if (SectionIndexTable == nullptr)
843 return;
844 // Fill section index table with real section indexes. This function must
845 // be called after assignOffsets.
846 for (const std::unique_ptr<Symbol> &Sym : Symbols) {
847 if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
848 SectionIndexTable->addIndex(Sym->DefinedIn->Index);
849 else
850 SectionIndexTable->addIndex(SHN_UNDEF);
851 }
852}
853
854Expected<const Symbol *>
855SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
856 if (Symbols.size() <= Index)
857 return createStringError(errc::invalid_argument,
858 "invalid symbol index: " + Twine(Index));
859 return Symbols[Index].get();
860}
861
862Expected<Symbol *> SymbolTableSection::getSymbolByIndex(uint32_t Index) {
863 Expected<const Symbol *> Sym =
864 static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index);
865 if (!Sym)
866 return Sym.takeError();
867
868 return const_cast<Symbol *>(*Sym);
869}
870
871template <class ELFT>
872Error ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
873 Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset);
874 // Loop though symbols setting each entry of the symbol table.
875 for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) {
876 Sym->st_name = Symbol->NameIndex;
877 Sym->st_value = Symbol->Value;
878 Sym->st_size = Symbol->Size;
879 Sym->st_other = Symbol->Visibility;
880 Sym->setBinding(Symbol->Binding);
881 Sym->setType(Symbol->Type);
882 Sym->st_shndx = Symbol->getShndx();
883 ++Sym;
884 }
885 return Error::success();
886}
887
888Error SymbolTableSection::accept(SectionVisitor &Visitor) const {
889 return Visitor.visit(*this);
890}
891
892Error SymbolTableSection::accept(MutableSectionVisitor &Visitor) {
893 return Visitor.visit(*this);
894}
895
896Error RelocationSection::removeSectionReferences(
897 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
898 if (ToRemove(Symbols)) {
899 if (!AllowBrokenLinks)
900 return createStringError(
901 llvm::errc::invalid_argument,
902 "symbol table '%s' cannot be removed because it is "
903 "referenced by the relocation section '%s'",
904 Symbols->Name.data(), this->Name.data());
905 Symbols = nullptr;
906 }
907
908 for (const Relocation &R : Relocations) {
909 if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn ||
910 !ToRemove(R.RelocSymbol->DefinedIn))
911 continue;
912 return createStringError(llvm::errc::invalid_argument,
913 "section '%s' cannot be removed: (%s+0x%" PRIx64"llx"
914 ") has relocation against symbol '%s'",
915 R.RelocSymbol->DefinedIn->Name.data(),
916 SecToApplyRel->Name.data(), R.Offset,
917 R.RelocSymbol->Name.c_str());
918 }
919
920 return Error::success();
921}
922
923template <class SymTabType>
924Error RelocSectionWithSymtabBase<SymTabType>::initialize(
925 SectionTableRef SecTable) {
926 if (Link != SHN_UNDEF) {
927 Expected<SymTabType *> Sec = SecTable.getSectionOfType<SymTabType>(
928 Link,
929 "Link field value " + Twine(Link) + " in section " + Name +
930 " is invalid",
931 "Link field value " + Twine(Link) + " in section " + Name +
932 " is not a symbol table");
933 if (!Sec)
934 return Sec.takeError();
935
936 setSymTab(*Sec);
937 }
938
939 if (Info != SHN_UNDEF) {
940 Expected<SectionBase *> Sec =
941 SecTable.getSection(Info, "Info field value " + Twine(Info) +
942 " in section " + Name + " is invalid");
943 if (!Sec)
944 return Sec.takeError();
945
946 setSection(*Sec);
947 } else
948 setSection(nullptr);
949
950 return Error::success();
951}
952
953template <class SymTabType>
954void RelocSectionWithSymtabBase<SymTabType>::finalize() {
955 this->Link = Symbols ? Symbols->Index : 0;
956
957 if (SecToApplyRel != nullptr)
958 this->Info = SecToApplyRel->Index;
959}
960
961template <class ELFT>
962static void setAddend(Elf_Rel_Impl<ELFT, false> &, uint64_t) {}
963
964template <class ELFT>
965static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
966 Rela.r_addend = Addend;
967}
968
969template <class RelRange, class T>
970static void writeRel(const RelRange &Relocations, T *Buf) {
971 for (const auto &Reloc : Relocations) {
972 Buf->r_offset = Reloc.Offset;
973 setAddend(*Buf, Reloc.Addend);
974 Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0,
975 Reloc.Type, false);
976 ++Buf;
977 }
978}
979
980template <class ELFT>
981Error ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
982 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
983 if (Sec.Type == SHT_REL)
984 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf));
985 else
986 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf));
987 return Error::success();
988}
989
990Error RelocationSection::accept(SectionVisitor &Visitor) const {
991 return Visitor.visit(*this);
992}
993
994Error RelocationSection::accept(MutableSectionVisitor &Visitor) {
995 return Visitor.visit(*this);
996}
997
998Error RelocationSection::removeSymbols(
999 function_ref<bool(const Symbol &)> ToRemove) {
1000 for (const Relocation &Reloc : Relocations)
1001 if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol))
1002 return createStringError(
1003 llvm::errc::invalid_argument,
1004 "not stripping symbol '%s' because it is named in a relocation",
1005 Reloc.RelocSymbol->Name.data());
1006 return Error::success();
1007}
1008
1009void RelocationSection::markSymbols() {
1010 for (const Relocation &Reloc : Relocations)
1011 if (Reloc.RelocSymbol)
1012 Reloc.RelocSymbol->Referenced = true;
1013}
1014
1015void RelocationSection::replaceSectionReferences(
1016 const DenseMap<SectionBase *, SectionBase *> &FromTo) {
1017 // Update the target section if it was replaced.
1018 if (SectionBase *To = FromTo.lookup(SecToApplyRel))
1019 SecToApplyRel = To;
1020}
1021
1022Error SectionWriter::visit(const DynamicRelocationSection &Sec) {
1023 llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
1024 return Error::success();
1025}
1026
1027Error DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
1028 return Visitor.visit(*this);
1029}
1030
1031Error DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) {
1032 return Visitor.visit(*this);
1033}
1034
1035Error DynamicRelocationSection::removeSectionReferences(
1036 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
1037 if (ToRemove(Symbols)) {
1038 if (!AllowBrokenLinks)
1039 return createStringError(
1040 llvm::errc::invalid_argument,
1041 "symbol table '%s' cannot be removed because it is "
1042 "referenced by the relocation section '%s'",
1043 Symbols->Name.data(), this->Name.data());
1044 Symbols = nullptr;
1045 }
1046
1047 // SecToApplyRel contains a section referenced by sh_info field. It keeps
1048 // a section to which the relocation section applies. When we remove any
1049 // sections we also remove their relocation sections. Since we do that much
1050 // earlier, this assert should never be triggered.
1051 assert(!SecToApplyRel || !ToRemove(SecToApplyRel))((void)0);
1052 return Error::success();
1053}
1054
1055Error Section::removeSectionReferences(
1056 bool AllowBrokenDependency,
1057 function_ref<bool(const SectionBase *)> ToRemove) {
1058 if (ToRemove(LinkSection)) {
1059 if (!AllowBrokenDependency)
1060 return createStringError(llvm::errc::invalid_argument,
1061 "section '%s' cannot be removed because it is "
1062 "referenced by the section '%s'",
1063 LinkSection->Name.data(), this->Name.data());
1064 LinkSection = nullptr;
1065 }
1066 return Error::success();
1067}
1068
1069void GroupSection::finalize() {
1070 this->Info = Sym ? Sym->Index : 0;
1071 this->Link = SymTab ? SymTab->Index : 0;
1072 // Linker deduplication for GRP_COMDAT is based on Sym->Name. The local/global
1073 // status is not part of the equation. If Sym is localized, the intention is
1074 // likely to make the group fully localized. Drop GRP_COMDAT to suppress
1075 // deduplication. See https://groups.google.com/g/generic-abi/c/2X6mR-s2zoc
1076 if ((FlagWord & GRP_COMDAT) && Sym && Sym->Binding == STB_LOCAL)
1077 this->FlagWord &= ~GRP_COMDAT;
1078}
1079
1080Error GroupSection::removeSectionReferences(
1081 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
1082 if (ToRemove(SymTab)) {
1083 if (!AllowBrokenLinks)
1084 return createStringError(
1085 llvm::errc::invalid_argument,
1086 "section '.symtab' cannot be removed because it is "
1087 "referenced by the group section '%s'",
1088 this->Name.data());
1089 SymTab = nullptr;
1090 Sym = nullptr;
1091 }
1092 llvm::erase_if(GroupMembers, ToRemove);
1093 return Error::success();
1094}
1095
1096Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
1097 if (ToRemove(*Sym))
1098 return createStringError(llvm::errc::invalid_argument,
1099 "symbol '%s' cannot be removed because it is "
1100 "referenced by the section '%s[%d]'",
1101 Sym->Name.data(), this->Name.data(), this->Index);
1102 return Error::success();
1103}
1104
1105void GroupSection::markSymbols() {
1106 if (Sym)
1107 Sym->Referenced = true;
1108}
1109
1110void GroupSection::replaceSectionReferences(
1111 const DenseMap<SectionBase *, SectionBase *> &FromTo) {
1112 for (SectionBase *&Sec : GroupMembers)
1113 if (SectionBase *To = FromTo.lookup(Sec))
1114 Sec = To;
1115}
1116
1117void GroupSection::onRemove() {
1118 // As the header section of the group is removed, drop the Group flag in its
1119 // former members.
