| File: | src/gnu/usr.bin/clang/libclangCodeGen/../../../llvm/clang/lib/CodeGen/CGOpenMPRuntime.cpp |
| Warning: | line 11506, column 58 Division by zero |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // This provides a class for OpenMP runtime code generation. | |||
| 10 | // | |||
| 11 | //===----------------------------------------------------------------------===// | |||
| 12 | ||||
| 13 | #include "CGOpenMPRuntime.h" | |||
| 14 | #include "CGCXXABI.h" | |||
| 15 | #include "CGCleanup.h" | |||
| 16 | #include "CGRecordLayout.h" | |||
| 17 | #include "CodeGenFunction.h" | |||
| 18 | #include "clang/AST/APValue.h" | |||
| 19 | #include "clang/AST/Attr.h" | |||
| 20 | #include "clang/AST/Decl.h" | |||
| 21 | #include "clang/AST/OpenMPClause.h" | |||
| 22 | #include "clang/AST/StmtOpenMP.h" | |||
| 23 | #include "clang/AST/StmtVisitor.h" | |||
| 24 | #include "clang/Basic/BitmaskEnum.h" | |||
| 25 | #include "clang/Basic/FileManager.h" | |||
| 26 | #include "clang/Basic/OpenMPKinds.h" | |||
| 27 | #include "clang/Basic/SourceManager.h" | |||
| 28 | #include "clang/CodeGen/ConstantInitBuilder.h" | |||
| 29 | #include "llvm/ADT/ArrayRef.h" | |||
| 30 | #include "llvm/ADT/SetOperations.h" | |||
| 31 | #include "llvm/ADT/StringExtras.h" | |||
| 32 | #include "llvm/Bitcode/BitcodeReader.h" | |||
| 33 | #include "llvm/IR/Constants.h" | |||
| 34 | #include "llvm/IR/DerivedTypes.h" | |||
| 35 | #include "llvm/IR/GlobalValue.h" | |||
| 36 | #include "llvm/IR/Value.h" | |||
| 37 | #include "llvm/Support/AtomicOrdering.h" | |||
| 38 | #include "llvm/Support/Format.h" | |||
| 39 | #include "llvm/Support/raw_ostream.h" | |||
| 40 | #include <cassert> | |||
| 41 | #include <numeric> | |||
| 42 | ||||
| 43 | using namespace clang; | |||
| 44 | using namespace CodeGen; | |||
| 45 | using namespace llvm::omp; | |||
| 46 | ||||
| 47 | namespace { | |||
| 48 | /// Base class for handling code generation inside OpenMP regions. | |||
| 49 | class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo { | |||
| 50 | public: | |||
| 51 | /// Kinds of OpenMP regions used in codegen. | |||
| 52 | enum CGOpenMPRegionKind { | |||
| 53 | /// Region with outlined function for standalone 'parallel' | |||
| 54 | /// directive. | |||
| 55 | ParallelOutlinedRegion, | |||
| 56 | /// Region with outlined function for standalone 'task' directive. | |||
| 57 | TaskOutlinedRegion, | |||
| 58 | /// Region for constructs that do not require function outlining, | |||
| 59 | /// like 'for', 'sections', 'atomic' etc. directives. | |||
| 60 | InlinedRegion, | |||
| 61 | /// Region with outlined function for standalone 'target' directive. | |||
| 62 | TargetRegion, | |||
| 63 | }; | |||
| 64 | ||||
| 65 | CGOpenMPRegionInfo(const CapturedStmt &CS, | |||
| 66 | const CGOpenMPRegionKind RegionKind, | |||
| 67 | const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, | |||
| 68 | bool HasCancel) | |||
| 69 | : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind), | |||
| 70 | CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {} | |||
| 71 | ||||
| 72 | CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind, | |||
| 73 | const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, | |||
| 74 | bool HasCancel) | |||
| 75 | : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen), | |||
| 76 | Kind(Kind), HasCancel(HasCancel) {} | |||
| 77 | ||||
| 78 | /// Get a variable or parameter for storing global thread id | |||
| 79 | /// inside OpenMP construct. | |||
| 80 | virtual const VarDecl *getThreadIDVariable() const = 0; | |||
| 81 | ||||
| 82 | /// Emit the captured statement body. | |||
| 83 | void EmitBody(CodeGenFunction &CGF, const Stmt *S) override; | |||
| 84 | ||||
| 85 | /// Get an LValue for the current ThreadID variable. | |||
| 86 | /// \return LValue for thread id variable. This LValue always has type int32*. | |||
| 87 | virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF); | |||
| 88 | ||||
| 89 | virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {} | |||
| 90 | ||||
| 91 | CGOpenMPRegionKind getRegionKind() const { return RegionKind; } | |||
| 92 | ||||
| 93 | OpenMPDirectiveKind getDirectiveKind() const { return Kind; } | |||
| 94 | ||||
| 95 | bool hasCancel() const { return HasCancel; } | |||
| 96 | ||||
| 97 | static bool classof(const CGCapturedStmtInfo *Info) { | |||
| 98 | return Info->getKind() == CR_OpenMP; | |||
| 99 | } | |||
| 100 | ||||
| 101 | ~CGOpenMPRegionInfo() override = default; | |||
| 102 | ||||
| 103 | protected: | |||
| 104 | CGOpenMPRegionKind RegionKind; | |||
| 105 | RegionCodeGenTy CodeGen; | |||
| 106 | OpenMPDirectiveKind Kind; | |||
| 107 | bool HasCancel; | |||
| 108 | }; | |||
| 109 | ||||
| 110 | /// API for captured statement code generation in OpenMP constructs. | |||
| 111 | class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo { | |||
| 112 | public: | |||
| 113 | CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar, | |||
| 114 | const RegionCodeGenTy &CodeGen, | |||
| 115 | OpenMPDirectiveKind Kind, bool HasCancel, | |||
| 116 | StringRef HelperName) | |||
| 117 | : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind, | |||
| 118 | HasCancel), | |||
| 119 | ThreadIDVar(ThreadIDVar), HelperName(HelperName) { | |||
| 120 | assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.")((void)0); | |||
| 121 | } | |||
| 122 | ||||
| 123 | /// Get a variable or parameter for storing global thread id | |||
| 124 | /// inside OpenMP construct. | |||
| 125 | const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; } | |||
| 126 | ||||
| 127 | /// Get the name of the capture helper. | |||
| 128 | StringRef getHelperName() const override { return HelperName; } | |||
| 129 | ||||
| 130 | static bool classof(const CGCapturedStmtInfo *Info) { | |||
| 131 | return CGOpenMPRegionInfo::classof(Info) && | |||
| 132 | cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == | |||
| 133 | ParallelOutlinedRegion; | |||
| 134 | } | |||
| 135 | ||||
| 136 | private: | |||
| 137 | /// A variable or parameter storing global thread id for OpenMP | |||
| 138 | /// constructs. | |||
| 139 | const VarDecl *ThreadIDVar; | |||
| 140 | StringRef HelperName; | |||
| 141 | }; | |||
| 142 | ||||
| 143 | /// API for captured statement code generation in OpenMP constructs. | |||
| 144 | class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo { | |||
| 145 | public: | |||
| 146 | class UntiedTaskActionTy final : public PrePostActionTy { | |||
| 147 | bool Untied; | |||
| 148 | const VarDecl *PartIDVar; | |||
| 149 | const RegionCodeGenTy UntiedCodeGen; | |||
| 150 | llvm::SwitchInst *UntiedSwitch = nullptr; | |||
| 151 | ||||
| 152 | public: | |||
| 153 | UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar, | |||
| 154 | const RegionCodeGenTy &UntiedCodeGen) | |||
| 155 | : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {} | |||
| 156 | void Enter(CodeGenFunction &CGF) override { | |||
| 157 | if (Untied) { | |||
| 158 | // Emit task switching point. | |||
| 159 | LValue PartIdLVal = CGF.EmitLoadOfPointerLValue( | |||
| 160 | CGF.GetAddrOfLocalVar(PartIDVar), | |||
| 161 | PartIDVar->getType()->castAs<PointerType>()); | |||
| 162 | llvm::Value *Res = | |||
| 163 | CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation()); | |||
| 164 | llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done."); | |||
| 165 | UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB); | |||
| 166 | CGF.EmitBlock(DoneBB); | |||
| 167 | CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); | |||
| 168 | CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp.")); | |||
| 169 | UntiedSwitch->addCase(CGF.Builder.getInt32(0), | |||
| 170 | CGF.Builder.GetInsertBlock()); | |||
| 171 | emitUntiedSwitch(CGF); | |||
| 172 | } | |||
| 173 | } | |||
| 174 | void emitUntiedSwitch(CodeGenFunction &CGF) const { | |||
| 175 | if (Untied) { | |||
| 176 | LValue PartIdLVal = CGF.EmitLoadOfPointerLValue( | |||
| 177 | CGF.GetAddrOfLocalVar(PartIDVar), | |||
| 178 | PartIDVar->getType()->castAs<PointerType>()); | |||
| 179 | CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()), | |||
| 180 | PartIdLVal); | |||
| 181 | UntiedCodeGen(CGF); | |||
| 182 | CodeGenFunction::JumpDest CurPoint = | |||
| 183 | CGF.getJumpDestInCurrentScope(".untied.next."); | |||
| 184 | CGF.EmitBranch(CGF.ReturnBlock.getBlock()); | |||
| 185 | CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp.")); | |||
| 186 | UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()), | |||
| 187 | CGF.Builder.GetInsertBlock()); | |||
| 188 | CGF.EmitBranchThroughCleanup(CurPoint); | |||
| 189 | CGF.EmitBlock(CurPoint.getBlock()); | |||
| 190 | } | |||
| 191 | } | |||
| 192 | unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); } | |||
| 193 | }; | |||
| 194 | CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS, | |||
| 195 | const VarDecl *ThreadIDVar, | |||
| 196 | const RegionCodeGenTy &CodeGen, | |||
| 197 | OpenMPDirectiveKind Kind, bool HasCancel, | |||
| 198 | const UntiedTaskActionTy &Action) | |||
| 199 | : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel), | |||
| 200 | ThreadIDVar(ThreadIDVar), Action(Action) { | |||
| 201 | assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.")((void)0); | |||
| 202 | } | |||
| 203 | ||||
| 204 | /// Get a variable or parameter for storing global thread id | |||
| 205 | /// inside OpenMP construct. | |||
| 206 | const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; } | |||
| 207 | ||||
| 208 | /// Get an LValue for the current ThreadID variable. | |||
| 209 | LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override; | |||
| 210 | ||||
| 211 | /// Get the name of the capture helper. | |||
| 212 | StringRef getHelperName() const override { return ".omp_outlined."; } | |||
| 213 | ||||
| 214 | void emitUntiedSwitch(CodeGenFunction &CGF) override { | |||
| 215 | Action.emitUntiedSwitch(CGF); | |||
| 216 | } | |||
| 217 | ||||
| 218 | static bool classof(const CGCapturedStmtInfo *Info) { | |||
| 219 | return CGOpenMPRegionInfo::classof(Info) && | |||
| 220 | cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == | |||
| 221 | TaskOutlinedRegion; | |||
| 222 | } | |||
| 223 | ||||
| 224 | private: | |||
| 225 | /// A variable or parameter storing global thread id for OpenMP | |||
| 226 | /// constructs. | |||
| 227 | const VarDecl *ThreadIDVar; | |||
| 228 | /// Action for emitting code for untied tasks. | |||
| 229 | const UntiedTaskActionTy &Action; | |||
| 230 | }; | |||
| 231 | ||||
| 232 | /// API for inlined captured statement code generation in OpenMP | |||
| 233 | /// constructs. | |||
| 234 | class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo { | |||
| 235 | public: | |||
| 236 | CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI, | |||
| 237 | const RegionCodeGenTy &CodeGen, | |||
| 238 | OpenMPDirectiveKind Kind, bool HasCancel) | |||
| 239 | : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel), | |||
| 240 | OldCSI(OldCSI), | |||
| 241 | OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {} | |||
| 242 | ||||
| 243 | // Retrieve the value of the context parameter. | |||
| 244 | llvm::Value *getContextValue() const override { | |||
| 245 | if (OuterRegionInfo) | |||
| 246 | return OuterRegionInfo->getContextValue(); | |||
| 247 | llvm_unreachable("No context value for inlined OpenMP region")__builtin_unreachable(); | |||
| 248 | } | |||
| 249 | ||||
| 250 | void setContextValue(llvm::Value *V) override { | |||
| 251 | if (OuterRegionInfo) { | |||
| 252 | OuterRegionInfo->setContextValue(V); | |||
| 253 | return; | |||
| 254 | } | |||
| 255 | llvm_unreachable("No context value for inlined OpenMP region")__builtin_unreachable(); | |||
| 256 | } | |||
| 257 | ||||
| 258 | /// Lookup the captured field decl for a variable. | |||
| 259 | const FieldDecl *lookup(const VarDecl *VD) const override { | |||
| 260 | if (OuterRegionInfo) | |||
| 261 | return OuterRegionInfo->lookup(VD); | |||
| 262 | // If there is no outer outlined region,no need to lookup in a list of | |||
| 263 | // captured variables, we can use the original one. | |||
| 264 | return nullptr; | |||
| 265 | } | |||
| 266 | ||||
| 267 | FieldDecl *getThisFieldDecl() const override { | |||
| 268 | if (OuterRegionInfo) | |||
| 269 | return OuterRegionInfo->getThisFieldDecl(); | |||
| 270 | return nullptr; | |||
| 271 | } | |||
| 272 | ||||
| 273 | /// Get a variable or parameter for storing global thread id | |||
| 274 | /// inside OpenMP construct. | |||
| 275 | const VarDecl *getThreadIDVariable() const override { | |||
| 276 | if (OuterRegionInfo) | |||
| 277 | return OuterRegionInfo->getThreadIDVariable(); | |||
| 278 | return nullptr; | |||
| 279 | } | |||
| 280 | ||||
| 281 | /// Get an LValue for the current ThreadID variable. | |||
| 282 | LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override { | |||
| 283 | if (OuterRegionInfo) | |||
| 284 | return OuterRegionInfo->getThreadIDVariableLValue(CGF); | |||
| 285 | llvm_unreachable("No LValue for inlined OpenMP construct")__builtin_unreachable(); | |||
| 286 | } | |||
| 287 | ||||
| 288 | /// Get the name of the capture helper. | |||
| 289 | StringRef getHelperName() const override { | |||
| 290 | if (auto *OuterRegionInfo = getOldCSI()) | |||
| 291 | return OuterRegionInfo->getHelperName(); | |||
| 292 | llvm_unreachable("No helper name for inlined OpenMP construct")__builtin_unreachable(); | |||
| 293 | } | |||
| 294 | ||||
| 295 | void emitUntiedSwitch(CodeGenFunction &CGF) override { | |||
| 296 | if (OuterRegionInfo) | |||
| 297 | OuterRegionInfo->emitUntiedSwitch(CGF); | |||
| 298 | } | |||
| 299 | ||||
| 300 | CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; } | |||
| 301 | ||||
| 302 | static bool classof(const CGCapturedStmtInfo *Info) { | |||
| 303 | return CGOpenMPRegionInfo::classof(Info) && | |||
| 304 | cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion; | |||
| 305 | } | |||
| 306 | ||||
| 307 | ~CGOpenMPInlinedRegionInfo() override = default; | |||
| 308 | ||||
| 309 | private: | |||
| 310 | /// CodeGen info about outer OpenMP region. | |||
| 311 | CodeGenFunction::CGCapturedStmtInfo *OldCSI; | |||
| 312 | CGOpenMPRegionInfo *OuterRegionInfo; | |||
| 313 | }; | |||
| 314 | ||||
| 315 | /// API for captured statement code generation in OpenMP target | |||
| 316 | /// constructs. For this captures, implicit parameters are used instead of the | |||
| 317 | /// captured fields. The name of the target region has to be unique in a given | |||
| 318 | /// application so it is provided by the client, because only the client has | |||
| 319 | /// the information to generate that. | |||
| 320 | class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo { | |||
| 321 | public: | |||
| 322 | CGOpenMPTargetRegionInfo(const CapturedStmt &CS, | |||
| 323 | const RegionCodeGenTy &CodeGen, StringRef HelperName) | |||
| 324 | : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target, | |||
| 325 | /*HasCancel=*/false), | |||
| 326 | HelperName(HelperName) {} | |||
| 327 | ||||
| 328 | /// This is unused for target regions because each starts executing | |||
| 329 | /// with a single thread. | |||
| 330 | const VarDecl *getThreadIDVariable() const override { return nullptr; } | |||
| 331 | ||||
| 332 | /// Get the name of the capture helper. | |||
| 333 | StringRef getHelperName() const override { return HelperName; } | |||
| 334 | ||||
| 335 | static bool classof(const CGCapturedStmtInfo *Info) { | |||
| 336 | return CGOpenMPRegionInfo::classof(Info) && | |||
| 337 | cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion; | |||
| 338 | } | |||
| 339 | ||||
| 340 | private: | |||
| 341 | StringRef HelperName; | |||
| 342 | }; | |||
| 343 | ||||
| 344 | static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) { | |||
| 345 | llvm_unreachable("No codegen for expressions")__builtin_unreachable(); | |||
| 346 | } | |||
| 347 | /// API for generation of expressions captured in a innermost OpenMP | |||
| 348 | /// region. | |||
| 349 | class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo { | |||
| 350 | public: | |||
| 351 | CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS) | |||
| 352 | : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen, | |||
| 353 | OMPD_unknown, | |||
| 354 | /*HasCancel=*/false), | |||
| 355 | PrivScope(CGF) { | |||
| 356 | // Make sure the globals captured in the provided statement are local by | |||
| 357 | // using the privatization logic. We assume the same variable is not | |||
| 358 | // captured more than once. | |||
| 359 | for (const auto &C : CS.captures()) { | |||
| 360 | if (!C.capturesVariable() && !C.capturesVariableByCopy()) | |||
| 361 | continue; | |||
| 362 | ||||
| 363 | const VarDecl *VD = C.getCapturedVar(); | |||
| 364 | if (VD->isLocalVarDeclOrParm()) | |||
| 365 | continue; | |||
| 366 | ||||
| 367 | DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), | |||
| 368 | /*RefersToEnclosingVariableOrCapture=*/false, | |||
| 369 | VD->getType().getNonReferenceType(), VK_LValue, | |||
| 370 | C.getLocation()); | |||
| 371 | PrivScope.addPrivate( | |||
| 372 | VD, [&CGF, &DRE]() { return CGF.EmitLValue(&DRE).getAddress(CGF); }); | |||
| 373 | } | |||
| 374 | (void)PrivScope.Privatize(); | |||
| 375 | } | |||
| 376 | ||||
| 377 | /// Lookup the captured field decl for a variable. | |||
| 378 | const FieldDecl *lookup(const VarDecl *VD) const override { | |||
| 379 | if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD)) | |||
| 380 | return FD; | |||
| 381 | return nullptr; | |||
| 382 | } | |||
| 383 | ||||
| 384 | /// Emit the captured statement body. | |||
| 385 | void EmitBody(CodeGenFunction &CGF, const Stmt *S) override { | |||
| 386 | llvm_unreachable("No body for expressions")__builtin_unreachable(); | |||
| 387 | } | |||
| 388 | ||||
| 389 | /// Get a variable or parameter for storing global thread id | |||
| 390 | /// inside OpenMP construct. | |||
| 391 | const VarDecl *getThreadIDVariable() const override { | |||
| 392 | llvm_unreachable("No thread id for expressions")__builtin_unreachable(); | |||
| 393 | } | |||
| 394 | ||||
| 395 | /// Get the name of the capture helper. | |||
| 396 | StringRef getHelperName() const override { | |||
| 397 | llvm_unreachable("No helper name for expressions")__builtin_unreachable(); | |||
| 398 | } | |||
| 399 | ||||
| 400 | static bool classof(const CGCapturedStmtInfo *Info) { return false; } | |||
| 401 | ||||
| 402 | private: | |||
| 403 | /// Private scope to capture global variables. | |||
| 404 | CodeGenFunction::OMPPrivateScope PrivScope; | |||
| 405 | }; | |||
| 406 | ||||
| 407 | /// RAII for emitting code of OpenMP constructs. | |||
| 408 | class InlinedOpenMPRegionRAII { | |||
| 409 | CodeGenFunction &CGF; | |||
| 410 | llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; | |||
| 411 | FieldDecl *LambdaThisCaptureField = nullptr; | |||
| 412 | const CodeGen::CGBlockInfo *BlockInfo = nullptr; | |||
| 413 | bool NoInheritance = false; | |||
| 414 | ||||
| 415 | public: | |||
| 416 | /// Constructs region for combined constructs. | |||
| 417 | /// \param CodeGen Code generation sequence for combined directives. Includes | |||
| 418 | /// a list of functions used for code generation of implicitly inlined | |||
| 419 | /// regions. | |||
| 420 | InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen, | |||
| 421 | OpenMPDirectiveKind Kind, bool HasCancel, | |||
| 422 | bool NoInheritance = true) | |||
| 423 | : CGF(CGF), NoInheritance(NoInheritance) { | |||
| 424 | // Start emission for the construct. | |||
| 425 | CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo( | |||
| 426 | CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel); | |||
| 427 | if (NoInheritance) { | |||
| 428 | std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields); | |||
| 429 | LambdaThisCaptureField = CGF.LambdaThisCaptureField; | |||
| 430 | CGF.LambdaThisCaptureField = nullptr; | |||
| 431 | BlockInfo = CGF.BlockInfo; | |||
| 432 | CGF.BlockInfo = nullptr; | |||
| 433 | } | |||
| 434 | } | |||
| 435 | ||||
| 436 | ~InlinedOpenMPRegionRAII() { | |||
| 437 | // Restore original CapturedStmtInfo only if we're done with code emission. | |||
| 438 | auto *OldCSI = | |||
| 439 | cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI(); | |||
| 440 | delete CGF.CapturedStmtInfo; | |||
| 441 | CGF.CapturedStmtInfo = OldCSI; | |||
| 442 | if (NoInheritance) { | |||
| 443 | std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields); | |||
| 444 | CGF.LambdaThisCaptureField = LambdaThisCaptureField; | |||
| 445 | CGF.BlockInfo = BlockInfo; | |||
| 446 | } | |||
| 447 | } | |||
| 448 | }; | |||
| 449 | ||||
| 450 | /// Values for bit flags used in the ident_t to describe the fields. | |||
| 451 | /// All enumeric elements are named and described in accordance with the code | |||
| 452 | /// from https://github.com/llvm/llvm-project/blob/main/openmp/runtime/src/kmp.h | |||
| 453 | enum OpenMPLocationFlags : unsigned { | |||
| 454 | /// Use trampoline for internal microtask. | |||
| 455 | OMP_IDENT_IMD = 0x01, | |||
| 456 | /// Use c-style ident structure. | |||
| 457 | OMP_IDENT_KMPC = 0x02, | |||
| 458 | /// Atomic reduction option for kmpc_reduce. | |||
| 459 | OMP_ATOMIC_REDUCE = 0x10, | |||
| 460 | /// Explicit 'barrier' directive. | |||
| 461 | OMP_IDENT_BARRIER_EXPL = 0x20, | |||
| 462 | /// Implicit barrier in code. | |||
| 463 | OMP_IDENT_BARRIER_IMPL = 0x40, | |||
| 464 | /// Implicit barrier in 'for' directive. | |||
| 465 | OMP_IDENT_BARRIER_IMPL_FOR = 0x40, | |||
| 466 | /// Implicit barrier in 'sections' directive. | |||
| 467 | OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0, | |||
| 468 | /// Implicit barrier in 'single' directive. | |||
| 469 | OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140, | |||
| 470 | /// Call of __kmp_for_static_init for static loop. | |||
| 471 | OMP_IDENT_WORK_LOOP = 0x200, | |||
| 472 | /// Call of __kmp_for_static_init for sections. | |||
| 473 | OMP_IDENT_WORK_SECTIONS = 0x400, | |||
| 474 | /// Call of __kmp_for_static_init for distribute. | |||
| 475 | OMP_IDENT_WORK_DISTRIBUTE = 0x800, | |||
| 476 | LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE)LLVM_BITMASK_LARGEST_ENUMERATOR = OMP_IDENT_WORK_DISTRIBUTE | |||
| 477 | }; | |||
| 478 | ||||
| 479 | namespace { | |||
| 480 | LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE()using ::llvm::BitmaskEnumDetail::operator~; using ::llvm::BitmaskEnumDetail ::operator|; using ::llvm::BitmaskEnumDetail::operator&; using ::llvm::BitmaskEnumDetail::operator^; using ::llvm::BitmaskEnumDetail ::operator|=; using ::llvm::BitmaskEnumDetail::operator&= ; using ::llvm::BitmaskEnumDetail::operator^=; | |||
| 481 | /// Values for bit flags for marking which requires clauses have been used. | |||
| 482 | enum OpenMPOffloadingRequiresDirFlags : int64_t { | |||
| 483 | /// flag undefined. | |||
| 484 | OMP_REQ_UNDEFINED = 0x000, | |||
| 485 | /// no requires clause present. | |||
| 486 | OMP_REQ_NONE = 0x001, | |||
| 487 | /// reverse_offload clause. | |||
| 488 | OMP_REQ_REVERSE_OFFLOAD = 0x002, | |||
| 489 | /// unified_address clause. | |||
| 490 | OMP_REQ_UNIFIED_ADDRESS = 0x004, | |||
| 491 | /// unified_shared_memory clause. | |||
| 492 | OMP_REQ_UNIFIED_SHARED_MEMORY = 0x008, | |||
| 493 | /// dynamic_allocators clause. | |||
| 494 | OMP_REQ_DYNAMIC_ALLOCATORS = 0x010, | |||
| 495 | LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS)LLVM_BITMASK_LARGEST_ENUMERATOR = OMP_REQ_DYNAMIC_ALLOCATORS | |||
| 496 | }; | |||
| 497 | ||||
| 498 | enum OpenMPOffloadingReservedDeviceIDs { | |||
| 499 | /// Device ID if the device was not defined, runtime should get it | |||
| 500 | /// from environment variables in the spec. | |||
| 501 | OMP_DEVICEID_UNDEF = -1, | |||
| 502 | }; | |||
| 503 | } // anonymous namespace | |||
| 504 | ||||
| 505 | /// Describes ident structure that describes a source location. | |||
| 506 | /// All descriptions are taken from | |||
| 507 | /// https://github.com/llvm/llvm-project/blob/main/openmp/runtime/src/kmp.h | |||
| 508 | /// Original structure: | |||
| 509 | /// typedef struct ident { | |||
| 510 | /// kmp_int32 reserved_1; /**< might be used in Fortran; | |||
| 511 | /// see above */ | |||
| 512 | /// kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags; | |||
| 513 | /// KMP_IDENT_KMPC identifies this union | |||
| 514 | /// member */ | |||
| 515 | /// kmp_int32 reserved_2; /**< not really used in Fortran any more; | |||
| 516 | /// see above */ | |||
| 517 | ///#if USE_ITT_BUILD | |||
| 518 | /// /* but currently used for storing | |||
| 519 | /// region-specific ITT */ | |||
| 520 | /// /* contextual information. */ | |||
| 521 | ///#endif /* USE_ITT_BUILD */ | |||
| 522 | /// kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for | |||
| 523 | /// C++ */ | |||
| 524 | /// char const *psource; /**< String describing the source location. | |||
| 525 | /// The string is composed of semi-colon separated | |||
| 526 | // fields which describe the source file, | |||
| 527 | /// the function and a pair of line numbers that | |||
| 528 | /// delimit the construct. | |||
| 529 | /// */ | |||
| 530 | /// } ident_t; | |||
| 531 | enum IdentFieldIndex { | |||
| 532 | /// might be used in Fortran | |||
| 533 | IdentField_Reserved_1, | |||
| 534 | /// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member. | |||
| 535 | IdentField_Flags, | |||
| 536 | /// Not really used in Fortran any more | |||
| 537 | IdentField_Reserved_2, | |||
| 538 | /// Source[4] in Fortran, do not use for C++ | |||
| 539 | IdentField_Reserved_3, | |||
| 540 | /// String describing the source location. The string is composed of | |||
| 541 | /// semi-colon separated fields which describe the source file, the function | |||
| 542 | /// and a pair of line numbers that delimit the construct. | |||
| 543 | IdentField_PSource | |||
| 544 | }; | |||
| 545 | ||||
| 546 | /// Schedule types for 'omp for' loops (these enumerators are taken from | |||
| 547 | /// the enum sched_type in kmp.h). | |||
| 548 | enum OpenMPSchedType { | |||
| 549 | /// Lower bound for default (unordered) versions. | |||
| 550 | OMP_sch_lower = 32, | |||
| 551 | OMP_sch_static_chunked = 33, | |||
| 552 | OMP_sch_static = 34, | |||
| 553 | OMP_sch_dynamic_chunked = 35, | |||
| 554 | OMP_sch_guided_chunked = 36, | |||
| 555 | OMP_sch_runtime = 37, | |||
| 556 | OMP_sch_auto = 38, | |||
| 557 | /// static with chunk adjustment (e.g., simd) | |||
| 558 | OMP_sch_static_balanced_chunked = 45, | |||
| 559 | /// Lower bound for 'ordered' versions. | |||
| 560 | OMP_ord_lower = 64, | |||
| 561 | OMP_ord_static_chunked = 65, | |||
| 562 | OMP_ord_static = 66, | |||
| 563 | OMP_ord_dynamic_chunked = 67, | |||
| 564 | OMP_ord_guided_chunked = 68, | |||
| 565 | OMP_ord_runtime = 69, | |||
| 566 | OMP_ord_auto = 70, | |||
| 567 | OMP_sch_default = OMP_sch_static, | |||
| 568 | /// dist_schedule types | |||
| 569 | OMP_dist_sch_static_chunked = 91, | |||
| 570 | OMP_dist_sch_static = 92, | |||
| 571 | /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. | |||
| 572 | /// Set if the monotonic schedule modifier was present. | |||
| 573 | OMP_sch_modifier_monotonic = (1 << 29), | |||
| 574 | /// Set if the nonmonotonic schedule modifier was present. | |||
| 575 | OMP_sch_modifier_nonmonotonic = (1 << 30), | |||
| 576 | }; | |||
| 577 | ||||
| 578 | /// A basic class for pre|post-action for advanced codegen sequence for OpenMP | |||
| 579 | /// region. | |||
| 580 | class CleanupTy final : public EHScopeStack::Cleanup { | |||
| 581 | PrePostActionTy *Action; | |||
| 582 | ||||
| 583 | public: | |||
| 584 | explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {} | |||
| 585 | void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { | |||
| 586 | if (!CGF.HaveInsertPoint()) | |||
| 587 | return; | |||
| 588 | Action->Exit(CGF); | |||
| 589 | } | |||
| 590 | }; | |||
| 591 | ||||
| 592 | } // anonymous namespace | |||
| 593 | ||||
| 594 | void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const { | |||
| 595 | CodeGenFunction::RunCleanupsScope Scope(CGF); | |||
| 596 | if (PrePostAction) { | |||
| 597 | CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction); | |||
| 598 | Callback(CodeGen, CGF, *PrePostAction); | |||
| 599 | } else { | |||
| 600 | PrePostActionTy Action; | |||
| 601 | Callback(CodeGen, CGF, Action); | |||
| 602 | } | |||
| 603 | } | |||
| 604 | ||||
| 605 | /// Check if the combiner is a call to UDR combiner and if it is so return the | |||
| 606 | /// UDR decl used for reduction. | |||
| 607 | static const OMPDeclareReductionDecl * | |||
| 608 | getReductionInit(const Expr *ReductionOp) { | |||
| 609 | if (const auto *CE = dyn_cast<CallExpr>(ReductionOp)) | |||
| 610 | if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee())) | |||
| 611 | if (const auto *DRE = | |||
| 612 | dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts())) | |||
| 613 | if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) | |||
| 614 | return DRD; | |||
| 615 | return nullptr; | |||
| 616 | } | |||
| 617 | ||||
| 618 | static void emitInitWithReductionInitializer(CodeGenFunction &CGF, | |||
| 619 | const OMPDeclareReductionDecl *DRD, | |||
| 620 | const Expr *InitOp, | |||
| 621 | Address Private, Address Original, | |||
| 622 | QualType Ty) { | |||
| 623 | if (DRD->getInitializer()) { | |||
| 624 | std::pair<llvm::Function *, llvm::Function *> Reduction = | |||
| 625 | CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); | |||
| 626 | const auto *CE = cast<CallExpr>(InitOp); | |||
| 627 | const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee()); | |||
| 628 | const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts(); | |||
| 629 | const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts(); | |||
| 630 | const auto *LHSDRE = | |||
| 631 | cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr()); | |||
| 632 | const auto *RHSDRE = | |||
| 633 | cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr()); | |||
| 634 | CodeGenFunction::OMPPrivateScope PrivateScope(CGF); | |||
| 635 | PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()), | |||
| 636 | [=]() { return Private; }); | |||
| 637 | PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()), | |||
| 638 | [=]() { return Original; }); | |||
| 639 | (void)PrivateScope.Privatize(); | |||
| 640 | RValue Func = RValue::get(Reduction.second); | |||
| 641 | CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); | |||
| 642 | CGF.EmitIgnoredExpr(InitOp); | |||
| 643 | } else { | |||
| 644 | llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty); | |||
| 645 | std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"}); | |||
| 646 | auto *GV = new llvm::GlobalVariable( | |||
| 647 | CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, | |||
| 648 | llvm::GlobalValue::PrivateLinkage, Init, Name); | |||
| 649 | LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty); | |||
| 650 | RValue InitRVal; | |||
| 651 | switch (CGF.getEvaluationKind(Ty)) { | |||
| 652 | case TEK_Scalar: | |||
| 653 | InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation()); | |||
| 654 | break; | |||
| 655 | case TEK_Complex: | |||
| 656 | InitRVal = | |||
| 657 | RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation())); | |||
| 658 | break; | |||
| 659 | case TEK_Aggregate: { | |||
| 660 | OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_LValue); | |||
| 661 | CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, LV); | |||
| 662 | CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(), | |||
| 663 | /*IsInitializer=*/false); | |||
| 664 | return; | |||
| 665 | } | |||
| 666 | } | |||
| 667 | OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_PRValue); | |||
| 668 | CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal); | |||
| 669 | CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(), | |||
| 670 | /*IsInitializer=*/false); | |||
| 671 | } | |||
| 672 | } | |||
| 673 | ||||
| 674 | /// Emit initialization of arrays of complex types. | |||
| 675 | /// \param DestAddr Address of the array. | |||
| 676 | /// \param Type Type of array. | |||
| 677 | /// \param Init Initial expression of array. | |||
| 678 | /// \param SrcAddr Address of the original array. | |||
| 679 | static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr, | |||
| 680 | QualType Type, bool EmitDeclareReductionInit, | |||
| 681 | const Expr *Init, | |||
| 682 | const OMPDeclareReductionDecl *DRD, | |||
| 683 | Address SrcAddr = Address::invalid()) { | |||
| 684 | // Perform element-by-element initialization. | |||
| 685 | QualType ElementTy; | |||
| 686 | ||||
| 687 | // Drill down to the base element type on both arrays. | |||
| 688 | const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe(); | |||
| 689 | llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr); | |||
| 690 | DestAddr = | |||
| 691 | CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType()); | |||
| 692 | if (DRD) | |||
| 693 | SrcAddr = | |||
| 694 | CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); | |||
| 695 | ||||
| 696 | llvm::Value *SrcBegin = nullptr; | |||
| 697 | if (DRD) | |||
| 698 | SrcBegin = SrcAddr.getPointer(); | |||
| 699 | llvm::Value *DestBegin = DestAddr.getPointer(); | |||
| 700 | // Cast from pointer to array type to pointer to single element. | |||
| 701 | llvm::Value *DestEnd = | |||
| 702 | CGF.Builder.CreateGEP(DestAddr.getElementType(), DestBegin, NumElements); | |||
| 703 | // The basic structure here is a while-do loop. | |||
| 704 | llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body"); | |||
| 705 | llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done"); | |||
| 706 | llvm::Value *IsEmpty = | |||
| 707 | CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty"); | |||
| 708 | CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); | |||
| 709 | ||||
| 710 | // Enter the loop body, making that address the current address. | |||
| 711 | llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock(); | |||
| 712 | CGF.EmitBlock(BodyBB); | |||
| 713 | ||||
| 714 | CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); | |||
| 715 | ||||
| 716 | llvm::PHINode *SrcElementPHI = nullptr; | |||
| 717 | Address SrcElementCurrent = Address::invalid(); | |||
| 718 | if (DRD) { | |||
| 719 | SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2, | |||
| 720 | "omp.arraycpy.srcElementPast"); | |||
| 721 | SrcElementPHI->addIncoming(SrcBegin, EntryBB); | |||
| 722 | SrcElementCurrent = | |||
| 723 | Address(SrcElementPHI, | |||
| 724 | SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); | |||
| 725 | } | |||
| 726 | llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI( | |||
| 727 | DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); | |||
| 728 | DestElementPHI->addIncoming(DestBegin, EntryBB); | |||
| 729 | Address DestElementCurrent = | |||
| 730 | Address(DestElementPHI, | |||
| 731 | DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); | |||
| 732 | ||||
| 733 | // Emit copy. | |||
| 734 | { | |||
| 735 | CodeGenFunction::RunCleanupsScope InitScope(CGF); | |||
| 736 | if (EmitDeclareReductionInit) { | |||
| 737 | emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent, | |||
| 738 | SrcElementCurrent, ElementTy); | |||
| 739 | } else | |||
| 740 | CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(), | |||
| 741 | /*IsInitializer=*/false); | |||
| 742 | } | |||
| 743 | ||||
| 744 | if (DRD) { | |||
| 745 | // Shift the address forward by one element. | |||
| 746 | llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32( | |||
| 747 | SrcAddr.getElementType(), SrcElementPHI, /*Idx0=*/1, | |||
| 748 | "omp.arraycpy.dest.element"); | |||
| 749 | SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock()); | |||
| 750 | } | |||
| 751 | ||||
| 752 | // Shift the address forward by one element. | |||
| 753 | llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32( | |||
| 754 | DestAddr.getElementType(), DestElementPHI, /*Idx0=*/1, | |||
| 755 | "omp.arraycpy.dest.element"); | |||
| 756 | // Check whether we've reached the end. | |||
| 757 | llvm::Value *Done = | |||
| 758 | CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); | |||
| 759 | CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); | |||
| 760 | DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock()); | |||
| 761 | ||||
| 762 | // Done. | |||
| 763 | CGF.EmitBlock(DoneBB, /*IsFinished=*/true); | |||
| 764 | } | |||
| 765 | ||||
| 766 | LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) { | |||
| 767 | return CGF.EmitOMPSharedLValue(E); | |||
| 768 | } | |||
| 769 | ||||
| 770 | LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF, | |||
| 771 | const Expr *E) { | |||
| 772 | if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E)) | |||
| 773 | return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false); | |||
| 774 | return LValue(); | |||
| 775 | } | |||
| 776 | ||||
| 777 | void ReductionCodeGen::emitAggregateInitialization( | |||
| 778 | CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal, | |||
| 779 | const OMPDeclareReductionDecl *DRD) { | |||
| 780 | // Emit VarDecl with copy init for arrays. | |||
| 781 | // Get the address of the original variable captured in current | |||
| 782 | // captured region. | |||
| 783 | const auto *PrivateVD = | |||
| 784 | cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); | |||
| 785 | bool EmitDeclareReductionInit = | |||
| 786 | DRD && (DRD->getInitializer() || !PrivateVD->hasInit()); | |||
| 787 | EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(), | |||
| 788 | EmitDeclareReductionInit, | |||
| 789 | EmitDeclareReductionInit ? ClausesData[N].ReductionOp | |||
| 790 | : PrivateVD->getInit(), | |||
| 791 | DRD, SharedLVal.getAddress(CGF)); | |||
| 792 | } | |||
| 793 | ||||
| 794 | ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds, | |||
| 795 | ArrayRef<const Expr *> Origs, | |||
| 796 | ArrayRef<const Expr *> Privates, | |||
| 797 | ArrayRef<const Expr *> ReductionOps) { | |||
| 798 | ClausesData.reserve(Shareds.size()); | |||
| 799 | SharedAddresses.reserve(Shareds.size()); | |||
| 800 | Sizes.reserve(Shareds.size()); | |||
| 801 | BaseDecls.reserve(Shareds.size()); | |||
| 802 | const auto *IOrig = Origs.begin(); | |||
| 803 | const auto *IPriv = Privates.begin(); | |||
| 804 | const auto *IRed = ReductionOps.begin(); | |||
| 805 | for (const Expr *Ref : Shareds) { | |||
| 806 | ClausesData.emplace_back(Ref, *IOrig, *IPriv, *IRed); | |||
| 807 | std::advance(IOrig, 1); | |||
| 808 | std::advance(IPriv, 1); | |||
| 809 | std::advance(IRed, 1); | |||
| 810 | } | |||
| 811 | } | |||
| 812 | ||||
| 813 | void ReductionCodeGen::emitSharedOrigLValue(CodeGenFunction &CGF, unsigned N) { | |||
| 814 | assert(SharedAddresses.size() == N && OrigAddresses.size() == N &&((void)0) | |||
| 815 | "Number of generated lvalues must be exactly N.")((void)0); | |||
| 816 | LValue First = emitSharedLValue(CGF, ClausesData[N].Shared); | |||
| 817 | LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Shared); | |||
| 818 | SharedAddresses.emplace_back(First, Second); | |||
| 819 | if (ClausesData[N].Shared == ClausesData[N].Ref) { | |||
| 820 | OrigAddresses.emplace_back(First, Second); | |||
| 821 | } else { | |||
| 822 | LValue First = emitSharedLValue(CGF, ClausesData[N].Ref); | |||
| 823 | LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref); | |||
| 824 | OrigAddresses.emplace_back(First, Second); | |||
| 825 | } | |||
| 826 | } | |||
| 827 | ||||
| 828 | void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) { | |||
| 829 | const auto *PrivateVD = | |||
| 830 | cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); | |||
| 831 | QualType PrivateType = PrivateVD->getType(); | |||
| 832 | bool AsArraySection = isa<OMPArraySectionExpr>(ClausesData[N].Ref); | |||
| 833 | if (!PrivateType->isVariablyModifiedType()) { | |||
| 834 | Sizes.emplace_back( | |||
| 835 | CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType()), | |||
| 836 | nullptr); | |||
| 837 | return; | |||
| 838 | } | |||
| 839 | llvm::Value *Size; | |||
| 840 | llvm::Value *SizeInChars; | |||
| 841 | auto *ElemType = | |||
| 842 | cast<llvm::PointerType>(OrigAddresses[N].first.getPointer(CGF)->getType()) | |||
| 843 | ->getElementType(); | |||
| 844 | auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType); | |||
| 845 | if (AsArraySection) { | |||
| 846 | Size = CGF.Builder.CreatePtrDiff(OrigAddresses[N].second.getPointer(CGF), | |||
| 847 | OrigAddresses[N].first.getPointer(CGF)); | |||
| 848 | Size = CGF.Builder.CreateNUWAdd( | |||
| 849 | Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1)); | |||
| 850 | SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf); | |||
| 851 | } else { | |||
| 852 | SizeInChars = | |||
| 853 | CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType()); | |||
| 854 | Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf); | |||
| 855 | } | |||
| 856 | Sizes.emplace_back(SizeInChars, Size); | |||
| 857 | CodeGenFunction::OpaqueValueMapping OpaqueMap( | |||
| 858 | CGF, | |||
| 859 | cast<OpaqueValueExpr>( | |||
| 860 | CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()), | |||
| 861 | RValue::get(Size)); | |||
| 862 | CGF.EmitVariablyModifiedType(PrivateType); | |||
| 863 | } | |||
| 864 | ||||
| 865 | void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N, | |||
| 866 | llvm::Value *Size) { | |||
| 867 | const auto *PrivateVD = | |||
| 868 | cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); | |||
| 869 | QualType PrivateType = PrivateVD->getType(); | |||
| 870 | if (!PrivateType->isVariablyModifiedType()) { | |||
| 871 | assert(!Size && !Sizes[N].second &&((void)0) | |||
| 872 | "Size should be nullptr for non-variably modified reduction "((void)0) | |||
| 873 | "items.")((void)0); | |||
| 874 | return; | |||
| 875 | } | |||
| 876 | CodeGenFunction::OpaqueValueMapping OpaqueMap( | |||
| 877 | CGF, | |||
| 878 | cast<OpaqueValueExpr>( | |||
| 879 | CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()), | |||
| 880 | RValue::get(Size)); | |||
| 881 | CGF.EmitVariablyModifiedType(PrivateType); | |||
| 882 | } | |||
| 883 | ||||
| 884 | void ReductionCodeGen::emitInitialization( | |||
| 885 | CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal, | |||
| 886 | llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) { | |||
| 887 | assert(SharedAddresses.size() > N && "No variable was generated")((void)0); | |||
| 888 | const auto *PrivateVD = | |||
| 889 | cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); | |||
| 890 | const OMPDeclareReductionDecl *DRD = | |||
| 891 | getReductionInit(ClausesData[N].ReductionOp); | |||
| 892 | QualType PrivateType = PrivateVD->getType(); | |||
| 893 | PrivateAddr = CGF.Builder.CreateElementBitCast( | |||
| 894 | PrivateAddr, CGF.ConvertTypeForMem(PrivateType)); | |||
| 895 | QualType SharedType = SharedAddresses[N].first.getType(); | |||
| 896 | SharedLVal = CGF.MakeAddrLValue( | |||
| 897 | CGF.Builder.CreateElementBitCast(SharedLVal.getAddress(CGF), | |||
| 898 | CGF.ConvertTypeForMem(SharedType)), | |||
| 899 | SharedType, SharedAddresses[N].first.getBaseInfo(), | |||
| 900 | CGF.CGM.getTBAAInfoForSubobject(SharedAddresses[N].first, SharedType)); | |||
| 901 | if (CGF.getContext().getAsArrayType(PrivateVD->getType())) { | |||
| 902 | if (DRD && DRD->getInitializer()) | |||
| 903 | (void)DefaultInit(CGF); | |||
| 904 | emitAggregateInitialization(CGF, N, PrivateAddr, SharedLVal, DRD); | |||
| 905 | } else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { | |||
| 906 | (void)DefaultInit(CGF); | |||
| 907 | emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp, | |||
| 908 | PrivateAddr, SharedLVal.getAddress(CGF), | |||
| 909 | SharedLVal.getType()); | |||
| 910 | } else if (!DefaultInit(CGF) && PrivateVD->hasInit() && | |||
| 911 | !CGF.isTrivialInitializer(PrivateVD->getInit())) { | |||
| 912 | CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr, | |||
| 913 | PrivateVD->getType().getQualifiers(), | |||
| 914 | /*IsInitializer=*/false); | |||
| 915 | } | |||
| 916 | } | |||
| 917 | ||||
| 918 | bool ReductionCodeGen::needCleanups(unsigned N) { | |||
| 919 | const auto *PrivateVD = | |||
| 920 | cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); | |||
| 921 | QualType PrivateType = PrivateVD->getType(); | |||
| 922 | QualType::DestructionKind DTorKind = PrivateType.isDestructedType(); | |||
| 923 | return DTorKind != QualType::DK_none; | |||
| 924 | } | |||
| 925 | ||||
| 926 | void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N, | |||
| 927 | Address PrivateAddr) { | |||
| 928 | const auto *PrivateVD = | |||
| 929 | cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); | |||
| 930 | QualType PrivateType = PrivateVD->getType(); | |||
| 931 | QualType::DestructionKind DTorKind = PrivateType.isDestructedType(); | |||
| 932 | if (needCleanups(N)) { | |||
| 933 | PrivateAddr = CGF.Builder.CreateElementBitCast( | |||
| 934 | PrivateAddr, CGF.ConvertTypeForMem(PrivateType)); | |||
| 935 | CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType); | |||
| 936 | } | |||
| 937 | } | |||
| 938 | ||||
| 939 | static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, | |||
| 940 | LValue BaseLV) { | |||
| 941 | BaseTy = BaseTy.getNonReferenceType(); | |||
| 942 | while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && | |||
| 943 | !CGF.getContext().hasSameType(BaseTy, ElTy)) { | |||
| 944 | if (const auto *PtrTy = BaseTy->getAs<PointerType>()) { | |||
| 945 | BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(CGF), PtrTy); | |||
| 946 | } else { | |||
| 947 | LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(CGF), BaseTy); | |||
| 948 | BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal); | |||
| 949 | } | |||
| 950 | BaseTy = BaseTy->getPointeeType(); | |||
| 951 | } | |||
| 952 | return CGF.MakeAddrLValue( | |||
| 953 | CGF.Builder.CreateElementBitCast(BaseLV.getAddress(CGF), | |||
| 954 | CGF.ConvertTypeForMem(ElTy)), | |||
| 955 | BaseLV.getType(), BaseLV.getBaseInfo(), | |||
| 956 | CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType())); | |||
| 957 | } | |||
| 958 | ||||
| 959 | static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, | |||
| 960 | llvm::Type *BaseLVType, CharUnits BaseLVAlignment, | |||
| 961 | llvm::Value *Addr) { | |||
| 962 | Address Tmp = Address::invalid(); | |||
| 963 | Address TopTmp = Address::invalid(); | |||
| 964 | Address MostTopTmp = Address::invalid(); | |||
| 965 | BaseTy = BaseTy.getNonReferenceType(); | |||
| 966 | while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && | |||
| 967 | !CGF.getContext().hasSameType(BaseTy, ElTy)) { | |||
| 968 | Tmp = CGF.CreateMemTemp(BaseTy); | |||
| 969 | if (TopTmp.isValid()) | |||
| 970 | CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp); | |||
| 971 | else | |||
| 972 | MostTopTmp = Tmp; | |||
| 973 | TopTmp = Tmp; | |||
| 974 | BaseTy = BaseTy->getPointeeType(); | |||
| 975 | } | |||
| 976 | llvm::Type *Ty = BaseLVType; | |||
| 977 | if (Tmp.isValid()) | |||
| 978 | Ty = Tmp.getElementType(); | |||
| 979 | Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty); | |||
| 980 | if (Tmp.isValid()) { | |||
| 981 | CGF.Builder.CreateStore(Addr, Tmp); | |||
| 982 | return MostTopTmp; | |||
| 983 | } | |||
| 984 | return Address(Addr, BaseLVAlignment); | |||
| 985 | } | |||
| 986 | ||||
| 987 | static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) { | |||
| 988 | const VarDecl *OrigVD = nullptr; | |||
| 989 | if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Ref)) { | |||
| 990 | const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); | |||
| 991 | while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) | |||
| 992 | Base = TempOASE->getBase()->IgnoreParenImpCasts(); | |||
| 993 | while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) | |||
| 994 | Base = TempASE->getBase()->IgnoreParenImpCasts(); | |||
| 995 | DE = cast<DeclRefExpr>(Base); | |||
| 996 | OrigVD = cast<VarDecl>(DE->getDecl()); | |||
| 997 | } else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) { | |||
| 998 | const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); | |||
| 999 | while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) | |||
| 1000 | Base = TempASE->getBase()->IgnoreParenImpCasts(); | |||
| 1001 | DE = cast<DeclRefExpr>(Base); | |||
| 1002 | OrigVD = cast<VarDecl>(DE->getDecl()); | |||
| 1003 | } | |||
| 1004 | return OrigVD; | |||
| 1005 | } | |||
| 1006 | ||||
| 1007 | Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N, | |||
| 1008 | Address PrivateAddr) { | |||
| 1009 | const DeclRefExpr *DE; | |||
| 1010 | if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) { | |||
| 1011 | BaseDecls.emplace_back(OrigVD); | |||
| 1012 | LValue OriginalBaseLValue = CGF.EmitLValue(DE); | |||
| 1013 | LValue BaseLValue = | |||
| 1014 | loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(), | |||
| 1015 | OriginalBaseLValue); | |||
| 1016 | Address SharedAddr = SharedAddresses[N].first.getAddress(CGF); | |||
| 1017 | llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff( | |||
| 1018 | BaseLValue.getPointer(CGF), SharedAddr.getPointer()); | |||
| 1019 | llvm::Value *PrivatePointer = | |||
| 1020 | CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 1021 | PrivateAddr.getPointer(), SharedAddr.getType()); | |||
| 1022 | llvm::Value *Ptr = CGF.Builder.CreateGEP( | |||
| 1023 | SharedAddr.getElementType(), PrivatePointer, Adjustment); | |||
| 1024 | return castToBase(CGF, OrigVD->getType(), | |||
| 1025 | SharedAddresses[N].first.getType(), | |||
| 1026 | OriginalBaseLValue.getAddress(CGF).getType(), | |||
| 1027 | OriginalBaseLValue.getAlignment(), Ptr); | |||
| 1028 | } | |||
| 1029 | BaseDecls.emplace_back( | |||
| 1030 | cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl())); | |||
| 1031 | return PrivateAddr; | |||
| 1032 | } | |||
| 1033 | ||||
| 1034 | bool ReductionCodeGen::usesReductionInitializer(unsigned N) const { | |||
| 1035 | const OMPDeclareReductionDecl *DRD = | |||
| 1036 | getReductionInit(ClausesData[N].ReductionOp); | |||
| 1037 | return DRD && DRD->getInitializer(); | |||
| 1038 | } | |||
| 1039 | ||||
| 1040 | LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) { | |||
| 1041 | return CGF.EmitLoadOfPointerLValue( | |||
| 1042 | CGF.GetAddrOfLocalVar(getThreadIDVariable()), | |||
| 1043 | getThreadIDVariable()->getType()->castAs<PointerType>()); | |||
| 1044 | } | |||
| 1045 | ||||
| 1046 | void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt *S) { | |||
| 1047 | if (!CGF.HaveInsertPoint()) | |||
| 1048 | return; | |||
| 1049 | // 1.2.2 OpenMP Language Terminology | |||
| 1050 | // Structured block - An executable statement with a single entry at the | |||
| 1051 | // top and a single exit at the bottom. | |||
| 1052 | // The point of exit cannot be a branch out of the structured block. | |||
| 1053 | // longjmp() and throw() must not violate the entry/exit criteria. | |||
| 1054 | CGF.EHStack.pushTerminate(); | |||
| 1055 | if (S) | |||
| 1056 | CGF.incrementProfileCounter(S); | |||
| 1057 | CodeGen(CGF); | |||
| 1058 | CGF.EHStack.popTerminate(); | |||
| 1059 | } | |||
| 1060 | ||||
| 1061 | LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue( | |||
| 1062 | CodeGenFunction &CGF) { | |||
| 1063 | return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()), | |||
| 1064 | getThreadIDVariable()->getType(), | |||
| 1065 | AlignmentSource::Decl); | |||
| 1066 | } | |||
| 1067 | ||||
| 1068 | static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC, | |||
| 1069 | QualType FieldTy) { | |||
| 1070 | auto *Field = FieldDecl::Create( | |||
| 1071 | C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy, | |||
| 1072 | C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()), | |||
| 1073 | /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit); | |||
| 1074 | Field->setAccess(AS_public); | |||
| 1075 | DC->addDecl(Field); | |||
| 1076 | return Field; | |||
| 1077 | } | |||
| 1078 | ||||
| 1079 | CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM, StringRef FirstSeparator, | |||
| 1080 | StringRef Separator) | |||
| 1081 | : CGM(CGM), FirstSeparator(FirstSeparator), Separator(Separator), | |||
| 1082 | OMPBuilder(CGM.getModule()), OffloadEntriesInfoManager(CGM) { | |||
| 1083 | KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8); | |||
| 1084 | ||||
| 1085 | // Initialize Types used in OpenMPIRBuilder from OMPKinds.def | |||
| 1086 | OMPBuilder.initialize(); | |||
| 1087 | loadOffloadInfoMetadata(); | |||
| 1088 | } | |||
| 1089 | ||||
| 1090 | void CGOpenMPRuntime::clear() { | |||
| 1091 | InternalVars.clear(); | |||
| 1092 | // Clean non-target variable declarations possibly used only in debug info. | |||
| 1093 | for (const auto &Data : EmittedNonTargetVariables) { | |||
| 1094 | if (!Data.getValue().pointsToAliveValue()) | |||
| 1095 | continue; | |||
| 1096 | auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue()); | |||
| 1097 | if (!GV) | |||
| 1098 | continue; | |||
