Bug Summary

File:src/gnu/usr.bin/clang/liblldELF/../../../llvm/lld/ELF/Relocations.cpp
Warning:line 1896, column 9
3rd function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Relocations.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/liblldELF/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/liblldELF/obj/../include/lld/ELF -I /usr/src/gnu/usr.bin/clang/liblldELF/../../../llvm/lld/include -I /usr/src/gnu/usr.bin/clang/liblldELF/../../../llvm/lld/ELF -I /usr/src/gnu/usr.bin/clang/liblldELF/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/liblldELF/../include -I /usr/src/gnu/usr.bin/clang/liblldELF/obj -I /usr/src/gnu/usr.bin/clang/liblldELF/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/liblldELF/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/liblldELF/../../../llvm/lld/ELF/Relocations.cpp
1//===- Relocations.cpp ----------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains platform-independent functions to process relocations.
10// I'll describe the overview of this file here.
11//
12// Simple relocations are easy to handle for the linker. For example,
13// for R_X86_64_PC64 relocs, the linker just has to fix up locations
14// with the relative offsets to the target symbols. It would just be
15// reading records from relocation sections and applying them to output.
16//
17// But not all relocations are that easy to handle. For example, for
18// R_386_GOTOFF relocs, the linker has to create new GOT entries for
19// symbols if they don't exist, and fix up locations with GOT entry
20// offsets from the beginning of GOT section. So there is more than
21// fixing addresses in relocation processing.
22//
23// ELF defines a large number of complex relocations.
24//
25// The functions in this file analyze relocations and do whatever needs
26// to be done. It includes, but not limited to, the following.
27//
28// - create GOT/PLT entries
29// - create new relocations in .dynsym to let the dynamic linker resolve
30// them at runtime (since ELF supports dynamic linking, not all
31// relocations can be resolved at link-time)
32// - create COPY relocs and reserve space in .bss
33// - replace expensive relocs (in terms of runtime cost) with cheap ones
34// - error out infeasible combinations such as PIC and non-relative relocs
35//
36// Note that the functions in this file don't actually apply relocations
37// because it doesn't know about the output file nor the output file buffer.
38// It instead stores Relocation objects to InputSection's Relocations
39// vector to let it apply later in InputSection::writeTo.
40//
41//===----------------------------------------------------------------------===//
42
43#include "Relocations.h"
44#include "Config.h"
45#include "LinkerScript.h"
46#include "OutputSections.h"
47#include "SymbolTable.h"
48#include "Symbols.h"
49#include "SyntheticSections.h"
50#include "Target.h"
51#include "Thunks.h"
52#include "lld/Common/ErrorHandler.h"
53#include "lld/Common/Memory.h"
54#include "lld/Common/Strings.h"
55#include "llvm/ADT/SmallSet.h"
56#include "llvm/Demangle/Demangle.h"
57#include "llvm/Support/Endian.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60
61using namespace llvm;
62using namespace llvm::ELF;
63using namespace llvm::object;
64using namespace llvm::support::endian;
65using namespace lld;
66using namespace lld::elf;
67
68static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
69 for (BaseCommand *base : script->sectionCommands)
70 if (auto *cmd = dyn_cast<SymbolAssignment>(base))
71 if (cmd->sym == &sym)
72 return cmd->location;
73 return None;
74}
75
76static std::string getDefinedLocation(const Symbol &sym) {
77 const char msg[] = "\n>>> defined in ";
78 if (sym.file)
79 return msg + toString(sym.file);
80 if (Optional<std::string> loc = getLinkerScriptLocation(sym))
81 return msg + *loc;
82 return "";
83}
84
85// Construct a message in the following format.
86//
87// >>> defined in /home/alice/src/foo.o
88// >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
89// >>> /home/alice/src/bar.o:(.text+0x1)
90static std::string getLocation(InputSectionBase &s, const Symbol &sym,
91 uint64_t off) {
92 std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
93 std::string src = s.getSrcMsg(sym, off);
94 if (!src.empty())
95 msg += src + "\n>>> ";
96 return msg + s.getObjMsg(off);
97}
98
99void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
100 int64_t min, uint64_t max) {
101 ErrorPlace errPlace = getErrorPlace(loc);
102 std::string hint;
103 if (rel.sym && !rel.sym->isLocal())
104 hint = "; references " + lld::toString(*rel.sym) +
105 getDefinedLocation(*rel.sym);
106
107 if (errPlace.isec && errPlace.isec->name.startswith(".debug"))
108 hint += "; consider recompiling with -fdebug-types-section to reduce size "
109 "of debug sections";
110
111 errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
112 " out of range: " + v.str() + " is not in [" + Twine(min).str() +
113 ", " + Twine(max).str() + "]" + hint);
114}
115
116void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
117 const Twine &msg) {
118 ErrorPlace errPlace = getErrorPlace(loc);
119 std::string hint;
120 if (!sym.getName().empty())
121 hint = "; references " + lld::toString(sym) + getDefinedLocation(sym);
122 errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) +
123 " is not in [" + Twine(llvm::minIntN(n)) + ", " +
124 Twine(llvm::maxIntN(n)) + "]" + hint);
125}
126
127namespace {
128// Build a bitmask with one bit set for each RelExpr.
129//
130// Constexpr function arguments can't be used in static asserts, so we
131// use template arguments to build the mask.
132// But function template partial specializations don't exist (needed
133// for base case of the recursion), so we need a dummy struct.
134template <RelExpr... Exprs> struct RelExprMaskBuilder {
135 static inline uint64_t build() { return 0; }
136};
137
138// Specialization for recursive case.
139template <RelExpr Head, RelExpr... Tail>
140struct RelExprMaskBuilder<Head, Tail...> {
141 static inline uint64_t build() {
142 static_assert(0 <= Head && Head < 64,
143 "RelExpr is too large for 64-bit mask!");
144 return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build();
145 }
146};
147} // namespace
148
149// Return true if `Expr` is one of `Exprs`.
150// There are fewer than 64 RelExpr's, so we can represent any set of
151// RelExpr's as a constant bit mask and test for membership with a
152// couple cheap bitwise operations.
153template <RelExpr... Exprs> bool oneof(RelExpr expr) {
154 assert(0 <= expr && (int)expr < 64 &&((void)0)
155 "RelExpr is too large for 64-bit mask!")((void)0);
156 return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build();
157}
158
159// This function is similar to the `handleTlsRelocation`. MIPS does not
160// support any relaxations for TLS relocations so by factoring out MIPS
161// handling in to the separate function we can simplify the code and do not
162// pollute other `handleTlsRelocation` by MIPS `ifs` statements.
163// Mips has a custom MipsGotSection that handles the writing of GOT entries
164// without dynamic relocations.
165static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
166 InputSectionBase &c, uint64_t offset,
167 int64_t addend, RelExpr expr) {
168 if (expr == R_MIPS_TLSLD) {
169 in.mipsGot->addTlsIndex(*c.file);
170 c.relocations.push_back({expr, type, offset, addend, &sym});
171 return 1;
172 }
173 if (expr == R_MIPS_TLSGD) {
174 in.mipsGot->addDynTlsEntry(*c.file, sym);
175 c.relocations.push_back({expr, type, offset, addend, &sym});
176 return 1;
177 }
178 return 0;
179}
180
181// Notes about General Dynamic and Local Dynamic TLS models below. They may
182// require the generation of a pair of GOT entries that have associated dynamic
183// relocations. The pair of GOT entries created are of the form GOT[e0] Module
184// Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
185// symbol in TLS block.
186//
187// Returns the number of relocations processed.
188template <class ELFT>
189static unsigned
190handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c,
191 typename ELFT::uint offset, int64_t addend, RelExpr expr) {
192 if (!sym.isTls())
193 return 0;
194
195 if (config->emachine == EM_MIPS)
196 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
197
198 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>(
199 expr) &&
200 config->shared) {
201 if (in.got->addDynTlsEntry(sym)) {
202 uint64_t off = in.got->getGlobalDynOffset(sym);
203 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
204 target->tlsDescRel, in.got, off, sym, target->tlsDescRel);
205 }
206 if (expr != R_TLSDESC_CALL)
207 c.relocations.push_back({expr, type, offset, addend, &sym});
208 return 1;
209 }
210
211 // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation. For
212 // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable
213 // relaxation as well.
214 bool toExecRelax = !config->shared && config->emachine != EM_ARM &&
215 config->emachine != EM_HEXAGON &&
216 config->emachine != EM_RISCV &&
217 !c.file->ppc64DisableTLSRelax;
218
219 // If we are producing an executable and the symbol is non-preemptable, it
220 // must be defined and the code sequence can be relaxed to use Local-Exec.
221 //
222 // ARM and RISC-V do not support any relaxations for TLS relocations, however,
223 // we can omit the DTPMOD dynamic relocations and resolve them at link time
224 // because them are always 1. This may be necessary for static linking as
225 // DTPMOD may not be expected at load time.
226 bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
227
228 // Local Dynamic is for access to module local TLS variables, while still
229 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
230 // module index, with a special value of 0 for the current module. GOT[e1] is
231 // unused. There only needs to be one module index entry.
232 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
233 expr)) {
234 // Local-Dynamic relocs can be relaxed to Local-Exec.
235 if (toExecRelax) {
236 c.relocations.push_back(
237 {target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, offset,
238 addend, &sym});
239 return target->getTlsGdRelaxSkip(type);
240 }
241 if (expr == R_TLSLD_HINT)
242 return 1;
243 if (in.got->addTlsIndex()) {
244 if (isLocalInExecutable)
245 in.got->relocations.push_back(
246 {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym});
247 else
248 mainPart->relaDyn->addReloc(
249 {target->tlsModuleIndexRel, in.got, in.got->getTlsIndexOff()});
250 }
251 c.relocations.push_back({expr, type, offset, addend, &sym});
252 return 1;
253 }
254
255 // Local-Dynamic relocs can be relaxed to Local-Exec.
