File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Support/ScaledNumber.cpp |
Warning: | line 99, column 14 Assigned value is garbage or undefined |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===// | ||||
2 | // | ||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
6 | // | ||||
7 | //===----------------------------------------------------------------------===// | ||||
8 | // | ||||
9 | // Implementation of some scaled number algorithms. | ||||
10 | // | ||||
11 | //===----------------------------------------------------------------------===// | ||||
12 | |||||
13 | #include "llvm/Support/ScaledNumber.h" | ||||
14 | #include "llvm/ADT/APFloat.h" | ||||
15 | #include "llvm/ADT/ArrayRef.h" | ||||
16 | #include "llvm/Support/Debug.h" | ||||
17 | #include "llvm/Support/raw_ostream.h" | ||||
18 | |||||
19 | using namespace llvm; | ||||
20 | using namespace llvm::ScaledNumbers; | ||||
21 | |||||
22 | std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS, | ||||
23 | uint64_t RHS) { | ||||
24 | // Separate into two 32-bit digits (U.L). | ||||
25 | auto getU = [](uint64_t N) { return N >> 32; }; | ||||
26 | auto getL = [](uint64_t N) { return N & UINT32_MAX0xffffffffU; }; | ||||
27 | uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS); | ||||
28 | |||||
29 | // Compute cross products. | ||||
30 | uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR; | ||||
31 | |||||
32 | // Sum into two 64-bit digits. | ||||
33 | uint64_t Upper = P1, Lower = P4; | ||||
34 | auto addWithCarry = [&](uint64_t N) { | ||||
35 | uint64_t NewLower = Lower + (getL(N) << 32); | ||||
36 | Upper += getU(N) + (NewLower < Lower); | ||||
37 | Lower = NewLower; | ||||
38 | }; | ||||
39 | addWithCarry(P2); | ||||
40 | addWithCarry(P3); | ||||
41 | |||||
42 | // Check whether the upper digit is empty. | ||||
43 | if (!Upper) | ||||
44 | return std::make_pair(Lower, 0); | ||||
45 | |||||
46 | // Shift as little as possible to maximize precision. | ||||
47 | unsigned LeadingZeros = countLeadingZeros(Upper); | ||||
48 | int Shift = 64 - LeadingZeros; | ||||
49 | if (LeadingZeros) | ||||
50 | Upper = Upper << LeadingZeros | Lower >> Shift; | ||||
51 | return getRounded(Upper, Shift, | ||||
52 | Shift && (Lower & UINT64_C(1)1ULL << (Shift - 1))); | ||||
53 | } | ||||
54 | |||||
55 | static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); } | ||||
56 | |||||
57 | std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend, | ||||
58 | uint32_t Divisor) { | ||||
59 | assert(Dividend && "expected non-zero dividend")((void)0); | ||||
60 | assert(Divisor && "expected non-zero divisor")((void)0); | ||||
61 | |||||
62 | // Use 64-bit math and canonicalize the dividend to gain precision. | ||||
63 | uint64_t Dividend64 = Dividend; | ||||
64 | int Shift = 0; | ||||
65 | if (int Zeros = countLeadingZeros(Dividend64)) { | ||||
66 | Shift -= Zeros; | ||||
67 | Dividend64 <<= Zeros; | ||||
68 | } | ||||
69 | uint64_t Quotient = Dividend64 / Divisor; | ||||
70 | uint64_t Remainder = Dividend64 % Divisor; | ||||
71 | |||||
72 | // If Quotient needs to be shifted, leave the rounding to getAdjusted(). | ||||
73 | if (Quotient > UINT32_MAX0xffffffffU) | ||||
74 | return getAdjusted<uint32_t>(Quotient, Shift); | ||||
75 | |||||
76 | // Round based on the value of the next bit. | ||||
77 | return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor)); | ||||
78 | } | ||||
79 | |||||
80 | std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend, | ||||
81 | uint64_t Divisor) { | ||||
82 | assert(Dividend && "expected non-zero dividend")((void)0); | ||||
83 | assert(Divisor && "expected non-zero divisor")((void)0); | ||||
84 | |||||
85 | // Minimize size of divisor. | ||||
86 | int Shift = 0; | ||||
87 | if (int Zeros = countTrailingZeros(Divisor)) { | ||||
| |||||
88 | Shift -= Zeros; | ||||
89 | Divisor >>= Zeros; | ||||
90 | } | ||||
91 | |||||
92 | // Check for powers of two. | ||||
93 | if (Divisor == 1) | ||||
94 | return std::make_pair(Dividend, Shift); | ||||
95 | |||||
96 | // Maximize size of dividend. | ||||
97 | if (int Zeros
| ||||
98 | Shift -= Zeros; | ||||
99 | Dividend <<= Zeros; | ||||
| |||||
100 | } | ||||
101 | |||||
102 | // Start with the result of a divide. | ||||
103 | uint64_t Quotient = Dividend / Divisor; | ||||
104 | Dividend %= Divisor; | ||||
105 | |||||
106 | // Continue building the quotient with long division. | ||||
107 | while (!(Quotient >> 63) && Dividend) { | ||||
108 | // Shift Dividend and check for overflow. | ||||
109 | bool IsOverflow = Dividend >> 63; | ||||
110 | Dividend <<= 1; | ||||
111 | --Shift; | ||||
112 | |||||
113 | // Get the next bit of Quotient. | ||||
114 | Quotient <<= 1; | ||||
115 | if (IsOverflow || Divisor <= Dividend) { | ||||
116 | Quotient |= 1; | ||||
117 | Dividend -= Divisor; | ||||
118 | } | ||||
119 | } | ||||
120 | |||||
121 | return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor)); | ||||
122 | } | ||||
123 | |||||
124 | int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) { | ||||
125 | assert(ScaleDiff >= 0 && "wrong argument order")((void)0); | ||||
126 | assert(ScaleDiff < 64 && "numbers too far apart")((void)0); | ||||
127 | |||||
128 | uint64_t L_adjusted = L >> ScaleDiff; | ||||
129 | if (L_adjusted < R) | ||||
130 | return -1; | ||||
131 | if (L_adjusted > R) | ||||
132 | return 1; | ||||
133 | |||||
134 | return L > L_adjusted << ScaleDiff ? 1 : 0; | ||||
135 | } | ||||
136 | |||||
137 | static void appendDigit(std::string &Str, unsigned D) { | ||||
138 | assert(D < 10)((void)0); | ||||
139 | Str += '0' + D % 10; | ||||
140 | } | ||||
141 | |||||
142 | static void appendNumber(std::string &Str, uint64_t N) { | ||||
143 | while (N) { | ||||
144 | appendDigit(Str, N % 10); | ||||
145 | N /= 10; | ||||
146 | } | ||||
147 | } | ||||
148 | |||||
149 | static bool doesRoundUp(char Digit) { | ||||
150 | switch (Digit) { | ||||
151 | case '5': | ||||
152 | case '6': | ||||
153 | case '7': | ||||
154 | case '8': | ||||
155 | case '9': | ||||
156 | return true; | ||||
157 | default: | ||||
158 | return false; | ||||
159 | } | ||||
160 | } | ||||
161 | |||||
162 | static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) { | ||||
163 | assert(E >= ScaledNumbers::MinScale)((void)0); | ||||
164 | assert(E <= ScaledNumbers::MaxScale)((void)0); | ||||
165 | |||||
166 | // Find a new E, but don't let it increase past MaxScale. | ||||
167 | int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D); | ||||
168 | int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros); | ||||
169 | int Shift = 63 - (NewE - E); | ||||
170 | assert(Shift <= LeadingZeros)((void)0); | ||||
171 | assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale)((void)0); | ||||
172 | assert(Shift >= 0 && Shift < 64 && "undefined behavior")((void)0); | ||||
173 | D <<= Shift; | ||||
174 | E = NewE; | ||||