| 1099 | if (!GV->isDeclaration() || GV->getNumUses() > 0) | |||
| 1100 | continue; | |||
| 1101 | GV->eraseFromParent(); | |||
| 1102 | } | |||
| 1103 | } | |||
| 1104 | ||||
| 1105 | std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const { | |||
| 1106 | SmallString<128> Buffer; | |||
| 1107 | llvm::raw_svector_ostream OS(Buffer); | |||
| 1108 | StringRef Sep = FirstSeparator; | |||
| 1109 | for (StringRef Part : Parts) { | |||
| 1110 | OS << Sep << Part; | |||
| 1111 | Sep = Separator; | |||
| 1112 | } | |||
| 1113 | return std::string(OS.str()); | |||
| 1114 | } | |||
| 1115 | ||||
| 1116 | static llvm::Function * | |||
| 1117 | emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty, | |||
| 1118 | const Expr *CombinerInitializer, const VarDecl *In, | |||
| 1119 | const VarDecl *Out, bool IsCombiner) { | |||
| 1120 | // void .omp_combiner.(Ty *in, Ty *out); | |||
| 1121 | ASTContext &C = CGM.getContext(); | |||
| 1122 | QualType PtrTy = C.getPointerType(Ty).withRestrict(); | |||
| 1123 | FunctionArgList Args; | |||
| 1124 | ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(), | |||
| 1125 | /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other); | |||
| 1126 | ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(), | |||
| 1127 | /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other); | |||
| 1128 | Args.push_back(&OmpOutParm); | |||
| 1129 | Args.push_back(&OmpInParm); | |||
| 1130 | const CGFunctionInfo &FnInfo = | |||
| 1131 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); | |||
| 1132 | llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); | |||
| 1133 | std::string Name = CGM.getOpenMPRuntime().getName( | |||
| 1134 | {IsCombiner ? "omp_combiner" : "omp_initializer", ""}); | |||
| 1135 | auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, | |||
| 1136 | Name, &CGM.getModule()); | |||
| 1137 | CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); | |||
| 1138 | if (CGM.getLangOpts().Optimize) { | |||
| 1139 | Fn->removeFnAttr(llvm::Attribute::NoInline); | |||
| 1140 | Fn->removeFnAttr(llvm::Attribute::OptimizeNone); | |||
| 1141 | Fn->addFnAttr(llvm::Attribute::AlwaysInline); | |||
| 1142 | } | |||
| 1143 | CodeGenFunction CGF(CGM); | |||
| 1144 | // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions. | |||
| 1145 | // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions. | |||
| 1146 | CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(), | |||
| 1147 | Out->getLocation()); | |||
| 1148 | CodeGenFunction::OMPPrivateScope Scope(CGF); | |||
| 1149 | Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm); | |||
| 1150 | Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() { | |||
| 1151 | return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>()) | |||
| 1152 | .getAddress(CGF); | |||
| 1153 | }); | |||
| 1154 | Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm); | |||
| 1155 | Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() { | |||
| 1156 | return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>()) | |||
| 1157 | .getAddress(CGF); | |||
| 1158 | }); | |||
| 1159 | (void)Scope.Privatize(); | |||
| 1160 | if (!IsCombiner && Out->hasInit() && | |||
| 1161 | !CGF.isTrivialInitializer(Out->getInit())) { | |||
| 1162 | CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out), | |||
| 1163 | Out->getType().getQualifiers(), | |||
| 1164 | /*IsInitializer=*/true); | |||
| 1165 | } | |||
| 1166 | if (CombinerInitializer) | |||
| 1167 | CGF.EmitIgnoredExpr(CombinerInitializer); | |||
| 1168 | Scope.ForceCleanup(); | |||
| 1169 | CGF.FinishFunction(); | |||
| 1170 | return Fn; | |||
| 1171 | } | |||
| 1172 | ||||
| 1173 | void CGOpenMPRuntime::emitUserDefinedReduction( | |||
| 1174 | CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) { | |||
| 1175 | if (UDRMap.count(D) > 0) | |||
| 1176 | return; | |||
| 1177 | llvm::Function *Combiner = emitCombinerOrInitializer( | |||
| 1178 | CGM, D->getType(), D->getCombiner(), | |||
| 1179 | cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()), | |||
| 1180 | cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()), | |||
| 1181 | /*IsCombiner=*/true); | |||
| 1182 | llvm::Function *Initializer = nullptr; | |||
| 1183 | if (const Expr *Init = D->getInitializer()) { | |||
| 1184 | Initializer = emitCombinerOrInitializer( | |||
| 1185 | CGM, D->getType(), | |||
| 1186 | D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init | |||
| 1187 | : nullptr, | |||
| 1188 | cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()), | |||
| 1189 | cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()), | |||
| 1190 | /*IsCombiner=*/false); | |||
| 1191 | } | |||
| 1192 | UDRMap.try_emplace(D, Combiner, Initializer); | |||
| 1193 | if (CGF) { | |||
| 1194 | auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn); | |||
| 1195 | Decls.second.push_back(D); | |||
| 1196 | } | |||
| 1197 | } | |||
| 1198 | ||||
| 1199 | std::pair<llvm::Function *, llvm::Function *> | |||
| 1200 | CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) { | |||
| 1201 | auto I = UDRMap.find(D); | |||
| 1202 | if (I != UDRMap.end()) | |||
| 1203 | return I->second; | |||
| 1204 | emitUserDefinedReduction(/*CGF=*/nullptr, D); | |||
| 1205 | return UDRMap.lookup(D); | |||
| 1206 | } | |||
| 1207 | ||||
| 1208 | namespace { | |||
| 1209 | // Temporary RAII solution to perform a push/pop stack event on the OpenMP IR | |||
| 1210 | // Builder if one is present. | |||
| 1211 | struct PushAndPopStackRAII { | |||
| 1212 | PushAndPopStackRAII(llvm::OpenMPIRBuilder *OMPBuilder, CodeGenFunction &CGF, | |||
| 1213 | bool HasCancel, llvm::omp::Directive Kind) | |||
| 1214 | : OMPBuilder(OMPBuilder) { | |||
| 1215 | if (!OMPBuilder) | |||
| 1216 | return; | |||
| 1217 | ||||
| 1218 | // The following callback is the crucial part of clangs cleanup process. | |||
| 1219 | // | |||
| 1220 | // NOTE: | |||
| 1221 | // Once the OpenMPIRBuilder is used to create parallel regions (and | |||
| 1222 | // similar), the cancellation destination (Dest below) is determined via | |||
| 1223 | // IP. That means if we have variables to finalize we split the block at IP, | |||
| 1224 | // use the new block (=BB) as destination to build a JumpDest (via | |||
| 1225 | // getJumpDestInCurrentScope(BB)) which then is fed to | |||
| 1226 | // EmitBranchThroughCleanup. Furthermore, there will not be the need | |||
| 1227 | // to push & pop an FinalizationInfo object. | |||
| 1228 | // The FiniCB will still be needed but at the point where the | |||
| 1229 | // OpenMPIRBuilder is asked to construct a parallel (or similar) construct. | |||
| 1230 | auto FiniCB = [&CGF](llvm::OpenMPIRBuilder::InsertPointTy IP) { | |||
| 1231 | assert(IP.getBlock()->end() == IP.getPoint() &&((void)0) | |||
| 1232 | "Clang CG should cause non-terminated block!")((void)0); | |||
| 1233 | CGBuilderTy::InsertPointGuard IPG(CGF.Builder); | |||
| 1234 | CGF.Builder.restoreIP(IP); | |||
| 1235 | CodeGenFunction::JumpDest Dest = | |||
| 1236 | CGF.getOMPCancelDestination(OMPD_parallel); | |||
| 1237 | CGF.EmitBranchThroughCleanup(Dest); | |||
| 1238 | }; | |||
| 1239 | ||||
| 1240 | // TODO: Remove this once we emit parallel regions through the | |||
| 1241 | // OpenMPIRBuilder as it can do this setup internally. | |||
| 1242 | llvm::OpenMPIRBuilder::FinalizationInfo FI({FiniCB, Kind, HasCancel}); | |||
| 1243 | OMPBuilder->pushFinalizationCB(std::move(FI)); | |||
| 1244 | } | |||
| 1245 | ~PushAndPopStackRAII() { | |||
| 1246 | if (OMPBuilder) | |||
| 1247 | OMPBuilder->popFinalizationCB(); | |||
| 1248 | } | |||
| 1249 | llvm::OpenMPIRBuilder *OMPBuilder; | |||
| 1250 | }; | |||
| 1251 | } // namespace | |||
| 1252 | ||||
| 1253 | static llvm::Function *emitParallelOrTeamsOutlinedFunction( | |||
| 1254 | CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS, | |||
| 1255 | const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, | |||
| 1256 | const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) { | |||
| 1257 | assert(ThreadIDVar->getType()->isPointerType() &&((void)0) | |||
| 1258 | "thread id variable must be of type kmp_int32 *")((void)0); | |||
| 1259 | CodeGenFunction CGF(CGM, true); | |||
| 1260 | bool HasCancel = false; | |||
| 1261 | if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D)) | |||
| 1262 | HasCancel = OPD->hasCancel(); | |||
| 1263 | else if (const auto *OPD = dyn_cast<OMPTargetParallelDirective>(&D)) | |||
| 1264 | HasCancel = OPD->hasCancel(); | |||
| 1265 | else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D)) | |||
| 1266 | HasCancel = OPSD->hasCancel(); | |||
| 1267 | else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D)) | |||
| 1268 | HasCancel = OPFD->hasCancel(); | |||
| 1269 | else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D)) | |||
| 1270 | HasCancel = OPFD->hasCancel(); | |||
| 1271 | else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D)) | |||
| 1272 | HasCancel = OPFD->hasCancel(); | |||
| 1273 | else if (const auto *OPFD = | |||
| 1274 | dyn_cast<OMPTeamsDistributeParallelForDirective>(&D)) | |||
| 1275 | HasCancel = OPFD->hasCancel(); | |||
| 1276 | else if (const auto *OPFD = | |||
| 1277 | dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D)) | |||
| 1278 | HasCancel = OPFD->hasCancel(); | |||
| 1279 | ||||
| 1280 | // TODO: Temporarily inform the OpenMPIRBuilder, if any, about the new | |||
| 1281 | // parallel region to make cancellation barriers work properly. | |||
| 1282 | llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); | |||
| 1283 | PushAndPopStackRAII PSR(&OMPBuilder, CGF, HasCancel, InnermostKind); | |||
| 1284 | CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind, | |||
| 1285 | HasCancel, OutlinedHelperName); | |||
| 1286 | CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); | |||
| 1287 | return CGF.GenerateOpenMPCapturedStmtFunction(*CS, D.getBeginLoc()); | |||
| 1288 | } | |||
| 1289 | ||||
| 1290 | llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction( | |||
| 1291 | const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, | |||
| 1292 | OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { | |||
| 1293 | const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel); | |||
| 1294 | return emitParallelOrTeamsOutlinedFunction( | |||
| 1295 | CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen); | |||
| 1296 | } | |||
| 1297 | ||||
| 1298 | llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction( | |||
| 1299 | const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, | |||
| 1300 | OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { | |||
| 1301 | const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams); | |||
| 1302 | return emitParallelOrTeamsOutlinedFunction( | |||
| 1303 | CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen); | |||
| 1304 | } | |||
| 1305 | ||||
| 1306 | llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction( | |||
| 1307 | const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, | |||
| 1308 | const VarDecl *PartIDVar, const VarDecl *TaskTVar, | |||
| 1309 | OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, | |||
| 1310 | bool Tied, unsigned &NumberOfParts) { | |||
| 1311 | auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF, | |||
| 1312 | PrePostActionTy &) { | |||
| 1313 | llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc()); | |||
| 1314 | llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc()); | |||
| 1315 | llvm::Value *TaskArgs[] = { | |||
| 1316 | UpLoc, ThreadID, | |||
| 1317 | CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar), | |||
| 1318 | TaskTVar->getType()->castAs<PointerType>()) | |||
| 1319 | .getPointer(CGF)}; | |||
| 1320 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 1321 | CGM.getModule(), OMPRTL___kmpc_omp_task), | |||
| 1322 | TaskArgs); | |||
| 1323 | }; | |||
| 1324 | CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar, | |||
| 1325 | UntiedCodeGen); | |||
| 1326 | CodeGen.setAction(Action); | |||
| 1327 | assert(!ThreadIDVar->getType()->isPointerType() &&((void)0) | |||
| 1328 | "thread id variable must be of type kmp_int32 for tasks")((void)0); | |||
| 1329 | const OpenMPDirectiveKind Region = | |||
| 1330 | isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop | |||
| 1331 | : OMPD_task; | |||
| 1332 | const CapturedStmt *CS = D.getCapturedStmt(Region); | |||
| 1333 | bool HasCancel = false; | |||
| 1334 | if (const auto *TD = dyn_cast<OMPTaskDirective>(&D)) | |||
| 1335 | HasCancel = TD->hasCancel(); | |||
| 1336 | else if (const auto *TD = dyn_cast<OMPTaskLoopDirective>(&D)) | |||
| 1337 | HasCancel = TD->hasCancel(); | |||
| 1338 | else if (const auto *TD = dyn_cast<OMPMasterTaskLoopDirective>(&D)) | |||
| 1339 | HasCancel = TD->hasCancel(); | |||
| 1340 | else if (const auto *TD = dyn_cast<OMPParallelMasterTaskLoopDirective>(&D)) | |||
| 1341 | HasCancel = TD->hasCancel(); | |||
| 1342 | ||||
| 1343 | CodeGenFunction CGF(CGM, true); | |||
| 1344 | CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, | |||
| 1345 | InnermostKind, HasCancel, Action); | |||
| 1346 | CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); | |||
| 1347 | llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS); | |||
| 1348 | if (!Tied) | |||
| 1349 | NumberOfParts = Action.getNumberOfParts(); | |||
| 1350 | return Res; | |||
| 1351 | } | |||
| 1352 | ||||
| 1353 | static void buildStructValue(ConstantStructBuilder &Fields, CodeGenModule &CGM, | |||
| 1354 | const RecordDecl *RD, const CGRecordLayout &RL, | |||
| 1355 | ArrayRef<llvm::Constant *> Data) { | |||
| 1356 | llvm::StructType *StructTy = RL.getLLVMType(); | |||
| 1357 | unsigned PrevIdx = 0; | |||
| 1358 | ConstantInitBuilder CIBuilder(CGM); | |||
| 1359 | auto DI = Data.begin(); | |||
| 1360 | for (const FieldDecl *FD : RD->fields()) { | |||
| 1361 | unsigned Idx = RL.getLLVMFieldNo(FD); | |||
| 1362 | // Fill the alignment. | |||
| 1363 | for (unsigned I = PrevIdx; I < Idx; ++I) | |||
| 1364 | Fields.add(llvm::Constant::getNullValue(StructTy->getElementType(I))); | |||
| 1365 | PrevIdx = Idx + 1; | |||
| 1366 | Fields.add(*DI); | |||
| 1367 | ++DI; | |||
| 1368 | } | |||
| 1369 | } | |||
| 1370 | ||||
| 1371 | template <class... As> | |||
| 1372 | static llvm::GlobalVariable * | |||
| 1373 | createGlobalStruct(CodeGenModule &CGM, QualType Ty, bool IsConstant, | |||
| 1374 | ArrayRef<llvm::Constant *> Data, const Twine &Name, | |||
| 1375 | As &&... Args) { | |||
| 1376 | const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl()); | |||
| 1377 | const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD); | |||
| 1378 | ConstantInitBuilder CIBuilder(CGM); | |||
| 1379 | ConstantStructBuilder Fields = CIBuilder.beginStruct(RL.getLLVMType()); | |||
| 1380 | buildStructValue(Fields, CGM, RD, RL, Data); | |||
| 1381 | return Fields.finishAndCreateGlobal( | |||
| 1382 | Name, CGM.getContext().getAlignOfGlobalVarInChars(Ty), IsConstant, | |||
| 1383 | std::forward<As>(Args)...); | |||
| 1384 | } | |||
| 1385 | ||||
| 1386 | template <typename T> | |||
| 1387 | static void | |||
| 1388 | createConstantGlobalStructAndAddToParent(CodeGenModule &CGM, QualType Ty, | |||
| 1389 | ArrayRef<llvm::Constant *> Data, | |||
| 1390 | T &Parent) { | |||
| 1391 | const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl()); | |||
| 1392 | const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD); | |||
| 1393 | ConstantStructBuilder Fields = Parent.beginStruct(RL.getLLVMType()); | |||
| 1394 | buildStructValue(Fields, CGM, RD, RL, Data); | |||
| 1395 | Fields.finishAndAddTo(Parent); | |||
| 1396 | } | |||
| 1397 | ||||
| 1398 | void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF, | |||
| 1399 | bool AtCurrentPoint) { | |||
| 1400 | auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); | |||
| 1401 | assert(!Elem.second.ServiceInsertPt && "Insert point is set already.")((void)0); | |||
| 1402 | ||||
| 1403 | llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty); | |||
| 1404 | if (AtCurrentPoint) { | |||
| 1405 | Elem.second.ServiceInsertPt = new llvm::BitCastInst( | |||
| 1406 | Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock()); | |||
| 1407 | } else { | |||
| 1408 | Elem.second.ServiceInsertPt = | |||
| 1409 | new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt"); | |||
| 1410 | Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt); | |||
| 1411 | } | |||
| 1412 | } | |||
| 1413 | ||||
| 1414 | void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) { | |||
| 1415 | auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); | |||
| 1416 | if (Elem.second.ServiceInsertPt) { | |||
| 1417 | llvm::Instruction *Ptr = Elem.second.ServiceInsertPt; | |||
| 1418 | Elem.second.ServiceInsertPt = nullptr; | |||
| 1419 | Ptr->eraseFromParent(); | |||
| 1420 | } | |||
| 1421 | } | |||
| 1422 | ||||
| 1423 | static StringRef getIdentStringFromSourceLocation(CodeGenFunction &CGF, | |||
| 1424 | SourceLocation Loc, | |||
| 1425 | SmallString<128> &Buffer) { | |||
| 1426 | llvm::raw_svector_ostream OS(Buffer); | |||
| 1427 | // Build debug location | |||
| 1428 | PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc); | |||
| 1429 | OS << ";" << PLoc.getFilename() << ";"; | |||
| 1430 | if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl)) | |||
| 1431 | OS << FD->getQualifiedNameAsString(); | |||
| 1432 | OS << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;"; | |||
| 1433 | return OS.str(); | |||
| 1434 | } | |||
| 1435 | ||||
| 1436 | llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF, | |||
| 1437 | SourceLocation Loc, | |||
| 1438 | unsigned Flags) { | |||
| 1439 | llvm::Constant *SrcLocStr; | |||
| 1440 | if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo || | |||
| 1441 | Loc.isInvalid()) { | |||
| 1442 | SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr(); | |||
| 1443 | } else { | |||
| 1444 | std::string FunctionName = ""; | |||
| 1445 | if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl)) | |||
| 1446 | FunctionName = FD->getQualifiedNameAsString(); | |||
| 1447 | PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc); | |||
| 1448 | const char *FileName = PLoc.getFilename(); | |||
| 1449 | unsigned Line = PLoc.getLine(); | |||
| 1450 | unsigned Column = PLoc.getColumn(); | |||
| 1451 | SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(FunctionName.c_str(), FileName, | |||
| 1452 | Line, Column); | |||
| 1453 | } | |||
| 1454 | unsigned Reserved2Flags = getDefaultLocationReserved2Flags(); | |||
| 1455 | return OMPBuilder.getOrCreateIdent(SrcLocStr, llvm::omp::IdentFlag(Flags), | |||
| 1456 | Reserved2Flags); | |||
| 1457 | } | |||
| 1458 | ||||
| 1459 | llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF, | |||
| 1460 | SourceLocation Loc) { | |||
| 1461 | assert(CGF.CurFn && "No function in current CodeGenFunction.")((void)0); | |||
| 1462 | // If the OpenMPIRBuilder is used we need to use it for all thread id calls as | |||
| 1463 | // the clang invariants used below might be broken. | |||
| 1464 | if (CGM.getLangOpts().OpenMPIRBuilder) { | |||
| 1465 | SmallString<128> Buffer; | |||
| 1466 | OMPBuilder.updateToLocation(CGF.Builder.saveIP()); | |||
| 1467 | auto *SrcLocStr = OMPBuilder.getOrCreateSrcLocStr( | |||
| 1468 | getIdentStringFromSourceLocation(CGF, Loc, Buffer)); | |||
| 1469 | return OMPBuilder.getOrCreateThreadID( | |||
| 1470 | OMPBuilder.getOrCreateIdent(SrcLocStr)); | |||
| 1471 | } | |||
| 1472 | ||||
| 1473 | llvm::Value *ThreadID = nullptr; | |||
| 1474 | // Check whether we've already cached a load of the thread id in this | |||
| 1475 | // function. | |||
| 1476 | auto I = OpenMPLocThreadIDMap.find(CGF.CurFn); | |||
| 1477 | if (I != OpenMPLocThreadIDMap.end()) { | |||
| 1478 | ThreadID = I->second.ThreadID; | |||
| 1479 | if (ThreadID != nullptr) | |||
| 1480 | return ThreadID; | |||
| 1481 | } | |||
| 1482 | // If exceptions are enabled, do not use parameter to avoid possible crash. | |||
| 1483 | if (auto *OMPRegionInfo = | |||
| 1484 | dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { | |||
| 1485 | if (OMPRegionInfo->getThreadIDVariable()) { | |||
| 1486 | // Check if this an outlined function with thread id passed as argument. | |||
| 1487 | LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF); | |||
| 1488 | llvm::BasicBlock *TopBlock = CGF.AllocaInsertPt->getParent(); | |||
| 1489 | if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions || | |||
| 1490 | !CGF.getLangOpts().CXXExceptions || | |||
| 1491 | CGF.Builder.GetInsertBlock() == TopBlock || | |||
| 1492 | !isa<llvm::Instruction>(LVal.getPointer(CGF)) || | |||
| 1493 | cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() == | |||
| 1494 | TopBlock || | |||
| 1495 | cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() == | |||
| 1496 | CGF.Builder.GetInsertBlock()) { | |||
| 1497 | ThreadID = CGF.EmitLoadOfScalar(LVal, Loc); | |||
| 1498 | // If value loaded in entry block, cache it and use it everywhere in | |||
| 1499 | // function. | |||
| 1500 | if (CGF.Builder.GetInsertBlock() == TopBlock) { | |||
| 1501 | auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); | |||
| 1502 | Elem.second.ThreadID = ThreadID; | |||
| 1503 | } | |||
| 1504 | return ThreadID; | |||
| 1505 | } | |||
| 1506 | } | |||
| 1507 | } | |||
| 1508 | ||||
| 1509 | // This is not an outlined function region - need to call __kmpc_int32 | |||
| 1510 | // kmpc_global_thread_num(ident_t *loc). | |||
| 1511 | // Generate thread id value and cache this value for use across the | |||
| 1512 | // function. | |||
| 1513 | auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); | |||
| 1514 | if (!Elem.second.ServiceInsertPt) | |||
| 1515 | setLocThreadIdInsertPt(CGF); | |||
| 1516 | CGBuilderTy::InsertPointGuard IPG(CGF.Builder); | |||
| 1517 | CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt); | |||
| 1518 | llvm::CallInst *Call = CGF.Builder.CreateCall( | |||
| 1519 | OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), | |||
| 1520 | OMPRTL___kmpc_global_thread_num), | |||
| 1521 | emitUpdateLocation(CGF, Loc)); | |||
| 1522 | Call->setCallingConv(CGF.getRuntimeCC()); | |||
| 1523 | Elem.second.ThreadID = Call; | |||
| 1524 | return Call; | |||
| 1525 | } | |||
| 1526 | ||||
| 1527 | void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) { | |||
| 1528 | assert(CGF.CurFn && "No function in current CodeGenFunction.")((void)0); | |||
| 1529 | if (OpenMPLocThreadIDMap.count(CGF.CurFn)) { | |||
| 1530 | clearLocThreadIdInsertPt(CGF); | |||
| 1531 | OpenMPLocThreadIDMap.erase(CGF.CurFn); | |||
| 1532 | } | |||
| 1533 | if (FunctionUDRMap.count(CGF.CurFn) > 0) { | |||
| 1534 | for(const auto *D : FunctionUDRMap[CGF.CurFn]) | |||
| 1535 | UDRMap.erase(D); | |||
| 1536 | FunctionUDRMap.erase(CGF.CurFn); | |||
| 1537 | } | |||
| 1538 | auto I = FunctionUDMMap.find(CGF.CurFn); | |||
| 1539 | if (I != FunctionUDMMap.end()) { | |||
| 1540 | for(const auto *D : I->second) | |||
| 1541 | UDMMap.erase(D); | |||
| 1542 | FunctionUDMMap.erase(I); | |||
| 1543 | } | |||
| 1544 | LastprivateConditionalToTypes.erase(CGF.CurFn); | |||
| 1545 | FunctionToUntiedTaskStackMap.erase(CGF.CurFn); | |||
| 1546 | } | |||
| 1547 | ||||
| 1548 | llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() { | |||
| 1549 | return OMPBuilder.IdentPtr; | |||
| 1550 | } | |||
| 1551 | ||||
| 1552 | llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() { | |||
| 1553 | if (!Kmpc_MicroTy) { | |||
| 1554 | // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...) | |||
| 1555 | llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty), | |||
| 1556 | llvm::PointerType::getUnqual(CGM.Int32Ty)}; | |||
| 1557 | Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true); | |||
| 1558 | } | |||
| 1559 | return llvm::PointerType::getUnqual(Kmpc_MicroTy); | |||
| 1560 | } | |||
| 1561 | ||||
| 1562 | llvm::FunctionCallee | |||
| 1563 | CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned) { | |||
| 1564 | assert((IVSize == 32 || IVSize == 64) &&((void)0) | |||
| 1565 | "IV size is not compatible with the omp runtime")((void)0); | |||
| 1566 | StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4" | |||
| 1567 | : "__kmpc_for_static_init_4u") | |||
| 1568 | : (IVSigned ? "__kmpc_for_static_init_8" | |||
| 1569 | : "__kmpc_for_static_init_8u"); | |||
| 1570 | llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; | |||
| 1571 | auto *PtrTy = llvm::PointerType::getUnqual(ITy); | |||
| 1572 | llvm::Type *TypeParams[] = { | |||
| 1573 | getIdentTyPointerTy(), // loc | |||
| 1574 | CGM.Int32Ty, // tid | |||
| 1575 | CGM.Int32Ty, // schedtype | |||
| 1576 | llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter | |||
| 1577 | PtrTy, // p_lower | |||
| 1578 | PtrTy, // p_upper | |||
| 1579 | PtrTy, // p_stride | |||
| 1580 | ITy, // incr | |||
| 1581 | ITy // chunk | |||
| 1582 | }; | |||
| 1583 | auto *FnTy = | |||
| 1584 | llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); | |||
| 1585 | return CGM.CreateRuntimeFunction(FnTy, Name); | |||
| 1586 | } | |||
| 1587 | ||||
| 1588 | llvm::FunctionCallee | |||
| 1589 | CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) { | |||
| 1590 | assert((IVSize == 32 || IVSize == 64) &&((void)0) | |||
| 1591 | "IV size is not compatible with the omp runtime")((void)0); | |||
| 1592 | StringRef Name = | |||
| 1593 | IVSize == 32 | |||
| 1594 | ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u") | |||
| 1595 | : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u"); | |||
| 1596 | llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; | |||
| 1597 | llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc | |||
| 1598 | CGM.Int32Ty, // tid | |||
| 1599 | CGM.Int32Ty, // schedtype | |||
| 1600 | ITy, // lower | |||
| 1601 | ITy, // upper | |||
| 1602 | ITy, // stride | |||
| 1603 | ITy // chunk | |||
| 1604 | }; | |||
| 1605 | auto *FnTy = | |||
| 1606 | llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); | |||
| 1607 | return CGM.CreateRuntimeFunction(FnTy, Name); | |||
| 1608 | } | |||
| 1609 | ||||
| 1610 | llvm::FunctionCallee | |||
| 1611 | CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) { | |||
| 1612 | assert((IVSize == 32 || IVSize == 64) &&((void)0) | |||
| 1613 | "IV size is not compatible with the omp runtime")((void)0); | |||
| 1614 | StringRef Name = | |||
| 1615 | IVSize == 32 | |||
| 1616 | ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u") | |||
| 1617 | : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u"); | |||
| 1618 | llvm::Type *TypeParams[] = { | |||
| 1619 | getIdentTyPointerTy(), // loc | |||
| 1620 | CGM.Int32Ty, // tid | |||
| 1621 | }; | |||
| 1622 | auto *FnTy = | |||
| 1623 | llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); | |||
| 1624 | return CGM.CreateRuntimeFunction(FnTy, Name); | |||
| 1625 | } | |||
| 1626 | ||||
| 1627 | llvm::FunctionCallee | |||
| 1628 | CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) { | |||
| 1629 | assert((IVSize == 32 || IVSize == 64) &&((void)0) | |||
| 1630 | "IV size is not compatible with the omp runtime")((void)0); | |||
| 1631 | StringRef Name = | |||
| 1632 | IVSize == 32 | |||
| 1633 | ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u") | |||
| 1634 | : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u"); | |||
| 1635 | llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; | |||
| 1636 | auto *PtrTy = llvm::PointerType::getUnqual(ITy); | |||
| 1637 | llvm::Type *TypeParams[] = { | |||
| 1638 | getIdentTyPointerTy(), // loc | |||
| 1639 | CGM.Int32Ty, // tid | |||
| 1640 | llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter | |||
| 1641 | PtrTy, // p_lower | |||
| 1642 | PtrTy, // p_upper | |||
| 1643 | PtrTy // p_stride | |||
| 1644 | }; | |||
| 1645 | auto *FnTy = | |||
| 1646 | llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); | |||
| 1647 | return CGM.CreateRuntimeFunction(FnTy, Name); | |||
| 1648 | } | |||
| 1649 | ||||
| 1650 | /// Obtain information that uniquely identifies a target entry. This | |||
| 1651 | /// consists of the file and device IDs as well as line number associated with | |||
| 1652 | /// the relevant entry source location. | |||
| 1653 | static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc, | |||
| 1654 | unsigned &DeviceID, unsigned &FileID, | |||
| 1655 | unsigned &LineNum) { | |||
| 1656 | SourceManager &SM = C.getSourceManager(); | |||
| 1657 | ||||
| 1658 | // The loc should be always valid and have a file ID (the user cannot use | |||
| 1659 | // #pragma directives in macros) | |||
| 1660 | ||||
| 1661 | assert(Loc.isValid() && "Source location is expected to be always valid.")((void)0); | |||
| 1662 | ||||
| 1663 | PresumedLoc PLoc = SM.getPresumedLoc(Loc); | |||
| 1664 | assert(PLoc.isValid() && "Source location is expected to be always valid.")((void)0); | |||
| 1665 | ||||
| 1666 | llvm::sys::fs::UniqueID ID; | |||
| 1667 | if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { | |||
| 1668 | PLoc = SM.getPresumedLoc(Loc, /*UseLineDirectives=*/false); | |||
| 1669 | assert(PLoc.isValid() && "Source location is expected to be always valid.")((void)0); | |||
| 1670 | if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) | |||
| 1671 | SM.getDiagnostics().Report(diag::err_cannot_open_file) | |||
| 1672 | << PLoc.getFilename() << EC.message(); | |||
| 1673 | } | |||
| 1674 | ||||
| 1675 | DeviceID = ID.getDevice(); | |||
| 1676 | FileID = ID.getFile(); | |||
| 1677 | LineNum = PLoc.getLine(); | |||
| 1678 | } | |||
| 1679 | ||||
| 1680 | Address CGOpenMPRuntime::getAddrOfDeclareTargetVar(const VarDecl *VD) { | |||
| 1681 | if (CGM.getLangOpts().OpenMPSimd) | |||
| 1682 | return Address::invalid(); | |||
| 1683 | llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = | |||
| 1684 | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); | |||
| 1685 | if (Res && (*Res == OMPDeclareTargetDeclAttr::MT_Link || | |||
| 1686 | (*Res == OMPDeclareTargetDeclAttr::MT_To && | |||
| 1687 | HasRequiresUnifiedSharedMemory))) { | |||
| 1688 | SmallString<64> PtrName; | |||
| 1689 | { | |||
| 1690 | llvm::raw_svector_ostream OS(PtrName); | |||
| 1691 | OS << CGM.getMangledName(GlobalDecl(VD)); | |||
| 1692 | if (!VD->isExternallyVisible()) { | |||
| 1693 | unsigned DeviceID, FileID, Line; | |||
| 1694 | getTargetEntryUniqueInfo(CGM.getContext(), | |||
| 1695 | VD->getCanonicalDecl()->getBeginLoc(), | |||
| 1696 | DeviceID, FileID, Line); | |||
| 1697 | OS << llvm::format("_%x", FileID); | |||
| 1698 | } | |||
| 1699 | OS << "_decl_tgt_ref_ptr"; | |||
| 1700 | } | |||
| 1701 | llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName); | |||
| 1702 | if (!Ptr) { | |||
| 1703 | QualType PtrTy = CGM.getContext().getPointerType(VD->getType()); | |||
| 1704 | Ptr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(PtrTy), | |||
| 1705 | PtrName); | |||
| 1706 | ||||
| 1707 | auto *GV = cast<llvm::GlobalVariable>(Ptr); | |||
| 1708 | GV->setLinkage(llvm::GlobalValue::WeakAnyLinkage); | |||
| 1709 | ||||
| 1710 | if (!CGM.getLangOpts().OpenMPIsDevice) | |||
| 1711 | GV->setInitializer(CGM.GetAddrOfGlobal(VD)); | |||
| 1712 | registerTargetGlobalVariable(VD, cast<llvm::Constant>(Ptr)); | |||
| 1713 | } | |||
| 1714 | return Address(Ptr, CGM.getContext().getDeclAlign(VD)); | |||
| 1715 | } | |||
| 1716 | return Address::invalid(); | |||
| 1717 | } | |||
| 1718 | ||||
| 1719 | llvm::Constant * | |||
| 1720 | CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) { | |||
| 1721 | assert(!CGM.getLangOpts().OpenMPUseTLS ||((void)0) | |||
| 1722 | !CGM.getContext().getTargetInfo().isTLSSupported())((void)0); | |||
| 1723 | // Lookup the entry, lazily creating it if necessary. | |||
| 1724 | std::string Suffix = getName({"cache", ""}); | |||
| 1725 | return getOrCreateInternalVariable( | |||
| 1726 | CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix)); | |||
| 1727 | } | |||
| 1728 | ||||
| 1729 | Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF, | |||
| 1730 | const VarDecl *VD, | |||
| 1731 | Address VDAddr, | |||
| 1732 | SourceLocation Loc) { | |||
| 1733 | if (CGM.getLangOpts().OpenMPUseTLS && | |||
| 1734 | CGM.getContext().getTargetInfo().isTLSSupported()) | |||
| 1735 | return VDAddr; | |||
| 1736 | ||||
| 1737 | llvm::Type *VarTy = VDAddr.getElementType(); | |||
| 1738 | llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), | |||
| 1739 | CGF.Builder.CreatePointerCast(VDAddr.getPointer(), | |||
| 1740 | CGM.Int8PtrTy), | |||
| 1741 | CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)), | |||
| 1742 | getOrCreateThreadPrivateCache(VD)}; | |||
| 1743 | return Address(CGF.EmitRuntimeCall( | |||
| 1744 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 1745 | CGM.getModule(), OMPRTL___kmpc_threadprivate_cached), | |||
| 1746 | Args), | |||
| 1747 | VDAddr.getAlignment()); | |||
| 1748 | } | |||
| 1749 | ||||
| 1750 | void CGOpenMPRuntime::emitThreadPrivateVarInit( | |||
| 1751 | CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor, | |||
| 1752 | llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) { | |||
| 1753 | // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime | |||
| 1754 | // library. | |||
| 1755 | llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc); | |||
| 1756 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 1757 | CGM.getModule(), OMPRTL___kmpc_global_thread_num), | |||
| 1758 | OMPLoc); | |||
| 1759 | // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor) | |||
| 1760 | // to register constructor/destructor for variable. | |||
| 1761 | llvm::Value *Args[] = { | |||
| 1762 | OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy), | |||
| 1763 | Ctor, CopyCtor, Dtor}; | |||
| 1764 | CGF.EmitRuntimeCall( | |||
| 1765 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 1766 | CGM.getModule(), OMPRTL___kmpc_threadprivate_register), | |||
| 1767 | Args); | |||
| 1768 | } | |||
| 1769 | ||||
| 1770 | llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition( | |||
| 1771 | const VarDecl *VD, Address VDAddr, SourceLocation Loc, | |||
| 1772 | bool PerformInit, CodeGenFunction *CGF) { | |||
| 1773 | if (CGM.getLangOpts().OpenMPUseTLS && | |||
| 1774 | CGM.getContext().getTargetInfo().isTLSSupported()) | |||
| 1775 | return nullptr; | |||
| 1776 | ||||
| 1777 | VD = VD->getDefinition(CGM.getContext()); | |||
| 1778 | if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) { | |||
| 1779 | QualType ASTTy = VD->getType(); | |||
| 1780 | ||||
| 1781 | llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr; | |||
| 1782 | const Expr *Init = VD->getAnyInitializer(); | |||
| 1783 | if (CGM.getLangOpts().CPlusPlus && PerformInit) { | |||
| 1784 | // Generate function that re-emits the declaration's initializer into the | |||
| 1785 | // threadprivate copy of the variable VD | |||
| 1786 | CodeGenFunction CtorCGF(CGM); | |||
| 1787 | FunctionArgList Args; | |||
| 1788 | ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc, | |||
| 1789 | /*Id=*/nullptr, CGM.getContext().VoidPtrTy, | |||
| 1790 | ImplicitParamDecl::Other); | |||
| 1791 | Args.push_back(&Dst); | |||
| 1792 | ||||
| 1793 | const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( | |||
| 1794 | CGM.getContext().VoidPtrTy, Args); | |||
| 1795 | llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); | |||
| 1796 | std::string Name = getName({"__kmpc_global_ctor_", ""}); | |||
| 1797 | llvm::Function *Fn = | |||
| 1798 | CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc); | |||
| 1799 | CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI, | |||
| 1800 | Args, Loc, Loc); | |||
| 1801 | llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar( | |||
| 1802 | CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false, | |||
| 1803 | CGM.getContext().VoidPtrTy, Dst.getLocation()); | |||
| 1804 | Address Arg = Address(ArgVal, VDAddr.getAlignment()); | |||
| 1805 | Arg = CtorCGF.Builder.CreateElementBitCast( | |||
| 1806 | Arg, CtorCGF.ConvertTypeForMem(ASTTy)); | |||
| 1807 | CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(), | |||
| 1808 | /*IsInitializer=*/true); | |||
| 1809 | ArgVal = CtorCGF.EmitLoadOfScalar( | |||
| 1810 | CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false, | |||
| 1811 | CGM.getContext().VoidPtrTy, Dst.getLocation()); | |||
| 1812 | CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue); | |||
| 1813 | CtorCGF.FinishFunction(); | |||
| 1814 | Ctor = Fn; | |||
| 1815 | } | |||
| 1816 | if (VD->getType().isDestructedType() != QualType::DK_none) { | |||
| 1817 | // Generate function that emits destructor call for the threadprivate copy | |||
| 1818 | // of the variable VD | |||
| 1819 | CodeGenFunction DtorCGF(CGM); | |||
| 1820 | FunctionArgList Args; | |||
| 1821 | ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc, | |||
| 1822 | /*Id=*/nullptr, CGM.getContext().VoidPtrTy, | |||
| 1823 | ImplicitParamDecl::Other); | |||
| 1824 | Args.push_back(&Dst); | |||
| 1825 | ||||
| 1826 | const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( | |||
| 1827 | CGM.getContext().VoidTy, Args); | |||
| 1828 | llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); | |||
| 1829 | std::string Name = getName({"__kmpc_global_dtor_", ""}); | |||
| 1830 | llvm::Function *Fn = | |||
| 1831 | CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc); | |||
| 1832 | auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF); | |||
| 1833 | DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args, | |||
| 1834 | Loc, Loc); | |||
| 1835 | // Create a scope with an artificial location for the body of this function. | |||
| 1836 | auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF); | |||
| 1837 | llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar( | |||
| 1838 | DtorCGF.GetAddrOfLocalVar(&Dst), | |||
| 1839 | /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation()); | |||
| 1840 | DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy, | |||
| 1841 | DtorCGF.getDestroyer(ASTTy.isDestructedType()), | |||
| 1842 | DtorCGF.needsEHCleanup(ASTTy.isDestructedType())); | |||
| 1843 | DtorCGF.FinishFunction(); | |||
| 1844 | Dtor = Fn; | |||
| 1845 | } | |||
| 1846 | // Do not emit init function if it is not required. | |||
| 1847 | if (!Ctor && !Dtor) | |||
| 1848 | return nullptr; | |||
| 1849 | ||||
| 1850 | llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; | |||
| 1851 | auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs, | |||
| 1852 | /*isVarArg=*/false) | |||
| 1853 | ->getPointerTo(); | |||
| 1854 | // Copying constructor for the threadprivate variable. | |||
| 1855 | // Must be NULL - reserved by runtime, but currently it requires that this | |||
| 1856 | // parameter is always NULL. Otherwise it fires assertion. | |||
| 1857 | CopyCtor = llvm::Constant::getNullValue(CopyCtorTy); | |||
| 1858 | if (Ctor == nullptr) { | |||
| 1859 | auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy, | |||
| 1860 | /*isVarArg=*/false) | |||
| 1861 | ->getPointerTo(); | |||
| 1862 | Ctor = llvm::Constant::getNullValue(CtorTy); | |||
| 1863 | } | |||
| 1864 | if (Dtor == nullptr) { | |||
| 1865 | auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, | |||
| 1866 | /*isVarArg=*/false) | |||
| 1867 | ->getPointerTo(); | |||
| 1868 | Dtor = llvm::Constant::getNullValue(DtorTy); | |||
| 1869 | } | |||
| 1870 | if (!CGF) { | |||
| 1871 | auto *InitFunctionTy = | |||
| 1872 | llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false); | |||
| 1873 | std::string Name = getName({"__omp_threadprivate_init_", ""}); | |||
| 1874 | llvm::Function *InitFunction = CGM.CreateGlobalInitOrCleanUpFunction( | |||
| 1875 | InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction()); | |||
| 1876 | CodeGenFunction InitCGF(CGM); | |||
| 1877 | FunctionArgList ArgList; | |||
| 1878 | InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction, | |||
| 1879 | CGM.getTypes().arrangeNullaryFunction(), ArgList, | |||
| 1880 | Loc, Loc); | |||
| 1881 | emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc); | |||
| 1882 | InitCGF.FinishFunction(); | |||
| 1883 | return InitFunction; | |||
| 1884 | } | |||
| 1885 | emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc); | |||
| 1886 | } | |||
| 1887 | return nullptr; | |||
| 1888 | } | |||
| 1889 | ||||
| 1890 | bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD, | |||
| 1891 | llvm::GlobalVariable *Addr, | |||
| 1892 | bool PerformInit) { | |||
| 1893 | if (CGM.getLangOpts().OMPTargetTriples.empty() && | |||
| 1894 | !CGM.getLangOpts().OpenMPIsDevice) | |||
| 1895 | return false; | |||
| 1896 | Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = | |||
| 1897 | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); | |||
| 1898 | if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link || | |||
| 1899 | (*Res == OMPDeclareTargetDeclAttr::MT_To && | |||
| 1900 | HasRequiresUnifiedSharedMemory)) | |||
| 1901 | return CGM.getLangOpts().OpenMPIsDevice; | |||
| 1902 | VD = VD->getDefinition(CGM.getContext()); | |||
| 1903 | assert(VD && "Unknown VarDecl")((void)0); | |||
| 1904 | ||||
| 1905 | if (!DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second) | |||
| 1906 | return CGM.getLangOpts().OpenMPIsDevice; | |||
| 1907 | ||||
| 1908 | QualType ASTTy = VD->getType(); | |||
| 1909 | SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc(); | |||
| 1910 | ||||
| 1911 | // Produce the unique prefix to identify the new target regions. We use | |||
| 1912 | // the source location of the variable declaration which we know to not | |||
| 1913 | // conflict with any target region. | |||
| 1914 | unsigned DeviceID; | |||
| 1915 | unsigned FileID; | |||
| 1916 | unsigned Line; | |||
| 1917 | getTargetEntryUniqueInfo(CGM.getContext(), Loc, DeviceID, FileID, Line); | |||
| 1918 | SmallString<128> Buffer, Out; | |||
| 1919 | { | |||
| 1920 | llvm::raw_svector_ostream OS(Buffer); | |||
| 1921 | OS << "__omp_offloading_" << llvm::format("_%x", DeviceID) | |||
| 1922 | << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line; | |||
| 1923 | } | |||
| 1924 | ||||
| 1925 | const Expr *Init = VD->getAnyInitializer(); | |||
| 1926 | if (CGM.getLangOpts().CPlusPlus && PerformInit) { | |||
| 1927 | llvm::Constant *Ctor; | |||
| 1928 | llvm::Constant *ID; | |||
| 1929 | if (CGM.getLangOpts().OpenMPIsDevice) { | |||
| 1930 | // Generate function that re-emits the declaration's initializer into | |||
| 1931 | // the threadprivate copy of the variable VD | |||
| 1932 | CodeGenFunction CtorCGF(CGM); | |||
| 1933 | ||||
| 1934 | const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); | |||
| 1935 | llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); | |||
| 1936 | llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction( | |||
| 1937 | FTy, Twine(Buffer, "_ctor"), FI, Loc); | |||
| 1938 | auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF); | |||
| 1939 | CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, | |||
| 1940 | FunctionArgList(), Loc, Loc); | |||
| 1941 | auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF); | |||
| 1942 | CtorCGF.EmitAnyExprToMem(Init, | |||
| 1943 | Address(Addr, CGM.getContext().getDeclAlign(VD)), | |||
| 1944 | Init->getType().getQualifiers(), | |||
| 1945 | /*IsInitializer=*/true); | |||
| 1946 | CtorCGF.FinishFunction(); | |||
| 1947 | Ctor = Fn; | |||
| 1948 | ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); | |||
| 1949 | CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ctor)); | |||
| 1950 | } else { | |||
| 1951 | Ctor = new llvm::GlobalVariable( | |||
| 1952 | CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, | |||
| 1953 | llvm::GlobalValue::PrivateLinkage, | |||
| 1954 | llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor")); | |||
| 1955 | ID = Ctor; | |||
| 1956 | } | |||
| 1957 | ||||
| 1958 | // Register the information for the entry associated with the constructor. | |||
| 1959 | Out.clear(); | |||
| 1960 | OffloadEntriesInfoManager.registerTargetRegionEntryInfo( | |||
| 1961 | DeviceID, FileID, Twine(Buffer, "_ctor").toStringRef(Out), Line, Ctor, | |||
| 1962 | ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryCtor); | |||
| 1963 | } | |||
| 1964 | if (VD->getType().isDestructedType() != QualType::DK_none) { | |||
| 1965 | llvm::Constant *Dtor; | |||
| 1966 | llvm::Constant *ID; | |||
| 1967 | if (CGM.getLangOpts().OpenMPIsDevice) { | |||
| 1968 | // Generate function that emits destructor call for the threadprivate | |||
| 1969 | // copy of the variable VD | |||
| 1970 | CodeGenFunction DtorCGF(CGM); | |||
| 1971 | ||||
| 1972 | const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); | |||
| 1973 | llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); | |||
| 1974 | llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction( | |||
| 1975 | FTy, Twine(Buffer, "_dtor"), FI, Loc); | |||
| 1976 | auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF); | |||
| 1977 | DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, | |||
| 1978 | FunctionArgList(), Loc, Loc); | |||
| 1979 | // Create a scope with an artificial location for the body of this | |||
| 1980 | // function. | |||
| 1981 | auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF); | |||
| 1982 | DtorCGF.emitDestroy(Address(Addr, CGM.getContext().getDeclAlign(VD)), | |||
| 1983 | ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()), | |||
| 1984 | DtorCGF.needsEHCleanup(ASTTy.isDestructedType())); | |||
| 1985 | DtorCGF.FinishFunction(); | |||
| 1986 | Dtor = Fn; | |||
| 1987 | ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); | |||
| 1988 | CGM.addUsedGlobal(cast<llvm::GlobalValue>(Dtor)); | |||
| 1989 | } else { | |||
| 1990 | Dtor = new llvm::GlobalVariable( | |||
| 1991 | CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, | |||
| 1992 | llvm::GlobalValue::PrivateLinkage, | |||
| 1993 | llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor")); | |||
| 1994 | ID = Dtor; | |||
| 1995 | } | |||
| 1996 | // Register the information for the entry associated with the destructor. | |||
| 1997 | Out.clear(); | |||
| 1998 | OffloadEntriesInfoManager.registerTargetRegionEntryInfo( | |||
| 1999 | DeviceID, FileID, Twine(Buffer, "_dtor").toStringRef(Out), Line, Dtor, | |||
| 2000 | ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryDtor); | |||
| 2001 | } | |||
| 2002 | return CGM.getLangOpts().OpenMPIsDevice; | |||
| 2003 | } | |||
| 2004 | ||||
| 2005 | Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF, | |||
| 2006 | QualType VarType, | |||
| 2007 | StringRef Name) { | |||
| 2008 | std::string Suffix = getName({"artificial", ""}); | |||
| 2009 | llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType); | |||
| 2010 | llvm::Value *GAddr = | |||
| 2011 | getOrCreateInternalVariable(VarLVType, Twine(Name).concat(Suffix)); | |||
| 2012 | if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPUseTLS && | |||
| 2013 | CGM.getTarget().isTLSSupported()) { | |||
| 2014 | cast<llvm::GlobalVariable>(GAddr)->setThreadLocal(/*Val=*/true); | |||
| 2015 | return Address(GAddr, CGM.getContext().getTypeAlignInChars(VarType)); | |||
| 2016 | } | |||
| 2017 | std::string CacheSuffix = getName({"cache", ""}); | |||
| 2018 | llvm::Value *Args[] = { | |||
| 2019 | emitUpdateLocation(CGF, SourceLocation()), | |||
| 2020 | getThreadID(CGF, SourceLocation()), | |||
| 2021 | CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy), | |||
| 2022 | CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy, | |||
| 2023 | /*isSigned=*/false), | |||
| 2024 | getOrCreateInternalVariable( | |||
| 2025 | CGM.VoidPtrPtrTy, Twine(Name).concat(Suffix).concat(CacheSuffix))}; | |||
| 2026 | return Address( | |||
| 2027 | CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 2028 | CGF.EmitRuntimeCall( | |||
| 2029 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2030 | CGM.getModule(), OMPRTL___kmpc_threadprivate_cached), | |||
| 2031 | Args), | |||
| 2032 | VarLVType->getPointerTo(/*AddrSpace=*/0)), | |||
| 2033 | CGM.getContext().getTypeAlignInChars(VarType)); | |||
| 2034 | } | |||
| 2035 | ||||
| 2036 | void CGOpenMPRuntime::emitIfClause(CodeGenFunction &CGF, const Expr *Cond, | |||
| 2037 | const RegionCodeGenTy &ThenGen, | |||
| 2038 | const RegionCodeGenTy &ElseGen) { | |||
| 2039 | CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange()); | |||
| 2040 | ||||
| 2041 | // If the condition constant folds and can be elided, try to avoid emitting | |||
| 2042 | // the condition and the dead arm of the if/else. | |||
| 2043 | bool CondConstant; | |||
| 2044 | if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) { | |||
| 2045 | if (CondConstant) | |||
| 2046 | ThenGen(CGF); | |||
| 2047 | else | |||
| 2048 | ElseGen(CGF); | |||
| 2049 | return; | |||
| 2050 | } | |||
| 2051 | ||||
| 2052 | // Otherwise, the condition did not fold, or we couldn't elide it. Just | |||
| 2053 | // emit the conditional branch. | |||
| 2054 | llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then"); | |||
| 2055 | llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else"); | |||
| 2056 | llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end"); | |||
| 2057 | CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0); | |||
| 2058 | ||||
| 2059 | // Emit the 'then' code. | |||
| 2060 | CGF.EmitBlock(ThenBlock); | |||
| 2061 | ThenGen(CGF); | |||
| 2062 | CGF.EmitBranch(ContBlock); | |||
| 2063 | // Emit the 'else' code if present. | |||
| 2064 | // There is no need to emit line number for unconditional branch. | |||
| 2065 | (void)ApplyDebugLocation::CreateEmpty(CGF); | |||
| 2066 | CGF.EmitBlock(ElseBlock); | |||
| 2067 | ElseGen(CGF); | |||
| 2068 | // There is no need to emit line number for unconditional branch. | |||
| 2069 | (void)ApplyDebugLocation::CreateEmpty(CGF); | |||
| 2070 | CGF.EmitBranch(ContBlock); | |||
| 2071 | // Emit the continuation block for code after the if. | |||
| 2072 | CGF.EmitBlock(ContBlock, /*IsFinished=*/true); | |||
| 2073 | } | |||
| 2074 | ||||
| 2075 | void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc, | |||
| 2076 | llvm::Function *OutlinedFn, | |||
| 2077 | ArrayRef<llvm::Value *> CapturedVars, | |||
| 2078 | const Expr *IfCond) { | |||
| 2079 | if (!CGF.HaveInsertPoint()) | |||
| 2080 | return; | |||
| 2081 | llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); | |||
| 2082 | auto &M = CGM.getModule(); | |||
| 2083 | auto &&ThenGen = [&M, OutlinedFn, CapturedVars, RTLoc, | |||
| 2084 | this](CodeGenFunction &CGF, PrePostActionTy &) { | |||
| 2085 | // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn); | |||
| 2086 | CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); | |||
| 2087 | llvm::Value *Args[] = { | |||
| 2088 | RTLoc, | |||
| 2089 | CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars | |||
| 2090 | CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())}; | |||
| 2091 | llvm::SmallVector<llvm::Value *, 16> RealArgs; | |||
| 2092 | RealArgs.append(std::begin(Args), std::end(Args)); | |||
| 2093 | RealArgs.append(CapturedVars.begin(), CapturedVars.end()); | |||
| 2094 | ||||
| 2095 | llvm::FunctionCallee RTLFn = | |||
| 2096 | OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_fork_call); | |||
| 2097 | CGF.EmitRuntimeCall(RTLFn, RealArgs); | |||
| 2098 | }; | |||
| 2099 | auto &&ElseGen = [&M, OutlinedFn, CapturedVars, RTLoc, Loc, | |||
| 2100 | this](CodeGenFunction &CGF, PrePostActionTy &) { | |||
| 2101 | CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); | |||
| 2102 | llvm::Value *ThreadID = RT.getThreadID(CGF, Loc); | |||
| 2103 | // Build calls: | |||
| 2104 | // __kmpc_serialized_parallel(&Loc, GTid); | |||
| 2105 | llvm::Value *Args[] = {RTLoc, ThreadID}; | |||
| 2106 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2107 | M, OMPRTL___kmpc_serialized_parallel), | |||
| 2108 | Args); | |||
| 2109 | ||||
| 2110 | // OutlinedFn(>id, &zero_bound, CapturedStruct); | |||
| 2111 | Address ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc); | |||
| 2112 | Address ZeroAddrBound = | |||
| 2113 | CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, | |||
| 2114 | /*Name=*/".bound.zero.addr"); | |||
| 2115 | CGF.InitTempAlloca(ZeroAddrBound, CGF.Builder.getInt32(/*C*/ 0)); | |||
| 2116 | llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; | |||
| 2117 | // ThreadId for serialized parallels is 0. | |||
| 2118 | OutlinedFnArgs.push_back(ThreadIDAddr.getPointer()); | |||
| 2119 | OutlinedFnArgs.push_back(ZeroAddrBound.getPointer()); | |||
| 2120 | OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); | |||
| 2121 | ||||
| 2122 | // Ensure we do not inline the function. This is trivially true for the ones | |||
| 2123 | // passed to __kmpc_fork_call but the ones called in serialized regions | |||
| 2124 | // could be inlined. This is not a perfect but it is closer to the invariant | |||
| 2125 | // we want, namely, every data environment starts with a new function. | |||
| 2126 | // TODO: We should pass the if condition to the runtime function and do the | |||
| 2127 | // handling there. Much cleaner code. | |||
| 2128 | OutlinedFn->removeFnAttr(llvm::Attribute::AlwaysInline); | |||
