Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h
Warning:line 85, column 47
The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name X86FrameLowering.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -fhalf-no-semantic-interposition -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -D PIC -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -D_RET_PROTECTOR -ret-protector -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86/X86FrameLowering.cpp

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86/X86FrameLowering.cpp

1//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the X86 implementation of TargetFrameLowering class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86FrameLowering.h"
14#include "X86InstrBuilder.h"
15#include "X86InstrInfo.h"
16#include "X86MachineFunctionInfo.h"
17#include "X86ReturnProtectorLowering.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/EHPersonalities.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/WinEHFuncInfo.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/Function.h"
31#include "llvm/MC/MCAsmInfo.h"
32#include "llvm/MC/MCObjectFileInfo.h"
33#include "llvm/MC/MCSymbol.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Target/TargetOptions.h"
36#include <cstdlib>
37
38#define DEBUG_TYPE"x86-fl" "x86-fl"
39
40STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue")static llvm::Statistic NumFrameLoopProbe = {"x86-fl", "NumFrameLoopProbe"
, "Number of loop stack probes used in prologue"}
;
41STATISTIC(NumFrameExtraProbe,static llvm::Statistic NumFrameExtraProbe = {"x86-fl", "NumFrameExtraProbe"
, "Number of extra stack probes generated in prologue"}
42 "Number of extra stack probes generated in prologue")static llvm::Statistic NumFrameExtraProbe = {"x86-fl", "NumFrameExtraProbe"
, "Number of extra stack probes generated in prologue"}
;
43
44using namespace llvm;
45
46X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
47 MaybeAlign StackAlignOverride)
48 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
49 STI.is64Bit() ? -8 : -4),
50 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()), RPL() {
51 // Cache a bunch of frame-related predicates for this subtarget.
52 SlotSize = TRI->getSlotSize();
53 Is64Bit = STI.is64Bit();
54 IsLP64 = STI.isTarget64BitLP64();
55 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
56 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
57 StackPtr = TRI->getStackRegister();
58 SaveArgs = Is64Bit ? STI.getSaveArgs() : 0;
59}
60
61bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
62 return !MF.getFrameInfo().hasVarSizedObjects() &&
63 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() &&
64 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall();
65}
66
67/// canSimplifyCallFramePseudos - If there is a reserved call frame, the
68/// call frame pseudos can be simplified. Having a FP, as in the default
69/// implementation, is not sufficient here since we can't always use it.
70/// Use a more nuanced condition.
71bool
72X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
73 return hasReservedCallFrame(MF) ||
74 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
75 (hasFP(MF) && !TRI->hasStackRealignment(MF)) ||
76 TRI->hasBasePointer(MF);
77}
78
79// needsFrameIndexResolution - Do we need to perform FI resolution for
80// this function. Normally, this is required only when the function
81// has any stack objects. However, FI resolution actually has another job,
82// not apparent from the title - it resolves callframesetup/destroy
83// that were not simplified earlier.
84// So, this is required for x86 functions that have push sequences even
85// when there are no stack objects.
86bool
87X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
88 return MF.getFrameInfo().hasStackObjects() ||
89 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
90}
91
92/// hasFP - Return true if the specified function should have a dedicated frame
93/// pointer register. This is true if the function has variable sized allocas
94/// or if frame pointer elimination is disabled.
95bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
96 const MachineFrameInfo &MFI = MF.getFrameInfo();
97 return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
98 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
99 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
100 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
101 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
102 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
103 MFI.hasStackMap() || MFI.hasPatchPoint() ||
104 MFI.hasCopyImplyingStackAdjustment() ||
105 SaveArgs);
106}
107
108static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) {
109 if (IsLP64) {
110 if (isInt<8>(Imm))
111 return X86::SUB64ri8;
112 return X86::SUB64ri32;
113 } else {
114 if (isInt<8>(Imm))
115 return X86::SUB32ri8;
116 return X86::SUB32ri;
117 }
118}
119
120static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) {
121 if (IsLP64) {
122 if (isInt<8>(Imm))
123 return X86::ADD64ri8;
124 return X86::ADD64ri32;
125 } else {
126 if (isInt<8>(Imm))
127 return X86::ADD32ri8;
128 return X86::ADD32ri;
129 }
130}
131
132static unsigned getSUBrrOpcode(bool IsLP64) {
133 return IsLP64 ? X86::SUB64rr : X86::SUB32rr;
134}
135
136static unsigned getADDrrOpcode(bool IsLP64) {
137 return IsLP64 ? X86::ADD64rr : X86::ADD32rr;
138}
139
140static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
141 if (IsLP64) {
142 if (isInt<8>(Imm))
143 return X86::AND64ri8;
144 return X86::AND64ri32;
145 }
146 if (isInt<8>(Imm))
147 return X86::AND32ri8;
148 return X86::AND32ri;
149}
150
151static unsigned getLEArOpcode(bool IsLP64) {
152 return IsLP64 ? X86::LEA64r : X86::LEA32r;
153}
154
155static bool isEAXLiveIn(MachineBasicBlock &MBB) {
156 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
157 unsigned Reg = RegMask.PhysReg;
158
159 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
160 Reg == X86::AH || Reg == X86::AL)
161 return true;
162 }
163
164 return false;
165}
166
167/// Check if the flags need to be preserved before the terminators.
168/// This would be the case, if the eflags is live-in of the region
169/// composed by the terminators or live-out of that region, without
170/// being defined by a terminator.
171static bool
172flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
173 for (const MachineInstr &MI : MBB.terminators()) {
174 bool BreakNext = false;
175 for (const MachineOperand &MO : MI.operands()) {
176 if (!MO.isReg())
177 continue;
178 Register Reg = MO.getReg();
179 if (Reg != X86::EFLAGS)
180 continue;
181
182 // This terminator needs an eflags that is not defined
183 // by a previous another terminator:
184 // EFLAGS is live-in of the region composed by the terminators.
185 if (!MO.isDef())
186 return true;
187 // This terminator defines the eflags, i.e., we don't need to preserve it.
188 // However, we still need to check this specific terminator does not
189 // read a live-in value.
190 BreakNext = true;
191 }
192 // We found a definition of the eflags, no need to preserve them.
193 if (BreakNext)
194 return false;
195 }
196
197 // None of the terminators use or define the eflags.
198 // Check if they are live-out, that would imply we need to preserve them.
199 for (const MachineBasicBlock *Succ : MBB.successors())
200 if (Succ->isLiveIn(X86::EFLAGS))
201 return true;
202
203 return false;
204}
205
206/// emitSPUpdate - Emit a series of instructions to increment / decrement the
207/// stack pointer by a constant value.
208void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
209 MachineBasicBlock::iterator &MBBI,
210 const DebugLoc &DL,
211 int64_t NumBytes, bool InEpilogue) const {
212 bool isSub = NumBytes < 0;
213 uint64_t Offset = isSub ? -NumBytes : NumBytes;
214 MachineInstr::MIFlag Flag =
215 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
216
217 uint64_t Chunk = (1LL << 31) - 1;
218
219 MachineFunction &MF = *MBB.getParent();
220 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
221 const X86TargetLowering &TLI = *STI.getTargetLowering();
222 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
223
224 // It's ok to not take into account large chunks when probing, as the
225 // allocation is split in smaller chunks anyway.
226 if (EmitInlineStackProbe && !InEpilogue) {
227
228 // This pseudo-instruction is going to be expanded, potentially using a
229 // loop, by inlineStackProbe().
230 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset);
231 return;
232 } else if (Offset > Chunk) {
233 // Rather than emit a long series of instructions for large offsets,
234 // load the offset into a register and do one sub/add
235 unsigned Reg = 0;
236 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
237
238 if (isSub && !isEAXLiveIn(MBB))
239 Reg = Rax;
240 else
241 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI);
242
243 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
244 unsigned AddSubRROpc =
245 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
246 if (Reg) {
247 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
248 .addImm(Offset)
249 .setMIFlag(Flag);
250 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
251 .addReg(StackPtr)
252 .addReg(Reg);
253 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
254 return;
255 } else if (Offset > 8 * Chunk) {
256 // If we would need more than 8 add or sub instructions (a >16GB stack
257 // frame), it's worth spilling RAX to materialize this immediate.
258 // pushq %rax
259 // movabsq +-$Offset+-SlotSize, %rax
260 // addq %rsp, %rax
261 // xchg %rax, (%rsp)
262 // movq (%rsp), %rsp
263 assert(Is64Bit && "can't have 32-bit 16GB stack frame")((void)0);
264 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
265 .addReg(Rax, RegState::Kill)
266 .setMIFlag(Flag);
267 // Subtract is not commutative, so negate the offset and always use add.
268 // Subtract 8 less and add 8 more to account for the PUSH we just did.
269 if (isSub)
270 Offset = -(Offset - SlotSize);
271 else
272 Offset = Offset + SlotSize;
273 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
274 .addImm(Offset)
275 .setMIFlag(Flag);
276 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
277 .addReg(Rax)
278 .addReg(StackPtr);
279 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
280 // Exchange the new SP in RAX with the top of the stack.
281 addRegOffset(
282 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
283 StackPtr, false, 0);
284 // Load new SP from the top of the stack into RSP.
285 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
286 StackPtr, false, 0);
287 return;
288 }
289 }
290
291 while (Offset) {
292 uint64_t ThisVal = std::min(Offset, Chunk);
293 if (ThisVal == SlotSize) {
294 // Use push / pop for slot sized adjustments as a size optimization. We
295 // need to find a dead register when using pop.
296 unsigned Reg = isSub
297 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
298 : TRI->findDeadCallerSavedReg(MBB, MBBI);
299 if (Reg) {
300 unsigned Opc = isSub
301 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
302 : (Is64Bit ? X86::POP64r : X86::POP32r);
303 BuildMI(MBB, MBBI, DL, TII.get(Opc))
304 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
305 .setMIFlag(Flag);
306 Offset -= ThisVal;
307 continue;
308 }
309 }
310
311 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
312 .setMIFlag(Flag);
313
314 Offset -= ThisVal;
315 }
316}
317
318MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
319 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
320 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
321 assert(Offset != 0 && "zero offset stack adjustment requested")((void)0);
322
323 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
324 // is tricky.
325 bool UseLEA;
326 if (!InEpilogue) {
327 // Check if inserting the prologue at the beginning
328 // of MBB would require to use LEA operations.
329 // We need to use LEA operations if EFLAGS is live in, because
330 // it means an instruction will read it before it gets defined.
331 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
332 } else {
333 // If we can use LEA for SP but we shouldn't, check that none
334 // of the terminators uses the eflags. Otherwise we will insert
335 // a ADD that will redefine the eflags and break the condition.
336 // Alternatively, we could move the ADD, but this may not be possible
337 // and is an optimization anyway.
338 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
339 if (UseLEA && !STI.useLeaForSP())
340 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
341 // If that assert breaks, that means we do not do the right thing
342 // in canUseAsEpilogue.
343 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&((void)0)
344 "We shouldn't have allowed this insertion point")((void)0);
345 }
346
347 MachineInstrBuilder MI;
348 if (UseLEA) {
349 MI = addRegOffset(BuildMI(MBB, MBBI, DL,
350 TII.get(getLEArOpcode(Uses64BitFramePtr)),
351 StackPtr),
352 StackPtr, false, Offset);
353 } else {
354 bool IsSub = Offset < 0;
355 uint64_t AbsOffset = IsSub ? -Offset : Offset;
356 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
357 : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
358 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
359 .addReg(StackPtr)
360 .addImm(AbsOffset);
361 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
362 }
363 return MI;
364}
365
366int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
367 MachineBasicBlock::iterator &MBBI,
368 bool doMergeWithPrevious) const {
369 if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
370 (!doMergeWithPrevious && MBBI == MBB.end()))
371 return 0;
372
373 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
374
375 PI = skipDebugInstructionsBackward(PI, MBB.begin());
376 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
377 // instruction, and that there are no DBG_VALUE or other instructions between
378 // ADD/SUB/LEA and its corresponding CFI instruction.
379 /* TODO: Add support for the case where there are multiple CFI instructions
380 below the ADD/SUB/LEA, e.g.:
381 ...
382 add
383 cfi_def_cfa_offset
384 cfi_offset
385 ...
386 */
387 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
388 PI = std::prev(PI);
389
390 unsigned Opc = PI->getOpcode();
391 int Offset = 0;
392
393 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
394 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
395 PI->getOperand(0).getReg() == StackPtr){
396 assert(PI->getOperand(1).getReg() == StackPtr)((void)0);
397 Offset = PI->getOperand(2).getImm();
398 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
399 PI->getOperand(0).getReg() == StackPtr &&
400 PI->getOperand(1).getReg() == StackPtr &&
401 PI->getOperand(2).getImm() == 1 &&
402 PI->getOperand(3).getReg() == X86::NoRegister &&
403 PI->getOperand(5).getReg() == X86::NoRegister) {
404 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
405 Offset = PI->getOperand(4).getImm();
406 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
407 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
408 PI->getOperand(0).getReg() == StackPtr) {
409 assert(PI->getOperand(1).getReg() == StackPtr)((void)0);
410 Offset = -PI->getOperand(2).getImm();
411 } else
412 return 0;
413
414 PI = MBB.erase(PI);
415 if (PI != MBB.end() && PI->isCFIInstruction()) {
416 auto CIs = MBB.getParent()->getFrameInstructions();
417 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()];
418 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset ||
419 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset)
420 PI = MBB.erase(PI);
421 }
422 if (!doMergeWithPrevious)
423 MBBI = skipDebugInstructionsForward(PI, MBB.end());
424
425 return Offset;
426}
427
428void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
429 MachineBasicBlock::iterator MBBI,
430 const DebugLoc &DL,
431 const MCCFIInstruction &CFIInst) const {
432 MachineFunction &MF = *MBB.getParent();
433 unsigned CFIIndex = MF.addFrameInst(CFIInst);
434 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
435 .addCFIIndex(CFIIndex);
436}
437
438/// Emits Dwarf Info specifying offsets of callee saved registers and
439/// frame pointer. This is called only when basic block sections are enabled.
440void X86FrameLowering::emitCalleeSavedFrameMoves(
441 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
442 MachineFunction &MF = *MBB.getParent();
443 if (!hasFP(MF)) {
444 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
445 return;
446 }
447 const MachineModuleInfo &MMI = MF.getMMI();
448 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
449 const Register FramePtr = TRI->getFrameRegister(MF);
450 const Register MachineFramePtr =
451 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64))
452 : FramePtr;
453 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true);
454 // Offset = space for return address + size of the frame pointer itself.
455 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4);
456 BuildCFI(MBB, MBBI, DebugLoc{},
457 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset));
458 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
459}
460
461void X86FrameLowering::emitCalleeSavedFrameMoves(
462 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
463 const DebugLoc &DL, bool IsPrologue) const {
464 MachineFunction &MF = *MBB.getParent();
465 MachineFrameInfo &MFI = MF.getFrameInfo();
466 MachineModuleInfo &MMI = MF.getMMI();
467 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
468
469 // Add callee saved registers to move list.
470 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
471 if (CSI.empty()) return;
472
473 // Calculate offsets.
474 for (std::vector<CalleeSavedInfo>::const_iterator
475 I = CSI.begin(), E = CSI.end(); I != E; ++I) {
476 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
477 unsigned Reg = I->getReg();
478 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
479
480 if (IsPrologue) {
481 BuildCFI(MBB, MBBI, DL,
482 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
483 } else {
484 BuildCFI(MBB, MBBI, DL,
485 MCCFIInstruction::createRestore(nullptr, DwarfReg));
486 }
487 }
488}
489
490void X86FrameLowering::emitStackProbe(MachineFunction &MF,
491 MachineBasicBlock &MBB,
492 MachineBasicBlock::iterator MBBI,
493 const DebugLoc &DL, bool InProlog) const {
494 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
495 if (STI.isTargetWindowsCoreCLR()) {
496 if (InProlog) {
497 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING))
498 .addImm(0 /* no explicit stack size */);
499 } else {
500 emitStackProbeInline(MF, MBB, MBBI, DL, false);
501 }
502 } else {
503 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
504 }
505}
506
507void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
508 MachineBasicBlock &PrologMBB) const {
509 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
510 return MI.getOpcode() == X86::STACKALLOC_W_PROBING;
511 });
512 if (Where != PrologMBB.end()) {
513 DebugLoc DL = PrologMBB.findDebugLoc(Where);
514 emitStackProbeInline(MF, PrologMBB, Where, DL, true);
515 Where->eraseFromParent();
516 }
517}
518
519void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
520 MachineBasicBlock &MBB,
521 MachineBasicBlock::iterator MBBI,
522 const DebugLoc &DL,
523 bool InProlog) const {
524 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
525 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit())
526 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog);
527 else
528 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog);
529}
530
531void X86FrameLowering::emitStackProbeInlineGeneric(
532 MachineFunction &MF, MachineBasicBlock &MBB,
533 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
534 MachineInstr &AllocWithProbe = *MBBI;
535 uint64_t Offset = AllocWithProbe.getOperand(0).getImm();
536
537 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
538 const X86TargetLowering &TLI = *STI.getTargetLowering();
539 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) &&((void)0)
540 "different expansion expected for CoreCLR 64 bit")((void)0);
541
542 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
543 uint64_t ProbeChunk = StackProbeSize * 8;
544
545 uint64_t MaxAlign =
546 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0;
547
548 // Synthesize a loop or unroll it, depending on the number of iterations.
549 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left
550 // between the unaligned rsp and current rsp.
551 if (Offset > ProbeChunk) {
552 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset,
553 MaxAlign % StackProbeSize);
554 } else {
555 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset,
556 MaxAlign % StackProbeSize);
557 }
558}
559
560void X86FrameLowering::emitStackProbeInlineGenericBlock(
561 MachineFunction &MF, MachineBasicBlock &MBB,
562 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
563 uint64_t AlignOffset) const {
564
565 const bool NeedsDwarfCFI = needsDwarfCFI(MF);
566 const bool HasFP = hasFP(MF);
567 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
568 const X86TargetLowering &TLI = *STI.getTargetLowering();
569 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset);
570 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
571 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
572
573 uint64_t CurrentOffset = 0;
574
575 assert(AlignOffset < StackProbeSize)((void)0);
576
577 // If the offset is so small it fits within a page, there's nothing to do.