175 | |||||
176 | // Check for a denormal. | ||||
177 | unsigned AdjustedE = E + 16383; | ||||
178 | if (!(D >> 63)) { | ||||
179 | assert(E == ScaledNumbers::MaxScale)((void)0); | ||||
180 | AdjustedE = 0; | ||||
181 | } | ||||
182 | |||||
183 | // Build the float and print it. | ||||
184 | uint64_t RawBits[2] = {D, AdjustedE}; | ||||
185 | APFloat Float(APFloat::x87DoubleExtended(), APInt(80, RawBits)); | ||||
186 | SmallVector<char, 24> Chars; | ||||
187 | Float.toString(Chars, Precision, 0); | ||||
188 | return std::string(Chars.begin(), Chars.end()); | ||||
189 | } | ||||
190 | |||||
191 | static std::string stripTrailingZeros(const std::string &Float) { | ||||
192 | size_t NonZero = Float.find_last_not_of('0'); | ||||
193 | assert(NonZero != std::string::npos && "no . in floating point string")((void)0); | ||||
194 | |||||
195 | if (Float[NonZero] == '.') | ||||
196 | ++NonZero; | ||||
197 | |||||
198 | return Float.substr(0, NonZero + 1); | ||||
199 | } | ||||
200 | |||||
201 | std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width, | ||||
202 | unsigned Precision) { | ||||
203 | if (!D) | ||||
204 | return "0.0"; | ||||
205 | |||||
206 | // Canonicalize exponent and digits. | ||||
207 | uint64_t Above0 = 0; | ||||
208 | uint64_t Below0 = 0; | ||||
209 | uint64_t Extra = 0; | ||||
210 | int ExtraShift = 0; | ||||
211 | if (E == 0) { | ||||
212 | Above0 = D; | ||||
213 | } else if (E > 0) { | ||||
214 | if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) { | ||||
215 | D <<= Shift; | ||||
216 | E -= Shift; | ||||
217 | |||||
218 | if (!E) | ||||
219 | Above0 = D; | ||||
220 | } | ||||
221 | } else if (E > -64) { | ||||
222 | Above0 = D >> -E; | ||||
223 | Below0 = D << (64 + E); | ||||
224 | } else if (E == -64) { | ||||
225 | // Special case: shift by 64 bits is undefined behavior. | ||||
226 | Below0 = D; | ||||
227 | } else if (E > -120) { | ||||
228 | Below0 = D >> (-E - 64); | ||||
229 | Extra = D << (128 + E); | ||||
230 | ExtraShift = -64 - E; | ||||
231 | } | ||||
232 | |||||
233 | // Fall back on APFloat for very small and very large numbers. | ||||
234 | if (!Above0 && !Below0) | ||||
235 | return toStringAPFloat(D, E, Precision); | ||||
236 | |||||
237 | // Append the digits before the decimal. | ||||
238 | std::string Str; | ||||
239 | size_t DigitsOut = 0; | ||||
240 | if (Above0) { | ||||
241 | appendNumber(Str, Above0); | ||||
242 | DigitsOut = Str.size(); | ||||
243 | } else | ||||
244 | appendDigit(Str, 0); | ||||
245 | std::reverse(Str.begin(), Str.end()); | ||||
246 | |||||
247 | // Return early if there's nothing after the decimal. | ||||
248 | if (!Below0) | ||||
249 | return Str + ".0"; | ||||
250 | |||||
251 | // Append the decimal and beyond. | ||||
252 | Str += '.'; | ||||
253 | uint64_t Error = UINT64_C(1)1ULL << (64 - Width); | ||||
254 | |||||
255 | // We need to shift Below0 to the right to make space for calculating | ||||
256 | // digits. Save the precision we're losing in Extra. | ||||
257 | Extra = (Below0 & 0xf) << 56 | (Extra >> 8); | ||||
258 | Below0 >>= 4; | ||||
259 | size_t SinceDot = 0; | ||||
260 | size_t AfterDot = Str.size(); | ||||
261 | do { | ||||
262 | if (ExtraShift) { | ||||
263 | --ExtraShift; | ||||
264 | Error *= 5; | ||||
265 | } else | ||||
266 | Error *= 10; | ||||
267 | |||||
268 | Below0 *= 10; | ||||
269 | Extra *= 10; | ||||
270 | Below0 += (Extra >> 60); | ||||
271 | Extra = Extra & (UINT64_MAX0xffffffffffffffffULL >> 4); | ||||
272 | appendDigit(Str, Below0 >> 60); | ||||
273 | Below0 = Below0 & (UINT64_MAX0xffffffffffffffffULL >> 4); | ||||
274 | if (DigitsOut || Str.back() != '0') | ||||
275 | ++DigitsOut; | ||||
276 | ++SinceDot; | ||||
277 | } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 && | ||||
278 | (!Precision || DigitsOut <= Precision || SinceDot < 2)); | ||||
279 | |||||
280 | // Return early for maximum precision. | ||||
281 | if (!Precision || DigitsOut <= Precision) | ||||
282 | return stripTrailingZeros(Str); | ||||
283 | |||||
284 | // Find where to truncate. | ||||
285 | size_t Truncate = | ||||
286 | std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1); | ||||
287 | |||||
288 | // Check if there's anything to truncate. | ||||
289 | if (Truncate >= Str.size()) | ||||
290 | return stripTrailingZeros(Str); | ||||
291 | |||||
292 | bool Carry = doesRoundUp(Str[Truncate]); | ||||
293 | if (!Carry) | ||||
294 | return stripTrailingZeros(Str.substr(0, Truncate)); | ||||
295 | |||||
296 | // Round with the first truncated digit. | ||||
297 | for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend(); | ||||
298 | I != E; ++I) { | ||||
299 | if (*I == '.') | ||||
300 | continue; | ||||
301 | if (*I == '9') { | ||||
302 | *I = '0'; | ||||
303 | continue; | ||||
304 | } | ||||
305 | |||||
306 | ++*I; | ||||
307 | Carry = false; | ||||
308 | break; | ||||
309 | } | ||||
310 | |||||
311 | // Add "1" in front if we still need to carry. | ||||
312 | return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate)); | ||||
313 | } | ||||
314 | |||||
315 | raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E, | ||||
316 | int Width, unsigned Precision) { | ||||
317 | return OS << toString(D, E, Width, Precision); | ||||
318 | } | ||||
319 | |||||
320 | void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) { | ||||
321 | print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E | ||||
322 | << "]"; | ||||
323 | } |
1 | //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// | ||||
2 | // | ||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
6 | // | ||||
7 | //===----------------------------------------------------------------------===// | ||||
8 | // | ||||
9 | // This file contains some functions that are useful for math stuff. | ||||
10 | // | ||||
11 | //===----------------------------------------------------------------------===// | ||||
12 | |||||
13 | #ifndef LLVM_SUPPORT_MATHEXTRAS_H | ||||
14 | #define LLVM_SUPPORT_MATHEXTRAS_H | ||||
15 | |||||
16 | #include "llvm/Support/Compiler.h" | ||||
17 | #include <cassert> | ||||
18 | #include <climits> | ||||
19 | #include <cmath> | ||||
20 | #include <cstdint> | ||||
21 | #include <cstring> | ||||
22 | #include <limits> | ||||
23 | #include <type_traits> | ||||
24 | |||||
25 | #ifdef __ANDROID_NDK__ | ||||
26 | #include <android/api-level.h> | ||||
27 | #endif | ||||
28 | |||||
29 | #ifdef _MSC_VER | ||||
30 | // Declare these intrinsics manually rather including intrin.h. It's very | ||||
31 | // expensive, and MathExtras.h is popular. | ||||
32 | // #include <intrin.h> | ||||
33 | extern "C" { | ||||
34 | unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask); | ||||
35 | unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask); | ||||
36 | unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask); | ||||
37 | unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask); | ||||