1120 for (SectionBase *Sec : GroupMembers)
1121 Sec->Flags &= ~SHF_GROUP;
1122}
1123
1124Error Section::initialize(SectionTableRef SecTable) {
1125 if (Link == ELF::SHN_UNDEF)
1126 return Error::success();
1127
1128 Expected<SectionBase *> Sec =
1129 SecTable.getSection(Link, "Link field value " + Twine(Link) +
1130 " in section " + Name + " is invalid");
1131 if (!Sec)
1132 return Sec.takeError();
1133
1134 LinkSection = *Sec;
1135
1136 if (LinkSection->Type == ELF::SHT_SYMTAB)
1137 LinkSection = nullptr;
1138
1139 return Error::success();
1140}
1141
1142void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }
1143
1144void GnuDebugLinkSection::init(StringRef File) {
1145 FileName = sys::path::filename(File);
1146 // The format for the .gnu_debuglink starts with the file name and is
1147 // followed by a null terminator and then the CRC32 of the file. The CRC32
1148 // should be 4 byte aligned. So we add the FileName size, a 1 for the null
1149 // byte, and then finally push the size to alignment and add 4.
1150 Size = alignTo(FileName.size() + 1, 4) + 4;
1151 // The CRC32 will only be aligned if we align the whole section.
1152 Align = 4;
1153 Type = OriginalType = ELF::SHT_PROGBITS;
1154 Name = ".gnu_debuglink";
1155 // For sections not found in segments, OriginalOffset is only used to
1156 // establish the order that sections should go in. By using the maximum
1157 // possible offset we cause this section to wind up at the end.
1158 OriginalOffset = std::numeric_limits<uint64_t>::max();
1159}
1160
1161GnuDebugLinkSection::GnuDebugLinkSection(StringRef File,
1162 uint32_t PrecomputedCRC)
1163 : FileName(File), CRC32(PrecomputedCRC) {
1164 init(File);
1165}
1166
1167template <class ELFT>
1168Error ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
1169 unsigned char *Buf =
1170 reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
1171 Elf_Word *CRC =
1172 reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
1173 *CRC = Sec.CRC32;
1174 llvm::copy(Sec.FileName, Buf);
1175 return Error::success();
1176}
1177
1178Error GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
1179 return Visitor.visit(*this);
1180}
1181
1182Error GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) {
1183 return Visitor.visit(*this);
1184}
1185
1186template <class ELFT>
1187Error ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
1188 ELF::Elf32_Word *Buf =
1189 reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
1190 support::endian::write32<ELFT::TargetEndianness>(Buf++, Sec.FlagWord);
1191 for (SectionBase *S : Sec.GroupMembers)
1192 support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index);
1193 return Error::success();
1194}
1195
1196Error GroupSection::accept(SectionVisitor &Visitor) const {
1197 return Visitor.visit(*this);
1198}
1199
1200Error GroupSection::accept(MutableSectionVisitor &Visitor) {
1201 return Visitor.visit(*this);
1202}
1203
1204// Returns true IFF a section is wholly inside the range of a segment
1205static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) {
1206 // If a section is empty it should be treated like it has a size of 1. This is
1207 // to clarify the case when an empty section lies on a boundary between two
1208 // segments and ensures that the section "belongs" to the second segment and
1209 // not the first.
1210 uint64_t SecSize = Sec.Size ? Sec.Size : 1;
1211
1212 // Ignore just added sections.
1213 if (Sec.OriginalOffset == std::numeric_limits<uint64_t>::max())
1214 return false;
1215
1216 if (Sec.Type == SHT_NOBITS) {
1217 if (!(Sec.Flags & SHF_ALLOC))
1218 return false;
1219
1220 bool SectionIsTLS = Sec.Flags & SHF_TLS;
1221 bool SegmentIsTLS = Seg.Type == PT_TLS;
1222 if (SectionIsTLS != SegmentIsTLS)
1223 return false;
1224
1225 return Seg.VAddr <= Sec.Addr &&
1226 Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize;
1227 }
1228
1229 return Seg.Offset <= Sec.OriginalOffset &&
1230 Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize;
1231}
1232
1233// Returns true IFF a segment's original offset is inside of another segment's
1234// range.
1235static bool segmentOverlapsSegment(const Segment &Child,
1236 const Segment &Parent) {
1237
1238 return Parent.OriginalOffset <= Child.OriginalOffset &&
1239 Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
1240}
1241
1242static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
1243 // Any segment without a parent segment should come before a segment
1244 // that has a parent segment.
1245 if (A->OriginalOffset < B->OriginalOffset)
1246 return true;
1247 if (A->OriginalOffset > B->OriginalOffset)
1248 return false;
1249 return A->Index < B->Index;
1250}
1251
1252void BasicELFBuilder::initFileHeader() {
1253 Obj->Flags = 0x0;
1254 Obj->Type = ET_REL;
1255 Obj->OSABI = ELFOSABI_NONE;
1256 Obj->ABIVersion = 0;
1257 Obj->Entry = 0x0;
1258 Obj->Machine = EM_NONE;
1259 Obj->Version = 1;
1260}
1261
1262void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; }
1263
1264StringTableSection *BasicELFBuilder::addStrTab() {
1265 auto &StrTab = Obj->addSection<StringTableSection>();
1266 StrTab.Name = ".strtab";
1267
1268 Obj->SectionNames = &StrTab;
1269 return &StrTab;
1270}
1271
1272SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) {
1273 auto &SymTab = Obj->addSection<SymbolTableSection>();
1274
1275 SymTab.Name = ".symtab";
1276 SymTab.Link = StrTab->Index;
1277
1278 // The symbol table always needs a null symbol
1279 SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
1280
1281 Obj->SymbolTable = &SymTab;
1282 return &SymTab;
1283}
1284
1285Error BasicELFBuilder::initSections() {
1286 for (SectionBase &Sec : Obj->sections())
1287 if (Error Err = Sec.initialize(Obj->sections()))
1288 return Err;
1289
1290 return Error::success();
1291}
1292
1293void BinaryELFBuilder::addData(SymbolTableSection *SymTab) {
1294 auto Data = ArrayRef<uint8_t>(
1295 reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()),
1296 MemBuf->getBufferSize());
1297 auto &DataSection = Obj->addSection<Section>(Data);
1298 DataSection.Name = ".data";
1299 DataSection.Type = ELF::SHT_PROGBITS;
1300 DataSection.Size = Data.size();
1301 DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
1302
1303 std::string SanitizedFilename = MemBuf->getBufferIdentifier().str();
1304 std::replace_if(
1305 std::begin(SanitizedFilename), std::end(SanitizedFilename),
1306 [](char C) { return !isAlnum(C); }, '_');
1307 Twine Prefix = Twine("_binary_") + SanitizedFilename;
1308
1309 SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection,
1310 /*Value=*/0, NewSymbolVisibility, 0, 0);
1311 SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection,
1312 /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0);
1313 SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr,
1314 /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS,
1315 0);
1316}
1317
1318Expected<std::unique_ptr<Object>> BinaryELFBuilder::build() {
1319 initFileHeader();
1320 initHeaderSegment();
1321
1322 SymbolTableSection *SymTab = addSymTab(addStrTab());
1323 if (Error Err = initSections())
1324 return std::move(Err);
1325 addData(SymTab);
1326
1327 return std::move(Obj);
1328}
1329
1330// Adds sections from IHEX data file. Data should have been
1331// fully validated by this time.
1332void IHexELFBuilder::addDataSections() {
1333 OwnedDataSection *Section = nullptr;
1334 uint64_t SegmentAddr = 0, BaseAddr = 0;
1335 uint32_t SecNo = 1;
1336
1337 for (const IHexRecord &R : Records) {
1338 uint64_t RecAddr;
1339 switch (R.Type) {
1340 case IHexRecord::Data:
1341 // Ignore empty data records
1342 if (R.HexData.empty())
1343 continue;
1344 RecAddr = R.Addr + SegmentAddr + BaseAddr;
1345 if (!Section || Section->Addr + Section->Size != RecAddr)
1346 // OriginalOffset field is only used to sort section properly, so
1347 // instead of keeping track of real offset in IHEX file, we use
1348 // section number.
1349 Section = &Obj->addSection<OwnedDataSection>(
1350 ".sec" + std::to_string(SecNo++), RecAddr,
1351 ELF::SHF_ALLOC | ELF::SHF_WRITE, SecNo);
1352 Section->appendHexData(R.HexData);
1353 break;
1354 case IHexRecord::EndOfFile:
1355 break;
1356 case IHexRecord::SegmentAddr:
1357 // 20-bit segment address.