256 if (expr == R_DTPREL && toExecRelax) {
257 c.relocations.push_back({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE),
258 type, offset, addend, &sym});
259 return 1;
260 }
261
262 // Local-Dynamic sequence where offset of tls variable relative to dynamic
263 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
264 if (expr == R_TLSLD_GOT_OFF) {
265 if (!sym.isInGot()) {
266 in.got->addEntry(sym);
267 uint64_t off = sym.getGotOffset();
268 in.got->relocations.push_back(
269 {R_ABS, target->tlsOffsetRel, off, 0, &sym});
270 }
271 c.relocations.push_back({expr, type, offset, addend, &sym});
272 return 1;
273 }
274
275 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
276 R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) {
277 if (!toExecRelax) {
278 if (in.got->addDynTlsEntry(sym)) {
279 uint64_t off = in.got->getGlobalDynOffset(sym);
280
281 if (isLocalInExecutable)
282 // Write one to the GOT slot.
283 in.got->relocations.push_back(
284 {R_ADDEND, target->symbolicRel, off, 1, &sym});
285 else
286 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, in.got,
287 off, sym);
288
289 // If the symbol is preemptible we need the dynamic linker to write
290 // the offset too.
291 uint64_t offsetOff = off + config->wordsize;
292 if (sym.isPreemptible)
293 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, in.got,
294 offsetOff, sym);
295 else
296 in.got->relocations.push_back(
297 {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
298 }
299 c.relocations.push_back({expr, type, offset, addend, &sym});
300 return 1;
301 }
302
303 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
304 // depending on the symbol being locally defined or not.
305 if (sym.isPreemptible) {
306 c.relocations.push_back(
307 {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, offset,
308 addend, &sym});
309 if (!sym.isInGot()) {
310 in.got->addEntry(sym);
311 mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, in.got,
312 sym.getGotOffset(), sym);
313 }
314 } else {
315 c.relocations.push_back(
316 {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, offset,
317 addend, &sym});
318 }
319 return target->getTlsGdRelaxSkip(type);
320 }
321
322 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
323 // defined.
324 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
325 R_TLSIE_HINT>(expr) &&
326 toExecRelax && isLocalInExecutable) {
327 c.relocations.push_back({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
328 return 1;
329 }
330
331 if (expr == R_TLSIE_HINT)
332 return 1;
333 return 0;
334}
335
336static RelType getMipsPairType(RelType type, bool isLocal) {
337 switch (type) {
338 case R_MIPS_HI16:
339 return R_MIPS_LO16;
340 case R_MIPS_GOT16:
341 // In case of global symbol, the R_MIPS_GOT16 relocation does not
342 // have a pair. Each global symbol has a unique entry in the GOT
343 // and a corresponding instruction with help of the R_MIPS_GOT16
344 // relocation loads an address of the symbol. In case of local
345 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
346 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
347 // relocations handle low 16 bits of the address. That allows
348 // to allocate only one GOT entry for every 64 KBytes of local data.
349 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
350 case R_MICROMIPS_GOT16:
351 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
352 case R_MIPS_PCHI16:
353 return R_MIPS_PCLO16;
354 case R_MICROMIPS_HI16:
355 return R_MICROMIPS_LO16;
356 default:
357 return R_MIPS_NONE;
358 }
359}
360
361// True if non-preemptable symbol always has the same value regardless of where
362// the DSO is loaded.
363static bool isAbsolute(const Symbol &sym) {
364 if (sym.isUndefWeak())
365 return true;
366 if (const auto *dr = dyn_cast<Defined>(&sym))
367 return dr->section == nullptr; // Absolute symbol.
368 return false;
369}
370
371static bool isAbsoluteValue(const Symbol &sym) {
372 return isAbsolute(sym) || sym.isTls();
373}
374
375// Returns true if Expr refers a PLT entry.
376static bool needsPlt(RelExpr expr) {
377 return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr);
378}
379
380// Returns true if Expr refers a GOT entry. Note that this function
381// returns false for TLS variables even though they need GOT, because
382// TLS variables uses GOT differently than the regular variables.
383static bool needsGot(RelExpr expr) {
384 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
385 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT,
386 R_AARCH64_GOT_PAGE>(expr);
387}
388
389// True if this expression is of the form Sym - X, where X is a position in the
390// file (PC, or GOT for example).
391static bool isRelExpr(RelExpr expr) {
392 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
393 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
394 R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr);
395}
396
397// Returns true if a given relocation can be computed at link-time.
398//
399// For instance, we know the offset from a relocation to its target at
400// link-time if the relocation is PC-relative and refers a
401// non-interposable function in the same executable. This function
402// will return true for such relocation.
403//
404// If this function returns false, that means we need to emit a
405// dynamic relocation so that the relocation will be fixed at load-time.
406static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
407 InputSectionBase &s, uint64_t relOff) {
408 // These expressions always compute a constant
409 if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_TLSLD_GOT_OFF,
410 R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF,
411 R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD,
412 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
413 R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL,
414 R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL,
415 R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_TLSLD_HINT, R_TLSIE_HINT,
416 R_AARCH64_GOT_PAGE>(
417 e))
418 return true;
419
420 // These never do, except if the entire file is position dependent or if
421 // only the low bits are used.
422 if (e == R_GOT || e == R_PLT || e == R_TLSDESC)
423 return target->usesOnlyLowPageBits(type) || !config->isPic;
424
425 if (sym.isPreemptible)
426 return false;
427 if (!config->isPic)
428 return true;
429
430 // The size of a non preemptible symbol is a constant.
431 if (e == R_SIZE)
432 return true;
433
434 // For the target and the relocation, we want to know if they are
435 // absolute or relative.
436 bool absVal = isAbsoluteValue(sym);
437 bool relE = isRelExpr(e);
438 if (absVal && !relE)
439 return true;
440 if (!absVal && relE)
441 return true;
442 if (!absVal && !relE)
443 return target->usesOnlyLowPageBits(type);
444
445 assert(absVal && relE)((void)0);
446
447 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
448 // in PIC mode. This is a little strange, but it allows us to link function
449 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
450 // Normally such a call will be guarded with a comparison, which will load a
451 // zero from the GOT.
452 if (sym.isUndefWeak())
453 return true;
454
455 // We set the final symbols values for linker script defined symbols later.
456 // They always can be computed as a link time constant.
457 if (sym.scriptDefined)
458 return true;
459
460 error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
461 toString(sym) + getLocation(s, sym, relOff));
462 return true;
463}
464
465static RelExpr toPlt(RelExpr expr) {
466 switch (expr) {
467 case R_PPC64_CALL:
468 return R_PPC64_CALL_PLT;
469 case R_PC:
470 return R_PLT_PC;
471 case R_ABS:
472 return R_PLT;
473 default:
474 return expr;
475 }
476}
477
478static RelExpr fromPlt(RelExpr expr) {
479 // We decided not to use a plt. Optimize a reference to the plt to a
480 // reference to the symbol itself.
481 switch (expr) {
482 case R_PLT_PC:
483 case R_PPC32_PLTREL:
484 return R_PC;
485 case R_PPC64_CALL_PLT:
486 return R_PPC64_CALL;
487 case R_PLT:
488 return R_ABS;
489 default:
490 return expr;
491 }
492}
493
494// Returns true if a given shared symbol is in a read-only segment in a DSO.
495template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
496 using Elf_Phdr = typename ELFT::Phdr;
497
498 // Determine if the symbol is read-only by scanning the DSO's program headers.
499 const SharedFile &file = ss.getFile();
500 for (const Elf_Phdr &phdr :
501 check(file.template getObj<ELFT>().program_headers()))
502 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
503 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
504 ss.value < phdr.p_vaddr + phdr.p_memsz)
505 return true;
506 return false;
507}
508
509// Returns symbols at the same offset as a given symbol, including SS itself.
510//
511// If two or more symbols are at the same offset, and at least one of
512// them are copied by a copy relocation, all of them need to be copied.
513// Otherwise, they would refer to different places at runtime.
514template <class ELFT>
515static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
516 using Elf_Sym = typename ELFT::Sym;
517
518 SharedFile &file = ss.getFile();
519
520 SmallSet<SharedSymbol *, 4> ret;
521 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
522 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
523 s.getType() == STT_TLS || s.st_value != ss.value)
524 continue;
525 StringRef name = check(s.getName(file.getStringTable()));
526 Symbol *sym = symtab->find(name);
527 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
528 ret.insert(alias);
529 }
530
531 // The loop does not check SHT_GNU_verneed, so ret does not contain
532 // non-default version symbols. If ss has a non-default version, ret won't
533 // contain ss. Just add ss unconditionally. If a non-default version alias is
534 // separately copy relocated, it and ss will have different addresses.
535 // Fortunately this case is impractical and fails with GNU ld as well.
536 ret.insert(&ss);
537 return ret;
538}
539
540// When a symbol is copy relocated or we create a canonical plt entry, it is
541// effectively a defined symbol. In the case of copy relocation the symbol is
542// in .bss and in the case of a canonical plt entry it is in .plt. This function
543// replaces the existing symbol with a Defined pointing to the appropriate
544// location.
545static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value,
546 uint64_t size) {
547 Symbol old = sym;
548
549 sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther,
550 sym.type, value, size, sec});
551
552 sym.pltIndex = old.pltIndex;
553 sym.gotIndex = old.gotIndex;
554 sym.verdefIndex = old.verdefIndex;
555 sym.exportDynamic = true;
556 sym.isUsedInRegularObj = true;
557}
558
559// Reserve space in .bss or .bss.rel.ro for copy relocation.
560//
561// The copy relocation is pretty much a hack. If you use a copy relocation
562// in your program, not only the symbol name but the symbol's size, RW/RO
563// bit and alignment become part of the ABI. In addition to that, if the
564// symbol has aliases, the aliases become part of the ABI. That's subtle,
565// but if you violate that implicit ABI, that can cause very counter-
566// intuitive consequences.
567//
568// So, what is the copy relocation? It's for linking non-position
569// independent code to DSOs. In an ideal world, all references to data
570// exported by DSOs should go indirectly through GOT. But if object files
571// are compiled as non-PIC, all data references are direct. There is no
572// way for the linker to transform the code to use GOT, as machine
573// instructions are already set in stone in object files. This is where
574// the copy relocation takes a role.
575//
576// A copy relocation instructs the dynamic linker to copy data from a DSO
577// to a specified address (which is usually in .bss) at load-time. If the
578// static linker (that's us) finds a direct data reference to a DSO
579// symbol, it creates a copy relocation, so that the symbol can be
580// resolved as if it were in .bss rather than in a DSO.
