Bug Summary

File:src/gnu/usr.bin/binutils/gdb/values.c
Warning:line 1196, column 7
Value stored to 'len' during its initialization is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name values.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -pic-is-pie -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/binutils/obj/gdb -resource-dir /usr/local/lib/clang/13.0.0 -D PIE_DEFAULT=1 -I . -I /usr/src/gnu/usr.bin/binutils/gdb -I /usr/src/gnu/usr.bin/binutils/gdb/config -D LOCALEDIR="/usr/share/locale" -D HAVE_CONFIG_H -I /usr/src/gnu/usr.bin/binutils/gdb/../include/opcode -I ../bfd -I /usr/src/gnu/usr.bin/binutils/gdb/../bfd -I /usr/src/gnu/usr.bin/binutils/gdb/../include -I ../intl -I /usr/src/gnu/usr.bin/binutils/gdb/../intl -D MI_OUT=1 -D TUI=1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -fdebug-compilation-dir=/usr/src/gnu/usr.bin/binutils/obj/gdb -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fgnuc-version=4.2.1 -fcommon -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c /usr/src/gnu/usr.bin/binutils/gdb/values.c
1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24#include "defs.h"
25#include "gdb_string.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "value.h"
29#include "gdbcore.h"
30#include "command.h"
31#include "gdbcmd.h"
32#include "target.h"
33#include "language.h"
34#include "scm-lang.h"
35#include "demangle.h"
36#include "doublest.h"
37#include "gdb_assert.h"
38#include "regcache.h"
39#include "block.h"
40
41/* Prototypes for exported functions. */
42
43void _initialize_values (void);
44
45/* Prototypes for local functions. */
46
47static void show_values (char *, int);
48
49static void show_convenience (char *, int);
50
51
52/* The value-history records all the values printed
53 by print commands during this session. Each chunk
54 records 60 consecutive values. The first chunk on
55 the chain records the most recent values.
56 The total number of values is in value_history_count. */
57
58#define VALUE_HISTORY_CHUNK60 60
59
60struct value_history_chunk
61 {
62 struct value_history_chunk *next;
63 struct value *values[VALUE_HISTORY_CHUNK60];
64 };
65
66/* Chain of chunks now in use. */
67
68static struct value_history_chunk *value_history_chain;
69
70static int value_history_count; /* Abs number of last entry stored */
71
72/* List of all value objects currently allocated
73 (except for those released by calls to release_value)
74 This is so they can be freed after each command. */
75
76static struct value *all_values;
77
78/* Allocate a value that has the correct length for type TYPE. */
79
80struct value *
81allocate_value (struct type *type)
82{
83 struct value *val;
84 struct type *atype = check_typedef (type);
85
86 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype)(atype)->length);
87 VALUE_NEXT (val)(val)->next = all_values;
88 all_values = val;
89 VALUE_TYPE (val)(val)->type = type;
90 VALUE_ENCLOSING_TYPE (val)(val)->enclosing_type = type;
91 VALUE_LVAL (val)(val)->lval = not_lval;
92 VALUE_ADDRESS (val)(val)->location.address = 0;
93 VALUE_FRAME_ID (val)((val)->frame_id) = null_frame_id;
94 VALUE_OFFSET (val)(val)->offset = 0;
95 VALUE_BITPOS (val)(val)->bitpos = 0;
96 VALUE_BITSIZE (val)(val)->bitsize = 0;
97 VALUE_REGNO (val)(val)->regno = -1;
98 VALUE_LAZY (val)(val)->lazy = 0;
99 VALUE_OPTIMIZED_OUT (val)((val)->optimized_out) = 0;
100 VALUE_BFD_SECTION (val)((val)->bfd_section) = NULL((void*)0);
101 VALUE_EMBEDDED_OFFSET (val)((val)->embedded_offset) = 0;
102 VALUE_POINTED_TO_OFFSET (val)((val)->pointed_to_offset) = 0;
103 val->modifiable = 1;
104 return val;
105}
106
107/* Allocate a value that has the correct length
108 for COUNT repetitions type TYPE. */
109
110struct value *
111allocate_repeat_value (struct type *type, int count)
112{
113 int low_bound = current_language->string_lower_bound; /* ??? */
114 /* FIXME-type-allocation: need a way to free this type when we are
115 done with it. */
116 struct type *range_type
117 = create_range_type ((struct type *) NULL((void*)0), builtin_type_int,
118 low_bound, count + low_bound - 1);
119 /* FIXME-type-allocation: need a way to free this type when we are
120 done with it. */
121 return allocate_value (create_array_type ((struct type *) NULL((void*)0),
122 type, range_type));
123}
124
125/* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
128struct value *
129value_mark (void)
130{
131 return all_values;
132}
133
134/* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
136void
137value_free_to_mark (struct value *mark)
138{
139 struct value *val;
140 struct value *next;
141
142 for (val = all_values; val && val != mark; val = next)
143 {
144 next = VALUE_NEXT (val)(val)->next;
145 value_free (val)xfree (val);
146 }
147 all_values = val;
148}
149
150/* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
152
153void
154free_all_values (void)
155{
156 struct value *val;
157 struct value *next;
158
159 for (val = all_values; val; val = next)
160 {
161 next = VALUE_NEXT (val)(val)->next;
162 value_free (val)xfree (val);
163 }
164
165 all_values = 0;
166}
167
168/* Remove VAL from the chain all_values
169 so it will not be freed automatically. */
170
171void
172release_value (struct value *val)
173{
174 struct value *v;
175
176 if (all_values == val)
177 {
178 all_values = val->next;
179 return;
180 }
181
182 for (v = all_values; v; v = v->next)
183 {
184 if (v->next == val)
185 {
186 v->next = val->next;
187 break;
188 }
189 }
190}
191
192/* Release all values up to mark */
193struct value *
194value_release_to_mark (struct value *mark)
195{
196 struct value *val;
197 struct value *next;
198
199 for (val = next = all_values; next; next = VALUE_NEXT (next)(next)->next)
200 if (VALUE_NEXT (next)(next)->next == mark)
201 {
202 all_values = VALUE_NEXT (next)(next)->next;
203 VALUE_NEXT (next)(next)->next = 0;
204 return val;
205 }
206 all_values = 0;
207 return val;
208}
209
210/* Return a copy of the value ARG.