| 2129 | OutlinedFn->addFnAttr(llvm::Attribute::NoInline); | |||
| 2130 | RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); | |||
| 2131 | ||||
| 2132 | // __kmpc_end_serialized_parallel(&Loc, GTid); | |||
| 2133 | llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID}; | |||
| 2134 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2135 | M, OMPRTL___kmpc_end_serialized_parallel), | |||
| 2136 | EndArgs); | |||
| 2137 | }; | |||
| 2138 | if (IfCond) { | |||
| 2139 | emitIfClause(CGF, IfCond, ThenGen, ElseGen); | |||
| 2140 | } else { | |||
| 2141 | RegionCodeGenTy ThenRCG(ThenGen); | |||
| 2142 | ThenRCG(CGF); | |||
| 2143 | } | |||
| 2144 | } | |||
| 2145 | ||||
| 2146 | // If we're inside an (outlined) parallel region, use the region info's | |||
| 2147 | // thread-ID variable (it is passed in a first argument of the outlined function | |||
| 2148 | // as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in | |||
| 2149 | // regular serial code region, get thread ID by calling kmp_int32 | |||
| 2150 | // kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and | |||
| 2151 | // return the address of that temp. | |||
| 2152 | Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF, | |||
| 2153 | SourceLocation Loc) { | |||
| 2154 | if (auto *OMPRegionInfo = | |||
| 2155 | dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) | |||
| 2156 | if (OMPRegionInfo->getThreadIDVariable()) | |||
| 2157 | return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress(CGF); | |||
| 2158 | ||||
| 2159 | llvm::Value *ThreadID = getThreadID(CGF, Loc); | |||
| 2160 | QualType Int32Ty = | |||
| 2161 | CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true); | |||
| 2162 | Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp."); | |||
| 2163 | CGF.EmitStoreOfScalar(ThreadID, | |||
| 2164 | CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty)); | |||
| 2165 | ||||
| 2166 | return ThreadIDTemp; | |||
| 2167 | } | |||
| 2168 | ||||
| 2169 | llvm::Constant *CGOpenMPRuntime::getOrCreateInternalVariable( | |||
| 2170 | llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) { | |||
| 2171 | SmallString<256> Buffer; | |||
| 2172 | llvm::raw_svector_ostream Out(Buffer); | |||
| 2173 | Out << Name; | |||
| 2174 | StringRef RuntimeName = Out.str(); | |||
| 2175 | auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first; | |||
| 2176 | if (Elem.second) { | |||
| 2177 | assert(Elem.second->getType()->getPointerElementType() == Ty &&((void)0) | |||
| 2178 | "OMP internal variable has different type than requested")((void)0); | |||
| 2179 | return &*Elem.second; | |||
| 2180 | } | |||
| 2181 | ||||
| 2182 | return Elem.second = new llvm::GlobalVariable( | |||
| 2183 | CGM.getModule(), Ty, /*IsConstant*/ false, | |||
| 2184 | llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty), | |||
| 2185 | Elem.first(), /*InsertBefore=*/nullptr, | |||
| 2186 | llvm::GlobalValue::NotThreadLocal, AddressSpace); | |||
| 2187 | } | |||
| 2188 | ||||
| 2189 | llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) { | |||
| 2190 | std::string Prefix = Twine("gomp_critical_user_", CriticalName).str(); | |||
| 2191 | std::string Name = getName({Prefix, "var"}); | |||
| 2192 | return getOrCreateInternalVariable(KmpCriticalNameTy, Name); | |||
| 2193 | } | |||
| 2194 | ||||
| 2195 | namespace { | |||
| 2196 | /// Common pre(post)-action for different OpenMP constructs. | |||
| 2197 | class CommonActionTy final : public PrePostActionTy { | |||
| 2198 | llvm::FunctionCallee EnterCallee; | |||
| 2199 | ArrayRef<llvm::Value *> EnterArgs; | |||
| 2200 | llvm::FunctionCallee ExitCallee; | |||
| 2201 | ArrayRef<llvm::Value *> ExitArgs; | |||
| 2202 | bool Conditional; | |||
| 2203 | llvm::BasicBlock *ContBlock = nullptr; | |||
| 2204 | ||||
| 2205 | public: | |||
| 2206 | CommonActionTy(llvm::FunctionCallee EnterCallee, | |||
| 2207 | ArrayRef<llvm::Value *> EnterArgs, | |||
| 2208 | llvm::FunctionCallee ExitCallee, | |||
| 2209 | ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) | |||
| 2210 | : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), | |||
| 2211 | ExitArgs(ExitArgs), Conditional(Conditional) {} | |||
| 2212 | void Enter(CodeGenFunction &CGF) override { | |||
| 2213 | llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); | |||
| 2214 | if (Conditional) { | |||
| 2215 | llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); | |||
| 2216 | auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); | |||
| 2217 | ContBlock = CGF.createBasicBlock("omp_if.end"); | |||
| 2218 | // Generate the branch (If-stmt) | |||
| 2219 | CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); | |||
| 2220 | CGF.EmitBlock(ThenBlock); | |||
| 2221 | } | |||
| 2222 | } | |||
| 2223 | void Done(CodeGenFunction &CGF) { | |||
| 2224 | // Emit the rest of blocks/branches | |||
| 2225 | CGF.EmitBranch(ContBlock); | |||
| 2226 | CGF.EmitBlock(ContBlock, true); | |||
| 2227 | } | |||
| 2228 | void Exit(CodeGenFunction &CGF) override { | |||
| 2229 | CGF.EmitRuntimeCall(ExitCallee, ExitArgs); | |||
| 2230 | } | |||
| 2231 | }; | |||
| 2232 | } // anonymous namespace | |||
| 2233 | ||||
| 2234 | void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF, | |||
| 2235 | StringRef CriticalName, | |||
| 2236 | const RegionCodeGenTy &CriticalOpGen, | |||
| 2237 | SourceLocation Loc, const Expr *Hint) { | |||
| 2238 | // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]); | |||
| 2239 | // CriticalOpGen(); | |||
| 2240 | // __kmpc_end_critical(ident_t *, gtid, Lock); | |||
| 2241 | // Prepare arguments and build a call to __kmpc_critical | |||
| 2242 | if (!CGF.HaveInsertPoint()) | |||
| 2243 | return; | |||
| 2244 | llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), | |||
| 2245 | getCriticalRegionLock(CriticalName)}; | |||
| 2246 | llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args), | |||
| 2247 | std::end(Args)); | |||
| 2248 | if (Hint) { | |||
| 2249 | EnterArgs.push_back(CGF.Builder.CreateIntCast( | |||
| 2250 | CGF.EmitScalarExpr(Hint), CGM.Int32Ty, /*isSigned=*/false)); | |||
| 2251 | } | |||
| 2252 | CommonActionTy Action( | |||
| 2253 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2254 | CGM.getModule(), | |||
| 2255 | Hint ? OMPRTL___kmpc_critical_with_hint : OMPRTL___kmpc_critical), | |||
| 2256 | EnterArgs, | |||
| 2257 | OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), | |||
| 2258 | OMPRTL___kmpc_end_critical), | |||
| 2259 | Args); | |||
| 2260 | CriticalOpGen.setAction(Action); | |||
| 2261 | emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen); | |||
| 2262 | } | |||
| 2263 | ||||
| 2264 | void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF, | |||
| 2265 | const RegionCodeGenTy &MasterOpGen, | |||
| 2266 | SourceLocation Loc) { | |||
| 2267 | if (!CGF.HaveInsertPoint()) | |||
| 2268 | return; | |||
| 2269 | // if(__kmpc_master(ident_t *, gtid)) { | |||
| 2270 | // MasterOpGen(); | |||
| 2271 | // __kmpc_end_master(ident_t *, gtid); | |||
| 2272 | // } | |||
| 2273 | // Prepare arguments and build a call to __kmpc_master | |||
| 2274 | llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; | |||
| 2275 | CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2276 | CGM.getModule(), OMPRTL___kmpc_master), | |||
| 2277 | Args, | |||
| 2278 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2279 | CGM.getModule(), OMPRTL___kmpc_end_master), | |||
| 2280 | Args, | |||
| 2281 | /*Conditional=*/true); | |||
| 2282 | MasterOpGen.setAction(Action); | |||
| 2283 | emitInlinedDirective(CGF, OMPD_master, MasterOpGen); | |||
| 2284 | Action.Done(CGF); | |||
| 2285 | } | |||
| 2286 | ||||
| 2287 | void CGOpenMPRuntime::emitMaskedRegion(CodeGenFunction &CGF, | |||
| 2288 | const RegionCodeGenTy &MaskedOpGen, | |||
| 2289 | SourceLocation Loc, const Expr *Filter) { | |||
| 2290 | if (!CGF.HaveInsertPoint()) | |||
| 2291 | return; | |||
| 2292 | // if(__kmpc_masked(ident_t *, gtid, filter)) { | |||
| 2293 | // MaskedOpGen(); | |||
| 2294 | // __kmpc_end_masked(iden_t *, gtid); | |||
| 2295 | // } | |||
| 2296 | // Prepare arguments and build a call to __kmpc_masked | |||
| 2297 | llvm::Value *FilterVal = Filter | |||
| 2298 | ? CGF.EmitScalarExpr(Filter, CGF.Int32Ty) | |||
| 2299 | : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0); | |||
| 2300 | llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), | |||
| 2301 | FilterVal}; | |||
| 2302 | llvm::Value *ArgsEnd[] = {emitUpdateLocation(CGF, Loc), | |||
| 2303 | getThreadID(CGF, Loc)}; | |||
| 2304 | CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2305 | CGM.getModule(), OMPRTL___kmpc_masked), | |||
| 2306 | Args, | |||
| 2307 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2308 | CGM.getModule(), OMPRTL___kmpc_end_masked), | |||
| 2309 | ArgsEnd, | |||
| 2310 | /*Conditional=*/true); | |||
| 2311 | MaskedOpGen.setAction(Action); | |||
| 2312 | emitInlinedDirective(CGF, OMPD_masked, MaskedOpGen); | |||
| 2313 | Action.Done(CGF); | |||
| 2314 | } | |||
| 2315 | ||||
| 2316 | void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF, | |||
| 2317 | SourceLocation Loc) { | |||
| 2318 | if (!CGF.HaveInsertPoint()) | |||
| 2319 | return; | |||
| 2320 | if (CGF.CGM.getLangOpts().OpenMPIRBuilder) { | |||
| 2321 | OMPBuilder.createTaskyield(CGF.Builder); | |||
| 2322 | } else { | |||
| 2323 | // Build call __kmpc_omp_taskyield(loc, thread_id, 0); | |||
| 2324 | llvm::Value *Args[] = { | |||
| 2325 | emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), | |||
| 2326 | llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)}; | |||
| 2327 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2328 | CGM.getModule(), OMPRTL___kmpc_omp_taskyield), | |||
| 2329 | Args); | |||
| 2330 | } | |||
| 2331 | ||||
| 2332 | if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) | |||
| 2333 | Region->emitUntiedSwitch(CGF); | |||
| 2334 | } | |||
| 2335 | ||||
| 2336 | void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF, | |||
| 2337 | const RegionCodeGenTy &TaskgroupOpGen, | |||
| 2338 | SourceLocation Loc) { | |||
| 2339 | if (!CGF.HaveInsertPoint()) | |||
| 2340 | return; | |||
| 2341 | // __kmpc_taskgroup(ident_t *, gtid); | |||
| 2342 | // TaskgroupOpGen(); | |||
| 2343 | // __kmpc_end_taskgroup(ident_t *, gtid); | |||
| 2344 | // Prepare arguments and build a call to __kmpc_taskgroup | |||
| 2345 | llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; | |||
| 2346 | CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2347 | CGM.getModule(), OMPRTL___kmpc_taskgroup), | |||
| 2348 | Args, | |||
| 2349 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2350 | CGM.getModule(), OMPRTL___kmpc_end_taskgroup), | |||
| 2351 | Args); | |||
| 2352 | TaskgroupOpGen.setAction(Action); | |||
| 2353 | emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen); | |||
| 2354 | } | |||
| 2355 | ||||
| 2356 | /// Given an array of pointers to variables, project the address of a | |||
| 2357 | /// given variable. | |||
| 2358 | static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array, | |||
| 2359 | unsigned Index, const VarDecl *Var) { | |||
| 2360 | // Pull out the pointer to the variable. | |||
| 2361 | Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index); | |||
| 2362 | llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr); | |||
| 2363 | ||||
| 2364 | Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var)); | |||
| 2365 | Addr = CGF.Builder.CreateElementBitCast( | |||
| 2366 | Addr, CGF.ConvertTypeForMem(Var->getType())); | |||
| 2367 | return Addr; | |||
| 2368 | } | |||
| 2369 | ||||
| 2370 | static llvm::Value *emitCopyprivateCopyFunction( | |||
| 2371 | CodeGenModule &CGM, llvm::Type *ArgsType, | |||
| 2372 | ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs, | |||
| 2373 | ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps, | |||
| 2374 | SourceLocation Loc) { | |||
| 2375 | ASTContext &C = CGM.getContext(); | |||
| 2376 | // void copy_func(void *LHSArg, void *RHSArg); | |||
| 2377 | FunctionArgList Args; | |||
| 2378 | ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, | |||
| 2379 | ImplicitParamDecl::Other); | |||
| 2380 | ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, | |||
| 2381 | ImplicitParamDecl::Other); | |||
| 2382 | Args.push_back(&LHSArg); | |||
| 2383 | Args.push_back(&RHSArg); | |||
| 2384 | const auto &CGFI = | |||
| 2385 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); | |||
| 2386 | std::string Name = | |||
| 2387 | CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"}); | |||
| 2388 | auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), | |||
| 2389 | llvm::GlobalValue::InternalLinkage, Name, | |||
| 2390 | &CGM.getModule()); | |||
| 2391 | CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); | |||
| 2392 | Fn->setDoesNotRecurse(); | |||
| 2393 | CodeGenFunction CGF(CGM); | |||
| 2394 | CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); | |||
| 2395 | // Dest = (void*[n])(LHSArg); | |||
| 2396 | // Src = (void*[n])(RHSArg); | |||
| 2397 | Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 2398 | CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)), | |||
| 2399 | ArgsType), CGF.getPointerAlign()); | |||
| 2400 | Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 2401 | CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)), | |||
| 2402 | ArgsType), CGF.getPointerAlign()); | |||
| 2403 | // *(Type0*)Dst[0] = *(Type0*)Src[0]; | |||
| 2404 | // *(Type1*)Dst[1] = *(Type1*)Src[1]; | |||
| 2405 | // ... | |||
| 2406 | // *(Typen*)Dst[n] = *(Typen*)Src[n]; | |||
| 2407 | for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) { | |||
| 2408 | const auto *DestVar = | |||
| 2409 | cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl()); | |||
| 2410 | Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar); | |||
| 2411 | ||||
| 2412 | const auto *SrcVar = | |||
| 2413 | cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl()); | |||
| 2414 | Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar); | |||
| 2415 | ||||
| 2416 | const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl(); | |||
| 2417 | QualType Type = VD->getType(); | |||
| 2418 | CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]); | |||
| 2419 | } | |||
| 2420 | CGF.FinishFunction(); | |||
| 2421 | return Fn; | |||
| 2422 | } | |||
| 2423 | ||||
| 2424 | void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF, | |||
| 2425 | const RegionCodeGenTy &SingleOpGen, | |||
| 2426 | SourceLocation Loc, | |||
| 2427 | ArrayRef<const Expr *> CopyprivateVars, | |||
| 2428 | ArrayRef<const Expr *> SrcExprs, | |||
| 2429 | ArrayRef<const Expr *> DstExprs, | |||
| 2430 | ArrayRef<const Expr *> AssignmentOps) { | |||
| 2431 | if (!CGF.HaveInsertPoint()) | |||
| 2432 | return; | |||
| 2433 | assert(CopyprivateVars.size() == SrcExprs.size() &&((void)0) | |||
| 2434 | CopyprivateVars.size() == DstExprs.size() &&((void)0) | |||
| 2435 | CopyprivateVars.size() == AssignmentOps.size())((void)0); | |||
| 2436 | ASTContext &C = CGM.getContext(); | |||
| 2437 | // int32 did_it = 0; | |||
| 2438 | // if(__kmpc_single(ident_t *, gtid)) { | |||
| 2439 | // SingleOpGen(); | |||
| 2440 | // __kmpc_end_single(ident_t *, gtid); | |||
| 2441 | // did_it = 1; | |||
| 2442 | // } | |||
| 2443 | // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>, | |||
| 2444 | // <copy_func>, did_it); | |||
| 2445 | ||||
| 2446 | Address DidIt = Address::invalid(); | |||
| 2447 | if (!CopyprivateVars.empty()) { | |||
| 2448 | // int32 did_it = 0; | |||
| 2449 | QualType KmpInt32Ty = | |||
| 2450 | C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); | |||
| 2451 | DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it"); | |||
| 2452 | CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt); | |||
| 2453 | } | |||
| 2454 | // Prepare arguments and build a call to __kmpc_single | |||
| 2455 | llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; | |||
| 2456 | CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2457 | CGM.getModule(), OMPRTL___kmpc_single), | |||
| 2458 | Args, | |||
| 2459 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2460 | CGM.getModule(), OMPRTL___kmpc_end_single), | |||
| 2461 | Args, | |||
| 2462 | /*Conditional=*/true); | |||
| 2463 | SingleOpGen.setAction(Action); | |||
| 2464 | emitInlinedDirective(CGF, OMPD_single, SingleOpGen); | |||
| 2465 | if (DidIt.isValid()) { | |||
| 2466 | // did_it = 1; | |||
| 2467 | CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt); | |||
| 2468 | } | |||
| 2469 | Action.Done(CGF); | |||
| 2470 | // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>, | |||
| 2471 | // <copy_func>, did_it); | |||
| 2472 | if (DidIt.isValid()) { | |||
| 2473 | llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size()); | |||
| 2474 | QualType CopyprivateArrayTy = C.getConstantArrayType( | |||
| 2475 | C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, | |||
| 2476 | /*IndexTypeQuals=*/0); | |||
| 2477 | // Create a list of all private variables for copyprivate. | |||
| 2478 | Address CopyprivateList = | |||
| 2479 | CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list"); | |||
| 2480 | for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) { | |||
| 2481 | Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I); | |||
| 2482 | CGF.Builder.CreateStore( | |||
| 2483 | CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 2484 | CGF.EmitLValue(CopyprivateVars[I]).getPointer(CGF), | |||
| 2485 | CGF.VoidPtrTy), | |||
| 2486 | Elem); | |||
| 2487 | } | |||
| 2488 | // Build function that copies private values from single region to all other | |||
| 2489 | // threads in the corresponding parallel region. | |||
| 2490 | llvm::Value *CpyFn = emitCopyprivateCopyFunction( | |||
| 2491 | CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(), | |||
| 2492 | CopyprivateVars, SrcExprs, DstExprs, AssignmentOps, Loc); | |||
| 2493 | llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy); | |||
| 2494 | Address CL = | |||
| 2495 | CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList, | |||
| 2496 | CGF.VoidPtrTy); | |||
| 2497 | llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt); | |||
| 2498 | llvm::Value *Args[] = { | |||
| 2499 | emitUpdateLocation(CGF, Loc), // ident_t *<loc> | |||
| 2500 | getThreadID(CGF, Loc), // i32 <gtid> | |||
| 2501 | BufSize, // size_t <buf_size> | |||
| 2502 | CL.getPointer(), // void *<copyprivate list> | |||
| 2503 | CpyFn, // void (*) (void *, void *) <copy_func> | |||
| 2504 | DidItVal // i32 did_it | |||
| 2505 | }; | |||
| 2506 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2507 | CGM.getModule(), OMPRTL___kmpc_copyprivate), | |||
| 2508 | Args); | |||
| 2509 | } | |||
| 2510 | } | |||
| 2511 | ||||
| 2512 | void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF, | |||
| 2513 | const RegionCodeGenTy &OrderedOpGen, | |||
| 2514 | SourceLocation Loc, bool IsThreads) { | |||
| 2515 | if (!CGF.HaveInsertPoint()) | |||
| 2516 | return; | |||
| 2517 | // __kmpc_ordered(ident_t *, gtid); | |||
| 2518 | // OrderedOpGen(); | |||
| 2519 | // __kmpc_end_ordered(ident_t *, gtid); | |||
| 2520 | // Prepare arguments and build a call to __kmpc_ordered | |||
| 2521 | if (IsThreads) { | |||
| 2522 | llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; | |||
| 2523 | CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2524 | CGM.getModule(), OMPRTL___kmpc_ordered), | |||
| 2525 | Args, | |||
| 2526 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2527 | CGM.getModule(), OMPRTL___kmpc_end_ordered), | |||
| 2528 | Args); | |||
| 2529 | OrderedOpGen.setAction(Action); | |||
| 2530 | emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen); | |||
| 2531 | return; | |||
| 2532 | } | |||
| 2533 | emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen); | |||
| 2534 | } | |||
| 2535 | ||||
| 2536 | unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) { | |||
| 2537 | unsigned Flags; | |||
| 2538 | if (Kind == OMPD_for) | |||
| 2539 | Flags = OMP_IDENT_BARRIER_IMPL_FOR; | |||
| 2540 | else if (Kind == OMPD_sections) | |||
| 2541 | Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS; | |||
| 2542 | else if (Kind == OMPD_single) | |||
| 2543 | Flags = OMP_IDENT_BARRIER_IMPL_SINGLE; | |||
| 2544 | else if (Kind == OMPD_barrier) | |||
| 2545 | Flags = OMP_IDENT_BARRIER_EXPL; | |||
| 2546 | else | |||
| 2547 | Flags = OMP_IDENT_BARRIER_IMPL; | |||
| 2548 | return Flags; | |||
| 2549 | } | |||
| 2550 | ||||
| 2551 | void CGOpenMPRuntime::getDefaultScheduleAndChunk( | |||
| 2552 | CodeGenFunction &CGF, const OMPLoopDirective &S, | |||
| 2553 | OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const { | |||
| 2554 | // Check if the loop directive is actually a doacross loop directive. In this | |||
| 2555 | // case choose static, 1 schedule. | |||
| 2556 | if (llvm::any_of( | |||
| 2557 | S.getClausesOfKind<OMPOrderedClause>(), | |||
| 2558 | [](const OMPOrderedClause *C) { return C->getNumForLoops(); })) { | |||
| 2559 | ScheduleKind = OMPC_SCHEDULE_static; | |||
| 2560 | // Chunk size is 1 in this case. | |||
| 2561 | llvm::APInt ChunkSize(32, 1); | |||
| 2562 | ChunkExpr = IntegerLiteral::Create( | |||
| 2563 | CGF.getContext(), ChunkSize, | |||
| 2564 | CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), | |||
| 2565 | SourceLocation()); | |||
| 2566 | } | |||
| 2567 | } | |||
| 2568 | ||||
| 2569 | void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc, | |||
| 2570 | OpenMPDirectiveKind Kind, bool EmitChecks, | |||
| 2571 | bool ForceSimpleCall) { | |||
| 2572 | // Check if we should use the OMPBuilder | |||
| 2573 | auto *OMPRegionInfo = | |||
| 2574 | dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo); | |||
| 2575 | if (CGF.CGM.getLangOpts().OpenMPIRBuilder) { | |||
| 2576 | CGF.Builder.restoreIP(OMPBuilder.createBarrier( | |||
| 2577 | CGF.Builder, Kind, ForceSimpleCall, EmitChecks)); | |||
| 2578 | return; | |||
| 2579 | } | |||
| 2580 | ||||
| 2581 | if (!CGF.HaveInsertPoint()) | |||
| 2582 | return; | |||
| 2583 | // Build call __kmpc_cancel_barrier(loc, thread_id); | |||
| 2584 | // Build call __kmpc_barrier(loc, thread_id); | |||
| 2585 | unsigned Flags = getDefaultFlagsForBarriers(Kind); | |||
| 2586 | // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc, | |||
| 2587 | // thread_id); | |||
| 2588 | llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), | |||
| 2589 | getThreadID(CGF, Loc)}; | |||
| 2590 | if (OMPRegionInfo) { | |||
| 2591 | if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) { | |||
| 2592 | llvm::Value *Result = CGF.EmitRuntimeCall( | |||
| 2593 | OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), | |||
| 2594 | OMPRTL___kmpc_cancel_barrier), | |||
| 2595 | Args); | |||
| 2596 | if (EmitChecks) { | |||
| 2597 | // if (__kmpc_cancel_barrier()) { | |||
| 2598 | // exit from construct; | |||
| 2599 | // } | |||
| 2600 | llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit"); | |||
| 2601 | llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue"); | |||
| 2602 | llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result); | |||
| 2603 | CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); | |||
| 2604 | CGF.EmitBlock(ExitBB); | |||
| 2605 | // exit from construct; | |||
| 2606 | CodeGenFunction::JumpDest CancelDestination = | |||
| 2607 | CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); | |||
| 2608 | CGF.EmitBranchThroughCleanup(CancelDestination); | |||
| 2609 | CGF.EmitBlock(ContBB, /*IsFinished=*/true); | |||
| 2610 | } | |||
| 2611 | return; | |||
| 2612 | } | |||
| 2613 | } | |||
| 2614 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2615 | CGM.getModule(), OMPRTL___kmpc_barrier), | |||
| 2616 | Args); | |||
| 2617 | } | |||
| 2618 | ||||
| 2619 | /// Map the OpenMP loop schedule to the runtime enumeration. | |||
| 2620 | static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind, | |||
| 2621 | bool Chunked, bool Ordered) { | |||
| 2622 | switch (ScheduleKind) { | |||
| 2623 | case OMPC_SCHEDULE_static: | |||
| 2624 | return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked) | |||
| 2625 | : (Ordered ? OMP_ord_static : OMP_sch_static); | |||
| 2626 | case OMPC_SCHEDULE_dynamic: | |||
| 2627 | return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked; | |||
| 2628 | case OMPC_SCHEDULE_guided: | |||
| 2629 | return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked; | |||
| 2630 | case OMPC_SCHEDULE_runtime: | |||
| 2631 | return Ordered ? OMP_ord_runtime : OMP_sch_runtime; | |||
| 2632 | case OMPC_SCHEDULE_auto: | |||
| 2633 | return Ordered ? OMP_ord_auto : OMP_sch_auto; | |||
| 2634 | case OMPC_SCHEDULE_unknown: | |||
| 2635 | assert(!Chunked && "chunk was specified but schedule kind not known")((void)0); | |||
| 2636 | return Ordered ? OMP_ord_static : OMP_sch_static; | |||
| 2637 | } | |||
| 2638 | llvm_unreachable("Unexpected runtime schedule")__builtin_unreachable(); | |||
| 2639 | } | |||
| 2640 | ||||
| 2641 | /// Map the OpenMP distribute schedule to the runtime enumeration. | |||
| 2642 | static OpenMPSchedType | |||
| 2643 | getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) { | |||
| 2644 | // only static is allowed for dist_schedule | |||
| 2645 | return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static; | |||
| 2646 | } | |||
| 2647 | ||||
| 2648 | bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind, | |||
| 2649 | bool Chunked) const { | |||
| 2650 | OpenMPSchedType Schedule = | |||
| 2651 | getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false); | |||
| 2652 | return Schedule == OMP_sch_static; | |||
| 2653 | } | |||
| 2654 | ||||
| 2655 | bool CGOpenMPRuntime::isStaticNonchunked( | |||
| 2656 | OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const { | |||
| 2657 | OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked); | |||
| 2658 | return Schedule == OMP_dist_sch_static; | |||
| 2659 | } | |||
| 2660 | ||||
| 2661 | bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind, | |||
| 2662 | bool Chunked) const { | |||
| 2663 | OpenMPSchedType Schedule = | |||
| 2664 | getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false); | |||
| 2665 | return Schedule == OMP_sch_static_chunked; | |||
| 2666 | } | |||
| 2667 | ||||
| 2668 | bool CGOpenMPRuntime::isStaticChunked( | |||
| 2669 | OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const { | |||
| 2670 | OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked); | |||
| 2671 | return Schedule == OMP_dist_sch_static_chunked; | |||
| 2672 | } | |||
| 2673 | ||||
| 2674 | bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const { | |||
| 2675 | OpenMPSchedType Schedule = | |||
| 2676 | getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false); | |||
| 2677 | assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here")((void)0); | |||
| 2678 | return Schedule != OMP_sch_static; | |||
| 2679 | } | |||
| 2680 | ||||
| 2681 | static int addMonoNonMonoModifier(CodeGenModule &CGM, OpenMPSchedType Schedule, | |||
| 2682 | OpenMPScheduleClauseModifier M1, | |||
| 2683 | OpenMPScheduleClauseModifier M2) { | |||
| 2684 | int Modifier = 0; | |||
| 2685 | switch (M1) { | |||
| 2686 | case OMPC_SCHEDULE_MODIFIER_monotonic: | |||
| 2687 | Modifier = OMP_sch_modifier_monotonic; | |||
| 2688 | break; | |||
| 2689 | case OMPC_SCHEDULE_MODIFIER_nonmonotonic: | |||
| 2690 | Modifier = OMP_sch_modifier_nonmonotonic; | |||
| 2691 | break; | |||
| 2692 | case OMPC_SCHEDULE_MODIFIER_simd: | |||
| 2693 | if (Schedule == OMP_sch_static_chunked) | |||
| 2694 | Schedule = OMP_sch_static_balanced_chunked; | |||
| 2695 | break; | |||
| 2696 | case OMPC_SCHEDULE_MODIFIER_last: | |||
| 2697 | case OMPC_SCHEDULE_MODIFIER_unknown: | |||
| 2698 | break; | |||
| 2699 | } | |||
| 2700 | switch (M2) { | |||
| 2701 | case OMPC_SCHEDULE_MODIFIER_monotonic: | |||
| 2702 | Modifier = OMP_sch_modifier_monotonic; | |||
| 2703 | break; | |||
| 2704 | case OMPC_SCHEDULE_MODIFIER_nonmonotonic: | |||
| 2705 | Modifier = OMP_sch_modifier_nonmonotonic; | |||
| 2706 | break; | |||
| 2707 | case OMPC_SCHEDULE_MODIFIER_simd: | |||
| 2708 | if (Schedule == OMP_sch_static_chunked) | |||
| 2709 | Schedule = OMP_sch_static_balanced_chunked; | |||
| 2710 | break; | |||
| 2711 | case OMPC_SCHEDULE_MODIFIER_last: | |||
| 2712 | case OMPC_SCHEDULE_MODIFIER_unknown: | |||
| 2713 | break; | |||
| 2714 | } | |||
| 2715 | // OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Desription. | |||
| 2716 | // If the static schedule kind is specified or if the ordered clause is | |||
| 2717 | // specified, and if the nonmonotonic modifier is not specified, the effect is | |||
| 2718 | // as if the monotonic modifier is specified. Otherwise, unless the monotonic | |||
| 2719 | // modifier is specified, the effect is as if the nonmonotonic modifier is | |||
| 2720 | // specified. | |||
| 2721 | if (CGM.getLangOpts().OpenMP >= 50 && Modifier == 0) { | |||
| 2722 | if (!(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static || | |||
| 2723 | Schedule == OMP_sch_static_balanced_chunked || | |||
| 2724 | Schedule == OMP_ord_static_chunked || Schedule == OMP_ord_static || | |||
| 2725 | Schedule == OMP_dist_sch_static_chunked || | |||
| 2726 | Schedule == OMP_dist_sch_static)) | |||
| 2727 | Modifier = OMP_sch_modifier_nonmonotonic; | |||
| 2728 | } | |||
| 2729 | return Schedule | Modifier; | |||
| 2730 | } | |||
| 2731 | ||||
| 2732 | void CGOpenMPRuntime::emitForDispatchInit( | |||
| 2733 | CodeGenFunction &CGF, SourceLocation Loc, | |||
| 2734 | const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned, | |||
| 2735 | bool Ordered, const DispatchRTInput &DispatchValues) { | |||
| 2736 | if (!CGF.HaveInsertPoint()) | |||
| 2737 | return; | |||
| 2738 | OpenMPSchedType Schedule = getRuntimeSchedule( | |||
| 2739 | ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered); | |||
| 2740 | assert(Ordered ||((void)0) | |||
| 2741 | (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&((void)0) | |||
| 2742 | Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&((void)0) | |||
| 2743 | Schedule != OMP_sch_static_balanced_chunked))((void)0); | |||
| 2744 | // Call __kmpc_dispatch_init( | |||
| 2745 | // ident_t *loc, kmp_int32 tid, kmp_int32 schedule, | |||
| 2746 | // kmp_int[32|64] lower, kmp_int[32|64] upper, | |||
| 2747 | // kmp_int[32|64] stride, kmp_int[32|64] chunk); | |||
| 2748 | ||||
| 2749 | // If the Chunk was not specified in the clause - use default value 1. | |||
| 2750 | llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk | |||
| 2751 | : CGF.Builder.getIntN(IVSize, 1); | |||
| 2752 | llvm::Value *Args[] = { | |||
| 2753 | emitUpdateLocation(CGF, Loc), | |||
| 2754 | getThreadID(CGF, Loc), | |||
| 2755 | CGF.Builder.getInt32(addMonoNonMonoModifier( | |||
| 2756 | CGM, Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type | |||
| 2757 | DispatchValues.LB, // Lower | |||
| 2758 | DispatchValues.UB, // Upper | |||
| 2759 | CGF.Builder.getIntN(IVSize, 1), // Stride | |||
| 2760 | Chunk // Chunk | |||
| 2761 | }; | |||
| 2762 | CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args); | |||
| 2763 | } | |||
| 2764 | ||||
| 2765 | static void emitForStaticInitCall( | |||
| 2766 | CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId, | |||
| 2767 | llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule, | |||
| 2768 | OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2, | |||
| 2769 | const CGOpenMPRuntime::StaticRTInput &Values) { | |||
| 2770 | if (!CGF.HaveInsertPoint()) | |||
| 2771 | return; | |||
| 2772 | ||||
| 2773 | assert(!Values.Ordered)((void)0); | |||
| 2774 | assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||((void)0) | |||
| 2775 | Schedule == OMP_sch_static_balanced_chunked ||((void)0) | |||
| 2776 | Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||((void)0) | |||
| 2777 | Schedule == OMP_dist_sch_static ||((void)0) | |||
| 2778 | Schedule == OMP_dist_sch_static_chunked)((void)0); | |||
| 2779 | ||||
| 2780 | // Call __kmpc_for_static_init( | |||
| 2781 | // ident_t *loc, kmp_int32 tid, kmp_int32 schedtype, | |||
| 2782 | // kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower, | |||
| 2783 | // kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride, | |||
| 2784 | // kmp_int[32|64] incr, kmp_int[32|64] chunk); | |||
| 2785 | llvm::Value *Chunk = Values.Chunk; | |||
| 2786 | if (Chunk == nullptr) { | |||
| 2787 | assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||((void)0) | |||
| 2788 | Schedule == OMP_dist_sch_static) &&((void)0) | |||
| 2789 | "expected static non-chunked schedule")((void)0); | |||
| 2790 | // If the Chunk was not specified in the clause - use default value 1. | |||
| 2791 | Chunk = CGF.Builder.getIntN(Values.IVSize, 1); | |||
| 2792 | } else { | |||
| 2793 | assert((Schedule == OMP_sch_static_chunked ||((void)0) | |||
| 2794 | Schedule == OMP_sch_static_balanced_chunked ||((void)0) | |||
| 2795 | Schedule == OMP_ord_static_chunked ||((void)0) | |||
| 2796 | Schedule == OMP_dist_sch_static_chunked) &&((void)0) | |||
| 2797 | "expected static chunked schedule")((void)0); | |||
| 2798 | } | |||
| 2799 | llvm::Value *Args[] = { | |||
| 2800 | UpdateLocation, | |||
| 2801 | ThreadId, | |||
| 2802 | CGF.Builder.getInt32(addMonoNonMonoModifier(CGF.CGM, Schedule, M1, | |||
| 2803 | M2)), // Schedule type | |||
| 2804 | Values.IL.getPointer(), // &isLastIter | |||
| 2805 | Values.LB.getPointer(), // &LB | |||
| 2806 | Values.UB.getPointer(), // &UB | |||
| 2807 | Values.ST.getPointer(), // &Stride | |||
| 2808 | CGF.Builder.getIntN(Values.IVSize, 1), // Incr | |||
| 2809 | Chunk // Chunk | |||
| 2810 | }; | |||
| 2811 | CGF.EmitRuntimeCall(ForStaticInitFunction, Args); | |||
| 2812 | } | |||
| 2813 | ||||
| 2814 | void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF, | |||
| 2815 | SourceLocation Loc, | |||
| 2816 | OpenMPDirectiveKind DKind, | |||
| 2817 | const OpenMPScheduleTy &ScheduleKind, | |||
| 2818 | const StaticRTInput &Values) { | |||
| 2819 | OpenMPSchedType ScheduleNum = getRuntimeSchedule( | |||
| 2820 | ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered); | |||
| 2821 | assert(isOpenMPWorksharingDirective(DKind) &&((void)0) | |||
| 2822 | "Expected loop-based or sections-based directive.")((void)0); | |||
| 2823 | llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc, | |||
| 2824 | isOpenMPLoopDirective(DKind) | |||
| 2825 | ? OMP_IDENT_WORK_LOOP | |||
| 2826 | : OMP_IDENT_WORK_SECTIONS); | |||
| 2827 | llvm::Value *ThreadId = getThreadID(CGF, Loc); | |||
| 2828 | llvm::FunctionCallee StaticInitFunction = | |||
| 2829 | createForStaticInitFunction(Values.IVSize, Values.IVSigned); | |||
| 2830 | auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc); | |||
| 2831 | emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction, | |||
| 2832 | ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values); | |||
| 2833 | } | |||
| 2834 | ||||
| 2835 | void CGOpenMPRuntime::emitDistributeStaticInit( | |||
| 2836 | CodeGenFunction &CGF, SourceLocation Loc, | |||
| 2837 | OpenMPDistScheduleClauseKind SchedKind, | |||
| 2838 | const CGOpenMPRuntime::StaticRTInput &Values) { | |||
| 2839 | OpenMPSchedType ScheduleNum = | |||
| 2840 | getRuntimeSchedule(SchedKind, Values.Chunk != nullptr); | |||
| 2841 | llvm::Value *UpdatedLocation = | |||
| 2842 | emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE); | |||
| 2843 | llvm::Value *ThreadId = getThreadID(CGF, Loc); | |||
| 2844 | llvm::FunctionCallee StaticInitFunction = | |||
| 2845 | createForStaticInitFunction(Values.IVSize, Values.IVSigned); | |||
| 2846 | emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction, | |||
| 2847 | ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown, | |||
| 2848 | OMPC_SCHEDULE_MODIFIER_unknown, Values); | |||
| 2849 | } | |||
| 2850 | ||||
| 2851 | void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF, | |||
| 2852 | SourceLocation Loc, | |||
| 2853 | OpenMPDirectiveKind DKind) { | |||
| 2854 | if (!CGF.HaveInsertPoint()) | |||
| 2855 | return; | |||
| 2856 | // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid); | |||
| 2857 | llvm::Value *Args[] = { | |||
| 2858 | emitUpdateLocation(CGF, Loc, | |||
| 2859 | isOpenMPDistributeDirective(DKind) | |||
| 2860 | ? OMP_IDENT_WORK_DISTRIBUTE | |||
| 2861 | : isOpenMPLoopDirective(DKind) | |||
| 2862 | ? OMP_IDENT_WORK_LOOP | |||
| 2863 | : OMP_IDENT_WORK_SECTIONS), | |||
| 2864 | getThreadID(CGF, Loc)}; | |||
| 2865 | auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc); | |||
| 2866 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2867 | CGM.getModule(), OMPRTL___kmpc_for_static_fini), | |||
| 2868 | Args); | |||
| 2869 | } | |||
| 2870 | ||||
| 2871 | void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF, | |||
| 2872 | SourceLocation Loc, | |||
| 2873 | unsigned IVSize, | |||
| 2874 | bool IVSigned) { | |||
| 2875 | if (!CGF.HaveInsertPoint()) | |||
| 2876 | return; | |||
| 2877 | // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid); | |||
| 2878 | llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; | |||
| 2879 | CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args); | |||
| 2880 | } | |||
| 2881 | ||||
| 2882 | llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF, | |||
| 2883 | SourceLocation Loc, unsigned IVSize, | |||
| 2884 | bool IVSigned, Address IL, | |||
| 2885 | Address LB, Address UB, | |||
| 2886 | Address ST) { | |||
| 2887 | // Call __kmpc_dispatch_next( | |||
| 2888 | // ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter, | |||
| 2889 | // kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper, | |||
| 2890 | // kmp_int[32|64] *p_stride); | |||
| 2891 | llvm::Value *Args[] = { | |||
| 2892 | emitUpdateLocation(CGF, Loc), | |||
| 2893 | getThreadID(CGF, Loc), | |||
| 2894 | IL.getPointer(), // &isLastIter | |||
| 2895 | LB.getPointer(), // &Lower | |||
| 2896 | UB.getPointer(), // &Upper | |||
| 2897 | ST.getPointer() // &Stride | |||
| 2898 | }; | |||
| 2899 | llvm::Value *Call = | |||
| 2900 | CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args); | |||
| 2901 | return CGF.EmitScalarConversion( | |||
| 2902 | Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1), | |||
| 2903 | CGF.getContext().BoolTy, Loc); | |||
| 2904 | } | |||
| 2905 | ||||
| 2906 | void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF, | |||
| 2907 | llvm::Value *NumThreads, | |||
| 2908 | SourceLocation Loc) { | |||
| 2909 | if (!CGF.HaveInsertPoint()) | |||
| 2910 | return; | |||
| 2911 | // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads) | |||
| 2912 | llvm::Value *Args[] = { | |||
| 2913 | emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), | |||
| 2914 | CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)}; | |||
| 2915 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2916 | CGM.getModule(), OMPRTL___kmpc_push_num_threads), | |||
| 2917 | Args); | |||
| 2918 | } | |||
| 2919 | ||||
| 2920 | void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF, | |||
| 2921 | ProcBindKind ProcBind, | |||
| 2922 | SourceLocation Loc) { | |||
| 2923 | if (!CGF.HaveInsertPoint()) | |||
| 2924 | return; | |||
| 2925 | assert(ProcBind != OMP_PROC_BIND_unknown && "Unsupported proc_bind value.")((void)0); | |||
| 2926 | // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind) | |||
| 2927 | llvm::Value *Args[] = { | |||
| 2928 | emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), | |||
| 2929 | llvm::ConstantInt::get(CGM.IntTy, unsigned(ProcBind), /*isSigned=*/true)}; | |||
| 2930 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2931 | CGM.getModule(), OMPRTL___kmpc_push_proc_bind), | |||
| 2932 | Args); | |||
| 2933 | } | |||
| 2934 | ||||
| 2935 | void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>, | |||
| 2936 | SourceLocation Loc, llvm::AtomicOrdering AO) { | |||
| 2937 | if (CGF.CGM.getLangOpts().OpenMPIRBuilder) { | |||
| 2938 | OMPBuilder.createFlush(CGF.Builder); | |||
| 2939 | } else { | |||
| 2940 | if (!CGF.HaveInsertPoint()) | |||
| 2941 | return; | |||
| 2942 | // Build call void __kmpc_flush(ident_t *loc) | |||
| 2943 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 2944 | CGM.getModule(), OMPRTL___kmpc_flush), | |||
| 2945 | emitUpdateLocation(CGF, Loc)); | |||
| 2946 | } | |||
| 2947 | } | |||
| 2948 | ||||
| 2949 | namespace { | |||
| 2950 | /// Indexes of fields for type kmp_task_t. | |||
| 2951 | enum KmpTaskTFields { | |||
| 2952 | /// List of shared variables. | |||
| 2953 | KmpTaskTShareds, | |||
| 2954 | /// Task routine. | |||
| 2955 | KmpTaskTRoutine, | |||
| 2956 | /// Partition id for the untied tasks. | |||
| 2957 | KmpTaskTPartId, | |||
| 2958 | /// Function with call of destructors for private variables. | |||
| 2959 | Data1, | |||
| 2960 | /// Task priority. | |||
| 2961 | Data2, | |||
| 2962 | /// (Taskloops only) Lower bound. | |||
| 2963 | KmpTaskTLowerBound, | |||
| 2964 | /// (Taskloops only) Upper bound. | |||
| 2965 | KmpTaskTUpperBound, | |||
| 2966 | /// (Taskloops only) Stride. | |||
| 2967 | KmpTaskTStride, | |||
| 2968 | /// (Taskloops only) Is last iteration flag. | |||
| 2969 | KmpTaskTLastIter, | |||
| 2970 | /// (Taskloops only) Reduction data. | |||
| 2971 | KmpTaskTReductions, | |||
| 2972 | }; | |||
| 2973 | } // anonymous namespace | |||
| 2974 | ||||
| 2975 | bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const { | |||
| 2976 | return OffloadEntriesTargetRegion.empty() && | |||
| 2977 | OffloadEntriesDeviceGlobalVar.empty(); | |||
| 2978 | } | |||
| 2979 | ||||
| 2980 | /// Initialize target region entry. | |||
| 2981 | void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: | |||
| 2982 | initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID, | |||
| 2983 | StringRef ParentName, unsigned LineNum, | |||
| 2984 | unsigned Order) { | |||
| 2985 | assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "((void)0) | |||
| 2986 | "only required for the device "((void)0) | |||
| 2987 | "code generation.")((void)0); | |||
| 2988 | OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = | |||
| 2989 | OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr, | |||
| 2990 | OMPTargetRegionEntryTargetRegion); | |||
| 2991 | ++OffloadingEntriesNum; | |||
| 2992 | } | |||
| 2993 | ||||
| 2994 | void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: | |||
| 2995 | registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID, | |||
| 2996 | StringRef ParentName, unsigned LineNum, | |||
| 2997 | llvm::Constant *Addr, llvm::Constant *ID, | |||
| 2998 | OMPTargetRegionEntryKind Flags) { | |||
| 2999 | // If we are emitting code for a target, the entry is already initialized, | |||
| 3000 | // only has to be registered. | |||
| 3001 | if (CGM.getLangOpts().OpenMPIsDevice) { | |||
| 3002 | // This could happen if the device compilation is invoked standalone. | |||
| 3003 | if (!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum)) | |||
| 3004 | return; | |||
| 3005 | auto &Entry = | |||
| 3006 | OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum]; | |||
| 3007 | Entry.setAddress(Addr); | |||
| 3008 | Entry.setID(ID); | |||
| 3009 | Entry.setFlags(Flags); | |||
| 3010 | } else { | |||
| 3011 | if (Flags == | |||
| 3012 | OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion && | |||
| 3013 | hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum, | |||
| 3014 | /*IgnoreAddressId*/ true)) | |||
| 3015 | return; | |||
| 3016 | assert(!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum) &&((void)0) | |||
| 3017 | "Target region entry already registered!")((void)0); | |||
| 3018 | OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags); | |||
| 3019 | OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry; | |||
| 3020 | ++OffloadingEntriesNum; | |||
| 3021 | } | |||
| 3022 | } | |||
| 3023 | ||||
| 3024 | bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo( | |||
| 3025 | unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned LineNum, | |||
| 3026 | bool IgnoreAddressId) const { | |||
| 3027 | auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID); | |||
| 3028 | if (PerDevice == OffloadEntriesTargetRegion.end()) | |||
| 3029 | return false; | |||
| 3030 | auto PerFile = PerDevice->second.find(FileID); | |||
| 3031 | if (PerFile == PerDevice->second.end()) | |||
| 3032 | return false; | |||
| 3033 | auto PerParentName = PerFile->second.find(ParentName); | |||
| 3034 | if (PerParentName == PerFile->second.end()) | |||
| 3035 | return false; | |||
| 3036 | auto PerLine = PerParentName->second.find(LineNum); | |||
| 3037 | if (PerLine == PerParentName->second.end()) | |||
| 3038 | return false; | |||
| 3039 | // Fail if this entry is already registered. | |||
| 3040 | if (!IgnoreAddressId && | |||
| 3041 | (PerLine->second.getAddress() || PerLine->second.getID())) | |||
| 3042 | return false; | |||
| 3043 | return true; | |||
| 3044 | } | |||
| 3045 | ||||
| 3046 | void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo( | |||
| 3047 | const OffloadTargetRegionEntryInfoActTy &Action) { | |||
| 3048 | // Scan all target region entries and perform the provided action. | |||
| 3049 | for (const auto &D : OffloadEntriesTargetRegion) | |||
| 3050 | for (const auto &F : D.second) | |||
| 3051 | for (const auto &P : F.second) | |||
| 3052 | for (const auto &L : P.second) | |||
| 3053 | Action(D.first, F.first, P.first(), L.first, L.second); | |||
| 3054 | } | |||
| 3055 | ||||
| 3056 | void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: | |||
| 3057 | initializeDeviceGlobalVarEntryInfo(StringRef Name, | |||
| 3058 | OMPTargetGlobalVarEntryKind Flags, | |||
| 3059 | unsigned Order) { | |||
| 3060 | assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "((void)0) | |||
| 3061 | "only required for the device "((void)0) | |||
| 3062 | "code generation.")((void)0); | |||
| 3063 | OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags); | |||
| 3064 | ++OffloadingEntriesNum; | |||
| 3065 | } | |||
| 3066 | ||||
| 3067 | void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: | |||
| 3068 | registerDeviceGlobalVarEntryInfo(StringRef VarName, llvm::Constant *Addr, | |||
| 3069 | CharUnits VarSize, | |||
| 3070 | OMPTargetGlobalVarEntryKind Flags, | |||
| 3071 | llvm::GlobalValue::LinkageTypes Linkage) { | |||
| 3072 | if (CGM.getLangOpts().OpenMPIsDevice) { | |||
| 3073 | // This could happen if the device compilation is invoked standalone. | |||
| 3074 | if (!hasDeviceGlobalVarEntryInfo(VarName)) | |||
| 3075 | return; | |||
| 3076 | auto &Entry = OffloadEntriesDeviceGlobalVar[VarName]; | |||
| 3077 | if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) { | |||
| 3078 | if (Entry.getVarSize().isZero()) { | |||
| 3079 | Entry.setVarSize(VarSize); | |||
| 3080 | Entry.setLinkage(Linkage); | |||
| 3081 | } | |||
| 3082 | return; | |||
| 3083 | } | |||
| 3084 | Entry.setVarSize(VarSize); | |||
| 3085 | Entry.setLinkage(Linkage); | |||
| 3086 | Entry.setAddress(Addr); | |||
| 3087 | } else { | |||
| 3088 | if (hasDeviceGlobalVarEntryInfo(VarName)) { | |||
| 3089 | auto &Entry = OffloadEntriesDeviceGlobalVar[VarName]; | |||
| 3090 | assert(Entry.isValid() && Entry.getFlags() == Flags &&((void)0) | |||
| 3091 | "Entry not initialized!")((void)0); | |||
| 3092 | if (Entry.getVarSize().isZero()) { | |||
| 3093 | Entry.setVarSize(VarSize); | |||
| 3094 | Entry.setLinkage(Linkage); | |||
| 3095 | } | |||
| 3096 | return; | |||
| 3097 | } | |||
| 3098 | OffloadEntriesDeviceGlobalVar.try_emplace( | |||
| 3099 | VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage); | |||
| 3100 | ++OffloadingEntriesNum; | |||
| 3101 | } | |||
| 3102 | } | |||
| 3103 | ||||
| 3104 | void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: | |||
| 3105 | actOnDeviceGlobalVarEntriesInfo( | |||
| 3106 | const OffloadDeviceGlobalVarEntryInfoActTy &Action) { | |||
| 3107 | // Scan all target region entries and perform the provided action. | |||
| 3108 | for (const auto &E : OffloadEntriesDeviceGlobalVar) | |||
| 3109 | Action(E.getKey(), E.getValue()); | |||
| 3110 | } | |||
| 3111 | ||||
| 3112 | void CGOpenMPRuntime::createOffloadEntry( | |||
| 3113 | llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t Flags, | |||
| 3114 | llvm::GlobalValue::LinkageTypes Linkage) { | |||
| 3115 | StringRef Name = Addr->getName(); | |||
| 3116 | llvm::Module &M = CGM.getModule(); | |||
| 3117 | llvm::LLVMContext &C = M.getContext(); | |||
| 3118 | ||||
| 3119 | // Create constant string with the name. | |||
| 3120 | llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name); | |||
| 3121 | ||||
| 3122 | std::string StringName = getName({"omp_offloading", "entry_name"}); | |||
| 3123 | auto *Str = new llvm::GlobalVariable( | |||
| 3124 | M, StrPtrInit->getType(), /*isConstant=*/true, | |||
| 3125 | llvm::GlobalValue::InternalLinkage, StrPtrInit, StringName); | |||
| 3126 | Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); | |||
| 3127 | ||||
| 3128 | llvm::Constant *Data[] = { | |||
| 3129 | llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(ID, CGM.VoidPtrTy), | |||
| 3130 | llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(Str, CGM.Int8PtrTy), | |||
| 3131 | llvm::ConstantInt::get(CGM.SizeTy, Size), | |||
| 3132 | llvm::ConstantInt::get(CGM.Int32Ty, Flags), | |||
| 3133 | llvm::ConstantInt::get(CGM.Int32Ty, 0)}; | |||
| 3134 | std::string EntryName = getName({"omp_offloading", "entry", ""}); | |||
| 3135 | llvm::GlobalVariable *Entry = createGlobalStruct( | |||
| 3136 | CGM, getTgtOffloadEntryQTy(), /*IsConstant=*/true, Data, | |||
| 3137 | Twine(EntryName).concat(Name), llvm::GlobalValue::WeakAnyLinkage); | |||
| 3138 | ||||
| 3139 | // The entry has to be created in the section the linker expects it to be. | |||
| 3140 | Entry->setSection("omp_offloading_entries"); | |||
| 3141 | } | |||
| 3142 | ||||
| 3143 | void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() { | |||
| 3144 | // Emit the offloading entries and metadata so that the device codegen side | |||
| 3145 | // can easily figure out what to emit. The produced metadata looks like | |||
| 3146 | // this: | |||
| 3147 | // | |||
| 3148 | // !omp_offload.info = !{!1, ...} | |||
| 3149 | // | |||
| 3150 | // Right now we only generate metadata for function that contain target | |||
| 3151 | // regions. | |||
| 3152 | ||||
| 3153 | // If we are in simd mode or there are no entries, we don't need to do | |||
| 3154 | // anything. | |||
| 3155 | if (CGM.getLangOpts().OpenMPSimd || OffloadEntriesInfoManager.empty()) | |||
| 3156 | return; | |||
| 3157 | ||||
| 3158 | llvm::Module &M = CGM.getModule(); | |||
| 3159 | llvm::LLVMContext &C = M.getContext(); | |||
| 3160 | SmallVector<std::tuple<const OffloadEntriesInfoManagerTy::OffloadEntryInfo *, | |||
| 3161 | SourceLocation, StringRef>, | |||
| 3162 | 16> | |||
| 3163 | OrderedEntries(OffloadEntriesInfoManager.size()); | |||
| 3164 | llvm::SmallVector<StringRef, 16> ParentFunctions( | |||
| 3165 | OffloadEntriesInfoManager.size()); | |||
| 3166 | ||||
| 3167 | // Auxiliary methods to create metadata values and strings. | |||
| 3168 | auto &&GetMDInt = [this](unsigned V) { | |||
| 3169 | return llvm::ConstantAsMetadata::get( | |||
| 3170 | llvm::ConstantInt::get(CGM.Int32Ty, V)); | |||
| 3171 | }; | |||
| 3172 | ||||
| 3173 | auto &&GetMDString = [&C](StringRef V) { return llvm::MDString::get(C, V); }; | |||
| 3174 | ||||
| 3175 | // Create the offloading info metadata node. | |||
| 3176 | llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info"); | |||
| 3177 | ||||
| 3178 | // Create function that emits metadata for each target region entry; | |||
| 3179 | auto &&TargetRegionMetadataEmitter = | |||
| 3180 | [this, &C, MD, &OrderedEntries, &ParentFunctions, &GetMDInt, | |||
| 3181 | &GetMDString]( | |||
| 3182 | unsigned DeviceID, unsigned FileID, StringRef ParentName, | |||
| 3183 | unsigned Line, | |||
| 3184 | const OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) { | |||
| 3185 | // Generate metadata for target regions. Each entry of this metadata | |||
| 3186 | // contains: | |||
| 3187 | // - Entry 0 -> Kind of this type of metadata (0). | |||
| 3188 | // - Entry 1 -> Device ID of the file where the entry was identified. | |||
| 3189 | // - Entry 2 -> File ID of the file where the entry was identified. | |||
| 3190 | // - Entry 3 -> Mangled name of the function where the entry was | |||
| 3191 | // identified. | |||
| 3192 | // - Entry 4 -> Line in the file where the entry was identified. | |||
| 3193 | // - Entry 5 -> Order the entry was created. | |||
| 3194 | // The first element of the metadata node is the kind. | |||
| 3195 | llvm::Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDInt(DeviceID), | |||
| 3196 | GetMDInt(FileID), GetMDString(ParentName), | |||
| 3197 | GetMDInt(Line), GetMDInt(E.getOrder())}; | |||
| 3198 | ||||
| 3199 | SourceLocation Loc; | |||
| 3200 | for (auto I = CGM.getContext().getSourceManager().fileinfo_begin(), | |||
| 3201 | E = CGM.getContext().getSourceManager().fileinfo_end(); | |||
| 3202 | I != E; ++I) { | |||
| 3203 | if (I->getFirst()->getUniqueID().getDevice() == DeviceID && | |||