578 if (StackProbeSize < Offset + AlignOffset) {
579
580 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
581 .addReg(StackPtr)
582 .addImm(StackProbeSize - AlignOffset)
583 .setMIFlag(MachineInstr::FrameSetup);
584 if (!HasFP && NeedsDwarfCFI) {
585 BuildCFI(MBB, MBBI, DL,
586 MCCFIInstruction::createAdjustCfaOffset(
587 nullptr, StackProbeSize - AlignOffset));
588 }
589 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
590
591 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
592 .setMIFlag(MachineInstr::FrameSetup),
593 StackPtr, false, 0)
594 .addImm(0)
595 .setMIFlag(MachineInstr::FrameSetup);
596 NumFrameExtraProbe++;
597 CurrentOffset = StackProbeSize - AlignOffset;
598 }
599
600 // For the next N - 1 pages, just probe. I tried to take advantage of
601 // natural probes but it implies much more logic and there was very few
602 // interesting natural probes to interleave.
603 while (CurrentOffset + StackProbeSize < Offset) {
604 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
605 .addReg(StackPtr)
606 .addImm(StackProbeSize)
607 .setMIFlag(MachineInstr::FrameSetup);
608 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
609
610 if (!HasFP && NeedsDwarfCFI) {
611 BuildCFI(
612 MBB, MBBI, DL,
613 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize));
614 }
615 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
616 .setMIFlag(MachineInstr::FrameSetup),
617 StackPtr, false, 0)
618 .addImm(0)
619 .setMIFlag(MachineInstr::FrameSetup);
620 NumFrameExtraProbe++;
621 CurrentOffset += StackProbeSize;
622 }
623
624 // No need to probe the tail, it is smaller than a Page.
625 uint64_t ChunkSize = Offset - CurrentOffset;
626 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
627 .addReg(StackPtr)
628 .addImm(ChunkSize)
629 .setMIFlag(MachineInstr::FrameSetup);
630 // No need to adjust Dwarf CFA offset here, the last position of the stack has
631 // been defined
632 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
633}
634
635void X86FrameLowering::emitStackProbeInlineGenericLoop(
636 MachineFunction &MF, MachineBasicBlock &MBB,
637 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
638 uint64_t AlignOffset) const {
639 assert(Offset && "null offset")((void)0);
640
641 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
642 const X86TargetLowering &TLI = *STI.getTargetLowering();
643 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
644 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
645
646 if (AlignOffset) {
647 if (AlignOffset < StackProbeSize) {
648 // Perform a first smaller allocation followed by a probe.
649 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset);
650 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr)
651 .addReg(StackPtr)
652 .addImm(AlignOffset)
653 .setMIFlag(MachineInstr::FrameSetup);
654 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
655
656 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
657 .setMIFlag(MachineInstr::FrameSetup),
658 StackPtr, false, 0)
659 .addImm(0)
660 .setMIFlag(MachineInstr::FrameSetup);
661 NumFrameExtraProbe++;
662 Offset -= AlignOffset;
663 }
664 }
665
666 // Synthesize a loop
667 NumFrameLoopProbe++;
668 const BasicBlock *LLVM_BB = MBB.getBasicBlock();
669
670 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB);
671 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB);
672
673 MachineFunction::iterator MBBIter = ++MBB.getIterator();
674 MF.insert(MBBIter, testMBB);
675 MF.insert(MBBIter, tailMBB);
676
677 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11
678 : Is64Bit ? X86::R11D
679 : X86::EAX;
680 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
681 .addReg(StackPtr)
682 .setMIFlag(MachineInstr::FrameSetup);
683
684 // save loop bound
685 {
686 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, Offset);
687 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed)
688 .addReg(FinalStackProbed)
689 .addImm(Offset / StackProbeSize * StackProbeSize)
690 .setMIFlag(MachineInstr::FrameSetup);
691 }
692
693 // allocate a page
694 {
695 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
696 BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr)
697 .addReg(StackPtr)
698 .addImm(StackProbeSize)
699 .setMIFlag(MachineInstr::FrameSetup);
700 }
701
702 // touch the page
703 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc))
704 .setMIFlag(MachineInstr::FrameSetup),
705 StackPtr, false, 0)
706 .addImm(0)
707 .setMIFlag(MachineInstr::FrameSetup);
708
709 // cmp with stack pointer bound
710 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
711 .addReg(StackPtr)
712 .addReg(FinalStackProbed)
713 .setMIFlag(MachineInstr::FrameSetup);
714
715 // jump
716 BuildMI(testMBB, DL, TII.get(X86::JCC_1))
717 .addMBB(testMBB)
718 .addImm(X86::COND_NE)
719 .setMIFlag(MachineInstr::FrameSetup);
720 testMBB->addSuccessor(testMBB);
721 testMBB->addSuccessor(tailMBB);
722
723 // BB management
724 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end());
725 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB);
726 MBB.addSuccessor(testMBB);
727
728 // handle tail
729 unsigned TailOffset = Offset % StackProbeSize;
730 if (TailOffset) {
731 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset);
732 BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr)
733 .addReg(StackPtr)
734 .addImm(TailOffset)
735 .setMIFlag(MachineInstr::FrameSetup);
736 }
737
738 // Update Live In information
739 recomputeLiveIns(*testMBB);
740 recomputeLiveIns(*tailMBB);
741}
742
743void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64(
744 MachineFunction &MF, MachineBasicBlock &MBB,
745 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
746 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
747 assert(STI.is64Bit() && "different expansion needed for 32 bit")((void)0);
748 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR")((void)0);
749 const TargetInstrInfo &TII = *STI.getInstrInfo();
750 const BasicBlock *LLVM_BB = MBB.getBasicBlock();
751
752 // RAX contains the number of bytes of desired stack adjustment.
753 // The handling here assumes this value has already been updated so as to
754 // maintain stack alignment.
755 //
756 // We need to exit with RSP modified by this amount and execute suitable
757 // page touches to notify the OS that we're growing the stack responsibly.
758 // All stack probing must be done without modifying RSP.
759 //
760 // MBB:
761 // SizeReg = RAX;
762 // ZeroReg = 0
763 // CopyReg = RSP
764 // Flags, TestReg = CopyReg - SizeReg
765 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg
766 // LimitReg = gs magic thread env access
767 // if FinalReg >= LimitReg goto ContinueMBB
768 // RoundBB:
769 // RoundReg = page address of FinalReg
770 // LoopMBB:
771 // LoopReg = PHI(LimitReg,ProbeReg)
772 // ProbeReg = LoopReg - PageSize
773 // [ProbeReg] = 0
774 // if (ProbeReg > RoundReg) goto LoopMBB
775 // ContinueMBB:
776 // RSP = RSP - RAX
777 // [rest of original MBB]
778
779 // Set up the new basic blocks
780 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
781 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
782 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
783
784 MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
785 MF.insert(MBBIter, RoundMBB);
786 MF.insert(MBBIter, LoopMBB);
787 MF.insert(MBBIter, ContinueMBB);
788
789 // Split MBB and move the tail portion down to ContinueMBB.
790 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
791 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
792 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
793
794 // Some useful constants
795 const int64_t ThreadEnvironmentStackLimit = 0x10;
796 const int64_t PageSize = 0x1000;
797 const int64_t PageMask = ~(PageSize - 1);
798
799 // Registers we need. For the normal case we use virtual
800 // registers. For the prolog expansion we use RAX, RCX and RDX.
801 MachineRegisterInfo &MRI = MF.getRegInfo();
802 const TargetRegisterClass *RegClass = &X86::GR64RegClass;
803 const Register SizeReg = InProlog ? X86::RAX
804 : MRI.createVirtualRegister(RegClass),
805 ZeroReg = InProlog ? X86::RCX
806 : MRI.createVirtualRegister(RegClass),
807 CopyReg = InProlog ? X86::RDX
808 : MRI.createVirtualRegister(RegClass),
809 TestReg = InProlog ? X86::RDX
810 : MRI.createVirtualRegister(RegClass),
811 FinalReg = InProlog ? X86::RDX
812 : MRI.createVirtualRegister(RegClass),
813 RoundedReg = InProlog ? X86::RDX
814 : MRI.createVirtualRegister(RegClass),
815 LimitReg = InProlog ? X86::RCX
816 : MRI.createVirtualRegister(RegClass),
817 JoinReg = InProlog ? X86::RCX
818 : MRI.createVirtualRegister(RegClass),
819 ProbeReg = InProlog ? X86::RCX
820 : MRI.createVirtualRegister(RegClass);
821
822 // SP-relative offsets where we can save RCX and RDX.
823 int64_t RCXShadowSlot = 0;
824 int64_t RDXShadowSlot = 0;
825
826 // If inlining in the prolog, save RCX and RDX.
827 if (InProlog) {
828 // Compute the offsets. We need to account for things already
829 // pushed onto the stack at this point: return address, frame
830 // pointer (if used), and callee saves.
831 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
832 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
833 const bool HasFP = hasFP(MF);
834
835 // Check if we need to spill RCX and/or RDX.
836 // Here we assume that no earlier prologue instruction changes RCX and/or
837 // RDX, so checking the block live-ins is enough.
838 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
839 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
840 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
841 // Assign the initial slot to both registers, then change RDX's slot if both
842 // need to be spilled.
843 if (IsRCXLiveIn)
844 RCXShadowSlot = InitSlot;
845 if (IsRDXLiveIn)
846 RDXShadowSlot = InitSlot;
847 if (IsRDXLiveIn && IsRCXLiveIn)
848 RDXShadowSlot += 8;
849 // Emit the saves if needed.
850 if (IsRCXLiveIn)
851 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
852 RCXShadowSlot)
853 .addReg(X86::RCX);
854 if (IsRDXLiveIn)
855 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
856 RDXShadowSlot)
857 .addReg(X86::RDX);
858 } else {
859 // Not in the prolog. Copy RAX to a virtual reg.
860 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
861 }
862
863 // Add code to MBB to check for overflow and set the new target stack pointer
864 // to zero if so.
865 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
866 .addReg(ZeroReg, RegState::Undef)
867 .addReg(ZeroReg, RegState::Undef);
868 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
869 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
870 .addReg(CopyReg)
871 .addReg(SizeReg);
872 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
873 .addReg(TestReg)
874 .addReg(ZeroReg)
875 .addImm(X86::COND_B);
876
877 // FinalReg now holds final stack pointer value, or zero if
878 // allocation would overflow. Compare against the current stack
879 // limit from the thread environment block. Note this limit is the
880 // lowest touched page on the stack, not the point at which the OS
881 // will cause an overflow exception, so this is just an optimization
882 // to avoid unnecessarily touching pages that are below the current
883 // SP but already committed to the stack by the OS.
884 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
885 .addReg(0)
886 .addImm(1)
887 .addReg(0)
888 .addImm(ThreadEnvironmentStackLimit)
889 .addReg(X86::GS);
890 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
891 // Jump if the desired stack pointer is at or above the stack limit.
892 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
893
894 // Add code to roundMBB to round the final stack pointer to a page boundary.
895 RoundMBB->addLiveIn(FinalReg);
896 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
897 .addReg(FinalReg)
898 .addImm(PageMask);
899 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
900
901 // LimitReg now holds the current stack limit, RoundedReg page-rounded
902 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
903 // and probe until we reach RoundedReg.
904 if (!InProlog) {
905 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
906 .addReg(LimitReg)
907 .addMBB(RoundMBB)
908 .addReg(ProbeReg)
909 .addMBB(LoopMBB);
910 }
911
912 LoopMBB->addLiveIn(JoinReg);
913 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
914 false, -PageSize);
915
916 // Probe by storing a byte onto the stack.
917 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
918 .addReg(ProbeReg)
919 .addImm(1)
920 .addReg(0)
921 .addImm(0)
922 .addReg(0)
923 .addImm(0);
924
925 LoopMBB->addLiveIn(RoundedReg);
926 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
927 .addReg(RoundedReg)
928 .addReg(ProbeReg);
929 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
930
931 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
932
933 // If in prolog, restore RDX and RCX.
934 if (InProlog) {
935 if (RCXShadowSlot) // It means we spilled RCX in the prologue.
936 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
937 TII.get(X86::MOV64rm), X86::RCX),
938 X86::RSP, false, RCXShadowSlot);
939 if (RDXShadowSlot) // It means we spilled RDX in the prologue.
940 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
941 TII.get(X86::MOV64rm), X86::RDX),
942 X86::RSP, false, RDXShadowSlot);
943 }
944
945 // Now that the probing is done, add code to continueMBB to update
946 // the stack pointer for real.
947 ContinueMBB->addLiveIn(SizeReg);
948 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
949 .addReg(X86::RSP)
950 .addReg(SizeReg);
951
952 // Add the control flow edges we need.
953 MBB.addSuccessor(ContinueMBB);
954 MBB.addSuccessor(RoundMBB);
955 RoundMBB->addSuccessor(LoopMBB);
956 LoopMBB->addSuccessor(ContinueMBB);
957 LoopMBB->addSuccessor(LoopMBB);
958
959 // Mark all the instructions added to the prolog as frame setup.
960 if (InProlog) {
961 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
962 BeforeMBBI->setFlag(MachineInstr::FrameSetup);
963 }
964 for (MachineInstr &MI : *RoundMBB) {
965 MI.setFlag(MachineInstr::FrameSetup);
966 }
967 for (MachineInstr &MI : *LoopMBB) {
968 MI.setFlag(MachineInstr::FrameSetup);
969 }
970 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
971 CMBBI != ContinueMBBI; ++CMBBI) {
972 CMBBI->setFlag(MachineInstr::FrameSetup);
973 }
974 }
975}
976
977void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
978 MachineBasicBlock &MBB,
979 MachineBasicBlock::iterator MBBI,
980 const DebugLoc &DL,
981 bool InProlog) const {
982 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
983
984 // FIXME: Add indirect thunk support and remove this.
985 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls())
986 report_fatal_error("Emitting stack probe calls on 64-bit with the large "
987 "code model and indirect thunks not yet implemented.");
988
989 unsigned CallOp;
990 if (Is64Bit)
991 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
992 else
993 CallOp = X86::CALLpcrel32;
994
995 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
996
997 MachineInstrBuilder CI;
998 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
999
1000 // All current stack probes take AX and SP as input, clobber flags, and
1001 // preserve all registers. x86_64 probes leave RSP unmodified.
1002 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
1003 // For the large code model, we have to call through a register. Use R11,
1004 // as it is scratch in all supported calling conventions.
1005 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
1006 .addExternalSymbol(MF.createExternalSymbolName(Symbol));
1007 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
1008 } else {
1009 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
1010 .addExternalSymbol(MF.createExternalSymbolName(Symbol));
1011 }
1012
1013 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
1014 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
1015 CI.addReg(AX, RegState::Implicit)
1016 .addReg(SP, RegState::Implicit)
1017 .addReg(AX, RegState::Define | RegState::Implicit)
1018 .addReg(SP, RegState::Define | RegState::Implicit)
1019 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1020
1021 if (STI.isTargetWin64() || !STI.isOSWindows()) {
1022 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
1023 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
1024 // themselves. They also does not clobber %rax so we can reuse it when
1025 // adjusting %rsp.
1026 // All other platforms do not specify a particular ABI for the stack probe
1027 // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
1028 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
1029 .addReg(SP)
1030 .addReg(AX);
1031 }
1032
1033 if (InProlog) {
1034 // Apply the frame setup flag to all inserted instrs.
1035 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
1036 ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
1037 }
1038}
1039
1040static unsigned calculateSetFPREG(uint64_t SPAdjust) {
1041 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
1042 // and might require smaller successive adjustments.
1043 const uint64_t Win64MaxSEHOffset = 128;
1044 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
1045 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
1046 return SEHFrameOffset & -16;
1047}
1048
1049// If we're forcing a stack realignment we can't rely on just the frame
1050// info, we need to know the ABI stack alignment as well in case we
1051// have a call out. Otherwise just make sure we have some alignment - we'll
1052// go with the minimum SlotSize.
1053uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
1054 const MachineFrameInfo &MFI = MF.getFrameInfo();
1055 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment.
1056 Align StackAlign = getStackAlign();
1057 if (MF.getFunction().hasFnAttribute("stackrealign")) {
2
Assuming the condition is true
3
Taking true branch
1058 if (MFI.hasCalls())
4
Assuming the condition is false
5
Taking false branch
1059 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
1060 else if (MaxAlign < SlotSize)
6
Taking true branch
1061 MaxAlign = Align(SlotSize);
7
The value 255 is assigned to 'MaxAlign.ShiftValue'
1062 }
1063 return MaxAlign.value();
8
Calling 'Align::value'
1064}
1065
1066void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
1067 MachineBasicBlock::iterator MBBI,
1068 const DebugLoc &DL, unsigned Reg,
1069 uint64_t MaxAlign) const {
1070 uint64_t Val = -MaxAlign;
1071 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
1072
1073 MachineFunction &MF = *MBB.getParent();
1074 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
1075 const X86TargetLowering &TLI = *STI.getTargetLowering();
1076 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
1077 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
1078
1079 // We want to make sure that (in worst case) less than StackProbeSize bytes
1080 // are not probed after the AND. This assumption is used in
1081 // emitStackProbeInlineGeneric.
1082 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) {
1083 {
1084 NumFrameLoopProbe++;
1085 MachineBasicBlock *entryMBB =
1086 MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1087 MachineBasicBlock *headMBB =
1088 MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1089 MachineBasicBlock *bodyMBB =
1090 MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1091 MachineBasicBlock *footMBB =
1092 MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1093
1094 MachineFunction::iterator MBBIter = MBB.getIterator();
1095 MF.insert(MBBIter, entryMBB);
1096 MF.insert(MBBIter, headMBB);
1097 MF.insert(MBBIter, bodyMBB);
1098 MF.insert(MBBIter, footMBB);
1099 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
1100 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11
1101 : Is64Bit ? X86::R11D
1102 : X86::EAX;
1103
1104 // Setup entry block
1105 {
1106
1107 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI);
1108 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
1109 .addReg(StackPtr)
1110 .setMIFlag(MachineInstr::FrameSetup);
1111 MachineInstr *MI =
1112 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed)
1113 .addReg(FinalStackProbed)
1114 .addImm(Val)
1115 .setMIFlag(MachineInstr::FrameSetup);
1116
1117 // The EFLAGS implicit def is dead.