211 It contains the same contents, for same memory address,
212 but it's a different block of storage. */
213
214struct value *
215value_copy (struct value *arg)
216{
217 struct type *encl_type = VALUE_ENCLOSING_TYPE (arg)(arg)->enclosing_type;
218 struct value *val = allocate_value (encl_type);
219 VALUE_TYPE (val)(val)->type = VALUE_TYPE (arg)(arg)->type;
220 VALUE_LVAL (val)(val)->lval = VALUE_LVAL (arg)(arg)->lval;
221 VALUE_ADDRESS (val)(val)->location.address = VALUE_ADDRESS (arg)(arg)->location.address;
222 VALUE_OFFSET (val)(val)->offset = VALUE_OFFSET (arg)(arg)->offset;
223 VALUE_BITPOS (val)(val)->bitpos = VALUE_BITPOS (arg)(arg)->bitpos;
224 VALUE_BITSIZE (val)(val)->bitsize = VALUE_BITSIZE (arg)(arg)->bitsize;
225 VALUE_FRAME_ID (val)((val)->frame_id) = VALUE_FRAME_ID (arg)((arg)->frame_id);
226 VALUE_REGNO (val)(val)->regno = VALUE_REGNO (arg)(arg)->regno;
227 VALUE_LAZY (val)(val)->lazy = VALUE_LAZY (arg)(arg)->lazy;
228 VALUE_OPTIMIZED_OUT (val)((val)->optimized_out) = VALUE_OPTIMIZED_OUT (arg)((arg)->optimized_out);
229 VALUE_EMBEDDED_OFFSET (val)((val)->embedded_offset) = VALUE_EMBEDDED_OFFSET (arg)((arg)->embedded_offset);
230 VALUE_POINTED_TO_OFFSET (val)((val)->pointed_to_offset) = VALUE_POINTED_TO_OFFSET (arg)((arg)->pointed_to_offset);
231 VALUE_BFD_SECTION (val)((val)->bfd_section) = VALUE_BFD_SECTION (arg)((arg)->bfd_section);
232 val->modifiable = arg->modifiable;
233 if (!VALUE_LAZY (val)(val)->lazy)
234 {
235 memcpy (VALUE_CONTENTS_ALL_RAW (val)((char *) (val)->aligner.contents), VALUE_CONTENTS_ALL_RAW (arg)((char *) (arg)->aligner.contents),
236 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg))((arg)->enclosing_type)->length);
237
238 }
239 return val;
240}
241
242/* Access to the value history. */
243
244/* Record a new value in the value history.
245 Returns the absolute history index of the entry.
246 Result of -1 indicates the value was not saved; otherwise it is the
247 value history index of this new item. */
248
249int
250record_latest_value (struct value *val)
251{
252 int i;
253
254 /* We don't want this value to have anything to do with the inferior anymore.
255 In particular, "set $1 = 50" should not affect the variable from which
256 the value was taken, and fast watchpoints should be able to assume that
257 a value on the value history never changes. */
258 if (VALUE_LAZY (val)(val)->lazy)
259 value_fetch_lazy (val);
260 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
261 from. This is a bit dubious, because then *&$1 does not just return $1
262 but the current contents of that location. c'est la vie... */
263 val->modifiable = 0;
264 release_value (val);
265
266 /* Here we treat value_history_count as origin-zero
267 and applying to the value being stored now. */
268
269 i = value_history_count % VALUE_HISTORY_CHUNK60;
270 if (i == 0)
271 {
272 struct value_history_chunk *new
273 = (struct value_history_chunk *)
274 xmalloc (sizeof (struct value_history_chunk));
275 memset (new->values, 0, sizeof new->values);
276 new->next = value_history_chain;
277 value_history_chain = new;
278 }
279
280 value_history_chain->values[i] = val;
281
282 /* Now we regard value_history_count as origin-one
283 and applying to the value just stored. */
284
285 return ++value_history_count;
286}
287
288/* Return a copy of the value in the history with sequence number NUM. */
289
290struct value *
291access_value_history (int num)
292{
293 struct value_history_chunk *chunk;
294 int i;
295 int absnum = num;
296
297 if (absnum <= 0)
298 absnum += value_history_count;
299
300 if (absnum <= 0)
301 {
302 if (num == 0)
303 error ("The history is empty.");
304 else if (num == 1)
305 error ("There is only one value in the history.");
306 else
307 error ("History does not go back to $$%d.", -num);
308 }
309 if (absnum > value_history_count)
310 error ("History has not yet reached $%d.", absnum);
311
312 absnum--;
313
314 /* Now absnum is always absolute and origin zero. */
315
316 chunk = value_history_chain;
317 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK60 - absnum / VALUE_HISTORY_CHUNK60;
318 i > 0; i--)
319 chunk = chunk->next;
320
321 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK60]);
322}
323
324/* Clear the value history entirely.
325 Must be done when new symbol tables are loaded,
326 because the type pointers become invalid. */
327
328void
329clear_value_history (void)
330{
331 struct value_history_chunk *next;
332 int i;
333 struct value *val;
334
335 while (value_history_chain)
336 {
337 for (i = 0; i < VALUE_HISTORY_CHUNK60; i++)
338 if ((val = value_history_chain->values[i]) != NULL((void*)0))
339 xfree (val);
340 next = value_history_chain->next;
341 xfree (value_history_chain);
342 value_history_chain = next;
343 }
344 value_history_count = 0;
345}
346
347static void
348show_values (char *num_exp, int from_tty)
349{
350 int i;
351 struct value *val;
352 static int num = 1;
353
354 if (num_exp)
355 {
356 /* "info history +" should print from the stored position.
