Bug Summary

File:src/lib/libm/src/s_expm1.c
Warning:line 137, column 13
Value stored to 'y' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name s_expm1.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -fhalf-no-semantic-interposition -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/lib/libm/obj -resource-dir /usr/local/lib/clang/13.0.0 -include namespace.h -I /usr/src/lib/libm/arch/amd64 -I /usr/src/lib/libm/src -I /usr/src/lib/libm/src/ld80 -I /usr/src/lib/libm/hidden -D PIC -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -fdebug-compilation-dir=/usr/src/lib/libm/obj -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c /usr/src/lib/libm/src/s_expm1.c
1/* @(#)s_expm1.c 5.1 93/09/24 */
2/*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 */
12
13/* expm1(x)
14 * Returns exp(x)-1, the exponential of x minus 1.
15 *
16 * Method
17 * 1. Argument reduction:
18 * Given x, find r and integer k such that
19 *
20 * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
21 *
22 * Here a correction term c will be computed to compensate
23 * the error in r when rounded to a floating-point number.
24 *
25 * 2. Approximating expm1(r) by a special rational function on
26 * the interval [0,0.34658]:
27 * Since
28 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
29 * we define R1(r*r) by
30 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
31 * That is,
32 * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
33 * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
34 * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
35 * We use a special Remes algorithm on [0,0.347] to generate
36 * a polynomial of degree 5 in r*r to approximate R1. The
37 * maximum error of this polynomial approximation is bounded
38 * by 2**-61. In other words,
39 * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
40 * where Q1 = -1.6666666666666567384E-2,
41 * Q2 = 3.9682539681370365873E-4,
42 * Q3 = -9.9206344733435987357E-6,
43 * Q4 = 2.5051361420808517002E-7,
44 * Q5 = -6.2843505682382617102E-9;
45 * (where z=r*r, and the values of Q1 to Q5 are listed below)
46 * with error bounded by
47 * | 5 | -61
48 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
49 * | |
50 *
51 * expm1(r) = exp(r)-1 is then computed by the following
52 * specific way which minimize the accumulation rounding error:
53 * 2 3
54 * r r [ 3 - (R1 + R1*r/2) ]
55 * expm1(r) = r + --- + --- * [--------------------]
56 * 2 2 [ 6 - r*(3 - R1*r/2) ]
57 *
58 * To compensate the error in the argument reduction, we use
59 * expm1(r+c) = expm1(r) + c + expm1(r)*c
60 * ~ expm1(r) + c + r*c
61 * Thus c+r*c will be added in as the correction terms for
62 * expm1(r+c). Now rearrange the term to avoid optimization
63 * screw up:
64 * ( 2 2 )
65 * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
66 * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
67 * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
68 * ( )
69 *
70 * = r - E
71 * 3. Scale back to obtain expm1(x):
72 * From step 1, we have
73 * expm1(x) = either 2^k*[expm1(r)+1] - 1
74 * = or 2^k*[expm1(r) + (1-2^-k)]
75 * 4. Implementation notes:
76 * (A). To save one multiplication, we scale the coefficient Qi
77 * to Qi*2^i, and replace z by (x^2)/2.
78 * (B). To achieve maximum accuracy, we compute expm1(x) by
79 * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
80 * (ii) if k=0, return r-E
81 * (iii) if k=-1, return 0.5*(r-E)-0.5
82 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
83 * else return 1.0+2.0*(r-E);
84 * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
85 * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
86 * (vii) return 2^k(1-((E+2^-k)-r))
87 *
88 * Special cases:
89 * expm1(INF) is INF, expm1(NaN) is NaN;
90 * expm1(-INF) is -1, and
91 * for finite argument, only expm1(0)=0 is exact.
92 *
93 * Accuracy:
94 * according to an error analysis, the error is always less than
95 * 1 ulp (unit in the last place).
96 *
97 * Misc. info.
98 * For IEEE double
99 * if x > 7.09782712893383973096e+02 then expm1(x) overflow
100 *
101 * Constants:
102 * The hexadecimal values are the intended ones for the following
103 * constants. The decimal values may be used, provided that the
104 * compiler will convert from decimal to binary accurately enough
105 * to produce the hexadecimal values shown.