1118 MI->getOperand(3).setIsDead();
1119
1120 BuildMI(entryMBB, DL,
1121 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1122 .addReg(FinalStackProbed)
1123 .addReg(StackPtr)
1124 .setMIFlag(MachineInstr::FrameSetup);
1125 BuildMI(entryMBB, DL, TII.get(X86::JCC_1))
1126 .addMBB(&MBB)
1127 .addImm(X86::COND_E)
1128 .setMIFlag(MachineInstr::FrameSetup);
1129 entryMBB->addSuccessor(headMBB);
1130 entryMBB->addSuccessor(&MBB);
1131 }
1132
1133 // Loop entry block
1134
1135 {
1136 const unsigned SUBOpc =
1137 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
1138 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr)
1139 .addReg(StackPtr)
1140 .addImm(StackProbeSize)
1141 .setMIFlag(MachineInstr::FrameSetup);
1142
1143 BuildMI(headMBB, DL,
1144 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1145 .addReg(FinalStackProbed)
1146 .addReg(StackPtr)
1147 .setMIFlag(MachineInstr::FrameSetup);
1148
1149 // jump
1150 BuildMI(headMBB, DL, TII.get(X86::JCC_1))
1151 .addMBB(footMBB)
1152 .addImm(X86::COND_B)
1153 .setMIFlag(MachineInstr::FrameSetup);
1154
1155 headMBB->addSuccessor(bodyMBB);
1156 headMBB->addSuccessor(footMBB);
1157 }
1158
1159 // setup loop body
1160 {
1161 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc))
1162 .setMIFlag(MachineInstr::FrameSetup),
1163 StackPtr, false, 0)
1164 .addImm(0)
1165 .setMIFlag(MachineInstr::FrameSetup);
1166
1167 const unsigned SUBOpc =
1168 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
1169 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr)
1170 .addReg(StackPtr)
1171 .addImm(StackProbeSize)
1172 .setMIFlag(MachineInstr::FrameSetup);
1173
1174 // cmp with stack pointer bound
1175 BuildMI(bodyMBB, DL,
1176 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1177 .addReg(FinalStackProbed)
1178 .addReg(StackPtr)
1179 .setMIFlag(MachineInstr::FrameSetup);
1180
1181 // jump
1182 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1))
1183 .addMBB(bodyMBB)
1184 .addImm(X86::COND_B)
1185 .setMIFlag(MachineInstr::FrameSetup);
1186 bodyMBB->addSuccessor(bodyMBB);
1187 bodyMBB->addSuccessor(footMBB);
1188 }
1189
1190 // setup loop footer
1191 {
1192 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr)
1193 .addReg(FinalStackProbed)
1194 .setMIFlag(MachineInstr::FrameSetup);
1195 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc))
1196 .setMIFlag(MachineInstr::FrameSetup),
1197 StackPtr, false, 0)
1198 .addImm(0)
1199 .setMIFlag(MachineInstr::FrameSetup);
1200 footMBB->addSuccessor(&MBB);
1201 }
1202
1203 recomputeLiveIns(*headMBB);
1204 recomputeLiveIns(*bodyMBB);
1205 recomputeLiveIns(*footMBB);
1206 recomputeLiveIns(MBB);
1207 }
1208 } else {
1209 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
1210 .addReg(Reg)
1211 .addImm(Val)
1212 .setMIFlag(MachineInstr::FrameSetup);
1213
1214 // The EFLAGS implicit def is dead.
1215 MI->getOperand(3).setIsDead();
1216 }
1217}
1218
1219// FIXME: Get this from tablegen.
1220static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv,
1221 const X86Subtarget &Subtarget) {
1222 assert(Subtarget.is64Bit())((void)0);
1223
1224 if (Subtarget.isCallingConvWin64(CallConv)) {
1225 static const MCPhysReg GPR64ArgRegsWin64[] = {
1226 X86::RCX, X86::RDX, X86::R8, X86::R9
1227 };
1228 return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64));
1229 }
1230
1231 static const MCPhysReg GPR64ArgRegs64Bit[] = {
1232 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1233 };
1234 return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit));
1235}
1236
1237bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
1238 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
1239 // clobbered by any interrupt handler.
1240 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&((void)0)
1241 "MF used frame lowering for wrong subtarget")((void)0);
1242 const Function &Fn = MF.getFunction();
1243 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
1244 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
1245}
1246
1247bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const {
1248 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1249}
1250
1251bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const {
1252 return !isWin64Prologue(MF) && MF.needsFrameMoves();
1253}
1254
1255/// emitPrologue - Push callee-saved registers onto the stack, which
1256/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
1257/// space for local variables. Also emit labels used by the exception handler to
1258/// generate the exception handling frames.
1259
1260/*
1261 Here's a gist of what gets emitted:
1262
1263 ; Establish frame pointer, if needed
1264 [if needs FP]
1265 push %rbp
1266 .cfi_def_cfa_offset 16
1267 .cfi_offset %rbp, -16
1268 .seh_pushreg %rpb
1269 mov %rsp, %rbp
1270 .cfi_def_cfa_register %rbp
1271
1272 ; Spill general-purpose registers
1273 [for all callee-saved GPRs]
1274 pushq %<reg>
1275 [if not needs FP]
1276 .cfi_def_cfa_offset (offset from RETADDR)
1277 .seh_pushreg %<reg>
1278
1279 ; If the required stack alignment > default stack alignment
1280 ; rsp needs to be re-aligned. This creates a "re-alignment gap"
1281 ; of unknown size in the stack frame.
1282 [if stack needs re-alignment]
1283 and $MASK, %rsp
1284
1285 ; Allocate space for locals
1286 [if target is Windows and allocated space > 4096 bytes]
1287 ; Windows needs special care for allocations larger
1288 ; than one page.
1289 mov $NNN, %rax
1290 call ___chkstk_ms/___chkstk
1291 sub %rax, %rsp
1292 [else]
1293 sub $NNN, %rsp
1294
1295 [if needs FP]
1296 .seh_stackalloc (size of XMM spill slots)
1297 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
1298 [else]
1299 .seh_stackalloc NNN
1300
1301 ; Spill XMMs
1302 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
1303 ; they may get spilled on any platform, if the current function
1304 ; calls @llvm.eh.unwind.init
1305 [if needs FP]
1306 [for all callee-saved XMM registers]
1307 movaps %<xmm reg>, -MMM(%rbp)
1308 [for all callee-saved XMM registers]
1309 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
1310 ; i.e. the offset relative to (%rbp - SEHFrameOffset)
1311 [else]
1312 [for all callee-saved XMM registers]
1313 movaps %<xmm reg>, KKK(%rsp)
1314 [for all callee-saved XMM registers]
1315 .seh_savexmm %<xmm reg>, KKK
1316
1317 .seh_endprologue
1318
1319 [if needs base pointer]
1320 mov %rsp, %rbx
1321 [if needs to restore base pointer]
1322 mov %rsp, -MMM(%rbp)
1323
1324 ; Emit CFI info
1325 [if needs FP]
1326 [for all callee-saved registers]
1327 .cfi_offset %<reg>, (offset from %rbp)
1328 [else]
1329 .cfi_def_cfa_offset (offset from RETADDR)
1330 [for all callee-saved registers]
1331 .cfi_offset %<reg>, (offset from %rsp)
1332
1333 Notes:
1334 - .seh directives are emitted only for Windows 64 ABI
1335 - .cv_fpo directives are emitted on win32 when emitting CodeView
1336 - .cfi directives are emitted for all other ABIs
1337 - for 32-bit code, substitute %e?? registers for %r??
1338*/
1339
1340void X86FrameLowering::emitPrologue(MachineFunction &MF,
1341 MachineBasicBlock &MBB) const {
1342 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&((void)0)
1343 "MF used frame lowering for wrong subtarget")((void)0);
1344 MachineBasicBlock::iterator MBBI = MBB.begin();
1345 MachineFrameInfo &MFI = MF.getFrameInfo();
1346 const Function &Fn = MF.getFunction();
1347 MachineModuleInfo &MMI = MF.getMMI();
1348 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1349 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
1
Calling 'X86FrameLowering::calculateMaxStackAlign'
1350 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate.
1351 bool IsFunclet = MBB.isEHFuncletEntry();
1352 EHPersonality Personality = EHPersonality::Unknown;
1353 if (Fn.hasPersonalityFn())
1354 Personality = classifyEHPersonality(Fn.getPersonalityFn());
1355 bool FnHasClrFunclet =
1356 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
1357 bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
1358 bool HasFP = hasFP(MF);
1359 bool IsWin64Prologue = isWin64Prologue(MF);
1360 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
1361 // FIXME: Emit FPO data for EH funclets.
1362 bool NeedsWinFPO =
1363 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
1364 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
1365 bool NeedsDwarfCFI = needsDwarfCFI(MF);
1366 Register FramePtr = TRI->getFrameRegister(MF);
1367 const Register MachineFramePtr =
1368 STI.isTarget64BitILP32()
1369 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1370 Register BasePtr = TRI->getBaseRegister();
1371 bool HasWinCFI = false;
1372
1373 // Debug location must be unknown since the first debug location is used
1374 // to determine the end of the prologue.
1375 DebugLoc DL;
1376
1377 // Add RETADDR move area to callee saved frame size.
1378 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1379 if (TailCallReturnAddrDelta && IsWin64Prologue)
1380 report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1381
1382 if (TailCallReturnAddrDelta < 0)
1383 X86FI->setCalleeSavedFrameSize(
1384 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
1385
1386 const bool EmitStackProbeCall =
1387 STI.getTargetLowering()->hasStackProbeSymbol(MF);
1388 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
1389
1390 if (HasFP && X86FI->hasSwiftAsyncContext()) {
1391 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8),
1392 MachineFramePtr)
1393 .addUse(MachineFramePtr)
1394 .addImm(60)
1395 .setMIFlag(MachineInstr::FrameSetup);
1396 }
1397
1398 // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1399 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1400 // stack alignment.
1401 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1402 Fn.arg_size() == 2) {
1403 StackSize += 8;
1404 MFI.setStackSize(StackSize);
1405 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
1406 }
1407
1408 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1409 // function, and use up to 128 bytes of stack space, don't have a frame
1410 // pointer, calls, or dynamic alloca then we do not need to adjust the
1411 // stack pointer (we fit in the Red Zone). We also check that we don't
1412 // push and pop from the stack.
1413 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) &&
1414 !MFI.hasVarSizedObjects() && // No dynamic alloca.
1415 !MFI.adjustsStack() && // No calls.
1416 !EmitStackProbeCall && // No stack probes.
1417 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1418 !MF.shouldSplitStack()) { // Regular stack
1419 uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
1420 if (HasFP) MinSize += SlotSize;
1421 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1422 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1423 MFI.setStackSize(StackSize);
1424 }
1425
1426 // Insert stack pointer adjustment for later moving of return addr. Only
1427 // applies to tail call optimized functions where the callee argument stack
1428 // size is bigger than the callers.
1429 if (TailCallReturnAddrDelta < 0) {
1430 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
1431 /*InEpilogue=*/false)
1432 .setMIFlag(MachineInstr::FrameSetup);
1433 }
1434
1435 // Mapping for machine moves:
1436 //
1437 // DST: VirtualFP AND
1438 // SRC: VirtualFP => DW_CFA_def_cfa_offset
1439 // ELSE => DW_CFA_def_cfa
1440 //
1441 // SRC: VirtualFP AND
1442 // DST: Register => DW_CFA_def_cfa_register
1443 //
1444 // ELSE
1445 // OFFSET < 0 => DW_CFA_offset_extended_sf
1446 // REG < 64 => DW_CFA_offset + Reg
1447 // ELSE => DW_CFA_offset_extended
1448
1449 uint64_t NumBytes = 0;
1450 int stackGrowth = -SlotSize;
1451
1452 // Find the funclet establisher parameter
1453 Register Establisher = X86::NoRegister;
1454 if (IsClrFunclet)
1455 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1456 else if (IsFunclet)
1457 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1458
1459 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1460 // Immediately spill establisher into the home slot.
1461 // The runtime cares about this.
1462 // MOV64mr %rdx, 16(%rsp)
1463 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1464 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1465 .addReg(Establisher)
1466 .setMIFlag(MachineInstr::FrameSetup);
1467 MBB.addLiveIn(Establisher);
1468 }
1469
1470 if (HasFP) {
1471 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved")((void)0);
1472
1473 // Calculate required stack adjustment.
1474 uint64_t FrameSize = StackSize - SlotSize;
1475 // If required, include space for extra hidden slot for stashing base pointer.
1476 if (X86FI->getRestoreBasePointer())
1477 FrameSize += SlotSize;
1478
1479 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1480
1481 // Callee-saved registers are pushed on stack before the stack is realigned.
1482 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
1483 NumBytes = alignTo(NumBytes, MaxAlign);
1484
1485 // Save EBP/RBP into the appropriate stack slot.
1486 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1487 .addReg(MachineFramePtr, RegState::Kill)
1488 .setMIFlag(MachineInstr::FrameSetup);
1489
1490 if (NeedsDwarfCFI) {
1491 // Mark the place where EBP/RBP was saved.
1492 // Define the current CFA rule to use the provided offset.
1493 assert(StackSize)((void)0);
1494 BuildCFI(MBB, MBBI, DL,
1495 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth));
1496
1497 // Change the rule for the FramePtr to be an "offset" rule.
1498 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1499 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1500 nullptr, DwarfFramePtr, 2 * stackGrowth));
1501 }
1502
1503 if (NeedsWinCFI) {
1504 HasWinCFI = true;
1505 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1506 .addImm(FramePtr)
1507 .setMIFlag(MachineInstr::FrameSetup);
1508 }
1509
1510 if (!IsFunclet) {
1511 if (X86FI->hasSwiftAsyncContext()) {
1512 const auto &Attrs = MF.getFunction().getAttributes();
1513
1514 // Before we update the live frame pointer we have to ensure there's a
1515 // valid (or null) asynchronous context in its slot just before FP in
1516 // the frame record, so store it now.
1517 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) {
1518 // We have an initial context in r14, store it just before the frame
1519 // pointer.
1520 MBB.addLiveIn(X86::R14);
1521 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1522 .addReg(X86::R14)
1523 .setMIFlag(MachineInstr::FrameSetup);
1524 } else {
1525 // No initial context, store null so that there's no pointer that
1526 // could be misused.
1527 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8))
1528 .addImm(0)
1529 .setMIFlag(MachineInstr::FrameSetup);
1530 }
1531
1532 if (NeedsWinCFI) {
1533 HasWinCFI = true;
1534 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1535 .addImm(X86::R14)
1536 .setMIFlag(MachineInstr::FrameSetup);
1537 }
1538
1539 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr)
1540 .addUse(X86::RSP)
1541 .addImm(1)
1542 .addUse(X86::NoRegister)
1543 .addImm(8)
1544 .addUse(X86::NoRegister)
1545 .setMIFlag(MachineInstr::FrameSetup);
1546 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP)
1547 .addUse(X86::RSP)
1548 .addImm(8)
1549 .setMIFlag(MachineInstr::FrameSetup);
1550 }
1551
1552 if (!IsWin64Prologue && !IsFunclet) {
1553 // Update EBP with the new base value.
1554 if (!X86FI->hasSwiftAsyncContext())
1555 BuildMI(MBB, MBBI, DL,
1556 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1557 FramePtr)
1558 .addReg(StackPtr)
1559 .setMIFlag(MachineInstr::FrameSetup);
1560
1561 if (SaveArgs && !Fn.arg_empty()) {
1562 ArrayRef<MCPhysReg> GPRs =
1563 get64BitArgumentGPRs(Fn.getCallingConv(), STI);
1564 unsigned arg_size = Fn.arg_size();
1565 unsigned RI = 0;
1566 int64_t SaveSize = 0;
1567
1568 if (Fn.hasStructRetAttr()) {
1569 GPRs = GPRs.drop_front(1);
1570 arg_size--;
1571 }
1572
1573 for (MCPhysReg Reg : GPRs) {
1574 if (++RI > arg_size)
1575 break;
1576
1577 SaveSize += SlotSize;
1578
1579 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1580 .addReg(Reg)
1581 .setMIFlag(MachineInstr::FrameSetup);
1582 }
1583
1584 // Realign the stack. PUSHes are the most space efficient.
1585 while (SaveSize % getStackAlignment()) {
1586 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1587 .addReg(GPRs.front())
1588 .setMIFlag(MachineInstr::FrameSetup);
1589
1590 SaveSize += SlotSize;
1591 }
1592
1593 //dlg StackSize -= SaveSize;
1594 //dlg MFI.setStackSize(StackSize);
1595 X86FI->setSaveArgSize(SaveSize);
1596 }
1597
1598 if (NeedsDwarfCFI) {
1599 // Mark effective beginning of when frame pointer becomes valid.
1600 // Define the current CFA to use the EBP/RBP register.
1601 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1602 BuildCFI(
1603 MBB, MBBI, DL,
1604 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr));
1605 }
1606
1607 if (NeedsWinFPO) {
1608 // .cv_fpo_setframe $FramePtr
1609 HasWinCFI = true;
1610 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1611 .addImm(FramePtr)
1612 .addImm(0)
1613 .setMIFlag(MachineInstr::FrameSetup);
1614 }
1615 }
1616 }
1617 } else {
1618 assert(!IsFunclet && "funclets without FPs not yet implemented")((void)0);
1619 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1620 }
1621
1622 // Update the offset adjustment, which is mainly used by codeview to translate
1623 // from ESP to VFRAME relative local variable offsets.