1358 SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4;
1359 break;
1360 case IHexRecord::StartAddr80x86:
1361 case IHexRecord::StartAddr:
1362 Obj->Entry = checkedGetHex<uint32_t>(R.HexData);
1363 assert(Obj->Entry <= 0xFFFFFU)((void)0);
1364 break;
1365 case IHexRecord::ExtendedAddr:
1366 // 16-31 bits of linear base address
1367 BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16;
1368 break;
1369 default:
1370 llvm_unreachable("unknown record type")__builtin_unreachable();
1371 }
1372 }
1373}
1374
1375Expected<std::unique_ptr<Object>> IHexELFBuilder::build() {
1376 initFileHeader();
1377 initHeaderSegment();
1378 StringTableSection *StrTab = addStrTab();
1379 addSymTab(StrTab);
1380 if (Error Err = initSections())
1381 return std::move(Err);
1382 addDataSections();
1383
1384 return std::move(Obj);
1385}
1386
1387template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
1388 for (Segment &Parent : Obj.segments()) {
1389 // Every segment will overlap with itself but we don't want a segment to
1390 // be its own parent so we avoid that situation.
1391 if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
1392 // We want a canonical "most parental" segment but this requires
1393 // inspecting the ParentSegment.
1394 if (compareSegmentsByOffset(&Parent, &Child))
1395 if (Child.ParentSegment == nullptr ||
1396 compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
1397 Child.ParentSegment = &Parent;
1398 }
1399 }
1400 }
1401}
1402
1403template <class ELFT> Error ELFBuilder<ELFT>::findEhdrOffset() {
1404 if (!ExtractPartition)
1405 return Error::success();
1406
1407 for (const SectionBase &Sec : Obj.sections()) {
1408 if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) {
1409 EhdrOffset = Sec.Offset;
1410 return Error::success();
1411 }
1412 }
1413 return createStringError(errc::invalid_argument,
1414 "could not find partition named '" +
1415 *ExtractPartition + "'");
1416}
1417
1418template <class ELFT>
1419Error ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) {
1420 uint32_t Index = 0;
1421
1422 Expected<typename ELFFile<ELFT>::Elf_Phdr_Range> Headers =
1423 HeadersFile.program_headers();
1424 if (!Headers)
1425 return Headers.takeError();
1426
1427 for (const typename ELFFile<ELFT>::Elf_Phdr &Phdr : *Headers) {
1428 if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize())
1429 return createStringError(
1430 errc::invalid_argument,
1431 "program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) +
1432 " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) +
1433 " goes past the end of the file");
1434
1435 ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset,
1436 (size_t)Phdr.p_filesz};
1437 Segment &Seg = Obj.addSegment(Data);
1438 Seg.Type = Phdr.p_type;
1439 Seg.Flags = Phdr.p_flags;
1440 Seg.OriginalOffset = Phdr.p_offset + EhdrOffset;
1441 Seg.Offset = Phdr.p_offset + EhdrOffset;
1442 Seg.VAddr = Phdr.p_vaddr;
1443 Seg.PAddr = Phdr.p_paddr;
1444 Seg.FileSize = Phdr.p_filesz;
1445 Seg.MemSize = Phdr.p_memsz;
1446 Seg.Align = Phdr.p_align;
1447 Seg.Index = Index++;
1448 for (SectionBase &Sec : Obj.sections())
1449 if (sectionWithinSegment(Sec, Seg)) {
1450 Seg.addSection(&Sec);
1451 if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset)
1452 Sec.ParentSegment = &Seg;
1453 }
1454 }
1455
1456 auto &ElfHdr = Obj.ElfHdrSegment;
1457 ElfHdr.Index = Index++;
1458 ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset;
1459
1460 const typename ELFT::Ehdr &Ehdr = HeadersFile.getHeader();
1461 auto &PrHdr = Obj.ProgramHdrSegment;
1462 PrHdr.Type = PT_PHDR;
1463 PrHdr.Flags = 0;
1464 // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
1465 // Whereas this works automatically for ElfHdr, here OriginalOffset is
1466 // always non-zero and to ensure the equation we assign the same value to
1467 // VAddr as well.
1468 PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff;
1469 PrHdr.PAddr = 0;
1470 PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
1471 // The spec requires us to naturally align all the fields.
1472 PrHdr.Align = sizeof(Elf_Addr);
1473 PrHdr.Index = Index++;
1474
1475 // Now we do an O(n^2) loop through the segments in order to match up
1476 // segments.
1477 for (Segment &Child : Obj.segments())
1478 setParentSegment(Child);
1479 setParentSegment(ElfHdr);
1480 setParentSegment(PrHdr);
1481
1482 return Error::success();
1483}
1484
1485template <class ELFT>
1486Error ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
1487 if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0)
1488 return createStringError(errc::invalid_argument,
1489 "invalid alignment " + Twine(GroupSec->Align) +
1490 " of group section '" + GroupSec->Name + "'");
1491 SectionTableRef SecTable = Obj.sections();
1492 if (GroupSec->Link != SHN_UNDEF) {
1493 auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
1494 GroupSec->Link,
1495 "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1496 GroupSec->Name + "' is invalid",
1497 "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1498 GroupSec->Name + "' is not a symbol table");
1499 if (!SymTab)
1500 return SymTab.takeError();
1501
1502 Expected<Symbol *> Sym = (*SymTab)->getSymbolByIndex(GroupSec->Info);
1503 if (!Sym)
1504 return createStringError(errc::invalid_argument,
1505 "info field value '" + Twine(GroupSec->Info) +
1506 "' in section '" + GroupSec->Name +
1507 "' is not a valid symbol index");
1508 GroupSec->setSymTab(*SymTab);
1509 GroupSec->setSymbol(*Sym);
1510 }
1511 if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
1512 GroupSec->Contents.empty())
1513 return createStringError(errc::invalid_argument,
1514 "the content of the section " + GroupSec->Name +
1515 " is malformed");
1516 const ELF::Elf32_Word *Word =
1517 reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
1518 const ELF::Elf32_Word *End =
1519 Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
1520 GroupSec->setFlagWord(
1521 support::endian::read32<ELFT::TargetEndianness>(Word++));
1522 for (; Word != End; ++Word) {
1523 uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word);
1524 Expected<SectionBase *> Sec = SecTable.getSection(
1525 Index, "group member index " + Twine(Index) + " in section '" +
1526 GroupSec->Name + "' is invalid");
1527 if (!Sec)
1528 return Sec.takeError();
1529
1530 GroupSec->addMember(*Sec);
1531 }
1532
1533 return Error::success();
1534}
1535
1536template <class ELFT>
1537Error ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
1538 Expected<const Elf_Shdr *> Shdr = ElfFile.getSection(SymTab->Index);
1539 if (!Shdr)
1540 return Shdr.takeError();
1541
1542 Expected<StringRef> StrTabData = ElfFile.getStringTableForSymtab(**Shdr);
1543 if (!StrTabData)
1544 return StrTabData.takeError();
1545
1546 ArrayRef<Elf_Word> ShndxData;
1547
1548 Expected<typename ELFFile<ELFT>::Elf_Sym_Range> Symbols =
1549 ElfFile.symbols(*Shdr);
1550 if (!Symbols)
1551 return Symbols.takeError();
1552
1553 for (const typename ELFFile<ELFT>::Elf_Sym &Sym : *Symbols) {
1554 SectionBase *DefSection = nullptr;
1555
1556 Expected<StringRef> Name = Sym.getName(*StrTabData);
1557 if (!Name)
1558 return Name.takeError();
1559
1560 if (Sym.st_shndx == SHN_XINDEX) {
1561 if (SymTab->getShndxTable() == nullptr)
1562 return createStringError(errc::invalid_argument,
1563 "symbol '" + *Name +
1564 "' has index SHN_XINDEX but no "
1565 "SHT_SYMTAB_SHNDX section exists");
1566 if (ShndxData.data() == nullptr) {
1567 Expected<const Elf_Shdr *> ShndxSec =
1568 ElfFile.getSection(SymTab->getShndxTable()->Index);
1569 if (!ShndxSec)
1570 return ShndxSec.takeError();
1571
1572 Expected<ArrayRef<Elf_Word>> Data =
1573 ElfFile.template getSectionContentsAsArray<Elf_Word>(**ShndxSec);
1574 if (!Data)
1575 return Data.takeError();
1576
1577 ShndxData = *Data;
1578 if (ShndxData.size() != Symbols->size())
1579 return createStringError(
1580 errc::invalid_argument,
1581 "symbol section index table does not have the same number of "
1582 "entries as the symbol table");
1583 }
1584 Elf_Word Index = ShndxData[&Sym - Symbols->begin()];