38 | } | ||||
39 | #endif | ||||
40 | |||||
41 | namespace llvm { | ||||
42 | |||||
43 | /// The behavior an operation has on an input of 0. | ||||
44 | enum ZeroBehavior { | ||||
45 | /// The returned value is undefined. | ||||
46 | ZB_Undefined, | ||||
47 | /// The returned value is numeric_limits<T>::max() | ||||
48 | ZB_Max, | ||||
49 | /// The returned value is numeric_limits<T>::digits | ||||
50 | ZB_Width | ||||
51 | }; | ||||
52 | |||||
53 | /// Mathematical constants. | ||||
54 | namespace numbers { | ||||
55 | // TODO: Track C++20 std::numbers. | ||||
56 | // TODO: Favor using the hexadecimal FP constants (requires C++17). | ||||
57 | constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113 | ||||
58 | egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620 | ||||
59 | ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162 | ||||
60 | ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392 | ||||
61 | log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0) | ||||
62 | log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2) | ||||
63 | pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796 | ||||
64 | inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541 | ||||
65 | sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161 | ||||
66 | inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197 | ||||
67 | sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219 | ||||
68 | inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1) | ||||
69 | sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194 | ||||
70 | inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1) | ||||
71 | phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622 | ||||
72 | constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113 | ||||
73 | egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620 | ||||
74 | ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162 | ||||
75 | ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392 | ||||
76 | log2ef = 1.44269504F, // (0x1.715476P+0) | ||||
77 | log10ef = .434294482F, // (0x1.bcb7b2P-2) | ||||
78 | pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796 | ||||
79 | inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541 | ||||
80 | sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161 | ||||
81 | inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197 | ||||
82 | sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193 | ||||
83 | inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1) | ||||
84 | sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194 | ||||
85 | inv_sqrt3f = .577350269F, // (0x1.279a74P-1) | ||||
86 | phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622 | ||||
87 | } // namespace numbers | ||||
88 | |||||
89 | namespace detail { | ||||
90 | template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter { | ||||
91 | static unsigned count(T Val, ZeroBehavior) { | ||||
92 | if (!Val) | ||||
93 | return std::numeric_limits<T>::digits; | ||||
94 | if (Val & 0x1) | ||||
95 | return 0; | ||||
96 | |||||
97 | // Bisection method. | ||||
98 | unsigned ZeroBits = 0; | ||||
99 | T Shift = std::numeric_limits<T>::digits >> 1; | ||||
100 | T Mask = std::numeric_limits<T>::max() >> Shift; | ||||
101 | while (Shift) { | ||||
102 | if ((Val & Mask) == 0) { | ||||
103 | Val >>= Shift; | ||||
104 | ZeroBits |= Shift; | ||||
105 | } | ||||
106 | Shift >>= 1; | ||||
107 | Mask >>= Shift; | ||||
108 | } | ||||
109 | return ZeroBits; | ||||
110 | } | ||||
111 | }; | ||||
112 | |||||
113 | #if defined(__GNUC__4) || defined(_MSC_VER) | ||||
114 | template <typename T> struct TrailingZerosCounter<T, 4> { | ||||
115 | static unsigned count(T Val, ZeroBehavior ZB) { | ||||
116 | if (ZB != ZB_Undefined && Val == 0) | ||||
117 | return 32; | ||||
118 | |||||
119 | #if __has_builtin(__builtin_ctz)1 || defined(__GNUC__4) | ||||
120 | return __builtin_ctz(Val); | ||||
121 | #elif defined(_MSC_VER) | ||||
122 | unsigned long Index; | ||||
123 | _BitScanForward(&Index, Val); | ||||
124 | return Index; | ||||
125 | #endif | ||||
126 | } | ||||
127 | }; | ||||
128 | |||||
129 | #if !defined(_MSC_VER) || defined(_M_X64) | ||||
130 | template <typename T> struct TrailingZerosCounter<T, 8> { | ||||
131 | static unsigned count(T Val, ZeroBehavior ZB) { | ||||
132 | if (ZB != ZB_Undefined && Val == 0) | ||||
133 | return 64; | ||||
134 | |||||
135 | #if __has_builtin(__builtin_ctzll)1 || defined(__GNUC__4) | ||||
136 | return __builtin_ctzll(Val); | ||||
137 | #elif defined(_MSC_VER) | ||||
138 | unsigned long Index; | ||||
139 | _BitScanForward64(&Index, Val); | ||||
140 | return Index; | ||||
141 | #endif | ||||
142 | } | ||||
143 | }; | ||||
144 | #endif | ||||
145 | #endif | ||||
146 | } // namespace detail | ||||
147 | |||||
148 | /// Count number of 0's from the least significant bit to the most | ||||
149 | /// stopping at the first 1. | ||||
150 | /// | ||||
151 | /// Only unsigned integral types are allowed. | ||||
152 | /// | ||||
153 | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are | ||||
154 | /// valid arguments. | ||||
155 | template <typename T> | ||||
156 | unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) { | ||||
157 | static_assert(std::numeric_limits<T>::is_integer && | ||||
158 | !std::numeric_limits<T>::is_signed, | ||||
159 | "Only unsigned integral types are allowed."); | ||||
160 | return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB); | ||||
161 | } | ||||
162 | |||||
163 | namespace detail { | ||||
164 | template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter { | ||||
165 | static unsigned count(T Val, ZeroBehavior) { | ||||
166 | if (!Val) | ||||
167 | return std::numeric_limits<T>::digits; | ||||
168 | |||||
169 | // Bisection method. | ||||
170 | unsigned ZeroBits = 0; | ||||
171 | for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { | ||||
172 | T Tmp = Val >> Shift; | ||||
173 | if (Tmp) | ||||
174 | Val = Tmp; | ||||
175 | else | ||||
176 | ZeroBits |= Shift; | ||||
177 | } | ||||
178 | return ZeroBits; | ||||
179 | } | ||||
180 | }; | ||||
181 | |||||
182 | #if defined(__GNUC__4) || defined(_MSC_VER) | ||||
183 | template <typename T> struct LeadingZerosCounter<T, 4> { | ||||
184 | static unsigned count(T Val, ZeroBehavior ZB) { | ||||
185 | if (ZB != ZB_Undefined && Val == 0) | ||||
186 | return 32; | ||||
187 | |||||
188 | #if __has_builtin(__builtin_clz)1 || defined(__GNUC__4) | ||||
189 | return __builtin_clz(Val); | ||||
190 | #elif defined(_MSC_VER) | ||||
191 | unsigned long Index; | ||||
192 | _BitScanReverse(&Index, Val); | ||||
193 | return Index ^ 31; | ||||
194 | #endif | ||||
195 | } | ||||
196 | }; | ||||
197 | |||||
198 | #if !defined(_MSC_VER) || defined(_M_X64) | ||||
199 | template <typename T> struct LeadingZerosCounter<T, 8> { | ||||