1624 if (!IsFunclet) {
1625 if (HasFP && TRI->hasStackRealignment(MF))
1626 MFI.setOffsetAdjustment(-NumBytes);
1627 else
1628 MFI.setOffsetAdjustment(-StackSize);
1629 }
1630
1631 // For EH funclets, only allocate enough space for outgoing calls. Save the
1632 // NumBytes value that we would've used for the parent frame.
1633 unsigned ParentFrameNumBytes = NumBytes;
1634 if (IsFunclet)
1635 NumBytes = getWinEHFuncletFrameSize(MF);
1636
1637 // Skip the callee-saved push instructions.
1638 bool PushedRegs = false;
1639 int StackOffset = 2 * stackGrowth;
1640
1641 while (MBBI != MBB.end() &&
1642 MBBI->getFlag(MachineInstr::FrameSetup) &&
1643 (MBBI->getOpcode() == X86::PUSH32r ||
1644 MBBI->getOpcode() == X86::PUSH64r)) {
1645 PushedRegs = true;
1646 Register Reg = MBBI->getOperand(0).getReg();
1647 ++MBBI;
1648
1649 if (!HasFP && NeedsDwarfCFI) {
1650 // Mark callee-saved push instruction.
1651 // Define the current CFA rule to use the provided offset.
1652 assert(StackSize)((void)0);
1653 BuildCFI(MBB, MBBI, DL,
1654 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset));
1655 StackOffset += stackGrowth;
1656 }
1657
1658 if (NeedsWinCFI) {
1659 HasWinCFI = true;
1660 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1661 .addImm(Reg)
1662 .setMIFlag(MachineInstr::FrameSetup);
1663 }
1664 }
1665
1666 // Realign stack after we pushed callee-saved registers (so that we'll be
1667 // able to calculate their offsets from the frame pointer).
1668 // Don't do this for Win64, it needs to realign the stack after the prologue.
1669 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) {
1670 assert(HasFP && "There should be a frame pointer if stack is realigned.")((void)0);
1671 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1672
1673 if (NeedsWinCFI) {
1674 HasWinCFI = true;
1675 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1676 .addImm(MaxAlign)
1677 .setMIFlag(MachineInstr::FrameSetup);
1678 }
1679 }
1680
1681 // If there is an SUB32ri of ESP immediately before this instruction, merge
1682 // the two. This can be the case when tail call elimination is enabled and
1683 // the callee has more arguments then the caller.
1684 NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1685
1686 // Adjust stack pointer: ESP -= numbytes.
1687
1688 // Windows and cygwin/mingw require a prologue helper routine when allocating
1689 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
1690 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
1691 // stack and adjust the stack pointer in one go. The 64-bit version of
1692 // __chkstk is only responsible for probing the stack. The 64-bit prologue is
1693 // responsible for adjusting the stack pointer. Touching the stack at 4K
1694 // increments is necessary to ensure that the guard pages used by the OS
1695 // virtual memory manager are allocated in correct sequence.
1696 uint64_t AlignedNumBytes = NumBytes;
1697 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF))
1698 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1699 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) {
1700 assert(!X86FI->getUsesRedZone() &&((void)0)
1701 "The Red Zone is not accounted for in stack probes")((void)0);
1702
1703 // Check whether EAX is livein for this block.
1704 bool isEAXAlive = isEAXLiveIn(MBB);
1705
1706 if (isEAXAlive) {
1707 if (Is64Bit) {
1708 // Save RAX
1709 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1710 .addReg(X86::RAX, RegState::Kill)
1711 .setMIFlag(MachineInstr::FrameSetup);
1712 } else {
1713 // Save EAX
1714 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1715 .addReg(X86::EAX, RegState::Kill)
1716 .setMIFlag(MachineInstr::FrameSetup);
1717 }
1718 }
1719
1720 if (Is64Bit) {
1721 // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1722 // Function prologue is responsible for adjusting the stack pointer.
1723 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1724 if (isUInt<32>(Alloc)) {
1725 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1726 .addImm(Alloc)
1727 .setMIFlag(MachineInstr::FrameSetup);
1728 } else if (isInt<32>(Alloc)) {
1729 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1730 .addImm(Alloc)
1731 .setMIFlag(MachineInstr::FrameSetup);
1732 } else {
1733 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1734 .addImm(Alloc)
1735 .setMIFlag(MachineInstr::FrameSetup);
1736 }
1737 } else {
1738 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1739 // We'll also use 4 already allocated bytes for EAX.
1740 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1741 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1742 .setMIFlag(MachineInstr::FrameSetup);
1743 }
1744
1745 // Call __chkstk, __chkstk_ms, or __alloca.
1746 emitStackProbe(MF, MBB, MBBI, DL, true);
1747
1748 if (isEAXAlive) {
1749 // Restore RAX/EAX
1750 MachineInstr *MI;
1751 if (Is64Bit)
1752 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1753 StackPtr, false, NumBytes - 8);
1754 else
1755 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1756 StackPtr, false, NumBytes - 4);
1757 MI->setFlag(MachineInstr::FrameSetup);
1758 MBB.insert(MBBI, MI);
1759 }
1760 } else if (NumBytes) {
1761 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1762 }
1763
1764 if (NeedsWinCFI && NumBytes) {
1765 HasWinCFI = true;
1766 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1767 .addImm(NumBytes)
1768 .setMIFlag(MachineInstr::FrameSetup);
1769 }
1770
1771 int SEHFrameOffset = 0;
1772 unsigned SPOrEstablisher;
1773 if (IsFunclet) {
1774 if (IsClrFunclet) {
1775 // The establisher parameter passed to a CLR funclet is actually a pointer
1776 // to the (mostly empty) frame of its nearest enclosing funclet; we have
1777 // to find the root function establisher frame by loading the PSPSym from
1778 // the intermediate frame.
1779 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1780 MachinePointerInfo NoInfo;
1781 MBB.addLiveIn(Establisher);
1782 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1783 Establisher, false, PSPSlotOffset)
1784 .addMemOperand(MF.getMachineMemOperand(
1785 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize)));
1786 ;
1787 // Save the root establisher back into the current funclet's (mostly
1788 // empty) frame, in case a sub-funclet or the GC needs it.
1789 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1790 false, PSPSlotOffset)
1791 .addReg(Establisher)
1792 .addMemOperand(MF.getMachineMemOperand(
1793 NoInfo,
1794 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1795 SlotSize, Align(SlotSize)));
1796 }
1797 SPOrEstablisher = Establisher;
1798 } else {
1799 SPOrEstablisher = StackPtr;
1800 }
1801
1802 if (IsWin64Prologue && HasFP) {
1803 // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1804 // this calculation on the incoming establisher, which holds the value of
1805 // RSP from the parent frame at the end of the prologue.
1806 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1807 if (SEHFrameOffset)
1808 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1809 SPOrEstablisher, false, SEHFrameOffset);
1810 else
1811 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1812 .addReg(SPOrEstablisher);
1813
1814 // If this is not a funclet, emit the CFI describing our frame pointer.
1815 if (NeedsWinCFI && !IsFunclet) {
1816 assert(!NeedsWinFPO && "this setframe incompatible with FPO data")((void)0);
1817 HasWinCFI = true;
1818 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1819 .addImm(FramePtr)
1820 .addImm(SEHFrameOffset)
1821 .setMIFlag(MachineInstr::FrameSetup);
1822 if (isAsynchronousEHPersonality(Personality))
1823 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1824 }
1825 } else if (IsFunclet && STI.is32Bit()) {
1826 // Reset EBP / ESI to something good for funclets.
1827 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1828 // If we're a catch funclet, we can be returned to via catchret. Save ESP
1829 // into the registration node so that the runtime will restore it for us.
1830 if (!MBB.isCleanupFuncletEntry()) {
1831 assert(Personality == EHPersonality::MSVC_CXX)((void)0);
1832 Register FrameReg;
1833 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1834 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed();
1835 // ESP is the first field, so no extra displacement is needed.
1836 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1837 false, EHRegOffset)
1838 .addReg(X86::ESP);
1839 }
1840 }
1841
1842 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1843 const MachineInstr &FrameInstr = *MBBI;
1844 ++MBBI;
1845
1846 if (NeedsWinCFI) {
1847 int FI;
1848 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1849 if (X86::FR64RegClass.contains(Reg)) {
1850 int Offset;
1851 Register IgnoredFrameReg;
1852 if (IsWin64Prologue && IsFunclet)
1853 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
1854 else
1855 Offset =
1856 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() +
1857 SEHFrameOffset;
1858
1859 HasWinCFI = true;
1860 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data")((void)0);
1861 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1862 .addImm(Reg)
1863 .addImm(Offset)
1864 .setMIFlag(MachineInstr::FrameSetup);
1865 }
1866 }
1867 }
1868 }
1869
1870 if (NeedsWinCFI && HasWinCFI)
1871 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1872 .setMIFlag(MachineInstr::FrameSetup);
1873
1874 if (FnHasClrFunclet && !IsFunclet) {
1875 // Save the so-called Initial-SP (i.e. the value of the stack pointer
1876 // immediately after the prolog) into the PSPSlot so that funclets
1877 // and the GC can recover it.
1878 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1879 auto PSPInfo = MachinePointerInfo::getFixedStack(
1880 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1881 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1882 PSPSlotOffset)
1883 .addReg(StackPtr)
1884 .addMemOperand(MF.getMachineMemOperand(
1885 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1886 SlotSize, Align(SlotSize)));
1887 }
1888
1889 // Realign stack after we spilled callee-saved registers (so that we'll be
1890 // able to calculate their offsets from the frame pointer).
1891 // Win64 requires aligning the stack after the prologue.
1892 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) {
1893 assert(HasFP && "There should be a frame pointer if stack is realigned.")((void)0);
1894 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1895 }
1896
1897 // We already dealt with stack realignment and funclets above.
1898 if (IsFunclet && STI.is32Bit())
1899 return;
1900
1901 // If we need a base pointer, set it up here. It's whatever the value
1902 // of the stack pointer is at this point. Any variable size objects
1903 // will be allocated after this, so we can still use the base pointer
1904 // to reference locals.
1905 if (TRI->hasBasePointer(MF)) {
1906 // Update the base pointer with the current stack pointer.
1907 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1908 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1909 .addReg(SPOrEstablisher)
1910 .setMIFlag(MachineInstr::FrameSetup);
1911 if (X86FI->getRestoreBasePointer()) {
1912 // Stash value of base pointer. Saving RSP instead of EBP shortens
1913 // dependence chain. Used by SjLj EH.
1914 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1915 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1916 FramePtr, true, X86FI->getRestoreBasePointerOffset())
1917 .addReg(SPOrEstablisher)
1918 .setMIFlag(MachineInstr::FrameSetup);
1919 }
1920
1921 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1922 // Stash the value of the frame pointer relative to the base pointer for
1923 // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1924 // it recovers the frame pointer from the base pointer rather than the
1925 // other way around.
1926 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1927 Register UsedReg;
1928 int Offset =
1929 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
1930 .getFixed();
1931 assert(UsedReg == BasePtr)((void)0);
1932 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1933 .addReg(FramePtr)
1934 .setMIFlag(MachineInstr::FrameSetup);
1935 }
1936 }
1937
1938 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1939 // Mark end of stack pointer adjustment.
1940 if (!HasFP && NumBytes) {
1941 // Define the current CFA rule to use the provided offset.
1942 assert(StackSize)((void)0);
1943 BuildCFI(
1944 MBB, MBBI, DL,
1945 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth));
1946 }
1947
1948 // Emit DWARF info specifying the offsets of the callee-saved registers.
1949 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true);
1950 }
1951
1952 // X86 Interrupt handling function cannot assume anything about the direction
1953 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1954 // in each prologue of interrupt handler function.
1955 //
1956 // FIXME: Create "cld" instruction only in these cases:
1957 // 1. The interrupt handling function uses any of the "rep" instructions.
1958 // 2. Interrupt handling function calls another function.
1959 //
1960 if (Fn.getCallingConv() == CallingConv::X86_INTR)
1961 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1962 .setMIFlag(MachineInstr::FrameSetup);
1963
1964 // At this point we know if the function has WinCFI or not.
1965 MF.setHasWinCFI(HasWinCFI);
1966}
1967
1968bool X86FrameLowering::canUseLEAForSPInEpilogue(
1969 const MachineFunction &MF) const {
1970 // We can't use LEA instructions for adjusting the stack pointer if we don't
1971 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used
1972 // to deallocate the stack.
1973 // This means that we can use LEA for SP in two situations:
1974 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1975 // 2. We *have* a frame pointer which means we are permitted to use LEA.
1976 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1977}
1978
1979static bool isFuncletReturnInstr(MachineInstr &MI) {
1980 switch (MI.getOpcode()) {
1981 case X86::CATCHRET:
1982 case X86::CLEANUPRET:
1983 return true;
1984 default:
1985 return false;
1986 }
1987 llvm_unreachable("impossible")__builtin_unreachable();
1988}
1989
1990// CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1991// stack. It holds a pointer to the bottom of the root function frame. The
1992// establisher frame pointer passed to a nested funclet may point to the
1993// (mostly empty) frame of its parent funclet, but it will need to find
1994// the frame of the root function to access locals. To facilitate this,
1995// every funclet copies the pointer to the bottom of the root function
1996// frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1997// same offset for the PSPSym in the root function frame that's used in the
1998// funclets' frames allows each funclet to dynamically accept any ancestor
1999// frame as its establisher argument (the runtime doesn't guarantee the
2000// immediate parent for some reason lost to history), and also allows the GC,
2001// which uses the PSPSym for some bookkeeping, to find it in any funclet's
2002// frame with only a single offset reported for the entire method.
2003unsigned
2004X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
2005 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
2006 Register SPReg;
2007 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
2008 /*IgnoreSPUpdates*/ true)
2009 .getFixed();
2010 assert(Offset >= 0 && SPReg == TRI->getStackRegister())((void)0);
2011 return static_cast<unsigned>(Offset);
2012}
2013
2014unsigned
2015X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
2016 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2017 // This is the size of the pushed CSRs.
2018 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2019 // This is the size of callee saved XMMs.
2020 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2021 unsigned XMMSize = WinEHXMMSlotInfo.size() *
2022 TRI->getSpillSize(X86::VR128RegClass);
2023 // This is the amount of stack a funclet needs to allocate.
2024 unsigned UsedSize;
2025 EHPersonality Personality =
2026 classifyEHPersonality(MF.getFunction().getPersonalityFn());
2027 if (Personality == EHPersonality::CoreCLR) {
2028 // CLR funclets need to hold enough space to include the PSPSym, at the
2029 // same offset from the stack pointer (immediately after the prolog) as it
2030 // resides at in the main function.
2031 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
2032 } else {
2033 // Other funclets just need enough stack for outgoing call arguments.
2034 UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
2035 }
2036 // RBP is not included in the callee saved register block. After pushing RBP,
2037 // everything is 16 byte aligned. Everything we allocate before an outgoing
2038 // call must also be 16 byte aligned.
2039 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign());
2040 // Subtract out the size of the callee saved registers. This is how much stack
2041 // each funclet will allocate.
2042 return FrameSizeMinusRBP + XMMSize - CSSize;
2043}
2044
2045static bool isTailCallOpcode(unsigned Opc) {
2046 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
2047 Opc == X86::TCRETURNmi ||
2048 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
2049 Opc == X86::TCRETURNmi64;
2050}
2051
2052void X86FrameLowering::emitEpilogue(MachineFunction &MF,
2053 MachineBasicBlock &MBB) const {
2054 const MachineFrameInfo &MFI = MF.getFrameInfo();
2055 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2056 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
2057 MachineBasicBlock::iterator MBBI = Terminator;
2058 DebugLoc DL;
2059 if (MBBI != MBB.end())
2060 DL = MBBI->getDebugLoc();
2061 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
2062 const bool Is64BitILP32 = STI.isTarget64BitILP32();
2063 Register FramePtr = TRI->getFrameRegister(MF);
2064 Register MachineFramePtr =
2065 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
2066
2067 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2068 bool NeedsWin64CFI =
2069 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
2070 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
2071
2072 // Get the number of bytes to allocate from the FrameInfo.
2073 uint64_t StackSize = MFI.getStackSize();
2074 uint64_t MaxAlign = calculateMaxStackAlign(MF);
2075 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2076 bool HasFP = hasFP(MF);
2077 uint64_t NumBytes = 0;
2078
2079 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() &&
2080 !MF.getTarget().getTargetTriple().isOSWindows()) &&
2081 MF.needsFrameMoves();
2082
2083 if (IsFunclet) {
2084 assert(HasFP && "EH funclets without FP not yet implemented")((void)0);
2085 NumBytes = getWinEHFuncletFrameSize(MF);
2086 } else if (HasFP) {
2087 // Calculate required stack adjustment.
2088 uint64_t FrameSize = StackSize - SlotSize;
2089 NumBytes = FrameSize - CSSize;
2090
2091 // Callee-saved registers were pushed on stack before the stack was
2092 // realigned.
2093 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
2094 NumBytes = alignTo(FrameSize, MaxAlign);
2095 } else {
2096 NumBytes = StackSize - CSSize;
2097 }
2098 uint64_t SEHStackAllocAmt = NumBytes;
2099
2100 // AfterPop is the position to insert .cfi_restore.
2101 MachineBasicBlock::iterator AfterPop = MBBI;
2102 if (HasFP) {
2103 if (X86FI->hasSwiftAsyncContext()) {
2104 // Discard the context.
2105 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true);
2106 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true);
2107 }
2108
2109 if (X86FI->getSaveArgSize()) {
2110 // LEAVE is effectively mov rbp,rsp; pop rbp
2111 BuildMI(MBB, MBBI, DL, TII.get(X86::LEAVE64))
2112 .setMIFlag(MachineInstr::FrameDestroy);
2113 } else {
2114 // Pop EBP.
2115 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
2116 MachineFramePtr)
2117 .setMIFlag(MachineInstr::FrameDestroy);
2118 }
2119
2120 // We need to reset FP to its untagged state on return. Bit 60 is currently
2121 // used to show the presence of an extended frame.