1585 Expected<SectionBase *> Sec = Obj.sections().getSection(
1586 Index,
1587 "symbol '" + *Name + "' has invalid section index " + Twine(Index));
1588 if (!Sec)
1589 return Sec.takeError();
1590
1591 DefSection = *Sec;
1592 } else if (Sym.st_shndx >= SHN_LORESERVE) {
1593 if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
1594 return createStringError(
1595 errc::invalid_argument,
1596 "symbol '" + *Name +
1597 "' has unsupported value greater than or equal "
1598 "to SHN_LORESERVE: " +
1599 Twine(Sym.st_shndx));
1600 }
1601 } else if (Sym.st_shndx != SHN_UNDEF) {
1602 Expected<SectionBase *> Sec = Obj.sections().getSection(
1603 Sym.st_shndx, "symbol '" + *Name +
1604 "' is defined has invalid section index " +
1605 Twine(Sym.st_shndx));
1606 if (!Sec)
1607 return Sec.takeError();
1608
1609 DefSection = *Sec;
1610 }
1611
1612 SymTab->addSymbol(*Name, Sym.getBinding(), Sym.getType(), DefSection,
1613 Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
1614 }
1615
1616 return Error::success();
1617}
1618
1619template <class ELFT>
1620static void getAddend(uint64_t &, const Elf_Rel_Impl<ELFT, false> &) {}
1621
1622template <class ELFT>
1623static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
1624 ToSet = Rela.r_addend;
1625}
1626
1627template <class T>
1628static Error initRelocations(RelocationSection *Relocs,
1629 SymbolTableSection *SymbolTable, T RelRange) {
1630 for (const auto &Rel : RelRange) {
1631 Relocation ToAdd;
1632 ToAdd.Offset = Rel.r_offset;
1633 getAddend(ToAdd.Addend, Rel);
1634 ToAdd.Type = Rel.getType(false);
1635
1636 if (uint32_t Sym = Rel.getSymbol(false)) {
1637 if (!SymbolTable)
1638 return createStringError(
1639 errc::invalid_argument,
1640 "'" + Relocs->Name + "': relocation references symbol with index " +
1641 Twine(Sym) + ", but there is no symbol table");
1642 Expected<Symbol *> SymByIndex = SymbolTable->getSymbolByIndex(Sym);
1643 if (!SymByIndex)
1644 return SymByIndex.takeError();
1645
1646 ToAdd.RelocSymbol = *SymByIndex;
1647 }
1648
1649 Relocs->addRelocation(ToAdd);
1650 }
1651
1652 return Error::success();
1653}
1654
1655Expected<SectionBase *> SectionTableRef::getSection(uint32_t Index,
1656 Twine ErrMsg) {
1657 if (Index == SHN_UNDEF || Index > Sections.size())
1658 return createStringError(errc::invalid_argument, ErrMsg);
1659 return Sections[Index - 1].get();
1660}
1661
1662template <class T>
1663Expected<T *> SectionTableRef::getSectionOfType(uint32_t Index,
1664 Twine IndexErrMsg,
1665 Twine TypeErrMsg) {
1666 Expected<SectionBase *> BaseSec = getSection(Index, IndexErrMsg);
1667 if (!BaseSec)
1668 return BaseSec.takeError();
1669
1670 if (T *Sec = dyn_cast<T>(*BaseSec))
1671 return Sec;
1672
1673 return createStringError(errc::invalid_argument, TypeErrMsg);
1674}
1675
1676template <class ELFT>
1677Expected<SectionBase &> ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
1678 switch (Shdr.sh_type) {
1679 case SHT_REL:
1680 case SHT_RELA:
1681 if (Shdr.sh_flags & SHF_ALLOC) {
1682 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1683 return Obj.addSection<DynamicRelocationSection>(*Data);
1684 else
1685 return Data.takeError();
1686 }
1687 return Obj.addSection<RelocationSection>();
1688 case SHT_STRTAB:
1689 // If a string table is allocated we don't want to mess with it. That would
1690 // mean altering the memory image. There are no special link types or
1691 // anything so we can just use a Section.
1692 if (Shdr.sh_flags & SHF_ALLOC) {
1693 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1694 return Obj.addSection<Section>(*Data);
1695 else
1696 return Data.takeError();
1697 }
1698 return Obj.addSection<StringTableSection>();
1699 case SHT_HASH:
1700 case SHT_GNU_HASH:
1701 // Hash tables should refer to SHT_DYNSYM which we're not going to change.
1702 // Because of this we don't need to mess with the hash tables either.
1703 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1704 return Obj.addSection<Section>(*Data);
1705 else
1706 return Data.takeError();
1707 case SHT_GROUP:
1708 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1709 return Obj.addSection<GroupSection>(*Data);
1710 else
1711 return Data.takeError();
1712 case SHT_DYNSYM:
1713 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1714 return Obj.addSection<DynamicSymbolTableSection>(*Data);
1715 else
1716 return Data.takeError();
1717 case SHT_DYNAMIC:
1718 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1719 return Obj.addSection<DynamicSection>(*Data);
1720 else
1721 return Data.takeError();
1722 case SHT_SYMTAB: {
1723 auto &SymTab = Obj.addSection<SymbolTableSection>();
1724 Obj.SymbolTable = &SymTab;
1725 return SymTab;
1726 }
1727 case SHT_SYMTAB_SHNDX: {
1728 auto &ShndxSection = Obj.addSection<SectionIndexSection>();
1729 Obj.SectionIndexTable = &ShndxSection;
1730 return ShndxSection;
1731 }
1732 case SHT_NOBITS:
1733 return Obj.addSection<Section>(ArrayRef<uint8_t>());
1734 default: {
1735 Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr);
1736 if (!Data)
1737 return Data.takeError();
1738
1739 Expected<StringRef> Name = ElfFile.getSectionName(Shdr);
1740 if (!Name)
1741 return Name.takeError();
1742
1743 if (Name->startswith(".zdebug") || (Shdr.sh_flags & ELF::SHF_COMPRESSED)) {
1744 uint64_t DecompressedSize, DecompressedAlign;
1745 std::tie(DecompressedSize, DecompressedAlign) =
1746 getDecompressedSizeAndAlignment<ELFT>(*Data);
1747 Expected<CompressedSection> NewSection =
1748 CompressedSection::create(*Data, DecompressedSize, DecompressedAlign);
1749 if (!NewSection)
1750 return NewSection.takeError();
1751
1752 return Obj.addSection<CompressedSection>(std::move(*NewSection));
1753 }
1754
1755 return Obj.addSection<Section>(*Data);
1756 }
1757 }
1758}
1759
1760template <class ELFT> Error ELFBuilder<ELFT>::readSectionHeaders() {
1761 uint32_t Index = 0;
1762 Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections =
1763 ElfFile.sections();
1764 if (!Sections)
1765 return Sections.takeError();
1766
1767 for (const typename ELFFile<ELFT>::Elf_Shdr &Shdr : *Sections) {
1768 if (Index == 0) {
1769 ++Index;
1770 continue;
1771 }
1772 Expected<SectionBase &> Sec = makeSection(Shdr);
1773 if (!Sec)
1774 return Sec.takeError();
1775
1776 Expected<StringRef> SecName = ElfFile.getSectionName(Shdr);
1777 if (!SecName)
1778 return SecName.takeError();
1779 Sec->Name = SecName->str();
1780 Sec->Type = Sec->OriginalType = Shdr.sh_type;
1781 Sec->Flags = Sec->OriginalFlags = Shdr.sh_flags;
1782 Sec->Addr = Shdr.sh_addr;
1783 Sec->Offset = Shdr.sh_offset;
1784 Sec->OriginalOffset = Shdr.sh_offset;
1785 Sec->Size = Shdr.sh_size;
1786 Sec->Link = Shdr.sh_link;
1787 Sec->Info = Shdr.sh_info;
1788 Sec->Align = Shdr.sh_addralign;
1789 Sec->EntrySize = Shdr.sh_entsize;
1790 Sec->Index = Index++;
1791 Sec->OriginalIndex = Sec->Index;
1792 Sec->OriginalData =
1793 ArrayRef<uint8_t>(ElfFile.base() + Shdr.sh_offset,
1794 (Shdr.sh_type == SHT_NOBITS) ? (size_t)0 : Shdr.sh_size);
1795 }
1796
1797 return Error::success();
1798}
1799
1800template <class ELFT> Error ELFBuilder<ELFT>::readSections(bool EnsureSymtab) {
1801 uint32_t ShstrIndex = ElfFile.getHeader().e_shstrndx;
1802 if (ShstrIndex == SHN_XINDEX) {
1803 Expected<const Elf_Shdr *> Sec = ElfFile.getSection(0);
1804 if (!Sec)
1805 return Sec.takeError();
1806
1807 ShstrIndex = (*Sec)->sh_link;
1808 }
1809
1810 if (ShstrIndex == SHN_UNDEF)
1811 Obj.HadShdrs = false;
1812 else {
1813 Expected<StringTableSection *> Sec =
1814 Obj.sections().template getSectionOfType<StringTableSection>(
1815 ShstrIndex,
1816 "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1817 " is invalid",
1818 "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1819 " does not reference a string table");
1820 if (!Sec)
1821 return Sec.takeError();
1822
1823 Obj.SectionNames = *Sec;
1824 }
1825
1826 // If a section index table exists we'll need to initialize it before we
1827 // initialize the symbol table because the symbol table might need to
1828 // reference it.