200 | static unsigned count(T Val, ZeroBehavior ZB) { | ||||
201 | if (ZB
| ||||
202 | return 64; | ||||
203 | |||||
204 | #if __has_builtin(__builtin_clzll)1 || defined(__GNUC__4) | ||||
205 | return __builtin_clzll(Val); | ||||
206 | #elif defined(_MSC_VER) | ||||
207 | unsigned long Index; | ||||
208 | _BitScanReverse64(&Index, Val); | ||||
209 | return Index ^ 63; | ||||
210 | #endif | ||||
211 | } | ||||
212 | }; | ||||
213 | #endif | ||||
214 | #endif | ||||
215 | } // namespace detail | ||||
216 | |||||
217 | /// Count number of 0's from the most significant bit to the least | ||||
218 | /// stopping at the first 1. | ||||
219 | /// | ||||
220 | /// Only unsigned integral types are allowed. | ||||
221 | /// | ||||
222 | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are | ||||
223 | /// valid arguments. | ||||
224 | template <typename T> | ||||
225 | unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) { | ||||
226 | static_assert(std::numeric_limits<T>::is_integer && | ||||
227 | !std::numeric_limits<T>::is_signed, | ||||
228 | "Only unsigned integral types are allowed."); | ||||
229 | return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB); | ||||
230 | } | ||||
231 | |||||
232 | /// Get the index of the first set bit starting from the least | ||||
233 | /// significant bit. | ||||
234 | /// | ||||
235 | /// Only unsigned integral types are allowed. | ||||
236 | /// | ||||
237 | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are | ||||
238 | /// valid arguments. | ||||
239 | template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { | ||||
240 | if (ZB == ZB_Max && Val == 0) | ||||
241 | return std::numeric_limits<T>::max(); | ||||
242 | |||||
243 | return countTrailingZeros(Val, ZB_Undefined); | ||||
244 | } | ||||
245 | |||||
246 | /// Create a bitmask with the N right-most bits set to 1, and all other | ||||
247 | /// bits set to 0. Only unsigned types are allowed. | ||||
248 | template <typename T> T maskTrailingOnes(unsigned N) { | ||||
249 | static_assert(std::is_unsigned<T>::value, "Invalid type!"); | ||||
250 | const unsigned Bits = CHAR_BIT8 * sizeof(T); | ||||
251 | assert(N <= Bits && "Invalid bit index")((void)0); | ||||
252 | return N == 0 ? 0 : (T(-1) >> (Bits - N)); | ||||
253 | } | ||||
254 | |||||
255 | /// Create a bitmask with the N left-most bits set to 1, and all other | ||||
256 | /// bits set to 0. Only unsigned types are allowed. | ||||
257 | template <typename T> T maskLeadingOnes(unsigned N) { | ||||
258 | return ~maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N); | ||||
259 | } | ||||
260 | |||||
261 | /// Create a bitmask with the N right-most bits set to 0, and all other | ||||
262 | /// bits set to 1. Only unsigned types are allowed. | ||||
263 | template <typename T> T maskTrailingZeros(unsigned N) { | ||||
264 | return maskLeadingOnes<T>(CHAR_BIT8 * sizeof(T) - N); | ||||
265 | } | ||||
266 | |||||
267 | /// Create a bitmask with the N left-most bits set to 0, and all other | ||||
268 | /// bits set to 1. Only unsigned types are allowed. | ||||
269 | template <typename T> T maskLeadingZeros(unsigned N) { | ||||
270 | return maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N); | ||||
271 | } | ||||
272 | |||||
273 | /// Get the index of the last set bit starting from the least | ||||
274 | /// significant bit. | ||||
275 | /// | ||||
276 | /// Only unsigned integral types are allowed. | ||||
277 | /// | ||||
278 | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are | ||||
279 | /// valid arguments. | ||||
280 | template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { | ||||
281 | if (ZB == ZB_Max && Val == 0) | ||||
282 | return std::numeric_limits<T>::max(); | ||||
283 | |||||
284 | // Use ^ instead of - because both gcc and llvm can remove the associated ^ | ||||
285 | // in the __builtin_clz intrinsic on x86. | ||||
286 | return countLeadingZeros(Val, ZB_Undefined) ^ | ||||
287 | (std::numeric_limits<T>::digits - 1); | ||||
288 | } | ||||
289 | |||||
290 | /// Macro compressed bit reversal table for 256 bits. | ||||
291 | /// | ||||
292 | /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable | ||||
293 | static const unsigned char BitReverseTable256[256] = { | ||||
294 | #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 | ||||
295 | #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) | ||||
296 | #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) | ||||
297 | R6(0), R6(2), R6(1), R6(3) | ||||
298 | #undef R2 | ||||
299 | #undef R4 | ||||
300 | #undef R6 | ||||
301 | }; | ||||
302 | |||||
303 | /// Reverse the bits in \p Val. | ||||
304 | template <typename T> | ||||
305 | T reverseBits(T Val) { | ||||
306 | unsigned char in[sizeof(Val)]; | ||||
307 | unsigned char out[sizeof(Val)]; | ||||
308 | std::memcpy(in, &Val, sizeof(Val)); | ||||
309 | for (unsigned i = 0; i < sizeof(Val); ++i) | ||||
310 | out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; | ||||
311 | std::memcpy(&Val, out, sizeof(Val)); | ||||
312 | return Val; | ||||
313 | } | ||||
314 | |||||
315 | #if __has_builtin(__builtin_bitreverse8)1 | ||||
316 | template<> | ||||
317 | inline uint8_t reverseBits<uint8_t>(uint8_t Val) { | ||||
318 | return __builtin_bitreverse8(Val); | ||||
319 | } | ||||
320 | #endif | ||||
321 | |||||
322 | #if __has_builtin(__builtin_bitreverse16)1 | ||||
323 | template<> | ||||
324 | inline uint16_t reverseBits<uint16_t>(uint16_t Val) { | ||||
325 | return __builtin_bitreverse16(Val); | ||||
326 | } | ||||
327 | #endif | ||||
328 | |||||
329 | #if __has_builtin(__builtin_bitreverse32)1 | ||||
330 | template<> | ||||
331 | inline uint32_t reverseBits<uint32_t>(uint32_t Val) { | ||||
332 | return __builtin_bitreverse32(Val); | ||||
333 | } | ||||
334 | #endif | ||||
335 | |||||
336 | #if __has_builtin(__builtin_bitreverse64)1 | ||||
337 | template<> | ||||
338 | inline uint64_t reverseBits<uint64_t>(uint64_t Val) { | ||||
339 | return __builtin_bitreverse64(Val); | ||||
340 | } | ||||
341 | #endif | ||||
342 | |||||
343 | // NOTE: The following support functions use the _32/_64 extensions instead of | ||||
344 | // type overloading so that signed and unsigned integers can be used without | ||||
345 | // ambiguity. | ||||
346 | |||||
347 | /// Return the high 32 bits of a 64 bit value. | ||||
348 | constexpr inline uint32_t Hi_32(uint64_t Value) { | ||||
349 | return static_cast<uint32_t>(Value >> 32); | ||||
350 | } | ||||
351 | |||||
352 | /// Return the low 32 bits of a 64 bit value. | ||||
353 | constexpr inline uint32_t Lo_32(uint64_t Value) { | ||||
354 | return static_cast<uint32_t>(Value); | ||||
355 | } | ||||
356 | |||||
357 | /// Make a 64-bit integer from a high / low pair of 32-bit integers. | ||||
358 | constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) { | ||||
359 | return ((uint64_t)High << 32) | (uint64_t)Low; | ||||