581//
582// As you can see in this function, we create a copy relocation for the
583// dynamic linker, and the relocation contains not only symbol name but
584// various other information about the symbol. So, such attributes become a
585// part of the ABI.
586//
587// Note for application developers: I can give you a piece of advice if
588// you are writing a shared library. You probably should export only
589// functions from your library. You shouldn't export variables.
590//
591// As an example what can happen when you export variables without knowing
592// the semantics of copy relocations, assume that you have an exported
593// variable of type T. It is an ABI-breaking change to add new members at
594// end of T even though doing that doesn't change the layout of the
595// existing members. That's because the space for the new members are not
596// reserved in .bss unless you recompile the main program. That means they
597// are likely to overlap with other data that happens to be laid out next
598// to the variable in .bss. This kind of issue is sometimes very hard to
599// debug. What's a solution? Instead of exporting a variable V from a DSO,
600// define an accessor getV().
601template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
602 // Copy relocation against zero-sized symbol doesn't make sense.
603 uint64_t symSize = ss.getSize();
604 if (symSize == 0 || ss.alignment == 0)
605 fatal("cannot create a copy relocation for symbol " + toString(ss));
606
607 // See if this symbol is in a read-only segment. If so, preserve the symbol's
608 // memory protection by reserving space in the .bss.rel.ro section.
609 bool isRO = isReadOnly<ELFT>(ss);
610 BssSection *sec =
611 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
612 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
613
614 // At this point, sectionBases has been migrated to sections. Append sec to
615 // sections.
616 if (osec->sectionCommands.empty() ||
617 !isa<InputSectionDescription>(osec->sectionCommands.back()))
618 osec->sectionCommands.push_back(make<InputSectionDescription>(""));
619 auto *isd = cast<InputSectionDescription>(osec->sectionCommands.back());
620 isd->sections.push_back(sec);
621 osec->commitSection(sec);
622
623 // Look through the DSO's dynamic symbol table for aliases and create a
624 // dynamic symbol for each one. This causes the copy relocation to correctly
625 // interpose any aliases.
626 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
627 replaceWithDefined(*sym, sec, 0, sym->size);
628
629 mainPart->relaDyn->addSymbolReloc(target->copyRel, sec, 0, ss);
630}
631
632// MIPS has an odd notion of "paired" relocations to calculate addends.
633// For example, if a relocation is of R_MIPS_HI16, there must be a
634// R_MIPS_LO16 relocation after that, and an addend is calculated using
635// the two relocations.
636template <class ELFT, class RelTy>
637static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end,
638 InputSectionBase &sec, RelExpr expr,
639 bool isLocal) {
640 if (expr == R_MIPS_GOTREL && isLocal)
641 return sec.getFile<ELFT>()->mipsGp0;
642
643 // The ABI says that the paired relocation is used only for REL.
644 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
645 if (RelTy::IsRela)
646 return 0;
647
648 RelType type = rel.getType(config->isMips64EL);
649 uint32_t pairTy = getMipsPairType(type, isLocal);
650 if (pairTy == R_MIPS_NONE)
651 return 0;
652
653 const uint8_t *buf = sec.data().data();
654 uint32_t symIndex = rel.getSymbol(config->isMips64EL);
655
656 // To make things worse, paired relocations might not be contiguous in
657 // the relocation table, so we need to do linear search. *sigh*
658 for (const RelTy *ri = &rel; ri != end; ++ri)
659 if (ri->getType(config->isMips64EL) == pairTy &&
660 ri->getSymbol(config->isMips64EL) == symIndex)
661 return target->getImplicitAddend(buf + ri->r_offset, pairTy);
662
663 warn("can't find matching " + toString(pairTy) + " relocation for " +
664 toString(type));
665 return 0;
666}
667
668// Returns an addend of a given relocation. If it is RELA, an addend
669// is in a relocation itself. If it is REL, we need to read it from an
670// input section.
671template <class ELFT, class RelTy>
672static int64_t computeAddend(const RelTy &rel, const RelTy *end,
673 InputSectionBase &sec, RelExpr expr,
674 bool isLocal) {
675 int64_t addend;
676 RelType type = rel.getType(config->isMips64EL);
677
678 if (RelTy::IsRela) {
679 addend = getAddend<ELFT>(rel);
680 } else {
681 const uint8_t *buf = sec.data().data();
682 addend = target->getImplicitAddend(buf + rel.r_offset, type);
683 }
684
685 if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
686 addend += getPPC64TocBase();
687 if (config->emachine == EM_MIPS)
688 addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal);
689
690 return addend;
691}
692
693// Custom error message if Sym is defined in a discarded section.
694template <class ELFT>
695static std::string maybeReportDiscarded(Undefined &sym) {
696 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
697 if (!file || !sym.discardedSecIdx ||
698 file->getSections()[sym.discardedSecIdx] != &InputSection::discarded)
699 return "";
700 ArrayRef<Elf_Shdr_Impl<ELFT>> objSections =
701 CHECK(file->getObj().sections(), file)check2((file->getObj().sections()), [&] { return toString
(file); })
;
702
703 std::string msg;
704 if (sym.type == ELF::STT_SECTION) {
705 msg = "relocation refers to a discarded section: ";
706 msg += CHECK(check2((file->getObj().getSectionName(objSections[sym.discardedSecIdx
])), [&] { return toString(file); })
707 file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file)check2((file->getObj().getSectionName(objSections[sym.discardedSecIdx
])), [&] { return toString(file); })
;
708 } else {
709 msg = "relocation refers to a symbol in a discarded section: " +
710 toString(sym);
711 }
712 msg += "\n>>> defined in " + toString(file);
713
714 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
715 if (elfSec.sh_type != SHT_GROUP)
716 return msg;
717
718 // If the discarded section is a COMDAT.
719 StringRef signature = file->getShtGroupSignature(objSections, elfSec);
720 if (const InputFile *prevailing =
721 symtab->comdatGroups.lookup(CachedHashStringRef(signature)))
722 msg += "\n>>> section group signature: " + signature.str() +
723 "\n>>> prevailing definition is in " + toString(prevailing);
724 return msg;
725}
726
727// Undefined diagnostics are collected in a vector and emitted once all of
728// them are known, so that some postprocessing on the list of undefined symbols
729// can happen before lld emits diagnostics.
730struct UndefinedDiag {
731 Symbol *sym;
732 struct Loc {
733 InputSectionBase *sec;
734 uint64_t offset;
735 };
736 std::vector<Loc> locs;
737 bool isWarning;
738};
739
740static std::vector<UndefinedDiag> undefs;
741
742// Check whether the definition name def is a mangled function name that matches
743// the reference name ref.
744static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
745 llvm::ItaniumPartialDemangler d;
746 std::string name = def.str();
747 if (d.partialDemangle(name.c_str()))
748 return false;
749 char *buf = d.getFunctionName(nullptr, nullptr);
750 if (!buf)
751 return false;
752 bool ret = ref == buf;
753 free(buf);
754 return ret;
755}
756
757// Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
758// the suggested symbol, which is either in the symbol table, or in the same
759// file of sym.
760template <class ELFT>
761static const Symbol *getAlternativeSpelling(const Undefined &sym,
762 std::string &pre_hint,
763 std::string &post_hint) {
764 DenseMap<StringRef, const Symbol *> map;
765 if (auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file)) {
766 // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
767 // will give an error. Don't suggest an alternative spelling.
768 if (file && sym.discardedSecIdx != 0 &&
769 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
770 return nullptr;
771
772 // Build a map of local defined symbols.
773 for (const Symbol *s : sym.file->getSymbols())
774 if (s->isLocal() && s->isDefined() && !s->getName().empty())
775 map.try_emplace(s->getName(), s);
776 }
777
778 auto suggest = [&](StringRef newName) -> const Symbol * {
779 // If defined locally.
780 if (const Symbol *s = map.lookup(newName))
781 return s;
782
783 // If in the symbol table and not undefined.
784 if (const Symbol *s = symtab->find(newName))
785 if (!s->isUndefined())
786 return s;
787
788 return nullptr;
789 };
790
791 // This loop enumerates all strings of Levenshtein distance 1 as typo
792 // correction candidates and suggests the one that exists as a non-undefined
793 // symbol.
794 StringRef name = sym.getName();
795 for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
796 // Insert a character before name[i].
797 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
798 for (char c = '0'; c <= 'z'; ++c) {
799 newName[i] = c;
800 if (const Symbol *s = suggest(newName))
801 return s;
802 }
803 if (i == e)
804 break;
805
806 // Substitute name[i].
807 newName = std::string(name);
808 for (char c = '0'; c <= 'z'; ++c) {
809 newName[i] = c;
810 if (const Symbol *s = suggest(newName))
811 return s;
812 }
813
814 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
815 // common.
816 if (i + 1 < e) {
817 newName[i] = name[i + 1];
818 newName[i + 1] = name[i];
819 if (const Symbol *s = suggest(newName))
820 return s;
821 }
822
823 // Delete name[i].
824 newName = (name.substr(0, i) + name.substr(i + 1)).str();
825 if (const Symbol *s = suggest(newName))
826 return s;
827 }
828
829 // Case mismatch, e.g. Foo vs FOO.
830 for (auto &it : map)
831 if (name.equals_insensitive(it.first))
832 return it.second;
833 for (Symbol *sym : symtab->symbols())
834 if (!sym->isUndefined() && name.equals_insensitive(sym->getName()))
835 return sym;
836
837 // The reference may be a mangled name while the definition is not. Suggest a
838 // missing extern "C".