2122 if (X86FI->hasSwiftAsyncContext()) {
2123 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8),
2124 MachineFramePtr)
2125 .addUse(MachineFramePtr)
2126 .addImm(60)
2127 .setMIFlag(MachineInstr::FrameDestroy);
2128 }
2129
2130 if (NeedsDwarfCFI) {
2131 unsigned DwarfStackPtr =
2132 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
2133 BuildCFI(MBB, MBBI, DL,
2134 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize));
2135 if (!MBB.succ_empty() && !MBB.isReturnBlock()) {
2136 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
2137 BuildCFI(MBB, AfterPop, DL,
2138 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr));
2139 --MBBI;
2140 --AfterPop;
2141 }
2142 --MBBI;
2143 }
2144 }
2145
2146 MachineBasicBlock::iterator FirstCSPop = MBBI;
2147 // Skip the callee-saved pop instructions.
2148 while (MBBI != MBB.begin()) {
2149 MachineBasicBlock::iterator PI = std::prev(MBBI);
2150 unsigned Opc = PI->getOpcode();
2151
2152 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
2153 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2154 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2155 (Opc != X86::LEAVE64 || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2156 (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2157 (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)))
2158 break;
2159 FirstCSPop = PI;
2160 }
2161
2162 --MBBI;
2163 }
2164 MBBI = FirstCSPop;
2165
2166 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
2167 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
2168
2169 if (MBBI != MBB.end())
2170 DL = MBBI->getDebugLoc();
2171
2172 // If there is an ADD32ri or SUB32ri of ESP immediately before this
2173 // instruction, merge the two instructions.
2174 if (NumBytes || MFI.hasVarSizedObjects())
2175 NumBytes += mergeSPUpdates(MBB, MBBI, true);
2176
2177 // If dynamic alloca is used, then reset esp to point to the last callee-saved
2178 // slot before popping them off! Same applies for the case, when stack was
2179 // realigned. Don't do this if this was a funclet epilogue, since the funclets
2180 // will not do realignment or dynamic stack allocation.
2181 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) &&
2182 !IsFunclet) {
2183 if (TRI->hasStackRealignment(MF))
2184 MBBI = FirstCSPop;
2185 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
2186 uint64_t LEAAmount =
2187 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
2188
2189 if (X86FI->hasSwiftAsyncContext())
2190 LEAAmount -= 16;
2191
2192 // There are only two legal forms of epilogue:
2193 // - add SEHAllocationSize, %rsp
2194 // - lea SEHAllocationSize(%FramePtr), %rsp
2195 //
2196 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
2197 // However, we may use this sequence if we have a frame pointer because the
2198 // effects of the prologue can safely be undone.
2199 if (LEAAmount != 0) {
2200 unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
2201 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
2202 FramePtr, false, LEAAmount);
2203 --MBBI;
2204 } else {
2205 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
2206 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
2207 .addReg(FramePtr);
2208 --MBBI;
2209 }
2210 } else if (NumBytes) {
2211 // Adjust stack pointer back: ESP += numbytes.
2212 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
2213 if (!hasFP(MF) && NeedsDwarfCFI) {
2214 // Define the current CFA rule to use the provided offset.
2215 BuildCFI(MBB, MBBI, DL,
2216 MCCFIInstruction::cfiDefCfaOffset(nullptr, CSSize + SlotSize));
2217 }
2218 --MBBI;
2219 }
2220
2221 // Windows unwinder will not invoke function's exception handler if IP is
2222 // either in prologue or in epilogue. This behavior causes a problem when a
2223 // call immediately precedes an epilogue, because the return address points
2224 // into the epilogue. To cope with that, we insert an epilogue marker here,
2225 // then replace it with a 'nop' if it ends up immediately after a CALL in the
2226 // final emitted code.
2227 if (NeedsWin64CFI && MF.hasWinCFI())
2228 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
2229
2230 if (!hasFP(MF) && NeedsDwarfCFI) {
2231 MBBI = FirstCSPop;
2232 int64_t Offset = -CSSize - SlotSize;
2233 // Mark callee-saved pop instruction.
2234 // Define the current CFA rule to use the provided offset.
2235 while (MBBI != MBB.end()) {
2236 MachineBasicBlock::iterator PI = MBBI;
2237 unsigned Opc = PI->getOpcode();
2238 ++MBBI;
2239 if (Opc == X86::POP32r || Opc == X86::POP64r) {
2240 Offset += SlotSize;
2241 BuildCFI(MBB, MBBI, DL,
2242 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset));
2243 }
2244 }
2245 }
2246
2247 // Emit DWARF info specifying the restores of the callee-saved registers.
2248 // For epilogue with return inside or being other block without successor,
2249 // no need to generate .cfi_restore for callee-saved registers.
2250 if (NeedsDwarfCFI && !MBB.succ_empty() && !MBB.isReturnBlock()) {
2251 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false);
2252 }
2253
2254 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
2255 // Add the return addr area delta back since we are not tail calling.
2256 int Offset = -1 * X86FI->getTCReturnAddrDelta();
2257 assert(Offset >= 0 && "TCDelta should never be positive")((void)0);
2258 if (Offset) {
2259 // Check for possible merge with preceding ADD instruction.
2260 Offset += mergeSPUpdates(MBB, Terminator, true);
2261 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
2262 }
2263 }
2264
2265 // Emit tilerelease for AMX kernel.
2266 const MachineRegisterInfo &MRI = MF.getRegInfo();
2267 const TargetRegisterClass *RC = TRI->getRegClass(X86::TILERegClassID);
2268 for (unsigned I = 0; I < RC->getNumRegs(); I++)
2269 if (!MRI.reg_nodbg_empty(X86::TMM0 + I)) {
2270 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE));
2271 break;
2272 }
2273}
2274
2275StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF,
2276 int FI,
2277 Register &FrameReg) const {
2278 const MachineFrameInfo &MFI = MF.getFrameInfo();
2279
2280 bool IsFixed = MFI.isFixedObjectIndex(FI);
2281 // We can't calculate offset from frame pointer if the stack is realigned,
2282 // so enforce usage of stack/base pointer. The base pointer is used when we
2283 // have dynamic allocas in addition to dynamic realignment.
2284 if (TRI->hasBasePointer(MF))
2285 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
2286 else if (TRI->hasStackRealignment(MF))
2287 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
2288 else
2289 FrameReg = TRI->getFrameRegister(MF);
2290
2291 // Offset will hold the offset from the stack pointer at function entry to the
2292 // object.
2293 // We need to factor in additional offsets applied during the prologue to the
2294 // frame, base, and stack pointer depending on which is used.
2295 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
2296 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2297 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2298 uint64_t StackSize = MFI.getStackSize();
2299 bool HasFP = hasFP(MF);
2300 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2301 int64_t FPDelta = 0;
2302
2303 // In an x86 interrupt, remove the offset we added to account for the return
2304 // address from any stack object allocated in the caller's frame. Interrupts
2305 // do not have a standard return address. Fixed objects in the current frame,
2306 // such as SSE register spills, should not get this treatment.
2307 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
2308 Offset >= 0) {
2309 Offset += getOffsetOfLocalArea();
2310 }
2311
2312 if (IsWin64Prologue) {
2313 assert(!MFI.hasCalls() || (StackSize % 16) == 8)((void)0);
2314
2315 // Calculate required stack adjustment.
2316 uint64_t FrameSize = StackSize - SlotSize;
2317 // If required, include space for extra hidden slot for stashing base pointer.
2318 if (X86FI->getRestoreBasePointer())
2319 FrameSize += SlotSize;
2320 uint64_t NumBytes = FrameSize - CSSize;
2321
2322 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
2323 if (FI && FI == X86FI->getFAIndex())
2324 return StackOffset::getFixed(-SEHFrameOffset);
2325
2326 // FPDelta is the offset from the "traditional" FP location of the old base
2327 // pointer followed by return address and the location required by the
2328 // restricted Win64 prologue.
2329 // Add FPDelta to all offsets below that go through the frame pointer.
2330 FPDelta = FrameSize - SEHFrameOffset;
2331 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&((void)0)
2332 "FPDelta isn't aligned per the Win64 ABI!")((void)0);
2333 }
2334
2335 if (FI >= 0)
2336 Offset -= X86FI->getSaveArgSize();
2337
2338 if (TRI->hasBasePointer(MF)) {
2339 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!")((void)0);
2340 if (FI < 0) {
2341 // Skip the saved EBP.
2342 return StackOffset::getFixed(Offset + SlotSize + FPDelta);
2343 } else {
2344 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)))((void)0);
2345 return StackOffset::getFixed(Offset + StackSize);
2346 }
2347 } else if (TRI->hasStackRealignment(MF)) {
2348 if (FI < 0) {
2349 // Skip the saved EBP.
2350 return StackOffset::getFixed(Offset + SlotSize + FPDelta);
2351 } else {
2352 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)))((void)0);
2353 return StackOffset::getFixed(Offset + StackSize);
2354 }
2355 // FIXME: Support tail calls
2356 } else {
2357 if (!HasFP)
2358 return StackOffset::getFixed(Offset + StackSize);
2359
2360 // Skip the saved EBP.
2361 Offset += SlotSize;
2362
2363 // Skip the RETADDR move area
2364 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2365 if (TailCallReturnAddrDelta < 0)
2366 Offset -= TailCallReturnAddrDelta;
2367 }
2368
2369 return StackOffset::getFixed(Offset + FPDelta);
2370}
2371
2372int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI,
2373 Register &FrameReg) const {
2374 const MachineFrameInfo &MFI = MF.getFrameInfo();
2375 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2376 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2377 const auto it = WinEHXMMSlotInfo.find(FI);
2378
2379 if (it == WinEHXMMSlotInfo.end())
2380 return getFrameIndexReference(MF, FI, FrameReg).getFixed();
2381
2382 FrameReg = TRI->getStackRegister();
2383 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) +
2384 it->second;
2385}
2386
2387StackOffset
2388X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI,
2389 Register &FrameReg,
2390 int Adjustment) const {
2391 const MachineFrameInfo &MFI = MF.getFrameInfo();
2392 FrameReg = TRI->getStackRegister();
2393 return StackOffset::getFixed(MFI.getObjectOffset(FI) -
2394 getOffsetOfLocalArea() + Adjustment);
2395}
2396
2397StackOffset
2398X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
2399 int FI, Register &FrameReg,
2400 bool IgnoreSPUpdates) const {
2401
2402 const MachineFrameInfo &MFI = MF.getFrameInfo();
2403 // Does not include any dynamic realign.
2404 const uint64_t StackSize = MFI.getStackSize();
2405 // LLVM arranges the stack as follows:
2406 // ...
2407 // ARG2
2408 // ARG1
2409 // RETADDR
2410 // PUSH RBP <-- RBP points here
2411 // PUSH CSRs
2412 // ~~~~~~~ <-- possible stack realignment (non-win64)
2413 // ...
2414 // STACK OBJECTS
2415 // ... <-- RSP after prologue points here
2416 // ~~~~~~~ <-- possible stack realignment (win64)
2417 //
2418 // if (hasVarSizedObjects()):
2419 // ... <-- "base pointer" (ESI/RBX) points here
2420 // DYNAMIC ALLOCAS
2421 // ... <-- RSP points here
2422 //
2423 // Case 1: In the simple case of no stack realignment and no dynamic
2424 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
2425 // with fixed offsets from RSP.
2426 //
2427 // Case 2: In the case of stack realignment with no dynamic allocas, fixed
2428 // stack objects are addressed with RBP and regular stack objects with RSP.
2429 //
2430 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
2431 // to address stack arguments for outgoing calls and nothing else. The "base
2432 // pointer" points to local variables, and RBP points to fixed objects.
2433 //
2434 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
2435 // answer we give is relative to the SP after the prologue, and not the
2436 // SP in the middle of the function.
2437
2438 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) &&
2439 !STI.isTargetWin64())
2440 return getFrameIndexReference(MF, FI, FrameReg);
2441
2442 // If !hasReservedCallFrame the function might have SP adjustement in the
2443 // body. So, even though the offset is statically known, it depends on where
2444 // we are in the function.
2445 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
2446 return getFrameIndexReference(MF, FI, FrameReg);
2447
2448 // We don't handle tail calls, and shouldn't be seeing them either.
2449 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&((void)0)
2450 "we don't handle this case!")((void)0);
2451
2452 // This is how the math works out:
2453 //
2454 // %rsp grows (i.e. gets lower) left to right. Each box below is
2455 // one word (eight bytes). Obj0 is the stack slot we're trying to
2456 // get to.
2457 //
2458 // ----------------------------------
2459 // | BP | Obj0 | Obj1 | ... | ObjN |
2460 // ----------------------------------
2461 // ^ ^ ^ ^
2462 // A B C E
2463 //
2464 // A is the incoming stack pointer.
2465 // (B - A) is the local area offset (-8 for x86-64) [1]
2466 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
2467 //
2468 // |(E - B)| is the StackSize (absolute value, positive). For a
2469 // stack that grown down, this works out to be (B - E). [3]
2470 //
2471 // E is also the value of %rsp after stack has been set up, and we
2472 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now
2473 // (C - E) == (C - A) - (B - A) + (B - E)
2474 // { Using [1], [2] and [3] above }
2475 // == getObjectOffset - LocalAreaOffset + StackSize
2476
2477 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
2478}
2479
2480bool X86FrameLowering::assignCalleeSavedSpillSlots(
2481 MachineFunction &MF, const TargetRegisterInfo *TRI,
2482 std::vector<CalleeSavedInfo> &CSI) const {
2483 MachineFrameInfo &MFI = MF.getFrameInfo();
2484 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2485
2486 unsigned CalleeSavedFrameSize = 0;
2487 unsigned XMMCalleeSavedFrameSize = 0;
2488 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2489 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
2490
2491 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2492
2493 if (TailCallReturnAddrDelta < 0) {
2494 // create RETURNADDR area
2495 // arg
2496 // arg
2497 // RETADDR
2498 // { ...
2499 // RETADDR area
2500 // ...
2501 // }
2502 // [EBP]
2503 MFI.CreateFixedObject(-TailCallReturnAddrDelta,
2504 TailCallReturnAddrDelta - SlotSize, true);
2505 }
2506
2507 // Spill the BasePtr if it's used.
2508 if (this->TRI->hasBasePointer(MF)) {
2509 // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
2510 if (MF.hasEHFunclets()) {
2511 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize));
2512 X86FI->setHasSEHFramePtrSave(true);
2513 X86FI->setSEHFramePtrSaveIndex(FI);
2514 }
2515 }
2516
2517 if (hasFP(MF)) {
2518 // emitPrologue always spills frame register the first thing.
2519 SpillSlotOffset -= SlotSize;
2520 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2521
2522 // The async context lives directly before the frame pointer, and we
2523 // allocate a second slot to preserve stack alignment.
2524 if (X86FI->hasSwiftAsyncContext()) {
2525 SpillSlotOffset -= SlotSize;
2526 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2527 SpillSlotOffset -= SlotSize;
2528 }
2529
2530 // Since emitPrologue and emitEpilogue will handle spilling and restoring of
2531 // the frame register, we can delete it from CSI list and not have to worry
2532 // about avoiding it later.
2533 Register FPReg = TRI->getFrameRegister(MF);
2534 for (unsigned i = 0; i < CSI.size(); ++i) {
2535 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
2536 CSI.erase(CSI.begin() + i);
2537 break;
2538 }
2539 }
2540 }
2541
2542 // Assign slots for GPRs. It increases frame size.
2543 for (unsigned i = CSI.size(); i != 0; --i) {
2544 unsigned Reg = CSI[i - 1].getReg();
2545
2546 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2547 continue;
2548
2549 SpillSlotOffset -= SlotSize;
2550 CalleeSavedFrameSize += SlotSize;
2551
2552 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2553 CSI[i - 1].setFrameIdx(SlotIndex);
2554 }
2555
2556 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
2557 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
2558
2559 // Assign slots for XMMs.
2560 for (unsigned i = CSI.size(); i != 0; --i) {
2561 unsigned Reg = CSI[i - 1].getReg();
2562 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2563 continue;
2564
2565 // If this is k-register make sure we lookup via the largest legal type.
2566 MVT VT = MVT::Other;
2567 if (X86::VK16RegClass.contains(Reg))
2568 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2569
2570 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2571 unsigned Size = TRI->getSpillSize(*RC);
2572 Align Alignment = TRI->getSpillAlign(*RC);
2573 // ensure alignment
2574 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86")((void)0);
2575 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment);
2576
2577 // spill into slot
2578 SpillSlotOffset -= Size;
2579 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2580 CSI[i - 1].setFrameIdx(SlotIndex);
2581 MFI.ensureMaxAlignment(Alignment);
2582
2583 // Save the start offset and size of XMM in stack frame for funclets.
2584 if (X86::VR128RegClass.contains(Reg)) {
2585 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
2586 XMMCalleeSavedFrameSize += Size;
2587 }
2588 }
2589
2590 return true;
2591}
2592
2593bool X86FrameLowering::spillCalleeSavedRegisters(
2594 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2595 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2596 DebugLoc DL = MBB.findDebugLoc(MI);
2597
2598 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2599 // for us, and there are no XMM CSRs on Win32.
2600 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2601 return true;
2602
2603 // Push GPRs. It increases frame size.
2604 const MachineFunction &MF = *MBB.getParent();
2605 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2606 for (unsigned i = CSI.size(); i != 0; --i) {
2607 unsigned Reg = CSI[i - 1].getReg();
2608
2609 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2610 continue;
2611
2612 const MachineRegisterInfo &MRI = MF.getRegInfo();
2613 bool isLiveIn = MRI.isLiveIn(Reg);
2614 if (!isLiveIn)
2615 MBB.addLiveIn(Reg);
2616
2617 // Decide whether we can add a kill flag to the use.
2618 bool CanKill = !isLiveIn;
2619 // Check if any subregister is live-in
2620 if (CanKill) {
2621 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2622 if (MRI.isLiveIn(*AReg)) {
2623 CanKill = false;
2624 break;
2625 }
2626 }
2627 }
2628
2629 // Do not set a kill flag on values that are also marked as live-in. This
2630 // happens with the @llvm-returnaddress intrinsic and with arguments
2631 // passed in callee saved registers.