| 3204 | I->getFirst()->getUniqueID().getFile() == FileID) { | |||
| 3205 | Loc = CGM.getContext().getSourceManager().translateFileLineCol( | |||
| 3206 | I->getFirst(), Line, 1); | |||
| 3207 | break; | |||
| 3208 | } | |||
| 3209 | } | |||
| 3210 | // Save this entry in the right position of the ordered entries array. | |||
| 3211 | OrderedEntries[E.getOrder()] = std::make_tuple(&E, Loc, ParentName); | |||
| 3212 | ParentFunctions[E.getOrder()] = ParentName; | |||
| 3213 | ||||
| 3214 | // Add metadata to the named metadata node. | |||
| 3215 | MD->addOperand(llvm::MDNode::get(C, Ops)); | |||
| 3216 | }; | |||
| 3217 | ||||
| 3218 | OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo( | |||
| 3219 | TargetRegionMetadataEmitter); | |||
| 3220 | ||||
| 3221 | // Create function that emits metadata for each device global variable entry; | |||
| 3222 | auto &&DeviceGlobalVarMetadataEmitter = | |||
| 3223 | [&C, &OrderedEntries, &GetMDInt, &GetMDString, | |||
| 3224 | MD](StringRef MangledName, | |||
| 3225 | const OffloadEntriesInfoManagerTy::OffloadEntryInfoDeviceGlobalVar | |||
| 3226 | &E) { | |||
| 3227 | // Generate metadata for global variables. Each entry of this metadata | |||
| 3228 | // contains: | |||
| 3229 | // - Entry 0 -> Kind of this type of metadata (1). | |||
| 3230 | // - Entry 1 -> Mangled name of the variable. | |||
| 3231 | // - Entry 2 -> Declare target kind. | |||
| 3232 | // - Entry 3 -> Order the entry was created. | |||
| 3233 | // The first element of the metadata node is the kind. | |||
| 3234 | llvm::Metadata *Ops[] = { | |||
| 3235 | GetMDInt(E.getKind()), GetMDString(MangledName), | |||
| 3236 | GetMDInt(E.getFlags()), GetMDInt(E.getOrder())}; | |||
| 3237 | ||||
| 3238 | // Save this entry in the right position of the ordered entries array. | |||
| 3239 | OrderedEntries[E.getOrder()] = | |||
| 3240 | std::make_tuple(&E, SourceLocation(), MangledName); | |||
| 3241 | ||||
| 3242 | // Add metadata to the named metadata node. | |||
| 3243 | MD->addOperand(llvm::MDNode::get(C, Ops)); | |||
| 3244 | }; | |||
| 3245 | ||||
| 3246 | OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo( | |||
| 3247 | DeviceGlobalVarMetadataEmitter); | |||
| 3248 | ||||
| 3249 | for (const auto &E : OrderedEntries) { | |||
| 3250 | assert(std::get<0>(E) && "All ordered entries must exist!")((void)0); | |||
| 3251 | if (const auto *CE = | |||
| 3252 | dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>( | |||
| 3253 | std::get<0>(E))) { | |||
| 3254 | if (!CE->getID() || !CE->getAddress()) { | |||
| 3255 | // Do not blame the entry if the parent funtion is not emitted. | |||
| 3256 | StringRef FnName = ParentFunctions[CE->getOrder()]; | |||
| 3257 | if (!CGM.GetGlobalValue(FnName)) | |||
| 3258 | continue; | |||
| 3259 | unsigned DiagID = CGM.getDiags().getCustomDiagID( | |||
| 3260 | DiagnosticsEngine::Error, | |||
| 3261 | "Offloading entry for target region in %0 is incorrect: either the " | |||
| 3262 | "address or the ID is invalid."); | |||
| 3263 | CGM.getDiags().Report(std::get<1>(E), DiagID) << FnName; | |||
| 3264 | continue; | |||
| 3265 | } | |||
| 3266 | createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0, | |||
| 3267 | CE->getFlags(), llvm::GlobalValue::WeakAnyLinkage); | |||
| 3268 | } else if (const auto *CE = dyn_cast<OffloadEntriesInfoManagerTy:: | |||
| 3269 | OffloadEntryInfoDeviceGlobalVar>( | |||
| 3270 | std::get<0>(E))) { | |||
| 3271 | OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags = | |||
| 3272 | static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>( | |||
| 3273 | CE->getFlags()); | |||
| 3274 | switch (Flags) { | |||
| 3275 | case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo: { | |||
| 3276 | if (CGM.getLangOpts().OpenMPIsDevice && | |||
| 3277 | CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()) | |||
| 3278 | continue; | |||
| 3279 | if (!CE->getAddress()) { | |||
| 3280 | unsigned DiagID = CGM.getDiags().getCustomDiagID( | |||
| 3281 | DiagnosticsEngine::Error, "Offloading entry for declare target " | |||
| 3282 | "variable %0 is incorrect: the " | |||
| 3283 | "address is invalid."); | |||
| 3284 | CGM.getDiags().Report(std::get<1>(E), DiagID) << std::get<2>(E); | |||
| 3285 | continue; | |||
| 3286 | } | |||
| 3287 | // The vaiable has no definition - no need to add the entry. | |||
| 3288 | if (CE->getVarSize().isZero()) | |||
| 3289 | continue; | |||
| 3290 | break; | |||
| 3291 | } | |||
| 3292 | case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink: | |||
| 3293 | assert(((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) ||((void)0) | |||
| 3294 | (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) &&((void)0) | |||
| 3295 | "Declaret target link address is set.")((void)0); | |||
| 3296 | if (CGM.getLangOpts().OpenMPIsDevice) | |||
| 3297 | continue; | |||
| 3298 | if (!CE->getAddress()) { | |||
| 3299 | unsigned DiagID = CGM.getDiags().getCustomDiagID( | |||
| 3300 | DiagnosticsEngine::Error, | |||
| 3301 | "Offloading entry for declare target variable is incorrect: the " | |||
| 3302 | "address is invalid."); | |||
| 3303 | CGM.getDiags().Report(DiagID); | |||
| 3304 | continue; | |||
| 3305 | } | |||
| 3306 | break; | |||
| 3307 | } | |||
| 3308 | createOffloadEntry(CE->getAddress(), CE->getAddress(), | |||
| 3309 | CE->getVarSize().getQuantity(), Flags, | |||
| 3310 | CE->getLinkage()); | |||
| 3311 | } else { | |||
| 3312 | llvm_unreachable("Unsupported entry kind.")__builtin_unreachable(); | |||
| 3313 | } | |||
| 3314 | } | |||
| 3315 | } | |||
| 3316 | ||||
| 3317 | /// Loads all the offload entries information from the host IR | |||
| 3318 | /// metadata. | |||
| 3319 | void CGOpenMPRuntime::loadOffloadInfoMetadata() { | |||
| 3320 | // If we are in target mode, load the metadata from the host IR. This code has | |||
| 3321 | // to match the metadaata creation in createOffloadEntriesAndInfoMetadata(). | |||
| 3322 | ||||
| 3323 | if (!CGM.getLangOpts().OpenMPIsDevice) | |||
| 3324 | return; | |||
| 3325 | ||||
| 3326 | if (CGM.getLangOpts().OMPHostIRFile.empty()) | |||
| 3327 | return; | |||
| 3328 | ||||
| 3329 | auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile); | |||
| 3330 | if (auto EC = Buf.getError()) { | |||
| 3331 | CGM.getDiags().Report(diag::err_cannot_open_file) | |||
| 3332 | << CGM.getLangOpts().OMPHostIRFile << EC.message(); | |||
| 3333 | return; | |||
| 3334 | } | |||
| 3335 | ||||
| 3336 | llvm::LLVMContext C; | |||
| 3337 | auto ME = expectedToErrorOrAndEmitErrors( | |||
| 3338 | C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C)); | |||
| 3339 | ||||
| 3340 | if (auto EC = ME.getError()) { | |||
| 3341 | unsigned DiagID = CGM.getDiags().getCustomDiagID( | |||
| 3342 | DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'"); | |||
| 3343 | CGM.getDiags().Report(DiagID) | |||
| 3344 | << CGM.getLangOpts().OMPHostIRFile << EC.message(); | |||
| 3345 | return; | |||
| 3346 | } | |||
| 3347 | ||||
| 3348 | llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info"); | |||
| 3349 | if (!MD) | |||
| 3350 | return; | |||
| 3351 | ||||
| 3352 | for (llvm::MDNode *MN : MD->operands()) { | |||
| 3353 | auto &&GetMDInt = [MN](unsigned Idx) { | |||
| 3354 | auto *V = cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx)); | |||
| 3355 | return cast<llvm::ConstantInt>(V->getValue())->getZExtValue(); | |||
| 3356 | }; | |||
| 3357 | ||||
| 3358 | auto &&GetMDString = [MN](unsigned Idx) { | |||
| 3359 | auto *V = cast<llvm::MDString>(MN->getOperand(Idx)); | |||
| 3360 | return V->getString(); | |||
| 3361 | }; | |||
| 3362 | ||||
| 3363 | switch (GetMDInt(0)) { | |||
| 3364 | default: | |||
| 3365 | llvm_unreachable("Unexpected metadata!")__builtin_unreachable(); | |||
| 3366 | break; | |||
| 3367 | case OffloadEntriesInfoManagerTy::OffloadEntryInfo:: | |||
| 3368 | OffloadingEntryInfoTargetRegion: | |||
| 3369 | OffloadEntriesInfoManager.initializeTargetRegionEntryInfo( | |||
| 3370 | /*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2), | |||
| 3371 | /*ParentName=*/GetMDString(3), /*Line=*/GetMDInt(4), | |||
| 3372 | /*Order=*/GetMDInt(5)); | |||
| 3373 | break; | |||
| 3374 | case OffloadEntriesInfoManagerTy::OffloadEntryInfo:: | |||
| 3375 | OffloadingEntryInfoDeviceGlobalVar: | |||
| 3376 | OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo( | |||
| 3377 | /*MangledName=*/GetMDString(1), | |||
| 3378 | static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>( | |||
| 3379 | /*Flags=*/GetMDInt(2)), | |||
| 3380 | /*Order=*/GetMDInt(3)); | |||
| 3381 | break; | |||
| 3382 | } | |||
| 3383 | } | |||
| 3384 | } | |||
| 3385 | ||||
| 3386 | void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) { | |||
| 3387 | if (!KmpRoutineEntryPtrTy) { | |||
| 3388 | // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type. | |||
| 3389 | ASTContext &C = CGM.getContext(); | |||
| 3390 | QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy}; | |||
| 3391 | FunctionProtoType::ExtProtoInfo EPI; | |||
| 3392 | KmpRoutineEntryPtrQTy = C.getPointerType( | |||
| 3393 | C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI)); | |||
| 3394 | KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy); | |||
| 3395 | } | |||
| 3396 | } | |||
| 3397 | ||||
| 3398 | QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() { | |||
| 3399 | // Make sure the type of the entry is already created. This is the type we | |||
| 3400 | // have to create: | |||
| 3401 | // struct __tgt_offload_entry{ | |||
| 3402 | // void *addr; // Pointer to the offload entry info. | |||
| 3403 | // // (function or global) | |||
| 3404 | // char *name; // Name of the function or global. | |||
| 3405 | // size_t size; // Size of the entry info (0 if it a function). | |||
| 3406 | // int32_t flags; // Flags associated with the entry, e.g. 'link'. | |||
| 3407 | // int32_t reserved; // Reserved, to use by the runtime library. | |||
| 3408 | // }; | |||
| 3409 | if (TgtOffloadEntryQTy.isNull()) { | |||
| 3410 | ASTContext &C = CGM.getContext(); | |||
| 3411 | RecordDecl *RD = C.buildImplicitRecord("__tgt_offload_entry"); | |||
| 3412 | RD->startDefinition(); | |||
| 3413 | addFieldToRecordDecl(C, RD, C.VoidPtrTy); | |||
| 3414 | addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy)); | |||
| 3415 | addFieldToRecordDecl(C, RD, C.getSizeType()); | |||
| 3416 | addFieldToRecordDecl( | |||
| 3417 | C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true)); | |||
| 3418 | addFieldToRecordDecl( | |||
| 3419 | C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true)); | |||
| 3420 | RD->completeDefinition(); | |||
| 3421 | RD->addAttr(PackedAttr::CreateImplicit(C)); | |||
| 3422 | TgtOffloadEntryQTy = C.getRecordType(RD); | |||
| 3423 | } | |||
| 3424 | return TgtOffloadEntryQTy; | |||
| 3425 | } | |||
| 3426 | ||||
| 3427 | namespace { | |||
| 3428 | struct PrivateHelpersTy { | |||
| 3429 | PrivateHelpersTy(const Expr *OriginalRef, const VarDecl *Original, | |||
| 3430 | const VarDecl *PrivateCopy, const VarDecl *PrivateElemInit) | |||
| 3431 | : OriginalRef(OriginalRef), Original(Original), PrivateCopy(PrivateCopy), | |||
| 3432 | PrivateElemInit(PrivateElemInit) {} | |||
| 3433 | PrivateHelpersTy(const VarDecl *Original) : Original(Original) {} | |||
| 3434 | const Expr *OriginalRef = nullptr; | |||
| 3435 | const VarDecl *Original = nullptr; | |||
| 3436 | const VarDecl *PrivateCopy = nullptr; | |||
| 3437 | const VarDecl *PrivateElemInit = nullptr; | |||
| 3438 | bool isLocalPrivate() const { | |||
| 3439 | return !OriginalRef && !PrivateCopy && !PrivateElemInit; | |||
| 3440 | } | |||
| 3441 | }; | |||
| 3442 | typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy; | |||
| 3443 | } // anonymous namespace | |||
| 3444 | ||||
| 3445 | static bool isAllocatableDecl(const VarDecl *VD) { | |||
| 3446 | const VarDecl *CVD = VD->getCanonicalDecl(); | |||
| 3447 | if (!CVD->hasAttr<OMPAllocateDeclAttr>()) | |||
| 3448 | return false; | |||
| 3449 | const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); | |||
| 3450 | // Use the default allocation. | |||
| 3451 | return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc || | |||
| 3452 | AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) && | |||
| 3453 | !AA->getAllocator()); | |||
| 3454 | } | |||
| 3455 | ||||
| 3456 | static RecordDecl * | |||
| 3457 | createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) { | |||
| 3458 | if (!Privates.empty()) { | |||
| 3459 | ASTContext &C = CGM.getContext(); | |||
| 3460 | // Build struct .kmp_privates_t. { | |||
| 3461 | // /* private vars */ | |||
| 3462 | // }; | |||
| 3463 | RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t"); | |||
| 3464 | RD->startDefinition(); | |||
| 3465 | for (const auto &Pair : Privates) { | |||
| 3466 | const VarDecl *VD = Pair.second.Original; | |||
| 3467 | QualType Type = VD->getType().getNonReferenceType(); | |||
| 3468 | // If the private variable is a local variable with lvalue ref type, | |||
| 3469 | // allocate the pointer instead of the pointee type. | |||
| 3470 | if (Pair.second.isLocalPrivate()) { | |||
| 3471 | if (VD->getType()->isLValueReferenceType()) | |||
| 3472 | Type = C.getPointerType(Type); | |||
| 3473 | if (isAllocatableDecl(VD)) | |||
| 3474 | Type = C.getPointerType(Type); | |||
| 3475 | } | |||
| 3476 | FieldDecl *FD = addFieldToRecordDecl(C, RD, Type); | |||
| 3477 | if (VD->hasAttrs()) { | |||
| 3478 | for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), | |||
| 3479 | E(VD->getAttrs().end()); | |||
| 3480 | I != E; ++I) | |||
| 3481 | FD->addAttr(*I); | |||
| 3482 | } | |||
| 3483 | } | |||
| 3484 | RD->completeDefinition(); | |||
| 3485 | return RD; | |||
| 3486 | } | |||
| 3487 | return nullptr; | |||
| 3488 | } | |||
| 3489 | ||||
| 3490 | static RecordDecl * | |||
| 3491 | createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind, | |||
| 3492 | QualType KmpInt32Ty, | |||
| 3493 | QualType KmpRoutineEntryPointerQTy) { | |||
| 3494 | ASTContext &C = CGM.getContext(); | |||
| 3495 | // Build struct kmp_task_t { | |||
| 3496 | // void * shareds; | |||
| 3497 | // kmp_routine_entry_t routine; | |||
| 3498 | // kmp_int32 part_id; | |||
| 3499 | // kmp_cmplrdata_t data1; | |||
| 3500 | // kmp_cmplrdata_t data2; | |||
| 3501 | // For taskloops additional fields: | |||
| 3502 | // kmp_uint64 lb; | |||
| 3503 | // kmp_uint64 ub; | |||
| 3504 | // kmp_int64 st; | |||
| 3505 | // kmp_int32 liter; | |||
| 3506 | // void * reductions; | |||
| 3507 | // }; | |||
| 3508 | RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union); | |||
| 3509 | UD->startDefinition(); | |||
| 3510 | addFieldToRecordDecl(C, UD, KmpInt32Ty); | |||
| 3511 | addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy); | |||
| 3512 | UD->completeDefinition(); | |||
| 3513 | QualType KmpCmplrdataTy = C.getRecordType(UD); | |||
| 3514 | RecordDecl *RD = C.buildImplicitRecord("kmp_task_t"); | |||
| 3515 | RD->startDefinition(); | |||
| 3516 | addFieldToRecordDecl(C, RD, C.VoidPtrTy); | |||
| 3517 | addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy); | |||
| 3518 | addFieldToRecordDecl(C, RD, KmpInt32Ty); | |||
| 3519 | addFieldToRecordDecl(C, RD, KmpCmplrdataTy); | |||
| 3520 | addFieldToRecordDecl(C, RD, KmpCmplrdataTy); | |||
| 3521 | if (isOpenMPTaskLoopDirective(Kind)) { | |||
| 3522 | QualType KmpUInt64Ty = | |||
| 3523 | CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0); | |||
| 3524 | QualType KmpInt64Ty = | |||
| 3525 | CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); | |||
| 3526 | addFieldToRecordDecl(C, RD, KmpUInt64Ty); | |||
| 3527 | addFieldToRecordDecl(C, RD, KmpUInt64Ty); | |||
| 3528 | addFieldToRecordDecl(C, RD, KmpInt64Ty); | |||
| 3529 | addFieldToRecordDecl(C, RD, KmpInt32Ty); | |||
| 3530 | addFieldToRecordDecl(C, RD, C.VoidPtrTy); | |||
| 3531 | } | |||
| 3532 | RD->completeDefinition(); | |||
| 3533 | return RD; | |||
| 3534 | } | |||
| 3535 | ||||
| 3536 | static RecordDecl * | |||
| 3537 | createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy, | |||
| 3538 | ArrayRef<PrivateDataTy> Privates) { | |||
| 3539 | ASTContext &C = CGM.getContext(); | |||
| 3540 | // Build struct kmp_task_t_with_privates { | |||
| 3541 | // kmp_task_t task_data; | |||
| 3542 | // .kmp_privates_t. privates; | |||
| 3543 | // }; | |||
| 3544 | RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates"); | |||
| 3545 | RD->startDefinition(); | |||
| 3546 | addFieldToRecordDecl(C, RD, KmpTaskTQTy); | |||
| 3547 | if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates)) | |||
| 3548 | addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD)); | |||
| 3549 | RD->completeDefinition(); | |||
| 3550 | return RD; | |||
| 3551 | } | |||
| 3552 | ||||
| 3553 | /// Emit a proxy function which accepts kmp_task_t as the second | |||
| 3554 | /// argument. | |||
| 3555 | /// \code | |||
| 3556 | /// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) { | |||
| 3557 | /// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt, | |||
| 3558 | /// For taskloops: | |||
| 3559 | /// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter, | |||
| 3560 | /// tt->reductions, tt->shareds); | |||
| 3561 | /// return 0; | |||
| 3562 | /// } | |||
| 3563 | /// \endcode | |||
| 3564 | static llvm::Function * | |||
| 3565 | emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc, | |||
| 3566 | OpenMPDirectiveKind Kind, QualType KmpInt32Ty, | |||
| 3567 | QualType KmpTaskTWithPrivatesPtrQTy, | |||
| 3568 | QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy, | |||
| 3569 | QualType SharedsPtrTy, llvm::Function *TaskFunction, | |||
| 3570 | llvm::Value *TaskPrivatesMap) { | |||
| 3571 | ASTContext &C = CGM.getContext(); | |||
| 3572 | FunctionArgList Args; | |||
| 3573 | ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty, | |||
| 3574 | ImplicitParamDecl::Other); | |||
| 3575 | ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, | |||
| 3576 | KmpTaskTWithPrivatesPtrQTy.withRestrict(), | |||
| 3577 | ImplicitParamDecl::Other); | |||
| 3578 | Args.push_back(&GtidArg); | |||
| 3579 | Args.push_back(&TaskTypeArg); | |||
| 3580 | const auto &TaskEntryFnInfo = | |||
| 3581 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args); | |||
| 3582 | llvm::FunctionType *TaskEntryTy = | |||
| 3583 | CGM.getTypes().GetFunctionType(TaskEntryFnInfo); | |||
| 3584 | std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""}); | |||
| 3585 | auto *TaskEntry = llvm::Function::Create( | |||
| 3586 | TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); | |||
| 3587 | CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo); | |||
| 3588 | TaskEntry->setDoesNotRecurse(); | |||
| 3589 | CodeGenFunction CGF(CGM); | |||
| 3590 | CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args, | |||
| 3591 | Loc, Loc); | |||
| 3592 | ||||
| 3593 | // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map, | |||
| 3594 | // tt, | |||
| 3595 | // For taskloops: | |||
| 3596 | // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter, | |||
| 3597 | // tt->task_data.shareds); | |||
| 3598 | llvm::Value *GtidParam = CGF.EmitLoadOfScalar( | |||
| 3599 | CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc); | |||
| 3600 | LValue TDBase = CGF.EmitLoadOfPointerLValue( | |||
| 3601 | CGF.GetAddrOfLocalVar(&TaskTypeArg), | |||
| 3602 | KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); | |||
| 3603 | const auto *KmpTaskTWithPrivatesQTyRD = | |||
| 3604 | cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl()); | |||
| 3605 | LValue Base = | |||
| 3606 | CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); | |||
| 3607 | const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl()); | |||
| 3608 | auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId); | |||
| 3609 | LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI); | |||
| 3610 | llvm::Value *PartidParam = PartIdLVal.getPointer(CGF); | |||
| 3611 | ||||
| 3612 | auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds); | |||
| 3613 | LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI); | |||
| 3614 | llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 3615 | CGF.EmitLoadOfScalar(SharedsLVal, Loc), | |||
| 3616 | CGF.ConvertTypeForMem(SharedsPtrTy)); | |||
| 3617 | ||||
| 3618 | auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1); | |||
| 3619 | llvm::Value *PrivatesParam; | |||
| 3620 | if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) { | |||
| 3621 | LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI); | |||
| 3622 | PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 3623 | PrivatesLVal.getPointer(CGF), CGF.VoidPtrTy); | |||
| 3624 | } else { | |||
| 3625 | PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); | |||
| 3626 | } | |||
| 3627 | ||||
| 3628 | llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam, | |||
| 3629 | TaskPrivatesMap, | |||
| 3630 | CGF.Builder | |||
| 3631 | .CreatePointerBitCastOrAddrSpaceCast( | |||
| 3632 | TDBase.getAddress(CGF), CGF.VoidPtrTy) | |||
| 3633 | .getPointer()}; | |||
| 3634 | SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs), | |||
| 3635 | std::end(CommonArgs)); | |||
| 3636 | if (isOpenMPTaskLoopDirective(Kind)) { | |||
| 3637 | auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound); | |||
| 3638 | LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI); | |||
| 3639 | llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc); | |||
| 3640 | auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound); | |||
| 3641 | LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI); | |||
| 3642 | llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc); | |||
| 3643 | auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride); | |||
| 3644 | LValue StLVal = CGF.EmitLValueForField(Base, *StFI); | |||
| 3645 | llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc); | |||
| 3646 | auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter); | |||
| 3647 | LValue LILVal = CGF.EmitLValueForField(Base, *LIFI); | |||
| 3648 | llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc); | |||
| 3649 | auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions); | |||
| 3650 | LValue RLVal = CGF.EmitLValueForField(Base, *RFI); | |||
| 3651 | llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc); | |||
| 3652 | CallArgs.push_back(LBParam); | |||
| 3653 | CallArgs.push_back(UBParam); | |||
| 3654 | CallArgs.push_back(StParam); | |||
| 3655 | CallArgs.push_back(LIParam); | |||
| 3656 | CallArgs.push_back(RParam); | |||
| 3657 | } | |||
| 3658 | CallArgs.push_back(SharedsParam); | |||
| 3659 | ||||
| 3660 | CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction, | |||
| 3661 | CallArgs); | |||
| 3662 | CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)), | |||
| 3663 | CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty)); | |||
| 3664 | CGF.FinishFunction(); | |||
| 3665 | return TaskEntry; | |||
| 3666 | } | |||
| 3667 | ||||
| 3668 | static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM, | |||
| 3669 | SourceLocation Loc, | |||
| 3670 | QualType KmpInt32Ty, | |||
| 3671 | QualType KmpTaskTWithPrivatesPtrQTy, | |||
| 3672 | QualType KmpTaskTWithPrivatesQTy) { | |||
| 3673 | ASTContext &C = CGM.getContext(); | |||
| 3674 | FunctionArgList Args; | |||
| 3675 | ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty, | |||
| 3676 | ImplicitParamDecl::Other); | |||
| 3677 | ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, | |||
| 3678 | KmpTaskTWithPrivatesPtrQTy.withRestrict(), | |||
| 3679 | ImplicitParamDecl::Other); | |||
| 3680 | Args.push_back(&GtidArg); | |||
| 3681 | Args.push_back(&TaskTypeArg); | |||
| 3682 | const auto &DestructorFnInfo = | |||
| 3683 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args); | |||
| 3684 | llvm::FunctionType *DestructorFnTy = | |||
| 3685 | CGM.getTypes().GetFunctionType(DestructorFnInfo); | |||
| 3686 | std::string Name = | |||
| 3687 | CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""}); | |||
| 3688 | auto *DestructorFn = | |||
| 3689 | llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage, | |||
| 3690 | Name, &CGM.getModule()); | |||
| 3691 | CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn, | |||
| 3692 | DestructorFnInfo); | |||
| 3693 | DestructorFn->setDoesNotRecurse(); | |||
| 3694 | CodeGenFunction CGF(CGM); | |||
| 3695 | CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo, | |||
| 3696 | Args, Loc, Loc); | |||
| 3697 | ||||
| 3698 | LValue Base = CGF.EmitLoadOfPointerLValue( | |||
| 3699 | CGF.GetAddrOfLocalVar(&TaskTypeArg), | |||
| 3700 | KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); | |||
| 3701 | const auto *KmpTaskTWithPrivatesQTyRD = | |||
| 3702 | cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl()); | |||
| 3703 | auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); | |||
| 3704 | Base = CGF.EmitLValueForField(Base, *FI); | |||
| 3705 | for (const auto *Field : | |||
| 3706 | cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) { | |||
| 3707 | if (QualType::DestructionKind DtorKind = | |||
| 3708 | Field->getType().isDestructedType()) { | |||
| 3709 | LValue FieldLValue = CGF.EmitLValueForField(Base, Field); | |||
| 3710 | CGF.pushDestroy(DtorKind, FieldLValue.getAddress(CGF), Field->getType()); | |||
| 3711 | } | |||
| 3712 | } | |||
| 3713 | CGF.FinishFunction(); | |||
| 3714 | return DestructorFn; | |||
| 3715 | } | |||
| 3716 | ||||
| 3717 | /// Emit a privates mapping function for correct handling of private and | |||
| 3718 | /// firstprivate variables. | |||
| 3719 | /// \code | |||
| 3720 | /// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1> | |||
| 3721 | /// **noalias priv1,..., <tyn> **noalias privn) { | |||
| 3722 | /// *priv1 = &.privates.priv1; | |||
| 3723 | /// ...; | |||
| 3724 | /// *privn = &.privates.privn; | |||
| 3725 | /// } | |||
| 3726 | /// \endcode | |||
| 3727 | static llvm::Value * | |||
| 3728 | emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc, | |||
| 3729 | const OMPTaskDataTy &Data, QualType PrivatesQTy, | |||
| 3730 | ArrayRef<PrivateDataTy> Privates) { | |||
| 3731 | ASTContext &C = CGM.getContext(); | |||
| 3732 | FunctionArgList Args; | |||
| 3733 | ImplicitParamDecl TaskPrivatesArg( | |||
| 3734 | C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, | |||
| 3735 | C.getPointerType(PrivatesQTy).withConst().withRestrict(), | |||
| 3736 | ImplicitParamDecl::Other); | |||
| 3737 | Args.push_back(&TaskPrivatesArg); | |||
| 3738 | llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, unsigned> PrivateVarsPos; | |||
| 3739 | unsigned Counter = 1; | |||
| 3740 | for (const Expr *E : Data.PrivateVars) { | |||
| 3741 | Args.push_back(ImplicitParamDecl::Create( | |||
| 3742 | C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, | |||
| 3743 | C.getPointerType(C.getPointerType(E->getType())) | |||
| 3744 | .withConst() | |||
| 3745 | .withRestrict(), | |||
| 3746 | ImplicitParamDecl::Other)); | |||
| 3747 | const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); | |||
| 3748 | PrivateVarsPos[VD] = Counter; | |||
| 3749 | ++Counter; | |||
| 3750 | } | |||
| 3751 | for (const Expr *E : Data.FirstprivateVars) { | |||
| 3752 | Args.push_back(ImplicitParamDecl::Create( | |||
| 3753 | C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, | |||
| 3754 | C.getPointerType(C.getPointerType(E->getType())) | |||
| 3755 | .withConst() | |||
| 3756 | .withRestrict(), | |||
| 3757 | ImplicitParamDecl::Other)); | |||
| 3758 | const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); | |||
| 3759 | PrivateVarsPos[VD] = Counter; | |||
| 3760 | ++Counter; | |||
| 3761 | } | |||
| 3762 | for (const Expr *E : Data.LastprivateVars) { | |||
| 3763 | Args.push_back(ImplicitParamDecl::Create( | |||
| 3764 | C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, | |||
| 3765 | C.getPointerType(C.getPointerType(E->getType())) | |||
| 3766 | .withConst() | |||
| 3767 | .withRestrict(), | |||
| 3768 | ImplicitParamDecl::Other)); | |||
| 3769 | const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); | |||
| 3770 | PrivateVarsPos[VD] = Counter; | |||
| 3771 | ++Counter; | |||
| 3772 | } | |||
| 3773 | for (const VarDecl *VD : Data.PrivateLocals) { | |||
| 3774 | QualType Ty = VD->getType().getNonReferenceType(); | |||
| 3775 | if (VD->getType()->isLValueReferenceType()) | |||
| 3776 | Ty = C.getPointerType(Ty); | |||
| 3777 | if (isAllocatableDecl(VD)) | |||
| 3778 | Ty = C.getPointerType(Ty); | |||
| 3779 | Args.push_back(ImplicitParamDecl::Create( | |||
| 3780 | C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, | |||
| 3781 | C.getPointerType(C.getPointerType(Ty)).withConst().withRestrict(), | |||
| 3782 | ImplicitParamDecl::Other)); | |||
| 3783 | PrivateVarsPos[VD] = Counter; | |||
| 3784 | ++Counter; | |||
| 3785 | } | |||
| 3786 | const auto &TaskPrivatesMapFnInfo = | |||
| 3787 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); | |||
| 3788 | llvm::FunctionType *TaskPrivatesMapTy = | |||
| 3789 | CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo); | |||
| 3790 | std::string Name = | |||
| 3791 | CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""}); | |||
| 3792 | auto *TaskPrivatesMap = llvm::Function::Create( | |||
| 3793 | TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name, | |||
| 3794 | &CGM.getModule()); | |||
| 3795 | CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap, | |||
| 3796 | TaskPrivatesMapFnInfo); | |||
| 3797 | if (CGM.getLangOpts().Optimize) { | |||
| 3798 | TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline); | |||
| 3799 | TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone); | |||
| 3800 | TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline); | |||
| 3801 | } | |||
| 3802 | CodeGenFunction CGF(CGM); | |||
| 3803 | CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap, | |||
| 3804 | TaskPrivatesMapFnInfo, Args, Loc, Loc); | |||
| 3805 | ||||
| 3806 | // *privi = &.privates.privi; | |||
| 3807 | LValue Base = CGF.EmitLoadOfPointerLValue( | |||
| 3808 | CGF.GetAddrOfLocalVar(&TaskPrivatesArg), | |||
| 3809 | TaskPrivatesArg.getType()->castAs<PointerType>()); | |||
| 3810 | const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl()); | |||
| 3811 | Counter = 0; | |||
| 3812 | for (const FieldDecl *Field : PrivatesQTyRD->fields()) { | |||
| 3813 | LValue FieldLVal = CGF.EmitLValueForField(Base, Field); | |||
| 3814 | const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]]; | |||
| 3815 | LValue RefLVal = | |||
| 3816 | CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); | |||
| 3817 | LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue( | |||
| 3818 | RefLVal.getAddress(CGF), RefLVal.getType()->castAs<PointerType>()); | |||
| 3819 | CGF.EmitStoreOfScalar(FieldLVal.getPointer(CGF), RefLoadLVal); | |||
| 3820 | ++Counter; | |||
| 3821 | } | |||
| 3822 | CGF.FinishFunction(); | |||
| 3823 | return TaskPrivatesMap; | |||
| 3824 | } | |||
| 3825 | ||||
| 3826 | /// Emit initialization for private variables in task-based directives. | |||
| 3827 | static void emitPrivatesInit(CodeGenFunction &CGF, | |||
| 3828 | const OMPExecutableDirective &D, | |||
| 3829 | Address KmpTaskSharedsPtr, LValue TDBase, | |||
| 3830 | const RecordDecl *KmpTaskTWithPrivatesQTyRD, | |||
| 3831 | QualType SharedsTy, QualType SharedsPtrTy, | |||
| 3832 | const OMPTaskDataTy &Data, | |||
| 3833 | ArrayRef<PrivateDataTy> Privates, bool ForDup) { | |||
| 3834 | ASTContext &C = CGF.getContext(); | |||
| 3835 | auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); | |||
| 3836 | LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI); | |||
| 3837 | OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind()) | |||
| 3838 | ? OMPD_taskloop | |||
| 3839 | : OMPD_task; | |||
| 3840 | const CapturedStmt &CS = *D.getCapturedStmt(Kind); | |||
| 3841 | CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS); | |||
| 3842 | LValue SrcBase; | |||
| 3843 | bool IsTargetTask = | |||
| 3844 | isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) || | |||
| 3845 | isOpenMPTargetExecutionDirective(D.getDirectiveKind()); | |||
| 3846 | // For target-based directives skip 4 firstprivate arrays BasePointersArray, | |||
| 3847 | // PointersArray, SizesArray, and MappersArray. The original variables for | |||
| 3848 | // these arrays are not captured and we get their addresses explicitly. | |||
| 3849 | if ((!IsTargetTask && !Data.FirstprivateVars.empty() && ForDup) || | |||
| 3850 | (IsTargetTask && KmpTaskSharedsPtr.isValid())) { | |||
| 3851 | SrcBase = CGF.MakeAddrLValue( | |||
| 3852 | CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 3853 | KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)), | |||
| 3854 | SharedsTy); | |||
| 3855 | } | |||
| 3856 | FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin(); | |||
| 3857 | for (const PrivateDataTy &Pair : Privates) { | |||
| 3858 | // Do not initialize private locals. | |||
| 3859 | if (Pair.second.isLocalPrivate()) { | |||
| 3860 | ++FI; | |||
| 3861 | continue; | |||
| 3862 | } | |||
| 3863 | const VarDecl *VD = Pair.second.PrivateCopy; | |||
| 3864 | const Expr *Init = VD->getAnyInitializer(); | |||
| 3865 | if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) && | |||
| 3866 | !CGF.isTrivialInitializer(Init)))) { | |||
| 3867 | LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI); | |||
| 3868 | if (const VarDecl *Elem = Pair.second.PrivateElemInit) { | |||
| 3869 | const VarDecl *OriginalVD = Pair.second.Original; | |||
| 3870 | // Check if the variable is the target-based BasePointersArray, | |||
| 3871 | // PointersArray, SizesArray, or MappersArray. | |||
| 3872 | LValue SharedRefLValue; | |||
| 3873 | QualType Type = PrivateLValue.getType(); | |||
| 3874 | const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD); | |||
| 3875 | if (IsTargetTask && !SharedField) { | |||
| 3876 | assert(isa<ImplicitParamDecl>(OriginalVD) &&((void)0) | |||
| 3877 | isa<CapturedDecl>(OriginalVD->getDeclContext()) &&((void)0) | |||
| 3878 | cast<CapturedDecl>(OriginalVD->getDeclContext())((void)0) | |||
| 3879 | ->getNumParams() == 0 &&((void)0) | |||
| 3880 | isa<TranslationUnitDecl>(((void)0) | |||
| 3881 | cast<CapturedDecl>(OriginalVD->getDeclContext())((void)0) | |||
| 3882 | ->getDeclContext()) &&((void)0) | |||
| 3883 | "Expected artificial target data variable.")((void)0); | |||
| 3884 | SharedRefLValue = | |||
| 3885 | CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type); | |||
| 3886 | } else if (ForDup) { | |||
| 3887 | SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField); | |||
| 3888 | SharedRefLValue = CGF.MakeAddrLValue( | |||
| 3889 | Address(SharedRefLValue.getPointer(CGF), | |||
| 3890 | C.getDeclAlign(OriginalVD)), | |||
| 3891 | SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl), | |||
| 3892 | SharedRefLValue.getTBAAInfo()); | |||
| 3893 | } else if (CGF.LambdaCaptureFields.count( | |||
| 3894 | Pair.second.Original->getCanonicalDecl()) > 0 || | |||
| 3895 | dyn_cast_or_null<BlockDecl>(CGF.CurCodeDecl)) { | |||
| 3896 | SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef); | |||
| 3897 | } else { | |||
| 3898 | // Processing for implicitly captured variables. | |||
| 3899 | InlinedOpenMPRegionRAII Region( | |||
| 3900 | CGF, [](CodeGenFunction &, PrePostActionTy &) {}, OMPD_unknown, | |||
| 3901 | /*HasCancel=*/false, /*NoInheritance=*/true); | |||
| 3902 | SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef); | |||
| 3903 | } | |||
| 3904 | if (Type->isArrayType()) { | |||
| 3905 | // Initialize firstprivate array. | |||
| 3906 | if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) { | |||
| 3907 | // Perform simple memcpy. | |||
| 3908 | CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type); | |||
| 3909 | } else { | |||
| 3910 | // Initialize firstprivate array using element-by-element | |||
| 3911 | // initialization. | |||
| 3912 | CGF.EmitOMPAggregateAssign( | |||
| 3913 | PrivateLValue.getAddress(CGF), SharedRefLValue.getAddress(CGF), | |||
| 3914 | Type, | |||
| 3915 | [&CGF, Elem, Init, &CapturesInfo](Address DestElement, | |||
| 3916 | Address SrcElement) { | |||
| 3917 | // Clean up any temporaries needed by the initialization. | |||
| 3918 | CodeGenFunction::OMPPrivateScope InitScope(CGF); | |||
| 3919 | InitScope.addPrivate( | |||
| 3920 | Elem, [SrcElement]() -> Address { return SrcElement; }); | |||
| 3921 | (void)InitScope.Privatize(); | |||
| 3922 | // Emit initialization for single element. | |||
| 3923 | CodeGenFunction::CGCapturedStmtRAII CapInfoRAII( | |||
| 3924 | CGF, &CapturesInfo); | |||
| 3925 | CGF.EmitAnyExprToMem(Init, DestElement, | |||
| 3926 | Init->getType().getQualifiers(), | |||
| 3927 | /*IsInitializer=*/false); | |||
| 3928 | }); | |||
| 3929 | } | |||
| 3930 | } else { | |||
| 3931 | CodeGenFunction::OMPPrivateScope InitScope(CGF); | |||
| 3932 | InitScope.addPrivate(Elem, [SharedRefLValue, &CGF]() -> Address { | |||
| 3933 | return SharedRefLValue.getAddress(CGF); | |||
| 3934 | }); | |||
| 3935 | (void)InitScope.Privatize(); | |||
| 3936 | CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo); | |||
| 3937 | CGF.EmitExprAsInit(Init, VD, PrivateLValue, | |||
| 3938 | /*capturedByInit=*/false); | |||
| 3939 | } | |||
| 3940 | } else { | |||
| 3941 | CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false); | |||
| 3942 | } | |||
| 3943 | } | |||
| 3944 | ++FI; | |||
| 3945 | } | |||
| 3946 | } | |||
| 3947 | ||||
| 3948 | /// Check if duplication function is required for taskloops. | |||
| 3949 | static bool checkInitIsRequired(CodeGenFunction &CGF, | |||
| 3950 | ArrayRef<PrivateDataTy> Privates) { | |||
| 3951 | bool InitRequired = false; | |||
| 3952 | for (const PrivateDataTy &Pair : Privates) { | |||
| 3953 | if (Pair.second.isLocalPrivate()) | |||
| 3954 | continue; | |||
| 3955 | const VarDecl *VD = Pair.second.PrivateCopy; | |||
| 3956 | const Expr *Init = VD->getAnyInitializer(); | |||
| 3957 | InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) && | |||
| 3958 | !CGF.isTrivialInitializer(Init)); | |||
| 3959 | if (InitRequired) | |||
| 3960 | break; | |||
| 3961 | } | |||
| 3962 | return InitRequired; | |||
| 3963 | } | |||
| 3964 | ||||
| 3965 | ||||
| 3966 | /// Emit task_dup function (for initialization of | |||
| 3967 | /// private/firstprivate/lastprivate vars and last_iter flag) | |||
| 3968 | /// \code | |||
| 3969 | /// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int | |||
| 3970 | /// lastpriv) { | |||
| 3971 | /// // setup lastprivate flag | |||
| 3972 | /// task_dst->last = lastpriv; | |||
| 3973 | /// // could be constructor calls here... | |||
| 3974 | /// } | |||
| 3975 | /// \endcode | |||
| 3976 | static llvm::Value * | |||
| 3977 | emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc, | |||
| 3978 | const OMPExecutableDirective &D, | |||
| 3979 | QualType KmpTaskTWithPrivatesPtrQTy, | |||
| 3980 | const RecordDecl *KmpTaskTWithPrivatesQTyRD, | |||
| 3981 | const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy, | |||
| 3982 | QualType SharedsPtrTy, const OMPTaskDataTy &Data, | |||
| 3983 | ArrayRef<PrivateDataTy> Privates, bool WithLastIter) { | |||
| 3984 | ASTContext &C = CGM.getContext(); | |||
| 3985 | FunctionArgList Args; | |||
| 3986 | ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, | |||
| 3987 | KmpTaskTWithPrivatesPtrQTy, | |||
| 3988 | ImplicitParamDecl::Other); | |||
| 3989 | ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, | |||
| 3990 | KmpTaskTWithPrivatesPtrQTy, | |||
| 3991 | ImplicitParamDecl::Other); | |||
| 3992 | ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, | |||
| 3993 | ImplicitParamDecl::Other); | |||
| 3994 | Args.push_back(&DstArg); | |||
| 3995 | Args.push_back(&SrcArg); | |||
| 3996 | Args.push_back(&LastprivArg); | |||
| 3997 | const auto &TaskDupFnInfo = | |||
| 3998 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); | |||
| 3999 | llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo); | |||
| 4000 | std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""}); | |||
| 4001 | auto *TaskDup = llvm::Function::Create( | |||
| 4002 | TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); | |||
| 4003 | CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo); | |||
| 4004 | TaskDup->setDoesNotRecurse(); | |||
| 4005 | CodeGenFunction CGF(CGM); | |||
| 4006 | CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc, | |||
| 4007 | Loc); | |||
| 4008 | ||||
| 4009 | LValue TDBase = CGF.EmitLoadOfPointerLValue( | |||
| 4010 | CGF.GetAddrOfLocalVar(&DstArg), | |||
| 4011 | KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); | |||
| 4012 | // task_dst->liter = lastpriv; | |||
| 4013 | if (WithLastIter) { | |||
| 4014 | auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter); | |||
| 4015 | LValue Base = CGF.EmitLValueForField( | |||
| 4016 | TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); | |||
| 4017 | LValue LILVal = CGF.EmitLValueForField(Base, *LIFI); | |||
| 4018 | llvm::Value *Lastpriv = CGF.EmitLoadOfScalar( | |||
| 4019 | CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc); | |||
| 4020 | CGF.EmitStoreOfScalar(Lastpriv, LILVal); | |||
| 4021 | } | |||
| 4022 | ||||
| 4023 | // Emit initial values for private copies (if any). | |||
| 4024 | assert(!Privates.empty())((void)0); | |||
| 4025 | Address KmpTaskSharedsPtr = Address::invalid(); | |||
| 4026 | if (!Data.FirstprivateVars.empty()) { | |||
| 4027 | LValue TDBase = CGF.EmitLoadOfPointerLValue( | |||
| 4028 | CGF.GetAddrOfLocalVar(&SrcArg), | |||
| 4029 | KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); | |||
| 4030 | LValue Base = CGF.EmitLValueForField( | |||
| 4031 | TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); | |||
| 4032 | KmpTaskSharedsPtr = Address( | |||
| 4033 | CGF.EmitLoadOfScalar(CGF.EmitLValueForField( | |||
| 4034 | Base, *std::next(KmpTaskTQTyRD->field_begin(), | |||
| 4035 | KmpTaskTShareds)), | |||
| 4036 | Loc), | |||
| 4037 | CGM.getNaturalTypeAlignment(SharedsTy)); | |||
| 4038 | } | |||
| 4039 | emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD, | |||
| 4040 | SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true); | |||
| 4041 | CGF.FinishFunction(); | |||
| 4042 | return TaskDup; | |||
| 4043 | } | |||
| 4044 | ||||
| 4045 | /// Checks if destructor function is required to be generated. | |||
| 4046 | /// \return true if cleanups are required, false otherwise. | |||
| 4047 | static bool | |||
| 4048 | checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD, | |||
| 4049 | ArrayRef<PrivateDataTy> Privates) { | |||
| 4050 | for (const PrivateDataTy &P : Privates) { | |||
| 4051 | if (P.second.isLocalPrivate()) | |||
| 4052 | continue; | |||
| 4053 | QualType Ty = P.second.Original->getType().getNonReferenceType(); | |||
| 4054 | if (Ty.isDestructedType()) | |||
| 4055 | return true; | |||
| 4056 | } | |||
| 4057 | return false; | |||
| 4058 | } | |||
| 4059 | ||||
| 4060 | namespace { | |||
| 4061 | /// Loop generator for OpenMP iterator expression. | |||
| 4062 | class OMPIteratorGeneratorScope final | |||
| 4063 | : public CodeGenFunction::OMPPrivateScope { | |||
| 4064 | CodeGenFunction &CGF; | |||
| 4065 | const OMPIteratorExpr *E = nullptr; | |||
| 4066 | SmallVector<CodeGenFunction::JumpDest, 4> ContDests; | |||
| 4067 | SmallVector<CodeGenFunction::JumpDest, 4> ExitDests; | |||
| 4068 | OMPIteratorGeneratorScope() = delete; | |||
| 4069 | OMPIteratorGeneratorScope(OMPIteratorGeneratorScope &) = delete; | |||
| 4070 | ||||
| 4071 | public: | |||
| 4072 | OMPIteratorGeneratorScope(CodeGenFunction &CGF, const OMPIteratorExpr *E) | |||
| 4073 | : CodeGenFunction::OMPPrivateScope(CGF), CGF(CGF), E(E) { | |||
| 4074 | if (!E) | |||
| 4075 | return; | |||
| 4076 | SmallVector<llvm::Value *, 4> Uppers; | |||
| 4077 | for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) { | |||
| 4078 | Uppers.push_back(CGF.EmitScalarExpr(E->getHelper(I).Upper)); | |||
| 4079 | const auto *VD = cast<VarDecl>(E->getIteratorDecl(I)); | |||
| 4080 | addPrivate(VD, [&CGF, VD]() { | |||
| 4081 | return CGF.CreateMemTemp(VD->getType(), VD->getName()); | |||
| 4082 | }); | |||
| 4083 | const OMPIteratorHelperData &HelperData = E->getHelper(I); | |||
| 4084 | addPrivate(HelperData.CounterVD, [&CGF, &HelperData]() { | |||
| 4085 | return CGF.CreateMemTemp(HelperData.CounterVD->getType(), | |||
| 4086 | "counter.addr"); | |||
| 4087 | }); | |||
| 4088 | } | |||
| 4089 | Privatize(); | |||
| 4090 | ||||
| 4091 | for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) { | |||
| 4092 | const OMPIteratorHelperData &HelperData = E->getHelper(I); | |||
| 4093 | LValue CLVal = | |||
| 4094 | CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(HelperData.CounterVD), | |||
| 4095 | HelperData.CounterVD->getType()); | |||
| 4096 | // Counter = 0; | |||
| 4097 | CGF.EmitStoreOfScalar( | |||
| 4098 | llvm::ConstantInt::get(CLVal.getAddress(CGF).getElementType(), 0), | |||
| 4099 | CLVal); | |||
| 4100 | CodeGenFunction::JumpDest &ContDest = | |||
| 4101 | ContDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.cont")); | |||
| 4102 | CodeGenFunction::JumpDest &ExitDest = | |||
| 4103 | ExitDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.exit")); | |||
| 4104 | // N = <number-of_iterations>; | |||
| 4105 | llvm::Value *N = Uppers[I]; | |||
| 4106 | // cont: | |||
| 4107 | // if (Counter < N) goto body; else goto exit; | |||
| 4108 | CGF.EmitBlock(ContDest.getBlock()); | |||
| 4109 | auto *CVal = | |||
| 4110 | CGF.EmitLoadOfScalar(CLVal, HelperData.CounterVD->getLocation()); | |||
| 4111 | llvm::Value *Cmp = | |||
| 4112 | HelperData.CounterVD->getType()->isSignedIntegerOrEnumerationType() | |||
| 4113 | ? CGF.Builder.CreateICmpSLT(CVal, N) | |||
| 4114 | : CGF.Builder.CreateICmpULT(CVal, N); | |||
| 4115 | llvm::BasicBlock *BodyBB = CGF.createBasicBlock("iter.body"); | |||
| 4116 | CGF.Builder.CreateCondBr(Cmp, BodyBB, ExitDest.getBlock()); | |||
| 4117 | // body: | |||
| 4118 | CGF.EmitBlock(BodyBB); | |||
| 4119 | // Iteri = Begini + Counter * Stepi; | |||
| 4120 | CGF.EmitIgnoredExpr(HelperData.Update); | |||
| 4121 | } | |||
| 4122 | } | |||
| 4123 | ~OMPIteratorGeneratorScope() { | |||
| 4124 | if (!E) | |||
| 4125 | return; | |||
| 4126 | for (unsigned I = E->numOfIterators(); I > 0; --I) { | |||
| 4127 | // Counter = Counter + 1; | |||
| 4128 | const OMPIteratorHelperData &HelperData = E->getHelper(I - 1); | |||
| 4129 | CGF.EmitIgnoredExpr(HelperData.CounterUpdate); | |||
| 4130 | // goto cont; | |||
| 4131 | CGF.EmitBranchThroughCleanup(ContDests[I - 1]); | |||
| 4132 | // exit: | |||
| 4133 | CGF.EmitBlock(ExitDests[I - 1].getBlock(), /*IsFinished=*/I == 1); | |||
| 4134 | } | |||
| 4135 | } | |||
| 4136 | }; | |||
| 4137 | } // namespace | |||
| 4138 | ||||
| 4139 | static std::pair<llvm::Value *, llvm::Value *> | |||
| 4140 | getPointerAndSize(CodeGenFunction &CGF, const Expr *E) { | |||
| 4141 | const auto *OASE = dyn_cast<OMPArrayShapingExpr>(E); | |||
| 4142 | llvm::Value *Addr; | |||
| 4143 | if (OASE) { | |||
| 4144 | const Expr *Base = OASE->getBase(); | |||
| 4145 | Addr = CGF.EmitScalarExpr(Base); | |||
| 4146 | } else { | |||
| 4147 | Addr = CGF.EmitLValue(E).getPointer(CGF); | |||
| 4148 | } | |||
| 4149 | llvm::Value *SizeVal; | |||
| 4150 | QualType Ty = E->getType(); | |||
| 4151 | if (OASE) { | |||
| 4152 | SizeVal = CGF.getTypeSize(OASE->getBase()->getType()->getPointeeType()); | |||
| 4153 | for (const Expr *SE : OASE->getDimensions()) { | |||
| 4154 | llvm::Value *Sz = CGF.EmitScalarExpr(SE); | |||
| 4155 | Sz = CGF.EmitScalarConversion( | |||
| 4156 | Sz, SE->getType(), CGF.getContext().getSizeType(), SE->getExprLoc()); | |||
| 4157 | SizeVal = CGF.Builder.CreateNUWMul(SizeVal, Sz); | |||
| 4158 | } | |||
| 4159 | } else if (const auto *ASE = | |||
| 4160 | dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) { | |||
| 4161 | LValue UpAddrLVal = | |||
| 4162 | CGF.EmitOMPArraySectionExpr(ASE, /*IsLowerBound=*/false); | |||
| 4163 | Address UpAddrAddress = UpAddrLVal.getAddress(CGF); | |||
| 4164 | llvm::Value *UpAddr = CGF.Builder.CreateConstGEP1_32( | |||
| 4165 | UpAddrAddress.getElementType(), UpAddrAddress.getPointer(), /*Idx0=*/1); | |||
| 4166 | llvm::Value *LowIntPtr = CGF.Builder.CreatePtrToInt(Addr, CGF.SizeTy); | |||
| 4167 | llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGF.SizeTy); | |||
| 4168 | SizeVal = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr); | |||
| 4169 | } else { | |||
| 4170 | SizeVal = CGF.getTypeSize(Ty); | |||
| 4171 | } | |||
| 4172 | return std::make_pair(Addr, SizeVal); | |||
| 4173 | } | |||
| 4174 | ||||
| 4175 | /// Builds kmp_depend_info, if it is not built yet, and builds flags type. | |||
| 4176 | static void getKmpAffinityType(ASTContext &C, QualType &KmpTaskAffinityInfoTy) { | |||
| 4177 | QualType FlagsTy = C.getIntTypeForBitwidth(32, /*Signed=*/false); | |||
| 4178 | if (KmpTaskAffinityInfoTy.isNull()) { | |||
| 4179 | RecordDecl *KmpAffinityInfoRD = | |||
| 4180 | C.buildImplicitRecord("kmp_task_affinity_info_t"); | |||
| 4181 | KmpAffinityInfoRD->startDefinition(); | |||
| 4182 | addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getIntPtrType()); | |||
| 4183 | addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getSizeType()); | |||
| 4184 | addFieldToRecordDecl(C, KmpAffinityInfoRD, FlagsTy); | |||
| 4185 | KmpAffinityInfoRD->completeDefinition(); | |||
| 4186 | KmpTaskAffinityInfoTy = C.getRecordType(KmpAffinityInfoRD); | |||
| 4187 | } | |||
| 4188 | } | |||
| 4189 | ||||
| 4190 | CGOpenMPRuntime::TaskResultTy | |||
| 4191 | CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc, | |||
| 4192 | const OMPExecutableDirective &D, | |||
| 4193 | llvm::Function *TaskFunction, QualType SharedsTy, | |||
| 4194 | Address Shareds, const OMPTaskDataTy &Data) { | |||
| 4195 | ASTContext &C = CGM.getContext(); | |||
| 4196 | llvm::SmallVector<PrivateDataTy, 4> Privates; | |||
| 4197 | // Aggregate privates and sort them by the alignment. | |||
| 4198 | const auto *I = Data.PrivateCopies.begin(); | |||
| 4199 | for (const Expr *E : Data.PrivateVars) { | |||
| 4200 | const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); | |||
| 4201 | Privates.emplace_back( | |||
| 4202 | C.getDeclAlign(VD), | |||
| 4203 | PrivateHelpersTy(E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()), | |||
| 4204 | /*PrivateElemInit=*/nullptr)); | |||
| 4205 | ++I; | |||
| 4206 | } | |||
| 4207 | I = Data.FirstprivateCopies.begin(); | |||
| 4208 | const auto *IElemInitRef = Data.FirstprivateInits.begin(); | |||
| 4209 | for (const Expr *E : Data.FirstprivateVars) { | |||
| 4210 | const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); | |||
| 4211 | Privates.emplace_back( | |||
| 4212 | C.getDeclAlign(VD), | |||
| 4213 | PrivateHelpersTy( | |||
| 4214 | E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()), | |||
| 4215 | cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl()))); | |||
| 4216 | ++I; | |||
| 4217 | ++IElemInitRef; | |||
| 4218 | } | |||
| 4219 | I = Data.LastprivateCopies.begin(); | |||
| 4220 | for (const Expr *E : Data.LastprivateVars) { | |||
| 4221 | const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); | |||
| 4222 | Privates.emplace_back( | |||
| 4223 | C.getDeclAlign(VD), | |||
| 4224 | PrivateHelpersTy(E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()), | |||
| 4225 | /*PrivateElemInit=*/nullptr)); | |||
| 4226 | ++I; | |||
| 4227 | } | |||
| 4228 | for (const VarDecl *VD : Data.PrivateLocals) { | |||
| 4229 | if (isAllocatableDecl(VD)) | |||
| 4230 | Privates.emplace_back(CGM.getPointerAlign(), PrivateHelpersTy(VD)); | |||
| 4231 | else | |||
| 4232 | Privates.emplace_back(C.getDeclAlign(VD), PrivateHelpersTy(VD)); | |||
| 4233 | } | |||
| 4234 | llvm::stable_sort(Privates, | |||
| 4235 | [](const PrivateDataTy &L, const PrivateDataTy &R) { | |||
| 4236 | return L.first > R.first; | |||
| 4237 | }); | |||
| 4238 | QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); | |||
| 4239 | // Build type kmp_routine_entry_t (if not built yet). | |||
| 4240 | emitKmpRoutineEntryT(KmpInt32Ty); | |||
| 4241 | // Build type kmp_task_t (if not built yet). | |||
| 4242 | if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) { | |||
| 4243 | if (SavedKmpTaskloopTQTy.isNull()) { | |||
| 4244 | SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl( | |||
| 4245 | CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy)); | |||
| 4246 | } | |||
| 4247 | KmpTaskTQTy = SavedKmpTaskloopTQTy; | |||
| 4248 | } else { | |||
| 4249 | assert((D.getDirectiveKind() == OMPD_task ||((void)0) | |||
| 4250 | isOpenMPTargetExecutionDirective(D.getDirectiveKind()) ||((void)0) | |||
| 4251 | isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) &&((void)0) | |||
| 4252 | "Expected taskloop, task or target directive")((void)0); | |||
| 4253 | if (SavedKmpTaskTQTy.isNull()) { | |||
| 4254 | SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl( | |||
| 4255 | CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy)); | |||
| 4256 | } | |||
| 4257 | KmpTaskTQTy = SavedKmpTaskTQTy; | |||
| 4258 | } | |||