357 "info history <exp>" should print around value number <exp>. */
358 if (num_exp[0] != '+' || num_exp[1] != '\0')
359 num = parse_and_eval_long (num_exp) - 5;
360 }
361 else
362 {
363 /* "info history" means print the last 10 values. */
364 num = value_history_count - 9;
365 }
366
367 if (num <= 0)
368 num = 1;
369
370 for (i = num; i < num + 10 && i <= value_history_count; i++)
371 {
372 val = access_value_history (i);
373 printf_filtered ("$%d = ", i);
374 value_print (val, gdb_stdout, 0, Val_pretty_default);
375 printf_filtered ("\n");
376 }
377
378 /* The next "info history +" should start after what we just printed. */
379 num += 10;
380
381 /* Hitting just return after this command should do the same thing as
382 "info history +". If num_exp is null, this is unnecessary, since
383 "info history +" is not useful after "info history". */
384 if (from_tty && num_exp)
385 {
386 num_exp[0] = '+';
387 num_exp[1] = '\0';
388 }
389}
390
391/* Internal variables. These are variables within the debugger
392 that hold values assigned by debugger commands.
393 The user refers to them with a '$' prefix
394 that does not appear in the variable names stored internally. */
395
396static struct internalvar *internalvars;
397
398/* Look up an internal variable with name NAME. NAME should not
399 normally include a dollar sign.
400
401 If the specified internal variable does not exist,
402 one is created, with a void value. */
403
404struct internalvar *
405lookup_internalvar (char *name)
406{
407 struct internalvar *var;
408
409 for (var = internalvars; var; var = var->next)
410 if (strcmp (var->name, name) == 0)
411 return var;
412
413 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
414 var->name = concat (name, NULL((void*)0));
415 var->value = allocate_value (builtin_type_void);
416 release_value (var->value);
417 var->next = internalvars;
418 internalvars = var;
419 return var;
420}
421
422struct value *
423value_of_internalvar (struct internalvar *var)
424{
425 struct value *val;
426
427 val = value_copy (var->value);
428 if (VALUE_LAZY (val)(val)->lazy)
429 value_fetch_lazy (val);
430 VALUE_LVAL (val)(val)->lval = lval_internalvar;
431 VALUE_INTERNALVAR (val)(val)->location.internalvar = var;
432 return val;
433}
434
435void
436set_internalvar_component (struct internalvar *var, int offset, int bitpos,
437 int bitsize, struct value *newval)
438{
439 char *addr = VALUE_CONTENTS (var->value)((void)((var->value)->lazy && value_fetch_lazy(
var->value)), ((char *) (var->value)->aligner.contents
+ (var->value)->embedded_offset))
+ offset;
440
441 if (bitsize)
442 modify_field (addr, value_as_long (newval),
443 bitpos, bitsize);
444 else
445 memcpy (addr, VALUE_CONTENTS (newval)((void)((newval)->lazy && value_fetch_lazy(newval)
), ((char *) (newval)->aligner.contents + (newval)->embedded_offset
))
, TYPE_LENGTH (VALUE_TYPE (newval))((newval)->type)->length);
446}
447
448void
449set_internalvar (struct internalvar *var, struct value *val)
450{
451 struct value *newval;
452
453 newval = value_copy (val);
454 newval->modifiable = 1;
455
456 /* Force the value to be fetched from the target now, to avoid problems
457 later when this internalvar is referenced and the target is gone or
458 has changed. */
459 if (VALUE_LAZY (newval)(newval)->lazy)
460 value_fetch_lazy (newval);
461
462 /* Begin code which must not call error(). If var->value points to
463 something free'd, an error() obviously leaves a dangling pointer.
464 But we also get a danling pointer if var->value points to
465 something in the value chain (i.e., before release_value is
466 called), because after the error free_all_values will get called before
467 long. */
468 xfree (var->value);
469 var->value = newval;
470 release_value (newval);
471 /* End code which must not call error(). */
472}
473
474char *
475internalvar_name (struct internalvar *var)
476{
477 return var->name;
478}
479
480/* Free all internalvars. Done when new symtabs are loaded,
481 because that makes the values invalid. */
482
483void
484clear_internalvars (void)
485{
486 struct internalvar *var;
487
488 while (internalvars)
489 {
490 var = internalvars;
491 internalvars = var->next;
492 xfree (var->name);
493 xfree (var->value);
494 xfree (var);
495 }
496}
497
498static void
499show_convenience (char *ignore, int from_tty)
500{
501 struct internalvar *var;
502 int varseen = 0;
503
504 for (var = internalvars; var; var = var->next)
505 {
506 if (!varseen)
507 {
508 varseen = 1;
509 }
510 printf_filtered ("$%s = ", var->name);
511 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
512 printf_filtered ("\n");
513 }
514 if (!varseen)
515 printf_unfiltered ("No debugger convenience variables now defined.\n\
516Convenience variables have names starting with \"$\";\n\
517use \"set\" as in \"set $foo = 5\" to define them.\n");
518}
519
520/* Extract a value as a C number (either long or double).
521 Knows how to convert fixed values to double, or
522 floating values to long.
523 Does not deallocate the value. */
524
525LONGESTlong
526value_as_long (struct value *val)
527{
528 /* This coerces arrays and functions, which is necessary (e.g.
529 in disassemble_command). It also dereferences references, which
530 I suspect is the most logical thing to do. */
531 COERCE_ARRAY (val)do { do { struct type *value_type_arg_tmp = check_typedef ((val
)->type); if ((value_type_arg_tmp)->main_type->code ==
TYPE_CODE_REF) val = value_at_lazy ((value_type_arg_tmp)->
main_type->target_type, unpack_pointer ((val)->type, ((
void)((val)->lazy && value_fetch_lazy(val)), ((char
*) (val)->aligner.contents + (val)->embedded_offset)))
, ((val)->bfd_section)); } while (0); if (current_language
->c_style_arrays && ((val)->type)->main_type
->code == TYPE_CODE_ARRAY) val = value_coerce_array (val);
if (((val)->type)->main_type->code == TYPE_CODE_FUNC
) val = value_coerce_function (val); } while (0)
;
532 return unpack_long (VALUE_TYPE (val)(val)->type, VALUE_CONTENTS (val)((void)((val)->lazy && value_fetch_lazy(val)), ((char
*) (val)->aligner.contents + (val)->embedded_offset))
);
533}
534
535DOUBLEST
536value_as_double (struct value *val)
537{
538 DOUBLEST foo;
539 int inv;
540
541 foo = unpack_double (VALUE_TYPE (val)(val)->type, VALUE_CONTENTS (val)((void)((val)->lazy && value_fetch_lazy(val)), ((char
*) (val)->aligner.contents + (val)->embedded_offset))
, &inv);
542 if (inv)
543 error ("Invalid floating value found in program.");
544 return foo;
545}
546/* Extract a value as a C pointer. Does not deallocate the value.