2632 // Omitting the kill flags is conservatively correct even if the live-in
2633 // is not used after all.
2634 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2635 .setMIFlag(MachineInstr::FrameSetup);
2636 }
2637
2638 // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2639 // It can be done by spilling XMMs to stack frame.
2640 for (unsigned i = CSI.size(); i != 0; --i) {
2641 unsigned Reg = CSI[i-1].getReg();
2642 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2643 continue;
2644
2645 // If this is k-register make sure we lookup via the largest legal type.
2646 MVT VT = MVT::Other;
2647 if (X86::VK16RegClass.contains(Reg))
2648 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2649
2650 // Add the callee-saved register as live-in. It's killed at the spill.
2651 MBB.addLiveIn(Reg);
2652 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2653
2654 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
2655 TRI);
2656 --MI;
2657 MI->setFlag(MachineInstr::FrameSetup);
2658 ++MI;
2659 }
2660
2661 return true;
2662}
2663
2664void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2665 MachineBasicBlock::iterator MBBI,
2666 MachineInstr *CatchRet) const {
2667 // SEH shouldn't use catchret.
2668 assert(!isAsynchronousEHPersonality(classifyEHPersonality(((void)0)
2669 MBB.getParent()->getFunction().getPersonalityFn())) &&((void)0)
2670 "SEH should not use CATCHRET")((void)0);
2671 const DebugLoc &DL = CatchRet->getDebugLoc();
2672 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2673
2674 // Fill EAX/RAX with the address of the target block.
2675 if (STI.is64Bit()) {
2676 // LEA64r CatchRetTarget(%rip), %rax
2677 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2678 .addReg(X86::RIP)
2679 .addImm(0)
2680 .addReg(0)
2681 .addMBB(CatchRetTarget)
2682 .addReg(0);
2683 } else {
2684 // MOV32ri $CatchRetTarget, %eax
2685 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2686 .addMBB(CatchRetTarget);
2687 }
2688
2689 // Record that we've taken the address of CatchRetTarget and no longer just
2690 // reference it in a terminator.
2691 CatchRetTarget->setHasAddressTaken();
2692}
2693
2694bool X86FrameLowering::restoreCalleeSavedRegisters(
2695 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2696 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2697 if (CSI.empty())
2698 return false;
2699
2700 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2701 // Don't restore CSRs in 32-bit EH funclets. Matches
2702 // spillCalleeSavedRegisters.
2703 if (STI.is32Bit())
2704 return true;
2705 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2706 // funclets. emitEpilogue transforms these to normal jumps.
2707 if (MI->getOpcode() == X86::CATCHRET) {
2708 const Function &F = MBB.getParent()->getFunction();
2709 bool IsSEH = isAsynchronousEHPersonality(
2710 classifyEHPersonality(F.getPersonalityFn()));
2711 if (IsSEH)
2712 return true;
2713 }
2714 }
2715
2716 DebugLoc DL = MBB.findDebugLoc(MI);
2717
2718 // Reload XMMs from stack frame.
2719 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2720 unsigned Reg = CSI[i].getReg();
2721 if (X86::GR64RegClass.contains(Reg) ||
2722 X86::GR32RegClass.contains(Reg))
2723 continue;
2724
2725 // If this is k-register make sure we lookup via the largest legal type.
2726 MVT VT = MVT::Other;
2727 if (X86::VK16RegClass.contains(Reg))
2728 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2729
2730 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2731 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
2732 }
2733
2734 // POP GPRs.
2735 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2736 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2737 unsigned Reg = CSI[i].getReg();
2738 if (!X86::GR64RegClass.contains(Reg) &&
2739 !X86::GR32RegClass.contains(Reg))
2740 continue;
2741
2742 BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2743 .setMIFlag(MachineInstr::FrameDestroy);
2744 }
2745 return true;
2746}
2747
2748void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2749 BitVector &SavedRegs,
2750 RegScavenger *RS) const {
2751 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2752
2753 // Spill the BasePtr if it's used.
2754 if (TRI->hasBasePointer(MF)){
2755 Register BasePtr = TRI->getBaseRegister();
2756 if (STI.isTarget64BitILP32())
2757 BasePtr = getX86SubSuperRegister(BasePtr, 64);
2758 SavedRegs.set(BasePtr);
2759 }
2760}
2761
2762static bool
2763HasNestArgument(const MachineFunction *MF) {
2764 const Function &F = MF->getFunction();
2765 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
2766 I != E; I++) {
2767 if (I->hasNestAttr() && !I->use_empty())
2768 return true;
2769 }
2770 return false;
2771}
2772
2773/// GetScratchRegister - Get a temp register for performing work in the
2774/// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2775/// and the properties of the function either one or two registers will be
2776/// needed. Set primary to true for the first register, false for the second.
2777static unsigned
2778GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2779 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
2780
2781 // Erlang stuff.
2782 if (CallingConvention == CallingConv::HiPE) {
2783 if (Is64Bit)
2784 return Primary ? X86::R14 : X86::R13;
2785 else
2786 return Primary ? X86::EBX : X86::EDI;
2787 }
2788
2789 if (Is64Bit) {
2790 if (IsLP64)
2791 return Primary ? X86::R11 : X86::R12;
2792 else
2793 return Primary ? X86::R11D : X86::R12D;
2794 }
2795
2796 bool IsNested = HasNestArgument(&MF);
2797
2798 if (CallingConvention == CallingConv::X86_FastCall ||
2799 CallingConvention == CallingConv::Fast ||
2800 CallingConvention == CallingConv::Tail) {
2801 if (IsNested)
2802 report_fatal_error("Segmented stacks does not support fastcall with "
2803 "nested function.");
2804 return Primary ? X86::EAX : X86::ECX;
2805 }
2806 if (IsNested)
2807 return Primary ? X86::EDX : X86::EAX;
2808 return Primary ? X86::ECX : X86::EAX;
2809}
2810
2811// The stack limit in the TCB is set to this many bytes above the actual stack
2812// limit.
2813static const uint64_t kSplitStackAvailable = 256;
2814
2815void X86FrameLowering::adjustForSegmentedStacks(
2816 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2817 MachineFrameInfo &MFI = MF.getFrameInfo();
2818 uint64_t StackSize;
2819 unsigned TlsReg, TlsOffset;
2820 DebugLoc DL;
2821
2822 // To support shrink-wrapping we would need to insert the new blocks
2823 // at the right place and update the branches to PrologueMBB.
2824 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet")((void)0);
2825
2826 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2827 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&((void)0)
2828 "Scratch register is live-in")((void)0);
2829
2830 if (MF.getFunction().isVarArg())
2831 report_fatal_error("Segmented stacks do not support vararg functions.");
2832 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2833 !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2834 !STI.isTargetDragonFly())
2835 report_fatal_error("Segmented stacks not supported on this platform.");
2836
2837 // Eventually StackSize will be calculated by a link-time pass; which will
2838 // also decide whether checking code needs to be injected into this particular
2839 // prologue.
2840 StackSize = MFI.getStackSize();
2841
2842 // Do not generate a prologue for leaf functions with a stack of size zero.
2843 // For non-leaf functions we have to allow for the possibility that the
2844 // callis to a non-split function, as in PR37807. This function could also
2845 // take the address of a non-split function. When the linker tries to adjust
2846 // its non-existent prologue, it would fail with an error. Mark the object
2847 // file so that such failures are not errors. See this Go language bug-report
2848 // https://go-review.googlesource.com/c/go/+/148819/
2849 if (StackSize == 0 && !MFI.hasTailCall()) {
2850 MF.getMMI().setHasNosplitStack(true);
2851 return;
2852 }
2853
2854 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2855 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2856 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2857 bool IsNested = false;
2858
2859 // We need to know if the function has a nest argument only in 64 bit mode.
2860 if (Is64Bit)
2861 IsNested = HasNestArgument(&MF);
2862
2863 // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2864 // allocMBB needs to be last (terminating) instruction.
2865
2866 for (const auto &LI : PrologueMBB.liveins()) {
2867 allocMBB->addLiveIn(LI);
2868 checkMBB->addLiveIn(LI);
2869 }
2870
2871 if (IsNested)
2872 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2873
2874 MF.push_front(allocMBB);
2875 MF.push_front(checkMBB);
2876
2877 // When the frame size is less than 256 we just compare the stack
2878 // boundary directly to the value of the stack pointer, per gcc.
2879 bool CompareStackPointer = StackSize < kSplitStackAvailable;
2880
2881 // Read the limit off the current stacklet off the stack_guard location.
2882 if (Is64Bit) {
2883 if (STI.isTargetLinux()) {
2884 TlsReg = X86::FS;
2885 TlsOffset = IsLP64 ? 0x70 : 0x40;
2886 } else if (STI.isTargetDarwin()) {
2887 TlsReg = X86::GS;
2888 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2889 } else if (STI.isTargetWin64()) {
2890 TlsReg = X86::GS;
2891 TlsOffset = 0x28; // pvArbitrary, reserved for application use
2892 } else if (STI.isTargetFreeBSD()) {
2893 TlsReg = X86::FS;
2894 TlsOffset = 0x18;
2895 } else if (STI.isTargetDragonFly()) {
2896 TlsReg = X86::FS;
2897 TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2898 } else {
2899 report_fatal_error("Segmented stacks not supported on this platform.");
2900 }
2901
2902 if (CompareStackPointer)
2903 ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2904 else
2905 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2906 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2907
2908 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2909 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2910 } else {
2911 if (STI.isTargetLinux()) {
2912 TlsReg = X86::GS;
2913 TlsOffset = 0x30;
2914 } else if (STI.isTargetDarwin()) {
2915 TlsReg = X86::GS;
2916 TlsOffset = 0x48 + 90*4;
2917 } else if (STI.isTargetWin32()) {
2918 TlsReg = X86::FS;
2919 TlsOffset = 0x14; // pvArbitrary, reserved for application use
2920 } else if (STI.isTargetDragonFly()) {
2921 TlsReg = X86::FS;
2922 TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2923 } else if (STI.isTargetFreeBSD()) {
2924 report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2925 } else {
2926 report_fatal_error("Segmented stacks not supported on this platform.");
2927 }
2928
2929 if (CompareStackPointer)
2930 ScratchReg = X86::ESP;
2931 else
2932 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2933 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2934
2935 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2936 STI.isTargetDragonFly()) {
2937 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2938 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2939 } else if (STI.isTargetDarwin()) {
2940
2941 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2942 unsigned ScratchReg2;
2943 bool SaveScratch2;
2944 if (CompareStackPointer) {
2945 // The primary scratch register is available for holding the TLS offset.
2946 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2947 SaveScratch2 = false;
2948 } else {
2949 // Need to use a second register to hold the TLS offset
2950 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2951
2952 // Unfortunately, with fastcc the second scratch register may hold an
2953 // argument.
2954 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2955 }
2956
2957 // If Scratch2 is live-in then it needs to be saved.
2958 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&((void)0)
2959 "Scratch register is live-in and not saved")((void)0);
2960
2961 if (SaveScratch2)
2962 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2963 .addReg(ScratchReg2, RegState::Kill);
2964
2965 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2966 .addImm(TlsOffset);
2967 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2968 .addReg(ScratchReg)
2969 .addReg(ScratchReg2).addImm(1).addReg(0)
2970 .addImm(0)
2971 .addReg(TlsReg);
2972
2973 if (SaveScratch2)
2974 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2975 }
2976 }
2977
2978 // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2979 // It jumps to normal execution of the function body.
2980 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
2981
2982 // On 32 bit we first push the arguments size and then the frame size. On 64
2983 // bit, we pass the stack frame size in r10 and the argument size in r11.
2984 if (Is64Bit) {
2985 // Functions with nested arguments use R10, so it needs to be saved across
2986 // the call to _morestack
2987
2988 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2989 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2990 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2991 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2992 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2993
2994 if (IsNested)
2995 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2996
2997 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2998 .addImm(StackSize);
2999 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
3000 .addImm(X86FI->getArgumentStackSize());
3001 } else {
3002 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
3003 .addImm(X86FI->getArgumentStackSize());
3004 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
3005 .addImm(StackSize);
3006 }
3007
3008 // __morestack is in libgcc
3009 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
3010 // Under the large code model, we cannot assume that __morestack lives
3011 // within 2^31 bytes of the call site, so we cannot use pc-relative
3012 // addressing. We cannot perform the call via a temporary register,
3013 // as the rax register may be used to store the static chain, and all
3014 // other suitable registers may be either callee-save or used for
3015 // parameter passing. We cannot use the stack at this point either
3016 // because __morestack manipulates the stack directly.
3017 //
3018 // To avoid these issues, perform an indirect call via a read-only memory
3019 // location containing the address.
3020 //
3021 // This solution is not perfect, as it assumes that the .rodata section
3022 // is laid out within 2^31 bytes of each function body, but this seems
3023 // to be sufficient for JIT.
3024 // FIXME: Add retpoline support and remove the error here..
3025 if (STI.useIndirectThunkCalls())
3026 report_fatal_error("Emitting morestack calls on 64-bit with the large "
3027 "code model and thunks not yet implemented.");
3028 BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
3029 .addReg(X86::RIP)
3030 .addImm(0)
3031 .addReg(0)
3032 .addExternalSymbol("__morestack_addr")
3033 .addReg(0);
3034 MF.getMMI().setUsesMorestackAddr(true);
3035 } else {
3036 if (Is64Bit)
3037 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
3038 .addExternalSymbol("__morestack");
3039 else
3040 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
3041 .addExternalSymbol("__morestack");
3042 }
3043
3044 if (IsNested)
3045 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
3046 else
3047 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
3048
3049 allocMBB->addSuccessor(&PrologueMBB);
3050
3051 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
3052 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
3053
3054#ifdef EXPENSIVE_CHECKS
3055 MF.verify();
3056#endif
3057}
3058
3059/// Lookup an ERTS parameter in the !hipe.literals named metadata node.
3060/// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
3061/// to fields it needs, through a named metadata node "hipe.literals" containing
3062/// name-value pairs.
3063static unsigned getHiPELiteral(
3064 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
3065 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
3066 MDNode *Node = HiPELiteralsMD->getOperand(i);
3067 if (Node->getNumOperands() != 2) continue;
3068 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
3069 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
3070 if (!NodeName || !NodeVal) continue;
3071 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
3072 if (ValConst && NodeName->getString() == LiteralName) {
3073 return ValConst->getZExtValue();
3074 }
3075 }
3076
3077 report_fatal_error("HiPE literal " + LiteralName
3078 + " required but not provided");
3079}
3080
3081// Return true if there are no non-ehpad successors to MBB and there are no
3082// non-meta instructions between MBBI and MBB.end().
3083static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
3084 MachineBasicBlock::const_iterator MBBI) {
3085 return llvm::all_of(
3086 MBB.successors(),
3087 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
3088 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) {
3089 return MI.isMetaInstruction();
3090 });
3091}
3092
3093/// Erlang programs may need a special prologue to handle the stack size they
3094/// might need at runtime. That is because Erlang/OTP does not implement a C
3095/// stack but uses a custom implementation of hybrid stack/heap architecture.
3096/// (for more information see Eric Stenman's Ph.D. thesis:
3097/// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
3098///
3099/// CheckStack:
3100/// temp0 = sp - MaxStack
3101/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
3102/// OldStart:
3103/// ...
3104/// IncStack:
3105/// call inc_stack # doubles the stack space
3106/// temp0 = sp - MaxStack
3107/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
3108void X86FrameLowering::adjustForHiPEPrologue(
3109 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
3110 MachineFrameInfo &MFI = MF.getFrameInfo();
3111 DebugLoc DL;
3112
3113 // To support shrink-wrapping we would need to insert the new blocks
3114 // at the right place and update the branches to PrologueMBB.
3115 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet")((void)0);
3116
3117 // HiPE-specific values
3118 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
3119 ->getNamedMetadata("hipe.literals");
3120 if (!HiPELiteralsMD)
3121 report_fatal_error(
3122 "Can't generate HiPE prologue without runtime parameters");
3123 const unsigned HipeLeafWords
3124 = getHiPELiteral(HiPELiteralsMD,
3125 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
3126 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
3127 const unsigned Guaranteed = HipeLeafWords * SlotSize;
3128 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
3129 MF.getFunction().arg_size() - CCRegisteredArgs : 0;
3130 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
3131
3132 assert(STI.isTargetLinux() &&((void)0)
3133 "HiPE prologue is only supported on Linux operating systems.")((void)0);
3134
3135 // Compute the largest caller's frame that is needed to fit the callees'
3136 // frames. This 'MaxStack' is computed from:
3137 //
3138 // a) the fixed frame size, which is the space needed for all spilled temps,
3139 // b) outgoing on-stack parameter areas, and
3140 // c) the minimum stack space this function needs to make available for the
3141 // functions it calls (a tunable ABI property).
3142 if (MFI.hasCalls()) {
3143 unsigned MoreStackForCalls = 0;
3144
3145 for (auto &MBB : MF) {
3146 for (auto &MI : MBB) {
3147 if (!MI.isCall())
3148 continue;
3149
3150 // Get callee operand.
3151 const MachineOperand &MO = MI.getOperand(0);
3152
3153 // Only take account of global function calls (no closures etc.).
3154 if (!MO.isGlobal())
3155 continue;
3156
3157 const Function *F = dyn_cast<Function>(MO.getGlobal());
3158 if (!F)
3159 continue;
3160
3161 // Do not update 'MaxStack' for primitive and built-in functions
3162 // (encoded with names either starting with "erlang."/"bif_" or not
3163 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
3164 // "_", such as the BIF "suspend_0") as they are executed on another
3165 // stack.