839 if (name.startswith("_Z")) {
840 std::string buf = name.str();
841 llvm::ItaniumPartialDemangler d;
842 if (!d.partialDemangle(buf.c_str()))
843 if (char *buf = d.getFunctionName(nullptr, nullptr)) {
844 const Symbol *s = suggest(buf);
845 free(buf);
846 if (s) {
847 pre_hint = ": extern \"C\" ";
848 return s;
849 }
850 }
851 } else {
852 const Symbol *s = nullptr;
853 for (auto &it : map)
854 if (canSuggestExternCForCXX(name, it.first)) {
855 s = it.second;
856 break;
857 }
858 if (!s)
859 for (Symbol *sym : symtab->symbols())
860 if (canSuggestExternCForCXX(name, sym->getName())) {
861 s = sym;
862 break;
863 }
864 if (s) {
865 pre_hint = " to declare ";
866 post_hint = " as extern \"C\"?";
867 return s;
868 }
869 }
870
871 return nullptr;
872}
873
874template <class ELFT>
875static void reportUndefinedSymbol(const UndefinedDiag &undef,
876 bool correctSpelling) {
877 Symbol &sym = *undef.sym;
878
879 auto visibility = [&]() -> std::string {
880 switch (sym.visibility) {
881 case STV_INTERNAL:
882 return "internal ";
883 case STV_HIDDEN:
884 return "hidden ";
885 case STV_PROTECTED:
886 return "protected ";
887 default:
888 return "";
889 }
890 };
891
892 std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym));
893 if (msg.empty())
894 msg = "undefined " + visibility() + "symbol: " + toString(sym);
895
896 const size_t maxUndefReferences = 3;
897 size_t i = 0;
898 for (UndefinedDiag::Loc l : undef.locs) {
899 if (i >= maxUndefReferences)
900 break;
901 InputSectionBase &sec = *l.sec;
902 uint64_t offset = l.offset;
903
904 msg += "\n>>> referenced by ";
905 std::string src = sec.getSrcMsg(sym, offset);
906 if (!src.empty())
907 msg += src + "\n>>> ";
908 msg += sec.getObjMsg(offset);
909 i++;
910 }
911
912 if (i < undef.locs.size())
913 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
914 .str();
915
916 if (correctSpelling) {
917 std::string pre_hint = ": ", post_hint;
918 if (const Symbol *corrected = getAlternativeSpelling<ELFT>(
919 cast<Undefined>(sym), pre_hint, post_hint)) {
920 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
921 if (corrected->file)
922 msg += "\n>>> defined in: " + toString(corrected->file);
923 }
924 }
925
926 if (sym.getName().startswith("_ZTV"))
927 msg +=
928 "\n>>> the vtable symbol may be undefined because the class is missing "
929 "its key function (see https://lld.llvm.org/missingkeyfunction)";
930
931 if (undef.isWarning)
932 warn(msg);
933 else
934 error(msg, ErrorTag::SymbolNotFound, {sym.getName()});
935}
936
937template <class ELFT> void elf::reportUndefinedSymbols() {
938 // Find the first "undefined symbol" diagnostic for each diagnostic, and
939 // collect all "referenced from" lines at the first diagnostic.
940 DenseMap<Symbol *, UndefinedDiag *> firstRef;
941 for (UndefinedDiag &undef : undefs) {
942 assert(undef.locs.size() == 1)((void)0);
943 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
944 canon->locs.push_back(undef.locs[0]);
945 undef.locs.clear();
946 } else
947 firstRef[undef.sym] = &undef;
948 }
949
950 // Enable spell corrector for the first 2 diagnostics.
951 for (auto it : enumerate(undefs))
952 if (!it.value().locs.empty())
953 reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2);
954 undefs.clear();
955}
956
957// Report an undefined symbol if necessary.
958// Returns true if the undefined symbol will produce an error message.
959static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec,
960 uint64_t offset) {
961 if (!sym.isUndefined())
962 return false;
963 // If versioned, issue an error (even if the symbol is weak) because we don't
964 // know the defining filename which is required to construct a Verneed entry.
965 if (*sym.getVersionSuffix() == '@') {
966 undefs.push_back({&sym, {{&sec, offset}}, false});
967 return true;
968 }
969 if (sym.isWeak())
970 return false;
971
972 bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT;
973 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
974 return false;
975
976 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
977 // which references a switch table in a discarded .rodata/.text section. The
978 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
979 // spec says references from outside the group to a STB_LOCAL symbol are not
980 // allowed. Work around the bug.
981 //
982 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
983 // because .LC0-.LTOC is not representable if the two labels are in different
984 // .got2
985 if (cast<Undefined>(sym).discardedSecIdx != 0 &&
986 (sec.name == ".got2" || sec.name == ".toc"))
987 return false;
988
989 bool isWarning =
990 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
991 config->noinhibitExec;
992 undefs.push_back({&sym, {{&sec, offset}}, isWarning});
993 return !isWarning;
994}
995
996// MIPS N32 ABI treats series of successive relocations with the same offset
997// as a single relocation. The similar approach used by N64 ABI, but this ABI
998// packs all relocations into the single relocation record. Here we emulate
999// this for the N32 ABI. Iterate over relocation with the same offset and put
1000// theirs types into the single bit-set.
1001template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) {
1002 RelType type = 0;
1003 uint64_t offset = rel->r_offset;
1004
1005 int n = 0;
1006 while (rel != end && rel->r_offset == offset)
1007 type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
1008 return type;
1009}
1010
1011// .eh_frame sections are mergeable input sections, so their input
1012// offsets are not linearly mapped to output section. For each input
1013// offset, we need to find a section piece containing the offset and
1014// add the piece's base address to the input offset to compute the
1015// output offset. That isn't cheap.
1016//
1017// This class is to speed up the offset computation. When we process
1018// relocations, we access offsets in the monotonically increasing
1019// order. So we can optimize for that access pattern.
1020//
1021// For sections other than .eh_frame, this class doesn't do anything.
1022namespace {
1023class OffsetGetter {
1024public:
1025 explicit OffsetGetter(InputSectionBase &sec) {
1026 if (auto *eh = dyn_cast<EhInputSection>(&sec))
1027 pieces = eh->pieces;
1028 }
1029
1030 // Translates offsets in input sections to offsets in output sections.
1031 // Given offset must increase monotonically. We assume that Piece is
1032 // sorted by inputOff.
1033 uint64_t get(uint64_t off) {
1034 if (pieces.empty())
1035 return off;
1036
1037 while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off)
1038 ++i;
1039 if (i == pieces.size())
1040 fatal(".eh_frame: relocation is not in any piece");
1041
1042 // Pieces must be contiguous, so there must be no holes in between.
1043 assert(pieces[i].inputOff <= off && "Relocation not in any piece")((void)0);
1044
1045 // Offset -1 means that the piece is dead (i.e. garbage collected).
1046 if (pieces[i].outputOff == -1)
1047 return -1;
1048 return pieces[i].outputOff + off - pieces[i].inputOff;
1049 }
1050
1051private:
1052 ArrayRef<EhSectionPiece> pieces;
1053 size_t i = 0;
1054};
1055} // namespace
1056
1057static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec,
1058 Symbol &sym, int64_t addend, RelExpr expr,
1059 RelType type) {
1060 Partition &part = isec->getPartition();
1061
1062 // Add a relative relocation. If relrDyn section is enabled, and the
1063 // relocation offset is guaranteed to be even, add the relocation to
1064 // the relrDyn section, otherwise add it to the relaDyn section.
1065 // relrDyn sections don't support odd offsets. Also, relrDyn sections
1066 // don't store the addend values, so we must write it to the relocated
1067 // address.
1068 if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) {
1069 isec->relocations.push_back({expr, type, offsetInSec, addend, &sym});
1070 part.relrDyn->relocs.push_back({isec, offsetInSec});
1071 return;
1072 }
1073 part.relaDyn->addRelativeReloc(target->relativeRel, isec, offsetInSec, sym,
1074 addend, type, expr);
1075}
1076
1077template <class PltSection, class GotPltSection>
1078static void addPltEntry(PltSection *plt, GotPltSection *gotPlt,
1079 RelocationBaseSection *rel, RelType type, Symbol &sym) {
1080 plt->addEntry(sym);
1081 gotPlt->addEntry(sym);
1082 rel->addReloc({type, gotPlt, sym.getGotPltOffset(),
1083 sym.isPreemptible ? DynamicReloc::AgainstSymbol
1084 : DynamicReloc::AddendOnlyWithTargetVA,
1085 sym, 0, R_ABS});
1086}
1087
1088static void addGotEntry(Symbol &sym) {
1089 in.got->addEntry(sym);
1090
1091 RelExpr expr = sym.isTls() ? R_TPREL : R_ABS;
1092 uint64_t off = sym.getGotOffset();
1093
1094 // If a GOT slot value can be calculated at link-time, which is now,
1095 // we can just fill that out.
1096 //
1097 // (We don't actually write a value to a GOT slot right now, but we
1098 // add a static relocation to a Relocations vector so that
1099 // InputSection::relocate will do the work for us. We may be able
1100 // to just write a value now, but it is a TODO.)
1101 bool isLinkTimeConstant =
1102 !sym.isPreemptible && (!config->isPic || isAbsolute(sym));
1103 if (isLinkTimeConstant) {
1104 in.got->relocations.push_back({expr, target->symbolicRel, off, 0, &sym});
1105 return;
1106 }
1107
1108 // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that
1109 // the GOT slot will be fixed at load-time.
1110 if (!sym.isTls() && !sym.isPreemptible && config->isPic) {
1111 addRelativeReloc(in.got, off, sym, 0, R_ABS, target->symbolicRel);
1112 return;
1113 }
1114 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
1115 sym.isTls() ? target->tlsGotRel : target->gotRel, in.got, off, sym,
1116 target->symbolicRel);
1117}
1118
1119// Return true if we can define a symbol in the executable that
1120// contains the value/function of a symbol defined in a shared
1121// library.
1122static bool canDefineSymbolInExecutable(Symbol &sym) {
1123 // If the symbol has default visibility the symbol defined in the
1124 // executable will preempt it.
1125 // Note that we want the visibility of the shared symbol itself, not
1126 // the visibility of the symbol in the output file we are producing. That is
1127 // why we use Sym.stOther.
1128 if ((sym.stOther & 0x3) == STV_DEFAULT)
1129 return true;
1130
1131 // If we are allowed to break address equality of functions, defining
1132 // a plt entry will allow the program to call the function in the
1133 // .so, but the .so and the executable will no agree on the address
1134 // of the function. Similar logic for objects.
1135 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
1136 (sym.isObject() && config->ignoreDataAddressEquality));
1137}
1138
1139// The reason we have to do this early scan is as follows
1140// * To mmap the output file, we need to know the size
1141// * For that, we need to know how many dynamic relocs we will have.
1142// It might be possible to avoid this by outputting the file with write:
1143// * Write the allocated output sections, computing addresses.
1144// * Apply relocations, recording which ones require a dynamic reloc.