1829 if (Obj.SectionIndexTable)
1830 if (Error Err = Obj.SectionIndexTable->initialize(Obj.sections()))
1831 return Err;
1832
1833 // Now that all of the sections have been added we can fill out some extra
1834 // details about symbol tables. We need the symbol table filled out before
1835 // any relocations.
1836 if (Obj.SymbolTable) {
1837 if (Error Err = Obj.SymbolTable->initialize(Obj.sections()))
1838 return Err;
1839 if (Error Err = initSymbolTable(Obj.SymbolTable))
1840 return Err;
1841 } else if (EnsureSymtab) {
1842 if (Error Err = Obj.addNewSymbolTable())
1843 return Err;
1844 }
1845
1846 // Now that all sections and symbols have been added we can add
1847 // relocations that reference symbols and set the link and info fields for
1848 // relocation sections.
1849 for (SectionBase &Sec : Obj.sections()) {
1850 if (&Sec == Obj.SymbolTable)
1851 continue;
1852 if (Error Err = Sec.initialize(Obj.sections()))
1853 return Err;
1854 if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) {
1855 Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections =
1856 ElfFile.sections();
1857 if (!Sections)
1858 return Sections.takeError();
1859
1860 const typename ELFFile<ELFT>::Elf_Shdr *Shdr =
1861 Sections->begin() + RelSec->Index;
1862 if (RelSec->Type == SHT_REL) {
1863 Expected<typename ELFFile<ELFT>::Elf_Rel_Range> Rels =
1864 ElfFile.rels(*Shdr);
1865 if (!Rels)
1866 return Rels.takeError();
1867
1868 if (Error Err = initRelocations(RelSec, Obj.SymbolTable, *Rels))
1869 return Err;
1870 } else {
1871 Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas =
1872 ElfFile.relas(*Shdr);
1873 if (!Relas)
1874 return Relas.takeError();
1875
1876 if (Error Err = initRelocations(RelSec, Obj.SymbolTable, *Relas))
1877 return Err;
1878 }
1879 } else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) {
1880 if (Error Err = initGroupSection(GroupSec))
1881 return Err;
1882 }
1883 }
1884
1885 return Error::success();
1886}
1887
1888template <class ELFT> Error ELFBuilder<ELFT>::build(bool EnsureSymtab) {
1889 if (Error E = readSectionHeaders())
1890 return E;
1891 if (Error E = findEhdrOffset())
1892 return E;
1893
1894 // The ELFFile whose ELF headers and program headers are copied into the
1895 // output file. Normally the same as ElfFile, but if we're extracting a
1896 // loadable partition it will point to the partition's headers.
1897 Expected<ELFFile<ELFT>> HeadersFile = ELFFile<ELFT>::create(toStringRef(
1898 {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset}));
1899 if (!HeadersFile)
1900 return HeadersFile.takeError();
1901
1902 const typename ELFFile<ELFT>::Elf_Ehdr &Ehdr = HeadersFile->getHeader();
1903 Obj.OSABI = Ehdr.e_ident[EI_OSABI];
1904 Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION];
1905 Obj.Type = Ehdr.e_type;
1906 Obj.Machine = Ehdr.e_machine;
1907 Obj.Version = Ehdr.e_version;
1908 Obj.Entry = Ehdr.e_entry;
1909 Obj.Flags = Ehdr.e_flags;
1910
1911 if (Error E = readSections(EnsureSymtab))
1912 return E;
1913 return readProgramHeaders(*HeadersFile);
1914}
1915
1916Writer::~Writer() {}
1917
1918Reader::~Reader() {}
1919
1920Expected<std::unique_ptr<Object>>
1921BinaryReader::create(bool /*EnsureSymtab*/) const {
1922 return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build();
1923}
1924
1925Expected<std::vector<IHexRecord>> IHexReader::parse() const {
1926 SmallVector<StringRef, 16> Lines;
1927 std::vector<IHexRecord> Records;
1928 bool HasSections = false;
1929
1930 MemBuf->getBuffer().split(Lines, '\n');
1931 Records.reserve(Lines.size());
1932 for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) {
1933 StringRef Line = Lines[LineNo - 1].trim();
1934 if (Line.empty())
1935 continue;
1936
1937 Expected<IHexRecord> R = IHexRecord::parse(Line);
1938 if (!R)
1939 return parseError(LineNo, R.takeError());
1940 if (R->Type == IHexRecord::EndOfFile)
1941 break;
1942 HasSections |= (R->Type == IHexRecord::Data);
1943 Records.push_back(*R);
1944 }
1945 if (!HasSections)
1946 return parseError(-1U, "no sections");
1947
1948 return std::move(Records);
1949}
1950
1951Expected<std::unique_ptr<Object>>
1952IHexReader::create(bool /*EnsureSymtab*/) const {
1953 Expected<std::vector<IHexRecord>> Records = parse();
1954 if (!Records)
1955 return Records.takeError();
1956
1957 return IHexELFBuilder(*Records).build();
1958}
1959
1960Expected<std::unique_ptr<Object>> ELFReader::create(bool EnsureSymtab) const {
1961 auto Obj = std::make_unique<Object>();
1962 if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
1963 ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition);
1964 if (Error Err = Builder.build(EnsureSymtab))
1965 return std::move(Err);
1966 return std::move(Obj);
1967 } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
1968 ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition);
1969 if (Error Err = Builder.build(EnsureSymtab))
1970 return std::move(Err);
1971 return std::move(Obj);
1972 } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
1973 ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition);
1974 if (Error Err = Builder.build(EnsureSymtab))
1975 return std::move(Err);
1976 return std::move(Obj);
1977 } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
1978 ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition);
1979 if (Error Err = Builder.build(EnsureSymtab))
1980 return std::move(Err);
1981 return std::move(Obj);
1982 }
1983 return createStringError(errc::invalid_argument, "invalid file type");
1984}
1985
1986template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
1987 Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf->getBufferStart());
1988 std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0);
1989 Ehdr.e_ident[EI_MAG0] = 0x7f;
1990 Ehdr.e_ident[EI_MAG1] = 'E';
1991 Ehdr.e_ident[EI_MAG2] = 'L';
1992 Ehdr.e_ident[EI_MAG3] = 'F';
1993 Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
1994 Ehdr.e_ident[EI_DATA] =
1995 ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB;
1996 Ehdr.e_ident[EI_VERSION] = EV_CURRENT;
1997 Ehdr.e_ident[EI_OSABI] = Obj.OSABI;
1998 Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion;
1999
2000 Ehdr.e_type = Obj.Type;
2001 Ehdr.e_machine = Obj.Machine;
2002 Ehdr.e_version = Obj.Version;
2003 Ehdr.e_entry = Obj.Entry;
2004 // We have to use the fully-qualified name llvm::size
2005 // since some compilers complain on ambiguous resolution.
2006 Ehdr.e_phnum = llvm::size(Obj.segments());
2007 Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0;
2008 Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0;
2009 Ehdr.e_flags = Obj.Flags;
2010 Ehdr.e_ehsize = sizeof(Elf_Ehdr);
2011 if (WriteSectionHeaders && Obj.sections().size() != 0) {
2012 Ehdr.e_shentsize = sizeof(Elf_Shdr);
2013 Ehdr.e_shoff = Obj.SHOff;
2014 // """
2015 // If the number of sections is greater than or equal to
2016 // SHN_LORESERVE (0xff00), this member has the value zero and the actual
2017 // number of section header table entries is contained in the sh_size field
2018 // of the section header at index 0.
2019 // """
2020 auto Shnum = Obj.sections().size() + 1;
2021 if (Shnum >= SHN_LORESERVE)
2022 Ehdr.e_shnum = 0;
2023 else
2024 Ehdr.e_shnum = Shnum;
2025 // """
2026 // If the section name string table section index is greater than or equal
2027 // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
2028 // and the actual index of the section name string table section is
2029 // contained in the sh_link field of the section header at index 0.
2030 // """
2031 if (Obj.SectionNames->Index >= SHN_LORESERVE)
2032 Ehdr.e_shstrndx = SHN_XINDEX;
2033 else
2034 Ehdr.e_shstrndx = Obj.SectionNames->Index;
2035 } else {
2036 Ehdr.e_shentsize = 0;
2037 Ehdr.e_shoff = 0;
2038 Ehdr.e_shnum = 0;
2039 Ehdr.e_shstrndx = 0;
2040 }
2041}
2042
2043template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
2044 for (auto &Seg : Obj.segments())
2045 writePhdr(Seg);
2046}
2047
2048template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
2049 // This reference serves to write the dummy section header at the begining
2050 // of the file. It is not used for anything else
2051 Elf_Shdr &Shdr =
2052 *reinterpret_cast<Elf_Shdr *>(Buf->getBufferStart() + Obj.SHOff);
2053 Shdr.sh_name = 0;
2054 Shdr.sh_type = SHT_NULL;
2055 Shdr.sh_flags = 0;
2056 Shdr.sh_addr = 0;
2057 Shdr.sh_offset = 0;
2058 // See writeEhdr for why we do this.