| 4259 | const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl()); | |||
| 4260 | // Build particular struct kmp_task_t for the given task. | |||
| 4261 | const RecordDecl *KmpTaskTWithPrivatesQTyRD = | |||
| 4262 | createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates); | |||
| 4263 | QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD); | |||
| 4264 | QualType KmpTaskTWithPrivatesPtrQTy = | |||
| 4265 | C.getPointerType(KmpTaskTWithPrivatesQTy); | |||
| 4266 | llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy); | |||
| 4267 | llvm::Type *KmpTaskTWithPrivatesPtrTy = | |||
| 4268 | KmpTaskTWithPrivatesTy->getPointerTo(); | |||
| 4269 | llvm::Value *KmpTaskTWithPrivatesTySize = | |||
| 4270 | CGF.getTypeSize(KmpTaskTWithPrivatesQTy); | |||
| 4271 | QualType SharedsPtrTy = C.getPointerType(SharedsTy); | |||
| 4272 | ||||
| 4273 | // Emit initial values for private copies (if any). | |||
| 4274 | llvm::Value *TaskPrivatesMap = nullptr; | |||
| 4275 | llvm::Type *TaskPrivatesMapTy = | |||
| 4276 | std::next(TaskFunction->arg_begin(), 3)->getType(); | |||
| 4277 | if (!Privates.empty()) { | |||
| 4278 | auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); | |||
| 4279 | TaskPrivatesMap = | |||
| 4280 | emitTaskPrivateMappingFunction(CGM, Loc, Data, FI->getType(), Privates); | |||
| 4281 | TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 4282 | TaskPrivatesMap, TaskPrivatesMapTy); | |||
| 4283 | } else { | |||
| 4284 | TaskPrivatesMap = llvm::ConstantPointerNull::get( | |||
| 4285 | cast<llvm::PointerType>(TaskPrivatesMapTy)); | |||
| 4286 | } | |||
| 4287 | // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid, | |||
| 4288 | // kmp_task_t *tt); | |||
| 4289 | llvm::Function *TaskEntry = emitProxyTaskFunction( | |||
| 4290 | CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy, | |||
| 4291 | KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction, | |||
| 4292 | TaskPrivatesMap); | |||
| 4293 | ||||
| 4294 | // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, | |||
| 4295 | // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, | |||
| 4296 | // kmp_routine_entry_t *task_entry); | |||
| 4297 | // Task flags. Format is taken from | |||
| 4298 | // https://github.com/llvm/llvm-project/blob/main/openmp/runtime/src/kmp.h, | |||
| 4299 | // description of kmp_tasking_flags struct. | |||
| 4300 | enum { | |||
| 4301 | TiedFlag = 0x1, | |||
| 4302 | FinalFlag = 0x2, | |||
| 4303 | DestructorsFlag = 0x8, | |||
| 4304 | PriorityFlag = 0x20, | |||
| 4305 | DetachableFlag = 0x40, | |||
| 4306 | }; | |||
| 4307 | unsigned Flags = Data.Tied ? TiedFlag : 0; | |||
| 4308 | bool NeedsCleanup = false; | |||
| 4309 | if (!Privates.empty()) { | |||
| 4310 | NeedsCleanup = | |||
| 4311 | checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD, Privates); | |||
| 4312 | if (NeedsCleanup) | |||
| 4313 | Flags = Flags | DestructorsFlag; | |||
| 4314 | } | |||
| 4315 | if (Data.Priority.getInt()) | |||
| 4316 | Flags = Flags | PriorityFlag; | |||
| 4317 | if (D.hasClausesOfKind<OMPDetachClause>()) | |||
| 4318 | Flags = Flags | DetachableFlag; | |||
| 4319 | llvm::Value *TaskFlags = | |||
| 4320 | Data.Final.getPointer() | |||
| 4321 | ? CGF.Builder.CreateSelect(Data.Final.getPointer(), | |||
| 4322 | CGF.Builder.getInt32(FinalFlag), | |||
| 4323 | CGF.Builder.getInt32(/*C=*/0)) | |||
| 4324 | : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0); | |||
| 4325 | TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags)); | |||
| 4326 | llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy)); | |||
| 4327 | SmallVector<llvm::Value *, 8> AllocArgs = {emitUpdateLocation(CGF, Loc), | |||
| 4328 | getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize, | |||
| 4329 | SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 4330 | TaskEntry, KmpRoutineEntryPtrTy)}; | |||
| 4331 | llvm::Value *NewTask; | |||
| 4332 | if (D.hasClausesOfKind<OMPNowaitClause>()) { | |||
| 4333 | // Check if we have any device clause associated with the directive. | |||
| 4334 | const Expr *Device = nullptr; | |||
| 4335 | if (auto *C = D.getSingleClause<OMPDeviceClause>()) | |||
| 4336 | Device = C->getDevice(); | |||
| 4337 | // Emit device ID if any otherwise use default value. | |||
| 4338 | llvm::Value *DeviceID; | |||
| 4339 | if (Device) | |||
| 4340 | DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), | |||
| 4341 | CGF.Int64Ty, /*isSigned=*/true); | |||
| 4342 | else | |||
| 4343 | DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); | |||
| 4344 | AllocArgs.push_back(DeviceID); | |||
| 4345 | NewTask = CGF.EmitRuntimeCall( | |||
| 4346 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 4347 | CGM.getModule(), OMPRTL___kmpc_omp_target_task_alloc), | |||
| 4348 | AllocArgs); | |||
| 4349 | } else { | |||
| 4350 | NewTask = | |||
| 4351 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 4352 | CGM.getModule(), OMPRTL___kmpc_omp_task_alloc), | |||
| 4353 | AllocArgs); | |||
| 4354 | } | |||
| 4355 | // Emit detach clause initialization. | |||
| 4356 | // evt = (typeof(evt))__kmpc_task_allow_completion_event(loc, tid, | |||
| 4357 | // task_descriptor); | |||
| 4358 | if (const auto *DC = D.getSingleClause<OMPDetachClause>()) { | |||
| 4359 | const Expr *Evt = DC->getEventHandler()->IgnoreParenImpCasts(); | |||
| 4360 | LValue EvtLVal = CGF.EmitLValue(Evt); | |||
| 4361 | ||||
| 4362 | // Build kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, | |||
| 4363 | // int gtid, kmp_task_t *task); | |||
| 4364 | llvm::Value *Loc = emitUpdateLocation(CGF, DC->getBeginLoc()); | |||
| 4365 | llvm::Value *Tid = getThreadID(CGF, DC->getBeginLoc()); | |||
| 4366 | Tid = CGF.Builder.CreateIntCast(Tid, CGF.IntTy, /*isSigned=*/false); | |||
| 4367 | llvm::Value *EvtVal = CGF.EmitRuntimeCall( | |||
| 4368 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 4369 | CGM.getModule(), OMPRTL___kmpc_task_allow_completion_event), | |||
| 4370 | {Loc, Tid, NewTask}); | |||
| 4371 | EvtVal = CGF.EmitScalarConversion(EvtVal, C.VoidPtrTy, Evt->getType(), | |||
| 4372 | Evt->getExprLoc()); | |||
| 4373 | CGF.EmitStoreOfScalar(EvtVal, EvtLVal); | |||
| 4374 | } | |||
| 4375 | // Process affinity clauses. | |||
| 4376 | if (D.hasClausesOfKind<OMPAffinityClause>()) { | |||
| 4377 | // Process list of affinity data. | |||
| 4378 | ASTContext &C = CGM.getContext(); | |||
| 4379 | Address AffinitiesArray = Address::invalid(); | |||
| 4380 | // Calculate number of elements to form the array of affinity data. | |||
| 4381 | llvm::Value *NumOfElements = nullptr; | |||
| 4382 | unsigned NumAffinities = 0; | |||
| 4383 | for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) { | |||
| 4384 | if (const Expr *Modifier = C->getModifier()) { | |||
| 4385 | const auto *IE = cast<OMPIteratorExpr>(Modifier->IgnoreParenImpCasts()); | |||
| 4386 | for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) { | |||
| 4387 | llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper); | |||
| 4388 | Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false); | |||
| 4389 | NumOfElements = | |||
| 4390 | NumOfElements ? CGF.Builder.CreateNUWMul(NumOfElements, Sz) : Sz; | |||
| 4391 | } | |||
| 4392 | } else { | |||
| 4393 | NumAffinities += C->varlist_size(); | |||
| 4394 | } | |||
| 4395 | } | |||
| 4396 | getKmpAffinityType(CGM.getContext(), KmpTaskAffinityInfoTy); | |||
| 4397 | // Fields ids in kmp_task_affinity_info record. | |||
| 4398 | enum RTLAffinityInfoFieldsTy { BaseAddr, Len, Flags }; | |||
| 4399 | ||||
| 4400 | QualType KmpTaskAffinityInfoArrayTy; | |||
| 4401 | if (NumOfElements) { | |||
| 4402 | NumOfElements = CGF.Builder.CreateNUWAdd( | |||
| 4403 | llvm::ConstantInt::get(CGF.SizeTy, NumAffinities), NumOfElements); | |||
| 4404 | OpaqueValueExpr OVE( | |||
| 4405 | Loc, | |||
| 4406 | C.getIntTypeForBitwidth(C.getTypeSize(C.getSizeType()), /*Signed=*/0), | |||
| 4407 | VK_PRValue); | |||
| 4408 | CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, | |||
| 4409 | RValue::get(NumOfElements)); | |||
| 4410 | KmpTaskAffinityInfoArrayTy = | |||
| 4411 | C.getVariableArrayType(KmpTaskAffinityInfoTy, &OVE, ArrayType::Normal, | |||
| 4412 | /*IndexTypeQuals=*/0, SourceRange(Loc, Loc)); | |||
| 4413 | // Properly emit variable-sized array. | |||
| 4414 | auto *PD = ImplicitParamDecl::Create(C, KmpTaskAffinityInfoArrayTy, | |||
| 4415 | ImplicitParamDecl::Other); | |||
| 4416 | CGF.EmitVarDecl(*PD); | |||
| 4417 | AffinitiesArray = CGF.GetAddrOfLocalVar(PD); | |||
| 4418 | NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty, | |||
| 4419 | /*isSigned=*/false); | |||
| 4420 | } else { | |||
| 4421 | KmpTaskAffinityInfoArrayTy = C.getConstantArrayType( | |||
| 4422 | KmpTaskAffinityInfoTy, | |||
| 4423 | llvm::APInt(C.getTypeSize(C.getSizeType()), NumAffinities), nullptr, | |||
| 4424 | ArrayType::Normal, /*IndexTypeQuals=*/0); | |||
| 4425 | AffinitiesArray = | |||
| 4426 | CGF.CreateMemTemp(KmpTaskAffinityInfoArrayTy, ".affs.arr.addr"); | |||
| 4427 | AffinitiesArray = CGF.Builder.CreateConstArrayGEP(AffinitiesArray, 0); | |||
| 4428 | NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumAffinities, | |||
| 4429 | /*isSigned=*/false); | |||
| 4430 | } | |||
| 4431 | ||||
| 4432 | const auto *KmpAffinityInfoRD = KmpTaskAffinityInfoTy->getAsRecordDecl(); | |||
| 4433 | // Fill array by elements without iterators. | |||
| 4434 | unsigned Pos = 0; | |||
| 4435 | bool HasIterator = false; | |||
| 4436 | for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) { | |||
| 4437 | if (C->getModifier()) { | |||
| 4438 | HasIterator = true; | |||
| 4439 | continue; | |||
| 4440 | } | |||
| 4441 | for (const Expr *E : C->varlists()) { | |||
| 4442 | llvm::Value *Addr; | |||
| 4443 | llvm::Value *Size; | |||
| 4444 | std::tie(Addr, Size) = getPointerAndSize(CGF, E); | |||
| 4445 | LValue Base = | |||
| 4446 | CGF.MakeAddrLValue(CGF.Builder.CreateConstGEP(AffinitiesArray, Pos), | |||
| 4447 | KmpTaskAffinityInfoTy); | |||
| 4448 | // affs[i].base_addr = &<Affinities[i].second>; | |||
| 4449 | LValue BaseAddrLVal = CGF.EmitLValueForField( | |||
| 4450 | Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr)); | |||
| 4451 | CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy), | |||
| 4452 | BaseAddrLVal); | |||
| 4453 | // affs[i].len = sizeof(<Affinities[i].second>); | |||
| 4454 | LValue LenLVal = CGF.EmitLValueForField( | |||
| 4455 | Base, *std::next(KmpAffinityInfoRD->field_begin(), Len)); | |||
| 4456 | CGF.EmitStoreOfScalar(Size, LenLVal); | |||
| 4457 | ++Pos; | |||
| 4458 | } | |||
| 4459 | } | |||
| 4460 | LValue PosLVal; | |||
| 4461 | if (HasIterator) { | |||
| 4462 | PosLVal = CGF.MakeAddrLValue( | |||
| 4463 | CGF.CreateMemTemp(C.getSizeType(), "affs.counter.addr"), | |||
| 4464 | C.getSizeType()); | |||
| 4465 | CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal); | |||
| 4466 | } | |||
| 4467 | // Process elements with iterators. | |||
| 4468 | for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) { | |||
| 4469 | const Expr *Modifier = C->getModifier(); | |||
| 4470 | if (!Modifier) | |||
| 4471 | continue; | |||
| 4472 | OMPIteratorGeneratorScope IteratorScope( | |||
| 4473 | CGF, cast_or_null<OMPIteratorExpr>(Modifier->IgnoreParenImpCasts())); | |||
| 4474 | for (const Expr *E : C->varlists()) { | |||
| 4475 | llvm::Value *Addr; | |||
| 4476 | llvm::Value *Size; | |||
| 4477 | std::tie(Addr, Size) = getPointerAndSize(CGF, E); | |||
| 4478 | llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc()); | |||
| 4479 | LValue Base = CGF.MakeAddrLValue( | |||
| 4480 | Address(CGF.Builder.CreateGEP(AffinitiesArray.getElementType(), | |||
| 4481 | AffinitiesArray.getPointer(), Idx), | |||
| 4482 | AffinitiesArray.getAlignment()), | |||
| 4483 | KmpTaskAffinityInfoTy); | |||
| 4484 | // affs[i].base_addr = &<Affinities[i].second>; | |||
| 4485 | LValue BaseAddrLVal = CGF.EmitLValueForField( | |||
| 4486 | Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr)); | |||
| 4487 | CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy), | |||
| 4488 | BaseAddrLVal); | |||
| 4489 | // affs[i].len = sizeof(<Affinities[i].second>); | |||
| 4490 | LValue LenLVal = CGF.EmitLValueForField( | |||
| 4491 | Base, *std::next(KmpAffinityInfoRD->field_begin(), Len)); | |||
| 4492 | CGF.EmitStoreOfScalar(Size, LenLVal); | |||
| 4493 | Idx = CGF.Builder.CreateNUWAdd( | |||
| 4494 | Idx, llvm::ConstantInt::get(Idx->getType(), 1)); | |||
| 4495 | CGF.EmitStoreOfScalar(Idx, PosLVal); | |||
| 4496 | } | |||
| 4497 | } | |||
| 4498 | // Call to kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, | |||
| 4499 | // kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 | |||
| 4500 | // naffins, kmp_task_affinity_info_t *affin_list); | |||
| 4501 | llvm::Value *LocRef = emitUpdateLocation(CGF, Loc); | |||
| 4502 | llvm::Value *GTid = getThreadID(CGF, Loc); | |||
| 4503 | llvm::Value *AffinListPtr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 4504 | AffinitiesArray.getPointer(), CGM.VoidPtrTy); | |||
| 4505 | // FIXME: Emit the function and ignore its result for now unless the | |||
| 4506 | // runtime function is properly implemented. | |||
| 4507 | (void)CGF.EmitRuntimeCall( | |||
| 4508 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 4509 | CGM.getModule(), OMPRTL___kmpc_omp_reg_task_with_affinity), | |||
| 4510 | {LocRef, GTid, NewTask, NumOfElements, AffinListPtr}); | |||
| 4511 | } | |||
| 4512 | llvm::Value *NewTaskNewTaskTTy = | |||
| 4513 | CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 4514 | NewTask, KmpTaskTWithPrivatesPtrTy); | |||
| 4515 | LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy, | |||
| 4516 | KmpTaskTWithPrivatesQTy); | |||
| 4517 | LValue TDBase = | |||
| 4518 | CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin()); | |||
| 4519 | // Fill the data in the resulting kmp_task_t record. | |||
| 4520 | // Copy shareds if there are any. | |||
| 4521 | Address KmpTaskSharedsPtr = Address::invalid(); | |||
| 4522 | if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) { | |||
| 4523 | KmpTaskSharedsPtr = | |||
| 4524 | Address(CGF.EmitLoadOfScalar( | |||
| 4525 | CGF.EmitLValueForField( | |||
| 4526 | TDBase, *std::next(KmpTaskTQTyRD->field_begin(), | |||
| 4527 | KmpTaskTShareds)), | |||
| 4528 | Loc), | |||
| 4529 | CGM.getNaturalTypeAlignment(SharedsTy)); | |||
| 4530 | LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy); | |||
| 4531 | LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy); | |||
| 4532 | CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap); | |||
| 4533 | } | |||
| 4534 | // Emit initial values for private copies (if any). | |||
| 4535 | TaskResultTy Result; | |||
| 4536 | if (!Privates.empty()) { | |||
| 4537 | emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD, | |||
| 4538 | SharedsTy, SharedsPtrTy, Data, Privates, | |||
| 4539 | /*ForDup=*/false); | |||
| 4540 | if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && | |||
| 4541 | (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) { | |||
| 4542 | Result.TaskDupFn = emitTaskDupFunction( | |||
| 4543 | CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD, | |||
| 4544 | KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates, | |||
| 4545 | /*WithLastIter=*/!Data.LastprivateVars.empty()); | |||
| 4546 | } | |||
| 4547 | } | |||
| 4548 | // Fields of union "kmp_cmplrdata_t" for destructors and priority. | |||
| 4549 | enum { Priority = 0, Destructors = 1 }; | |||
| 4550 | // Provide pointer to function with destructors for privates. | |||
| 4551 | auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1); | |||
| 4552 | const RecordDecl *KmpCmplrdataUD = | |||
| 4553 | (*FI)->getType()->getAsUnionType()->getDecl(); | |||
| 4554 | if (NeedsCleanup) { | |||
| 4555 | llvm::Value *DestructorFn = emitDestructorsFunction( | |||
| 4556 | CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy, | |||
| 4557 | KmpTaskTWithPrivatesQTy); | |||
| 4558 | LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI); | |||
| 4559 | LValue DestructorsLV = CGF.EmitLValueForField( | |||
| 4560 | Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors)); | |||
| 4561 | CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 4562 | DestructorFn, KmpRoutineEntryPtrTy), | |||
| 4563 | DestructorsLV); | |||
| 4564 | } | |||
| 4565 | // Set priority. | |||
| 4566 | if (Data.Priority.getInt()) { | |||
| 4567 | LValue Data2LV = CGF.EmitLValueForField( | |||
| 4568 | TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2)); | |||
| 4569 | LValue PriorityLV = CGF.EmitLValueForField( | |||
| 4570 | Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority)); | |||
| 4571 | CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV); | |||
| 4572 | } | |||
| 4573 | Result.NewTask = NewTask; | |||
| 4574 | Result.TaskEntry = TaskEntry; | |||
| 4575 | Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy; | |||
| 4576 | Result.TDBase = TDBase; | |||
| 4577 | Result.KmpTaskTQTyRD = KmpTaskTQTyRD; | |||
| 4578 | return Result; | |||
| 4579 | } | |||
| 4580 | ||||
| 4581 | namespace { | |||
| 4582 | /// Dependence kind for RTL. | |||
| 4583 | enum RTLDependenceKindTy { | |||
| 4584 | DepIn = 0x01, | |||
| 4585 | DepInOut = 0x3, | |||
| 4586 | DepMutexInOutSet = 0x4 | |||
| 4587 | }; | |||
| 4588 | /// Fields ids in kmp_depend_info record. | |||
| 4589 | enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags }; | |||
| 4590 | } // namespace | |||
| 4591 | ||||
| 4592 | /// Translates internal dependency kind into the runtime kind. | |||
| 4593 | static RTLDependenceKindTy translateDependencyKind(OpenMPDependClauseKind K) { | |||
| 4594 | RTLDependenceKindTy DepKind; | |||
| 4595 | switch (K) { | |||
| 4596 | case OMPC_DEPEND_in: | |||
| 4597 | DepKind = DepIn; | |||
| 4598 | break; | |||
| 4599 | // Out and InOut dependencies must use the same code. | |||
| 4600 | case OMPC_DEPEND_out: | |||
| 4601 | case OMPC_DEPEND_inout: | |||
| 4602 | DepKind = DepInOut; | |||
| 4603 | break; | |||
| 4604 | case OMPC_DEPEND_mutexinoutset: | |||
| 4605 | DepKind = DepMutexInOutSet; | |||
| 4606 | break; | |||
| 4607 | case OMPC_DEPEND_source: | |||
| 4608 | case OMPC_DEPEND_sink: | |||
| 4609 | case OMPC_DEPEND_depobj: | |||
| 4610 | case OMPC_DEPEND_unknown: | |||
| 4611 | llvm_unreachable("Unknown task dependence type")__builtin_unreachable(); | |||
| 4612 | } | |||
| 4613 | return DepKind; | |||
| 4614 | } | |||
| 4615 | ||||
| 4616 | /// Builds kmp_depend_info, if it is not built yet, and builds flags type. | |||
| 4617 | static void getDependTypes(ASTContext &C, QualType &KmpDependInfoTy, | |||
| 4618 | QualType &FlagsTy) { | |||
| 4619 | FlagsTy = C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false); | |||
| 4620 | if (KmpDependInfoTy.isNull()) { | |||
| 4621 | RecordDecl *KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info"); | |||
| 4622 | KmpDependInfoRD->startDefinition(); | |||
| 4623 | addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType()); | |||
| 4624 | addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType()); | |||
| 4625 | addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy); | |||
| 4626 | KmpDependInfoRD->completeDefinition(); | |||
| 4627 | KmpDependInfoTy = C.getRecordType(KmpDependInfoRD); | |||
| 4628 | } | |||
| 4629 | } | |||
| 4630 | ||||
| 4631 | std::pair<llvm::Value *, LValue> | |||
| 4632 | CGOpenMPRuntime::getDepobjElements(CodeGenFunction &CGF, LValue DepobjLVal, | |||
| 4633 | SourceLocation Loc) { | |||
| 4634 | ASTContext &C = CGM.getContext(); | |||
| 4635 | QualType FlagsTy; | |||
| 4636 | getDependTypes(C, KmpDependInfoTy, FlagsTy); | |||
| 4637 | RecordDecl *KmpDependInfoRD = | |||
| 4638 | cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl()); | |||
| 4639 | LValue Base = CGF.EmitLoadOfPointerLValue( | |||
| 4640 | DepobjLVal.getAddress(CGF), | |||
| 4641 | C.getPointerType(C.VoidPtrTy).castAs<PointerType>()); | |||
| 4642 | QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy); | |||
| 4643 | Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 4644 | Base.getAddress(CGF), CGF.ConvertTypeForMem(KmpDependInfoPtrTy)); | |||
| 4645 | Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(), | |||
| 4646 | Base.getTBAAInfo()); | |||
| 4647 | llvm::Value *DepObjAddr = CGF.Builder.CreateGEP( | |||
| 4648 | Addr.getElementType(), Addr.getPointer(), | |||
| 4649 | llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true)); | |||
| 4650 | LValue NumDepsBase = CGF.MakeAddrLValue( | |||
| 4651 | Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy, | |||
| 4652 | Base.getBaseInfo(), Base.getTBAAInfo()); | |||
| 4653 | // NumDeps = deps[i].base_addr; | |||
| 4654 | LValue BaseAddrLVal = CGF.EmitLValueForField( | |||
| 4655 | NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr)); | |||
| 4656 | llvm::Value *NumDeps = CGF.EmitLoadOfScalar(BaseAddrLVal, Loc); | |||
| 4657 | return std::make_pair(NumDeps, Base); | |||
| 4658 | } | |||
| 4659 | ||||
| 4660 | static void emitDependData(CodeGenFunction &CGF, QualType &KmpDependInfoTy, | |||
| 4661 | llvm::PointerUnion<unsigned *, LValue *> Pos, | |||
| 4662 | const OMPTaskDataTy::DependData &Data, | |||
| 4663 | Address DependenciesArray) { | |||
| 4664 | CodeGenModule &CGM = CGF.CGM; | |||
| 4665 | ASTContext &C = CGM.getContext(); | |||
| 4666 | QualType FlagsTy; | |||
| 4667 | getDependTypes(C, KmpDependInfoTy, FlagsTy); | |||
| 4668 | RecordDecl *KmpDependInfoRD = | |||
| 4669 | cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl()); | |||
| 4670 | llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy); | |||
| 4671 | ||||
| 4672 | OMPIteratorGeneratorScope IteratorScope( | |||
| 4673 | CGF, cast_or_null<OMPIteratorExpr>( | |||
| 4674 | Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts() | |||
| 4675 | : nullptr)); | |||
| 4676 | for (const Expr *E : Data.DepExprs) { | |||
| 4677 | llvm::Value *Addr; | |||
| 4678 | llvm::Value *Size; | |||
| 4679 | std::tie(Addr, Size) = getPointerAndSize(CGF, E); | |||
| 4680 | LValue Base; | |||
| 4681 | if (unsigned *P = Pos.dyn_cast<unsigned *>()) { | |||
| 4682 | Base = CGF.MakeAddrLValue( | |||
| 4683 | CGF.Builder.CreateConstGEP(DependenciesArray, *P), KmpDependInfoTy); | |||
| 4684 | } else { | |||
| 4685 | LValue &PosLVal = *Pos.get<LValue *>(); | |||
| 4686 | llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc()); | |||
| 4687 | Base = CGF.MakeAddrLValue( | |||
| 4688 | Address(CGF.Builder.CreateGEP(DependenciesArray.getElementType(), | |||
| 4689 | DependenciesArray.getPointer(), Idx), | |||
| 4690 | DependenciesArray.getAlignment()), | |||
| 4691 | KmpDependInfoTy); | |||
| 4692 | } | |||
| 4693 | // deps[i].base_addr = &<Dependencies[i].second>; | |||
| 4694 | LValue BaseAddrLVal = CGF.EmitLValueForField( | |||
| 4695 | Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr)); | |||
| 4696 | CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy), | |||
| 4697 | BaseAddrLVal); | |||
| 4698 | // deps[i].len = sizeof(<Dependencies[i].second>); | |||
| 4699 | LValue LenLVal = CGF.EmitLValueForField( | |||
| 4700 | Base, *std::next(KmpDependInfoRD->field_begin(), Len)); | |||
| 4701 | CGF.EmitStoreOfScalar(Size, LenLVal); | |||
| 4702 | // deps[i].flags = <Dependencies[i].first>; | |||
| 4703 | RTLDependenceKindTy DepKind = translateDependencyKind(Data.DepKind); | |||
| 4704 | LValue FlagsLVal = CGF.EmitLValueForField( | |||
| 4705 | Base, *std::next(KmpDependInfoRD->field_begin(), Flags)); | |||
| 4706 | CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind), | |||
| 4707 | FlagsLVal); | |||
| 4708 | if (unsigned *P = Pos.dyn_cast<unsigned *>()) { | |||
| 4709 | ++(*P); | |||
| 4710 | } else { | |||
| 4711 | LValue &PosLVal = *Pos.get<LValue *>(); | |||
| 4712 | llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc()); | |||
| 4713 | Idx = CGF.Builder.CreateNUWAdd(Idx, | |||
| 4714 | llvm::ConstantInt::get(Idx->getType(), 1)); | |||
| 4715 | CGF.EmitStoreOfScalar(Idx, PosLVal); | |||
| 4716 | } | |||
| 4717 | } | |||
| 4718 | } | |||
| 4719 | ||||
| 4720 | static SmallVector<llvm::Value *, 4> | |||
| 4721 | emitDepobjElementsSizes(CodeGenFunction &CGF, QualType &KmpDependInfoTy, | |||
| 4722 | const OMPTaskDataTy::DependData &Data) { | |||
| 4723 | assert(Data.DepKind == OMPC_DEPEND_depobj &&((void)0) | |||
| 4724 | "Expected depobj dependecy kind.")((void)0); | |||
| 4725 | SmallVector<llvm::Value *, 4> Sizes; | |||
| 4726 | SmallVector<LValue, 4> SizeLVals; | |||
| 4727 | ASTContext &C = CGF.getContext(); | |||
| 4728 | QualType FlagsTy; | |||
| 4729 | getDependTypes(C, KmpDependInfoTy, FlagsTy); | |||
| 4730 | RecordDecl *KmpDependInfoRD = | |||
| 4731 | cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl()); | |||
| 4732 | QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy); | |||
| 4733 | llvm::Type *KmpDependInfoPtrT = CGF.ConvertTypeForMem(KmpDependInfoPtrTy); | |||
| 4734 | { | |||
| 4735 | OMPIteratorGeneratorScope IteratorScope( | |||
| 4736 | CGF, cast_or_null<OMPIteratorExpr>( | |||
| 4737 | Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts() | |||
| 4738 | : nullptr)); | |||
| 4739 | for (const Expr *E : Data.DepExprs) { | |||
| 4740 | LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts()); | |||
| 4741 | LValue Base = CGF.EmitLoadOfPointerLValue( | |||
| 4742 | DepobjLVal.getAddress(CGF), | |||
| 4743 | C.getPointerType(C.VoidPtrTy).castAs<PointerType>()); | |||
| 4744 | Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 4745 | Base.getAddress(CGF), KmpDependInfoPtrT); | |||
| 4746 | Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(), | |||
| 4747 | Base.getTBAAInfo()); | |||
| 4748 | llvm::Value *DepObjAddr = CGF.Builder.CreateGEP( | |||
| 4749 | Addr.getElementType(), Addr.getPointer(), | |||
| 4750 | llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true)); | |||
| 4751 | LValue NumDepsBase = CGF.MakeAddrLValue( | |||
| 4752 | Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy, | |||
| 4753 | Base.getBaseInfo(), Base.getTBAAInfo()); | |||
| 4754 | // NumDeps = deps[i].base_addr; | |||
| 4755 | LValue BaseAddrLVal = CGF.EmitLValueForField( | |||
| 4756 | NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr)); | |||
| 4757 | llvm::Value *NumDeps = | |||
| 4758 | CGF.EmitLoadOfScalar(BaseAddrLVal, E->getExprLoc()); | |||
| 4759 | LValue NumLVal = CGF.MakeAddrLValue( | |||
| 4760 | CGF.CreateMemTemp(C.getUIntPtrType(), "depobj.size.addr"), | |||
| 4761 | C.getUIntPtrType()); | |||
| 4762 | CGF.InitTempAlloca(NumLVal.getAddress(CGF), | |||
| 4763 | llvm::ConstantInt::get(CGF.IntPtrTy, 0)); | |||
| 4764 | llvm::Value *PrevVal = CGF.EmitLoadOfScalar(NumLVal, E->getExprLoc()); | |||
| 4765 | llvm::Value *Add = CGF.Builder.CreateNUWAdd(PrevVal, NumDeps); | |||
| 4766 | CGF.EmitStoreOfScalar(Add, NumLVal); | |||
| 4767 | SizeLVals.push_back(NumLVal); | |||
| 4768 | } | |||
| 4769 | } | |||
| 4770 | for (unsigned I = 0, E = SizeLVals.size(); I < E; ++I) { | |||
| 4771 | llvm::Value *Size = | |||
| 4772 | CGF.EmitLoadOfScalar(SizeLVals[I], Data.DepExprs[I]->getExprLoc()); | |||
| 4773 | Sizes.push_back(Size); | |||
| 4774 | } | |||
| 4775 | return Sizes; | |||
| 4776 | } | |||
| 4777 | ||||
| 4778 | static void emitDepobjElements(CodeGenFunction &CGF, QualType &KmpDependInfoTy, | |||
| 4779 | LValue PosLVal, | |||
| 4780 | const OMPTaskDataTy::DependData &Data, | |||
| 4781 | Address DependenciesArray) { | |||
| 4782 | assert(Data.DepKind == OMPC_DEPEND_depobj &&((void)0) | |||
| 4783 | "Expected depobj dependecy kind.")((void)0); | |||
| 4784 | ASTContext &C = CGF.getContext(); | |||
| 4785 | QualType FlagsTy; | |||
| 4786 | getDependTypes(C, KmpDependInfoTy, FlagsTy); | |||
| 4787 | RecordDecl *KmpDependInfoRD = | |||
| 4788 | cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl()); | |||
| 4789 | QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy); | |||
| 4790 | llvm::Type *KmpDependInfoPtrT = CGF.ConvertTypeForMem(KmpDependInfoPtrTy); | |||
| 4791 | llvm::Value *ElSize = CGF.getTypeSize(KmpDependInfoTy); | |||
| 4792 | { | |||
| 4793 | OMPIteratorGeneratorScope IteratorScope( | |||
| 4794 | CGF, cast_or_null<OMPIteratorExpr>( | |||
| 4795 | Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts() | |||
| 4796 | : nullptr)); | |||
| 4797 | for (unsigned I = 0, End = Data.DepExprs.size(); I < End; ++I) { | |||
| 4798 | const Expr *E = Data.DepExprs[I]; | |||
| 4799 | LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts()); | |||
| 4800 | LValue Base = CGF.EmitLoadOfPointerLValue( | |||
| 4801 | DepobjLVal.getAddress(CGF), | |||
| 4802 | C.getPointerType(C.VoidPtrTy).castAs<PointerType>()); | |||
| 4803 | Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 4804 | Base.getAddress(CGF), KmpDependInfoPtrT); | |||
| 4805 | Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(), | |||
| 4806 | Base.getTBAAInfo()); | |||
| 4807 | ||||
| 4808 | // Get number of elements in a single depobj. | |||
| 4809 | llvm::Value *DepObjAddr = CGF.Builder.CreateGEP( | |||
| 4810 | Addr.getElementType(), Addr.getPointer(), | |||
| 4811 | llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true)); | |||
| 4812 | LValue NumDepsBase = CGF.MakeAddrLValue( | |||
| 4813 | Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy, | |||
| 4814 | Base.getBaseInfo(), Base.getTBAAInfo()); | |||
| 4815 | // NumDeps = deps[i].base_addr; | |||
| 4816 | LValue BaseAddrLVal = CGF.EmitLValueForField( | |||
| 4817 | NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr)); | |||
| 4818 | llvm::Value *NumDeps = | |||
| 4819 | CGF.EmitLoadOfScalar(BaseAddrLVal, E->getExprLoc()); | |||
| 4820 | ||||
| 4821 | // memcopy dependency data. | |||
| 4822 | llvm::Value *Size = CGF.Builder.CreateNUWMul( | |||
| 4823 | ElSize, | |||
| 4824 | CGF.Builder.CreateIntCast(NumDeps, CGF.SizeTy, /*isSigned=*/false)); | |||
| 4825 | llvm::Value *Pos = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc()); | |||
| 4826 | Address DepAddr = | |||
| 4827 | Address(CGF.Builder.CreateGEP(DependenciesArray.getElementType(), | |||
| 4828 | DependenciesArray.getPointer(), Pos), | |||
| 4829 | DependenciesArray.getAlignment()); | |||
| 4830 | CGF.Builder.CreateMemCpy(DepAddr, Base.getAddress(CGF), Size); | |||
| 4831 | ||||
| 4832 | // Increase pos. | |||
| 4833 | // pos += size; | |||
| 4834 | llvm::Value *Add = CGF.Builder.CreateNUWAdd(Pos, NumDeps); | |||
| 4835 | CGF.EmitStoreOfScalar(Add, PosLVal); | |||
| 4836 | } | |||
| 4837 | } | |||
| 4838 | } | |||
| 4839 | ||||
| 4840 | std::pair<llvm::Value *, Address> CGOpenMPRuntime::emitDependClause( | |||
| 4841 | CodeGenFunction &CGF, ArrayRef<OMPTaskDataTy::DependData> Dependencies, | |||
| 4842 | SourceLocation Loc) { | |||
| 4843 | if (llvm::all_of(Dependencies, [](const OMPTaskDataTy::DependData &D) { | |||
| 4844 | return D.DepExprs.empty(); | |||
| 4845 | })) | |||
| 4846 | return std::make_pair(nullptr, Address::invalid()); | |||
| 4847 | // Process list of dependencies. | |||
| 4848 | ASTContext &C = CGM.getContext(); | |||
| 4849 | Address DependenciesArray = Address::invalid(); | |||
| 4850 | llvm::Value *NumOfElements = nullptr; | |||
| 4851 | unsigned NumDependencies = std::accumulate( | |||
| 4852 | Dependencies.begin(), Dependencies.end(), 0, | |||
| 4853 | [](unsigned V, const OMPTaskDataTy::DependData &D) { | |||
| 4854 | return D.DepKind == OMPC_DEPEND_depobj | |||
| 4855 | ? V | |||
| 4856 | : (V + (D.IteratorExpr ? 0 : D.DepExprs.size())); | |||
| 4857 | }); | |||
| 4858 | QualType FlagsTy; | |||
| 4859 | getDependTypes(C, KmpDependInfoTy, FlagsTy); | |||
| 4860 | bool HasDepobjDeps = false; | |||
| 4861 | bool HasRegularWithIterators = false; | |||
| 4862 | llvm::Value *NumOfDepobjElements = llvm::ConstantInt::get(CGF.IntPtrTy, 0); | |||
| 4863 | llvm::Value *NumOfRegularWithIterators = | |||
| 4864 | llvm::ConstantInt::get(CGF.IntPtrTy, 1); | |||
| 4865 | // Calculate number of depobj dependecies and regular deps with the iterators. | |||
| 4866 | for (const OMPTaskDataTy::DependData &D : Dependencies) { | |||
| 4867 | if (D.DepKind == OMPC_DEPEND_depobj) { | |||
| 4868 | SmallVector<llvm::Value *, 4> Sizes = | |||
| 4869 | emitDepobjElementsSizes(CGF, KmpDependInfoTy, D); | |||
| 4870 | for (llvm::Value *Size : Sizes) { | |||
| 4871 | NumOfDepobjElements = | |||
| 4872 | CGF.Builder.CreateNUWAdd(NumOfDepobjElements, Size); | |||
| 4873 | } | |||
| 4874 | HasDepobjDeps = true; | |||
| 4875 | continue; | |||
| 4876 | } | |||
| 4877 | // Include number of iterations, if any. | |||
| 4878 | if (const auto *IE = cast_or_null<OMPIteratorExpr>(D.IteratorExpr)) { | |||
| 4879 | for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) { | |||
| 4880 | llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper); | |||
| 4881 | Sz = CGF.Builder.CreateIntCast(Sz, CGF.IntPtrTy, /*isSigned=*/false); | |||
| 4882 | NumOfRegularWithIterators = | |||
| 4883 | CGF.Builder.CreateNUWMul(NumOfRegularWithIterators, Sz); | |||
| 4884 | } | |||
| 4885 | HasRegularWithIterators = true; | |||
| 4886 | continue; | |||
| 4887 | } | |||
| 4888 | } | |||
| 4889 | ||||
| 4890 | QualType KmpDependInfoArrayTy; | |||
| 4891 | if (HasDepobjDeps || HasRegularWithIterators) { | |||
| 4892 | NumOfElements = llvm::ConstantInt::get(CGM.IntPtrTy, NumDependencies, | |||
| 4893 | /*isSigned=*/false); | |||
| 4894 | if (HasDepobjDeps) { | |||
| 4895 | NumOfElements = | |||
| 4896 | CGF.Builder.CreateNUWAdd(NumOfDepobjElements, NumOfElements); | |||
| 4897 | } | |||
| 4898 | if (HasRegularWithIterators) { | |||
| 4899 | NumOfElements = | |||
| 4900 | CGF.Builder.CreateNUWAdd(NumOfRegularWithIterators, NumOfElements); | |||
| 4901 | } | |||
| 4902 | OpaqueValueExpr OVE(Loc, | |||
| 4903 | C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0), | |||
| 4904 | VK_PRValue); | |||
| 4905 | CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, | |||
| 4906 | RValue::get(NumOfElements)); | |||
| 4907 | KmpDependInfoArrayTy = | |||
| 4908 | C.getVariableArrayType(KmpDependInfoTy, &OVE, ArrayType::Normal, | |||
| 4909 | /*IndexTypeQuals=*/0, SourceRange(Loc, Loc)); | |||
| 4910 | // CGF.EmitVariablyModifiedType(KmpDependInfoArrayTy); | |||
| 4911 | // Properly emit variable-sized array. | |||
| 4912 | auto *PD = ImplicitParamDecl::Create(C, KmpDependInfoArrayTy, | |||
| 4913 | ImplicitParamDecl::Other); | |||
| 4914 | CGF.EmitVarDecl(*PD); | |||
| 4915 | DependenciesArray = CGF.GetAddrOfLocalVar(PD); | |||
| 4916 | NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty, | |||
| 4917 | /*isSigned=*/false); | |||
| 4918 | } else { | |||
| 4919 | KmpDependInfoArrayTy = C.getConstantArrayType( | |||
| 4920 | KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies), nullptr, | |||
| 4921 | ArrayType::Normal, /*IndexTypeQuals=*/0); | |||
| 4922 | DependenciesArray = | |||
| 4923 | CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr"); | |||
| 4924 | DependenciesArray = CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0); | |||
| 4925 | NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumDependencies, | |||
| 4926 | /*isSigned=*/false); | |||
| 4927 | } | |||
| 4928 | unsigned Pos = 0; | |||
| 4929 | for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) { | |||
| 4930 | if (Dependencies[I].DepKind == OMPC_DEPEND_depobj || | |||
| 4931 | Dependencies[I].IteratorExpr) | |||
| 4932 | continue; | |||
| 4933 | emitDependData(CGF, KmpDependInfoTy, &Pos, Dependencies[I], | |||
| 4934 | DependenciesArray); | |||
| 4935 | } | |||
| 4936 | // Copy regular dependecies with iterators. | |||
| 4937 | LValue PosLVal = CGF.MakeAddrLValue( | |||
| 4938 | CGF.CreateMemTemp(C.getSizeType(), "dep.counter.addr"), C.getSizeType()); | |||
| 4939 | CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal); | |||
| 4940 | for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) { | |||
| 4941 | if (Dependencies[I].DepKind == OMPC_DEPEND_depobj || | |||
| 4942 | !Dependencies[I].IteratorExpr) | |||
| 4943 | continue; | |||
| 4944 | emitDependData(CGF, KmpDependInfoTy, &PosLVal, Dependencies[I], | |||
| 4945 | DependenciesArray); | |||
| 4946 | } | |||
| 4947 | // Copy final depobj arrays without iterators. | |||
| 4948 | if (HasDepobjDeps) { | |||
| 4949 | for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) { | |||
| 4950 | if (Dependencies[I].DepKind != OMPC_DEPEND_depobj) | |||
| 4951 | continue; | |||
| 4952 | emitDepobjElements(CGF, KmpDependInfoTy, PosLVal, Dependencies[I], | |||
| 4953 | DependenciesArray); | |||
| 4954 | } | |||
| 4955 | } | |||
| 4956 | DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 4957 | DependenciesArray, CGF.VoidPtrTy); | |||
| 4958 | return std::make_pair(NumOfElements, DependenciesArray); | |||
| 4959 | } | |||
| 4960 | ||||
| 4961 | Address CGOpenMPRuntime::emitDepobjDependClause( | |||
| 4962 | CodeGenFunction &CGF, const OMPTaskDataTy::DependData &Dependencies, | |||
| 4963 | SourceLocation Loc) { | |||
| 4964 | if (Dependencies.DepExprs.empty()) | |||
| 4965 | return Address::invalid(); | |||
| 4966 | // Process list of dependencies. | |||
| 4967 | ASTContext &C = CGM.getContext(); | |||
| 4968 | Address DependenciesArray = Address::invalid(); | |||
| 4969 | unsigned NumDependencies = Dependencies.DepExprs.size(); | |||
| 4970 | QualType FlagsTy; | |||
| 4971 | getDependTypes(C, KmpDependInfoTy, FlagsTy); | |||
| 4972 | RecordDecl *KmpDependInfoRD = | |||
| 4973 | cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl()); | |||
| 4974 | ||||
| 4975 | llvm::Value *Size; | |||
| 4976 | // Define type kmp_depend_info[<Dependencies.size()>]; | |||
| 4977 | // For depobj reserve one extra element to store the number of elements. | |||
| 4978 | // It is required to handle depobj(x) update(in) construct. | |||
| 4979 | // kmp_depend_info[<Dependencies.size()>] deps; | |||
| 4980 | llvm::Value *NumDepsVal; | |||
| 4981 | CharUnits Align = C.getTypeAlignInChars(KmpDependInfoTy); | |||
| 4982 | if (const auto *IE = | |||
| 4983 | cast_or_null<OMPIteratorExpr>(Dependencies.IteratorExpr)) { | |||
| 4984 | NumDepsVal = llvm::ConstantInt::get(CGF.SizeTy, 1); | |||
| 4985 | for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) { | |||
| 4986 | llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper); | |||
| 4987 | Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false); | |||
| 4988 | NumDepsVal = CGF.Builder.CreateNUWMul(NumDepsVal, Sz); | |||
| 4989 | } | |||
| 4990 | Size = CGF.Builder.CreateNUWAdd(llvm::ConstantInt::get(CGF.SizeTy, 1), | |||
| 4991 | NumDepsVal); | |||
| 4992 | CharUnits SizeInBytes = | |||
| 4993 | C.getTypeSizeInChars(KmpDependInfoTy).alignTo(Align); | |||
| 4994 | llvm::Value *RecSize = CGM.getSize(SizeInBytes); | |||
| 4995 | Size = CGF.Builder.CreateNUWMul(Size, RecSize); | |||
| 4996 | NumDepsVal = | |||
| 4997 | CGF.Builder.CreateIntCast(NumDepsVal, CGF.IntPtrTy, /*isSigned=*/false); | |||
| 4998 | } else { | |||
| 4999 | QualType KmpDependInfoArrayTy = C.getConstantArrayType( | |||
| 5000 | KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies + 1), | |||
| 5001 | nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); | |||
| 5002 | CharUnits Sz = C.getTypeSizeInChars(KmpDependInfoArrayTy); | |||
| 5003 | Size = CGM.getSize(Sz.alignTo(Align)); | |||
| 5004 | NumDepsVal = llvm::ConstantInt::get(CGF.IntPtrTy, NumDependencies); | |||
| 5005 | } | |||
| 5006 | // Need to allocate on the dynamic memory. | |||
| 5007 | llvm::Value *ThreadID = getThreadID(CGF, Loc); | |||
| 5008 | // Use default allocator. | |||
| 5009 | llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); | |||
| 5010 | llvm::Value *Args[] = {ThreadID, Size, Allocator}; | |||
| 5011 | ||||
| 5012 | llvm::Value *Addr = | |||
| 5013 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 5014 | CGM.getModule(), OMPRTL___kmpc_alloc), | |||
| 5015 | Args, ".dep.arr.addr"); | |||
| 5016 | Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 5017 | Addr, CGF.ConvertTypeForMem(KmpDependInfoTy)->getPointerTo()); | |||
| 5018 | DependenciesArray = Address(Addr, Align); | |||
| 5019 | // Write number of elements in the first element of array for depobj. | |||
| 5020 | LValue Base = CGF.MakeAddrLValue(DependenciesArray, KmpDependInfoTy); | |||
| 5021 | // deps[i].base_addr = NumDependencies; | |||
| 5022 | LValue BaseAddrLVal = CGF.EmitLValueForField( | |||
| 5023 | Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr)); | |||
| 5024 | CGF.EmitStoreOfScalar(NumDepsVal, BaseAddrLVal); | |||
| 5025 | llvm::PointerUnion<unsigned *, LValue *> Pos; | |||
| 5026 | unsigned Idx = 1; | |||
| 5027 | LValue PosLVal; | |||
| 5028 | if (Dependencies.IteratorExpr) { | |||
| 5029 | PosLVal = CGF.MakeAddrLValue( | |||
| 5030 | CGF.CreateMemTemp(C.getSizeType(), "iterator.counter.addr"), | |||
| 5031 | C.getSizeType()); | |||
| 5032 | CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Idx), PosLVal, | |||
| 5033 | /*IsInit=*/true); | |||
| 5034 | Pos = &PosLVal; | |||
| 5035 | } else { | |||
| 5036 | Pos = &Idx; | |||
| 5037 | } | |||
| 5038 | emitDependData(CGF, KmpDependInfoTy, Pos, Dependencies, DependenciesArray); | |||
| 5039 | DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 5040 | CGF.Builder.CreateConstGEP(DependenciesArray, 1), CGF.VoidPtrTy); | |||
| 5041 | return DependenciesArray; | |||
| 5042 | } | |||
| 5043 | ||||
| 5044 | void CGOpenMPRuntime::emitDestroyClause(CodeGenFunction &CGF, LValue DepobjLVal, | |||
| 5045 | SourceLocation Loc) { | |||
| 5046 | ASTContext &C = CGM.getContext(); | |||
| 5047 | QualType FlagsTy; | |||
| 5048 | getDependTypes(C, KmpDependInfoTy, FlagsTy); | |||
| 5049 | LValue Base = CGF.EmitLoadOfPointerLValue( | |||
| 5050 | DepobjLVal.getAddress(CGF), | |||
| 5051 | C.getPointerType(C.VoidPtrTy).castAs<PointerType>()); | |||
| 5052 | QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy); | |||
| 5053 | Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 5054 | Base.getAddress(CGF), CGF.ConvertTypeForMem(KmpDependInfoPtrTy)); | |||
| 5055 | llvm::Value *DepObjAddr = CGF.Builder.CreateGEP( | |||
| 5056 | Addr.getElementType(), Addr.getPointer(), | |||
| 5057 | llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true)); | |||
| 5058 | DepObjAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(DepObjAddr, | |||
| 5059 | CGF.VoidPtrTy); | |||
| 5060 | llvm::Value *ThreadID = getThreadID(CGF, Loc); | |||
| 5061 | // Use default allocator. | |||
| 5062 | llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); | |||
| 5063 | llvm::Value *Args[] = {ThreadID, DepObjAddr, Allocator}; | |||
| 5064 | ||||
| 5065 | // _kmpc_free(gtid, addr, nullptr); | |||
| 5066 | (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 5067 | CGM.getModule(), OMPRTL___kmpc_free), | |||
| 5068 | Args); | |||
| 5069 | } | |||
| 5070 | ||||
| 5071 | void CGOpenMPRuntime::emitUpdateClause(CodeGenFunction &CGF, LValue DepobjLVal, | |||
| 5072 | OpenMPDependClauseKind NewDepKind, | |||
| 5073 | SourceLocation Loc) { | |||
| 5074 | ASTContext &C = CGM.getContext(); | |||
| 5075 | QualType FlagsTy; | |||
| 5076 | getDependTypes(C, KmpDependInfoTy, FlagsTy); | |||
| 5077 | RecordDecl *KmpDependInfoRD = | |||
| 5078 | cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl()); | |||
| 5079 | llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy); | |||
| 5080 | llvm::Value *NumDeps; | |||
| 5081 | LValue Base; | |||
| 5082 | std::tie(NumDeps, Base) = getDepobjElements(CGF, DepobjLVal, Loc); | |||
| 5083 | ||||
| 5084 | Address Begin = Base.getAddress(CGF); | |||
| 5085 | // Cast from pointer to array type to pointer to single element. | |||
| 5086 | llvm::Value *End = CGF.Builder.CreateGEP( | |||
| 5087 | Begin.getElementType(), Begin.getPointer(), NumDeps); | |||
| 5088 | // The basic structure here is a while-do loop. | |||
| 5089 | llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.body"); | |||
| 5090 | llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.done"); | |||
| 5091 | llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock(); | |||
| 5092 | CGF.EmitBlock(BodyBB); | |||
| 5093 | llvm::PHINode *ElementPHI = | |||
| 5094 | CGF.Builder.CreatePHI(Begin.getType(), 2, "omp.elementPast"); | |||
| 5095 | ElementPHI->addIncoming(Begin.getPointer(), EntryBB); | |||
| 5096 | Begin = Address(ElementPHI, Begin.getAlignment()); | |||
| 5097 | Base = CGF.MakeAddrLValue(Begin, KmpDependInfoTy, Base.getBaseInfo(), | |||
| 5098 | Base.getTBAAInfo()); | |||
| 5099 | // deps[i].flags = NewDepKind; | |||
| 5100 | RTLDependenceKindTy DepKind = translateDependencyKind(NewDepKind); | |||
| 5101 | LValue FlagsLVal = CGF.EmitLValueForField( | |||
| 5102 | Base, *std::next(KmpDependInfoRD->field_begin(), Flags)); | |||
| 5103 | CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind), | |||
| 5104 | FlagsLVal); | |||
| 5105 | ||||
| 5106 | // Shift the address forward by one element. | |||
| 5107 | Address ElementNext = | |||
| 5108 | CGF.Builder.CreateConstGEP(Begin, /*Index=*/1, "omp.elementNext"); | |||
| 5109 | ElementPHI->addIncoming(ElementNext.getPointer(), | |||
| 5110 | CGF.Builder.GetInsertBlock()); | |||
| 5111 | llvm::Value *IsEmpty = | |||
| 5112 | CGF.Builder.CreateICmpEQ(ElementNext.getPointer(), End, "omp.isempty"); | |||
| 5113 | CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); | |||
| 5114 | // Done. | |||
| 5115 | CGF.EmitBlock(DoneBB, /*IsFinished=*/true); | |||
| 5116 | } | |||
| 5117 | ||||
| 5118 | void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc, | |||
| 5119 | const OMPExecutableDirective &D, | |||
| 5120 | llvm::Function *TaskFunction, | |||
| 5121 | QualType SharedsTy, Address Shareds, | |||
| 5122 | const Expr *IfCond, | |||
| 5123 | const OMPTaskDataTy &Data) { | |||
| 5124 | if (!CGF.HaveInsertPoint()) | |||
| 5125 | return; | |||
| 5126 | ||||
| 5127 | TaskResultTy Result = | |||
| 5128 | emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data); | |||
| 5129 | llvm::Value *NewTask = Result.NewTask; | |||
| 5130 | llvm::Function *TaskEntry = Result.TaskEntry; | |||
| 5131 | llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy; | |||
| 5132 | LValue TDBase = Result.TDBase; | |||
| 5133 | const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD; | |||
| 5134 | // Process list of dependences. | |||
| 5135 | Address DependenciesArray = Address::invalid(); | |||
| 5136 | llvm::Value *NumOfElements; | |||
| 5137 | std::tie(NumOfElements, DependenciesArray) = | |||
| 5138 | emitDependClause(CGF, Data.Dependences, Loc); | |||
| 5139 | ||||
| 5140 | // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc() | |||
| 5141 | // libcall. | |||
| 5142 | // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid, | |||
| 5143 | // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, | |||
| 5144 | // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence | |||
| 5145 | // list is not empty | |||
| 5146 | llvm::Value *ThreadID = getThreadID(CGF, Loc); | |||
| 5147 | llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc); | |||
| 5148 | llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask }; | |||
| 5149 | llvm::Value *DepTaskArgs[7]; | |||
| 5150 | if (!Data.Dependences.empty()) { | |||
| 5151 | DepTaskArgs[0] = UpLoc; | |||
| 5152 | DepTaskArgs[1] = ThreadID; | |||
| 5153 | DepTaskArgs[2] = NewTask; | |||
| 5154 | DepTaskArgs[3] = NumOfElements; | |||
| 5155 | DepTaskArgs[4] = DependenciesArray.getPointer(); | |||
| 5156 | DepTaskArgs[5] = CGF.Builder.getInt32(0); | |||
| 5157 | DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); | |||
| 5158 | } | |||
| 5159 | auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, &TaskArgs, | |||
| 5160 | &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) { | |||
| 5161 | if (!Data.Tied) { | |||
| 5162 | auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId); | |||
| 5163 | LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI); | |||
| 5164 | CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal); | |||
| 5165 | } | |||
| 5166 | if (!Data.Dependences.empty()) { | |||
| 5167 | CGF.EmitRuntimeCall( | |||
| 5168 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 5169 | CGM.getModule(), OMPRTL___kmpc_omp_task_with_deps), | |||
| 5170 | DepTaskArgs); | |||
| 5171 | } else { | |||
| 5172 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 5173 | CGM.getModule(), OMPRTL___kmpc_omp_task), | |||
| 5174 | TaskArgs); | |||
| 5175 | } | |||
| 5176 | // Check if parent region is untied and build return for untied task; | |||
| 5177 | if (auto *Region = | |||
| 5178 | dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) | |||
| 5179 | Region->emitUntiedSwitch(CGF); | |||
| 5180 | }; | |||
| 5181 | ||||
| 5182 | llvm::Value *DepWaitTaskArgs[6]; | |||
| 5183 | if (!Data.Dependences.empty()) { | |||
| 5184 | DepWaitTaskArgs[0] = UpLoc; | |||
| 5185 | DepWaitTaskArgs[1] = ThreadID; | |||
| 5186 | DepWaitTaskArgs[2] = NumOfElements; | |||
| 5187 | DepWaitTaskArgs[3] = DependenciesArray.getPointer(); | |||
| 5188 | DepWaitTaskArgs[4] = CGF.Builder.getInt32(0); | |||
| 5189 | DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); | |||
| 5190 | } | |||
| 5191 | auto &M = CGM.getModule(); | |||
| 5192 | auto &&ElseCodeGen = [this, &M, &TaskArgs, ThreadID, NewTaskNewTaskTTy, | |||
| 5193 | TaskEntry, &Data, &DepWaitTaskArgs, | |||
| 5194 | Loc](CodeGenFunction &CGF, PrePostActionTy &) { | |||
| 5195 | CodeGenFunction::RunCleanupsScope LocalScope(CGF); | |||
| 5196 | // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid, | |||
| 5197 | // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 | |||
| 5198 | // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info | |||
| 5199 | // is specified. | |||
| 5200 | if (!Data.Dependences.empty()) | |||
| 5201 | CGF.EmitRuntimeCall( | |||
| 5202 | OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_omp_wait_deps), | |||
| 5203 | DepWaitTaskArgs); | |||
| 5204 | // Call proxy_task_entry(gtid, new_task); | |||
| 5205 | auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy, | |||
| 5206 | Loc](CodeGenFunction &CGF, PrePostActionTy &Action) { | |||
| 5207 | Action.Enter(CGF); | |||
| 5208 | llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy}; | |||
| 5209 | CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry, | |||
| 5210 | OutlinedFnArgs); | |||
| 5211 | }; | |||
| 5212 | ||||
| 5213 | // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid, | |||
| 5214 | // kmp_task_t *new_task); | |||
| 5215 | // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid, | |||
| 5216 | // kmp_task_t *new_task); | |||
| 5217 | RegionCodeGenTy RCG(CodeGen); | |||
| 5218 | CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 5219 | M, OMPRTL___kmpc_omp_task_begin_if0), | |||
| 5220 | TaskArgs, | |||
| 5221 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 5222 | M, OMPRTL___kmpc_omp_task_complete_if0), | |||
| 5223 | TaskArgs); | |||
| 5224 | RCG.setAction(Action); | |||
| 5225 | RCG(CGF); | |||
| 5226 | }; | |||
| 5227 | ||||
| 5228 | if (IfCond) { | |||
| 5229 | emitIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen); | |||
| 5230 | } else { | |||
| 5231 | RegionCodeGenTy ThenRCG(ThenCodeGen); | |||
| 5232 | ThenRCG(CGF); | |||
| 5233 | } | |||
| 5234 | } | |||
| 5235 | ||||
| 5236 | void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc, | |||
| 5237 | const OMPLoopDirective &D, | |||
| 5238 | llvm::Function *TaskFunction, | |||
| 5239 | QualType SharedsTy, Address Shareds, | |||
| 5240 | const Expr *IfCond, | |||
| 5241 | const OMPTaskDataTy &Data) { | |||
| 5242 | if (!CGF.HaveInsertPoint()) | |||
| 5243 | return; | |||
| 5244 | TaskResultTy Result = | |||
| 5245 | emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data); | |||
| 5246 | // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc() | |||
| 5247 | // libcall. | |||
| 5248 | // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int | |||
| 5249 | // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int | |||
| 5250 | // sched, kmp_uint64 grainsize, void *task_dup); | |||
| 5251 | llvm::Value *ThreadID = getThreadID(CGF, Loc); | |||
| 5252 | llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc); | |||
| 5253 | llvm::Value *IfVal; | |||
| 5254 | if (IfCond) { | |||
| 5255 | IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy, | |||
| 5256 | /*isSigned=*/true); | |||
| 5257 | } else { | |||
| 5258 | IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1); | |||
| 5259 | } | |||
| 5260 | ||||
| 5261 | LValue LBLVal = CGF.EmitLValueForField( | |||
| 5262 | Result.TDBase, | |||
| 5263 | *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound)); | |||
| 5264 | const auto *LBVar = | |||
| 5265 | cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl()); | |||
| 5266 | CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(CGF), | |||
| 5267 | LBLVal.getQuals(), | |||
| 5268 | /*IsInitializer=*/true); | |||
| 5269 | LValue UBLVal = CGF.EmitLValueForField( | |||
| 5270 | Result.TDBase, | |||
| 5271 | *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound)); | |||
| 5272 | const auto *UBVar = | |||
| 5273 | cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl()); | |||
| 5274 | CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(CGF), | |||
| 5275 | UBLVal.getQuals(), | |||