547 Note that val's type may not actually be a pointer; value_as_long
548 handles all the cases. */
549CORE_ADDR
550value_as_address (struct value *val)
551{
552 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
553 whether we want this to be true eventually. */
554#if 0
555 /* ADDR_BITS_REMOVE is wrong if we are being called for a
556 non-address (e.g. argument to "signal", "info break", etc.), or
557 for pointers to char, in which the low bits *are* significant. */
558 return ADDR_BITS_REMOVE (value_as_long (val))(gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val
)))
;
559#else
560
561 /* There are several targets (IA-64, PowerPC, and others) which
562 don't represent pointers to functions as simply the address of
563 the function's entry point. For example, on the IA-64, a
564 function pointer points to a two-word descriptor, generated by
565 the linker, which contains the function's entry point, and the
566 value the IA-64 "global pointer" register should have --- to
567 support position-independent code. The linker generates
568 descriptors only for those functions whose addresses are taken.
569
570 On such targets, it's difficult for GDB to convert an arbitrary
571 function address into a function pointer; it has to either find
572 an existing descriptor for that function, or call malloc and
573 build its own. On some targets, it is impossible for GDB to
574 build a descriptor at all: the descriptor must contain a jump
575 instruction; data memory cannot be executed; and code memory
576 cannot be modified.
577
578 Upon entry to this function, if VAL is a value of type `function'
579 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
580 VALUE_ADDRESS (val) is the address of the function. This is what
581 you'll get if you evaluate an expression like `main'. The call
582 to COERCE_ARRAY below actually does all the usual unary
583 conversions, which includes converting values of type `function'
584 to `pointer to function'. This is the challenging conversion
585 discussed above. Then, `unpack_long' will convert that pointer
586 back into an address.
587
588 So, suppose the user types `disassemble foo' on an architecture
589 with a strange function pointer representation, on which GDB
590 cannot build its own descriptors, and suppose further that `foo'
591 has no linker-built descriptor. The address->pointer conversion
592 will signal an error and prevent the command from running, even
593 though the next step would have been to convert the pointer
594 directly back into the same address.
595
596 The following shortcut avoids this whole mess. If VAL is a
597 function, just return its address directly. */
598 if (TYPE_CODE (VALUE_TYPE (val))((val)->type)->main_type->code == TYPE_CODE_FUNC
599 || TYPE_CODE (VALUE_TYPE (val))((val)->type)->main_type->code == TYPE_CODE_METHOD)
600 return VALUE_ADDRESS (val)(val)->location.address;
601
602 COERCE_ARRAY (val)do { do { struct type *value_type_arg_tmp = check_typedef ((val
)->type); if ((value_type_arg_tmp)->main_type->code ==
TYPE_CODE_REF) val = value_at_lazy ((value_type_arg_tmp)->
main_type->target_type, unpack_pointer ((val)->type, ((
void)((val)->lazy && value_fetch_lazy(val)), ((char
*) (val)->aligner.contents + (val)->embedded_offset)))
, ((val)->bfd_section)); } while (0); if (current_language
->c_style_arrays && ((val)->type)->main_type
->code == TYPE_CODE_ARRAY) val = value_coerce_array (val);
if (((val)->type)->main_type->code == TYPE_CODE_FUNC
) val = value_coerce_function (val); } while (0)
;
603
604 /* Some architectures (e.g. Harvard), map instruction and data
605 addresses onto a single large unified address space. For
606 instance: An architecture may consider a large integer in the
607 range 0x10000000 .. 0x1000ffff to already represent a data
608 addresses (hence not need a pointer to address conversion) while
609 a small integer would still need to be converted integer to
610 pointer to address. Just assume such architectures handle all
611 integer conversions in a single function. */
612
613 /* JimB writes:
614
615 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
616 must admonish GDB hackers to make sure its behavior matches the
617 compiler's, whenever possible.
618
619 In general, I think GDB should evaluate expressions the same way
620 the compiler does. When the user copies an expression out of
621 their source code and hands it to a `print' command, they should
622 get the same value the compiler would have computed. Any
623 deviation from this rule can cause major confusion and annoyance,
624 and needs to be justified carefully. In other words, GDB doesn't
625 really have the freedom to do these conversions in clever and
626 useful ways.
627
628 AndrewC pointed out that users aren't complaining about how GDB
629 casts integers to pointers; they are complaining that they can't
630 take an address from a disassembly listing and give it to `x/i'.
631 This is certainly important.
632
633 Adding an architecture method like INTEGER_TO_ADDRESS certainly
634 makes it possible for GDB to "get it right" in all circumstances
635 --- the target has complete control over how things get done, so
636 people can Do The Right Thing for their target without breaking
637 anyone else. The standard doesn't specify how integers get
638 converted to pointers; usually, the ABI doesn't either, but
639 ABI-specific code is a more reasonable place to handle it. */
640
641 if (TYPE_CODE (VALUE_TYPE (val))((val)->type)->main_type->code != TYPE_CODE_PTR
642 && TYPE_CODE (VALUE_TYPE (val))((val)->type)->main_type->code != TYPE_CODE_REF
643 && INTEGER_TO_ADDRESS_P ()(gdbarch_integer_to_address_p (current_gdbarch)))
644 return INTEGER_TO_ADDRESS (VALUE_TYPE (val), VALUE_CONTENTS (val))(gdbarch_integer_to_address (current_gdbarch, (val)->type,
((void)((val)->lazy && value_fetch_lazy(val)), ((
char *) (val)->aligner.contents + (val)->embedded_offset
))))
;
645
646 return unpack_long (VALUE_TYPE (val)(val)->type, VALUE_CONTENTS (val)((void)((val)->lazy && value_fetch_lazy(val)), ((char
*) (val)->aligner.contents + (val)->embedded_offset))
);
647#endif
648}
649
650/* Unpack raw data (copied from debugee, target byte order) at VALADDR
651 as a long, or as a double, assuming the raw data is described
652 by type TYPE. Knows how to convert different sizes of values
653 and can convert between fixed and floating point. We don't assume
654 any alignment for the raw data. Return value is in host byte order.