360 | } | ||||
361 | |||||
362 | /// Checks if an integer fits into the given bit width. | ||||
363 | template <unsigned N> constexpr inline bool isInt(int64_t x) { | ||||
364 | return N >= 64 || (-(INT64_C(1)1LL<<(N-1)) <= x && x < (INT64_C(1)1LL<<(N-1))); | ||||
365 | } | ||||
366 | // Template specializations to get better code for common cases. | ||||
367 | template <> constexpr inline bool isInt<8>(int64_t x) { | ||||
368 | return static_cast<int8_t>(x) == x; | ||||
369 | } | ||||
370 | template <> constexpr inline bool isInt<16>(int64_t x) { | ||||
371 | return static_cast<int16_t>(x) == x; | ||||
372 | } | ||||
373 | template <> constexpr inline bool isInt<32>(int64_t x) { | ||||
374 | return static_cast<int32_t>(x) == x; | ||||
375 | } | ||||
376 | |||||
377 | /// Checks if a signed integer is an N bit number shifted left by S. | ||||
378 | template <unsigned N, unsigned S> | ||||
379 | constexpr inline bool isShiftedInt(int64_t x) { | ||||
380 | static_assert( | ||||
381 | N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number."); | ||||
382 | static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); | ||||
383 | return isInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0); | ||||
384 | } | ||||
385 | |||||
386 | /// Checks if an unsigned integer fits into the given bit width. | ||||
387 | /// | ||||
388 | /// This is written as two functions rather than as simply | ||||
389 | /// | ||||
390 | /// return N >= 64 || X < (UINT64_C(1) << N); | ||||
391 | /// | ||||
392 | /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting | ||||
393 | /// left too many places. | ||||
394 | template <unsigned N> | ||||
395 | constexpr inline std::enable_if_t<(N < 64), bool> isUInt(uint64_t X) { | ||||
396 | static_assert(N > 0, "isUInt<0> doesn't make sense"); | ||||
397 | return X < (UINT64_C(1)1ULL << (N)); | ||||
398 | } | ||||
399 | template <unsigned N> | ||||
400 | constexpr inline std::enable_if_t<N >= 64, bool> isUInt(uint64_t) { | ||||
401 | return true; | ||||
402 | } | ||||
403 | |||||
404 | // Template specializations to get better code for common cases. | ||||
405 | template <> constexpr inline bool isUInt<8>(uint64_t x) { | ||||
406 | return static_cast<uint8_t>(x) == x; | ||||
407 | } | ||||
408 | template <> constexpr inline bool isUInt<16>(uint64_t x) { | ||||
409 | return static_cast<uint16_t>(x) == x; | ||||
410 | } | ||||
411 | template <> constexpr inline bool isUInt<32>(uint64_t x) { | ||||
412 | return static_cast<uint32_t>(x) == x; | ||||
413 | } | ||||
414 | |||||
415 | /// Checks if a unsigned integer is an N bit number shifted left by S. | ||||
416 | template <unsigned N, unsigned S> | ||||
417 | constexpr inline bool isShiftedUInt(uint64_t x) { | ||||
418 | static_assert( | ||||
419 | N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)"); | ||||
420 | static_assert(N + S <= 64, | ||||
421 | "isShiftedUInt<N, S> with N + S > 64 is too wide."); | ||||
422 | // Per the two static_asserts above, S must be strictly less than 64. So | ||||
423 | // 1 << S is not undefined behavior. | ||||
424 | return isUInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0); | ||||
425 | } | ||||
426 | |||||
427 | /// Gets the maximum value for a N-bit unsigned integer. | ||||
428 | inline uint64_t maxUIntN(uint64_t N) { | ||||
429 | assert(N > 0 && N <= 64 && "integer width out of range")((void)0); | ||||
430 | |||||
431 | // uint64_t(1) << 64 is undefined behavior, so we can't do | ||||
432 | // (uint64_t(1) << N) - 1 | ||||
433 | // without checking first that N != 64. But this works and doesn't have a | ||||
434 | // branch. | ||||
435 | return UINT64_MAX0xffffffffffffffffULL >> (64 - N); | ||||
436 | } | ||||
437 | |||||
438 | /// Gets the minimum value for a N-bit signed integer. | ||||
439 | inline int64_t minIntN(int64_t N) { | ||||
440 | assert(N > 0 && N <= 64 && "integer width out of range")((void)0); | ||||
441 | |||||
442 | return UINT64_C(1)1ULL + ~(UINT64_C(1)1ULL << (N - 1)); | ||||
443 | } | ||||
444 | |||||
445 | /// Gets the maximum value for a N-bit signed integer. | ||||
446 | inline int64_t maxIntN(int64_t N) { | ||||
447 | assert(N > 0 && N <= 64 && "integer width out of range")((void)0); | ||||
448 | |||||
449 | // This relies on two's complement wraparound when N == 64, so we convert to | ||||
450 | // int64_t only at the very end to avoid UB. | ||||
451 | return (UINT64_C(1)1ULL << (N - 1)) - 1; | ||||
452 | } | ||||
453 | |||||
454 | /// Checks if an unsigned integer fits into the given (dynamic) bit width. | ||||
455 | inline bool isUIntN(unsigned N, uint64_t x) { | ||||
456 | return N >= 64 || x <= maxUIntN(N); | ||||
457 | } | ||||
458 | |||||
459 | /// Checks if an signed integer fits into the given (dynamic) bit width. | ||||
460 | inline bool isIntN(unsigned N, int64_t x) { | ||||
461 | return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); | ||||
462 | } | ||||
463 | |||||
464 | /// Return true if the argument is a non-empty sequence of ones starting at the | ||||
465 | /// least significant bit with the remainder zero (32 bit version). | ||||
466 | /// Ex. isMask_32(0x0000FFFFU) == true. | ||||
467 | constexpr inline bool isMask_32(uint32_t Value) { | ||||
468 | return Value && ((Value + 1) & Value) == 0; | ||||
469 | } | ||||
470 | |||||
471 | /// Return true if the argument is a non-empty sequence of ones starting at the | ||||
472 | /// least significant bit with the remainder zero (64 bit version). | ||||
473 | constexpr inline bool isMask_64(uint64_t Value) { | ||||
474 | return Value && ((Value + 1) & Value) == 0; | ||||
475 | } | ||||
476 | |||||
477 | /// Return true if the argument contains a non-empty sequence of ones with the | ||||
478 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. | ||||
479 | constexpr inline bool isShiftedMask_32(uint32_t Value) { | ||||
480 | return Value && isMask_32((Value - 1) | Value); | ||||
481 | } | ||||
482 | |||||
483 | /// Return true if the argument contains a non-empty sequence of ones with the | ||||
484 | /// remainder zero (64 bit version.) | ||||
485 | constexpr inline bool isShiftedMask_64(uint64_t Value) { | ||||
486 | return Value && isMask_64((Value - 1) | Value); | ||||
487 | } | ||||
488 | |||||
489 | /// Return true if the argument is a power of two > 0. | ||||
490 | /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) | ||||
491 | constexpr inline bool isPowerOf2_32(uint32_t Value) { | ||||
492 | return Value && !(Value & (Value - 1)); | ||||
493 | } | ||||
494 | |||||
495 | /// Return true if the argument is a power of two > 0 (64 bit edition.) | ||||
496 | constexpr inline bool isPowerOf2_64(uint64_t Value) { | ||||
497 | return Value && !(Value & (Value - 1)); | ||||
498 | } | ||||
499 | |||||
500 | /// Count the number of ones from the most significant bit to the first | ||||
501 | /// zero bit. | ||||