2059 uint64_t Shnum = Obj.sections().size() + 1;
2060 if (Shnum >= SHN_LORESERVE)
2061 Shdr.sh_size = Shnum;
2062 else
2063 Shdr.sh_size = 0;
2064 // See writeEhdr for why we do this.
2065 if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
2066 Shdr.sh_link = Obj.SectionNames->Index;
2067 else
2068 Shdr.sh_link = 0;
2069 Shdr.sh_info = 0;
2070 Shdr.sh_addralign = 0;
2071 Shdr.sh_entsize = 0;
2072
2073 for (SectionBase &Sec : Obj.sections())
2074 writeShdr(Sec);
2075}
2076
2077template <class ELFT> Error ELFWriter<ELFT>::writeSectionData() {
2078 for (SectionBase &Sec : Obj.sections())
2079 // Segments are responsible for writing their contents, so only write the
2080 // section data if the section is not in a segment. Note that this renders
2081 // sections in segments effectively immutable.
2082 if (Sec.ParentSegment == nullptr)
2083 if (Error Err = Sec.accept(*SecWriter))
2084 return Err;
2085
2086 return Error::success();
2087}
2088
2089template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() {
2090 for (Segment &Seg : Obj.segments()) {
2091 size_t Size = std::min<size_t>(Seg.FileSize, Seg.getContents().size());
2092 std::memcpy(Buf->getBufferStart() + Seg.Offset, Seg.getContents().data(),
2093 Size);
2094 }
2095
2096 // Iterate over removed sections and overwrite their old data with zeroes.
2097 for (auto &Sec : Obj.removedSections()) {
2098 Segment *Parent = Sec.ParentSegment;
2099 if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0)
2100 continue;
2101 uint64_t Offset =
2102 Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset;
2103 std::memset(Buf->getBufferStart() + Offset, 0, Sec.Size);
2104 }
2105}
2106
2107template <class ELFT>
2108ELFWriter<ELFT>::ELFWriter(Object &Obj, raw_ostream &Buf, bool WSH,
2109 bool OnlyKeepDebug)
2110 : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs),
2111 OnlyKeepDebug(OnlyKeepDebug) {}
2112
2113Error Object::removeSections(
2114 bool AllowBrokenLinks, std::function<bool(const SectionBase &)> ToRemove) {
2115
2116 auto Iter = std::stable_partition(
2117 std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
2118 if (ToRemove(*Sec))
2119 return false;
2120 if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
2121 if (auto ToRelSec = RelSec->getSection())
2122 return !ToRemove(*ToRelSec);
2123 }
2124 return true;
2125 });
2126 if (SymbolTable != nullptr && ToRemove(*SymbolTable))
2127 SymbolTable = nullptr;
2128 if (SectionNames != nullptr && ToRemove(*SectionNames))
2129 SectionNames = nullptr;
2130 if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
2131 SectionIndexTable = nullptr;
2132 // Now make sure there are no remaining references to the sections that will
2133 // be removed. Sometimes it is impossible to remove a reference so we emit
2134 // an error here instead.
2135 std::unordered_set<const SectionBase *> RemoveSections;
2136 RemoveSections.reserve(std::distance(Iter, std::end(Sections)));
2137 for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
2138 for (auto &Segment : Segments)
2139 Segment->removeSection(RemoveSec.get());
2140 RemoveSec->onRemove();
2141 RemoveSections.insert(RemoveSec.get());
2142 }
2143
2144 // For each section that remains alive, we want to remove the dead references.
2145 // This either might update the content of the section (e.g. remove symbols
2146 // from symbol table that belongs to removed section) or trigger an error if
2147 // a live section critically depends on a section being removed somehow
2148 // (e.g. the removed section is referenced by a relocation).
2149 for (auto &KeepSec : make_range(std::begin(Sections), Iter)) {
2150 if (Error E = KeepSec->removeSectionReferences(
2151 AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) {
2152 return RemoveSections.find(Sec) != RemoveSections.end();
2153 }))
2154 return E;
2155 }
2156
2157 // Transfer removed sections into the Object RemovedSections container for use
2158 // later.
2159 std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
2160 // Now finally get rid of them all together.
2161 Sections.erase(Iter, std::end(Sections));
2162 return Error::success();
2163}
2164
2165Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
2166 if (SymbolTable)
2167 for (const SecPtr &Sec : Sections)
2168 if (Error E = Sec->removeSymbols(ToRemove))
2169 return E;
2170 return Error::success();
2171}
2172
2173Error Object::addNewSymbolTable() {
2174 assert(!SymbolTable && "Object must not has a SymbolTable.")((void)0);
2175
2176 // Reuse an existing SHT_STRTAB section if it exists.
2177 StringTableSection *StrTab = nullptr;
2178 for (SectionBase &Sec : sections()) {
2179 if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) {
2180 StrTab = static_cast<StringTableSection *>(&Sec);
2181
2182 // Prefer a string table that is not the section header string table, if
2183 // such a table exists.
2184 if (SectionNames != &Sec)
2185 break;
2186 }
2187 }
2188 if (!StrTab)
2189 StrTab = &addSection<StringTableSection>();
2190
2191 SymbolTableSection &SymTab = addSection<SymbolTableSection>();
2192 SymTab.Name = ".symtab";
2193 SymTab.Link = StrTab->Index;
2194 if (Error Err = SymTab.initialize(sections()))
2195 return Err;
2196 SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
2197
2198 SymbolTable = &SymTab;
2199
2200 return Error::success();
2201}
2202
2203void Object::sortSections() {
2204 // Use stable_sort to maintain the original ordering as closely as possible.
2205 llvm::stable_sort(Sections, [](const SecPtr &A, const SecPtr &B) {
2206 // Put SHT_GROUP sections first, since group section headers must come
2207 // before the sections they contain. This also matches what GNU objcopy
2208 // does.
2209 if (A->Type != B->Type &&
2210 (A->Type == ELF::SHT_GROUP || B->Type == ELF::SHT_GROUP))
2211 return A->Type == ELF::SHT_GROUP;
2212 // For all other sections, sort by offset order.
2213 return A->OriginalOffset < B->OriginalOffset;
2214 });
2215}
2216
2217// Orders segments such that if x = y->ParentSegment then y comes before x.
2218static void orderSegments(std::vector<Segment *> &Segments) {
2219 llvm::stable_sort(Segments, compareSegmentsByOffset);
2220}
2221
2222// This function finds a consistent layout for a list of segments starting from
2223// an Offset. It assumes that Segments have been sorted by orderSegments and
2224// returns an Offset one past the end of the last segment.
2225static uint64_t layoutSegments(std::vector<Segment *> &Segments,
2226 uint64_t Offset) {
2227 assert(llvm::is_sorted(Segments, compareSegmentsByOffset))((void)0);
2228 // The only way a segment should move is if a section was between two
2229 // segments and that section was removed. If that section isn't in a segment
2230 // then it's acceptable, but not ideal, to simply move it to after the
2231 // segments. So we can simply layout segments one after the other accounting
2232 // for alignment.
2233 for (Segment *Seg : Segments) {
2234 // We assume that segments have been ordered by OriginalOffset and Index
2235 // such that a parent segment will always come before a child segment in
2236 // OrderedSegments. This means that the Offset of the ParentSegment should
2237 // already be set and we can set our offset relative to it.
2238 if (Seg->ParentSegment != nullptr) {
2239 Segment *Parent = Seg->ParentSegment;
2240 Seg->Offset =
2241 Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset;
2242 } else {
2243 Seg->Offset =
2244 alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr);
2245 }
2246 Offset = std::max(Offset, Seg->Offset + Seg->FileSize);
2247 }
2248 return Offset;
2249}
2250
2251// This function finds a consistent layout for a list of sections. It assumes
2252// that the ->ParentSegment of each section has already been laid out. The
2253// supplied starting Offset is used for the starting offset of any section that
2254// does not have a ParentSegment. It returns either the offset given if all
2255// sections had a ParentSegment or an offset one past the last section if there
2256// was a section that didn't have a ParentSegment.
2257template <class Range>
2258static uint64_t layoutSections(Range Sections, uint64_t Offset) {
2259 // Now the offset of every segment has been set we can assign the offsets
2260 // of each section. For sections that are covered by a segment we should use
2261 // the segment's original offset and the section's original offset to compute
2262 // the offset from the start of the segment. Using the offset from the start
2263 // of the segment we can assign a new offset to the section. For sections not
2264 // covered by segments we can just bump Offset to the next valid location.
2265 uint32_t Index = 1;
2266 for (auto &Sec : Sections) {
2267 Sec.Index = Index++;
2268 if (Sec.ParentSegment != nullptr) {
2269 auto Segment = *Sec.ParentSegment;
2270 Sec.Offset =
2271 Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset);
2272 } else {
2273 Offset = alignTo(Offset, Sec.Align == 0 ? 1 : Sec.Align);
2274 Sec.Offset = Offset;
2275 if (Sec.Type != SHT_NOBITS)
2276 Offset += Sec.Size;
2277 }
2278 }
2279 return Offset;
2280}
2281
2282// Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus
2283// occupy no space in the file.