106 */
107
108#include <float.h>
109#include <math.h>
110
111#include "math_private.h"
112
113static const double
114one = 1.0,
115huge = 1.0e+300,
116tiny = 1.0e-300,
117o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
118ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
119ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
120invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
121 /* scaled coefficients related to expm1 */
122Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
123Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
124Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
125Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
126Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
127
128double
129expm1(double x)
130{
131 double y,hi,lo,c,t,e,hxs,hfx,r1;
132 int32_t k,xsb;
133 u_int32_t hx;
134
135 GET_HIGH_WORD(hx,x)do { ieee_double_shape_type gh_u; gh_u.value = (x); (hx) = gh_u
.parts.msw; } while (0)
;
136 xsb = hx&0x80000000; /* sign bit of x */
137 if(xsb==0) y=x; else y= -x; /* y = |x| */
Value stored to 'y' is never read
138 hx &= 0x7fffffff; /* high word of |x| */
139
140 /* filter out huge and non-finite argument */
141 if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
142 if(hx >= 0x40862E42) { /* if |x|>=709.78... */
143 if(hx>=0x7ff00000) {
144 u_int32_t low;
145 GET_LOW_WORD(low,x)do { ieee_double_shape_type gl_u; gl_u.value = (x); (low) = gl_u
.parts.lsw; } while (0)
;
146 if(((hx&0xfffff)|low)!=0)
147 return x+x; /* NaN */
148 else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
149 }
150 if(x > o_threshold) return huge*huge; /* overflow */
151 }
152 if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
153 if(x+tiny<0.0) /* raise inexact */
154 return tiny-one; /* return -1 */
155 }
156 }
157
158 /* argument reduction */
159 if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
160 if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
161 if(xsb==0)
162 {hi = x - ln2_hi; lo = ln2_lo; k = 1;}
163 else
164 {hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
165 } else {
166 k = invln2*x+((xsb==0)?0.5:-0.5);
167 t = k;
168 hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
169 lo = t*ln2_lo;
170 }
171 x = hi - lo;
172 c = (hi-x)-lo;
173 }
174 else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
175 t = huge+x; /* return x with inexact flags when x!=0 */
176 return x - (t-(huge+x));
177 }
178 else k = 0;
179
180 /* x is now in primary range */
181 hfx = 0.5*x;
182 hxs = x*hfx;
183 r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
184 t = 3.0-r1*hfx;
185 e = hxs*((r1-t)/(6.0 - x*t));
186 if(k==0) return x - (x*e-hxs); /* c is 0 */
187 else {
188 e = (x*(e-c)-c);
189 e -= hxs;
190 if(k== -1) return 0.5*(x-e)-0.5;
191 if(k==1) {
192 if(x < -0.25) return -2.0*(e-(x+0.5));
193 else return one+2.0*(x-e);
194 }
195 if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
196 u_int32_t high;
197 y = one-(e-x);
198 GET_HIGH_WORD(high,y)do { ieee_double_shape_type gh_u; gh_u.value = (y); (high) = gh_u
.parts.msw; } while (0)
;
199 SET_HIGH_WORD(y,high+(k<<20))do { ieee_double_shape_type sh_u; sh_u.value = (y); sh_u.parts
.msw = (high+(k<<20)); (y) = sh_u.value; } while (0)
; /* add k to y's exponent */
200 return y-one;
201 }
202 t = one;
203 if(k<20) {
204 u_int32_t high;
205 SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k))do { ieee_double_shape_type sh_u; sh_u.value = (t); sh_u.parts
.msw = (0x3ff00000 - (0x200000>>k)); (t) = sh_u.value; }
while (0)
; /* t=1-2^-k */
206 y = t-(e-x);
207 GET_HIGH_WORD(high,y)do { ieee_double_shape_type gh_u; gh_u.value = (y); (high) = gh_u
.parts.msw; } while (0)
;
208 SET_HIGH_WORD(y,high+(k<<20))do { ieee_double_shape_type sh_u; sh_u.value = (y); sh_u.parts
.msw = (high+(k<<20)); (y) = sh_u.value; } while (0)
; /* add k to y's exponent */
209 } else {
210 u_int32_t high;
211 SET_HIGH_WORD(t,((0x3ff-k)<<20))do { ieee_double_shape_type sh_u; sh_u.value = (t); sh_u.parts
.msw = (((0x3ff-k)<<20)); (t) = sh_u.value; } while (0)
; /* 2^-k */
212 y = x-(e+t);
213 y += one;
214 GET_HIGH_WORD(high,y)do { ieee_double_shape_type gh_u; gh_u.value = (y); (high) = gh_u
.parts.msw; } while (0)
;
215 SET_HIGH_WORD(y,high+(k<<20))do { ieee_double_shape_type sh_u; sh_u.value = (y); sh_u.parts
.msw = (high+(k<<20)); (y) = sh_u.value; } while (0)
; /* add k to y's exponent */
216 }
217 }
218 return y;
219}
220DEF_STD(expm1)__asm__(".global " "expm1" " ; " "expm1" " = " "_libm_expm1");
221LDBL_MAYBE_CLONE(expm1)__asm("");