502 | /// | ||||
503 | /// Ex. countLeadingOnes(0xFF0FFF00) == 8. | ||||
504 | /// Only unsigned integral types are allowed. | ||||
505 | /// | ||||
506 | /// \param ZB the behavior on an input of all ones. Only ZB_Width and | ||||
507 | /// ZB_Undefined are valid arguments. | ||||
508 | template <typename T> | ||||
509 | unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) { | ||||
510 | static_assert(std::numeric_limits<T>::is_integer && | ||||
511 | !std::numeric_limits<T>::is_signed, | ||||
512 | "Only unsigned integral types are allowed."); | ||||
513 | return countLeadingZeros<T>(~Value, ZB); | ||||
514 | } | ||||
515 | |||||
516 | /// Count the number of ones from the least significant bit to the first | ||||
517 | /// zero bit. | ||||
518 | /// | ||||
519 | /// Ex. countTrailingOnes(0x00FF00FF) == 8. | ||||
520 | /// Only unsigned integral types are allowed. | ||||
521 | /// | ||||
522 | /// \param ZB the behavior on an input of all ones. Only ZB_Width and | ||||
523 | /// ZB_Undefined are valid arguments. | ||||
524 | template <typename T> | ||||
525 | unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) { | ||||
526 | static_assert(std::numeric_limits<T>::is_integer && | ||||
527 | !std::numeric_limits<T>::is_signed, | ||||
528 | "Only unsigned integral types are allowed."); | ||||
529 | return countTrailingZeros<T>(~Value, ZB); | ||||
530 | } | ||||
531 | |||||
532 | namespace detail { | ||||
533 | template <typename T, std::size_t SizeOfT> struct PopulationCounter { | ||||
534 | static unsigned count(T Value) { | ||||
535 | // Generic version, forward to 32 bits. | ||||
536 | static_assert(SizeOfT <= 4, "Not implemented!"); | ||||
537 | #if defined(__GNUC__4) | ||||
538 | return __builtin_popcount(Value); | ||||
539 | #else | ||||
540 | uint32_t v = Value; | ||||
541 | v = v - ((v >> 1) & 0x55555555); | ||||
542 | v = (v & 0x33333333) + ((v >> 2) & 0x33333333); | ||||
543 | return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; | ||||
544 | #endif | ||||
545 | } | ||||
546 | }; | ||||
547 | |||||
548 | template <typename T> struct PopulationCounter<T, 8> { | ||||
549 | static unsigned count(T Value) { | ||||
550 | #if defined(__GNUC__4) | ||||
551 | return __builtin_popcountll(Value); | ||||
552 | #else | ||||
553 | uint64_t v = Value; | ||||
554 | v = v - ((v >> 1) & 0x5555555555555555ULL); | ||||
555 | v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); | ||||
556 | v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; | ||||
557 | return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); | ||||
558 | #endif | ||||
559 | } | ||||
560 | }; | ||||
561 | } // namespace detail | ||||
562 | |||||
563 | /// Count the number of set bits in a value. | ||||
564 | /// Ex. countPopulation(0xF000F000) = 8 | ||||
565 | /// Returns 0 if the word is zero. | ||||
566 | template <typename T> | ||||
567 | inline unsigned countPopulation(T Value) { | ||||
568 | static_assert(std::numeric_limits<T>::is_integer && | ||||
569 | !std::numeric_limits<T>::is_signed, | ||||
570 | "Only unsigned integral types are allowed."); | ||||
571 | return detail::PopulationCounter<T, sizeof(T)>::count(Value); | ||||
572 | } | ||||
573 | |||||
574 | /// Compile time Log2. | ||||
575 | /// Valid only for positive powers of two. | ||||
576 | template <size_t kValue> constexpr inline size_t CTLog2() { | ||||
577 | static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue), | ||||
578 | "Value is not a valid power of 2"); | ||||
579 | return 1 + CTLog2<kValue / 2>(); | ||||
580 | } | ||||
581 | |||||
582 | template <> constexpr inline size_t CTLog2<1>() { return 0; } | ||||
583 | |||||
584 | /// Return the log base 2 of the specified value. | ||||
585 | inline double Log2(double Value) { | ||||
586 | #if defined(__ANDROID_API__) && __ANDROID_API__ < 18 | ||||
587 | return __builtin_log(Value) / __builtin_log(2.0); | ||||
588 | #else | ||||
589 | return log2(Value); | ||||
590 | #endif | ||||
591 | } | ||||
592 | |||||
593 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. | ||||
594 | /// (32 bit edition.) | ||||
595 | /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 | ||||
596 | inline unsigned Log2_32(uint32_t Value) { | ||||
597 | return 31 - countLeadingZeros(Value); | ||||
598 | } | ||||
599 | |||||
600 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. | ||||
601 | /// (64 bit edition.) | ||||
602 | inline unsigned Log2_64(uint64_t Value) { | ||||
603 | return 63 - countLeadingZeros(Value); | ||||
604 | } | ||||
605 | |||||
606 | /// Return the ceil log base 2 of the specified value, 32 if the value is zero. | ||||
607 | /// (32 bit edition). | ||||
608 | /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 | ||||
609 | inline unsigned Log2_32_Ceil(uint32_t Value) { | ||||
610 | return 32 - countLeadingZeros(Value - 1); | ||||
611 | } | ||||
612 | |||||
613 | /// Return the ceil log base 2 of the specified value, 64 if the value is zero. | ||||
614 | /// (64 bit edition.) | ||||
615 | inline unsigned Log2_64_Ceil(uint64_t Value) { | ||||
616 | return 64 - countLeadingZeros(Value - 1); | ||||
617 | } | ||||
618 | |||||
619 | /// Return the greatest common divisor of the values using Euclid's algorithm. | ||||
620 | template <typename T> | ||||
621 | inline T greatestCommonDivisor(T A, T B) { | ||||
622 | while (B) { | ||||
623 | T Tmp = B; | ||||
624 | B = A % B; | ||||
625 | A = Tmp; | ||||
626 | } | ||||
627 | return A; | ||||
628 | } | ||||
629 | |||||
630 | inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { | ||||
631 | return greatestCommonDivisor<uint64_t>(A, B); | ||||
632 | } | ||||
633 | |||||
634 | /// This function takes a 64-bit integer and returns the bit equivalent double. | ||||
635 | inline double BitsToDouble(uint64_t Bits) { | ||||
636 | double D; | ||||
637 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); | ||||
638 | memcpy(&D, &Bits, sizeof(Bits)); | ||||
639 | return D; | ||||
640 | } | ||||
641 | |||||
642 | /// This function takes a 32-bit integer and returns the bit equivalent float. | ||||
643 | inline float BitsToFloat(uint32_t Bits) { | ||||
644 | float F; | ||||
645 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); | ||||
646 | memcpy(&F, &Bits, sizeof(Bits)); | ||||
647 | return F; | ||||
648 | } | ||||
649 | |||||
650 | /// This function takes a double and returns the bit equivalent 64-bit integer. | ||||
651 | /// Note that copying doubles around changes the bits of NaNs on some hosts, | ||||
652 | /// notably x86, so this routine cannot be used if these bits are needed. | ||||
653 | inline uint64_t DoubleToBits(double Double) { | ||||
654 | uint64_t Bits; | ||||
655 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); | ||||
656 | memcpy(&Bits, &Double, sizeof(Double)); | ||||
657 | return Bits; | ||||
658 | } | ||||
659 | |||||