2284static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) {
2285 uint32_t Index = 1;
2286 for (auto &Sec : Obj.sections()) {
2287 Sec.Index = Index++;
2288
2289 auto *FirstSec = Sec.ParentSegment && Sec.ParentSegment->Type == PT_LOAD
2290 ? Sec.ParentSegment->firstSection()
2291 : nullptr;
2292
2293 // The first section in a PT_LOAD has to have congruent offset and address
2294 // modulo the alignment, which usually equals the maximum page size.
2295 if (FirstSec && FirstSec == &Sec)
2296 Off = alignTo(Off, Sec.ParentSegment->Align, Sec.Addr);
2297
2298 // sh_offset is not significant for SHT_NOBITS sections, but the congruence
2299 // rule must be followed if it is the first section in a PT_LOAD. Do not
2300 // advance Off.
2301 if (Sec.Type == SHT_NOBITS) {
2302 Sec.Offset = Off;
2303 continue;
2304 }
2305
2306 if (!FirstSec) {
2307 // FirstSec being nullptr generally means that Sec does not have the
2308 // SHF_ALLOC flag.
2309 Off = Sec.Align ? alignTo(Off, Sec.Align) : Off;
2310 } else if (FirstSec != &Sec) {
2311 // The offset is relative to the first section in the PT_LOAD segment. Use
2312 // sh_offset for non-SHF_ALLOC sections.
2313 Off = Sec.OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset;
2314 }
2315 Sec.Offset = Off;
2316 Off += Sec.Size;
2317 }
2318 return Off;
2319}
2320
2321// Rewrite p_offset and p_filesz of non-PT_PHDR segments after sh_offset values
2322// have been updated.
2323static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments,
2324 uint64_t HdrEnd) {
2325 uint64_t MaxOffset = 0;
2326 for (Segment *Seg : Segments) {
2327 if (Seg->Type == PT_PHDR)
2328 continue;
2329
2330 // The segment offset is generally the offset of the first section.
2331 //
2332 // For a segment containing no section (see sectionWithinSegment), if it has
2333 // a parent segment, copy the parent segment's offset field. This works for
2334 // empty PT_TLS. If no parent segment, use 0: the segment is not useful for
2335 // debugging anyway.
2336 const SectionBase *FirstSec = Seg->firstSection();
2337 uint64_t Offset =
2338 FirstSec ? FirstSec->Offset
2339 : (Seg->ParentSegment ? Seg->ParentSegment->Offset : 0);
2340 uint64_t FileSize = 0;
2341 for (const SectionBase *Sec : Seg->Sections) {
2342 uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size;
2343 if (Sec->Offset + Size > Offset)
2344 FileSize = std::max(FileSize, Sec->Offset + Size - Offset);
2345 }
2346
2347 // If the segment includes EHDR and program headers, don't make it smaller
2348 // than the headers.
2349 if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) {
2350 FileSize += Offset - Seg->Offset;
2351 Offset = Seg->Offset;
2352 FileSize = std::max(FileSize, HdrEnd - Offset);
2353 }
2354
2355 Seg->Offset = Offset;
2356 Seg->FileSize = FileSize;
2357 MaxOffset = std::max(MaxOffset, Offset + FileSize);
2358 }
2359 return MaxOffset;
2360}
2361
2362template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() {
2363 Segment &ElfHdr = Obj.ElfHdrSegment;
2364 ElfHdr.Type = PT_PHDR;
2365 ElfHdr.Flags = 0;
2366 ElfHdr.VAddr = 0;
2367 ElfHdr.PAddr = 0;
2368 ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
2369 ElfHdr.Align = 0;
2370}
2371
2372template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
2373 // We need a temporary list of segments that has a special order to it
2374 // so that we know that anytime ->ParentSegment is set that segment has
2375 // already had its offset properly set.
2376 std::vector<Segment *> OrderedSegments;
2377 for (Segment &Segment : Obj.segments())
2378 OrderedSegments.push_back(&Segment);
2379 OrderedSegments.push_back(&Obj.ElfHdrSegment);
2380 OrderedSegments.push_back(&Obj.ProgramHdrSegment);
2381 orderSegments(OrderedSegments);
2382
2383 uint64_t Offset;
2384 if (OnlyKeepDebug) {
2385 // For --only-keep-debug, the sections that did not preserve contents were
2386 // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and
2387 // then rewrite p_offset/p_filesz of program headers.
2388 uint64_t HdrEnd =
2389 sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr);
2390 Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd);
2391 Offset = std::max(Offset,
2392 layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd));
2393 } else {
2394 // Offset is used as the start offset of the first segment to be laid out.
2395 // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
2396 // we start at offset 0.
2397 Offset = layoutSegments(OrderedSegments, 0);
2398 Offset = layoutSections(Obj.sections(), Offset);
2399 }
2400 // If we need to write the section header table out then we need to align the
2401 // Offset so that SHOffset is valid.
2402 if (WriteSectionHeaders)
2403 Offset = alignTo(Offset, sizeof(Elf_Addr));
2404 Obj.SHOff = Offset;
2405}
2406
2407template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
2408 // We already have the section header offset so we can calculate the total
2409 // size by just adding up the size of each section header.
2410 if (!WriteSectionHeaders)
2411 return Obj.SHOff;
2412 size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr.
2413 return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr);
2414}
2415
2416template <class ELFT> Error ELFWriter<ELFT>::write() {
2417 // Segment data must be written first, so that the ELF header and program
2418 // header tables can overwrite it, if covered by a segment.
2419 writeSegmentData();
2420 writeEhdr();
2421 writePhdrs();
2422 if (Error E = writeSectionData())
2423 return E;
2424 if (WriteSectionHeaders)
2425 writeShdrs();
2426
2427 // TODO: Implement direct writing to the output stream (without intermediate
2428 // memory buffer Buf).
2429 Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2430 return Error::success();
2431}
2432
2433static Error removeUnneededSections(Object &Obj) {
2434 // We can remove an empty symbol table from non-relocatable objects.
2435 // Relocatable objects typically have relocation sections whose
2436 // sh_link field points to .symtab, so we can't remove .symtab
2437 // even if it is empty.
2438 if (Obj.isRelocatable() || Obj.SymbolTable == nullptr ||
2439 !Obj.SymbolTable->empty())
2440 return Error::success();
2441
2442 // .strtab can be used for section names. In such a case we shouldn't
2443 // remove it.
2444 auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames
2445 ? nullptr
2446 : Obj.SymbolTable->getStrTab();
2447 return Obj.removeSections(false, [&](const SectionBase &Sec) {
2448 return &Sec == Obj.SymbolTable || &Sec == StrTab;
2449 });
2450}
2451
2452template <class ELFT> Error ELFWriter<ELFT>::finalize() {
2453 // It could happen that SectionNames has been removed and yet the user wants
2454 // a section header table output. We need to throw an error if a user tries
2455 // to do that.
2456 if (Obj.SectionNames == nullptr && WriteSectionHeaders)
2457 return createStringError(llvm::errc::invalid_argument,
2458 "cannot write section header table because "
2459 "section header string table was removed");
2460
2461 if (Error E = removeUnneededSections(Obj))
2462 return E;
2463 Obj.sortSections();
2464
2465 // We need to assign indexes before we perform layout because we need to know
2466 // if we need large indexes or not. We can assign indexes first and check as
2467 // we go to see if we will actully need large indexes.
2468 bool NeedsLargeIndexes = false;
2469 if (Obj.sections().size() >= SHN_LORESERVE) {
2470 SectionTableRef Sections = Obj.sections();
2471 // Sections doesn't include the null section header, so account for this
2472 // when skipping the first N sections.
2473 NeedsLargeIndexes =
2474 any_of(drop_begin(Sections, SHN_LORESERVE - 1),
2475 [](const SectionBase &Sec) { return Sec.HasSymbol; });
2476 // TODO: handle case where only one section needs the large index table but
2477 // only needs it because the large index table hasn't been removed yet.
2478 }
2479
2480 if (NeedsLargeIndexes) {
2481 // This means we definitely need to have a section index table but if we
2482 // already have one then we should use it instead of making a new one.
2483 if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
2484 // Addition of a section to the end does not invalidate the indexes of
2485 // other sections and assigns the correct index to the new section.
2486 auto &Shndx = Obj.addSection<SectionIndexSection>();
2487 Obj.SymbolTable->setShndxTable(&Shndx);
2488 Shndx.setSymTab(Obj.SymbolTable);
2489 }
2490 } else {
2491 // Since we don't need SectionIndexTable we should remove it and all
2492 // references to it.
2493 if (Obj.SectionIndexTable != nullptr) {
2494 // We do not support sections referring to the section index table.
2495 if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/,
2496 [this](const SectionBase &Sec) {
2497 return &Sec == Obj.SectionIndexTable;
2498 }))
2499 return E;
2500 }
2501 }
2502
2503 // Make sure we add the names of all the sections. Importantly this must be
2504 // done after we decide to add or remove SectionIndexes.