1145// * Write the dynamic relocations.
1146// * Write the rest of the file.
1147// This would have some drawbacks. For example, we would only know if .rela.dyn
1148// is needed after applying relocations. If it is, it will go after rw and rx
1149// sections. Given that it is ro, we will need an extra PT_LOAD. This
1150// complicates things for the dynamic linker and means we would have to reserve
1151// space for the extra PT_LOAD even if we end up not using it.
1152template <class ELFT, class RelTy>
1153static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type,
1154 uint64_t offset, Symbol &sym, const RelTy &rel,
1155 int64_t addend) {
1156 // If the relocation is known to be a link-time constant, we know no dynamic
1157 // relocation will be created, pass the control to relocateAlloc() or
1158 // relocateNonAlloc() to resolve it.
1159 //
1160 // The behavior of an undefined weak reference is implementation defined. For
1161 // non-link-time constants, we resolve relocations statically (let
1162 // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic
1163 // relocations for -pie and -shared.
1164 //
1165 // The general expectation of -no-pie static linking is that there is no
1166 // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for
1167 // -shared matches the spirit of its -z undefs default. -pie has freedom on
1168 // choices, and we choose dynamic relocations to be consistent with the
1169 // handling of GOT-generating relocations.
1170 if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) ||
1171 (!config->isPic && sym.isUndefWeak())) {
1172 sec.relocations.push_back({expr, type, offset, addend, &sym});
1173 return;
1174 }
1175
1176 bool canWrite = (sec.flags & SHF_WRITE) || !config->zText;
1177 if (canWrite) {
1178 RelType rel = target->getDynRel(type);
1179 if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) {
1180 addRelativeReloc(&sec, offset, sym, addend, expr, type);
1181 return;
1182 } else if (rel != 0) {
1183 if (config->emachine == EM_MIPS && rel == target->symbolicRel)
1184 rel = target->relativeRel;
1185 sec.getPartition().relaDyn->addSymbolReloc(rel, &sec, offset, sym, addend,
1186 type);
1187
1188 // MIPS ABI turns using of GOT and dynamic relocations inside out.
1189 // While regular ABI uses dynamic relocations to fill up GOT entries
1190 // MIPS ABI requires dynamic linker to fills up GOT entries using
1191 // specially sorted dynamic symbol table. This affects even dynamic
1192 // relocations against symbols which do not require GOT entries
1193 // creation explicitly, i.e. do not have any GOT-relocations. So if
1194 // a preemptible symbol has a dynamic relocation we anyway have
1195 // to create a GOT entry for it.
1196 // If a non-preemptible symbol has a dynamic relocation against it,
1197 // dynamic linker takes it st_value, adds offset and writes down
1198 // result of the dynamic relocation. In case of preemptible symbol
1199 // dynamic linker performs symbol resolution, writes the symbol value
1200 // to the GOT entry and reads the GOT entry when it needs to perform
1201 // a dynamic relocation.
1202 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1203 if (config->emachine == EM_MIPS)
1204 in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1205 return;
1206 }
1207 }
1208
1209 // When producing an executable, we can perform copy relocations (for
1210 // STT_OBJECT) and canonical PLT (for STT_FUNC).
1211 if (!config->shared) {
1212 if (!canDefineSymbolInExecutable(sym)) {
1213 errorOrWarn("cannot preempt symbol: " + toString(sym) +
1214 getLocation(sec, sym, offset));
1215 return;
1216 }
1217
1218 if (sym.isObject()) {
1219 // Produce a copy relocation.
1220 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1221 if (!config->zCopyreloc)
1222 error("unresolvable relocation " + toString(type) +
1223 " against symbol '" + toString(*ss) +
1224 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1225 getLocation(sec, sym, offset));
1226 addCopyRelSymbol<ELFT>(*ss);
1227 }
1228 sec.relocations.push_back({expr, type, offset, addend, &sym});
1229 return;
1230 }
1231
1232 // This handles a non PIC program call to function in a shared library. In
1233 // an ideal world, we could just report an error saying the relocation can
1234 // overflow at runtime. In the real world with glibc, crt1.o has a
1235 // R_X86_64_PC32 pointing to libc.so.
1236 //
1237 // The general idea on how to handle such cases is to create a PLT entry and
1238 // use that as the function value.
1239 //
1240 // For the static linking part, we just return a plt expr and everything
1241 // else will use the PLT entry as the address.
1242 //
1243 // The remaining problem is making sure pointer equality still works. We
1244 // need the help of the dynamic linker for that. We let it know that we have
1245 // a direct reference to a so symbol by creating an undefined symbol with a
1246 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1247 // the value of the symbol we created. This is true even for got entries, so
1248 // pointer equality is maintained. To avoid an infinite loop, the only entry
1249 // that points to the real function is a dedicated got entry used by the
1250 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1251 // R_386_JMP_SLOT, etc).
1252
1253 // For position independent executable on i386, the plt entry requires ebx
1254 // to be set. This causes two problems:
1255 // * If some code has a direct reference to a function, it was probably
1256 // compiled without -fPIE/-fPIC and doesn't maintain ebx.
1257 // * If a library definition gets preempted to the executable, it will have
1258 // the wrong ebx value.
1259 if (sym.isFunc()) {
1260 if (config->pie && config->emachine == EM_386)
1261 errorOrWarn("symbol '" + toString(sym) +
1262 "' cannot be preempted; recompile with -fPIE" +
1263 getLocation(sec, sym, offset));
1264 if (!sym.isInPlt())
1265 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1266 if (!sym.isDefined()) {
1267 replaceWithDefined(
1268 sym, in.plt,
1269 target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0);
1270 if (config->emachine == EM_PPC) {
1271 // PPC32 canonical PLT entries are at the beginning of .glink
1272 cast<Defined>(sym).value = in.plt->headerSize;
1273 in.plt->headerSize += 16;
1274 cast<PPC32GlinkSection>(in.plt)->canonical_plts.push_back(&sym);
1275 }
1276 }
1277 sym.needsPltAddr = true;
1278 sec.relocations.push_back({expr, type, offset, addend, &sym});
1279 return;
1280 }
1281 }
1282
1283 if (config->isPic) {
1284 if (!canWrite && !isRelExpr(expr))
1285 errorOrWarn(
1286 "can't create dynamic relocation " + toString(type) + " against " +
1287 (sym.getName().empty() ? "local symbol"
1288 : "symbol: " + toString(sym)) +
1289 " in readonly segment; recompile object files with -fPIC "
1290 "or pass '-Wl,-z,notext' to allow text relocations in the output" +
1291 getLocation(sec, sym, offset));
1292 else
1293 errorOrWarn(
1294 "relocation " + toString(type) + " cannot be used against " +
1295 (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) +
1296 "; recompile with -fPIC" + getLocation(sec, sym, offset));
1297 return;
1298 }
1299
1300 errorOrWarn("symbol '" + toString(sym) + "' has no type" +
1301 getLocation(sec, sym, offset));
1302}
1303
1304template <class ELFT, class RelTy>
1305static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i,
1306 RelTy *start, RelTy *end) {
1307 const RelTy &rel = *i;
1308 uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1309 Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex);
1310 RelType type;
1311
1312 // Deal with MIPS oddity.
1313 if (config->mipsN32Abi) {
1314 type = getMipsN32RelType(i, end);
1315 } else {
1316 type = rel.getType(config->isMips64EL);
1317 ++i;
1318 }
1319
1320 // Get an offset in an output section this relocation is applied to.
1321 uint64_t offset = getOffset.get(rel.r_offset);
1322 if (offset == uint64_t(-1))
1323 return;
1324
1325 // Error if the target symbol is undefined. Symbol index 0 may be used by
1326 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1327 if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset))
1328 return;
1329
1330 const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset;
1331 RelExpr expr = target->getRelExpr(type, sym, relocatedAddr);
1332
1333 // Ignore R_*_NONE and other marker relocations.
1334 if (expr == R_NONE)
1335 return;
1336
1337 // Read an addend.
1338 int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal());
1339
1340 if (config->emachine == EM_PPC64) {
1341 // We can separate the small code model relocations into 2 categories:
1342 // 1) Those that access the compiler generated .toc sections.
1343 // 2) Those that access the linker allocated got entries.
1344 // lld allocates got entries to symbols on demand. Since we don't try to
1345 // sort the got entries in any way, we don't have to track which objects
1346 // have got-based small code model relocs. The .toc sections get placed
1347 // after the end of the linker allocated .got section and we do sort those
1348 // so sections addressed with small code model relocations come first.
1349 if (isPPC64SmallCodeModelTocReloc(type))
1350 sec.file->ppc64SmallCodeModelTocRelocs = true;
1351
1352 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1353 // InputSectionBase::relocateAlloc().
1354 if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
1355 cast<Defined>(sym).section->name == ".toc")
1356 ppc64noTocRelax.insert({&sym, addend});
1357
1358 if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) ||
1359 (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) {
1360 if (i == end) {
1361 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1362 "relocation" +
1363 getLocation(sec, sym, offset));
1364 return;
1365 }
1366
1367 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case,
1368 // so we can discern it later from the toc-case.
1369 if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC)
1370 ++offset;
1371 }
1372 }
1373
1374 // Relax relocations.
1375 //
1376 // If we know that a PLT entry will be resolved within the same ELF module, we
1377 // can skip PLT access and directly jump to the destination function. For
1378 // example, if we are linking a main executable, all dynamic symbols that can
1379 // be resolved within the executable will actually be resolved that way at
1380 // runtime, because the main executable is always at the beginning of a search
1381 // list. We can leverage that fact.
1382 if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) {
1383 if (expr != R_GOT_PC) {
1384 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1385 // stub type. It should be ignored if optimized to R_PC.
1386 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1387 addend &= ~0x8000;
1388 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1389 // call __tls_get_addr even if the symbol is non-preemptible.
1390 if (!(config->emachine == EM_HEXAGON &&
1391 (type == R_HEX_GD_PLT_B22_PCREL ||
1392 type == R_HEX_GD_PLT_B22_PCREL_X ||
1393 type == R_HEX_GD_PLT_B32_PCREL_X)))
1394 expr = fromPlt(expr);
1395 } else if (!isAbsoluteValue(sym)) {
1396 expr = target->adjustGotPcExpr(type, addend, relocatedAddr);
1397 }
1398 }
1399
1400 // If the relocation does not emit a GOT or GOTPLT entry but its computation
1401 // uses their addresses, we need GOT or GOTPLT to be created.