3166 if (F->getName().find("erlang.") != StringRef::npos ||
3167 F->getName().find("bif_") != StringRef::npos ||
3168 F->getName().find_first_of("._") == StringRef::npos)
3169 continue;
3170
3171 unsigned CalleeStkArity =
3172 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
3173 if (HipeLeafWords - 1 > CalleeStkArity)
3174 MoreStackForCalls = std::max(MoreStackForCalls,
3175 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
3176 }
3177 }
3178 MaxStack += MoreStackForCalls;
3179 }
3180
3181 // If the stack frame needed is larger than the guaranteed then runtime checks
3182 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
3183 if (MaxStack > Guaranteed) {
3184 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
3185 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
3186
3187 for (const auto &LI : PrologueMBB.liveins()) {
3188 stackCheckMBB->addLiveIn(LI);
3189 incStackMBB->addLiveIn(LI);
3190 }
3191
3192 MF.push_front(incStackMBB);
3193 MF.push_front(stackCheckMBB);
3194
3195 unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
3196 unsigned LEAop, CMPop, CALLop;
3197 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
3198 if (Is64Bit) {
3199 SPReg = X86::RSP;
3200 PReg = X86::RBP;
3201 LEAop = X86::LEA64r;
3202 CMPop = X86::CMP64rm;
3203 CALLop = X86::CALL64pcrel32;
3204 } else {
3205 SPReg = X86::ESP;
3206 PReg = X86::EBP;
3207 LEAop = X86::LEA32r;
3208 CMPop = X86::CMP32rm;
3209 CALLop = X86::CALLpcrel32;
3210 }
3211
3212 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
3213 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&((void)0)
3214 "HiPE prologue scratch register is live-in")((void)0);
3215
3216 // Create new MBB for StackCheck:
3217 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
3218 SPReg, false, -MaxStack);
3219 // SPLimitOffset is in a fixed heap location (pointed by BP).
3220 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
3221 .addReg(ScratchReg), PReg, false, SPLimitOffset);
3222 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
3223
3224 // Create new MBB for IncStack:
3225 BuildMI(incStackMBB, DL, TII.get(CALLop)).
3226 addExternalSymbol("inc_stack_0");
3227 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
3228 SPReg, false, -MaxStack);
3229 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
3230 .addReg(ScratchReg), PReg, false, SPLimitOffset);
3231 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
3232
3233 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
3234 stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
3235 incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
3236 incStackMBB->addSuccessor(incStackMBB, {1, 100});
3237 }
3238#ifdef EXPENSIVE_CHECKS
3239 MF.verify();
3240#endif
3241}
3242
3243bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
3244 MachineBasicBlock::iterator MBBI,
3245 const DebugLoc &DL,
3246 int Offset) const {
3247 if (Offset <= 0)
3248 return false;
3249
3250 if (Offset % SlotSize)
3251 return false;
3252
3253 int NumPops = Offset / SlotSize;
3254 // This is only worth it if we have at most 2 pops.
3255 if (NumPops != 1 && NumPops != 2)
3256 return false;
3257
3258 // Handle only the trivial case where the adjustment directly follows
3259 // a call. This is the most common one, anyway.
3260 if (MBBI == MBB.begin())
3261 return false;
3262 MachineBasicBlock::iterator Prev = std::prev(MBBI);
3263 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
3264 return false;
3265
3266 unsigned Regs[2];
3267 unsigned FoundRegs = 0;
3268
3269 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3270 const MachineOperand &RegMask = Prev->getOperand(1);
3271
3272 auto &RegClass =
3273 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
3274 // Try to find up to NumPops free registers.
3275 for (auto Candidate : RegClass) {
3276 // Poor man's liveness:
3277 // Since we're immediately after a call, any register that is clobbered
3278 // by the call and not defined by it can be considered dead.
3279 if (!RegMask.clobbersPhysReg(Candidate))
3280 continue;
3281
3282 // Don't clobber reserved registers
3283 if (MRI.isReserved(Candidate))
3284 continue;
3285
3286 bool IsDef = false;
3287 for (const MachineOperand &MO : Prev->implicit_operands()) {
3288 if (MO.isReg() && MO.isDef() &&
3289 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
3290 IsDef = true;
3291 break;
3292 }
3293 }
3294
3295 if (IsDef)
3296 continue;
3297
3298 Regs[FoundRegs++] = Candidate;
3299 if (FoundRegs == (unsigned)NumPops)
3300 break;
3301 }
3302
3303 if (FoundRegs == 0)
3304 return false;
3305
3306 // If we found only one free register, but need two, reuse the same one twice.
3307 while (FoundRegs < (unsigned)NumPops)
3308 Regs[FoundRegs++] = Regs[0];
3309
3310 for (int i = 0; i < NumPops; ++i)
3311 BuildMI(MBB, MBBI, DL,
3312 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
3313
3314 return true;
3315}
3316
3317MachineBasicBlock::iterator X86FrameLowering::
3318eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
3319 MachineBasicBlock::iterator I) const {
3320 bool reserveCallFrame = hasReservedCallFrame(MF);
3321 unsigned Opcode = I->getOpcode();
3322 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
3323 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased.
3324 uint64_t Amount = TII.getFrameSize(*I);
3325 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
3326 I = MBB.erase(I);
3327 auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
3328
3329 // Try to avoid emitting dead SP adjustments if the block end is unreachable,
3330 // typically because the function is marked noreturn (abort, throw,
3331 // assert_fail, etc).
3332 if (isDestroy && blockEndIsUnreachable(MBB, I))
3333 return I;
3334
3335 if (!reserveCallFrame) {
3336 // If the stack pointer can be changed after prologue, turn the
3337 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
3338 // adjcallstackdown instruction into 'add ESP, <amt>'
3339
3340 // We need to keep the stack aligned properly. To do this, we round the
3341 // amount of space needed for the outgoing arguments up to the next
3342 // alignment boundary.
3343 Amount = alignTo(Amount, getStackAlign());
3344
3345 const Function &F = MF.getFunction();
3346 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3347 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves();
3348
3349 // If we have any exception handlers in this function, and we adjust
3350 // the SP before calls, we may need to indicate this to the unwinder
3351 // using GNU_ARGS_SIZE. Note that this may be necessary even when
3352 // Amount == 0, because the preceding function may have set a non-0
3353 // GNU_ARGS_SIZE.
3354 // TODO: We don't need to reset this between subsequent functions,
3355 // if it didn't change.
3356 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
3357
3358 if (HasDwarfEHHandlers && !isDestroy &&
3359 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
3360 BuildCFI(MBB, InsertPos, DL,
3361 MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
3362
3363 if (Amount == 0)
3364 return I;
3365
3366 // Factor out the amount that gets handled inside the sequence
3367 // (Pushes of argument for frame setup, callee pops for frame destroy)
3368 Amount -= InternalAmt;
3369
3370 // TODO: This is needed only if we require precise CFA.
3371 // If this is a callee-pop calling convention, emit a CFA adjust for
3372 // the amount the callee popped.
3373 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
3374 BuildCFI(MBB, InsertPos, DL,
3375 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
3376
3377 // Add Amount to SP to destroy a frame, or subtract to setup.
3378 int64_t StackAdjustment = isDestroy ? Amount : -Amount;
3379
3380 if (StackAdjustment) {
3381 // Merge with any previous or following adjustment instruction. Note: the
3382 // instructions merged with here do not have CFI, so their stack
3383 // adjustments do not feed into CfaAdjustment.
3384 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
3385 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
3386
3387 if (StackAdjustment) {
3388 if (!(F.hasMinSize() &&
3389 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
3390 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
3391 /*InEpilogue=*/false);
3392 }
3393 }
3394
3395 if (DwarfCFI && !hasFP(MF)) {
3396 // If we don't have FP, but need to generate unwind information,
3397 // we need to set the correct CFA offset after the stack adjustment.
3398 // How much we adjust the CFA offset depends on whether we're emitting
3399 // CFI only for EH purposes or for debugging. EH only requires the CFA
3400 // offset to be correct at each call site, while for debugging we want
3401 // it to be more precise.
3402
3403 int64_t CfaAdjustment = -StackAdjustment;
3404 // TODO: When not using precise CFA, we also need to adjust for the
3405 // InternalAmt here.
3406 if (CfaAdjustment) {
3407 BuildCFI(MBB, InsertPos, DL,
3408 MCCFIInstruction::createAdjustCfaOffset(nullptr,
3409 CfaAdjustment));
3410 }
3411 }
3412
3413 return I;
3414 }
3415
3416 if (InternalAmt) {
3417 MachineBasicBlock::iterator CI = I;
3418 MachineBasicBlock::iterator B = MBB.begin();
3419 while (CI != B && !std::prev(CI)->isCall())
3420 --CI;
3421 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
3422 }
3423
3424 return I;
3425}
3426
3427bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
3428 assert(MBB.getParent() && "Block is not attached to a function!")((void)0);
3429 const MachineFunction &MF = *MBB.getParent();
3430 if (!MBB.isLiveIn(X86::EFLAGS))
3431 return true;
3432
3433 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3434 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext();
3435}
3436
3437bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
3438 assert(MBB.getParent() && "Block is not attached to a function!")((void)0);
3439
3440 // Win64 has strict requirements in terms of epilogue and we are
3441 // not taking a chance at messing with them.
3442 // I.e., unless this block is already an exit block, we can't use
3443 // it as an epilogue.
3444 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
3445 return false;
3446
3447 // Swift async context epilogue has a BTR instruction that clobbers parts of
3448 // EFLAGS.
3449 const MachineFunction &MF = *MBB.getParent();
3450 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext())
3451 return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3452
3453 if (canUseLEAForSPInEpilogue(*MBB.getParent()))
3454 return true;
3455
3456 // If we cannot use LEA to adjust SP, we may need to use ADD, which
3457 // clobbers the EFLAGS. Check that we do not need to preserve it,
3458 // otherwise, conservatively assume this is not
3459 // safe to insert the epilogue here.
3460 return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3461}
3462
3463bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
3464 // If we may need to emit frameless compact unwind information, give
3465 // up as this is currently broken: PR25614.
3466 bool CompactUnwind =
3467 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() !=
3468 nullptr;
3469 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) ||
3470 !CompactUnwind) &&
3471 // The lowering of segmented stack and HiPE only support entry
3472 // blocks as prologue blocks: PR26107. This limitation may be
3473 // lifted if we fix:
3474 // - adjustForSegmentedStacks
3475 // - adjustForHiPEPrologue
3476 MF.getFunction().getCallingConv() != CallingConv::HiPE &&
3477 !MF.shouldSplitStack();
3478}
3479
3480MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
3481 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
3482 const DebugLoc &DL, bool RestoreSP) const {
3483 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env")((void)0);
3484 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32")((void)0);
3485 assert(STI.is32Bit() && !Uses64BitFramePtr &&((void)0)
3486 "restoring EBP/ESI on non-32-bit target")((void)0);
3487
3488 MachineFunction &MF = *MBB.getParent();
3489 Register FramePtr = TRI->getFrameRegister(MF);
3490 Register BasePtr = TRI->getBaseRegister();
3491 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
3492 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3493 MachineFrameInfo &MFI = MF.getFrameInfo();
3494
3495 // FIXME: Don't set FrameSetup flag in catchret case.
3496
3497 int FI = FuncInfo.EHRegNodeFrameIndex;
3498 int EHRegSize = MFI.getObjectSize(FI);
3499
3500 if (RestoreSP) {
3501 // MOV32rm -EHRegSize(%ebp), %esp
3502 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
3503 X86::EBP, true, -EHRegSize)
3504 .setMIFlag(MachineInstr::FrameSetup);
3505 }
3506
3507 Register UsedReg;
3508 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed();
3509 int EndOffset = -EHRegOffset - EHRegSize;
3510 FuncInfo.EHRegNodeEndOffset = EndOffset;
3511
3512 if (UsedReg == FramePtr) {
3513 // ADD $offset, %ebp
3514 unsigned ADDri = getADDriOpcode(false, EndOffset);
3515 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
3516 .addReg(FramePtr)
3517 .addImm(EndOffset)
3518 .setMIFlag(MachineInstr::FrameSetup)
3519 ->getOperand(3)
3520 .setIsDead();
3521 assert(EndOffset >= 0 &&((void)0)
3522 "end of registration object above normal EBP position!")((void)0);
3523 } else if (UsedReg == BasePtr) {
3524 // LEA offset(%ebp), %esi
3525 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
3526 FramePtr, false, EndOffset)
3527 .setMIFlag(MachineInstr::FrameSetup);
3528 // MOV32rm SavedEBPOffset(%esi), %ebp
3529 assert(X86FI->getHasSEHFramePtrSave())((void)0);
3530 int Offset =
3531 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
3532 .getFixed();
3533 assert(UsedReg == BasePtr)((void)0);
3534 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
3535 UsedReg, true, Offset)
3536 .setMIFlag(MachineInstr::FrameSetup);
3537 } else {
3538 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr")__builtin_unreachable();
3539 }
3540 return MBBI;
3541}
3542
3543int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
3544 return TRI->getSlotSize();
3545}
3546
3547Register
3548X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const {
3549 return TRI->getDwarfRegNum(StackPtr, true);
3550}
3551
3552namespace {
3553// Struct used by orderFrameObjects to help sort the stack objects.
3554struct X86FrameSortingObject {
3555 bool IsValid = false; // true if we care about this Object.
3556 unsigned ObjectIndex = 0; // Index of Object into MFI list.
3557 unsigned ObjectSize = 0; // Size of Object in bytes.
3558 Align ObjectAlignment = Align(1); // Alignment of Object in bytes.
3559 unsigned ObjectNumUses = 0; // Object static number of uses.
3560};
3561
3562// The comparison function we use for std::sort to order our local
3563// stack symbols. The current algorithm is to use an estimated
3564// "density". This takes into consideration the size and number of
3565// uses each object has in order to roughly minimize code size.
3566// So, for example, an object of size 16B that is referenced 5 times
3567// will get higher priority than 4 4B objects referenced 1 time each.
3568// It's not perfect and we may be able to squeeze a few more bytes out of
3569// it (for example : 0(esp) requires fewer bytes, symbols allocated at the
3570// fringe end can have special consideration, given their size is less
3571// important, etc.), but the algorithmic complexity grows too much to be
3572// worth the extra gains we get. This gets us pretty close.
3573// The final order leaves us with objects with highest priority going
3574// at the end of our list.
3575struct X86FrameSortingComparator {
3576 inline bool operator()(const X86FrameSortingObject &A,
3577 const X86FrameSortingObject &B) const {
3578 uint64_t DensityAScaled, DensityBScaled;
3579
3580 // For consistency in our comparison, all invalid objects are placed
3581 // at the end. This also allows us to stop walking when we hit the
3582 // first invalid item after it's all sorted.
3583 if (!A.IsValid)
3584 return false;
3585 if (!B.IsValid)
3586 return true;
3587
3588 // The density is calculated by doing :
3589 // (double)DensityA = A.ObjectNumUses / A.ObjectSize
3590 // (double)DensityB = B.ObjectNumUses / B.ObjectSize
3591 // Since this approach may cause inconsistencies in
3592 // the floating point <, >, == comparisons, depending on the floating
3593 // point model with which the compiler was built, we're going
3594 // to scale both sides by multiplying with
3595 // A.ObjectSize * B.ObjectSize. This ends up factoring away
3596 // the division and, with it, the need for any floating point
3597 // arithmetic.
3598 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
3599 static_cast<uint64_t>(B.ObjectSize);
3600 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
3601 static_cast<uint64_t>(A.ObjectSize);
3602
3603 // If the two densities are equal, prioritize highest alignment
3604 // objects. This allows for similar alignment objects
3605 // to be packed together (given the same density).
3606 // There's room for improvement here, also, since we can pack
3607 // similar alignment (different density) objects next to each
3608 // other to save padding. This will also require further
3609 // complexity/iterations, and the overall gain isn't worth it,
3610 // in general. Something to keep in mind, though.
3611 if (DensityAScaled == DensityBScaled)
3612 return A.ObjectAlignment < B.ObjectAlignment;
3613
3614 return DensityAScaled < DensityBScaled;
3615 }
3616};
3617} // namespace
3618
3619// Order the symbols in the local stack.
3620// We want to place the local stack objects in some sort of sensible order.
3621// The heuristic we use is to try and pack them according to static number
3622// of uses and size of object in order to minimize code size.
3623void X86FrameLowering::orderFrameObjects(
3624 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3625 const MachineFrameInfo &MFI = MF.getFrameInfo();
3626
3627 // Don't waste time if there's nothing to do.
3628 if (ObjectsToAllocate.empty())
3629 return;
3630
3631 // Create an array of all MFI objects. We won't need all of these
3632 // objects, but we're going to create a full array of them to make
3633 // it easier to index into when we're counting "uses" down below.
3634 // We want to be able to easily/cheaply access an object by simply
3635 // indexing into it, instead of having to search for it every time.
3636 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3637
3638 // Walk the objects we care about and mark them as such in our working
3639 // struct.
3640 for (auto &Obj : ObjectsToAllocate) {
3641 SortingObjects[Obj].IsValid = true;
3642 SortingObjects[Obj].ObjectIndex = Obj;
3643 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj);
3644 // Set the size.
3645 int ObjectSize = MFI.getObjectSize(Obj);
3646 if (ObjectSize == 0)
3647 // Variable size. Just use 4.
3648 SortingObjects[Obj].ObjectSize = 4;
3649 else
3650 SortingObjects[Obj].ObjectSize = ObjectSize;
3651 }
3652
3653 // Count the number of uses for each object.
3654 for (auto &MBB : MF) {
3655 for (auto &MI : MBB) {
3656 if (MI.isDebugInstr())
3657 continue;
3658 for (const MachineOperand &MO : MI.operands()) {
3659 // Check to see if it's a local stack symbol.
3660 if (!MO.isFI())
3661 continue;
3662 int Index = MO.getIndex();
3663 // Check to see if it falls within our range, and is tagged
3664 // to require ordering.
3665 if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3666 SortingObjects[Index].IsValid)
3667 SortingObjects[Index].ObjectNumUses++;
3668 }
3669 }
3670 }
3671
3672 // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3673 // info).
3674 llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
3675
3676 // Now modify the original list to represent the final order that
3677 // we want. The order will depend on whether we're going to access them
3678 // from the stack pointer or the frame pointer. For SP, the list should
3679 // end up with the END containing objects that we want with smaller offsets.
3680 // For FP, it should be flipped.
3681 int i = 0;
3682 for (auto &Obj : SortingObjects) {
3683 // All invalid items are sorted at the end, so it's safe to stop.