655
656 If you want functions and arrays to be coerced to pointers, and
657 references to be dereferenced, call value_as_long() instead.
658
659 C++: It is assumed that the front-end has taken care of
660 all matters concerning pointers to members. A pointer
661 to member which reaches here is considered to be equivalent
662 to an INT (or some size). After all, it is only an offset. */
663
664LONGESTlong
665unpack_long (struct type *type, const char *valaddr)
666{
667 enum type_code code = TYPE_CODE (type)(type)->main_type->code;
668 int len = TYPE_LENGTH (type)(type)->length;
669 int nosign = TYPE_UNSIGNED (type)((type)->main_type->flags & (1 << 0));
670
671 if (current_language->la_language == language_scm
672 && is_scmvalue_type (type))
673 return scm_unpack (type, valaddr, TYPE_CODE_INT);
674
675 switch (code)
676 {
677 case TYPE_CODE_TYPEDEF:
678 return unpack_long (check_typedef (type), valaddr);
679 case TYPE_CODE_ENUM:
680 case TYPE_CODE_BOOL:
681 case TYPE_CODE_INT:
682 case TYPE_CODE_CHAR:
683 case TYPE_CODE_RANGE:
684 if (nosign)
685 return extract_unsigned_integer (valaddr, len);
686 else
687 return extract_signed_integer (valaddr, len);
688
689 case TYPE_CODE_FLT:
690 return extract_typed_floating (valaddr, type);
691
692 case TYPE_CODE_PTR:
693 case TYPE_CODE_REF:
694 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
695 whether we want this to be true eventually. */
696 return extract_typed_address (valaddr, type);
697
698 case TYPE_CODE_MEMBER:
699 error ("not implemented: member types in unpack_long");
700
701 default:
702 error ("Value can't be converted to integer.");
703 }
704 return 0; /* Placate lint. */
705}
706
707/* Return a double value from the specified type and address.
708 INVP points to an int which is set to 0 for valid value,
709 1 for invalid value (bad float format). In either case,
710 the returned double is OK to use. Argument is in target
711 format, result is in host format. */
712
713DOUBLEST
714unpack_double (struct type *type, const char *valaddr, int *invp)
715{
716 enum type_code code;
717 int len;
718 int nosign;
719
720 *invp = 0; /* Assume valid. */
721 CHECK_TYPEDEF (type)(type) = check_typedef (type);
722 code = TYPE_CODE (type)(type)->main_type->code;
723 len = TYPE_LENGTH (type)(type)->length;
724 nosign = TYPE_UNSIGNED (type)((type)->main_type->flags & (1 << 0));
725 if (code == TYPE_CODE_FLT)
726 {
727 /* NOTE: cagney/2002-02-19: There was a test here to see if the
728 floating-point value was valid (using the macro
729 INVALID_FLOAT). That test/macro have been removed.
730
731 It turns out that only the VAX defined this macro and then
732 only in a non-portable way. Fixing the portability problem
733 wouldn't help since the VAX floating-point code is also badly
734 bit-rotten. The target needs to add definitions for the
735 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
736 exactly describe the target floating-point format. The
737 problem here is that the corresponding floatformat_vax_f and
738 floatformat_vax_d values these methods should be set to are
739 also not defined either. Oops!
740
741 Hopefully someone will add both the missing floatformat
742 definitions and the new cases for floatformat_is_valid (). */
743
744 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
745 {
746 *invp = 1;
747 return 0.0;
748 }
749
750 return extract_typed_floating (valaddr, type);
751 }
752 else if (nosign)
753 {
754 /* Unsigned -- be sure we compensate for signed LONGEST. */
755 return (ULONGESTunsigned long) unpack_long (type, valaddr);
756 }
757 else
758 {
759 /* Signed -- we are OK with unpack_long. */
760 return unpack_long (type, valaddr);
761 }
762}
763
764/* Unpack raw data (copied from debugee, target byte order) at VALADDR
765 as a CORE_ADDR, assuming the raw data is described by type TYPE.
766 We don't assume any alignment for the raw data. Return value is in
767 host byte order.
768
769 If you want functions and arrays to be coerced to pointers, and
770 references to be dereferenced, call value_as_address() instead.
771
772 C++: It is assumed that the front-end has taken care of
773 all matters concerning pointers to members. A pointer
774 to member which reaches here is considered to be equivalent
775 to an INT (or some size). After all, it is only an offset. */
776
777CORE_ADDR
778unpack_pointer (struct type *type, const char *valaddr)
779{
780 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
781 whether we want this to be true eventually. */
782 return unpack_long (type, valaddr);
783}
784
785
786/* Get the value of the FIELDN'th field (which must be static) of
787 TYPE. Return NULL if the field doesn't exist or has been
788 optimized out. */
789
790struct value *
791value_static_field (struct type *type, int fieldno)
792{
793 struct value *retval;
794
795 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno)((type)->main_type->fields[fieldno].static_kind == 2))
796 {
797 retval = value_at (TYPE_FIELD_TYPE (type, fieldno)(((type)->main_type->fields[fieldno]).type),
798 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)(((type)->main_type->fields[fieldno]).loc.physaddr),
799 NULL((void*)0));
800 }
801 else
802 {
803 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno)(((type)->main_type->fields[fieldno]).loc.physname);
804 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL((void*)0));
805 if (sym == NULL((void*)0))
806 {
807 /* With some compilers, e.g. HP aCC, static data members are reported
808 as non-debuggable symbols */
809 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL((void*)0), NULL((void*)0));
810 if (!msym)
811 return NULL((void*)0);
812 else
813 {
814 retval = value_at (TYPE_FIELD_TYPE (type, fieldno)(((type)->main_type->fields[fieldno]).type),
815 SYMBOL_VALUE_ADDRESS (msym)(msym)->ginfo.value.address,
816 SYMBOL_BFD_SECTION (msym)(msym)->ginfo.bfd_section);
817 }
818 }
819 else
820 {
821 /* SYM should never have a SYMBOL_CLASS which will require
822 read_var_value to use the FRAME parameter. */
823 if (symbol_read_needs_frame (sym))
824 warning ("static field's value depends on the current "
825 "frame - bad debug info?");
826 retval = read_var_value (sym, NULL((void*)0));
827 }
828 if (retval && VALUE_LVAL (retval)(retval)->lval == lval_memory)
829 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),(((type)->main_type->fields[fieldno]).static_kind = 2, (
((type)->main_type->fields[fieldno]).loc.physaddr) = ((
retval)->location.address))
830 VALUE_ADDRESS (retval))(((type)->main_type->fields[fieldno]).static_kind = 2, (
((type)->main_type->fields[fieldno]).loc.physaddr) = ((
retval)->location.address))
;
831 }
832 return retval;
833}
834
835/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
836 You have to be careful here, since the size of the data area for the value
837 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
838 than the old enclosing type, you have to allocate more space for the data.