| 5276 | /*IsInitializer=*/true); | |||
| 5277 | LValue StLVal = CGF.EmitLValueForField( | |||
| 5278 | Result.TDBase, | |||
| 5279 | *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride)); | |||
| 5280 | const auto *StVar = | |||
| 5281 | cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl()); | |||
| 5282 | CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(CGF), | |||
| 5283 | StLVal.getQuals(), | |||
| 5284 | /*IsInitializer=*/true); | |||
| 5285 | // Store reductions address. | |||
| 5286 | LValue RedLVal = CGF.EmitLValueForField( | |||
| 5287 | Result.TDBase, | |||
| 5288 | *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions)); | |||
| 5289 | if (Data.Reductions) { | |||
| 5290 | CGF.EmitStoreOfScalar(Data.Reductions, RedLVal); | |||
| 5291 | } else { | |||
| 5292 | CGF.EmitNullInitialization(RedLVal.getAddress(CGF), | |||
| 5293 | CGF.getContext().VoidPtrTy); | |||
| 5294 | } | |||
| 5295 | enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 }; | |||
| 5296 | llvm::Value *TaskArgs[] = { | |||
| 5297 | UpLoc, | |||
| 5298 | ThreadID, | |||
| 5299 | Result.NewTask, | |||
| 5300 | IfVal, | |||
| 5301 | LBLVal.getPointer(CGF), | |||
| 5302 | UBLVal.getPointer(CGF), | |||
| 5303 | CGF.EmitLoadOfScalar(StLVal, Loc), | |||
| 5304 | llvm::ConstantInt::getSigned( | |||
| 5305 | CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler | |||
| 5306 | llvm::ConstantInt::getSigned( | |||
| 5307 | CGF.IntTy, Data.Schedule.getPointer() | |||
| 5308 | ? Data.Schedule.getInt() ? NumTasks : Grainsize | |||
| 5309 | : NoSchedule), | |||
| 5310 | Data.Schedule.getPointer() | |||
| 5311 | ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty, | |||
| 5312 | /*isSigned=*/false) | |||
| 5313 | : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0), | |||
| 5314 | Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 5315 | Result.TaskDupFn, CGF.VoidPtrTy) | |||
| 5316 | : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)}; | |||
| 5317 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 5318 | CGM.getModule(), OMPRTL___kmpc_taskloop), | |||
| 5319 | TaskArgs); | |||
| 5320 | } | |||
| 5321 | ||||
| 5322 | /// Emit reduction operation for each element of array (required for | |||
| 5323 | /// array sections) LHS op = RHS. | |||
| 5324 | /// \param Type Type of array. | |||
| 5325 | /// \param LHSVar Variable on the left side of the reduction operation | |||
| 5326 | /// (references element of array in original variable). | |||
| 5327 | /// \param RHSVar Variable on the right side of the reduction operation | |||
| 5328 | /// (references element of array in original variable). | |||
| 5329 | /// \param RedOpGen Generator of reduction operation with use of LHSVar and | |||
| 5330 | /// RHSVar. | |||
| 5331 | static void EmitOMPAggregateReduction( | |||
| 5332 | CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar, | |||
| 5333 | const VarDecl *RHSVar, | |||
| 5334 | const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *, | |||
| 5335 | const Expr *, const Expr *)> &RedOpGen, | |||
| 5336 | const Expr *XExpr = nullptr, const Expr *EExpr = nullptr, | |||
| 5337 | const Expr *UpExpr = nullptr) { | |||
| 5338 | // Perform element-by-element initialization. | |||
| 5339 | QualType ElementTy; | |||
| 5340 | Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar); | |||
| 5341 | Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar); | |||
| 5342 | ||||
| 5343 | // Drill down to the base element type on both arrays. | |||
| 5344 | const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe(); | |||
| 5345 | llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr); | |||
| 5346 | ||||
| 5347 | llvm::Value *RHSBegin = RHSAddr.getPointer(); | |||
| 5348 | llvm::Value *LHSBegin = LHSAddr.getPointer(); | |||
| 5349 | // Cast from pointer to array type to pointer to single element. | |||
| 5350 | llvm::Value *LHSEnd = | |||
| 5351 | CGF.Builder.CreateGEP(LHSAddr.getElementType(), LHSBegin, NumElements); | |||
| 5352 | // The basic structure here is a while-do loop. | |||
| 5353 | llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body"); | |||
| 5354 | llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done"); | |||
| 5355 | llvm::Value *IsEmpty = | |||
| 5356 | CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty"); | |||
| 5357 | CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); | |||
| 5358 | ||||
| 5359 | // Enter the loop body, making that address the current address. | |||
| 5360 | llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock(); | |||
| 5361 | CGF.EmitBlock(BodyBB); | |||
| 5362 | ||||
| 5363 | CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); | |||
| 5364 | ||||
| 5365 | llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI( | |||
| 5366 | RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast"); | |||
| 5367 | RHSElementPHI->addIncoming(RHSBegin, EntryBB); | |||
| 5368 | Address RHSElementCurrent = | |||
| 5369 | Address(RHSElementPHI, | |||
| 5370 | RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize)); | |||
| 5371 | ||||
| 5372 | llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI( | |||
| 5373 | LHSBegin->getType(), 2, "omp.arraycpy.destElementPast"); | |||
| 5374 | LHSElementPHI->addIncoming(LHSBegin, EntryBB); | |||
| 5375 | Address LHSElementCurrent = | |||
| 5376 | Address(LHSElementPHI, | |||
| 5377 | LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize)); | |||
| 5378 | ||||
| 5379 | // Emit copy. | |||
| 5380 | CodeGenFunction::OMPPrivateScope Scope(CGF); | |||
| 5381 | Scope.addPrivate(LHSVar, [=]() { return LHSElementCurrent; }); | |||
| 5382 | Scope.addPrivate(RHSVar, [=]() { return RHSElementCurrent; }); | |||
| 5383 | Scope.Privatize(); | |||
| 5384 | RedOpGen(CGF, XExpr, EExpr, UpExpr); | |||
| 5385 | Scope.ForceCleanup(); | |||
| 5386 | ||||
| 5387 | // Shift the address forward by one element. | |||
| 5388 | llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32( | |||
| 5389 | LHSAddr.getElementType(), LHSElementPHI, /*Idx0=*/1, | |||
| 5390 | "omp.arraycpy.dest.element"); | |||
| 5391 | llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32( | |||
| 5392 | RHSAddr.getElementType(), RHSElementPHI, /*Idx0=*/1, | |||
| 5393 | "omp.arraycpy.src.element"); | |||
| 5394 | // Check whether we've reached the end. | |||
| 5395 | llvm::Value *Done = | |||
| 5396 | CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done"); | |||
| 5397 | CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); | |||
| 5398 | LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock()); | |||
| 5399 | RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock()); | |||
| 5400 | ||||
| 5401 | // Done. | |||
| 5402 | CGF.EmitBlock(DoneBB, /*IsFinished=*/true); | |||
| 5403 | } | |||
| 5404 | ||||
| 5405 | /// Emit reduction combiner. If the combiner is a simple expression emit it as | |||
| 5406 | /// is, otherwise consider it as combiner of UDR decl and emit it as a call of | |||
| 5407 | /// UDR combiner function. | |||
| 5408 | static void emitReductionCombiner(CodeGenFunction &CGF, | |||
| 5409 | const Expr *ReductionOp) { | |||
| 5410 | if (const auto *CE = dyn_cast<CallExpr>(ReductionOp)) | |||
| 5411 | if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee())) | |||
| 5412 | if (const auto *DRE = | |||
| 5413 | dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts())) | |||
| 5414 | if (const auto *DRD = | |||
| 5415 | dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) { | |||
| 5416 | std::pair<llvm::Function *, llvm::Function *> Reduction = | |||
| 5417 | CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); | |||
| 5418 | RValue Func = RValue::get(Reduction.first); | |||
| 5419 | CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); | |||
| 5420 | CGF.EmitIgnoredExpr(ReductionOp); | |||
| 5421 | return; | |||
| 5422 | } | |||
| 5423 | CGF.EmitIgnoredExpr(ReductionOp); | |||
| 5424 | } | |||
| 5425 | ||||
| 5426 | llvm::Function *CGOpenMPRuntime::emitReductionFunction( | |||
| 5427 | SourceLocation Loc, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates, | |||
| 5428 | ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, | |||
| 5429 | ArrayRef<const Expr *> ReductionOps) { | |||
| 5430 | ASTContext &C = CGM.getContext(); | |||
| 5431 | ||||
| 5432 | // void reduction_func(void *LHSArg, void *RHSArg); | |||
| 5433 | FunctionArgList Args; | |||
| 5434 | ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, | |||
| 5435 | ImplicitParamDecl::Other); | |||
| 5436 | ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, | |||
| 5437 | ImplicitParamDecl::Other); | |||
| 5438 | Args.push_back(&LHSArg); | |||
| 5439 | Args.push_back(&RHSArg); | |||
| 5440 | const auto &CGFI = | |||
| 5441 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); | |||
| 5442 | std::string Name = getName({"omp", "reduction", "reduction_func"}); | |||
| 5443 | auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), | |||
| 5444 | llvm::GlobalValue::InternalLinkage, Name, | |||
| 5445 | &CGM.getModule()); | |||
| 5446 | CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); | |||
| 5447 | Fn->setDoesNotRecurse(); | |||
| 5448 | CodeGenFunction CGF(CGM); | |||
| 5449 | CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); | |||
| 5450 | ||||
| 5451 | // Dst = (void*[n])(LHSArg); | |||
| 5452 | // Src = (void*[n])(RHSArg); | |||
| 5453 | Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 5454 | CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)), | |||
| 5455 | ArgsType), CGF.getPointerAlign()); | |||
| 5456 | Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 5457 | CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)), | |||
| 5458 | ArgsType), CGF.getPointerAlign()); | |||
| 5459 | ||||
| 5460 | // ... | |||
| 5461 | // *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]); | |||
| 5462 | // ... | |||
| 5463 | CodeGenFunction::OMPPrivateScope Scope(CGF); | |||
| 5464 | auto IPriv = Privates.begin(); | |||
| 5465 | unsigned Idx = 0; | |||
| 5466 | for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) { | |||
| 5467 | const auto *RHSVar = | |||
| 5468 | cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl()); | |||
| 5469 | Scope.addPrivate(RHSVar, [&CGF, RHS, Idx, RHSVar]() { | |||
| 5470 | return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar); | |||
| 5471 | }); | |||
| 5472 | const auto *LHSVar = | |||
| 5473 | cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl()); | |||
| 5474 | Scope.addPrivate(LHSVar, [&CGF, LHS, Idx, LHSVar]() { | |||
| 5475 | return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar); | |||
| 5476 | }); | |||
| 5477 | QualType PrivTy = (*IPriv)->getType(); | |||
| 5478 | if (PrivTy->isVariablyModifiedType()) { | |||
| 5479 | // Get array size and emit VLA type. | |||
| 5480 | ++Idx; | |||
| 5481 | Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx); | |||
| 5482 | llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem); | |||
| 5483 | const VariableArrayType *VLA = | |||
| 5484 | CGF.getContext().getAsVariableArrayType(PrivTy); | |||
| 5485 | const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr()); | |||
| 5486 | CodeGenFunction::OpaqueValueMapping OpaqueMap( | |||
| 5487 | CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy))); | |||
| 5488 | CGF.EmitVariablyModifiedType(PrivTy); | |||
| 5489 | } | |||
| 5490 | } | |||
| 5491 | Scope.Privatize(); | |||
| 5492 | IPriv = Privates.begin(); | |||
| 5493 | auto ILHS = LHSExprs.begin(); | |||
| 5494 | auto IRHS = RHSExprs.begin(); | |||
| 5495 | for (const Expr *E : ReductionOps) { | |||
| 5496 | if ((*IPriv)->getType()->isArrayType()) { | |||
| 5497 | // Emit reduction for array section. | |||
| 5498 | const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); | |||
| 5499 | const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); | |||
| 5500 | EmitOMPAggregateReduction( | |||
| 5501 | CGF, (*IPriv)->getType(), LHSVar, RHSVar, | |||
| 5502 | [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) { | |||
| 5503 | emitReductionCombiner(CGF, E); | |||
| 5504 | }); | |||
| 5505 | } else { | |||
| 5506 | // Emit reduction for array subscript or single variable. | |||
| 5507 | emitReductionCombiner(CGF, E); | |||
| 5508 | } | |||
| 5509 | ++IPriv; | |||
| 5510 | ++ILHS; | |||
| 5511 | ++IRHS; | |||
| 5512 | } | |||
| 5513 | Scope.ForceCleanup(); | |||
| 5514 | CGF.FinishFunction(); | |||
| 5515 | return Fn; | |||
| 5516 | } | |||
| 5517 | ||||
| 5518 | void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF, | |||
| 5519 | const Expr *ReductionOp, | |||
| 5520 | const Expr *PrivateRef, | |||
| 5521 | const DeclRefExpr *LHS, | |||
| 5522 | const DeclRefExpr *RHS) { | |||
| 5523 | if (PrivateRef->getType()->isArrayType()) { | |||
| 5524 | // Emit reduction for array section. | |||
| 5525 | const auto *LHSVar = cast<VarDecl>(LHS->getDecl()); | |||
| 5526 | const auto *RHSVar = cast<VarDecl>(RHS->getDecl()); | |||
| 5527 | EmitOMPAggregateReduction( | |||
| 5528 | CGF, PrivateRef->getType(), LHSVar, RHSVar, | |||
| 5529 | [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) { | |||
| 5530 | emitReductionCombiner(CGF, ReductionOp); | |||
| 5531 | }); | |||
| 5532 | } else { | |||
| 5533 | // Emit reduction for array subscript or single variable. | |||
| 5534 | emitReductionCombiner(CGF, ReductionOp); | |||
| 5535 | } | |||
| 5536 | } | |||
| 5537 | ||||
| 5538 | void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc, | |||
| 5539 | ArrayRef<const Expr *> Privates, | |||
| 5540 | ArrayRef<const Expr *> LHSExprs, | |||
| 5541 | ArrayRef<const Expr *> RHSExprs, | |||
| 5542 | ArrayRef<const Expr *> ReductionOps, | |||
| 5543 | ReductionOptionsTy Options) { | |||
| 5544 | if (!CGF.HaveInsertPoint()) | |||
| 5545 | return; | |||
| 5546 | ||||
| 5547 | bool WithNowait = Options.WithNowait; | |||
| 5548 | bool SimpleReduction = Options.SimpleReduction; | |||
| 5549 | ||||
| 5550 | // Next code should be emitted for reduction: | |||
| 5551 | // | |||
| 5552 | // static kmp_critical_name lock = { 0 }; | |||
| 5553 | // | |||
| 5554 | // void reduce_func(void *lhs[<n>], void *rhs[<n>]) { | |||
| 5555 | // *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]); | |||
| 5556 | // ... | |||
| 5557 | // *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1], | |||
| 5558 | // *(Type<n>-1*)rhs[<n>-1]); | |||
| 5559 | // } | |||
| 5560 | // | |||
| 5561 | // ... | |||
| 5562 | // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]}; | |||
| 5563 | // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), | |||
| 5564 | // RedList, reduce_func, &<lock>)) { | |||
| 5565 | // case 1: | |||
| 5566 | // ... | |||
| 5567 | // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]); | |||
| 5568 | // ... | |||
| 5569 | // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>); | |||
| 5570 | // break; | |||
| 5571 | // case 2: | |||
| 5572 | // ... | |||
| 5573 | // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i])); | |||
| 5574 | // ... | |||
| 5575 | // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);] | |||
| 5576 | // break; | |||
| 5577 | // default:; | |||
| 5578 | // } | |||
| 5579 | // | |||
| 5580 | // if SimpleReduction is true, only the next code is generated: | |||
| 5581 | // ... | |||
| 5582 | // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]); | |||
| 5583 | // ... | |||
| 5584 | ||||
| 5585 | ASTContext &C = CGM.getContext(); | |||
| 5586 | ||||
| 5587 | if (SimpleReduction) { | |||
| 5588 | CodeGenFunction::RunCleanupsScope Scope(CGF); | |||
| 5589 | auto IPriv = Privates.begin(); | |||
| 5590 | auto ILHS = LHSExprs.begin(); | |||
| 5591 | auto IRHS = RHSExprs.begin(); | |||
| 5592 | for (const Expr *E : ReductionOps) { | |||
| 5593 | emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), | |||
| 5594 | cast<DeclRefExpr>(*IRHS)); | |||
| 5595 | ++IPriv; | |||
| 5596 | ++ILHS; | |||
| 5597 | ++IRHS; | |||
| 5598 | } | |||
| 5599 | return; | |||
| 5600 | } | |||
| 5601 | ||||
| 5602 | // 1. Build a list of reduction variables. | |||
| 5603 | // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; | |||
| 5604 | auto Size = RHSExprs.size(); | |||
| 5605 | for (const Expr *E : Privates) { | |||
| 5606 | if (E->getType()->isVariablyModifiedType()) | |||
| 5607 | // Reserve place for array size. | |||
| 5608 | ++Size; | |||
| 5609 | } | |||
| 5610 | llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); | |||
| 5611 | QualType ReductionArrayTy = | |||
| 5612 | C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, | |||
| 5613 | /*IndexTypeQuals=*/0); | |||
| 5614 | Address ReductionList = | |||
| 5615 | CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); | |||
| 5616 | auto IPriv = Privates.begin(); | |||
| 5617 | unsigned Idx = 0; | |||
| 5618 | for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { | |||
| 5619 | Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); | |||
| 5620 | CGF.Builder.CreateStore( | |||
| 5621 | CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 5622 | CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), | |||
| 5623 | Elem); | |||
| 5624 | if ((*IPriv)->getType()->isVariablyModifiedType()) { | |||
| 5625 | // Store array size. | |||
| 5626 | ++Idx; | |||
| 5627 | Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); | |||
| 5628 | llvm::Value *Size = CGF.Builder.CreateIntCast( | |||
| 5629 | CGF.getVLASize( | |||
| 5630 | CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) | |||
| 5631 | .NumElts, | |||
| 5632 | CGF.SizeTy, /*isSigned=*/false); | |||
| 5633 | CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), | |||
| 5634 | Elem); | |||
| 5635 | } | |||
| 5636 | } | |||
| 5637 | ||||
| 5638 | // 2. Emit reduce_func(). | |||
| 5639 | llvm::Function *ReductionFn = emitReductionFunction( | |||
| 5640 | Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, | |||
| 5641 | LHSExprs, RHSExprs, ReductionOps); | |||
| 5642 | ||||
| 5643 | // 3. Create static kmp_critical_name lock = { 0 }; | |||
| 5644 | std::string Name = getName({"reduction"}); | |||
| 5645 | llvm::Value *Lock = getCriticalRegionLock(Name); | |||
| 5646 | ||||
| 5647 | // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), | |||
| 5648 | // RedList, reduce_func, &<lock>); | |||
| 5649 | llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE); | |||
| 5650 | llvm::Value *ThreadId = getThreadID(CGF, Loc); | |||
| 5651 | llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); | |||
| 5652 | llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 5653 | ReductionList.getPointer(), CGF.VoidPtrTy); | |||
| 5654 | llvm::Value *Args[] = { | |||
| 5655 | IdentTLoc, // ident_t *<loc> | |||
| 5656 | ThreadId, // i32 <gtid> | |||
| 5657 | CGF.Builder.getInt32(RHSExprs.size()), // i32 <n> | |||
| 5658 | ReductionArrayTySize, // size_type sizeof(RedList) | |||
| 5659 | RL, // void *RedList | |||
| 5660 | ReductionFn, // void (*) (void *, void *) <reduce_func> | |||
| 5661 | Lock // kmp_critical_name *&<lock> | |||
| 5662 | }; | |||
| 5663 | llvm::Value *Res = CGF.EmitRuntimeCall( | |||
| 5664 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 5665 | CGM.getModule(), | |||
| 5666 | WithNowait ? OMPRTL___kmpc_reduce_nowait : OMPRTL___kmpc_reduce), | |||
| 5667 | Args); | |||
| 5668 | ||||
| 5669 | // 5. Build switch(res) | |||
| 5670 | llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default"); | |||
| 5671 | llvm::SwitchInst *SwInst = | |||
| 5672 | CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2); | |||
| 5673 | ||||
| 5674 | // 6. Build case 1: | |||
| 5675 | // ... | |||
| 5676 | // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]); | |||
| 5677 | // ... | |||
| 5678 | // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>); | |||
| 5679 | // break; | |||
| 5680 | llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1"); | |||
| 5681 | SwInst->addCase(CGF.Builder.getInt32(1), Case1BB); | |||
| 5682 | CGF.EmitBlock(Case1BB); | |||
| 5683 | ||||
| 5684 | // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>); | |||
| 5685 | llvm::Value *EndArgs[] = { | |||
| 5686 | IdentTLoc, // ident_t *<loc> | |||
| 5687 | ThreadId, // i32 <gtid> | |||
| 5688 | Lock // kmp_critical_name *&<lock> | |||
| 5689 | }; | |||
| 5690 | auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps]( | |||
| 5691 | CodeGenFunction &CGF, PrePostActionTy &Action) { | |||
| 5692 | CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); | |||
| 5693 | auto IPriv = Privates.begin(); | |||
| 5694 | auto ILHS = LHSExprs.begin(); | |||
| 5695 | auto IRHS = RHSExprs.begin(); | |||
| 5696 | for (const Expr *E : ReductionOps) { | |||
| 5697 | RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), | |||
| 5698 | cast<DeclRefExpr>(*IRHS)); | |||
| 5699 | ++IPriv; | |||
| 5700 | ++ILHS; | |||
| 5701 | ++IRHS; | |||
| 5702 | } | |||
| 5703 | }; | |||
| 5704 | RegionCodeGenTy RCG(CodeGen); | |||
| 5705 | CommonActionTy Action( | |||
| 5706 | nullptr, llvm::None, | |||
| 5707 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 5708 | CGM.getModule(), WithNowait ? OMPRTL___kmpc_end_reduce_nowait | |||
| 5709 | : OMPRTL___kmpc_end_reduce), | |||
| 5710 | EndArgs); | |||
| 5711 | RCG.setAction(Action); | |||
| 5712 | RCG(CGF); | |||
| 5713 | ||||
| 5714 | CGF.EmitBranch(DefaultBB); | |||
| 5715 | ||||
| 5716 | // 7. Build case 2: | |||
| 5717 | // ... | |||
| 5718 | // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i])); | |||
| 5719 | // ... | |||
| 5720 | // break; | |||
| 5721 | llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2"); | |||
| 5722 | SwInst->addCase(CGF.Builder.getInt32(2), Case2BB); | |||
| 5723 | CGF.EmitBlock(Case2BB); | |||
| 5724 | ||||
| 5725 | auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps]( | |||
| 5726 | CodeGenFunction &CGF, PrePostActionTy &Action) { | |||
| 5727 | auto ILHS = LHSExprs.begin(); | |||
| 5728 | auto IRHS = RHSExprs.begin(); | |||
| 5729 | auto IPriv = Privates.begin(); | |||
| 5730 | for (const Expr *E : ReductionOps) { | |||
| 5731 | const Expr *XExpr = nullptr; | |||
| 5732 | const Expr *EExpr = nullptr; | |||
| 5733 | const Expr *UpExpr = nullptr; | |||
| 5734 | BinaryOperatorKind BO = BO_Comma; | |||
| 5735 | if (const auto *BO = dyn_cast<BinaryOperator>(E)) { | |||
| 5736 | if (BO->getOpcode() == BO_Assign) { | |||
| 5737 | XExpr = BO->getLHS(); | |||
| 5738 | UpExpr = BO->getRHS(); | |||
| 5739 | } | |||
| 5740 | } | |||
| 5741 | // Try to emit update expression as a simple atomic. | |||
| 5742 | const Expr *RHSExpr = UpExpr; | |||
| 5743 | if (RHSExpr) { | |||
| 5744 | // Analyze RHS part of the whole expression. | |||
| 5745 | if (const auto *ACO = dyn_cast<AbstractConditionalOperator>( | |||
| 5746 | RHSExpr->IgnoreParenImpCasts())) { | |||
| 5747 | // If this is a conditional operator, analyze its condition for | |||
| 5748 | // min/max reduction operator. | |||
| 5749 | RHSExpr = ACO->getCond(); | |||
| 5750 | } | |||
| 5751 | if (const auto *BORHS = | |||
| 5752 | dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) { | |||
| 5753 | EExpr = BORHS->getRHS(); | |||
| 5754 | BO = BORHS->getOpcode(); | |||
| 5755 | } | |||
| 5756 | } | |||
| 5757 | if (XExpr) { | |||
| 5758 | const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); | |||
| 5759 | auto &&AtomicRedGen = [BO, VD, | |||
| 5760 | Loc](CodeGenFunction &CGF, const Expr *XExpr, | |||
| 5761 | const Expr *EExpr, const Expr *UpExpr) { | |||
| 5762 | LValue X = CGF.EmitLValue(XExpr); | |||
| 5763 | RValue E; | |||
| 5764 | if (EExpr) | |||
| 5765 | E = CGF.EmitAnyExpr(EExpr); | |||
| 5766 | CGF.EmitOMPAtomicSimpleUpdateExpr( | |||
| 5767 | X, E, BO, /*IsXLHSInRHSPart=*/true, | |||
| 5768 | llvm::AtomicOrdering::Monotonic, Loc, | |||
| 5769 | [&CGF, UpExpr, VD, Loc](RValue XRValue) { | |||
| 5770 | CodeGenFunction::OMPPrivateScope PrivateScope(CGF); | |||
| 5771 | PrivateScope.addPrivate( | |||
| 5772 | VD, [&CGF, VD, XRValue, Loc]() { | |||
| 5773 | Address LHSTemp = CGF.CreateMemTemp(VD->getType()); | |||
| 5774 | CGF.emitOMPSimpleStore( | |||
| 5775 | CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue, | |||
| 5776 | VD->getType().getNonReferenceType(), Loc); | |||
| 5777 | return LHSTemp; | |||
| 5778 | }); | |||
| 5779 | (void)PrivateScope.Privatize(); | |||
| 5780 | return CGF.EmitAnyExpr(UpExpr); | |||
| 5781 | }); | |||
| 5782 | }; | |||
| 5783 | if ((*IPriv)->getType()->isArrayType()) { | |||
| 5784 | // Emit atomic reduction for array section. | |||
| 5785 | const auto *RHSVar = | |||
| 5786 | cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); | |||
| 5787 | EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar, | |||
| 5788 | AtomicRedGen, XExpr, EExpr, UpExpr); | |||
| 5789 | } else { | |||
| 5790 | // Emit atomic reduction for array subscript or single variable. | |||
| 5791 | AtomicRedGen(CGF, XExpr, EExpr, UpExpr); | |||
| 5792 | } | |||
| 5793 | } else { | |||
| 5794 | // Emit as a critical region. | |||
| 5795 | auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *, | |||
| 5796 | const Expr *, const Expr *) { | |||
| 5797 | CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); | |||
| 5798 | std::string Name = RT.getName({"atomic_reduction"}); | |||
| 5799 | RT.emitCriticalRegion( | |||
| 5800 | CGF, Name, | |||
| 5801 | [=](CodeGenFunction &CGF, PrePostActionTy &Action) { | |||
| 5802 | Action.Enter(CGF); | |||
| 5803 | emitReductionCombiner(CGF, E); | |||
| 5804 | }, | |||
| 5805 | Loc); | |||
| 5806 | }; | |||
| 5807 | if ((*IPriv)->getType()->isArrayType()) { | |||
| 5808 | const auto *LHSVar = | |||
| 5809 | cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); | |||
| 5810 | const auto *RHSVar = | |||
| 5811 | cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); | |||
| 5812 | EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar, | |||
| 5813 | CritRedGen); | |||
| 5814 | } else { | |||
| 5815 | CritRedGen(CGF, nullptr, nullptr, nullptr); | |||
| 5816 | } | |||
| 5817 | } | |||
| 5818 | ++ILHS; | |||
| 5819 | ++IRHS; | |||
| 5820 | ++IPriv; | |||
| 5821 | } | |||
| 5822 | }; | |||
| 5823 | RegionCodeGenTy AtomicRCG(AtomicCodeGen); | |||
| 5824 | if (!WithNowait) { | |||
| 5825 | // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>); | |||
| 5826 | llvm::Value *EndArgs[] = { | |||
| 5827 | IdentTLoc, // ident_t *<loc> | |||
| 5828 | ThreadId, // i32 <gtid> | |||
| 5829 | Lock // kmp_critical_name *&<lock> | |||
| 5830 | }; | |||
| 5831 | CommonActionTy Action(nullptr, llvm::None, | |||
| 5832 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 5833 | CGM.getModule(), OMPRTL___kmpc_end_reduce), | |||
| 5834 | EndArgs); | |||
| 5835 | AtomicRCG.setAction(Action); | |||
| 5836 | AtomicRCG(CGF); | |||
| 5837 | } else { | |||
| 5838 | AtomicRCG(CGF); | |||
| 5839 | } | |||
| 5840 | ||||
| 5841 | CGF.EmitBranch(DefaultBB); | |||
| 5842 | CGF.EmitBlock(DefaultBB, /*IsFinished=*/true); | |||
| 5843 | } | |||
| 5844 | ||||
| 5845 | /// Generates unique name for artificial threadprivate variables. | |||
| 5846 | /// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>" | |||
| 5847 | static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix, | |||
| 5848 | const Expr *Ref) { | |||
| 5849 | SmallString<256> Buffer; | |||
| 5850 | llvm::raw_svector_ostream Out(Buffer); | |||
| 5851 | const clang::DeclRefExpr *DE; | |||
| 5852 | const VarDecl *D = ::getBaseDecl(Ref, DE); | |||
| 5853 | if (!D) | |||
| 5854 | D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl()); | |||
| 5855 | D = D->getCanonicalDecl(); | |||
| 5856 | std::string Name = CGM.getOpenMPRuntime().getName( | |||
| 5857 | {D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)}); | |||
| 5858 | Out << Prefix << Name << "_" | |||
| 5859 | << D->getCanonicalDecl()->getBeginLoc().getRawEncoding(); | |||
| 5860 | return std::string(Out.str()); | |||
| 5861 | } | |||
| 5862 | ||||
| 5863 | /// Emits reduction initializer function: | |||
| 5864 | /// \code | |||
| 5865 | /// void @.red_init(void* %arg, void* %orig) { | |||
| 5866 | /// %0 = bitcast void* %arg to <type>* | |||
| 5867 | /// store <type> <init>, <type>* %0 | |||
| 5868 | /// ret void | |||
| 5869 | /// } | |||
| 5870 | /// \endcode | |||
| 5871 | static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM, | |||
| 5872 | SourceLocation Loc, | |||
| 5873 | ReductionCodeGen &RCG, unsigned N) { | |||
| 5874 | ASTContext &C = CGM.getContext(); | |||
| 5875 | QualType VoidPtrTy = C.VoidPtrTy; | |||
| 5876 | VoidPtrTy.addRestrict(); | |||
| 5877 | FunctionArgList Args; | |||
| 5878 | ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy, | |||
| 5879 | ImplicitParamDecl::Other); | |||
| 5880 | ImplicitParamDecl ParamOrig(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy, | |||
| 5881 | ImplicitParamDecl::Other); | |||
| 5882 | Args.emplace_back(&Param); | |||
| 5883 | Args.emplace_back(&ParamOrig); | |||
| 5884 | const auto &FnInfo = | |||
| 5885 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); | |||
| 5886 | llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); | |||
| 5887 | std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""}); | |||
| 5888 | auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, | |||
| 5889 | Name, &CGM.getModule()); | |||
| 5890 | CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); | |||
| 5891 | Fn->setDoesNotRecurse(); | |||
| 5892 | CodeGenFunction CGF(CGM); | |||
| 5893 | CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc); | |||
| 5894 | Address PrivateAddr = CGF.EmitLoadOfPointer( | |||
| 5895 | CGF.GetAddrOfLocalVar(&Param), | |||
| 5896 | C.getPointerType(C.VoidPtrTy).castAs<PointerType>()); | |||
| 5897 | llvm::Value *Size = nullptr; | |||
| 5898 | // If the size of the reduction item is non-constant, load it from global | |||
| 5899 | // threadprivate variable. | |||
| 5900 | if (RCG.getSizes(N).second) { | |||
| 5901 | Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate( | |||
| 5902 | CGF, CGM.getContext().getSizeType(), | |||
| 5903 | generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N))); | |||
| 5904 | Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false, | |||
| 5905 | CGM.getContext().getSizeType(), Loc); | |||
| 5906 | } | |||
| 5907 | RCG.emitAggregateType(CGF, N, Size); | |||
| 5908 | LValue OrigLVal; | |||
| 5909 | // If initializer uses initializer from declare reduction construct, emit a | |||
| 5910 | // pointer to the address of the original reduction item (reuired by reduction | |||
| 5911 | // initializer) | |||
| 5912 | if (RCG.usesReductionInitializer(N)) { | |||
| 5913 | Address SharedAddr = CGF.GetAddrOfLocalVar(&ParamOrig); | |||
| 5914 | SharedAddr = CGF.EmitLoadOfPointer( | |||
| 5915 | SharedAddr, | |||
| 5916 | CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr()); | |||
| 5917 | OrigLVal = CGF.MakeAddrLValue(SharedAddr, CGM.getContext().VoidPtrTy); | |||
| 5918 | } else { | |||
| 5919 | OrigLVal = CGF.MakeNaturalAlignAddrLValue( | |||
| 5920 | llvm::ConstantPointerNull::get(CGM.VoidPtrTy), | |||
| 5921 | CGM.getContext().VoidPtrTy); | |||
| 5922 | } | |||
| 5923 | // Emit the initializer: | |||
| 5924 | // %0 = bitcast void* %arg to <type>* | |||
| 5925 | // store <type> <init>, <type>* %0 | |||
| 5926 | RCG.emitInitialization(CGF, N, PrivateAddr, OrigLVal, | |||
| 5927 | [](CodeGenFunction &) { return false; }); | |||
| 5928 | CGF.FinishFunction(); | |||
| 5929 | return Fn; | |||
| 5930 | } | |||
| 5931 | ||||
| 5932 | /// Emits reduction combiner function: | |||
| 5933 | /// \code | |||
| 5934 | /// void @.red_comb(void* %arg0, void* %arg1) { | |||
| 5935 | /// %lhs = bitcast void* %arg0 to <type>* | |||
| 5936 | /// %rhs = bitcast void* %arg1 to <type>* | |||
| 5937 | /// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs) | |||
| 5938 | /// store <type> %2, <type>* %lhs | |||
| 5939 | /// ret void | |||
| 5940 | /// } | |||
| 5941 | /// \endcode | |||
| 5942 | static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM, | |||
| 5943 | SourceLocation Loc, | |||
| 5944 | ReductionCodeGen &RCG, unsigned N, | |||
| 5945 | const Expr *ReductionOp, | |||
| 5946 | const Expr *LHS, const Expr *RHS, | |||
| 5947 | const Expr *PrivateRef) { | |||
| 5948 | ASTContext &C = CGM.getContext(); | |||
| 5949 | const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl()); | |||
| 5950 | const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl()); | |||
| 5951 | FunctionArgList Args; | |||
| 5952 | ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, | |||
| 5953 | C.VoidPtrTy, ImplicitParamDecl::Other); | |||
| 5954 | ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, | |||
| 5955 | ImplicitParamDecl::Other); | |||
| 5956 | Args.emplace_back(&ParamInOut); | |||
| 5957 | Args.emplace_back(&ParamIn); | |||
| 5958 | const auto &FnInfo = | |||
| 5959 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); | |||
| 5960 | llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); | |||
| 5961 | std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""}); | |||
| 5962 | auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, | |||
| 5963 | Name, &CGM.getModule()); | |||
| 5964 | CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); | |||
| 5965 | Fn->setDoesNotRecurse(); | |||
| 5966 | CodeGenFunction CGF(CGM); | |||
| 5967 | CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc); | |||
| 5968 | llvm::Value *Size = nullptr; | |||
| 5969 | // If the size of the reduction item is non-constant, load it from global | |||
| 5970 | // threadprivate variable. | |||
| 5971 | if (RCG.getSizes(N).second) { | |||
| 5972 | Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate( | |||
| 5973 | CGF, CGM.getContext().getSizeType(), | |||
| 5974 | generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N))); | |||
| 5975 | Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false, | |||
| 5976 | CGM.getContext().getSizeType(), Loc); | |||
| 5977 | } | |||
| 5978 | RCG.emitAggregateType(CGF, N, Size); | |||
| 5979 | // Remap lhs and rhs variables to the addresses of the function arguments. | |||
| 5980 | // %lhs = bitcast void* %arg0 to <type>* | |||
| 5981 | // %rhs = bitcast void* %arg1 to <type>* | |||
| 5982 | CodeGenFunction::OMPPrivateScope PrivateScope(CGF); | |||
| 5983 | PrivateScope.addPrivate(LHSVD, [&C, &CGF, &ParamInOut, LHSVD]() { | |||
| 5984 | // Pull out the pointer to the variable. | |||
| 5985 | Address PtrAddr = CGF.EmitLoadOfPointer( | |||
| 5986 | CGF.GetAddrOfLocalVar(&ParamInOut), | |||
| 5987 | C.getPointerType(C.VoidPtrTy).castAs<PointerType>()); | |||
| 5988 | return CGF.Builder.CreateElementBitCast( | |||
| 5989 | PtrAddr, CGF.ConvertTypeForMem(LHSVD->getType())); | |||
| 5990 | }); | |||
| 5991 | PrivateScope.addPrivate(RHSVD, [&C, &CGF, &ParamIn, RHSVD]() { | |||
| 5992 | // Pull out the pointer to the variable. | |||
| 5993 | Address PtrAddr = CGF.EmitLoadOfPointer( | |||
| 5994 | CGF.GetAddrOfLocalVar(&ParamIn), | |||
| 5995 | C.getPointerType(C.VoidPtrTy).castAs<PointerType>()); | |||
| 5996 | return CGF.Builder.CreateElementBitCast( | |||
| 5997 | PtrAddr, CGF.ConvertTypeForMem(RHSVD->getType())); | |||
| 5998 | }); | |||
| 5999 | PrivateScope.Privatize(); | |||
| 6000 | // Emit the combiner body: | |||
| 6001 | // %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs) | |||
| 6002 | // store <type> %2, <type>* %lhs | |||
| 6003 | CGM.getOpenMPRuntime().emitSingleReductionCombiner( | |||
| 6004 | CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS), | |||
| 6005 | cast<DeclRefExpr>(RHS)); | |||
| 6006 | CGF.FinishFunction(); | |||
| 6007 | return Fn; | |||
| 6008 | } | |||
| 6009 | ||||
| 6010 | /// Emits reduction finalizer function: | |||
| 6011 | /// \code | |||
| 6012 | /// void @.red_fini(void* %arg) { | |||
| 6013 | /// %0 = bitcast void* %arg to <type>* | |||
| 6014 | /// <destroy>(<type>* %0) | |||
| 6015 | /// ret void | |||
| 6016 | /// } | |||
| 6017 | /// \endcode | |||
| 6018 | static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM, | |||
| 6019 | SourceLocation Loc, | |||
| 6020 | ReductionCodeGen &RCG, unsigned N) { | |||
| 6021 | if (!RCG.needCleanups(N)) | |||
| 6022 | return nullptr; | |||
| 6023 | ASTContext &C = CGM.getContext(); | |||
| 6024 | FunctionArgList Args; | |||
| 6025 | ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, | |||
| 6026 | ImplicitParamDecl::Other); | |||
| 6027 | Args.emplace_back(&Param); | |||
| 6028 | const auto &FnInfo = | |||
| 6029 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); | |||
| 6030 | llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); | |||
| 6031 | std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""}); | |||
| 6032 | auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, | |||
| 6033 | Name, &CGM.getModule()); | |||
| 6034 | CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); | |||
| 6035 | Fn->setDoesNotRecurse(); | |||
| 6036 | CodeGenFunction CGF(CGM); | |||
| 6037 | CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc); | |||
| 6038 | Address PrivateAddr = CGF.EmitLoadOfPointer( | |||
| 6039 | CGF.GetAddrOfLocalVar(&Param), | |||
| 6040 | C.getPointerType(C.VoidPtrTy).castAs<PointerType>()); | |||
| 6041 | llvm::Value *Size = nullptr; | |||
| 6042 | // If the size of the reduction item is non-constant, load it from global | |||
| 6043 | // threadprivate variable. | |||
| 6044 | if (RCG.getSizes(N).second) { | |||
| 6045 | Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate( | |||
| 6046 | CGF, CGM.getContext().getSizeType(), | |||
| 6047 | generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N))); | |||
| 6048 | Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false, | |||
| 6049 | CGM.getContext().getSizeType(), Loc); | |||
| 6050 | } | |||
| 6051 | RCG.emitAggregateType(CGF, N, Size); | |||
| 6052 | // Emit the finalizer body: | |||
| 6053 | // <destroy>(<type>* %0) | |||
| 6054 | RCG.emitCleanups(CGF, N, PrivateAddr); | |||
| 6055 | CGF.FinishFunction(Loc); | |||
| 6056 | return Fn; | |||
| 6057 | } | |||
| 6058 | ||||
| 6059 | llvm::Value *CGOpenMPRuntime::emitTaskReductionInit( | |||
| 6060 | CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs, | |||
| 6061 | ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) { | |||
| 6062 | if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty()) | |||
| 6063 | return nullptr; | |||
| 6064 | ||||
| 6065 | // Build typedef struct: | |||
| 6066 | // kmp_taskred_input { | |||
| 6067 | // void *reduce_shar; // shared reduction item | |||
| 6068 | // void *reduce_orig; // original reduction item used for initialization | |||
| 6069 | // size_t reduce_size; // size of data item | |||
| 6070 | // void *reduce_init; // data initialization routine | |||
| 6071 | // void *reduce_fini; // data finalization routine | |||
| 6072 | // void *reduce_comb; // data combiner routine | |||
| 6073 | // kmp_task_red_flags_t flags; // flags for additional info from compiler | |||
| 6074 | // } kmp_taskred_input_t; | |||
| 6075 | ASTContext &C = CGM.getContext(); | |||
| 6076 | RecordDecl *RD = C.buildImplicitRecord("kmp_taskred_input_t"); | |||
| 6077 | RD->startDefinition(); | |||
| 6078 | const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); | |||
| 6079 | const FieldDecl *OrigFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); | |||
| 6080 | const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType()); | |||
| 6081 | const FieldDecl *InitFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); | |||
| 6082 | const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); | |||
| 6083 | const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); | |||
| 6084 | const FieldDecl *FlagsFD = addFieldToRecordDecl( | |||
| 6085 | C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false)); | |||
| 6086 | RD->completeDefinition(); | |||
| 6087 | QualType RDType = C.getRecordType(RD); | |||
| 6088 | unsigned Size = Data.ReductionVars.size(); | |||
| 6089 | llvm::APInt ArraySize(/*numBits=*/64, Size); | |||
| 6090 | QualType ArrayRDType = C.getConstantArrayType( | |||
| 6091 | RDType, ArraySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); | |||
| 6092 | // kmp_task_red_input_t .rd_input.[Size]; | |||
| 6093 | Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input."); | |||
| 6094 | ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionOrigs, | |||
| 6095 | Data.ReductionCopies, Data.ReductionOps); | |||
| 6096 | for (unsigned Cnt = 0; Cnt < Size; ++Cnt) { | |||
| 6097 | // kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt]; | |||
| 6098 | llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0), | |||
| 6099 | llvm::ConstantInt::get(CGM.SizeTy, Cnt)}; | |||
| 6100 | llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP( | |||
| 6101 | TaskRedInput.getPointer(), Idxs, | |||
| 6102 | /*SignedIndices=*/false, /*IsSubtraction=*/false, Loc, | |||
| 6103 | ".rd_input.gep."); | |||
| 6104 | LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType); | |||
| 6105 | // ElemLVal.reduce_shar = &Shareds[Cnt]; | |||
| 6106 | LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD); | |||
| 6107 | RCG.emitSharedOrigLValue(CGF, Cnt); | |||
| 6108 | llvm::Value *CastedShared = | |||
| 6109 | CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer(CGF)); | |||
| 6110 | CGF.EmitStoreOfScalar(CastedShared, SharedLVal); | |||
| 6111 | // ElemLVal.reduce_orig = &Origs[Cnt]; | |||
| 6112 | LValue OrigLVal = CGF.EmitLValueForField(ElemLVal, OrigFD); | |||
| 6113 | llvm::Value *CastedOrig = | |||
| 6114 | CGF.EmitCastToVoidPtr(RCG.getOrigLValue(Cnt).getPointer(CGF)); | |||
| 6115 | CGF.EmitStoreOfScalar(CastedOrig, OrigLVal); | |||
| 6116 | RCG.emitAggregateType(CGF, Cnt); | |||
| 6117 | llvm::Value *SizeValInChars; | |||
| 6118 | llvm::Value *SizeVal; | |||
| 6119 | std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt); | |||
| 6120 | // We use delayed creation/initialization for VLAs and array sections. It is | |||
| 6121 | // required because runtime does not provide the way to pass the sizes of | |||
| 6122 | // VLAs/array sections to initializer/combiner/finalizer functions. Instead | |||
| 6123 | // threadprivate global variables are used to store these values and use | |||
| 6124 | // them in the functions. | |||
| 6125 | bool DelayedCreation = !!SizeVal; | |||
| 6126 | SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy, | |||
| 6127 | /*isSigned=*/false); | |||
| 6128 | LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD); | |||
| 6129 | CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal); | |||
| 6130 | // ElemLVal.reduce_init = init; | |||
| 6131 | LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD); | |||
| 6132 | llvm::Value *InitAddr = | |||
| 6133 | CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt)); | |||
| 6134 | CGF.EmitStoreOfScalar(InitAddr, InitLVal); | |||
| 6135 | // ElemLVal.reduce_fini = fini; | |||
| 6136 | LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD); | |||
| 6137 | llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt); | |||
| 6138 | llvm::Value *FiniAddr = Fini | |||
| 6139 | ? CGF.EmitCastToVoidPtr(Fini) | |||
| 6140 | : llvm::ConstantPointerNull::get(CGM.VoidPtrTy); | |||
| 6141 | CGF.EmitStoreOfScalar(FiniAddr, FiniLVal); | |||
| 6142 | // ElemLVal.reduce_comb = comb; | |||
| 6143 | LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD); | |||
| 6144 | llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction( | |||
| 6145 | CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt], | |||
| 6146 | RHSExprs[Cnt], Data.ReductionCopies[Cnt])); | |||
| 6147 | CGF.EmitStoreOfScalar(CombAddr, CombLVal); | |||
| 6148 | // ElemLVal.flags = 0; | |||
| 6149 | LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD); | |||
| 6150 | if (DelayedCreation) { | |||
| 6151 | CGF.EmitStoreOfScalar( | |||
| 6152 | llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*isSigned=*/true), | |||
| 6153 | FlagsLVal); | |||
| 6154 | } else | |||
| 6155 | CGF.EmitNullInitialization(FlagsLVal.getAddress(CGF), | |||
| 6156 | FlagsLVal.getType()); | |||
| 6157 | } | |||
| 6158 | if (Data.IsReductionWithTaskMod) { | |||
| 6159 | // Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int | |||
| 6160 | // is_ws, int num, void *data); | |||
| 6161 | llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc); | |||
| 6162 | llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), | |||
| 6163 | CGM.IntTy, /*isSigned=*/true); | |||
| 6164 | llvm::Value *Args[] = { | |||
| 6165 | IdentTLoc, GTid, | |||
| 6166 | llvm::ConstantInt::get(CGM.IntTy, Data.IsWorksharingReduction ? 1 : 0, | |||
| 6167 | /*isSigned=*/true), | |||
| 6168 | llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true), | |||
| 6169 | CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 6170 | TaskRedInput.getPointer(), CGM.VoidPtrTy)}; | |||
| 6171 | return CGF.EmitRuntimeCall( | |||
| 6172 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 6173 | CGM.getModule(), OMPRTL___kmpc_taskred_modifier_init), | |||
| 6174 | Args); | |||
| 6175 | } | |||
| 6176 | // Build call void *__kmpc_taskred_init(int gtid, int num_data, void *data); | |||
| 6177 | llvm::Value *Args[] = { | |||
| 6178 | CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy, | |||
| 6179 | /*isSigned=*/true), | |||
| 6180 | llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true), | |||
| 6181 | CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(), | |||
| 6182 | CGM.VoidPtrTy)}; | |||
| 6183 | return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 6184 | CGM.getModule(), OMPRTL___kmpc_taskred_init), | |||
| 6185 | Args); | |||
| 6186 | } | |||
| 6187 | ||||
| 6188 | void CGOpenMPRuntime::emitTaskReductionFini(CodeGenFunction &CGF, | |||
| 6189 | SourceLocation Loc, | |||
| 6190 | bool IsWorksharingReduction) { | |||
| 6191 | // Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int | |||
| 6192 | // is_ws, int num, void *data); | |||
| 6193 | llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc); | |||
| 6194 | llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), | |||
| 6195 | CGM.IntTy, /*isSigned=*/true); | |||
| 6196 | llvm::Value *Args[] = {IdentTLoc, GTid, | |||
| 6197 | llvm::ConstantInt::get(CGM.IntTy, | |||
| 6198 | IsWorksharingReduction ? 1 : 0, | |||
| 6199 | /*isSigned=*/true)}; | |||
| 6200 | (void)CGF.EmitRuntimeCall( | |||
| 6201 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 6202 | CGM.getModule(), OMPRTL___kmpc_task_reduction_modifier_fini), | |||
| 6203 | Args); | |||
| 6204 | } | |||
| 6205 | ||||
| 6206 | void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF, | |||
| 6207 | SourceLocation Loc, | |||
| 6208 | ReductionCodeGen &RCG, | |||
| 6209 | unsigned N) { | |||
| 6210 | auto Sizes = RCG.getSizes(N); | |||
| 6211 | // Emit threadprivate global variable if the type is non-constant | |||
| 6212 | // (Sizes.second = nullptr). | |||
| 6213 | if (Sizes.second) { | |||
| 6214 | llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy, | |||
| 6215 | /*isSigned=*/false); | |||
| 6216 | Address SizeAddr = getAddrOfArtificialThreadPrivate( | |||
| 6217 | CGF, CGM.getContext().getSizeType(), | |||
| 6218 | generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N))); | |||
| 6219 | CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false); | |||
| 6220 | } | |||
| 6221 | } | |||
| 6222 | ||||
| 6223 | Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF, | |||
| 6224 | SourceLocation Loc, | |||
| 6225 | llvm::Value *ReductionsPtr, | |||
| 6226 | LValue SharedLVal) { | |||
| 6227 | // Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void | |||
| 6228 | // *d); | |||
| 6229 | llvm::Value *Args[] = {CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), | |||
| 6230 | CGM.IntTy, | |||
| 6231 | /*isSigned=*/true), | |||
| 6232 | ReductionsPtr, | |||
| 6233 | CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 6234 | SharedLVal.getPointer(CGF), CGM.VoidPtrTy)}; | |||
| 6235 | return Address( | |||
| 6236 | CGF.EmitRuntimeCall( | |||
| 6237 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 6238 | CGM.getModule(), OMPRTL___kmpc_task_reduction_get_th_data), | |||
| 6239 | Args), | |||
| 6240 | SharedLVal.getAlignment()); | |||
| 6241 | } | |||
| 6242 | ||||
| 6243 | void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF, | |||
| 6244 | SourceLocation Loc) { | |||
| 6245 | if (!CGF.HaveInsertPoint()) | |||
| 6246 | return; | |||
| 6247 | ||||
| 6248 | if (CGF.CGM.getLangOpts().OpenMPIRBuilder) { | |||
| 6249 | OMPBuilder.createTaskwait(CGF.Builder); | |||
| 6250 | } else { | |||
| 6251 | // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 | |||
| 6252 | // global_tid); | |||
| 6253 | llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; | |||
| 6254 | // Ignore return result until untied tasks are supported. | |||
| 6255 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 6256 | CGM.getModule(), OMPRTL___kmpc_omp_taskwait), | |||
| 6257 | Args); | |||
| 6258 | } | |||
| 6259 | ||||
| 6260 | if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) | |||
| 6261 | Region->emitUntiedSwitch(CGF); | |||
| 6262 | } | |||
| 6263 | ||||
| 6264 | void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF, | |||
| 6265 | OpenMPDirectiveKind InnerKind, | |||
| 6266 | const RegionCodeGenTy &CodeGen, | |||
| 6267 | bool HasCancel) { | |||
| 6268 | if (!CGF.HaveInsertPoint()) | |||
| 6269 | return; | |||
| 6270 | InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel, | |||
| 6271 | InnerKind != OMPD_critical && | |||
| 6272 | InnerKind != OMPD_master && | |||
| 6273 | InnerKind != OMPD_masked); | |||
| 6274 | CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr); | |||
| 6275 | } | |||
| 6276 | ||||
| 6277 | namespace { | |||
| 6278 | enum RTCancelKind { | |||
| 6279 | CancelNoreq = 0, | |||
| 6280 | CancelParallel = 1, | |||
| 6281 | CancelLoop = 2, | |||
| 6282 | CancelSections = 3, | |||
| 6283 | CancelTaskgroup = 4 | |||
| 6284 | }; | |||
| 6285 | } // anonymous namespace | |||
| 6286 | ||||
| 6287 | static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) { | |||
| 6288 | RTCancelKind CancelKind = CancelNoreq; | |||
| 6289 | if (CancelRegion == OMPD_parallel) | |||
| 6290 | CancelKind = CancelParallel; | |||
| 6291 | else if (CancelRegion == OMPD_for) | |||
| 6292 | CancelKind = CancelLoop; | |||
| 6293 | else if (CancelRegion == OMPD_sections) | |||
| 6294 | CancelKind = CancelSections; | |||
| 6295 | else { | |||
| 6296 | assert(CancelRegion == OMPD_taskgroup)((void)0); | |||
| 6297 | CancelKind = CancelTaskgroup; | |||
| 6298 | } | |||
| 6299 | return CancelKind; | |||
| 6300 | } | |||
| 6301 | ||||
| 6302 | void CGOpenMPRuntime::emitCancellationPointCall( | |||
| 6303 | CodeGenFunction &CGF, SourceLocation Loc, | |||
| 6304 | OpenMPDirectiveKind CancelRegion) { | |||
| 6305 | if (!CGF.HaveInsertPoint()) | |||
| 6306 | return; | |||
| 6307 | // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32 | |||
| 6308 | // global_tid, kmp_int32 cncl_kind); | |||
| 6309 | if (auto *OMPRegionInfo = | |||
| 6310 | dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { | |||
| 6311 | // For 'cancellation point taskgroup', the task region info may not have a | |||
| 6312 | // cancel. This may instead happen in another adjacent task. | |||
| 6313 | if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) { | |||
| 6314 | llvm::Value *Args[] = { | |||
| 6315 | emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), | |||
| 6316 | CGF.Builder.getInt32(getCancellationKind(CancelRegion))}; | |||
| 6317 | // Ignore return result until untied tasks are supported. | |||
| 6318 | llvm::Value *Result = CGF.EmitRuntimeCall( | |||
| 6319 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 6320 | CGM.getModule(), OMPRTL___kmpc_cancellationpoint), | |||
| 6321 | Args); | |||
| 6322 | // if (__kmpc_cancellationpoint()) { | |||
| 6323 | // call i32 @__kmpc_cancel_barrier( // for parallel cancellation only | |||
| 6324 | // exit from construct; | |||
| 6325 | // } | |||
| 6326 | llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit"); | |||
| 6327 | llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue"); | |||
| 6328 | llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result); | |||
| 6329 | CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); | |||
| 6330 | CGF.EmitBlock(ExitBB); | |||
| 6331 | if (CancelRegion == OMPD_parallel) | |||
| 6332 | emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false); | |||
| 6333 | // exit from construct; | |||
| 6334 | CodeGenFunction::JumpDest CancelDest = | |||
| 6335 | CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); | |||
| 6336 | CGF.EmitBranchThroughCleanup(CancelDest); | |||
| 6337 | CGF.EmitBlock(ContBB, /*IsFinished=*/true); | |||
| 6338 | } | |||
| 6339 | } | |||
| 6340 | } | |||
| 6341 | ||||
| 6342 | void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc, | |||
| 6343 | const Expr *IfCond, | |||
| 6344 | OpenMPDirectiveKind CancelRegion) { | |||
| 6345 | if (!CGF.HaveInsertPoint()) | |||
| 6346 | return; | |||
| 6347 | // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid, | |||
| 6348 | // kmp_int32 cncl_kind); | |||
| 6349 | auto &M = CGM.getModule(); | |||
| 6350 | if (auto *OMPRegionInfo = | |||