1402 //
1403 // The 4 types that relative GOTPLT are all x86 and x86-64 specific.
1404 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1405 in.gotPlt->hasGotPltOffRel = true;
1406 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE,
1407 R_PPC64_RELAX_TOC>(expr)) {
1408 in.got->hasGotOffRel = true;
1409 }
1410
1411 // Process TLS relocations, including relaxing TLS relocations. Note that
1412 // R_TPREL and R_TPREL_NEG relocations are resolved in processRelocAux.
1413 if (expr == R_TPREL || expr == R_TPREL_NEG) {
1414 if (config->shared) {
1415 errorOrWarn("relocation " + toString(type) + " against " + toString(sym) +
1416 " cannot be used with -shared" +
1417 getLocation(sec, sym, offset));
1418 return;
1419 }
1420 } else if (unsigned processed = handleTlsRelocation<ELFT>(
1421 type, sym, sec, offset, addend, expr)) {
1422 i += (processed - 1);
1423 return;
1424 }
1425
1426 // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1427 // direct relocation on through.
1428 if (sym.isGnuIFunc() && config->zIfuncNoplt) {
1429 sym.exportDynamic = true;
1430 mainPart->relaDyn->addSymbolReloc(type, &sec, offset, sym, addend, type);
1431 return;
1432 }
1433
1434 // Non-preemptible ifuncs require special handling. First, handle the usual
1435 // case where the symbol isn't one of these.
1436 if (!sym.isGnuIFunc() || sym.isPreemptible) {
1437 // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
1438 if (needsPlt(expr) && !sym.isInPlt())
1439 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1440
1441 // Create a GOT slot if a relocation needs GOT.
1442 if (needsGot(expr)) {
1443 if (config->emachine == EM_MIPS) {
1444 // MIPS ABI has special rules to process GOT entries and doesn't
1445 // require relocation entries for them. A special case is TLS
1446 // relocations. In that case dynamic loader applies dynamic
1447 // relocations to initialize TLS GOT entries.
1448 // See "Global Offset Table" in Chapter 5 in the following document
1449 // for detailed description:
1450 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1451 in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1452 } else if (!sym.isInGot()) {
1453 addGotEntry(sym);
1454 }
1455 }
1456 } else {
1457 // Handle a reference to a non-preemptible ifunc. These are special in a
1458 // few ways:
1459 //
1460 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1461 // a fixed value. But assuming that all references to the ifunc are
1462 // GOT-generating or PLT-generating, the handling of an ifunc is
1463 // relatively straightforward. We create a PLT entry in Iplt, which is
1464 // usually at the end of .plt, which makes an indirect call using a
1465 // matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1466 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1467 // which is usually at the end of .rela.plt. Unlike most relocations in
1468 // .rela.plt, which may be evaluated lazily without -z now, dynamic
1469 // loaders evaluate IRELATIVE relocs eagerly, which means that for
1470 // IRELATIVE relocs only, GOT-generating relocations can point directly to
1471 // .got.plt without requiring a separate GOT entry.
1472 //
1473 // - Despite the fact that an ifunc does not have a fixed value, compilers
1474 // that are not passed -fPIC will assume that they do, and will emit
1475 // direct (non-GOT-generating, non-PLT-generating) relocations to the
1476 // symbol. This means that if a direct relocation to the symbol is
1477 // seen, the linker must set a value for the symbol, and this value must
1478 // be consistent no matter what type of reference is made to the symbol.
1479 // This can be done by creating a PLT entry for the symbol in the way
1480 // described above and making it canonical, that is, making all references
1481 // point to the PLT entry instead of the resolver. In lld we also store
1482 // the address of the PLT entry in the dynamic symbol table, which means
1483 // that the symbol will also have the same value in other modules.
1484 // Because the value loaded from the GOT needs to be consistent with
1485 // the value computed using a direct relocation, a non-preemptible ifunc
1486 // may end up with two GOT entries, one in .got.plt that points to the
1487 // address returned by the resolver and is used only by the PLT entry,
1488 // and another in .got that points to the PLT entry and is used by
1489 // GOT-generating relocations.
1490 //
1491 // - The fact that these symbols do not have a fixed value makes them an
1492 // exception to the general rule that a statically linked executable does
1493 // not require any form of dynamic relocation. To handle these relocations
1494 // correctly, the IRELATIVE relocations are stored in an array which a
1495 // statically linked executable's startup code must enumerate using the
1496 // linker-defined symbols __rela?_iplt_{start,end}.
1497 if (!sym.isInPlt()) {
1498 // Create PLT and GOTPLT slots for the symbol.
1499 sym.isInIplt = true;
1500
1501 // Create a copy of the symbol to use as the target of the IRELATIVE
1502 // relocation in the igotPlt. This is in case we make the PLT canonical
1503 // later, which would overwrite the original symbol.
1504 //
1505 // FIXME: Creating a copy of the symbol here is a bit of a hack. All
1506 // that's really needed to create the IRELATIVE is the section and value,
1507 // so ideally we should just need to copy those.
1508 auto *directSym = make<Defined>(cast<Defined>(sym));
1509 addPltEntry(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel,
1510 *directSym);
1511 sym.pltIndex = directSym->pltIndex;
1512 }
1513 if (needsGot(expr)) {
1514 // Redirect GOT accesses to point to the Igot.
1515 //
1516 // This field is also used to keep track of whether we ever needed a GOT
1517 // entry. If we did and we make the PLT canonical later, we'll need to
1518 // create a GOT entry pointing to the PLT entry for Sym.
1519 sym.gotInIgot = true;
1520 } else if (!needsPlt(expr)) {
1521 // Make the ifunc's PLT entry canonical by changing the value of its
1522 // symbol to redirect all references to point to it.
1523 auto &d = cast<Defined>(sym);
1524 d.section = in.iplt;
1525 d.value = sym.pltIndex * target->ipltEntrySize;
1526 d.size = 0;
1527 // It's important to set the symbol type here so that dynamic loaders
1528 // don't try to call the PLT as if it were an ifunc resolver.
1529 d.type = STT_FUNC;
1530
1531 if (sym.gotInIgot) {
1532 // We previously encountered a GOT generating reference that we
1533 // redirected to the Igot. Now that the PLT entry is canonical we must
1534 // clear the redirection to the Igot and add a GOT entry. As we've
1535 // changed the symbol type to STT_FUNC future GOT generating references
1536 // will naturally use this GOT entry.
1537 //
1538 // We don't need to worry about creating a MIPS GOT here because ifuncs
1539 // aren't a thing on MIPS.
1540 sym.gotInIgot = false;
1541 addGotEntry(sym);
1542 }
1543 }
1544 }
1545
1546 processRelocAux<ELFT>(sec, expr, type, offset, sym, rel, addend);
1547}
1548
1549// R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for
1550// General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is
1551// found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the
1552// instructions are generated by very old IBM XL compilers. Work around the
1553// issue by disabling GD/LD to IE/LE relaxation.
1554template <class RelTy>
1555static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1556 // Skip if sec is synthetic (sec.file is null) or if sec has been marked.
1557 if (!sec.file || sec.file->ppc64DisableTLSRelax)
1558 return;
1559 bool hasGDLD = false;
1560 for (const RelTy &rel : rels) {
1561 RelType type = rel.getType(false);
1562 switch (type) {
1563 case R_PPC64_TLSGD:
1564 case R_PPC64_TLSLD:
1565 return; // Found a marker
1566 case R_PPC64_GOT_TLSGD16:
1567 case R_PPC64_GOT_TLSGD16_HA:
1568 case R_PPC64_GOT_TLSGD16_HI:
1569 case R_PPC64_GOT_TLSGD16_LO:
1570 case R_PPC64_GOT_TLSLD16:
1571 case R_PPC64_GOT_TLSLD16_HA:
1572 case R_PPC64_GOT_TLSLD16_HI:
1573 case R_PPC64_GOT_TLSLD16_LO:
1574 hasGDLD = true;
1575 break;
1576 }
1577 }
1578 if (hasGDLD) {
1579 sec.file->ppc64DisableTLSRelax = true;
1580 warn(toString(sec.file) +
1581 ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without "
1582 "R_PPC64_TLSGD/R_PPC64_TLSLD relocations");
1583 }
1584}
1585
1586template <class ELFT, class RelTy>
1587static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1588 OffsetGetter getOffset(sec);
1589
1590 // Not all relocations end up in Sec.Relocations, but a lot do.
1591 sec.relocations.reserve(rels.size());
1592
1593 if (config->emachine == EM_PPC64)
1594 checkPPC64TLSRelax<RelTy>(sec, rels);
1595
1596 // For EhInputSection, OffsetGetter expects the relocations to be sorted by
1597 // r_offset. In rare cases (.eh_frame pieces are reordered by a linker
1598 // script), the relocations may be unordered.
1599 SmallVector<RelTy, 0> storage;
1600 if (isa<EhInputSection>(sec))
1601 rels = sortRels(rels, storage);
1602
1603 for (auto i = rels.begin(), end = rels.end(); i != end;)
1604 scanReloc<ELFT>(sec, getOffset, i, rels.begin(), end);
1605
1606 // Sort relocations by offset for more efficient searching for
1607 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1608 if (config->emachine == EM_RISCV ||
1609 (config->emachine == EM_PPC64 && sec.name == ".toc"))
1610 llvm::stable_sort(sec.relocations,
1611 [](const Relocation &lhs, const Relocation &rhs) {
1612 return lhs.offset < rhs.offset;
1613 });
1614}
1615
1616template <class ELFT> void elf::scanRelocations(InputSectionBase &s) {
1617 if (s.areRelocsRela)
1618 scanRelocs<ELFT>(s, s.relas<ELFT>());
1619 else
1620 scanRelocs<ELFT>(s, s.rels<ELFT>());
1621}
1622
1623static bool mergeCmp(const InputSection *a, const InputSection *b) {
1624 // std::merge requires a strict weak ordering.