839 The return value is a pointer to the new version of this value structure. */
840
841struct value *
842value_change_enclosing_type (struct value *val, struct type *new_encl_type)
843{
844 if (TYPE_LENGTH (new_encl_type)(new_encl_type)->length <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val))((val)->enclosing_type)->length)
845 {
846 VALUE_ENCLOSING_TYPE (val)(val)->enclosing_type = new_encl_type;
847 return val;
848 }
849 else
850 {
851 struct value *new_val;
852 struct value *prev;
853
854 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type)(new_encl_type)->length);
855
856 VALUE_ENCLOSING_TYPE (new_val)(new_val)->enclosing_type = new_encl_type;
857
858 /* We have to make sure this ends up in the same place in the value
859 chain as the original copy, so it's clean-up behavior is the same.
860 If the value has been released, this is a waste of time, but there
861 is no way to tell that in advance, so... */
862
863 if (val != all_values)
864 {
865 for (prev = all_values; prev != NULL((void*)0); prev = prev->next)
866 {
867 if (prev->next == val)
868 {
869 prev->next = new_val;
870 break;
871 }
872 }
873 }
874
875 return new_val;
876 }
877}
878
879/* Given a value ARG1 (offset by OFFSET bytes)
880 of a struct or union type ARG_TYPE,
881 extract and return the value of one of its (non-static) fields.
882 FIELDNO says which field. */
883
884struct value *
885value_primitive_field (struct value *arg1, int offset,
886 int fieldno, struct type *arg_type)
887{
888 struct value *v;
889 struct type *type;
890
891 CHECK_TYPEDEF (arg_type)(arg_type) = check_typedef (arg_type);
892 type = TYPE_FIELD_TYPE (arg_type, fieldno)(((arg_type)->main_type->fields[fieldno]).type);
893
894 /* Handle packed fields */
895
896 if (TYPE_FIELD_BITSIZE (arg_type, fieldno)(((arg_type)->main_type->fields[fieldno]).bitsize))
897 {
898 v = value_from_longest (type,
899 unpack_field_as_long (arg_type,
900 VALUE_CONTENTS (arg1)((void)((arg1)->lazy && value_fetch_lazy(arg1)), (
(char *) (arg1)->aligner.contents + (arg1)->embedded_offset
))
901 + offset,
902 fieldno));
903 VALUE_BITPOS (v)(v)->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno)(((arg_type)->main_type->fields[fieldno]).loc.bitpos) % 8;
904 VALUE_BITSIZE (v)(v)->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno)(((arg_type)->main_type->fields[fieldno]).bitsize);
905 VALUE_OFFSET (v)(v)->offset = VALUE_OFFSET (arg1)(arg1)->offset + offset
906 + TYPE_FIELD_BITPOS (arg_type, fieldno)(((arg_type)->main_type->fields[fieldno]).loc.bitpos) / 8;
907 }
908 else if (fieldno < TYPE_N_BASECLASSES (arg_type)(arg_type)->main_type->type_specific.cplus_stuff->n_baseclasses)
909 {
910 /* This field is actually a base subobject, so preserve the
911 entire object's contents for later references to virtual
912 bases, etc. */
913 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1)(arg1)->enclosing_type);
914 VALUE_TYPE (v)(v)->type = type;
915 if (VALUE_LAZY (arg1)(arg1)->lazy)
916 VALUE_LAZY (v)(v)->lazy = 1;
917 else
918 memcpy (VALUE_CONTENTS_ALL_RAW (v)((char *) (v)->aligner.contents), VALUE_CONTENTS_ALL_RAW (arg1)((char *) (arg1)->aligner.contents),
919 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1))((arg1)->enclosing_type)->length);
920 VALUE_OFFSET (v)(v)->offset = VALUE_OFFSET (arg1)(arg1)->offset;
921 VALUE_EMBEDDED_OFFSET (v)((v)->embedded_offset)
922 = offset +
923 VALUE_EMBEDDED_OFFSET (arg1)((arg1)->embedded_offset) +
924 TYPE_FIELD_BITPOS (arg_type, fieldno)(((arg_type)->main_type->fields[fieldno]).loc.bitpos) / 8;
925 }
926 else
927 {
928 /* Plain old data member */
929 offset += TYPE_FIELD_BITPOS (arg_type, fieldno)(((arg_type)->main_type->fields[fieldno]).loc.bitpos) / 8;
930 v = allocate_value (type);
931 if (VALUE_LAZY (arg1)(arg1)->lazy)
932 VALUE_LAZY (v)(v)->lazy = 1;
933 else
934 memcpy (VALUE_CONTENTS_RAW (v)((char *) (v)->aligner.contents + (v)->embedded_offset),
935 VALUE_CONTENTS_RAW (arg1)((char *) (arg1)->aligner.contents + (arg1)->embedded_offset
)
+ offset,
936 TYPE_LENGTH (type)(type)->length);
937 VALUE_OFFSET (v)(v)->offset = VALUE_OFFSET (arg1)(arg1)->offset + offset
938 + VALUE_EMBEDDED_OFFSET (arg1)((arg1)->embedded_offset);
939 }
940 VALUE_LVAL (v)(v)->lval = VALUE_LVAL (arg1)(arg1)->lval;
941 if (VALUE_LVAL (arg1)(arg1)->lval == lval_internalvar)
942 VALUE_LVAL (v)(v)->lval = lval_internalvar_component;
943 VALUE_ADDRESS (v)(v)->location.address = VALUE_ADDRESS (arg1)(arg1)->location.address;
944 VALUE_REGNO (v)(v)->regno = VALUE_REGNO (arg1)(arg1)->regno;
945/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
946 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
947 return v;
948}
949
950/* Given a value ARG1 of a struct or union type,
951 extract and return the value of one of its (non-static) fields.