| 6351 | dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { | |||
| 6352 | auto &&ThenGen = [this, &M, Loc, CancelRegion, | |||
| 6353 | OMPRegionInfo](CodeGenFunction &CGF, PrePostActionTy &) { | |||
| 6354 | CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); | |||
| 6355 | llvm::Value *Args[] = { | |||
| 6356 | RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc), | |||
| 6357 | CGF.Builder.getInt32(getCancellationKind(CancelRegion))}; | |||
| 6358 | // Ignore return result until untied tasks are supported. | |||
| 6359 | llvm::Value *Result = CGF.EmitRuntimeCall( | |||
| 6360 | OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_cancel), Args); | |||
| 6361 | // if (__kmpc_cancel()) { | |||
| 6362 | // call i32 @__kmpc_cancel_barrier( // for parallel cancellation only | |||
| 6363 | // exit from construct; | |||
| 6364 | // } | |||
| 6365 | llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit"); | |||
| 6366 | llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue"); | |||
| 6367 | llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result); | |||
| 6368 | CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); | |||
| 6369 | CGF.EmitBlock(ExitBB); | |||
| 6370 | if (CancelRegion == OMPD_parallel) | |||
| 6371 | RT.emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false); | |||
| 6372 | // exit from construct; | |||
| 6373 | CodeGenFunction::JumpDest CancelDest = | |||
| 6374 | CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); | |||
| 6375 | CGF.EmitBranchThroughCleanup(CancelDest); | |||
| 6376 | CGF.EmitBlock(ContBB, /*IsFinished=*/true); | |||
| 6377 | }; | |||
| 6378 | if (IfCond) { | |||
| 6379 | emitIfClause(CGF, IfCond, ThenGen, | |||
| 6380 | [](CodeGenFunction &, PrePostActionTy &) {}); | |||
| 6381 | } else { | |||
| 6382 | RegionCodeGenTy ThenRCG(ThenGen); | |||
| 6383 | ThenRCG(CGF); | |||
| 6384 | } | |||
| 6385 | } | |||
| 6386 | } | |||
| 6387 | ||||
| 6388 | namespace { | |||
| 6389 | /// Cleanup action for uses_allocators support. | |||
| 6390 | class OMPUsesAllocatorsActionTy final : public PrePostActionTy { | |||
| 6391 | ArrayRef<std::pair<const Expr *, const Expr *>> Allocators; | |||
| 6392 | ||||
| 6393 | public: | |||
| 6394 | OMPUsesAllocatorsActionTy( | |||
| 6395 | ArrayRef<std::pair<const Expr *, const Expr *>> Allocators) | |||
| 6396 | : Allocators(Allocators) {} | |||
| 6397 | void Enter(CodeGenFunction &CGF) override { | |||
| 6398 | if (!CGF.HaveInsertPoint()) | |||
| 6399 | return; | |||
| 6400 | for (const auto &AllocatorData : Allocators) { | |||
| 6401 | CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsInit( | |||
| 6402 | CGF, AllocatorData.first, AllocatorData.second); | |||
| 6403 | } | |||
| 6404 | } | |||
| 6405 | void Exit(CodeGenFunction &CGF) override { | |||
| 6406 | if (!CGF.HaveInsertPoint()) | |||
| 6407 | return; | |||
| 6408 | for (const auto &AllocatorData : Allocators) { | |||
| 6409 | CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsFini(CGF, | |||
| 6410 | AllocatorData.first); | |||
| 6411 | } | |||
| 6412 | } | |||
| 6413 | }; | |||
| 6414 | } // namespace | |||
| 6415 | ||||
| 6416 | void CGOpenMPRuntime::emitTargetOutlinedFunction( | |||
| 6417 | const OMPExecutableDirective &D, StringRef ParentName, | |||
| 6418 | llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, | |||
| 6419 | bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { | |||
| 6420 | assert(!ParentName.empty() && "Invalid target region parent name!")((void)0); | |||
| 6421 | HasEmittedTargetRegion = true; | |||
| 6422 | SmallVector<std::pair<const Expr *, const Expr *>, 4> Allocators; | |||
| 6423 | for (const auto *C : D.getClausesOfKind<OMPUsesAllocatorsClause>()) { | |||
| 6424 | for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) { | |||
| 6425 | const OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I); | |||
| 6426 | if (!D.AllocatorTraits) | |||
| 6427 | continue; | |||
| 6428 | Allocators.emplace_back(D.Allocator, D.AllocatorTraits); | |||
| 6429 | } | |||
| 6430 | } | |||
| 6431 | OMPUsesAllocatorsActionTy UsesAllocatorAction(Allocators); | |||
| 6432 | CodeGen.setAction(UsesAllocatorAction); | |||
| 6433 | emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, | |||
| 6434 | IsOffloadEntry, CodeGen); | |||
| 6435 | } | |||
| 6436 | ||||
| 6437 | void CGOpenMPRuntime::emitUsesAllocatorsInit(CodeGenFunction &CGF, | |||
| 6438 | const Expr *Allocator, | |||
| 6439 | const Expr *AllocatorTraits) { | |||
| 6440 | llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc()); | |||
| 6441 | ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true); | |||
| 6442 | // Use default memspace handle. | |||
| 6443 | llvm::Value *MemSpaceHandle = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); | |||
| 6444 | llvm::Value *NumTraits = llvm::ConstantInt::get( | |||
| 6445 | CGF.IntTy, cast<ConstantArrayType>( | |||
| 6446 | AllocatorTraits->getType()->getAsArrayTypeUnsafe()) | |||
| 6447 | ->getSize() | |||
| 6448 | .getLimitedValue()); | |||
| 6449 | LValue AllocatorTraitsLVal = CGF.EmitLValue(AllocatorTraits); | |||
| 6450 | Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 6451 | AllocatorTraitsLVal.getAddress(CGF), CGF.VoidPtrPtrTy); | |||
| 6452 | AllocatorTraitsLVal = CGF.MakeAddrLValue(Addr, CGF.getContext().VoidPtrTy, | |||
| 6453 | AllocatorTraitsLVal.getBaseInfo(), | |||
| 6454 | AllocatorTraitsLVal.getTBAAInfo()); | |||
| 6455 | llvm::Value *Traits = | |||
| 6456 | CGF.EmitLoadOfScalar(AllocatorTraitsLVal, AllocatorTraits->getExprLoc()); | |||
| 6457 | ||||
| 6458 | llvm::Value *AllocatorVal = | |||
| 6459 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 6460 | CGM.getModule(), OMPRTL___kmpc_init_allocator), | |||
| 6461 | {ThreadId, MemSpaceHandle, NumTraits, Traits}); | |||
| 6462 | // Store to allocator. | |||
| 6463 | CGF.EmitVarDecl(*cast<VarDecl>( | |||
| 6464 | cast<DeclRefExpr>(Allocator->IgnoreParenImpCasts())->getDecl())); | |||
| 6465 | LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts()); | |||
| 6466 | AllocatorVal = | |||
| 6467 | CGF.EmitScalarConversion(AllocatorVal, CGF.getContext().VoidPtrTy, | |||
| 6468 | Allocator->getType(), Allocator->getExprLoc()); | |||
| 6469 | CGF.EmitStoreOfScalar(AllocatorVal, AllocatorLVal); | |||
| 6470 | } | |||
| 6471 | ||||
| 6472 | void CGOpenMPRuntime::emitUsesAllocatorsFini(CodeGenFunction &CGF, | |||
| 6473 | const Expr *Allocator) { | |||
| 6474 | llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc()); | |||
| 6475 | ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true); | |||
| 6476 | LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts()); | |||
| 6477 | llvm::Value *AllocatorVal = | |||
| 6478 | CGF.EmitLoadOfScalar(AllocatorLVal, Allocator->getExprLoc()); | |||
| 6479 | AllocatorVal = CGF.EmitScalarConversion(AllocatorVal, Allocator->getType(), | |||
| 6480 | CGF.getContext().VoidPtrTy, | |||
| 6481 | Allocator->getExprLoc()); | |||
| 6482 | (void)CGF.EmitRuntimeCall( | |||
| 6483 | OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), | |||
| 6484 | OMPRTL___kmpc_destroy_allocator), | |||
| 6485 | {ThreadId, AllocatorVal}); | |||
| 6486 | } | |||
| 6487 | ||||
| 6488 | void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper( | |||
| 6489 | const OMPExecutableDirective &D, StringRef ParentName, | |||
| 6490 | llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, | |||
| 6491 | bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { | |||
| 6492 | // Create a unique name for the entry function using the source location | |||
| 6493 | // information of the current target region. The name will be something like: | |||
| 6494 | // | |||
| 6495 | // __omp_offloading_DD_FFFF_PP_lBB | |||
| 6496 | // | |||
| 6497 | // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the | |||
| 6498 | // mangled name of the function that encloses the target region and BB is the | |||
| 6499 | // line number of the target region. | |||
| 6500 | ||||
| 6501 | unsigned DeviceID; | |||
| 6502 | unsigned FileID; | |||
| 6503 | unsigned Line; | |||
| 6504 | getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), DeviceID, FileID, | |||
| 6505 | Line); | |||
| 6506 | SmallString<64> EntryFnName; | |||
| 6507 | { | |||
| 6508 | llvm::raw_svector_ostream OS(EntryFnName); | |||
| 6509 | OS << "__omp_offloading" << llvm::format("_%x", DeviceID) | |||
| 6510 | << llvm::format("_%x_", FileID) << ParentName << "_l" << Line; | |||
| 6511 | } | |||
| 6512 | ||||
| 6513 | const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target); | |||
| 6514 | ||||
| 6515 | CodeGenFunction CGF(CGM, true); | |||
| 6516 | CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName); | |||
| 6517 | CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); | |||
| 6518 | ||||
| 6519 | OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS, D.getBeginLoc()); | |||
| 6520 | ||||
| 6521 | // If this target outline function is not an offload entry, we don't need to | |||
| 6522 | // register it. | |||
| 6523 | if (!IsOffloadEntry) | |||
| 6524 | return; | |||
| 6525 | ||||
| 6526 | // The target region ID is used by the runtime library to identify the current | |||
| 6527 | // target region, so it only has to be unique and not necessarily point to | |||
| 6528 | // anything. It could be the pointer to the outlined function that implements | |||
| 6529 | // the target region, but we aren't using that so that the compiler doesn't | |||
| 6530 | // need to keep that, and could therefore inline the host function if proven | |||
| 6531 | // worthwhile during optimization. In the other hand, if emitting code for the | |||
| 6532 | // device, the ID has to be the function address so that it can retrieved from | |||
| 6533 | // the offloading entry and launched by the runtime library. We also mark the | |||
| 6534 | // outlined function to have external linkage in case we are emitting code for | |||
| 6535 | // the device, because these functions will be entry points to the device. | |||
| 6536 | ||||
| 6537 | if (CGM.getLangOpts().OpenMPIsDevice) { | |||
| 6538 | OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy); | |||
| 6539 | OutlinedFn->setLinkage(llvm::GlobalValue::WeakAnyLinkage); | |||
| 6540 | OutlinedFn->setDSOLocal(false); | |||
| 6541 | if (CGM.getTriple().isAMDGCN()) | |||
| 6542 | OutlinedFn->setCallingConv(llvm::CallingConv::AMDGPU_KERNEL); | |||
| 6543 | } else { | |||
| 6544 | std::string Name = getName({EntryFnName, "region_id"}); | |||
| 6545 | OutlinedFnID = new llvm::GlobalVariable( | |||
| 6546 | CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, | |||
| 6547 | llvm::GlobalValue::WeakAnyLinkage, | |||
| 6548 | llvm::Constant::getNullValue(CGM.Int8Ty), Name); | |||
| 6549 | } | |||
| 6550 | ||||
| 6551 | // Register the information for the entry associated with this target region. | |||
| 6552 | OffloadEntriesInfoManager.registerTargetRegionEntryInfo( | |||
| 6553 | DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID, | |||
| 6554 | OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion); | |||
| 6555 | ||||
| 6556 | // Add NumTeams and ThreadLimit attributes to the outlined GPU function | |||
| 6557 | int32_t DefaultValTeams = -1; | |||
| 6558 | getNumTeamsExprForTargetDirective(CGF, D, DefaultValTeams); | |||
| 6559 | if (DefaultValTeams > 0) { | |||
| 6560 | OutlinedFn->addFnAttr("omp_target_num_teams", | |||
| 6561 | std::to_string(DefaultValTeams)); | |||
| 6562 | } | |||
| 6563 | int32_t DefaultValThreads = -1; | |||
| 6564 | getNumThreadsExprForTargetDirective(CGF, D, DefaultValThreads); | |||
| 6565 | if (DefaultValThreads > 0) { | |||
| 6566 | OutlinedFn->addFnAttr("omp_target_thread_limit", | |||
| 6567 | std::to_string(DefaultValThreads)); | |||
| 6568 | } | |||
| 6569 | } | |||
| 6570 | ||||
| 6571 | /// Checks if the expression is constant or does not have non-trivial function | |||
| 6572 | /// calls. | |||
| 6573 | static bool isTrivial(ASTContext &Ctx, const Expr * E) { | |||
| 6574 | // We can skip constant expressions. | |||
| 6575 | // We can skip expressions with trivial calls or simple expressions. | |||
| 6576 | return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) || | |||
| 6577 | !E->hasNonTrivialCall(Ctx)) && | |||
| 6578 | !E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true); | |||
| 6579 | } | |||
| 6580 | ||||
| 6581 | const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx, | |||
| 6582 | const Stmt *Body) { | |||
| 6583 | const Stmt *Child = Body->IgnoreContainers(); | |||
| 6584 | while (const auto *C = dyn_cast_or_null<CompoundStmt>(Child)) { | |||
| 6585 | Child = nullptr; | |||
| 6586 | for (const Stmt *S : C->body()) { | |||
| 6587 | if (const auto *E = dyn_cast<Expr>(S)) { | |||
| 6588 | if (isTrivial(Ctx, E)) | |||
| 6589 | continue; | |||
| 6590 | } | |||
| 6591 | // Some of the statements can be ignored. | |||
| 6592 | if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) || | |||
| 6593 | isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S)) | |||
| 6594 | continue; | |||
| 6595 | // Analyze declarations. | |||
| 6596 | if (const auto *DS = dyn_cast<DeclStmt>(S)) { | |||
| 6597 | if (llvm::all_of(DS->decls(), [](const Decl *D) { | |||
| 6598 | if (isa<EmptyDecl>(D) || isa<DeclContext>(D) || | |||
| 6599 | isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) || | |||
| 6600 | isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) || | |||
| 6601 | isa<UsingDirectiveDecl>(D) || | |||
| 6602 | isa<OMPDeclareReductionDecl>(D) || | |||
| 6603 | isa<OMPThreadPrivateDecl>(D) || isa<OMPAllocateDecl>(D)) | |||
| 6604 | return true; | |||
| 6605 | const auto *VD = dyn_cast<VarDecl>(D); | |||
| 6606 | if (!VD) | |||
| 6607 | return false; | |||
| 6608 | return VD->hasGlobalStorage() || !VD->isUsed(); | |||
| 6609 | })) | |||
| 6610 | continue; | |||
| 6611 | } | |||
| 6612 | // Found multiple children - cannot get the one child only. | |||
| 6613 | if (Child) | |||
| 6614 | return nullptr; | |||
| 6615 | Child = S; | |||
| 6616 | } | |||
| 6617 | if (Child) | |||
| 6618 | Child = Child->IgnoreContainers(); | |||
| 6619 | } | |||
| 6620 | return Child; | |||
| 6621 | } | |||
| 6622 | ||||
| 6623 | const Expr *CGOpenMPRuntime::getNumTeamsExprForTargetDirective( | |||
| 6624 | CodeGenFunction &CGF, const OMPExecutableDirective &D, | |||
| 6625 | int32_t &DefaultVal) { | |||
| 6626 | ||||
| 6627 | OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); | |||
| 6628 | assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&((void)0) | |||
| 6629 | "Expected target-based executable directive.")((void)0); | |||
| 6630 | switch (DirectiveKind) { | |||
| 6631 | case OMPD_target: { | |||
| 6632 | const auto *CS = D.getInnermostCapturedStmt(); | |||
| 6633 | const auto *Body = | |||
| 6634 | CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); | |||
| 6635 | const Stmt *ChildStmt = | |||
| 6636 | CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body); | |||
| 6637 | if (const auto *NestedDir = | |||
| 6638 | dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { | |||
| 6639 | if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) { | |||
| 6640 | if (NestedDir->hasClausesOfKind<OMPNumTeamsClause>()) { | |||
| 6641 | const Expr *NumTeams = | |||
| 6642 | NestedDir->getSingleClause<OMPNumTeamsClause>()->getNumTeams(); | |||
| 6643 | if (NumTeams->isIntegerConstantExpr(CGF.getContext())) | |||
| 6644 | if (auto Constant = | |||
| 6645 | NumTeams->getIntegerConstantExpr(CGF.getContext())) | |||
| 6646 | DefaultVal = Constant->getExtValue(); | |||
| 6647 | return NumTeams; | |||
| 6648 | } | |||
| 6649 | DefaultVal = 0; | |||
| 6650 | return nullptr; | |||
| 6651 | } | |||
| 6652 | if (isOpenMPParallelDirective(NestedDir->getDirectiveKind()) || | |||
| 6653 | isOpenMPSimdDirective(NestedDir->getDirectiveKind())) { | |||
| 6654 | DefaultVal = 1; | |||
| 6655 | return nullptr; | |||
| 6656 | } | |||
| 6657 | DefaultVal = 1; | |||
| 6658 | return nullptr; | |||
| 6659 | } | |||
| 6660 | // A value of -1 is used to check if we need to emit no teams region | |||
| 6661 | DefaultVal = -1; | |||
| 6662 | return nullptr; | |||
| 6663 | } | |||
| 6664 | case OMPD_target_teams: | |||
| 6665 | case OMPD_target_teams_distribute: | |||
| 6666 | case OMPD_target_teams_distribute_simd: | |||
| 6667 | case OMPD_target_teams_distribute_parallel_for: | |||
| 6668 | case OMPD_target_teams_distribute_parallel_for_simd: { | |||
| 6669 | if (D.hasClausesOfKind<OMPNumTeamsClause>()) { | |||
| 6670 | const Expr *NumTeams = | |||
| 6671 | D.getSingleClause<OMPNumTeamsClause>()->getNumTeams(); | |||
| 6672 | if (NumTeams->isIntegerConstantExpr(CGF.getContext())) | |||
| 6673 | if (auto Constant = NumTeams->getIntegerConstantExpr(CGF.getContext())) | |||
| 6674 | DefaultVal = Constant->getExtValue(); | |||
| 6675 | return NumTeams; | |||
| 6676 | } | |||
| 6677 | DefaultVal = 0; | |||
| 6678 | return nullptr; | |||
| 6679 | } | |||
| 6680 | case OMPD_target_parallel: | |||
| 6681 | case OMPD_target_parallel_for: | |||
| 6682 | case OMPD_target_parallel_for_simd: | |||
| 6683 | case OMPD_target_simd: | |||
| 6684 | DefaultVal = 1; | |||
| 6685 | return nullptr; | |||
| 6686 | case OMPD_parallel: | |||
| 6687 | case OMPD_for: | |||
| 6688 | case OMPD_parallel_for: | |||
| 6689 | case OMPD_parallel_master: | |||
| 6690 | case OMPD_parallel_sections: | |||
| 6691 | case OMPD_for_simd: | |||
| 6692 | case OMPD_parallel_for_simd: | |||
| 6693 | case OMPD_cancel: | |||
| 6694 | case OMPD_cancellation_point: | |||
| 6695 | case OMPD_ordered: | |||
| 6696 | case OMPD_threadprivate: | |||
| 6697 | case OMPD_allocate: | |||
| 6698 | case OMPD_task: | |||
| 6699 | case OMPD_simd: | |||
| 6700 | case OMPD_tile: | |||
| 6701 | case OMPD_unroll: | |||
| 6702 | case OMPD_sections: | |||
| 6703 | case OMPD_section: | |||
| 6704 | case OMPD_single: | |||
| 6705 | case OMPD_master: | |||
| 6706 | case OMPD_critical: | |||
| 6707 | case OMPD_taskyield: | |||
| 6708 | case OMPD_barrier: | |||
| 6709 | case OMPD_taskwait: | |||
| 6710 | case OMPD_taskgroup: | |||
| 6711 | case OMPD_atomic: | |||
| 6712 | case OMPD_flush: | |||
| 6713 | case OMPD_depobj: | |||
| 6714 | case OMPD_scan: | |||
| 6715 | case OMPD_teams: | |||
| 6716 | case OMPD_target_data: | |||
| 6717 | case OMPD_target_exit_data: | |||
| 6718 | case OMPD_target_enter_data: | |||
| 6719 | case OMPD_distribute: | |||
| 6720 | case OMPD_distribute_simd: | |||
| 6721 | case OMPD_distribute_parallel_for: | |||
| 6722 | case OMPD_distribute_parallel_for_simd: | |||
| 6723 | case OMPD_teams_distribute: | |||
| 6724 | case OMPD_teams_distribute_simd: | |||
| 6725 | case OMPD_teams_distribute_parallel_for: | |||
| 6726 | case OMPD_teams_distribute_parallel_for_simd: | |||
| 6727 | case OMPD_target_update: | |||
| 6728 | case OMPD_declare_simd: | |||
| 6729 | case OMPD_declare_variant: | |||
| 6730 | case OMPD_begin_declare_variant: | |||
| 6731 | case OMPD_end_declare_variant: | |||
| 6732 | case OMPD_declare_target: | |||
| 6733 | case OMPD_end_declare_target: | |||
| 6734 | case OMPD_declare_reduction: | |||
| 6735 | case OMPD_declare_mapper: | |||
| 6736 | case OMPD_taskloop: | |||
| 6737 | case OMPD_taskloop_simd: | |||
| 6738 | case OMPD_master_taskloop: | |||
| 6739 | case OMPD_master_taskloop_simd: | |||
| 6740 | case OMPD_parallel_master_taskloop: | |||
| 6741 | case OMPD_parallel_master_taskloop_simd: | |||
| 6742 | case OMPD_requires: | |||
| 6743 | case OMPD_unknown: | |||
| 6744 | break; | |||
| 6745 | default: | |||
| 6746 | break; | |||
| 6747 | } | |||
| 6748 | llvm_unreachable("Unexpected directive kind.")__builtin_unreachable(); | |||
| 6749 | } | |||
| 6750 | ||||
| 6751 | llvm::Value *CGOpenMPRuntime::emitNumTeamsForTargetDirective( | |||
| 6752 | CodeGenFunction &CGF, const OMPExecutableDirective &D) { | |||
| 6753 | assert(!CGF.getLangOpts().OpenMPIsDevice &&((void)0) | |||
| 6754 | "Clauses associated with the teams directive expected to be emitted "((void)0) | |||
| 6755 | "only for the host!")((void)0); | |||
| 6756 | CGBuilderTy &Bld = CGF.Builder; | |||
| 6757 | int32_t DefaultNT = -1; | |||
| 6758 | const Expr *NumTeams = getNumTeamsExprForTargetDirective(CGF, D, DefaultNT); | |||
| 6759 | if (NumTeams != nullptr) { | |||
| 6760 | OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); | |||
| 6761 | ||||
| 6762 | switch (DirectiveKind) { | |||
| 6763 | case OMPD_target: { | |||
| 6764 | const auto *CS = D.getInnermostCapturedStmt(); | |||
| 6765 | CGOpenMPInnerExprInfo CGInfo(CGF, *CS); | |||
| 6766 | CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); | |||
| 6767 | llvm::Value *NumTeamsVal = CGF.EmitScalarExpr(NumTeams, | |||
| 6768 | /*IgnoreResultAssign*/ true); | |||
| 6769 | return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty, | |||
| 6770 | /*isSigned=*/true); | |||
| 6771 | } | |||
| 6772 | case OMPD_target_teams: | |||
| 6773 | case OMPD_target_teams_distribute: | |||
| 6774 | case OMPD_target_teams_distribute_simd: | |||
| 6775 | case OMPD_target_teams_distribute_parallel_for: | |||
| 6776 | case OMPD_target_teams_distribute_parallel_for_simd: { | |||
| 6777 | CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF); | |||
| 6778 | llvm::Value *NumTeamsVal = CGF.EmitScalarExpr(NumTeams, | |||
| 6779 | /*IgnoreResultAssign*/ true); | |||
| 6780 | return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty, | |||
| 6781 | /*isSigned=*/true); | |||
| 6782 | } | |||
| 6783 | default: | |||
| 6784 | break; | |||
| 6785 | } | |||
| 6786 | } else if (DefaultNT == -1) { | |||
| 6787 | return nullptr; | |||
| 6788 | } | |||
| 6789 | ||||
| 6790 | return Bld.getInt32(DefaultNT); | |||
| 6791 | } | |||
| 6792 | ||||
| 6793 | static llvm::Value *getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS, | |||
| 6794 | llvm::Value *DefaultThreadLimitVal) { | |||
| 6795 | const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild( | |||
| 6796 | CGF.getContext(), CS->getCapturedStmt()); | |||
| 6797 | if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) { | |||
| 6798 | if (isOpenMPParallelDirective(Dir->getDirectiveKind())) { | |||
| 6799 | llvm::Value *NumThreads = nullptr; | |||
| 6800 | llvm::Value *CondVal = nullptr; | |||
| 6801 | // Handle if clause. If if clause present, the number of threads is | |||
| 6802 | // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1. | |||
| 6803 | if (Dir->hasClausesOfKind<OMPIfClause>()) { | |||
| 6804 | CGOpenMPInnerExprInfo CGInfo(CGF, *CS); | |||
| 6805 | CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); | |||
| 6806 | const OMPIfClause *IfClause = nullptr; | |||
| 6807 | for (const auto *C : Dir->getClausesOfKind<OMPIfClause>()) { | |||
| 6808 | if (C->getNameModifier() == OMPD_unknown || | |||
| 6809 | C->getNameModifier() == OMPD_parallel) { | |||
| 6810 | IfClause = C; | |||
| 6811 | break; | |||
| 6812 | } | |||
| 6813 | } | |||
| 6814 | if (IfClause) { | |||
| 6815 | const Expr *Cond = IfClause->getCondition(); | |||
| 6816 | bool Result; | |||
| 6817 | if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) { | |||
| 6818 | if (!Result) | |||
| 6819 | return CGF.Builder.getInt32(1); | |||
| 6820 | } else { | |||
| 6821 | CodeGenFunction::LexicalScope Scope(CGF, Cond->getSourceRange()); | |||
| 6822 | if (const auto *PreInit = | |||
| 6823 | cast_or_null<DeclStmt>(IfClause->getPreInitStmt())) { | |||
| 6824 | for (const auto *I : PreInit->decls()) { | |||
| 6825 | if (!I->hasAttr<OMPCaptureNoInitAttr>()) { | |||
| 6826 | CGF.EmitVarDecl(cast<VarDecl>(*I)); | |||
| 6827 | } else { | |||
| 6828 | CodeGenFunction::AutoVarEmission Emission = | |||
| 6829 | CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); | |||
| 6830 | CGF.EmitAutoVarCleanups(Emission); | |||
| 6831 | } | |||
| 6832 | } | |||
| 6833 | } | |||
| 6834 | CondVal = CGF.EvaluateExprAsBool(Cond); | |||
| 6835 | } | |||
| 6836 | } | |||
| 6837 | } | |||
| 6838 | // Check the value of num_threads clause iff if clause was not specified | |||
| 6839 | // or is not evaluated to false. | |||
| 6840 | if (Dir->hasClausesOfKind<OMPNumThreadsClause>()) { | |||
| 6841 | CGOpenMPInnerExprInfo CGInfo(CGF, *CS); | |||
| 6842 | CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); | |||
| 6843 | const auto *NumThreadsClause = | |||
| 6844 | Dir->getSingleClause<OMPNumThreadsClause>(); | |||
| 6845 | CodeGenFunction::LexicalScope Scope( | |||
| 6846 | CGF, NumThreadsClause->getNumThreads()->getSourceRange()); | |||
| 6847 | if (const auto *PreInit = | |||
| 6848 | cast_or_null<DeclStmt>(NumThreadsClause->getPreInitStmt())) { | |||
| 6849 | for (const auto *I : PreInit->decls()) { | |||
| 6850 | if (!I->hasAttr<OMPCaptureNoInitAttr>()) { | |||
| 6851 | CGF.EmitVarDecl(cast<VarDecl>(*I)); | |||
| 6852 | } else { | |||
| 6853 | CodeGenFunction::AutoVarEmission Emission = | |||
| 6854 | CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); | |||
| 6855 | CGF.EmitAutoVarCleanups(Emission); | |||
| 6856 | } | |||
| 6857 | } | |||
| 6858 | } | |||
| 6859 | NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads()); | |||
| 6860 | NumThreads = CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, | |||
| 6861 | /*isSigned=*/false); | |||
| 6862 | if (DefaultThreadLimitVal) | |||
| 6863 | NumThreads = CGF.Builder.CreateSelect( | |||
| 6864 | CGF.Builder.CreateICmpULT(DefaultThreadLimitVal, NumThreads), | |||
| 6865 | DefaultThreadLimitVal, NumThreads); | |||
| 6866 | } else { | |||
| 6867 | NumThreads = DefaultThreadLimitVal ? DefaultThreadLimitVal | |||
| 6868 | : CGF.Builder.getInt32(0); | |||
| 6869 | } | |||
| 6870 | // Process condition of the if clause. | |||
| 6871 | if (CondVal) { | |||
| 6872 | NumThreads = CGF.Builder.CreateSelect(CondVal, NumThreads, | |||
| 6873 | CGF.Builder.getInt32(1)); | |||
| 6874 | } | |||
| 6875 | return NumThreads; | |||
| 6876 | } | |||
| 6877 | if (isOpenMPSimdDirective(Dir->getDirectiveKind())) | |||
| 6878 | return CGF.Builder.getInt32(1); | |||
| 6879 | return DefaultThreadLimitVal; | |||
| 6880 | } | |||
| 6881 | return DefaultThreadLimitVal ? DefaultThreadLimitVal | |||
| 6882 | : CGF.Builder.getInt32(0); | |||
| 6883 | } | |||
| 6884 | ||||
| 6885 | const Expr *CGOpenMPRuntime::getNumThreadsExprForTargetDirective( | |||
| 6886 | CodeGenFunction &CGF, const OMPExecutableDirective &D, | |||
| 6887 | int32_t &DefaultVal) { | |||
| 6888 | OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); | |||
| 6889 | assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&((void)0) | |||
| 6890 | "Expected target-based executable directive.")((void)0); | |||
| 6891 | ||||
| 6892 | switch (DirectiveKind) { | |||
| 6893 | case OMPD_target: | |||
| 6894 | // Teams have no clause thread_limit | |||
| 6895 | return nullptr; | |||
| 6896 | case OMPD_target_teams: | |||
| 6897 | case OMPD_target_teams_distribute: | |||
| 6898 | if (D.hasClausesOfKind<OMPThreadLimitClause>()) { | |||
| 6899 | const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>(); | |||
| 6900 | const Expr *ThreadLimit = ThreadLimitClause->getThreadLimit(); | |||
| 6901 | if (ThreadLimit->isIntegerConstantExpr(CGF.getContext())) | |||
| 6902 | if (auto Constant = | |||
| 6903 | ThreadLimit->getIntegerConstantExpr(CGF.getContext())) | |||
| 6904 | DefaultVal = Constant->getExtValue(); | |||
| 6905 | return ThreadLimit; | |||
| 6906 | } | |||
| 6907 | return nullptr; | |||
| 6908 | case OMPD_target_parallel: | |||
| 6909 | case OMPD_target_parallel_for: | |||
| 6910 | case OMPD_target_parallel_for_simd: | |||
| 6911 | case OMPD_target_teams_distribute_parallel_for: | |||
| 6912 | case OMPD_target_teams_distribute_parallel_for_simd: { | |||
| 6913 | Expr *ThreadLimit = nullptr; | |||
| 6914 | Expr *NumThreads = nullptr; | |||
| 6915 | if (D.hasClausesOfKind<OMPThreadLimitClause>()) { | |||
| 6916 | const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>(); | |||
| 6917 | ThreadLimit = ThreadLimitClause->getThreadLimit(); | |||
| 6918 | if (ThreadLimit->isIntegerConstantExpr(CGF.getContext())) | |||
| 6919 | if (auto Constant = | |||
| 6920 | ThreadLimit->getIntegerConstantExpr(CGF.getContext())) | |||
| 6921 | DefaultVal = Constant->getExtValue(); | |||
| 6922 | } | |||
| 6923 | if (D.hasClausesOfKind<OMPNumThreadsClause>()) { | |||
| 6924 | const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>(); | |||
| 6925 | NumThreads = NumThreadsClause->getNumThreads(); | |||
| 6926 | if (NumThreads->isIntegerConstantExpr(CGF.getContext())) { | |||
| 6927 | if (auto Constant = | |||
| 6928 | NumThreads->getIntegerConstantExpr(CGF.getContext())) { | |||
| 6929 | if (Constant->getExtValue() < DefaultVal) { | |||
| 6930 | DefaultVal = Constant->getExtValue(); | |||
| 6931 | ThreadLimit = NumThreads; | |||
| 6932 | } | |||
| 6933 | } | |||
| 6934 | } | |||
| 6935 | } | |||
| 6936 | return ThreadLimit; | |||
| 6937 | } | |||
| 6938 | case OMPD_target_teams_distribute_simd: | |||
| 6939 | case OMPD_target_simd: | |||
| 6940 | DefaultVal = 1; | |||
| 6941 | return nullptr; | |||
| 6942 | case OMPD_parallel: | |||
| 6943 | case OMPD_for: | |||
| 6944 | case OMPD_parallel_for: | |||
| 6945 | case OMPD_parallel_master: | |||
| 6946 | case OMPD_parallel_sections: | |||
| 6947 | case OMPD_for_simd: | |||
| 6948 | case OMPD_parallel_for_simd: | |||
| 6949 | case OMPD_cancel: | |||
| 6950 | case OMPD_cancellation_point: | |||
| 6951 | case OMPD_ordered: | |||
| 6952 | case OMPD_threadprivate: | |||
| 6953 | case OMPD_allocate: | |||
| 6954 | case OMPD_task: | |||
| 6955 | case OMPD_simd: | |||
| 6956 | case OMPD_tile: | |||
| 6957 | case OMPD_unroll: | |||
| 6958 | case OMPD_sections: | |||
| 6959 | case OMPD_section: | |||
| 6960 | case OMPD_single: | |||
| 6961 | case OMPD_master: | |||
| 6962 | case OMPD_critical: | |||
| 6963 | case OMPD_taskyield: | |||
| 6964 | case OMPD_barrier: | |||
| 6965 | case OMPD_taskwait: | |||
| 6966 | case OMPD_taskgroup: | |||
| 6967 | case OMPD_atomic: | |||
| 6968 | case OMPD_flush: | |||
| 6969 | case OMPD_depobj: | |||
| 6970 | case OMPD_scan: | |||
| 6971 | case OMPD_teams: | |||
| 6972 | case OMPD_target_data: | |||
| 6973 | case OMPD_target_exit_data: | |||
| 6974 | case OMPD_target_enter_data: | |||
| 6975 | case OMPD_distribute: | |||
| 6976 | case OMPD_distribute_simd: | |||
| 6977 | case OMPD_distribute_parallel_for: | |||
| 6978 | case OMPD_distribute_parallel_for_simd: | |||
| 6979 | case OMPD_teams_distribute: | |||
| 6980 | case OMPD_teams_distribute_simd: | |||
| 6981 | case OMPD_teams_distribute_parallel_for: | |||
| 6982 | case OMPD_teams_distribute_parallel_for_simd: | |||
| 6983 | case OMPD_target_update: | |||
| 6984 | case OMPD_declare_simd: | |||
| 6985 | case OMPD_declare_variant: | |||
| 6986 | case OMPD_begin_declare_variant: | |||
| 6987 | case OMPD_end_declare_variant: | |||
| 6988 | case OMPD_declare_target: | |||
| 6989 | case OMPD_end_declare_target: | |||
| 6990 | case OMPD_declare_reduction: | |||
| 6991 | case OMPD_declare_mapper: | |||
| 6992 | case OMPD_taskloop: | |||
| 6993 | case OMPD_taskloop_simd: | |||
| 6994 | case OMPD_master_taskloop: | |||
| 6995 | case OMPD_master_taskloop_simd: | |||
| 6996 | case OMPD_parallel_master_taskloop: | |||
| 6997 | case OMPD_parallel_master_taskloop_simd: | |||
| 6998 | case OMPD_requires: | |||
| 6999 | case OMPD_unknown: | |||
| 7000 | break; | |||
| 7001 | default: | |||
| 7002 | break; | |||
| 7003 | } | |||
| 7004 | llvm_unreachable("Unsupported directive kind.")__builtin_unreachable(); | |||
| 7005 | } | |||
| 7006 | ||||
| 7007 | llvm::Value *CGOpenMPRuntime::emitNumThreadsForTargetDirective( | |||
| 7008 | CodeGenFunction &CGF, const OMPExecutableDirective &D) { | |||
| 7009 | assert(!CGF.getLangOpts().OpenMPIsDevice &&((void)0) | |||
| 7010 | "Clauses associated with the teams directive expected to be emitted "((void)0) | |||
| 7011 | "only for the host!")((void)0); | |||
| 7012 | OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); | |||
| 7013 | assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&((void)0) | |||
| 7014 | "Expected target-based executable directive.")((void)0); | |||
| 7015 | CGBuilderTy &Bld = CGF.Builder; | |||
| 7016 | llvm::Value *ThreadLimitVal = nullptr; | |||
| 7017 | llvm::Value *NumThreadsVal = nullptr; | |||
| 7018 | switch (DirectiveKind) { | |||
| 7019 | case OMPD_target: { | |||
| 7020 | const CapturedStmt *CS = D.getInnermostCapturedStmt(); | |||
| 7021 | if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal)) | |||
| 7022 | return NumThreads; | |||
| 7023 | const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild( | |||
| 7024 | CGF.getContext(), CS->getCapturedStmt()); | |||
| 7025 | if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) { | |||
| 7026 | if (Dir->hasClausesOfKind<OMPThreadLimitClause>()) { | |||
| 7027 | CGOpenMPInnerExprInfo CGInfo(CGF, *CS); | |||
| 7028 | CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); | |||
| 7029 | const auto *ThreadLimitClause = | |||
| 7030 | Dir->getSingleClause<OMPThreadLimitClause>(); | |||
| 7031 | CodeGenFunction::LexicalScope Scope( | |||
| 7032 | CGF, ThreadLimitClause->getThreadLimit()->getSourceRange()); | |||
| 7033 | if (const auto *PreInit = | |||
| 7034 | cast_or_null<DeclStmt>(ThreadLimitClause->getPreInitStmt())) { | |||
| 7035 | for (const auto *I : PreInit->decls()) { | |||
| 7036 | if (!I->hasAttr<OMPCaptureNoInitAttr>()) { | |||
| 7037 | CGF.EmitVarDecl(cast<VarDecl>(*I)); | |||
| 7038 | } else { | |||
| 7039 | CodeGenFunction::AutoVarEmission Emission = | |||
| 7040 | CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); | |||
| 7041 | CGF.EmitAutoVarCleanups(Emission); | |||
| 7042 | } | |||
| 7043 | } | |||
| 7044 | } | |||
| 7045 | llvm::Value *ThreadLimit = CGF.EmitScalarExpr( | |||
| 7046 | ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true); | |||
| 7047 | ThreadLimitVal = | |||
| 7048 | Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false); | |||
| 7049 | } | |||
| 7050 | if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) && | |||
| 7051 | !isOpenMPDistributeDirective(Dir->getDirectiveKind())) { | |||
| 7052 | CS = Dir->getInnermostCapturedStmt(); | |||
| 7053 | const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild( | |||
| 7054 | CGF.getContext(), CS->getCapturedStmt()); | |||
| 7055 | Dir = dyn_cast_or_null<OMPExecutableDirective>(Child); | |||
| 7056 | } | |||
| 7057 | if (Dir && isOpenMPDistributeDirective(Dir->getDirectiveKind()) && | |||
| 7058 | !isOpenMPSimdDirective(Dir->getDirectiveKind())) { | |||
| 7059 | CS = Dir->getInnermostCapturedStmt(); | |||
| 7060 | if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal)) | |||
| 7061 | return NumThreads; | |||
| 7062 | } | |||
| 7063 | if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind())) | |||
| 7064 | return Bld.getInt32(1); | |||
| 7065 | } | |||
| 7066 | return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0); | |||
| 7067 | } | |||
| 7068 | case OMPD_target_teams: { | |||
| 7069 | if (D.hasClausesOfKind<OMPThreadLimitClause>()) { | |||
| 7070 | CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF); | |||
| 7071 | const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>(); | |||
| 7072 | llvm::Value *ThreadLimit = CGF.EmitScalarExpr( | |||
| 7073 | ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true); | |||
| 7074 | ThreadLimitVal = | |||
| 7075 | Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false); | |||
| 7076 | } | |||
| 7077 | const CapturedStmt *CS = D.getInnermostCapturedStmt(); | |||
| 7078 | if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal)) | |||
| 7079 | return NumThreads; | |||
| 7080 | const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild( | |||
| 7081 | CGF.getContext(), CS->getCapturedStmt()); | |||
| 7082 | if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) { | |||
| 7083 | if (Dir->getDirectiveKind() == OMPD_distribute) { | |||
| 7084 | CS = Dir->getInnermostCapturedStmt(); | |||
| 7085 | if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal)) | |||
| 7086 | return NumThreads; | |||
| 7087 | } | |||
| 7088 | } | |||
| 7089 | return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0); | |||
| 7090 | } | |||
| 7091 | case OMPD_target_teams_distribute: | |||
| 7092 | if (D.hasClausesOfKind<OMPThreadLimitClause>()) { | |||
| 7093 | CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF); | |||
| 7094 | const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>(); | |||
| 7095 | llvm::Value *ThreadLimit = CGF.EmitScalarExpr( | |||
| 7096 | ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true); | |||
| 7097 | ThreadLimitVal = | |||
| 7098 | Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false); | |||
| 7099 | } | |||
| 7100 | return getNumThreads(CGF, D.getInnermostCapturedStmt(), ThreadLimitVal); | |||
| 7101 | case OMPD_target_parallel: | |||
| 7102 | case OMPD_target_parallel_for: | |||
| 7103 | case OMPD_target_parallel_for_simd: | |||
| 7104 | case OMPD_target_teams_distribute_parallel_for: | |||
| 7105 | case OMPD_target_teams_distribute_parallel_for_simd: { | |||
| 7106 | llvm::Value *CondVal = nullptr; | |||
| 7107 | // Handle if clause. If if clause present, the number of threads is | |||
| 7108 | // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1. | |||
| 7109 | if (D.hasClausesOfKind<OMPIfClause>()) { | |||
| 7110 | const OMPIfClause *IfClause = nullptr; | |||
| 7111 | for (const auto *C : D.getClausesOfKind<OMPIfClause>()) { | |||
| 7112 | if (C->getNameModifier() == OMPD_unknown || | |||
| 7113 | C->getNameModifier() == OMPD_parallel) { | |||
| 7114 | IfClause = C; | |||
| 7115 | break; | |||
| 7116 | } | |||
| 7117 | } | |||
| 7118 | if (IfClause) { | |||
| 7119 | const Expr *Cond = IfClause->getCondition(); | |||
| 7120 | bool Result; | |||
| 7121 | if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) { | |||
| 7122 | if (!Result) | |||
| 7123 | return Bld.getInt32(1); | |||
| 7124 | } else { | |||
| 7125 | CodeGenFunction::RunCleanupsScope Scope(CGF); | |||
| 7126 | CondVal = CGF.EvaluateExprAsBool(Cond); | |||
| 7127 | } | |||
| 7128 | } | |||
| 7129 | } | |||
| 7130 | if (D.hasClausesOfKind<OMPThreadLimitClause>()) { | |||
| 7131 | CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF); | |||
| 7132 | const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>(); | |||
| 7133 | llvm::Value *ThreadLimit = CGF.EmitScalarExpr( | |||
| 7134 | ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true); | |||
| 7135 | ThreadLimitVal = | |||
| 7136 | Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false); | |||
| 7137 | } | |||
| 7138 | if (D.hasClausesOfKind<OMPNumThreadsClause>()) { | |||
| 7139 | CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); | |||
| 7140 | const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>(); | |||
| 7141 | llvm::Value *NumThreads = CGF.EmitScalarExpr( | |||
| 7142 | NumThreadsClause->getNumThreads(), /*IgnoreResultAssign=*/true); | |||
| 7143 | NumThreadsVal = | |||
| 7144 | Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned=*/false); | |||
| 7145 | ThreadLimitVal = ThreadLimitVal | |||
| 7146 | ? Bld.CreateSelect(Bld.CreateICmpULT(NumThreadsVal, | |||
| 7147 | ThreadLimitVal), | |||
| 7148 | NumThreadsVal, ThreadLimitVal) | |||
| 7149 | : NumThreadsVal; | |||
| 7150 | } | |||
| 7151 | if (!ThreadLimitVal) | |||
| 7152 | ThreadLimitVal = Bld.getInt32(0); | |||
| 7153 | if (CondVal) | |||
| 7154 | return Bld.CreateSelect(CondVal, ThreadLimitVal, Bld.getInt32(1)); | |||
| 7155 | return ThreadLimitVal; | |||
| 7156 | } | |||
| 7157 | case OMPD_target_teams_distribute_simd: | |||
| 7158 | case OMPD_target_simd: | |||
| 7159 | return Bld.getInt32(1); | |||
| 7160 | case OMPD_parallel: | |||
| 7161 | case OMPD_for: | |||
| 7162 | case OMPD_parallel_for: | |||
| 7163 | case OMPD_parallel_master: | |||
| 7164 | case OMPD_parallel_sections: | |||
| 7165 | case OMPD_for_simd: | |||
| 7166 | case OMPD_parallel_for_simd: | |||
| 7167 | case OMPD_cancel: | |||
| 7168 | case OMPD_cancellation_point: | |||
| 7169 | case OMPD_ordered: | |||
| 7170 | case OMPD_threadprivate: | |||
| 7171 | case OMPD_allocate: | |||
| 7172 | case OMPD_task: | |||
| 7173 | case OMPD_simd: | |||
| 7174 | case OMPD_tile: | |||
| 7175 | case OMPD_unroll: | |||
| 7176 | case OMPD_sections: | |||
| 7177 | case OMPD_section: | |||
| 7178 | case OMPD_single: | |||
| 7179 | case OMPD_master: | |||
| 7180 | case OMPD_critical: | |||
| 7181 | case OMPD_taskyield: | |||
| 7182 | case OMPD_barrier: | |||
| 7183 | case OMPD_taskwait: | |||
| 7184 | case OMPD_taskgroup: | |||
| 7185 | case OMPD_atomic: | |||
| 7186 | case OMPD_flush: | |||
| 7187 | case OMPD_depobj: | |||
| 7188 | case OMPD_scan: | |||
| 7189 | case OMPD_teams: | |||
| 7190 | case OMPD_target_data: | |||
| 7191 | case OMPD_target_exit_data: | |||
| 7192 | case OMPD_target_enter_data: | |||
| 7193 | case OMPD_distribute: | |||
| 7194 | case OMPD_distribute_simd: | |||
| 7195 | case OMPD_distribute_parallel_for: | |||
| 7196 | case OMPD_distribute_parallel_for_simd: | |||
| 7197 | case OMPD_teams_distribute: | |||
| 7198 | case OMPD_teams_distribute_simd: | |||
| 7199 | case OMPD_teams_distribute_parallel_for: | |||
| 7200 | case OMPD_teams_distribute_parallel_for_simd: | |||
| 7201 | case OMPD_target_update: | |||
| 7202 | case OMPD_declare_simd: | |||
| 7203 | case OMPD_declare_variant: | |||
| 7204 | case OMPD_begin_declare_variant: | |||
| 7205 | case OMPD_end_declare_variant: | |||
| 7206 | case OMPD_declare_target: | |||
| 7207 | case OMPD_end_declare_target: | |||
| 7208 | case OMPD_declare_reduction: | |||
| 7209 | case OMPD_declare_mapper: | |||
| 7210 | case OMPD_taskloop: | |||
| 7211 | case OMPD_taskloop_simd: | |||
| 7212 | case OMPD_master_taskloop: | |||
| 7213 | case OMPD_master_taskloop_simd: | |||
| 7214 | case OMPD_parallel_master_taskloop: | |||
| 7215 | case OMPD_parallel_master_taskloop_simd: | |||
| 7216 | case OMPD_requires: | |||
| 7217 | case OMPD_unknown: | |||
| 7218 | break; | |||
| 7219 | default: | |||
| 7220 | break; | |||
| 7221 | } | |||
| 7222 | llvm_unreachable("Unsupported directive kind.")__builtin_unreachable(); | |||
| 7223 | } | |||
| 7224 | ||||
| 7225 | namespace { | |||
| 7226 | LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE()using ::llvm::BitmaskEnumDetail::operator~; using ::llvm::BitmaskEnumDetail ::operator|; using ::llvm::BitmaskEnumDetail::operator&; using ::llvm::BitmaskEnumDetail::operator^; using ::llvm::BitmaskEnumDetail ::operator|=; using ::llvm::BitmaskEnumDetail::operator&= ; using ::llvm::BitmaskEnumDetail::operator^=; | |||
| 7227 | ||||
| 7228 | // Utility to handle information from clauses associated with a given | |||
| 7229 | // construct that use mappable expressions (e.g. 'map' clause, 'to' clause). | |||
| 7230 | // It provides a convenient interface to obtain the information and generate | |||
| 7231 | // code for that information. | |||
| 7232 | class MappableExprsHandler { | |||
| 7233 | public: | |||
| 7234 | /// Values for bit flags used to specify the mapping type for | |||
| 7235 | /// offloading. | |||
| 7236 | enum OpenMPOffloadMappingFlags : uint64_t { | |||
| 7237 | /// No flags | |||
| 7238 | OMP_MAP_NONE = 0x0, | |||
| 7239 | /// Allocate memory on the device and move data from host to device. | |||
| 7240 | OMP_MAP_TO = 0x01, | |||
| 7241 | /// Allocate memory on the device and move data from device to host. | |||
| 7242 | OMP_MAP_FROM = 0x02, | |||
| 7243 | /// Always perform the requested mapping action on the element, even | |||
| 7244 | /// if it was already mapped before. | |||
| 7245 | OMP_MAP_ALWAYS = 0x04, | |||
| 7246 | /// Delete the element from the device environment, ignoring the | |||
| 7247 | /// current reference count associated with the element. | |||
| 7248 | OMP_MAP_DELETE = 0x08, | |||
| 7249 | /// The element being mapped is a pointer-pointee pair; both the | |||
| 7250 | /// pointer and the pointee should be mapped. | |||
| 7251 | OMP_MAP_PTR_AND_OBJ = 0x10, | |||
| 7252 | /// This flags signals that the base address of an entry should be | |||
| 7253 | /// passed to the target kernel as an argument. | |||
| 7254 | OMP_MAP_TARGET_PARAM = 0x20, | |||
| 7255 | /// Signal that the runtime library has to return the device pointer | |||
| 7256 | /// in the current position for the data being mapped. Used when we have the | |||
| 7257 | /// use_device_ptr or use_device_addr clause. | |||
| 7258 | OMP_MAP_RETURN_PARAM = 0x40, | |||
| 7259 | /// This flag signals that the reference being passed is a pointer to | |||
| 7260 | /// private data. | |||
| 7261 | OMP_MAP_PRIVATE = 0x80, | |||
| 7262 | /// Pass the element to the device by value. | |||
| 7263 | OMP_MAP_LITERAL = 0x100, | |||
| 7264 | /// Implicit map | |||
| 7265 | OMP_MAP_IMPLICIT = 0x200, | |||
| 7266 | /// Close is a hint to the runtime to allocate memory close to | |||
| 7267 | /// the target device. | |||
| 7268 | OMP_MAP_CLOSE = 0x400, | |||
| 7269 | /// 0x800 is reserved for compatibility with XLC. | |||
| 7270 | /// Produce a runtime error if the data is not already allocated. | |||
| 7271 | OMP_MAP_PRESENT = 0x1000, | |||
| 7272 | /// Signal that the runtime library should use args as an array of | |||
| 7273 | /// descriptor_dim pointers and use args_size as dims. Used when we have | |||
| 7274 | /// non-contiguous list items in target update directive | |||
| 7275 | OMP_MAP_NON_CONTIG = 0x100000000000, | |||
| 7276 | /// The 16 MSBs of the flags indicate whether the entry is member of some | |||
| 7277 | /// struct/class. | |||
| 7278 | OMP_MAP_MEMBER_OF = 0xffff000000000000, | |||
| 7279 | LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ OMP_MAP_MEMBER_OF)LLVM_BITMASK_LARGEST_ENUMERATOR = OMP_MAP_MEMBER_OF, | |||
| 7280 | }; | |||
| 7281 | ||||
| 7282 | /// Get the offset of the OMP_MAP_MEMBER_OF field. | |||
| 7283 | static unsigned getFlagMemberOffset() { | |||
| 7284 | unsigned Offset = 0; | |||
| 7285 | for (uint64_t Remain = OMP_MAP_MEMBER_OF; !(Remain & 1); | |||
| 7286 | Remain = Remain >> 1) | |||
| 7287 | Offset++; | |||
| 7288 | return Offset; | |||
| 7289 | } | |||
| 7290 | ||||
| 7291 | /// Class that holds debugging information for a data mapping to be passed to | |||
| 7292 | /// the runtime library. | |||
| 7293 | class MappingExprInfo { | |||
| 7294 | /// The variable declaration used for the data mapping. | |||
| 7295 | const ValueDecl *MapDecl = nullptr; | |||
| 7296 | /// The original expression used in the map clause, or null if there is | |||
| 7297 | /// none. | |||
| 7298 | const Expr *MapExpr = nullptr; | |||
| 7299 | ||||
| 7300 | public: | |||
| 7301 | MappingExprInfo(const ValueDecl *MapDecl, const Expr *MapExpr = nullptr) | |||
| 7302 | : MapDecl(MapDecl), MapExpr(MapExpr) {} | |||
| 7303 | ||||
| 7304 | const ValueDecl *getMapDecl() const { return MapDecl; } | |||
| 7305 | const Expr *getMapExpr() const { return MapExpr; } | |||
| 7306 | }; | |||
| 7307 | ||||
| 7308 | /// Class that associates information with a base pointer to be passed to the | |||
| 7309 | /// runtime library. | |||
| 7310 | class BasePointerInfo { | |||
| 7311 | /// The base pointer. | |||
| 7312 | llvm::Value *Ptr = nullptr; | |||
| 7313 | /// The base declaration that refers to this device pointer, or null if | |||
| 7314 | /// there is none. | |||
| 7315 | const ValueDecl *DevPtrDecl = nullptr; | |||
| 7316 | ||||
| 7317 | public: | |||
| 7318 | BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr) | |||
| 7319 | : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {} | |||
| 7320 | llvm::Value *operator*() const { return Ptr; } | |||
| 7321 | const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; } | |||
| 7322 | void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; } | |||
| 7323 | }; | |||
| 7324 | ||||
| 7325 | using MapExprsArrayTy = SmallVector<MappingExprInfo, 4>; | |||
| 7326 | using MapBaseValuesArrayTy = SmallVector<BasePointerInfo, 4>; | |||
| 7327 | using MapValuesArrayTy = SmallVector<llvm::Value *, 4>; | |||
| 7328 | using MapFlagsArrayTy = SmallVector<OpenMPOffloadMappingFlags, 4>; | |||
| 7329 | using MapMappersArrayTy = SmallVector<const ValueDecl *, 4>; | |||
| 7330 | using MapDimArrayTy = SmallVector<uint64_t, 4>; | |||
| 7331 | using MapNonContiguousArrayTy = SmallVector<MapValuesArrayTy, 4>; | |||
| 7332 | ||||
| 7333 | /// This structure contains combined information generated for mappable | |||
| 7334 | /// clauses, including base pointers, pointers, sizes, map types, user-defined | |||
| 7335 | /// mappers, and non-contiguous information. | |||
| 7336 | struct MapCombinedInfoTy { | |||
| 7337 | struct StructNonContiguousInfo { | |||
| 7338 | bool IsNonContiguous = false; | |||
| 7339 | MapDimArrayTy Dims; | |||
| 7340 | MapNonContiguousArrayTy Offsets; | |||
| 7341 | MapNonContiguousArrayTy Counts; | |||
| 7342 | MapNonContiguousArrayTy Strides; | |||
| 7343 | }; | |||
| 7344 | MapExprsArrayTy Exprs; | |||
| 7345 | MapBaseValuesArrayTy BasePointers; | |||
| 7346 | MapValuesArrayTy Pointers; | |||
| 7347 | MapValuesArrayTy Sizes; | |||
| 7348 | MapFlagsArrayTy Types; | |||
| 7349 | MapMappersArrayTy Mappers; | |||
| 7350 | StructNonContiguousInfo NonContigInfo; | |||
| 7351 | ||||
| 7352 | /// Append arrays in \a CurInfo. | |||
| 7353 | void append(MapCombinedInfoTy &CurInfo) { | |||
| 7354 | Exprs.append(CurInfo.Exprs.begin(), CurInfo.Exprs.end()); | |||
| 7355 | BasePointers.append(CurInfo.BasePointers.begin(), | |||
| 7356 | CurInfo.BasePointers.end()); | |||
| 7357 | Pointers.append(CurInfo.Pointers.begin(), CurInfo.Pointers.end()); | |||
| 7358 | Sizes.append(CurInfo.Sizes.begin(), CurInfo.Sizes.end()); | |||
| 7359 | Types.append(CurInfo.Types.begin(), CurInfo.Types.end()); | |||
| 7360 | Mappers.append(CurInfo.Mappers.begin(), CurInfo.Mappers.end()); | |||
| 7361 | NonContigInfo.Dims.append(CurInfo.NonContigInfo.Dims.begin(), | |||
| 7362 | CurInfo.NonContigInfo.Dims.end()); | |||
| 7363 | NonContigInfo.Offsets.append(CurInfo.NonContigInfo.Offsets.begin(), | |||
| 7364 | CurInfo.NonContigInfo.Offsets.end()); | |||
| 7365 | NonContigInfo.Counts.append(CurInfo.NonContigInfo.Counts.begin(), | |||
| 7366 | CurInfo.NonContigInfo.Counts.end()); | |||
| 7367 | NonContigInfo.Strides.append(CurInfo.NonContigInfo.Strides.begin(), | |||
| 7368 | CurInfo.NonContigInfo.Strides.end()); | |||
| 7369 | } | |||
| 7370 | }; | |||
| 7371 | ||||
| 7372 | /// Map between a struct and the its lowest & highest elements which have been | |||
| 7373 | /// mapped. | |||
| 7374 | /// [ValueDecl *] --> {LE(FieldIndex, Pointer), | |||
| 7375 | /// HE(FieldIndex, Pointer)} | |||
| 7376 | struct StructRangeInfoTy { | |||
| 7377 | MapCombinedInfoTy PreliminaryMapData; | |||
| 7378 | std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = { | |||
| 7379 | 0, Address::invalid()}; | |||
| 7380 | std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = { | |||
| 7381 | 0, Address::invalid()}; | |||
| 7382 | Address Base = Address::invalid(); | |||
| 7383 | Address LB = Address::invalid(); | |||
| 7384 | bool IsArraySection = false; | |||
| 7385 | bool HasCompleteRecord = false; | |||
| 7386 | }; | |||
| 7387 | ||||
| 7388 | private: | |||
| 7389 | /// Kind that defines how a device pointer has to be returned. | |||
| 7390 | struct MapInfo { | |||
| 7391 | OMPClauseMappableExprCommon::MappableExprComponentListRef Components; | |||
| 7392 | OpenMPMapClauseKind MapType = OMPC_MAP_unknown; | |||
| 7393 | ArrayRef<OpenMPMapModifierKind> MapModifiers; | |||
| 7394 | ArrayRef<OpenMPMotionModifierKind> MotionModifiers; | |||
| 7395 | bool ReturnDevicePointer = false; | |||
| 7396 | bool IsImplicit = false; | |||
| 7397 | const ValueDecl *Mapper = nullptr; | |||
| 7398 | const Expr *VarRef = nullptr; | |||
| 7399 | bool ForDeviceAddr = false; | |||
| 7400 | ||||
| 7401 | MapInfo() = default; | |||
| 7402 | MapInfo( | |||
| 7403 | OMPClauseMappableExprCommon::MappableExprComponentListRef Components, | |||
| 7404 | OpenMPMapClauseKind MapType, | |||
| 7405 | ArrayRef<OpenMPMapModifierKind> MapModifiers, | |||
| 7406 | ArrayRef<OpenMPMotionModifierKind> MotionModifiers, | |||
| 7407 | bool ReturnDevicePointer, bool IsImplicit, | |||
| 7408 | const ValueDecl *Mapper = nullptr, const Expr *VarRef = nullptr, | |||
| 7409 | bool ForDeviceAddr = false) | |||
| 7410 | : Components(Components), MapType(MapType), MapModifiers(MapModifiers), | |||
| 7411 | MotionModifiers(MotionModifiers), | |||
| 7412 | ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit), | |||
| 7413 | Mapper(Mapper), VarRef(VarRef), ForDeviceAddr(ForDeviceAddr) {} | |||
| 7414 | }; | |||
| 7415 | ||||
| 7416 | /// If use_device_ptr or use_device_addr is used on a decl which is a struct | |||
| 7417 | /// member and there is no map information about it, then emission of that | |||
| 7418 | /// entry is deferred until the whole struct has been processed. | |||
| 7419 | struct DeferredDevicePtrEntryTy { | |||
| 7420 | const Expr *IE = nullptr; | |||
| 7421 | const ValueDecl *VD = nullptr; | |||
| 7422 | bool ForDeviceAddr = false; | |||
| 7423 | ||||
| 7424 | DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD, | |||
| 7425 | bool ForDeviceAddr) | |||
| 7426 | : IE(IE), VD(VD), ForDeviceAddr(ForDeviceAddr) {} | |||