660 | /// This function takes a float and returns the bit equivalent 32-bit integer. | ||||
661 | /// Note that copying floats around changes the bits of NaNs on some hosts, | ||||
662 | /// notably x86, so this routine cannot be used if these bits are needed. | ||||
663 | inline uint32_t FloatToBits(float Float) { | ||||
664 | uint32_t Bits; | ||||
665 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); | ||||
666 | memcpy(&Bits, &Float, sizeof(Float)); | ||||
667 | return Bits; | ||||
668 | } | ||||
669 | |||||
670 | /// A and B are either alignments or offsets. Return the minimum alignment that | ||||
671 | /// may be assumed after adding the two together. | ||||
672 | constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) { | ||||
673 | // The largest power of 2 that divides both A and B. | ||||
674 | // | ||||
675 | // Replace "-Value" by "1+~Value" in the following commented code to avoid | ||||
676 | // MSVC warning C4146 | ||||
677 | // return (A | B) & -(A | B); | ||||
678 | return (A | B) & (1 + ~(A | B)); | ||||
679 | } | ||||
680 | |||||
681 | /// Returns the next power of two (in 64-bits) that is strictly greater than A. | ||||
682 | /// Returns zero on overflow. | ||||
683 | inline uint64_t NextPowerOf2(uint64_t A) { | ||||
684 | A |= (A >> 1); | ||||
685 | A |= (A >> 2); | ||||
686 | A |= (A >> 4); | ||||
687 | A |= (A >> 8); | ||||
688 | A |= (A >> 16); | ||||
689 | A |= (A >> 32); | ||||
690 | return A + 1; | ||||
691 | } | ||||
692 | |||||
693 | /// Returns the power of two which is less than or equal to the given value. | ||||
694 | /// Essentially, it is a floor operation across the domain of powers of two. | ||||
695 | inline uint64_t PowerOf2Floor(uint64_t A) { | ||||
696 | if (!A) return 0; | ||||
697 | return 1ull << (63 - countLeadingZeros(A, ZB_Undefined)); | ||||
698 | } | ||||
699 | |||||
700 | /// Returns the power of two which is greater than or equal to the given value. | ||||
701 | /// Essentially, it is a ceil operation across the domain of powers of two. | ||||
702 | inline uint64_t PowerOf2Ceil(uint64_t A) { | ||||
703 | if (!A) | ||||
704 | return 0; | ||||
705 | return NextPowerOf2(A - 1); | ||||
706 | } | ||||
707 | |||||
708 | /// Returns the next integer (mod 2**64) that is greater than or equal to | ||||
709 | /// \p Value and is a multiple of \p Align. \p Align must be non-zero. | ||||
710 | /// | ||||
711 | /// If non-zero \p Skew is specified, the return value will be a minimal | ||||
712 | /// integer that is greater than or equal to \p Value and equal to | ||||
713 | /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than | ||||
714 | /// \p Align, its value is adjusted to '\p Skew mod \p Align'. | ||||
715 | /// | ||||
716 | /// Examples: | ||||
717 | /// \code | ||||
718 | /// alignTo(5, 8) = 8 | ||||
719 | /// alignTo(17, 8) = 24 | ||||
720 | /// alignTo(~0LL, 8) = 0 | ||||
721 | /// alignTo(321, 255) = 510 | ||||
722 | /// | ||||
723 | /// alignTo(5, 8, 7) = 7 | ||||
724 | /// alignTo(17, 8, 1) = 17 | ||||
725 | /// alignTo(~0LL, 8, 3) = 3 | ||||
726 | /// alignTo(321, 255, 42) = 552 | ||||
727 | /// \endcode | ||||
728 | inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { | ||||
729 | assert(Align != 0u && "Align can't be 0.")((void)0); | ||||
730 | Skew %= Align; | ||||
731 | return (Value + Align - 1 - Skew) / Align * Align + Skew; | ||||
732 | } | ||||
733 | |||||
734 | /// Returns the next integer (mod 2**64) that is greater than or equal to | ||||
735 | /// \p Value and is a multiple of \c Align. \c Align must be non-zero. | ||||
736 | template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) { | ||||
737 | static_assert(Align != 0u, "Align must be non-zero"); | ||||
738 | return (Value + Align - 1) / Align * Align; | ||||
739 | } | ||||
740 | |||||
741 | /// Returns the integer ceil(Numerator / Denominator). | ||||
742 | inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { | ||||
743 | return alignTo(Numerator, Denominator) / Denominator; | ||||
744 | } | ||||
745 | |||||
746 | /// Returns the integer nearest(Numerator / Denominator). | ||||
747 | inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) { | ||||
748 | return (Numerator + (Denominator / 2)) / Denominator; | ||||
749 | } | ||||
750 | |||||
751 | /// Returns the largest uint64_t less than or equal to \p Value and is | ||||
752 | /// \p Skew mod \p Align. \p Align must be non-zero | ||||
753 | inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { | ||||
754 | assert(Align != 0u && "Align can't be 0.")((void)0); | ||||
755 | Skew %= Align; | ||||
756 | return (Value - Skew) / Align * Align + Skew; | ||||
757 | } | ||||
758 | |||||
759 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. | ||||
760 | /// Requires 0 < B <= 32. | ||||
761 | template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) { | ||||
762 | static_assert(B > 0, "Bit width can't be 0."); | ||||
763 | static_assert(B <= 32, "Bit width out of range."); | ||||
764 | return int32_t(X << (32 - B)) >> (32 - B); | ||||
765 | } | ||||
766 | |||||
767 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. | ||||
768 | /// Requires 0 < B <= 32. | ||||
769 | inline int32_t SignExtend32(uint32_t X, unsigned B) { | ||||
770 | assert(B > 0 && "Bit width can't be 0.")((void)0); | ||||
771 | assert(B <= 32 && "Bit width out of range.")((void)0); | ||||
772 | return int32_t(X << (32 - B)) >> (32 - B); | ||||
773 | } | ||||
774 | |||||
775 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. | ||||
776 | /// Requires 0 < B <= 64. | ||||
777 | template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) { | ||||
778 | static_assert(B > 0, "Bit width can't be 0."); | ||||
779 | static_assert(B <= 64, "Bit width out of range."); | ||||
780 | return int64_t(x << (64 - B)) >> (64 - B); | ||||
781 | } | ||||
782 | |||||
783 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. | ||||
784 | /// Requires 0 < B <= 64. | ||||
785 | inline int64_t SignExtend64(uint64_t X, unsigned B) { | ||||
786 | assert(B > 0 && "Bit width can't be 0.")((void)0); | ||||
787 | assert(B <= 64 && "Bit width out of range.")((void)0); | ||||
788 | return int64_t(X << (64 - B)) >> (64 - B); | ||||
789 | } | ||||
790 | |||||
791 | /// Subtract two unsigned integers, X and Y, of type T and return the absolute | ||||
792 | /// value of the result. | ||||
793 | template <typename T> | ||||
794 | std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) { | ||||
795 | return X > Y ? (X - Y) : (Y - X); | ||||
796 | } | ||||
797 | |||||
798 | /// Add two unsigned integers, X and Y, of type T. Clamp the result to the | ||||
799 | /// maximum representable value of T on overflow. ResultOverflowed indicates if | ||||
800 | /// the result is larger than the maximum representable value of type T. | ||||
801 | template <typename T> | ||||
802 | std::enable_if_t<std::is_unsigned<T>::value, T> | ||||