1625 if (a->outSecOff < b->outSecOff)
1626 return true;
1627
1628 if (a->outSecOff == b->outSecOff) {
1629 auto *ta = dyn_cast<ThunkSection>(a);
1630 auto *tb = dyn_cast<ThunkSection>(b);
1631
1632 // Check if Thunk is immediately before any specific Target
1633 // InputSection for example Mips LA25 Thunks.
1634 if (ta && ta->getTargetInputSection() == b)
1635 return true;
1636
1637 // Place Thunk Sections without specific targets before
1638 // non-Thunk Sections.
1639 if (ta && !tb && !ta->getTargetInputSection())
1640 return true;
1641 }
1642
1643 return false;
1644}
1645
1646// Call Fn on every executable InputSection accessed via the linker script
1647// InputSectionDescription::Sections.
1648static void forEachInputSectionDescription(
1649 ArrayRef<OutputSection *> outputSections,
1650 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1651 for (OutputSection *os : outputSections) {
1652 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1653 continue;
1654 for (BaseCommand *bc : os->sectionCommands)
1655 if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1656 fn(os, isd);
1657 }
1658}
1659
1660// Thunk Implementation
1661//
1662// Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1663// of code that the linker inserts inbetween a caller and a callee. The thunks
1664// are added at link time rather than compile time as the decision on whether
1665// a thunk is needed, such as the caller and callee being out of range, can only
1666// be made at link time.
1667//
1668// It is straightforward to tell given the current state of the program when a
1669// thunk is needed for a particular call. The more difficult part is that
1670// the thunk needs to be placed in the program such that the caller can reach
1671// the thunk and the thunk can reach the callee; furthermore, adding thunks to
1672// the program alters addresses, which can mean more thunks etc.
1673//
1674// In lld we have a synthetic ThunkSection that can hold many Thunks.
1675// The decision to have a ThunkSection act as a container means that we can
1676// more easily handle the most common case of a single block of contiguous
1677// Thunks by inserting just a single ThunkSection.
1678//
1679// The implementation of Thunks in lld is split across these areas
1680// Relocations.cpp : Framework for creating and placing thunks
1681// Thunks.cpp : The code generated for each supported thunk
1682// Target.cpp : Target specific hooks that the framework uses to decide when
1683// a thunk is used
1684// Synthetic.cpp : Implementation of ThunkSection
1685// Writer.cpp : Iteratively call framework until no more Thunks added
1686//
1687// Thunk placement requirements:
1688// Mips LA25 thunks. These must be placed immediately before the callee section
1689// We can assume that the caller is in range of the Thunk. These are modelled
1690// by Thunks that return the section they must precede with
1691// getTargetInputSection().
1692//
1693// ARM interworking and range extension thunks. These thunks must be placed
1694// within range of the caller. All implemented ARM thunks can always reach the
1695// callee as they use an indirect jump via a register that has no range
1696// restrictions.
1697//
1698// Thunk placement algorithm:
1699// For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1700// getTargetInputSection().
1701//
1702// For thunks that must be placed within range of the caller there are many
1703// possible choices given that the maximum range from the caller is usually
1704// much larger than the average InputSection size. Desirable properties include:
1705// - Maximize reuse of thunks by multiple callers
1706// - Minimize number of ThunkSections to simplify insertion
1707// - Handle impact of already added Thunks on addresses
1708// - Simple to understand and implement
1709//
1710// In lld for the first pass, we pre-create one or more ThunkSections per
1711// InputSectionDescription at Target specific intervals. A ThunkSection is
1712// placed so that the estimated end of the ThunkSection is within range of the
1713// start of the InputSectionDescription or the previous ThunkSection. For
1714// example:
1715// InputSectionDescription
1716// Section 0
1717// ...
1718// Section N
1719// ThunkSection 0
1720// Section N + 1
1721// ...
1722// Section N + K
1723// Thunk Section 1
1724//
1725// The intention is that we can add a Thunk to a ThunkSection that is well
1726// spaced enough to service a number of callers without having to do a lot
1727// of work. An important principle is that it is not an error if a Thunk cannot
1728// be placed in a pre-created ThunkSection; when this happens we create a new
1729// ThunkSection placed next to the caller. This allows us to handle the vast
1730// majority of thunks simply, but also handle rare cases where the branch range
1731// is smaller than the target specific spacing.
1732//
1733// The algorithm is expected to create all the thunks that are needed in a
1734// single pass, with a small number of programs needing a second pass due to
1735// the insertion of thunks in the first pass increasing the offset between
1736// callers and callees that were only just in range.
1737//
1738// A consequence of allowing new ThunkSections to be created outside of the
1739// pre-created ThunkSections is that in rare cases calls to Thunks that were in
1740// range in pass K, are out of range in some pass > K due to the insertion of
1741// more Thunks in between the caller and callee. When this happens we retarget
1742// the relocation back to the original target and create another Thunk.
1743
1744// Remove ThunkSections that are empty, this should only be the initial set
1745// precreated on pass 0.
1746
1747// Insert the Thunks for OutputSection OS into their designated place
1748// in the Sections vector, and recalculate the InputSection output section
1749// offsets.
1750// This may invalidate any output section offsets stored outside of InputSection
1751void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1752 forEachInputSectionDescription(
1753 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1754 if (isd->thunkSections.empty())
1755 return;
1756
1757 // Remove any zero sized precreated Thunks.
1758 llvm::erase_if(isd->thunkSections,
1759 [](const std::pair<ThunkSection *, uint32_t> &ts) {
1760 return ts.first->getSize() == 0;
1761 });
1762
1763 // ISD->ThunkSections contains all created ThunkSections, including
1764 // those inserted in previous passes. Extract the Thunks created this
1765 // pass and order them in ascending outSecOff.
1766 std::vector<ThunkSection *> newThunks;
1767 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1768 if (ts.second == pass)
1769 newThunks.push_back(ts.first);
1770 llvm::stable_sort(newThunks,
1771 [](const ThunkSection *a, const ThunkSection *b) {
1772 return a->outSecOff < b->outSecOff;
1773 });
1774
1775 // Merge sorted vectors of Thunks and InputSections by outSecOff
1776 std::vector<InputSection *> tmp;
1777 tmp.reserve(isd->sections.size() + newThunks.size());
1778
1779 std::merge(isd->sections.begin(), isd->sections.end(),
1780 newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1781 mergeCmp);
1782
1783 isd->sections = std::move(tmp);
1784 });
1785}
1786
1787// Find or create a ThunkSection within the InputSectionDescription (ISD) that
1788// is in range of Src. An ISD maps to a range of InputSections described by a
1789// linker script section pattern such as { .text .text.* }.
1790ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os,
1791 InputSection *isec,
1792 InputSectionDescription *isd,
1793 const Relocation &rel,
1794 uint64_t src) {
1795 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
1796 ThunkSection *ts = tp.first;
1797 uint64_t tsBase = os->addr + ts->outSecOff + rel.addend;
1798 uint64_t tsLimit = tsBase + ts->getSize() + rel.addend;
1799 if (target->inBranchRange(rel.type, src,
1800 (src > tsLimit) ? tsBase : tsLimit))
1801 return ts;
1802 }
1803
1804 // No suitable ThunkSection exists. This can happen when there is a branch
1805 // with lower range than the ThunkSection spacing or when there are too
1806 // many Thunks. Create a new ThunkSection as close to the InputSection as
1807 // possible. Error if InputSection is so large we cannot place ThunkSection
1808 // anywhere in Range.
1809 uint64_t thunkSecOff = isec->outSecOff;
1810 if (!target->inBranchRange(rel.type, src,
1811 os->addr + thunkSecOff + rel.addend)) {
1812 thunkSecOff = isec->outSecOff + isec->getSize();
1813 if (!target->inBranchRange(rel.type, src,
1814 os->addr + thunkSecOff + rel.addend))
1815 fatal("InputSection too large for range extension thunk " +
1816 isec->getObjMsg(src - (os->addr + isec->outSecOff)));
1817 }
1818 return addThunkSection(os, isd, thunkSecOff);
1819}
1820
1821// Add a Thunk that needs to be placed in a ThunkSection that immediately
1822// precedes its Target.
1823ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
1824 ThunkSection *ts = thunkedSections.lookup(isec);
1825 if (ts)
1826 return ts;
1827
1828 // Find InputSectionRange within Target Output Section (TOS) that the
1829 // InputSection (IS) that we need to precede is in.
1830 OutputSection *tos = isec->getParent();
1831 for (BaseCommand *bc : tos->sectionCommands) {
1832 auto *isd = dyn_cast<InputSectionDescription>(bc);
1833 if (!isd || isd->sections.empty())
1834 continue;
1835
1836 InputSection *first = isd->sections.front();
1837 InputSection *last = isd->sections.back();
1838
1839 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
1840 continue;
1841
1842 ts = addThunkSection(tos, isd, isec->outSecOff);
1843 thunkedSections[isec] = ts;
1844 return ts;
1845 }
1846
1847 return nullptr;
1848}
1849
1850// Create one or more ThunkSections per OS that can be used to place Thunks.
1851// We attempt to place the ThunkSections using the following desirable
1852// properties:
1853// - Within range of the maximum number of callers
1854// - Minimise the number of ThunkSections
1855//
1856// We follow a simple but conservative heuristic to place ThunkSections at
1857// offsets that are multiples of a Target specific branch range.
1858// For an InputSectionDescription that is smaller than the range, a single
1859// ThunkSection at the end of the range will do.
1860//
1861// For an InputSectionDescription that is more than twice the size of the range,
1862// we place the last ThunkSection at range bytes from the end of the
1863// InputSectionDescription in order to increase the likelihood that the
1864// distance from a thunk to its target will be sufficiently small to
1865// allow for the creation of a short thunk.