952 FIELDNO says which field. */
953
954struct value *
955value_field (struct value *arg1, int fieldno)
956{
957 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1)(arg1)->type);
958}
959
960/* Return a non-virtual function as a value.
961 F is the list of member functions which contains the desired method.
962 J is an index into F which provides the desired method.
963
964 We only use the symbol for its address, so be happy with either a
965 full symbol or a minimal symbol.
966 */
967
968struct value *
969value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
970 int offset)
971{
972 struct value *v;
973 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j)(f)[j].type;
974 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j)(f)[j].physname;
975 struct symbol *sym;
976 struct minimal_symbol *msym;
977
978 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL((void*)0));
979 if (sym != NULL((void*)0))
980 {
981 msym = NULL((void*)0);
982 }
983 else
984 {
985 gdb_assert (sym == NULL)((void) ((sym == ((void*)0)) ? 0 : (internal_error ("/usr/src/gnu/usr.bin/binutils/gdb/values.c"
, 985, "%s: Assertion `%s' failed.", __PRETTY_FUNCTION__, "sym == NULL"
), 0)))
;
986 msym = lookup_minimal_symbol (physname, NULL((void*)0), NULL((void*)0));
987 if (msym == NULL((void*)0))
988 return NULL((void*)0);
989 }
990
991 v = allocate_value (ftype);
992 if (sym)
993 {
994 VALUE_ADDRESS (v)(v)->location.address = BLOCK_START (SYMBOL_BLOCK_VALUE (sym))((sym)->ginfo.value.block)->startaddr;
995 }
996 else
997 {
998 VALUE_ADDRESS (v)(v)->location.address = SYMBOL_VALUE_ADDRESS (msym)(msym)->ginfo.value.address;
999 }
1000
1001 if (arg1p)
1002 {
1003 if (type != VALUE_TYPE (*arg1p)(*arg1p)->type)
1004 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1005 value_addr (*arg1p)));
1006
1007 /* Move the `this' pointer according to the offset.
1008 VALUE_OFFSET (*arg1p) += offset;
1009 */
1010 }
1011
1012 return v;
1013}
1014
1015
1016/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1017 VALADDR.
1018
1019 Extracting bits depends on endianness of the machine. Compute the
1020 number of least significant bits to discard. For big endian machines,
1021 we compute the total number of bits in the anonymous object, subtract
1022 off the bit count from the MSB of the object to the MSB of the
1023 bitfield, then the size of the bitfield, which leaves the LSB discard
1024 count. For little endian machines, the discard count is simply the
1025 number of bits from the LSB of the anonymous object to the LSB of the
1026 bitfield.
1027
1028 If the field is signed, we also do sign extension. */
1029
1030LONGESTlong
1031unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
1032{
1033 ULONGESTunsigned long val;
1034 ULONGESTunsigned long valmask;
1035 int bitpos = TYPE_FIELD_BITPOS (type, fieldno)(((type)->main_type->fields[fieldno]).loc.bitpos);
1036 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno)(((type)->main_type->fields[fieldno]).bitsize);
1037 int lsbcount;
1038 struct type *field_type;
1039
1040 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1041 field_type = TYPE_FIELD_TYPE (type, fieldno)(((type)->main_type->fields[fieldno]).type);
1042 CHECK_TYPEDEF (field_type)(field_type) = check_typedef (field_type);
1043
1044 /* Extract bits. See comment above. */
1045
1046 if (BITS_BIG_ENDIAN((gdbarch_byte_order (current_gdbarch)) == BFD_ENDIAN_BIG))
1047 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1048 else
1049 lsbcount = (bitpos % 8);
1050 val >>= lsbcount;
1051
1052 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1053 If the field is signed, and is negative, then sign extend. */
1054
1055 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1056 {
1057 valmask = (((ULONGESTunsigned long) 1) << bitsize) - 1;
1058 val &= valmask;
1059 if (!TYPE_UNSIGNED (field_type)((field_type)->main_type->flags & (1 << 0)))
1060 {
1061 if (val & (valmask ^ (valmask >> 1)))
1062 {
1063 val |= ~valmask;
1064 }
1065 }
1066 }
1067 return (val);
1068}
1069
1070/* Modify the value of a bitfield. ADDR points to a block of memory in
1071 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1072 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1073 indicate which bits (in target bit order) comprise the bitfield. */
1074
1075void
1076modify_field (char *addr, LONGESTlong fieldval, int bitpos, int bitsize)
1077{
1078 LONGESTlong oword;
1079
1080 /* If a negative fieldval fits in the field in question, chop
1081 off the sign extension bits. */
1082 if (bitsize < (8 * (int) sizeof (fieldval))
1083 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1084 fieldval = fieldval & ((1 << bitsize) - 1);
1085
1086 /* Warn if value is too big to fit in the field in question. */
1087 if (bitsize < (8 * (int) sizeof (fieldval))
1088 && 0 != (fieldval & ~((1 << bitsize) - 1)))
1089 {
1090 /* FIXME: would like to include fieldval in the message, but
1091 we don't have a sprintf_longest. */
1092 warning ("Value does not fit in %d bits.", bitsize);
1093
1094 /* Truncate it, otherwise adjoining fields may be corrupted. */
1095 fieldval = fieldval & ((1 << bitsize) - 1);
1096 }
1097
1098 oword = extract_signed_integer (addr, sizeof oword);
1099
1100 /* Shifting for bit field depends on endianness of the target machine. */
1101 if (BITS_BIG_ENDIAN((gdbarch_byte_order (current_gdbarch)) == BFD_ENDIAN_BIG))
1102 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1103
1104 /* Mask out old value, while avoiding shifts >= size of oword */
1105 if (bitsize < 8 * (int) sizeof (oword))
1106 oword &= ~(((((ULONGESTunsigned long) 1) << bitsize) - 1) << bitpos);
1107 else
1108 oword &= ~((~(ULONGESTunsigned long) 0) << bitpos);
1109 oword |= fieldval << bitpos;
1110
1111 store_signed_integer (addr, sizeof oword, oword);
1112}
1113
1114/* Convert C numbers into newly allocated values */