3684 if (!Obj.IsValid)
3685 break;
3686 ObjectsToAllocate[i++] = Obj.ObjectIndex;
3687 }
3688
3689 // Flip it if we're accessing off of the FP.
3690 if (!TRI->hasStackRealignment(MF) && hasFP(MF))
3691 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3692}
3693
3694
3695unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3696 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3697 unsigned Offset = 16;
3698 // RBP is immediately pushed.
3699 Offset += SlotSize;
3700 // All callee-saved registers are then pushed.
3701 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
3702 // Every funclet allocates enough stack space for the largest outgoing call.
3703 Offset += getWinEHFuncletFrameSize(MF);
3704 return Offset;
3705}
3706
3707void X86FrameLowering::processFunctionBeforeFrameFinalized(
3708 MachineFunction &MF, RegScavenger *RS) const {
3709 // Mark the function as not having WinCFI. We will set it back to true in
3710 // emitPrologue if it gets called and emits CFI.
3711 MF.setHasWinCFI(false);
3712
3713 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte
3714 // aligned. The format doesn't support misaligned stack adjustments.
3715 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI())
3716 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize));
3717
3718 // If this function isn't doing Win64-style C++ EH, we don't need to do
3719 // anything.
3720 if (STI.is64Bit() && MF.hasEHFunclets() &&
3721 classifyEHPersonality(MF.getFunction().getPersonalityFn()) ==
3722 EHPersonality::MSVC_CXX) {
3723 adjustFrameForMsvcCxxEh(MF);
3724 }
3725}
3726
3727void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const {
3728 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3729 // relative to RSP after the prologue. Find the offset of the last fixed
3730 // object, so that we can allocate a slot immediately following it. If there
3731 // were no fixed objects, use offset -SlotSize, which is immediately after the
3732 // return address. Fixed objects have negative frame indices.
3733 MachineFrameInfo &MFI = MF.getFrameInfo();
3734 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3735 int64_t MinFixedObjOffset = -SlotSize;
3736 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
3737 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
3738
3739 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3740 for (WinEHHandlerType &H : TBME.HandlerArray) {
3741 int FrameIndex = H.CatchObj.FrameIndex;
3742 if (FrameIndex != INT_MAX2147483647) {
3743 // Ensure alignment.
3744 unsigned Align = MFI.getObjectAlign(FrameIndex).value();
3745 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
3746 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
3747 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
3748 }
3749 }
3750 }
3751
3752 // Ensure alignment.
3753 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
3754 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
3755 int UnwindHelpFI =
3756 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
3757 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3758
3759 // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3760 // other frame setup instructions.
3761 MachineBasicBlock &MBB = MF.front();
3762 auto MBBI = MBB.begin();
3763 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3764 ++MBBI;
3765
3766 DebugLoc DL = MBB.findDebugLoc(MBBI);
3767 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
3768 UnwindHelpFI)
3769 .addImm(-2);
3770}
3771
3772const ReturnProtectorLowering *X86FrameLowering::getReturnProtector() const {
3773 return &RPL;
3774}
3775
3776void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3777 MachineFunction &MF, RegScavenger *RS) const {
3778 if (STI.is32Bit() && MF.hasEHFunclets())
3779 restoreWinEHStackPointersInParent(MF);
3780}
3781
3782void X86FrameLowering::restoreWinEHStackPointersInParent(
3783 MachineFunction &MF) const {
3784 // 32-bit functions have to restore stack pointers when control is transferred
3785 // back to the parent function. These blocks are identified as eh pads that
3786 // are not funclet entries.
3787 bool IsSEH = isAsynchronousEHPersonality(
3788 classifyEHPersonality(MF.getFunction().getPersonalityFn()));
3789 for (MachineBasicBlock &MBB : MF) {
3790 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry();
3791 if (NeedsRestore)
3792 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(),
3793 /*RestoreSP=*/IsSEH);
3794 }
3795}

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h

1//===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains types to represent alignments.
10// They are instrumented to guarantee some invariants are preserved and prevent
11// invalid manipulations.
12//
13// - Align represents an alignment in bytes, it is always set and always a valid
14// power of two, its minimum value is 1 which means no alignment requirements.
15//
16// - MaybeAlign is an optional type, it may be undefined or set. When it's set
17// you can get the underlying Align type by using the getValue() method.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_SUPPORT_ALIGNMENT_H_
22#define LLVM_SUPPORT_ALIGNMENT_H_
23
24#include "llvm/ADT/Optional.h"
25#include "llvm/Support/MathExtras.h"
26#include <cassert>
27#ifndef NDEBUG1
28#include <string>
29#endif // NDEBUG
30
31namespace llvm {
32
33#define ALIGN_CHECK_ISPOSITIVE(decl) \
34 assert(decl > 0 && (#decl " should be defined"))((void)0)
35
36/// This struct is a compact representation of a valid (non-zero power of two)
37/// alignment.
38/// It is suitable for use as static global constants.
39struct Align {
40private:
41 uint8_t ShiftValue = 0; /// The log2 of the required alignment.
42 /// ShiftValue is less than 64 by construction.
43
44 friend struct MaybeAlign;
45 friend unsigned Log2(Align);
46 friend bool operator==(Align Lhs, Align Rhs);
47 friend bool operator!=(Align Lhs, Align Rhs);
48 friend bool operator<=(Align Lhs, Align Rhs);
49 friend bool operator>=(Align Lhs, Align Rhs);
50 friend bool operator<(Align Lhs, Align Rhs);
51 friend bool operator>(Align Lhs, Align Rhs);
52 friend unsigned encode(struct MaybeAlign A);
53 friend struct MaybeAlign decodeMaybeAlign(unsigned Value);
54
55 /// A trivial type to allow construction of constexpr Align.
56 /// This is currently needed to workaround a bug in GCC 5.3 which prevents
57 /// definition of constexpr assign operators.
58 /// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic
59 /// FIXME: Remove this, make all assign operators constexpr and introduce user
60 /// defined literals when we don't have to support GCC 5.3 anymore.
61 /// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain
62 struct LogValue {
63 uint8_t Log;
64 };
65
66public:
67 /// Default is byte-aligned.
68 constexpr Align() = default;
69 /// Do not perform checks in case of copy/move construct/assign, because the
70 /// checks have been performed when building `Other`.
71 constexpr Align(const Align &Other) = default;
72 constexpr Align(Align &&Other) = default;
73 Align &operator=(const Align &Other) = default;
74 Align &operator=(Align &&Other) = default;
75
76 explicit Align(uint64_t Value) {
77 assert(Value > 0 && "Value must not be 0")((void)0);
78 assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2")((void)0);
79 ShiftValue = Log2_64(Value);
80 assert(ShiftValue < 64 && "Broken invariant")((void)0);
81 }
82
83 /// This is a hole in the type system and should not be abused.
84 /// Needed to interact with C for instance.
85 uint64_t value() const { return uint64_t(1) << ShiftValue; }
9
The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t'
86
87 /// Allow constructions of constexpr Align.
88 template <size_t kValue> constexpr static LogValue Constant() {
89 return LogValue{static_cast<uint8_t>(CTLog2<kValue>())};
90 }
91
92 /// Allow constructions of constexpr Align from types.
93 /// Compile time equivalent to Align(alignof(T)).
94 template <typename T> constexpr static LogValue Of() {
95 return Constant<std::alignment_of<T>::value>();
96 }
97
98 /// Constexpr constructor from LogValue type.
99 constexpr Align(LogValue CA) : ShiftValue(CA.Log) {}
100};
101
102/// Treats the value 0 as a 1, so Align is always at least 1.
103inline Align assumeAligned(uint64_t Value) {
104 return Value ? Align(Value) : Align();
105}
106
107/// This struct is a compact representation of a valid (power of two) or
108/// undefined (0) alignment.
109struct MaybeAlign : public llvm::Optional<Align> {
110private:
111 using UP = llvm::Optional<Align>;
112
113public:
114 /// Default is undefined.
115 MaybeAlign() = default;
116 /// Do not perform checks in case of copy/move construct/assign, because the
117 /// checks have been performed when building `Other`.
118 MaybeAlign(const MaybeAlign &Other) = default;
119 MaybeAlign &operator=(const MaybeAlign &Other) = default;
120 MaybeAlign(MaybeAlign &&Other) = default;
121 MaybeAlign &operator=(MaybeAlign &&Other) = default;
122
123 /// Use llvm::Optional<Align> constructor.
124 using UP::UP;
125
126 explicit MaybeAlign(uint64_t Value) {
127 assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&((void)0)
128 "Alignment is neither 0 nor a power of 2")((void)0);
129 if (Value)
130 emplace(Value);
131 }
132
133 /// For convenience, returns a valid alignment or 1 if undefined.
134 Align valueOrOne() const { return hasValue() ? getValue() : Align(); }
135};
136
137/// Checks that SizeInBytes is a multiple of the alignment.
138inline bool isAligned(Align Lhs, uint64_t SizeInBytes) {
139 return SizeInBytes % Lhs.value() == 0;
140}
141
142/// Checks that Addr is a multiple of the alignment.
143inline bool isAddrAligned(Align Lhs, const void *Addr) {
144 return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr));
145}
146
147/// Returns a multiple of A needed to store `Size` bytes.
148inline uint64_t alignTo(uint64_t Size, Align A) {
149 const uint64_t Value = A.value();
150 // The following line is equivalent to `(Size + Value - 1) / Value * Value`.
151
152 // The division followed by a multiplication can be thought of as a right
153 // shift followed by a left shift which zeros out the extra bits produced in
154 // the bump; `~(Value - 1)` is a mask where all those bits being zeroed out
155 // are just zero.
156
157 // Most compilers can generate this code but the pattern may be missed when
158 // multiple functions gets inlined.
159 return (Size + Value - 1) & ~(Value - 1U);
160}
161
162/// If non-zero \p Skew is specified, the return value will be a minimal integer
163/// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for
164/// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p
165/// Skew mod \p A'.
166///
167/// Examples:
168/// \code
169/// alignTo(5, Align(8), 7) = 7
170/// alignTo(17, Align(8), 1) = 17
171/// alignTo(~0LL, Align(8), 3) = 3
172/// \endcode
173inline uint64_t alignTo(uint64_t Size, Align A, uint64_t Skew) {
174 const uint64_t Value = A.value();
175 Skew %= Value;
176 return ((Size + Value - 1 - Skew) & ~(Value - 1U)) + Skew;
177}
178
179/// Returns a multiple of A needed to store `Size` bytes.
180/// Returns `Size` if current alignment is undefined.
181inline uint64_t alignTo(uint64_t Size, MaybeAlign A) {
182 return A ? alignTo(Size, A.getValue()) : Size;
183}
184
185/// Aligns `Addr` to `Alignment` bytes, rounding up.
186inline uintptr_t alignAddr(const void *Addr, Align Alignment) {
187 uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr);
188 assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=((void)0)
189 ArithAddr &&((void)0)
190 "Overflow")((void)0);
191 return alignTo(ArithAddr, Alignment);
192}
193
194/// Returns the offset to the next integer (mod 2**64) that is greater than
195/// or equal to \p Value and is a multiple of \p Align.
196inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) {
197 return alignTo(Value, Alignment) - Value;
198}
199
200/// Returns the necessary adjustment for aligning `Addr` to `Alignment`
201/// bytes, rounding up.
202inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) {
203 return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment);
204}
205
206/// Returns the log2 of the alignment.
207inline unsigned Log2(Align A) { return A.ShiftValue; }
208
209/// Returns the alignment that satisfies both alignments.
210/// Same semantic as MinAlign.
211inline Align commonAlignment(Align A, Align B) { return std::min(A, B); }
212
213/// Returns the alignment that satisfies both alignments.
214/// Same semantic as MinAlign.
215inline Align commonAlignment(Align A, uint64_t Offset) {
216 return Align(MinAlign(A.value(), Offset));
217}
218
219/// Returns the alignment that satisfies both alignments.
220/// Same semantic as MinAlign.
221inline MaybeAlign commonAlignment(MaybeAlign A, MaybeAlign B) {
222 return A && B ? commonAlignment(*A, *B) : A ? A : B;
223}
224
225/// Returns the alignment that satisfies both alignments.
226/// Same semantic as MinAlign.
227inline MaybeAlign commonAlignment(MaybeAlign A, uint64_t Offset) {
228 return MaybeAlign(MinAlign((*A).value(), Offset));
229}
230
231/// Returns a representation of the alignment that encodes undefined as 0.
232inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; }
233
234/// Dual operation of the encode function above.
235inline MaybeAlign decodeMaybeAlign(unsigned Value) {
236 if (Value == 0)
237 return MaybeAlign();
238 Align Out;
239 Out.ShiftValue = Value - 1;
240 return Out;
241}
242
243/// Returns a representation of the alignment, the encoded value is positive by
244/// definition.
245inline unsigned encode(Align A) { return encode(MaybeAlign(A)); }
246
247/// Comparisons between Align and scalars. Rhs must be positive.
248inline bool operator==(Align Lhs, uint64_t Rhs) {
249 ALIGN_CHECK_ISPOSITIVE(Rhs);
250 return Lhs.value() == Rhs;
251}
252inline bool operator!=(Align Lhs, uint64_t Rhs) {
253 ALIGN_CHECK_ISPOSITIVE(Rhs);
254 return Lhs.value() != Rhs;
255}
256inline bool operator<=(Align Lhs, uint64_t Rhs) {
257 ALIGN_CHECK_ISPOSITIVE(Rhs);
258 return Lhs.value() <= Rhs;
259}
260inline bool operator>=(Align Lhs, uint64_t Rhs) {
261 ALIGN_CHECK_ISPOSITIVE(Rhs);
262 return Lhs.value() >= Rhs;
263}
264inline bool operator<(Align Lhs, uint64_t Rhs) {
265 ALIGN_CHECK_ISPOSITIVE(Rhs);
266 return Lhs.value() < Rhs;
267}
268inline bool operator>(Align Lhs, uint64_t Rhs) {
269 ALIGN_CHECK_ISPOSITIVE(Rhs);
270 return Lhs.value() > Rhs;
271}
272
273/// Comparisons between MaybeAlign and scalars.
274inline bool operator==(MaybeAlign Lhs, uint64_t Rhs) {
275 return Lhs ? (*Lhs).value() == Rhs : Rhs == 0;
276}
277inline bool operator!=(MaybeAlign Lhs, uint64_t Rhs) {
278 return Lhs ? (*Lhs).value() != Rhs : Rhs != 0;
279}
280
281/// Comparisons operators between Align.
282inline bool operator==(Align Lhs, Align Rhs) {
283 return Lhs.ShiftValue == Rhs.ShiftValue;
284}
285inline bool operator!=(Align Lhs, Align Rhs) {
286 return Lhs.ShiftValue != Rhs.ShiftValue;
287}
288inline bool operator<=(Align Lhs, Align Rhs) {
289 return Lhs.ShiftValue <= Rhs.ShiftValue;
290}
291inline bool operator>=(Align Lhs, Align Rhs) {
292 return Lhs.ShiftValue >= Rhs.ShiftValue;
293}
294inline bool operator<(Align Lhs, Align Rhs) {
295 return Lhs.ShiftValue < Rhs.ShiftValue;
296}
297inline bool operator>(Align Lhs, Align Rhs) {
298 return Lhs.ShiftValue > Rhs.ShiftValue;
299}
300
301// Don't allow relational comparisons with MaybeAlign.
302bool operator<=(Align Lhs, MaybeAlign Rhs) = delete;
303bool operator>=(Align Lhs, MaybeAlign Rhs) = delete;
304bool operator<(Align Lhs, MaybeAlign Rhs) = delete;
305bool operator>(Align Lhs, MaybeAlign Rhs) = delete;
306
307bool operator<=(MaybeAlign Lhs, Align Rhs) = delete;
308bool operator>=(MaybeAlign Lhs, Align Rhs) = delete;
309bool operator<(MaybeAlign Lhs, Align Rhs) = delete;
310bool operator>(MaybeAlign Lhs, Align Rhs) = delete;
311
312bool operator<=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
313bool operator>=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
314bool operator<(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
315bool operator>(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
316
317inline Align operator*(Align Lhs, uint64_t Rhs) {
318 assert(Rhs > 0 && "Rhs must be positive")((void)0);
319 return Align(Lhs.value() * Rhs);
320}
321
322inline MaybeAlign operator*(MaybeAlign Lhs, uint64_t Rhs) {
323 assert(Rhs > 0 && "Rhs must be positive")((void)0);
324 return Lhs ? Lhs.getValue() * Rhs : MaybeAlign();
325}
326
327inline Align operator/(Align Lhs, uint64_t Divisor) {
328 assert(llvm::isPowerOf2_64(Divisor) &&((void)0)
329 "Divisor must be positive and a power of 2")((void)0);
330 assert(Lhs != 1 && "Can't halve byte alignment")((void)0);
331 return Align(Lhs.value() / Divisor);
332}
333
334inline MaybeAlign operator/(MaybeAlign Lhs, uint64_t Divisor) {
335 assert(llvm::isPowerOf2_64(Divisor) &&((void)0)
336 "Divisor must be positive and a power of 2")((void)0);
337 return Lhs ? Lhs.getValue() / Divisor : MaybeAlign();
338}
339
340inline Align max(MaybeAlign Lhs, Align Rhs) {
341 return Lhs && *Lhs > Rhs ? *Lhs : Rhs;
342}
343
344inline Align max(Align Lhs, MaybeAlign Rhs) {
345 return Rhs && *Rhs > Lhs ? *Rhs : Lhs;
346}
347
348#ifndef NDEBUG1
349// For usage in LLVM_DEBUG macros.
350inline std::string DebugStr(const Align &A) {
351 return std::to_string(A.value());
352}
353// For usage in LLVM_DEBUG macros.
354inline std::string DebugStr(const MaybeAlign &MA) {
355 if (MA)
356 return std::to_string(MA->value());
357 return "None";
358}
359#endif // NDEBUG
360
361#undef ALIGN_CHECK_ISPOSITIVE
362
363} // namespace llvm
364
365#endif // LLVM_SUPPORT_ALIGNMENT_H_