2505 if (Obj.SectionNames != nullptr)
2506 for (const SectionBase &Sec : Obj.sections())
2507 Obj.SectionNames->addString(Sec.Name);
2508
2509 initEhdrSegment();
2510
2511 // Before we can prepare for layout the indexes need to be finalized.
2512 // Also, the output arch may not be the same as the input arch, so fix up
2513 // size-related fields before doing layout calculations.
2514 uint64_t Index = 0;
2515 auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>();
2516 for (SectionBase &Sec : Obj.sections()) {
2517 Sec.Index = Index++;
2518 if (Error Err = Sec.accept(*SecSizer))
2519 return Err;
2520 }
2521
2522 // The symbol table does not update all other sections on update. For
2523 // instance, symbol names are not added as new symbols are added. This means
2524 // that some sections, like .strtab, don't yet have their final size.
2525 if (Obj.SymbolTable != nullptr)
2526 Obj.SymbolTable->prepareForLayout();
2527
2528 // Now that all strings are added we want to finalize string table builders,
2529 // because that affects section sizes which in turn affects section offsets.
2530 for (SectionBase &Sec : Obj.sections())
2531 if (auto StrTab = dyn_cast<StringTableSection>(&Sec))
2532 StrTab->prepareForLayout();
2533
2534 assignOffsets();
2535
2536 // layoutSections could have modified section indexes, so we need
2537 // to fill the index table after assignOffsets.
2538 if (Obj.SymbolTable != nullptr)
2539 Obj.SymbolTable->fillShndxTable();
2540
2541 // Finally now that all offsets and indexes have been set we can finalize any
2542 // remaining issues.
2543 uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr);
2544 for (SectionBase &Sec : Obj.sections()) {
2545 Sec.HeaderOffset = Offset;
2546 Offset += sizeof(Elf_Shdr);
2547 if (WriteSectionHeaders)
2548 Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name);
2549 Sec.finalize();
2550 }
2551
2552 size_t TotalSize = totalSize();
2553 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2554 if (!Buf)
2555 return createStringError(errc::not_enough_memory,
2556 "failed to allocate memory buffer of " +
2557 Twine::utohexstr(TotalSize) + " bytes");
2558
2559 SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(*Buf);
2560 return Error::success();
2561}
2562
2563Error BinaryWriter::write() {
2564 for (const SectionBase &Sec : Obj.allocSections())
2565 if (Error Err = Sec.accept(*SecWriter))
2566 return Err;
2567
2568 // TODO: Implement direct writing to the output stream (without intermediate
2569 // memory buffer Buf).
2570 Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2571 return Error::success();
2572}
2573
2574Error BinaryWriter::finalize() {
2575 // Compute the section LMA based on its sh_offset and the containing segment's
2576 // p_offset and p_paddr. Also compute the minimum LMA of all non-empty
2577 // sections as MinAddr. In the output, the contents between address 0 and
2578 // MinAddr will be skipped.
2579 uint64_t MinAddr = UINT64_MAX0xffffffffffffffffULL;
2580 for (SectionBase &Sec : Obj.allocSections()) {
2581 if (Sec.ParentSegment != nullptr)
2582 Sec.Addr =
2583 Sec.Offset - Sec.ParentSegment->Offset + Sec.ParentSegment->PAddr;
2584 if (Sec.Type != SHT_NOBITS && Sec.Size > 0)
2585 MinAddr = std::min(MinAddr, Sec.Addr);
2586 }
2587
2588 // Now that every section has been laid out we just need to compute the total
2589 // file size. This might not be the same as the offset returned by
2590 // layoutSections, because we want to truncate the last segment to the end of
2591 // its last non-empty section, to match GNU objcopy's behaviour.
2592 TotalSize = 0;
2593 for (SectionBase &Sec : Obj.allocSections())
2594 if (Sec.Type != SHT_NOBITS && Sec.Size > 0) {
2595 Sec.Offset = Sec.Addr - MinAddr;
2596 TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size);
2597 }
2598
2599 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2600 if (!Buf)
2601 return createStringError(errc::not_enough_memory,
2602 "failed to allocate memory buffer of " +
2603 Twine::utohexstr(TotalSize) + " bytes");
2604 SecWriter = std::make_unique<BinarySectionWriter>(*Buf);
2605 return Error::success();
2606}
2607
2608bool IHexWriter::SectionCompare::operator()(const SectionBase *Lhs,
2609 const SectionBase *Rhs) const {
2610 return (sectionPhysicalAddr(Lhs) & 0xFFFFFFFFU) <
2611 (sectionPhysicalAddr(Rhs) & 0xFFFFFFFFU);
2612}
2613
2614uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) {
2615 IHexLineData HexData;
2616 uint8_t Data[4] = {};
2617 // We don't write entry point record if entry is zero.
2618 if (Obj.Entry == 0)
2619 return 0;
2620
2621 if (Obj.Entry <= 0xFFFFFU) {
2622 Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF;
2623 support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry),
2624 support::big);
2625 HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data);
2626 } else {
2627 support::endian::write(Data, static_cast<uint32_t>(Obj.Entry),
2628 support::big);
2629 HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data);
2630 }
2631 memcpy(Buf, HexData.data(), HexData.size());
2632 return HexData.size();
2633}
2634
2635uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) {
2636 IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {});
2637 memcpy(Buf, HexData.data(), HexData.size());
2638 return HexData.size();
2639}
2640
2641Error IHexWriter::write() {
2642 IHexSectionWriter Writer(*Buf);
2643 // Write sections.
2644 for (const SectionBase *Sec : Sections)
2645 if (Error Err = Sec->accept(Writer))
2646 return Err;
2647
2648 uint64_t Offset = Writer.getBufferOffset();
2649 // Write entry point address.
2650 Offset += writeEntryPointRecord(
2651 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
2652 // Write EOF.
2653 Offset += writeEndOfFileRecord(
Value stored to 'Offset' is never read
2654 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
2655 assert(Offset == TotalSize)((void)0);
2656
2657 // TODO: Implement direct writing to the output stream (without intermediate
2658 // memory buffer Buf).
2659 Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2660 return Error::success();
2661}
2662
2663Error IHexWriter::checkSection(const SectionBase &Sec) {
2664 uint64_t Addr = sectionPhysicalAddr(&Sec);
2665 if (addressOverflows32bit(Addr) || addressOverflows32bit(Addr + Sec.Size - 1))
2666 return createStringError(
2667 errc::invalid_argument,
2668 "Section '%s' address range [0x%llx, 0x%llx] is not 32 bit",
2669 Sec.Name.c_str(), Addr, Addr + Sec.Size - 1);
2670 return Error::success();
2671}
2672
2673Error IHexWriter::finalize() {
2674 // We can't write 64-bit addresses.
2675 if (addressOverflows32bit(Obj.Entry))
2676 return createStringError(errc::invalid_argument,
2677 "Entry point address 0x%llx overflows 32 bits",
2678 Obj.Entry);
2679
2680 for (const SectionBase &Sec : Obj.sections())
2681 if ((Sec.Flags & ELF::SHF_ALLOC) && Sec.Type != ELF::SHT_NOBITS &&
2682 Sec.Size > 0) {
2683 if (Error E = checkSection(Sec))
2684 return E;
2685 Sections.insert(&Sec);
2686 }
2687
2688 std::unique_ptr<WritableMemoryBuffer> EmptyBuffer =
2689 WritableMemoryBuffer::getNewMemBuffer(0);
2690 if (!EmptyBuffer)
2691 return createStringError(errc::not_enough_memory,
2692 "failed to allocate memory buffer of 0 bytes");
2693
2694 IHexSectionWriterBase LengthCalc(*EmptyBuffer);
2695 for (const SectionBase *Sec : Sections)
2696 if (Error Err = Sec->accept(LengthCalc))
2697 return Err;
2698
2699 // We need space to write section records + StartAddress record
2700 // (if start adress is not zero) + EndOfFile record.
2701 TotalSize = LengthCalc.getBufferOffset() +
2702 (Obj.Entry ? IHexRecord::getLineLength(4) : 0) +
2703 IHexRecord::getLineLength(0);
2704
2705 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2706 if (!Buf)
2707 return createStringError(errc::not_enough_memory,
2708 "failed to allocate memory buffer of " +
2709 Twine::utohexstr(TotalSize) + " bytes");
2710
2711 return Error::success();
2712}
2713
2714namespace llvm {
2715namespace objcopy {
2716namespace elf {
2717
2718template class ELFBuilder<ELF64LE>;
2719template class ELFBuilder<ELF64BE>;
2720template class ELFBuilder<ELF32LE>;
2721template class ELFBuilder<ELF32BE>;
2722
2723template class ELFWriter<ELF64LE>;
2724template class ELFWriter<ELF64BE>;
2725template class ELFWriter<ELF32LE>;
2726template class ELFWriter<ELF32BE>;
2727
2728} // end namespace elf
2729} // end namespace objcopy
2730} // end namespace llvm