1115
1116struct value *
1117value_from_longest (struct type *type, LONGESTlong num)
1118{
1119 struct value *val = allocate_value (type);
1120 enum type_code code;
1121 int len;
1122retry:
1123 code = TYPE_CODE (type)(type)->main_type->code;
1124 len = TYPE_LENGTH (type)(type)->length;
1125
1126 switch (code)
1127 {
1128 case TYPE_CODE_TYPEDEF:
1129 type = check_typedef (type);
1130 goto retry;
1131 case TYPE_CODE_INT:
1132 case TYPE_CODE_CHAR:
1133 case TYPE_CODE_ENUM:
1134 case TYPE_CODE_BOOL:
1135 case TYPE_CODE_RANGE:
1136 store_signed_integer (VALUE_CONTENTS_RAW (val)((char *) (val)->aligner.contents + (val)->embedded_offset
)
, len, num);
1137 break;
1138
1139 case TYPE_CODE_REF:
1140 case TYPE_CODE_PTR:
1141 store_typed_address (VALUE_CONTENTS_RAW (val)((char *) (val)->aligner.contents + (val)->embedded_offset
)
, type, (CORE_ADDR) num);
1142 break;
1143
1144 default:
1145 error ("Unexpected type (%d) encountered for integer constant.", code);
1146 }
1147 return val;
1148}
1149
1150
1151/* Create a value representing a pointer of type TYPE to the address
1152 ADDR. */
1153struct value *
1154value_from_pointer (struct type *type, CORE_ADDR addr)
1155{
1156 struct value *val = allocate_value (type);
1157 store_typed_address (VALUE_CONTENTS_RAW (val)((char *) (val)->aligner.contents + (val)->embedded_offset
)
, type, addr);
1158 return val;
1159}
1160
1161
1162/* Create a value for a string constant to be stored locally
1163 (not in the inferior's memory space, but in GDB memory).
1164 This is analogous to value_from_longest, which also does not
1165 use inferior memory. String shall NOT contain embedded nulls. */
1166
1167struct value *
1168value_from_string (char *ptr)
1169{
1170 struct value *val;
1171 int len = strlen (ptr);
1172 int lowbound = current_language->string_lower_bound;
1173 struct type *string_char_type;
1174 struct type *rangetype;
1175 struct type *stringtype;
1176
1177 rangetype = create_range_type ((struct type *) NULL((void*)0),
1178 builtin_type_int,
1179 lowbound, len + lowbound - 1);
1180 string_char_type = language_string_char_type (current_language,
1181 current_gdbarch);
1182 stringtype = create_array_type ((struct type *) NULL((void*)0),
1183 string_char_type,
1184 rangetype);
1185 val = allocate_value (stringtype);
1186 memcpy (VALUE_CONTENTS_RAW (val)((char *) (val)->aligner.contents + (val)->embedded_offset
)
, ptr, len);
1187 return val;
1188}
1189
1190struct value *
1191value_from_double (struct type *type, DOUBLEST num)
1192{
1193 struct value *val = allocate_value (type);
1194 struct type *base_type = check_typedef (type);
1195 enum type_code code = TYPE_CODE (base_type)(base_type)->main_type->code;
1196 int len = TYPE_LENGTH (base_type)(base_type)->length;
Value stored to 'len' during its initialization is never read
1197
1198 if (code == TYPE_CODE_FLT)
1199 {
1200 store_typed_floating (VALUE_CONTENTS_RAW (val)((char *) (val)->aligner.contents + (val)->embedded_offset
)
, base_type, num);
1201 }
1202 else
1203 error ("Unexpected type encountered for floating constant.");
1204
1205 return val;
1206}
1207
1208
1209/* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1210 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1211 is the type (which is known to be struct, union or array).
1212
1213 On most machines, the struct convention is used unless we are
1214 using gcc and the type is of a special size. */
1215/* As of about 31 Mar 93, GCC was changed to be compatible with the
1216 native compiler. GCC 2.3.3 was the last release that did it the
1217 old way. Since gcc2_compiled was not changed, we have no
1218 way to correctly win in all cases, so we just do the right thing
1219 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1220 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1221 would cause more chaos than dealing with some struct returns being
1222 handled wrong. */
1223/* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1224 dead. */
1225
1226int
1227generic_use_struct_convention (int gcc_p, struct type *value_type)
1228{
1229 return !(TYPE_LENGTH (value_type)(value_type)->length == 1
1230 || TYPE_LENGTH (value_type)(value_type)->length == 2
1231 || TYPE_LENGTH (value_type)(value_type)->length == 4
1232 || TYPE_LENGTH (value_type)(value_type)->length == 8);
1233}
1234
1235/* Return true if the function returning the specified type is using
1236 the convention of returning structures in memory (passing in the
1237 address as a hidden first parameter). GCC_P is nonzero if compiled
1238 with GCC. */
1239
1240int
1241using_struct_return (struct type *value_type, int gcc_p)
1242{
1243 enum type_code code = TYPE_CODE (value_type)(value_type)->main_type->code;
1244
1245 if (code == TYPE_CODE_ERROR)
1246 error ("Function return type unknown.");
1247
1248 if (code == TYPE_CODE_VOID)
1249 /* A void return value is never in memory. See also corresponding
1250 code in "print_return_value". */
1251 return 0;
1252
1253 /* Probe the architecture for the return-value convention. */
1254 return (gdbarch_return_value (current_gdbarch, value_type,
1255 NULL((void*)0), NULL((void*)0), NULL((void*)0))
1256 != RETURN_VALUE_REGISTER_CONVENTION);
1257}
1258
1259void
1260_initialize_values (void)
1261{
1262 add_cmd ("convenience", no_class, show_convenience,
1263 "Debugger convenience (\"$foo\") variables.\n\
1264These variables are created when you assign them values;\n\
1265thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1266A few convenience variables are given values automatically:\n\
1267\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1268\"$__\" holds the contents of the last address examined with \"x\".",
1269 &showlist);
1270
1271 add_cmd ("values", no_class, show_values,
1272 "Elements of value history around item number IDX (or last ten).",
1273 &showlist);
1274}