1866void ThunkCreator::createInitialThunkSections(
1867 ArrayRef<OutputSection *> outputSections) {
1868 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
1869
1870 forEachInputSectionDescription(
1871 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1872 if (isd->sections.empty())
1
Assuming the condition is false
2
Taking false branch
1873 return;
1874
1875 uint32_t isdBegin = isd->sections.front()->outSecOff;
1876 uint32_t isdEnd =
1877 isd->sections.back()->outSecOff + isd->sections.back()->getSize();
1878 uint32_t lastThunkLowerBound = -1;
1879 if (isdEnd - isdBegin > thunkSectionSpacing * 2)
3
Assuming the condition is false
4
Taking false branch
1880 lastThunkLowerBound = isdEnd - thunkSectionSpacing;
1881
1882 uint32_t isecLimit;
5
'isecLimit' declared without an initial value
1883 uint32_t prevIsecLimit = isdBegin;
1884 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
1885
1886 for (const InputSection *isec : isd->sections) {
1887 isecLimit = isec->outSecOff + isec->getSize();
1888 if (isecLimit > thunkUpperBound) {
1889 addThunkSection(os, isd, prevIsecLimit);
1890 thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
1891 }
1892 if (isecLimit > lastThunkLowerBound)
1893 break;
1894 prevIsecLimit = isecLimit;
1895 }
1896 addThunkSection(os, isd, isecLimit);
6
3rd function call argument is an uninitialized value
1897 });
1898}
1899
1900ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
1901 InputSectionDescription *isd,
1902 uint64_t off) {
1903 auto *ts = make<ThunkSection>(os, off);
1904 ts->partition = os->partition;
1905 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
1906 !isd->sections.empty()) {
1907 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
1908 // thunks we disturb the base addresses of sections placed after the thunks
1909 // this makes patches we have generated redundant, and may cause us to
1910 // generate more patches as different instructions are now in sensitive
1911 // locations. When we generate more patches we may force more branches to
1912 // go out of range, causing more thunks to be generated. In pathological
1913 // cases this can cause the address dependent content pass not to converge.
1914 // We fix this by rounding up the size of the ThunkSection to 4KiB, this
1915 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
1916 // which means that adding Thunks to the section does not invalidate
1917 // errata patches for following code.
1918 // Rounding up the size to 4KiB has consequences for code-size and can
1919 // trip up linker script defined assertions. For example the linux kernel
1920 // has an assertion that what LLD represents as an InputSectionDescription
1921 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
1922 // We use the heuristic of rounding up the size when both of the following
1923 // conditions are true:
1924 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
1925 // accounts for the case where no single InputSectionDescription is
1926 // larger than the OutputSection size. This is conservative but simple.
1927 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
1928 // any assertion failures that an InputSectionDescription is < 4 KiB
1929 // in size.
1930 uint64_t isdSize = isd->sections.back()->outSecOff +
1931 isd->sections.back()->getSize() -
1932 isd->sections.front()->outSecOff;
1933 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
1934 ts->roundUpSizeForErrata = true;
1935 }
1936 isd->thunkSections.push_back({ts, pass});
1937 return ts;
1938}
1939
1940static bool isThunkSectionCompatible(InputSection *source,
1941 SectionBase *target) {
1942 // We can't reuse thunks in different loadable partitions because they might
1943 // not be loaded. But partition 1 (the main partition) will always be loaded.
1944 if (source->partition != target->partition)
1945 return target->partition == 1;
1946 return true;
1947}
1948
1949static int64_t getPCBias(RelType type) {
1950 if (config->emachine != EM_ARM)
1951 return 0;
1952 switch (type) {
1953 case R_ARM_THM_JUMP19:
1954 case R_ARM_THM_JUMP24:
1955 case R_ARM_THM_CALL:
1956 return 4;
1957 default:
1958 return 8;
1959 }
1960}
1961
1962std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
1963 Relocation &rel, uint64_t src) {
1964 std::vector<Thunk *> *thunkVec = nullptr;
1965 // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled
1966 // out in the relocation addend. We compensate for the PC bias so that
1967 // an Arm and Thumb relocation to the same destination get the same keyAddend,
1968 // which is usually 0.
1969 int64_t keyAddend = rel.addend + getPCBias(rel.type);
1970
1971 // We use a ((section, offset), addend) pair to find the thunk position if
1972 // possible so that we create only one thunk for aliased symbols or ICFed
1973 // sections. There may be multiple relocations sharing the same (section,
1974 // offset + addend) pair. We may revert the relocation back to its original
1975 // non-Thunk target, so we cannot fold offset + addend.
1976 if (auto *d = dyn_cast<Defined>(rel.sym))
1977 if (!d->isInPlt() && d->section)
1978 thunkVec = &thunkedSymbolsBySectionAndAddend[{
1979 {d->section->repl, d->value}, keyAddend}];
1980 if (!thunkVec)
1981 thunkVec = &thunkedSymbols[{rel.sym, keyAddend}];
1982
1983 // Check existing Thunks for Sym to see if they can be reused
1984 for (Thunk *t : *thunkVec)
1985 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
1986 t->isCompatibleWith(*isec, rel) &&
1987 target->inBranchRange(rel.type, src,
1988 t->getThunkTargetSym()->getVA(rel.addend)))
1989 return std::make_pair(t, false);
1990
1991 // No existing compatible Thunk in range, create a new one
1992 Thunk *t = addThunk(*isec, rel);
1993 thunkVec->push_back(t);
1994 return std::make_pair(t, true);
1995}
1996
1997// Return true if the relocation target is an in range Thunk.
1998// Return false if the relocation is not to a Thunk. If the relocation target
1999// was originally to a Thunk, but is no longer in range we revert the
2000// relocation back to its original non-Thunk target.
2001bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
2002 if (Thunk *t = thunks.lookup(rel.sym)) {
2003 if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend)))
2004 return true;
2005 rel.sym = &t->destination;
2006 rel.addend = t->addend;
2007 if (rel.sym->isInPlt())
2008 rel.expr = toPlt(rel.expr);
2009 }
2010 return false;
2011}
2012
2013// Process all relocations from the InputSections that have been assigned
2014// to InputSectionDescriptions and redirect through Thunks if needed. The
2015// function should be called iteratively until it returns false.
2016//
2017// PreConditions:
2018// All InputSections that may need a Thunk are reachable from
2019// OutputSectionCommands.
2020//
2021// All OutputSections have an address and all InputSections have an offset
2022// within the OutputSection.
2023//
2024// The offsets between caller (relocation place) and callee
2025// (relocation target) will not be modified outside of createThunks().
2026//
2027// PostConditions:
2028// If return value is true then ThunkSections have been inserted into
2029// OutputSections. All relocations that needed a Thunk based on the information
2030// available to createThunks() on entry have been redirected to a Thunk. Note
2031// that adding Thunks changes offsets between caller and callee so more Thunks
2032// may be required.
2033//
2034// If return value is false then no more Thunks are needed, and createThunks has
2035// made no changes. If the target requires range extension thunks, currently
2036// ARM, then any future change in offset between caller and callee risks a
2037// relocation out of range error.
2038bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) {
2039 bool addressesChanged = false;
2040
2041 if (pass == 0 && target->getThunkSectionSpacing())
2042 createInitialThunkSections(outputSections);
2043
2044 // Create all the Thunks and insert them into synthetic ThunkSections. The
2045 // ThunkSections are later inserted back into InputSectionDescriptions.
2046 // We separate the creation of ThunkSections from the insertion of the
2047 // ThunkSections as ThunkSections are not always inserted into the same
2048 // InputSectionDescription as the caller.
2049 forEachInputSectionDescription(
2050 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2051 for (InputSection *isec : isd->sections)
2052 for (Relocation &rel : isec->relocations) {
2053 uint64_t src = isec->getVA(rel.offset);
2054
2055 // If we are a relocation to an existing Thunk, check if it is
2056 // still in range. If not then Rel will be altered to point to its
2057 // original target so another Thunk can be generated.
2058 if (pass > 0 && normalizeExistingThunk(rel, src))
2059 continue;
2060
2061 if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
2062 *rel.sym, rel.addend))
2063 continue;
2064
2065 Thunk *t;
2066 bool isNew;
2067 std::tie(t, isNew) = getThunk(isec, rel, src);
2068
2069 if (isNew) {
2070 // Find or create a ThunkSection for the new Thunk
2071 ThunkSection *ts;
2072 if (auto *tis = t->getTargetInputSection())
2073 ts = getISThunkSec(tis);
2074 else
2075 ts = getISDThunkSec(os, isec, isd, rel, src);
2076 ts->addThunk(t);
2077 thunks[t->getThunkTargetSym()] = t;
2078 }
2079
2080 // Redirect relocation to Thunk, we never go via the PLT to a Thunk
2081 rel.sym = t->getThunkTargetSym();
2082 rel.expr = fromPlt(rel.expr);
2083
2084 // On AArch64 and PPC, a jump/call relocation may be encoded as
2085 // STT_SECTION + non-zero addend, clear the addend after
2086 // redirection.
2087 if (config->emachine != EM_MIPS)
2088 rel.addend = -getPCBias(rel.type);
2089 }
2090
2091 for (auto &p : isd->thunkSections)
2092 addressesChanged |= p.first->assignOffsets();
2093 });
2094
2095 for (auto &p : thunkedSections)
2096 addressesChanged |= p.second->assignOffsets();
2097
2098 // Merge all created synthetic ThunkSections back into OutputSection
2099 mergeThunks(outputSections);
2100 ++pass;
2101 return addressesChanged;
2102}
2103
2104// The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2105// hexagonNeedsTLSSymbol scans for relocations would require a call to
2106// __tls_get_addr.
2107// hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
2108bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
2109 bool needTlsSymbol = false;
2110 forEachInputSectionDescription(
2111 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2112 for (InputSection *isec : isd->sections)
2113 for (Relocation &rel : isec->relocations)
2114 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2115 needTlsSymbol = true;
2116 return;
2117 }
2118 });
2119 return needTlsSymbol;
2120}
2121
2122void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
2123 Symbol *sym = symtab->find("__tls_get_addr");
2124 if (!sym)
2125 return;
2126 bool needEntry = true;
2127 forEachInputSectionDescription(
2128 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2129 for (InputSection *isec : isd->sections)
2130 for (Relocation &rel : isec->relocations)
2131 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2132 if (needEntry) {
2133 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel,
2134 *sym);
2135 needEntry = false;
2136 }
2137 rel.sym = sym;
2138 }
2139 });
2140}
2141
2142template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
2143template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
2144template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
2145template void elf::scanRelocations<ELF64BE>(InputSectionBase &);
2146template void elf::reportUndefinedSymbols<ELF32LE>();
2147template void elf::reportUndefinedSymbols<ELF32BE>();
2148template void elf::reportUndefinedSymbols<ELF64LE>();
2149template void elf::reportUndefinedSymbols<ELF64BE>();