803 | SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { | ||||
804 | bool Dummy; | ||||
805 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; | ||||
806 | // Hacker's Delight, p. 29 | ||||
807 | T Z = X + Y; | ||||
808 | Overflowed = (Z < X || Z < Y); | ||||
809 | if (Overflowed) | ||||
810 | return std::numeric_limits<T>::max(); | ||||
811 | else | ||||
812 | return Z; | ||||
813 | } | ||||
814 | |||||
815 | /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the | ||||
816 | /// maximum representable value of T on overflow. ResultOverflowed indicates if | ||||
817 | /// the result is larger than the maximum representable value of type T. | ||||
818 | template <typename T> | ||||
819 | std::enable_if_t<std::is_unsigned<T>::value, T> | ||||
820 | SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { | ||||
821 | bool Dummy; | ||||
822 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; | ||||
823 | |||||
824 | // Hacker's Delight, p. 30 has a different algorithm, but we don't use that | ||||
825 | // because it fails for uint16_t (where multiplication can have undefined | ||||
826 | // behavior due to promotion to int), and requires a division in addition | ||||
827 | // to the multiplication. | ||||
828 | |||||
829 | Overflowed = false; | ||||
830 | |||||
831 | // Log2(Z) would be either Log2Z or Log2Z + 1. | ||||
832 | // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z | ||||
833 | // will necessarily be less than Log2Max as desired. | ||||
834 | int Log2Z = Log2_64(X) + Log2_64(Y); | ||||
835 | const T Max = std::numeric_limits<T>::max(); | ||||
836 | int Log2Max = Log2_64(Max); | ||||
837 | if (Log2Z < Log2Max) { | ||||
838 | return X * Y; | ||||
839 | } | ||||
840 | if (Log2Z > Log2Max) { | ||||
841 | Overflowed = true; | ||||
842 | return Max; | ||||
843 | } | ||||
844 | |||||
845 | // We're going to use the top bit, and maybe overflow one | ||||
846 | // bit past it. Multiply all but the bottom bit then add | ||||
847 | // that on at the end. | ||||
848 | T Z = (X >> 1) * Y; | ||||
849 | if (Z & ~(Max >> 1)) { | ||||
850 | Overflowed = true; | ||||
851 | return Max; | ||||
852 | } | ||||
853 | Z <<= 1; | ||||
854 | if (X & 1) | ||||
855 | return SaturatingAdd(Z, Y, ResultOverflowed); | ||||
856 | |||||
857 | return Z; | ||||
858 | } | ||||
859 | |||||
860 | /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to | ||||
861 | /// the product. Clamp the result to the maximum representable value of T on | ||||
862 | /// overflow. ResultOverflowed indicates if the result is larger than the | ||||
863 | /// maximum representable value of type T. | ||||
864 | template <typename T> | ||||
865 | std::enable_if_t<std::is_unsigned<T>::value, T> | ||||
866 | SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { | ||||
867 | bool Dummy; | ||||
868 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; | ||||
869 | |||||
870 | T Product = SaturatingMultiply(X, Y, &Overflowed); | ||||
871 | if (Overflowed) | ||||
872 | return Product; | ||||
873 | |||||
874 | return SaturatingAdd(A, Product, &Overflowed); | ||||
875 | } | ||||
876 | |||||
877 | /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. | ||||
878 | extern const float huge_valf; | ||||
879 | |||||
880 | |||||
881 | /// Add two signed integers, computing the two's complement truncated result, | ||||
882 | /// returning true if overflow occured. | ||||
883 | template <typename T> | ||||
884 | std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) { | ||||
885 | #if __has_builtin(__builtin_add_overflow)1 | ||||
886 | return __builtin_add_overflow(X, Y, &Result); | ||||
887 | #else | ||||
888 | // Perform the unsigned addition. | ||||
889 | using U = std::make_unsigned_t<T>; | ||||
890 | const U UX = static_cast<U>(X); | ||||
891 | const U UY = static_cast<U>(Y); | ||||
892 | const U UResult = UX + UY; | ||||
893 | |||||
894 | // Convert to signed. | ||||
895 | Result = static_cast<T>(UResult); | ||||
896 | |||||
897 | // Adding two positive numbers should result in a positive number. | ||||
898 | if (X > 0 && Y > 0) | ||||
899 | return Result <= 0; | ||||
900 | // Adding two negatives should result in a negative number. | ||||
901 | if (X < 0 && Y < 0) | ||||
902 | return Result >= 0; | ||||
903 | return false; | ||||
904 | #endif | ||||
905 | } | ||||
906 | |||||
907 | /// Subtract two signed integers, computing the two's complement truncated | ||||
908 | /// result, returning true if an overflow ocurred. | ||||
909 | template <typename T> | ||||
910 | std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) { | ||||
911 | #if __has_builtin(__builtin_sub_overflow)1 | ||||
912 | return __builtin_sub_overflow(X, Y, &Result); | ||||
913 | #else | ||||
914 | // Perform the unsigned addition. | ||||
915 | using U = std::make_unsigned_t<T>; | ||||
916 | const U UX = static_cast<U>(X); | ||||
917 | const U UY = static_cast<U>(Y); | ||||
918 | const U UResult = UX - UY; | ||||
919 | |||||
920 | // Convert to signed. | ||||
921 | Result = static_cast<T>(UResult); | ||||
922 | |||||
923 | // Subtracting a positive number from a negative results in a negative number. | ||||
924 | if (X <= 0 && Y > 0) | ||||
925 | return Result >= 0; | ||||
926 | // Subtracting a negative number from a positive results in a positive number. | ||||
927 | if (X >= 0 && Y < 0) | ||||
928 | return Result <= 0; | ||||
929 | return false; | ||||
930 | #endif | ||||
931 | } | ||||
932 | |||||
933 | /// Multiply two signed integers, computing the two's complement truncated | ||||
934 | /// result, returning true if an overflow ocurred. | ||||
935 | template <typename T> | ||||
936 | std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) { | ||||
937 | // Perform the unsigned multiplication on absolute values. | ||||
938 | using U = std::make_unsigned_t<T>; | ||||
939 | const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X); | ||||
940 | const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y); | ||||
941 | const U UResult = UX * UY; | ||||
942 | |||||
943 | // Convert to signed. | ||||
944 | const bool IsNegative = (X < 0) ^ (Y < 0); | ||||
945 | Result = IsNegative ? (0 - UResult) : UResult; | ||||
946 | |||||
947 | // If any of the args was 0, result is 0 and no overflow occurs. | ||||
948 | if (UX == 0 || UY == 0) | ||||
949 | return false; | ||||
950 | |||||
951 | // UX and UY are in [1, 2^n], where n is the number of digits. | ||||
952 | // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for | ||||
953 | // positive) divided by an argument compares to the other. | ||||
954 | if (IsNegative) | ||||
955 | return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY; | ||||
956 | else | ||||
957 | return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY; | ||||
958 | } | ||||
959 | |||||
960 | } // End llvm namespace | ||||
961 | |||||
962 | #endif |