| 7427 | }; | |||
| 7428 | ||||
| 7429 | /// The target directive from where the mappable clauses were extracted. It | |||
| 7430 | /// is either a executable directive or a user-defined mapper directive. | |||
| 7431 | llvm::PointerUnion<const OMPExecutableDirective *, | |||
| 7432 | const OMPDeclareMapperDecl *> | |||
| 7433 | CurDir; | |||
| 7434 | ||||
| 7435 | /// Function the directive is being generated for. | |||
| 7436 | CodeGenFunction &CGF; | |||
| 7437 | ||||
| 7438 | /// Set of all first private variables in the current directive. | |||
| 7439 | /// bool data is set to true if the variable is implicitly marked as | |||
| 7440 | /// firstprivate, false otherwise. | |||
| 7441 | llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, bool> FirstPrivateDecls; | |||
| 7442 | ||||
| 7443 | /// Map between device pointer declarations and their expression components. | |||
| 7444 | /// The key value for declarations in 'this' is null. | |||
| 7445 | llvm::DenseMap< | |||
| 7446 | const ValueDecl *, | |||
| 7447 | SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>> | |||
| 7448 | DevPointersMap; | |||
| 7449 | ||||
| 7450 | llvm::Value *getExprTypeSize(const Expr *E) const { | |||
| 7451 | QualType ExprTy = E->getType().getCanonicalType(); | |||
| 7452 | ||||
| 7453 | // Calculate the size for array shaping expression. | |||
| 7454 | if (const auto *OAE = dyn_cast<OMPArrayShapingExpr>(E)) { | |||
| 7455 | llvm::Value *Size = | |||
| 7456 | CGF.getTypeSize(OAE->getBase()->getType()->getPointeeType()); | |||
| 7457 | for (const Expr *SE : OAE->getDimensions()) { | |||
| 7458 | llvm::Value *Sz = CGF.EmitScalarExpr(SE); | |||
| 7459 | Sz = CGF.EmitScalarConversion(Sz, SE->getType(), | |||
| 7460 | CGF.getContext().getSizeType(), | |||
| 7461 | SE->getExprLoc()); | |||
| 7462 | Size = CGF.Builder.CreateNUWMul(Size, Sz); | |||
| 7463 | } | |||
| 7464 | return Size; | |||
| 7465 | } | |||
| 7466 | ||||
| 7467 | // Reference types are ignored for mapping purposes. | |||
| 7468 | if (const auto *RefTy = ExprTy->getAs<ReferenceType>()) | |||
| 7469 | ExprTy = RefTy->getPointeeType().getCanonicalType(); | |||
| 7470 | ||||
| 7471 | // Given that an array section is considered a built-in type, we need to | |||
| 7472 | // do the calculation based on the length of the section instead of relying | |||
| 7473 | // on CGF.getTypeSize(E->getType()). | |||
| 7474 | if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) { | |||
| 7475 | QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType( | |||
| 7476 | OAE->getBase()->IgnoreParenImpCasts()) | |||
| 7477 | .getCanonicalType(); | |||
| 7478 | ||||
| 7479 | // If there is no length associated with the expression and lower bound is | |||
| 7480 | // not specified too, that means we are using the whole length of the | |||
| 7481 | // base. | |||
| 7482 | if (!OAE->getLength() && OAE->getColonLocFirst().isValid() && | |||
| 7483 | !OAE->getLowerBound()) | |||
| 7484 | return CGF.getTypeSize(BaseTy); | |||
| 7485 | ||||
| 7486 | llvm::Value *ElemSize; | |||
| 7487 | if (const auto *PTy = BaseTy->getAs<PointerType>()) { | |||
| 7488 | ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType()); | |||
| 7489 | } else { | |||
| 7490 | const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr()); | |||
| 7491 | assert(ATy && "Expecting array type if not a pointer type.")((void)0); | |||
| 7492 | ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType()); | |||
| 7493 | } | |||
| 7494 | ||||
| 7495 | // If we don't have a length at this point, that is because we have an | |||
| 7496 | // array section with a single element. | |||
| 7497 | if (!OAE->getLength() && OAE->getColonLocFirst().isInvalid()) | |||
| 7498 | return ElemSize; | |||
| 7499 | ||||
| 7500 | if (const Expr *LenExpr = OAE->getLength()) { | |||
| 7501 | llvm::Value *LengthVal = CGF.EmitScalarExpr(LenExpr); | |||
| 7502 | LengthVal = CGF.EmitScalarConversion(LengthVal, LenExpr->getType(), | |||
| 7503 | CGF.getContext().getSizeType(), | |||
| 7504 | LenExpr->getExprLoc()); | |||
| 7505 | return CGF.Builder.CreateNUWMul(LengthVal, ElemSize); | |||
| 7506 | } | |||
| 7507 | assert(!OAE->getLength() && OAE->getColonLocFirst().isValid() &&((void)0) | |||
| 7508 | OAE->getLowerBound() && "expected array_section[lb:].")((void)0); | |||
| 7509 | // Size = sizetype - lb * elemtype; | |||
| 7510 | llvm::Value *LengthVal = CGF.getTypeSize(BaseTy); | |||
| 7511 | llvm::Value *LBVal = CGF.EmitScalarExpr(OAE->getLowerBound()); | |||
| 7512 | LBVal = CGF.EmitScalarConversion(LBVal, OAE->getLowerBound()->getType(), | |||
| 7513 | CGF.getContext().getSizeType(), | |||
| 7514 | OAE->getLowerBound()->getExprLoc()); | |||
| 7515 | LBVal = CGF.Builder.CreateNUWMul(LBVal, ElemSize); | |||
| 7516 | llvm::Value *Cmp = CGF.Builder.CreateICmpUGT(LengthVal, LBVal); | |||
| 7517 | llvm::Value *TrueVal = CGF.Builder.CreateNUWSub(LengthVal, LBVal); | |||
| 7518 | LengthVal = CGF.Builder.CreateSelect( | |||
| 7519 | Cmp, TrueVal, llvm::ConstantInt::get(CGF.SizeTy, 0)); | |||
| 7520 | return LengthVal; | |||
| 7521 | } | |||
| 7522 | return CGF.getTypeSize(ExprTy); | |||
| 7523 | } | |||
| 7524 | ||||
| 7525 | /// Return the corresponding bits for a given map clause modifier. Add | |||
| 7526 | /// a flag marking the map as a pointer if requested. Add a flag marking the | |||
| 7527 | /// map as the first one of a series of maps that relate to the same map | |||
| 7528 | /// expression. | |||
| 7529 | OpenMPOffloadMappingFlags getMapTypeBits( | |||
| 7530 | OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers, | |||
| 7531 | ArrayRef<OpenMPMotionModifierKind> MotionModifiers, bool IsImplicit, | |||
| 7532 | bool AddPtrFlag, bool AddIsTargetParamFlag, bool IsNonContiguous) const { | |||
| 7533 | OpenMPOffloadMappingFlags Bits = | |||
| 7534 | IsImplicit ? OMP_MAP_IMPLICIT : OMP_MAP_NONE; | |||
| 7535 | switch (MapType) { | |||
| 7536 | case OMPC_MAP_alloc: | |||
| 7537 | case OMPC_MAP_release: | |||
| 7538 | // alloc and release is the default behavior in the runtime library, i.e. | |||
| 7539 | // if we don't pass any bits alloc/release that is what the runtime is | |||
| 7540 | // going to do. Therefore, we don't need to signal anything for these two | |||
| 7541 | // type modifiers. | |||
| 7542 | break; | |||
| 7543 | case OMPC_MAP_to: | |||
| 7544 | Bits |= OMP_MAP_TO; | |||
| 7545 | break; | |||
| 7546 | case OMPC_MAP_from: | |||
| 7547 | Bits |= OMP_MAP_FROM; | |||
| 7548 | break; | |||
| 7549 | case OMPC_MAP_tofrom: | |||
| 7550 | Bits |= OMP_MAP_TO | OMP_MAP_FROM; | |||
| 7551 | break; | |||
| 7552 | case OMPC_MAP_delete: | |||
| 7553 | Bits |= OMP_MAP_DELETE; | |||
| 7554 | break; | |||
| 7555 | case OMPC_MAP_unknown: | |||
| 7556 | llvm_unreachable("Unexpected map type!")__builtin_unreachable(); | |||
| 7557 | } | |||
| 7558 | if (AddPtrFlag) | |||
| 7559 | Bits |= OMP_MAP_PTR_AND_OBJ; | |||
| 7560 | if (AddIsTargetParamFlag) | |||
| 7561 | Bits |= OMP_MAP_TARGET_PARAM; | |||
| 7562 | if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_always) | |||
| 7563 | != MapModifiers.end()) | |||
| 7564 | Bits |= OMP_MAP_ALWAYS; | |||
| 7565 | if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_close) | |||
| 7566 | != MapModifiers.end()) | |||
| 7567 | Bits |= OMP_MAP_CLOSE; | |||
| 7568 | if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_present) != | |||
| 7569 | MapModifiers.end() || | |||
| 7570 | llvm::find(MotionModifiers, OMPC_MOTION_MODIFIER_present) != | |||
| 7571 | MotionModifiers.end()) | |||
| 7572 | Bits |= OMP_MAP_PRESENT; | |||
| 7573 | if (IsNonContiguous) | |||
| 7574 | Bits |= OMP_MAP_NON_CONTIG; | |||
| 7575 | return Bits; | |||
| 7576 | } | |||
| 7577 | ||||
| 7578 | /// Return true if the provided expression is a final array section. A | |||
| 7579 | /// final array section, is one whose length can't be proved to be one. | |||
| 7580 | bool isFinalArraySectionExpression(const Expr *E) const { | |||
| 7581 | const auto *OASE = dyn_cast<OMPArraySectionExpr>(E); | |||
| 7582 | ||||
| 7583 | // It is not an array section and therefore not a unity-size one. | |||
| 7584 | if (!OASE) | |||
| 7585 | return false; | |||
| 7586 | ||||
| 7587 | // An array section with no colon always refer to a single element. | |||
| 7588 | if (OASE->getColonLocFirst().isInvalid()) | |||
| 7589 | return false; | |||
| 7590 | ||||
| 7591 | const Expr *Length = OASE->getLength(); | |||
| 7592 | ||||
| 7593 | // If we don't have a length we have to check if the array has size 1 | |||
| 7594 | // for this dimension. Also, we should always expect a length if the | |||
| 7595 | // base type is pointer. | |||
| 7596 | if (!Length) { | |||
| 7597 | QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType( | |||
| 7598 | OASE->getBase()->IgnoreParenImpCasts()) | |||
| 7599 | .getCanonicalType(); | |||
| 7600 | if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr())) | |||
| 7601 | return ATy->getSize().getSExtValue() != 1; | |||
| 7602 | // If we don't have a constant dimension length, we have to consider | |||
| 7603 | // the current section as having any size, so it is not necessarily | |||
| 7604 | // unitary. If it happen to be unity size, that's user fault. | |||
| 7605 | return true; | |||
| 7606 | } | |||
| 7607 | ||||
| 7608 | // Check if the length evaluates to 1. | |||
| 7609 | Expr::EvalResult Result; | |||
| 7610 | if (!Length->EvaluateAsInt(Result, CGF.getContext())) | |||
| 7611 | return true; // Can have more that size 1. | |||
| 7612 | ||||
| 7613 | llvm::APSInt ConstLength = Result.Val.getInt(); | |||
| 7614 | return ConstLength.getSExtValue() != 1; | |||
| 7615 | } | |||
| 7616 | ||||
| 7617 | /// Generate the base pointers, section pointers, sizes, map type bits, and | |||
| 7618 | /// user-defined mappers (all included in \a CombinedInfo) for the provided | |||
| 7619 | /// map type, map or motion modifiers, and expression components. | |||
| 7620 | /// \a IsFirstComponent should be set to true if the provided set of | |||
| 7621 | /// components is the first associated with a capture. | |||
| 7622 | void generateInfoForComponentList( | |||
| 7623 | OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers, | |||
| 7624 | ArrayRef<OpenMPMotionModifierKind> MotionModifiers, | |||
| 7625 | OMPClauseMappableExprCommon::MappableExprComponentListRef Components, | |||
| 7626 | MapCombinedInfoTy &CombinedInfo, StructRangeInfoTy &PartialStruct, | |||
| 7627 | bool IsFirstComponentList, bool IsImplicit, | |||
| 7628 | const ValueDecl *Mapper = nullptr, bool ForDeviceAddr = false, | |||
| 7629 | const ValueDecl *BaseDecl = nullptr, const Expr *MapExpr = nullptr, | |||
| 7630 | ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef> | |||
| 7631 | OverlappedElements = llvm::None) const { | |||
| 7632 | // The following summarizes what has to be generated for each map and the | |||
| 7633 | // types below. The generated information is expressed in this order: | |||
| 7634 | // base pointer, section pointer, size, flags | |||
| 7635 | // (to add to the ones that come from the map type and modifier). | |||
| 7636 | // | |||
| 7637 | // double d; | |||
| 7638 | // int i[100]; | |||
| 7639 | // float *p; | |||
| 7640 | // | |||
| 7641 | // struct S1 { | |||
| 7642 | // int i; | |||
| 7643 | // float f[50]; | |||
| 7644 | // } | |||
| 7645 | // struct S2 { | |||
| 7646 | // int i; | |||
| 7647 | // float f[50]; | |||
| 7648 | // S1 s; | |||
| 7649 | // double *p; | |||
| 7650 | // struct S2 *ps; | |||
| 7651 | // int &ref; | |||
| 7652 | // } | |||
| 7653 | // S2 s; | |||
| 7654 | // S2 *ps; | |||
| 7655 | // | |||
| 7656 | // map(d) | |||
| 7657 | // &d, &d, sizeof(double), TARGET_PARAM | TO | FROM | |||
| 7658 | // | |||
| 7659 | // map(i) | |||
| 7660 | // &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM | |||
| 7661 | // | |||
| 7662 | // map(i[1:23]) | |||
| 7663 | // &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM | |||
| 7664 | // | |||
| 7665 | // map(p) | |||
| 7666 | // &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM | |||
| 7667 | // | |||
| 7668 | // map(p[1:24]) | |||
| 7669 | // &p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM | PTR_AND_OBJ | |||
| 7670 | // in unified shared memory mode or for local pointers | |||
| 7671 | // p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM | |||
| 7672 | // | |||
| 7673 | // map(s) | |||
| 7674 | // &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM | |||
| 7675 | // | |||
| 7676 | // map(s.i) | |||
| 7677 | // &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM | |||
| 7678 | // | |||
| 7679 | // map(s.s.f) | |||
| 7680 | // &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM | |||
| 7681 | // | |||
| 7682 | // map(s.p) | |||
| 7683 | // &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM | |||
| 7684 | // | |||
| 7685 | // map(to: s.p[:22]) | |||
| 7686 | // &s, &(s.p), sizeof(double*), TARGET_PARAM (*) | |||
| 7687 | // &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**) | |||
| 7688 | // &(s.p), &(s.p[0]), 22*sizeof(double), | |||
| 7689 | // MEMBER_OF(1) | PTR_AND_OBJ | TO (***) | |||
| 7690 | // (*) alloc space for struct members, only this is a target parameter | |||
| 7691 | // (**) map the pointer (nothing to be mapped in this example) (the compiler | |||
| 7692 | // optimizes this entry out, same in the examples below) | |||
| 7693 | // (***) map the pointee (map: to) | |||
| 7694 | // | |||
| 7695 | // map(to: s.ref) | |||
| 7696 | // &s, &(s.ref), sizeof(int*), TARGET_PARAM (*) | |||
| 7697 | // &s, &(s.ref), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | TO (***) | |||
| 7698 | // (*) alloc space for struct members, only this is a target parameter | |||
| 7699 | // (**) map the pointer (nothing to be mapped in this example) (the compiler | |||
| 7700 | // optimizes this entry out, same in the examples below) | |||
| 7701 | // (***) map the pointee (map: to) | |||
| 7702 | // | |||
| 7703 | // map(s.ps) | |||
| 7704 | // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM | |||
| 7705 | // | |||
| 7706 | // map(from: s.ps->s.i) | |||
| 7707 | // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | |||
| 7708 | // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1) | |||
| 7709 | // &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM | |||
| 7710 | // | |||
| 7711 | // map(to: s.ps->ps) | |||
| 7712 | // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | |||
| 7713 | // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1) | |||
| 7714 | // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | TO | |||
| 7715 | // | |||
| 7716 | // map(s.ps->ps->ps) | |||
| 7717 | // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | |||
| 7718 | // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1) | |||
| 7719 | // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | |||
| 7720 | // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM | |||
| 7721 | // | |||
| 7722 | // map(to: s.ps->ps->s.f[:22]) | |||
| 7723 | // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | |||
| 7724 | // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1) | |||
| 7725 | // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | |||
| 7726 | // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO | |||
| 7727 | // | |||
| 7728 | // map(ps) | |||
| 7729 | // &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM | |||
| 7730 | // | |||
| 7731 | // map(ps->i) | |||
| 7732 | // ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM | |||
| 7733 | // | |||
| 7734 | // map(ps->s.f) | |||
| 7735 | // ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM | |||
| 7736 | // | |||
| 7737 | // map(from: ps->p) | |||
| 7738 | // ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM | |||
| 7739 | // | |||
| 7740 | // map(to: ps->p[:22]) | |||
| 7741 | // ps, &(ps->p), sizeof(double*), TARGET_PARAM | |||
| 7742 | // ps, &(ps->p), sizeof(double*), MEMBER_OF(1) | |||
| 7743 | // &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO | |||
| 7744 | // | |||
| 7745 | // map(ps->ps) | |||
| 7746 | // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM | |||
| 7747 | // | |||
| 7748 | // map(from: ps->ps->s.i) | |||
| 7749 | // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | |||
| 7750 | // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1) | |||
| 7751 | // &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM | |||
| 7752 | // | |||
| 7753 | // map(from: ps->ps->ps) | |||
| 7754 | // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | |||
| 7755 | // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1) | |||
| 7756 | // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM | |||
| 7757 | // | |||
| 7758 | // map(ps->ps->ps->ps) | |||
| 7759 | // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | |||
| 7760 | // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1) | |||
| 7761 | // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | |||
| 7762 | // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM | |||
| 7763 | // | |||
| 7764 | // map(to: ps->ps->ps->s.f[:22]) | |||
| 7765 | // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | |||
| 7766 | // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1) | |||
| 7767 | // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | |||
| 7768 | // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO | |||
| 7769 | // | |||
| 7770 | // map(to: s.f[:22]) map(from: s.p[:33]) | |||
| 7771 | // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) + | |||
| 7772 | // sizeof(double*) (**), TARGET_PARAM | |||
| 7773 | // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO | |||
| 7774 | // &s, &(s.p), sizeof(double*), MEMBER_OF(1) | |||
| 7775 | // &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM | |||
| 7776 | // (*) allocate contiguous space needed to fit all mapped members even if | |||
| 7777 | // we allocate space for members not mapped (in this example, | |||
| 7778 | // s.f[22..49] and s.s are not mapped, yet we must allocate space for | |||
| 7779 | // them as well because they fall between &s.f[0] and &s.p) | |||
| 7780 | // | |||
| 7781 | // map(from: s.f[:22]) map(to: ps->p[:33]) | |||
| 7782 | // &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM | |||
| 7783 | // ps, &(ps->p), sizeof(S2*), TARGET_PARAM | |||
| 7784 | // ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*) | |||
| 7785 | // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO | |||
| 7786 | // (*) the struct this entry pertains to is the 2nd element in the list of | |||
| 7787 | // arguments, hence MEMBER_OF(2) | |||
| 7788 | // | |||
| 7789 | // map(from: s.f[:22], s.s) map(to: ps->p[:33]) | |||
| 7790 | // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM | |||
| 7791 | // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM | |||
| 7792 | // &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM | |||
| 7793 | // ps, &(ps->p), sizeof(S2*), TARGET_PARAM | |||
| 7794 | // ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*) | |||
| 7795 | // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO | |||
| 7796 | // (*) the struct this entry pertains to is the 4th element in the list | |||
| 7797 | // of arguments, hence MEMBER_OF(4) | |||
| 7798 | ||||
| 7799 | // Track if the map information being generated is the first for a capture. | |||
| 7800 | bool IsCaptureFirstInfo = IsFirstComponentList; | |||
| 7801 | // When the variable is on a declare target link or in a to clause with | |||
| 7802 | // unified memory, a reference is needed to hold the host/device address | |||
| 7803 | // of the variable. | |||
| 7804 | bool RequiresReference = false; | |||
| 7805 | ||||
| 7806 | // Scan the components from the base to the complete expression. | |||
| 7807 | auto CI = Components.rbegin(); | |||
| 7808 | auto CE = Components.rend(); | |||
| 7809 | auto I = CI; | |||
| 7810 | ||||
| 7811 | // Track if the map information being generated is the first for a list of | |||
| 7812 | // components. | |||
| 7813 | bool IsExpressionFirstInfo = true; | |||
| 7814 | bool FirstPointerInComplexData = false; | |||
| 7815 | Address BP = Address::invalid(); | |||
| 7816 | const Expr *AssocExpr = I->getAssociatedExpression(); | |||
| 7817 | const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr); | |||
| 7818 | const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr); | |||
| 7819 | const auto *OAShE = dyn_cast<OMPArrayShapingExpr>(AssocExpr); | |||
| 7820 | ||||
| 7821 | if (isa<MemberExpr>(AssocExpr)) { | |||
| 7822 | // The base is the 'this' pointer. The content of the pointer is going | |||
| 7823 | // to be the base of the field being mapped. | |||
| 7824 | BP = CGF.LoadCXXThisAddress(); | |||
| 7825 | } else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) || | |||
| 7826 | (OASE && | |||
| 7827 | isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) { | |||
| 7828 | BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF); | |||
| 7829 | } else if (OAShE && | |||
| 7830 | isa<CXXThisExpr>(OAShE->getBase()->IgnoreParenCasts())) { | |||
| 7831 | BP = Address( | |||
| 7832 | CGF.EmitScalarExpr(OAShE->getBase()), | |||
| 7833 | CGF.getContext().getTypeAlignInChars(OAShE->getBase()->getType())); | |||
| 7834 | } else { | |||
| 7835 | // The base is the reference to the variable. | |||
| 7836 | // BP = &Var. | |||
| 7837 | BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF); | |||
| 7838 | if (const auto *VD = | |||
| 7839 | dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) { | |||
| 7840 | if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = | |||
| 7841 | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { | |||
| 7842 | if ((*Res == OMPDeclareTargetDeclAttr::MT_Link) || | |||
| 7843 | (*Res == OMPDeclareTargetDeclAttr::MT_To && | |||
| 7844 | CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) { | |||
| 7845 | RequiresReference = true; | |||
| 7846 | BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); | |||
| 7847 | } | |||
| 7848 | } | |||
| 7849 | } | |||
| 7850 | ||||
| 7851 | // If the variable is a pointer and is being dereferenced (i.e. is not | |||
| 7852 | // the last component), the base has to be the pointer itself, not its | |||
| 7853 | // reference. References are ignored for mapping purposes. | |||
| 7854 | QualType Ty = | |||
| 7855 | I->getAssociatedDeclaration()->getType().getNonReferenceType(); | |||
| 7856 | if (Ty->isAnyPointerType() && std::next(I) != CE) { | |||
| 7857 | // No need to generate individual map information for the pointer, it | |||
| 7858 | // can be associated with the combined storage if shared memory mode is | |||
| 7859 | // active or the base declaration is not global variable. | |||
| 7860 | const auto *VD = dyn_cast<VarDecl>(I->getAssociatedDeclaration()); | |||
| 7861 | if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() || | |||
| 7862 | !VD || VD->hasLocalStorage()) | |||
| 7863 | BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>()); | |||
| 7864 | else | |||
| 7865 | FirstPointerInComplexData = true; | |||
| 7866 | ++I; | |||
| 7867 | } | |||
| 7868 | } | |||
| 7869 | ||||
| 7870 | // Track whether a component of the list should be marked as MEMBER_OF some | |||
| 7871 | // combined entry (for partial structs). Only the first PTR_AND_OBJ entry | |||
| 7872 | // in a component list should be marked as MEMBER_OF, all subsequent entries | |||
| 7873 | // do not belong to the base struct. E.g. | |||
| 7874 | // struct S2 s; | |||
| 7875 | // s.ps->ps->ps->f[:] | |||
| 7876 | // (1) (2) (3) (4) | |||
| 7877 | // ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a | |||
| 7878 | // PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3) | |||
| 7879 | // is the pointee of ps(2) which is not member of struct s, so it should not | |||
| 7880 | // be marked as such (it is still PTR_AND_OBJ). | |||
| 7881 | // The variable is initialized to false so that PTR_AND_OBJ entries which | |||
| 7882 | // are not struct members are not considered (e.g. array of pointers to | |||
| 7883 | // data). | |||
| 7884 | bool ShouldBeMemberOf = false; | |||
| 7885 | ||||
| 7886 | // Variable keeping track of whether or not we have encountered a component | |||
| 7887 | // in the component list which is a member expression. Useful when we have a | |||
| 7888 | // pointer or a final array section, in which case it is the previous | |||
| 7889 | // component in the list which tells us whether we have a member expression. | |||
| 7890 | // E.g. X.f[:] | |||
| 7891 | // While processing the final array section "[:]" it is "f" which tells us | |||
| 7892 | // whether we are dealing with a member of a declared struct. | |||
| 7893 | const MemberExpr *EncounteredME = nullptr; | |||
| 7894 | ||||
| 7895 | // Track for the total number of dimension. Start from one for the dummy | |||
| 7896 | // dimension. | |||
| 7897 | uint64_t DimSize = 1; | |||
| 7898 | ||||
| 7899 | bool IsNonContiguous = CombinedInfo.NonContigInfo.IsNonContiguous; | |||
| 7900 | bool IsPrevMemberReference = false; | |||
| 7901 | ||||
| 7902 | for (; I != CE; ++I) { | |||
| 7903 | // If the current component is member of a struct (parent struct) mark it. | |||
| 7904 | if (!EncounteredME) { | |||
| 7905 | EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression()); | |||
| 7906 | // If we encounter a PTR_AND_OBJ entry from now on it should be marked | |||
| 7907 | // as MEMBER_OF the parent struct. | |||
| 7908 | if (EncounteredME) { | |||
| 7909 | ShouldBeMemberOf = true; | |||
| 7910 | // Do not emit as complex pointer if this is actually not array-like | |||
| 7911 | // expression. | |||
| 7912 | if (FirstPointerInComplexData) { | |||
| 7913 | QualType Ty = std::prev(I) | |||
| 7914 | ->getAssociatedDeclaration() | |||
| 7915 | ->getType() | |||
| 7916 | .getNonReferenceType(); | |||
| 7917 | BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>()); | |||
| 7918 | FirstPointerInComplexData = false; | |||
| 7919 | } | |||
| 7920 | } | |||
| 7921 | } | |||
| 7922 | ||||
| 7923 | auto Next = std::next(I); | |||
| 7924 | ||||
| 7925 | // We need to generate the addresses and sizes if this is the last | |||
| 7926 | // component, if the component is a pointer or if it is an array section | |||
| 7927 | // whose length can't be proved to be one. If this is a pointer, it | |||
| 7928 | // becomes the base address for the following components. | |||
| 7929 | ||||
| 7930 | // A final array section, is one whose length can't be proved to be one. | |||
| 7931 | // If the map item is non-contiguous then we don't treat any array section | |||
| 7932 | // as final array section. | |||
| 7933 | bool IsFinalArraySection = | |||
| 7934 | !IsNonContiguous && | |||
| 7935 | isFinalArraySectionExpression(I->getAssociatedExpression()); | |||
| 7936 | ||||
| 7937 | // If we have a declaration for the mapping use that, otherwise use | |||
| 7938 | // the base declaration of the map clause. | |||
| 7939 | const ValueDecl *MapDecl = (I->getAssociatedDeclaration()) | |||
| 7940 | ? I->getAssociatedDeclaration() | |||
| 7941 | : BaseDecl; | |||
| 7942 | MapExpr = (I->getAssociatedExpression()) ? I->getAssociatedExpression() | |||
| 7943 | : MapExpr; | |||
| 7944 | ||||
| 7945 | // Get information on whether the element is a pointer. Have to do a | |||
| 7946 | // special treatment for array sections given that they are built-in | |||
| 7947 | // types. | |||
| 7948 | const auto *OASE = | |||
| 7949 | dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression()); | |||
| 7950 | const auto *OAShE = | |||
| 7951 | dyn_cast<OMPArrayShapingExpr>(I->getAssociatedExpression()); | |||
| 7952 | const auto *UO = dyn_cast<UnaryOperator>(I->getAssociatedExpression()); | |||
| 7953 | const auto *BO = dyn_cast<BinaryOperator>(I->getAssociatedExpression()); | |||
| 7954 | bool IsPointer = | |||
| 7955 | OAShE || | |||
| 7956 | (OASE && OMPArraySectionExpr::getBaseOriginalType(OASE) | |||
| 7957 | .getCanonicalType() | |||
| 7958 | ->isAnyPointerType()) || | |||
| 7959 | I->getAssociatedExpression()->getType()->isAnyPointerType(); | |||
| 7960 | bool IsMemberReference = isa<MemberExpr>(I->getAssociatedExpression()) && | |||
| 7961 | MapDecl && | |||
| 7962 | MapDecl->getType()->isLValueReferenceType(); | |||
| 7963 | bool IsNonDerefPointer = IsPointer && !UO && !BO && !IsNonContiguous; | |||
| 7964 | ||||
| 7965 | if (OASE) | |||
| 7966 | ++DimSize; | |||
| 7967 | ||||
| 7968 | if (Next == CE || IsMemberReference || IsNonDerefPointer || | |||
| 7969 | IsFinalArraySection) { | |||
| 7970 | // If this is not the last component, we expect the pointer to be | |||
| 7971 | // associated with an array expression or member expression. | |||
| 7972 | assert((Next == CE ||((void)0) | |||
| 7973 | isa<MemberExpr>(Next->getAssociatedExpression()) ||((void)0) | |||
| 7974 | isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||((void)0) | |||
| 7975 | isa<OMPArraySectionExpr>(Next->getAssociatedExpression()) ||((void)0) | |||
| 7976 | isa<OMPArrayShapingExpr>(Next->getAssociatedExpression()) ||((void)0) | |||
| 7977 | isa<UnaryOperator>(Next->getAssociatedExpression()) ||((void)0) | |||
| 7978 | isa<BinaryOperator>(Next->getAssociatedExpression())) &&((void)0) | |||
| 7979 | "Unexpected expression")((void)0); | |||
| 7980 | ||||
| 7981 | Address LB = Address::invalid(); | |||
| 7982 | Address LowestElem = Address::invalid(); | |||
| 7983 | auto &&EmitMemberExprBase = [](CodeGenFunction &CGF, | |||
| 7984 | const MemberExpr *E) { | |||
| 7985 | const Expr *BaseExpr = E->getBase(); | |||
| 7986 | // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a | |||
| 7987 | // scalar. | |||
| 7988 | LValue BaseLV; | |||
| 7989 | if (E->isArrow()) { | |||
| 7990 | LValueBaseInfo BaseInfo; | |||
| 7991 | TBAAAccessInfo TBAAInfo; | |||
| 7992 | Address Addr = | |||
| 7993 | CGF.EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); | |||
| 7994 | QualType PtrTy = BaseExpr->getType()->getPointeeType(); | |||
| 7995 | BaseLV = CGF.MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); | |||
| 7996 | } else { | |||
| 7997 | BaseLV = CGF.EmitOMPSharedLValue(BaseExpr); | |||
| 7998 | } | |||
| 7999 | return BaseLV; | |||
| 8000 | }; | |||
| 8001 | if (OAShE) { | |||
| 8002 | LowestElem = LB = Address(CGF.EmitScalarExpr(OAShE->getBase()), | |||
| 8003 | CGF.getContext().getTypeAlignInChars( | |||
| 8004 | OAShE->getBase()->getType())); | |||
| 8005 | } else if (IsMemberReference) { | |||
| 8006 | const auto *ME = cast<MemberExpr>(I->getAssociatedExpression()); | |||
| 8007 | LValue BaseLVal = EmitMemberExprBase(CGF, ME); | |||
| 8008 | LowestElem = CGF.EmitLValueForFieldInitialization( | |||
| 8009 | BaseLVal, cast<FieldDecl>(MapDecl)) | |||
| 8010 | .getAddress(CGF); | |||
| 8011 | LB = CGF.EmitLoadOfReferenceLValue(LowestElem, MapDecl->getType()) | |||
| 8012 | .getAddress(CGF); | |||
| 8013 | } else { | |||
| 8014 | LowestElem = LB = | |||
| 8015 | CGF.EmitOMPSharedLValue(I->getAssociatedExpression()) | |||
| 8016 | .getAddress(CGF); | |||
| 8017 | } | |||
| 8018 | ||||
| 8019 | // If this component is a pointer inside the base struct then we don't | |||
| 8020 | // need to create any entry for it - it will be combined with the object | |||
| 8021 | // it is pointing to into a single PTR_AND_OBJ entry. | |||
| 8022 | bool IsMemberPointerOrAddr = | |||
| 8023 | EncounteredME && | |||
| 8024 | (((IsPointer || ForDeviceAddr) && | |||
| 8025 | I->getAssociatedExpression() == EncounteredME) || | |||
| 8026 | (IsPrevMemberReference && !IsPointer) || | |||
| 8027 | (IsMemberReference && Next != CE && | |||
| 8028 | !Next->getAssociatedExpression()->getType()->isPointerType())); | |||
| 8029 | if (!OverlappedElements.empty() && Next == CE) { | |||
| 8030 | // Handle base element with the info for overlapped elements. | |||
| 8031 | assert(!PartialStruct.Base.isValid() && "The base element is set.")((void)0); | |||
| 8032 | assert(!IsPointer &&((void)0) | |||
| 8033 | "Unexpected base element with the pointer type.")((void)0); | |||
| 8034 | // Mark the whole struct as the struct that requires allocation on the | |||
| 8035 | // device. | |||
| 8036 | PartialStruct.LowestElem = {0, LowestElem}; | |||
| 8037 | CharUnits TypeSize = CGF.getContext().getTypeSizeInChars( | |||
| 8038 | I->getAssociatedExpression()->getType()); | |||
| 8039 | Address HB = CGF.Builder.CreateConstGEP( | |||
| 8040 | CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(LowestElem, | |||
| 8041 | CGF.VoidPtrTy), | |||
| 8042 | TypeSize.getQuantity() - 1); | |||
| 8043 | PartialStruct.HighestElem = { | |||
| 8044 | std::numeric_limits<decltype( | |||
| 8045 | PartialStruct.HighestElem.first)>::max(), | |||
| 8046 | HB}; | |||
| 8047 | PartialStruct.Base = BP; | |||
| 8048 | PartialStruct.LB = LB; | |||
| 8049 | assert(((void)0) | |||
| 8050 | PartialStruct.PreliminaryMapData.BasePointers.empty() &&((void)0) | |||
| 8051 | "Overlapped elements must be used only once for the variable.")((void)0); | |||
| 8052 | std::swap(PartialStruct.PreliminaryMapData, CombinedInfo); | |||
| 8053 | // Emit data for non-overlapped data. | |||
| 8054 | OpenMPOffloadMappingFlags Flags = | |||
| 8055 | OMP_MAP_MEMBER_OF | | |||
| 8056 | getMapTypeBits(MapType, MapModifiers, MotionModifiers, IsImplicit, | |||
| 8057 | /*AddPtrFlag=*/false, | |||
| 8058 | /*AddIsTargetParamFlag=*/false, IsNonContiguous); | |||
| 8059 | llvm::Value *Size = nullptr; | |||
| 8060 | // Do bitcopy of all non-overlapped structure elements. | |||
| 8061 | for (OMPClauseMappableExprCommon::MappableExprComponentListRef | |||
| 8062 | Component : OverlappedElements) { | |||
| 8063 | Address ComponentLB = Address::invalid(); | |||
| 8064 | for (const OMPClauseMappableExprCommon::MappableComponent &MC : | |||
| 8065 | Component) { | |||
| 8066 | if (const ValueDecl *VD = MC.getAssociatedDeclaration()) { | |||
| 8067 | const auto *FD = dyn_cast<FieldDecl>(VD); | |||
| 8068 | if (FD && FD->getType()->isLValueReferenceType()) { | |||
| 8069 | const auto *ME = | |||
| 8070 | cast<MemberExpr>(MC.getAssociatedExpression()); | |||
| 8071 | LValue BaseLVal = EmitMemberExprBase(CGF, ME); | |||
| 8072 | ComponentLB = | |||
| 8073 | CGF.EmitLValueForFieldInitialization(BaseLVal, FD) | |||
| 8074 | .getAddress(CGF); | |||
| 8075 | } else { | |||
| 8076 | ComponentLB = | |||
| 8077 | CGF.EmitOMPSharedLValue(MC.getAssociatedExpression()) | |||
| 8078 | .getAddress(CGF); | |||
| 8079 | } | |||
| 8080 | Size = CGF.Builder.CreatePtrDiff( | |||
| 8081 | CGF.EmitCastToVoidPtr(ComponentLB.getPointer()), | |||
| 8082 | CGF.EmitCastToVoidPtr(LB.getPointer())); | |||
| 8083 | break; | |||
| 8084 | } | |||
| 8085 | } | |||
| 8086 | assert(Size && "Failed to determine structure size")((void)0); | |||
| 8087 | CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr); | |||
| 8088 | CombinedInfo.BasePointers.push_back(BP.getPointer()); | |||
| 8089 | CombinedInfo.Pointers.push_back(LB.getPointer()); | |||
| 8090 | CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast( | |||
| 8091 | Size, CGF.Int64Ty, /*isSigned=*/true)); | |||
| 8092 | CombinedInfo.Types.push_back(Flags); | |||
| 8093 | CombinedInfo.Mappers.push_back(nullptr); | |||
| 8094 | CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize | |||
| 8095 | : 1); | |||
| 8096 | LB = CGF.Builder.CreateConstGEP(ComponentLB, 1); | |||
| 8097 | } | |||
| 8098 | CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr); | |||
| 8099 | CombinedInfo.BasePointers.push_back(BP.getPointer()); | |||
| 8100 | CombinedInfo.Pointers.push_back(LB.getPointer()); | |||
| 8101 | Size = CGF.Builder.CreatePtrDiff( | |||
| 8102 | CGF.Builder.CreateConstGEP(HB, 1).getPointer(), | |||
| 8103 | CGF.EmitCastToVoidPtr(LB.getPointer())); | |||
| 8104 | CombinedInfo.Sizes.push_back( | |||
| 8105 | CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true)); | |||
| 8106 | CombinedInfo.Types.push_back(Flags); | |||
| 8107 | CombinedInfo.Mappers.push_back(nullptr); | |||
| 8108 | CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize | |||
| 8109 | : 1); | |||
| 8110 | break; | |||
| 8111 | } | |||
| 8112 | llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression()); | |||
| 8113 | if (!IsMemberPointerOrAddr || | |||
| 8114 | (Next == CE && MapType != OMPC_MAP_unknown)) { | |||
| 8115 | CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr); | |||
| 8116 | CombinedInfo.BasePointers.push_back(BP.getPointer()); | |||
| 8117 | CombinedInfo.Pointers.push_back(LB.getPointer()); | |||
| 8118 | CombinedInfo.Sizes.push_back( | |||
| 8119 | CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true)); | |||
| 8120 | CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize | |||
| 8121 | : 1); | |||
| 8122 | ||||
| 8123 | // If Mapper is valid, the last component inherits the mapper. | |||
| 8124 | bool HasMapper = Mapper && Next == CE; | |||
| 8125 | CombinedInfo.Mappers.push_back(HasMapper ? Mapper : nullptr); | |||
| 8126 | ||||
| 8127 | // We need to add a pointer flag for each map that comes from the | |||
| 8128 | // same expression except for the first one. We also need to signal | |||
| 8129 | // this map is the first one that relates with the current capture | |||
| 8130 | // (there is a set of entries for each capture). | |||
| 8131 | OpenMPOffloadMappingFlags Flags = getMapTypeBits( | |||
| 8132 | MapType, MapModifiers, MotionModifiers, IsImplicit, | |||
| 8133 | !IsExpressionFirstInfo || RequiresReference || | |||
| 8134 | FirstPointerInComplexData || IsMemberReference, | |||
| 8135 | IsCaptureFirstInfo && !RequiresReference, IsNonContiguous); | |||
| 8136 | ||||
| 8137 | if (!IsExpressionFirstInfo || IsMemberReference) { | |||
| 8138 | // If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well, | |||
| 8139 | // then we reset the TO/FROM/ALWAYS/DELETE/CLOSE flags. | |||
| 8140 | if (IsPointer || (IsMemberReference && Next != CE)) | |||
| 8141 | Flags &= ~(OMP_MAP_TO | OMP_MAP_FROM | OMP_MAP_ALWAYS | | |||
| 8142 | OMP_MAP_DELETE | OMP_MAP_CLOSE); | |||
| 8143 | ||||
| 8144 | if (ShouldBeMemberOf) { | |||
| 8145 | // Set placeholder value MEMBER_OF=FFFF to indicate that the flag | |||
| 8146 | // should be later updated with the correct value of MEMBER_OF. | |||
| 8147 | Flags |= OMP_MAP_MEMBER_OF; | |||
| 8148 | // From now on, all subsequent PTR_AND_OBJ entries should not be | |||
| 8149 | // marked as MEMBER_OF. | |||
| 8150 | ShouldBeMemberOf = false; | |||
| 8151 | } | |||
| 8152 | } | |||
| 8153 | ||||
| 8154 | CombinedInfo.Types.push_back(Flags); | |||
| 8155 | } | |||
| 8156 | ||||
| 8157 | // If we have encountered a member expression so far, keep track of the | |||
| 8158 | // mapped member. If the parent is "*this", then the value declaration | |||
| 8159 | // is nullptr. | |||
| 8160 | if (EncounteredME) { | |||
| 8161 | const auto *FD = cast<FieldDecl>(EncounteredME->getMemberDecl()); | |||
| 8162 | unsigned FieldIndex = FD->getFieldIndex(); | |||
| 8163 | ||||
| 8164 | // Update info about the lowest and highest elements for this struct | |||
| 8165 | if (!PartialStruct.Base.isValid()) { | |||
| 8166 | PartialStruct.LowestElem = {FieldIndex, LowestElem}; | |||
| 8167 | if (IsFinalArraySection) { | |||
| 8168 | Address HB = | |||
| 8169 | CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false) | |||
| 8170 | .getAddress(CGF); | |||
| 8171 | PartialStruct.HighestElem = {FieldIndex, HB}; | |||
| 8172 | } else { | |||
| 8173 | PartialStruct.HighestElem = {FieldIndex, LowestElem}; | |||
| 8174 | } | |||
| 8175 | PartialStruct.Base = BP; | |||
| 8176 | PartialStruct.LB = BP; | |||
| 8177 | } else if (FieldIndex < PartialStruct.LowestElem.first) { | |||
| 8178 | PartialStruct.LowestElem = {FieldIndex, LowestElem}; | |||
| 8179 | } else if (FieldIndex > PartialStruct.HighestElem.first) { | |||
| 8180 | PartialStruct.HighestElem = {FieldIndex, LowestElem}; | |||
| 8181 | } | |||
| 8182 | } | |||
| 8183 | ||||
| 8184 | // Need to emit combined struct for array sections. | |||
| 8185 | if (IsFinalArraySection || IsNonContiguous) | |||
| 8186 | PartialStruct.IsArraySection = true; | |||
| 8187 | ||||
| 8188 | // If we have a final array section, we are done with this expression. | |||
| 8189 | if (IsFinalArraySection) | |||
| 8190 | break; | |||
| 8191 | ||||
| 8192 | // The pointer becomes the base for the next element. | |||
| 8193 | if (Next != CE) | |||
| 8194 | BP = IsMemberReference ? LowestElem : LB; | |||
| 8195 | ||||
| 8196 | IsExpressionFirstInfo = false; | |||
| 8197 | IsCaptureFirstInfo = false; | |||
| 8198 | FirstPointerInComplexData = false; | |||
| 8199 | IsPrevMemberReference = IsMemberReference; | |||
| 8200 | } else if (FirstPointerInComplexData) { | |||
| 8201 | QualType Ty = Components.rbegin() | |||
| 8202 | ->getAssociatedDeclaration() | |||
| 8203 | ->getType() | |||
| 8204 | .getNonReferenceType(); | |||
| 8205 | BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>()); | |||
| 8206 | FirstPointerInComplexData = false; | |||
| 8207 | } | |||
| 8208 | } | |||
| 8209 | // If ran into the whole component - allocate the space for the whole | |||
| 8210 | // record. | |||
| 8211 | if (!EncounteredME) | |||
| 8212 | PartialStruct.HasCompleteRecord = true; | |||
| 8213 | ||||
| 8214 | if (!IsNonContiguous) | |||
| 8215 | return; | |||
| 8216 | ||||
| 8217 | const ASTContext &Context = CGF.getContext(); | |||
| 8218 | ||||
| 8219 | // For supporting stride in array section, we need to initialize the first | |||
| 8220 | // dimension size as 1, first offset as 0, and first count as 1 | |||
| 8221 | MapValuesArrayTy CurOffsets = {llvm::ConstantInt::get(CGF.CGM.Int64Ty, 0)}; | |||
| 8222 | MapValuesArrayTy CurCounts = {llvm::ConstantInt::get(CGF.CGM.Int64Ty, 1)}; | |||
| 8223 | MapValuesArrayTy CurStrides; | |||
| 8224 | MapValuesArrayTy DimSizes{llvm::ConstantInt::get(CGF.CGM.Int64Ty, 1)}; | |||
| 8225 | uint64_t ElementTypeSize; | |||
| 8226 | ||||
| 8227 | // Collect Size information for each dimension and get the element size as | |||
| 8228 | // the first Stride. For example, for `int arr[10][10]`, the DimSizes | |||
| 8229 | // should be [10, 10] and the first stride is 4 btyes. | |||
| 8230 | for (const OMPClauseMappableExprCommon::MappableComponent &Component : | |||
| 8231 | Components) { | |||
| 8232 | const Expr *AssocExpr = Component.getAssociatedExpression(); | |||
| 8233 | const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr); | |||
| 8234 | ||||
| 8235 | if (!OASE) | |||
| 8236 | continue; | |||
| 8237 | ||||
| 8238 | QualType Ty = OMPArraySectionExpr::getBaseOriginalType(OASE->getBase()); | |||
| 8239 | auto *CAT = Context.getAsConstantArrayType(Ty); | |||
| 8240 | auto *VAT = Context.getAsVariableArrayType(Ty); | |||
| 8241 | ||||
| 8242 | // We need all the dimension size except for the last dimension. | |||
| 8243 | assert((VAT || CAT || &Component == &*Components.begin()) &&((void)0) | |||
| 8244 | "Should be either ConstantArray or VariableArray if not the "((void)0) | |||
| 8245 | "first Component")((void)0); | |||
| 8246 | ||||
| 8247 | // Get element size if CurStrides is empty. | |||
| 8248 | if (CurStrides.empty()) { | |||
| 8249 | const Type *ElementType = nullptr; | |||
| 8250 | if (CAT) | |||
| 8251 | ElementType = CAT->getElementType().getTypePtr(); | |||
| 8252 | else if (VAT) | |||
| 8253 | ElementType = VAT->getElementType().getTypePtr(); | |||
| 8254 | else | |||
| 8255 | assert(&Component == &*Components.begin() &&((void)0) | |||
| 8256 | "Only expect pointer (non CAT or VAT) when this is the "((void)0) | |||
| 8257 | "first Component")((void)0); | |||
| 8258 | // If ElementType is null, then it means the base is a pointer | |||
| 8259 | // (neither CAT nor VAT) and we'll attempt to get ElementType again | |||
| 8260 | // for next iteration. | |||
| 8261 | if (ElementType) { | |||
| 8262 | // For the case that having pointer as base, we need to remove one | |||
| 8263 | // level of indirection. | |||
| 8264 | if (&Component != &*Components.begin()) | |||
| 8265 | ElementType = ElementType->getPointeeOrArrayElementType(); | |||
| 8266 | ElementTypeSize = | |||
| 8267 | Context.getTypeSizeInChars(ElementType).getQuantity(); | |||
| 8268 | CurStrides.push_back( | |||
| 8269 | llvm::ConstantInt::get(CGF.Int64Ty, ElementTypeSize)); | |||
| 8270 | } | |||
| 8271 | } | |||
| 8272 | // Get dimension value except for the last dimension since we don't need | |||
| 8273 | // it. | |||
| 8274 | if (DimSizes.size() < Components.size() - 1) { | |||
| 8275 | if (CAT) | |||
| 8276 | DimSizes.push_back(llvm::ConstantInt::get( | |||
| 8277 | CGF.Int64Ty, CAT->getSize().getZExtValue())); | |||
| 8278 | else if (VAT) | |||
| 8279 | DimSizes.push_back(CGF.Builder.CreateIntCast( | |||
| 8280 | CGF.EmitScalarExpr(VAT->getSizeExpr()), CGF.Int64Ty, | |||
| 8281 | /*IsSigned=*/false)); | |||
| 8282 | } | |||
| 8283 | } | |||
| 8284 | ||||
| 8285 | // Skip the dummy dimension since we have already have its information. | |||
| 8286 | auto DI = DimSizes.begin() + 1; | |||
| 8287 | // Product of dimension. | |||
| 8288 | llvm::Value *DimProd = | |||
| 8289 | llvm::ConstantInt::get(CGF.CGM.Int64Ty, ElementTypeSize); | |||
| 8290 | ||||
| 8291 | // Collect info for non-contiguous. Notice that offset, count, and stride | |||
| 8292 | // are only meaningful for array-section, so we insert a null for anything | |||
| 8293 | // other than array-section. | |||
| 8294 | // Also, the size of offset, count, and stride are not the same as | |||
| 8295 | // pointers, base_pointers, sizes, or dims. Instead, the size of offset, | |||
| 8296 | // count, and stride are the same as the number of non-contiguous | |||
| 8297 | // declaration in target update to/from clause. | |||
| 8298 | for (const OMPClauseMappableExprCommon::MappableComponent &Component : | |||
| 8299 | Components) { | |||
| 8300 | const Expr *AssocExpr = Component.getAssociatedExpression(); | |||
| 8301 | ||||
| 8302 | if (const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr)) { | |||
| 8303 | llvm::Value *Offset = CGF.Builder.CreateIntCast( | |||
| 8304 | CGF.EmitScalarExpr(AE->getIdx()), CGF.Int64Ty, | |||
| 8305 | /*isSigned=*/false); | |||
| 8306 | CurOffsets.push_back(Offset); | |||
| 8307 | CurCounts.push_back(llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/1)); | |||
| 8308 | CurStrides.push_back(CurStrides.back()); | |||
| 8309 | continue; | |||
| 8310 | } | |||
| 8311 | ||||
| 8312 | const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr); | |||
| 8313 | ||||
| 8314 | if (!OASE) | |||
| 8315 | continue; | |||
| 8316 | ||||
| 8317 | // Offset | |||
| 8318 | const Expr *OffsetExpr = OASE->getLowerBound(); | |||
| 8319 | llvm::Value *Offset = nullptr; | |||
| 8320 | if (!OffsetExpr) { | |||
| 8321 | // If offset is absent, then we just set it to zero. | |||
| 8322 | Offset = llvm::ConstantInt::get(CGF.Int64Ty, 0); | |||
| 8323 | } else { | |||
| 8324 | Offset = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(OffsetExpr), | |||
| 8325 | CGF.Int64Ty, | |||
| 8326 | /*isSigned=*/false); | |||
| 8327 | } | |||
| 8328 | CurOffsets.push_back(Offset); | |||
| 8329 | ||||
| 8330 | // Count | |||
| 8331 | const Expr *CountExpr = OASE->getLength(); | |||
| 8332 | llvm::Value *Count = nullptr; | |||
| 8333 | if (!CountExpr) { | |||
| 8334 | // In Clang, once a high dimension is an array section, we construct all | |||
| 8335 | // the lower dimension as array section, however, for case like | |||
| 8336 | // arr[0:2][2], Clang construct the inner dimension as an array section | |||
| 8337 | // but it actually is not in an array section form according to spec. | |||
| 8338 | if (!OASE->getColonLocFirst().isValid() && | |||
| 8339 | !OASE->getColonLocSecond().isValid()) { | |||
| 8340 | Count = llvm::ConstantInt::get(CGF.Int64Ty, 1); | |||
| 8341 | } else { | |||
| 8342 | // OpenMP 5.0, 2.1.5 Array Sections, Description. | |||
| 8343 | // When the length is absent it defaults to ⌈(size − | |||
| 8344 | // lower-bound)/stride⌉, where size is the size of the array | |||
| 8345 | // dimension. | |||
| 8346 | const Expr *StrideExpr = OASE->getStride(); | |||
| 8347 | llvm::Value *Stride = | |||
| 8348 | StrideExpr | |||
| 8349 | ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(StrideExpr), | |||
| 8350 | CGF.Int64Ty, /*isSigned=*/false) | |||
| 8351 | : nullptr; | |||
| 8352 | if (Stride) | |||
| 8353 | Count = CGF.Builder.CreateUDiv( | |||
| 8354 | CGF.Builder.CreateNUWSub(*DI, Offset), Stride); | |||
| 8355 | else | |||
| 8356 | Count = CGF.Builder.CreateNUWSub(*DI, Offset); | |||
| 8357 | } | |||
| 8358 | } else { | |||
| 8359 | Count = CGF.EmitScalarExpr(CountExpr); | |||
| 8360 | } | |||
| 8361 | Count = CGF.Builder.CreateIntCast(Count, CGF.Int64Ty, /*isSigned=*/false); | |||
| 8362 | CurCounts.push_back(Count); | |||
| 8363 | ||||
| 8364 | // Stride_n' = Stride_n * (D_0 * D_1 ... * D_n-1) * Unit size | |||
| 8365 | // Take `int arr[5][5][5]` and `arr[0:2:2][1:2:1][0:2:2]` as an example: | |||
| 8366 | // Offset Count Stride | |||
| 8367 | // D0 0 1 4 (int) <- dummy dimension | |||
| 8368 | // D1 0 2 8 (2 * (1) * 4) | |||
| 8369 | // D2 1 2 20 (1 * (1 * 5) * 4) | |||
| 8370 | // D3 0 2 200 (2 * (1 * 5 * 4) * 4) | |||
| 8371 | const Expr *StrideExpr = OASE->getStride(); | |||
| 8372 | llvm::Value *Stride = | |||
| 8373 | StrideExpr | |||
| 8374 | ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(StrideExpr), | |||
| 8375 | CGF.Int64Ty, /*isSigned=*/false) | |||
| 8376 | : nullptr; | |||
| 8377 | DimProd = CGF.Builder.CreateNUWMul(DimProd, *(DI - 1)); | |||
| 8378 | if (Stride) | |||
| 8379 | CurStrides.push_back(CGF.Builder.CreateNUWMul(DimProd, Stride)); | |||
| 8380 | else | |||
| 8381 | CurStrides.push_back(DimProd); | |||
| 8382 | if (DI != DimSizes.end()) | |||
| 8383 | ++DI; | |||
| 8384 | } | |||
| 8385 | ||||
| 8386 | CombinedInfo.NonContigInfo.Offsets.push_back(CurOffsets); | |||
| 8387 | CombinedInfo.NonContigInfo.Counts.push_back(CurCounts); | |||
| 8388 | CombinedInfo.NonContigInfo.Strides.push_back(CurStrides); | |||
| 8389 | } | |||
| 8390 | ||||
| 8391 | /// Return the adjusted map modifiers if the declaration a capture refers to | |||
| 8392 | /// appears in a first-private clause. This is expected to be used only with | |||
| 8393 | /// directives that start with 'target'. | |||
| 8394 | MappableExprsHandler::OpenMPOffloadMappingFlags | |||
| 8395 | getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const { | |||
| 8396 | assert(Cap.capturesVariable() && "Expected capture by reference only!")((void)0); | |||
| 8397 | ||||
| 8398 | // A first private variable captured by reference will use only the | |||
| 8399 | // 'private ptr' and 'map to' flag. Return the right flags if the captured | |||
| 8400 | // declaration is known as first-private in this handler. | |||
| 8401 | if (FirstPrivateDecls.count(Cap.getCapturedVar())) { | |||
| 8402 | if (Cap.getCapturedVar()->getType()->isAnyPointerType()) | |||
| 8403 | return MappableExprsHandler::OMP_MAP_TO | | |||
| 8404 | MappableExprsHandler::OMP_MAP_PTR_AND_OBJ; | |||
| 8405 | return MappableExprsHandler::OMP_MAP_PRIVATE | | |||
| 8406 | MappableExprsHandler::OMP_MAP_TO; | |||
| 8407 | } | |||
| 8408 | return MappableExprsHandler::OMP_MAP_TO | | |||
| 8409 | MappableExprsHandler::OMP_MAP_FROM; | |||
| 8410 | } | |||
| 8411 | ||||
| 8412 | static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) { | |||
| 8413 | // Rotate by getFlagMemberOffset() bits. | |||
| 8414 | return static_cast<OpenMPOffloadMappingFlags>(((uint64_t)Position + 1) | |||
| 8415 | << getFlagMemberOffset()); | |||
| 8416 | } | |||
| 8417 | ||||
| 8418 | static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags, | |||
| 8419 | OpenMPOffloadMappingFlags MemberOfFlag) { | |||
| 8420 | // If the entry is PTR_AND_OBJ but has not been marked with the special | |||
| 8421 | // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be | |||
| 8422 | // marked as MEMBER_OF. | |||
| 8423 | if ((Flags & OMP_MAP_PTR_AND_OBJ) && | |||
| 8424 | ((Flags & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF)) | |||
| 8425 | return; | |||
| 8426 | ||||
| 8427 | // Reset the placeholder value to prepare the flag for the assignment of the | |||
| 8428 | // proper MEMBER_OF value. | |||
| 8429 | Flags &= ~OMP_MAP_MEMBER_OF; | |||
| 8430 | Flags |= MemberOfFlag; | |||
| 8431 | } | |||
| 8432 | ||||
| 8433 | void getPlainLayout(const CXXRecordDecl *RD, | |||
| 8434 | llvm::SmallVectorImpl<const FieldDecl *> &Layout, | |||
| 8435 | bool AsBase) const { | |||
| 8436 | const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD); | |||
| 8437 | ||||
| 8438 | llvm::StructType *St = | |||
| 8439 | AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType(); | |||
| 8440 | ||||
| 8441 | unsigned NumElements = St->getNumElements(); | |||
| 8442 | llvm::SmallVector< | |||
| 8443 | llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4> | |||
| 8444 | RecordLayout(NumElements); | |||
| 8445 | ||||
| 8446 | // Fill bases. | |||
| 8447 | for (const auto &I : RD->bases()) { | |||
| 8448 | if (I.isVirtual()) | |||
| 8449 | continue; | |||
| 8450 | const auto *Base = I.getType()->getAsCXXRecordDecl(); | |||
| 8451 | // Ignore empty bases. | |||
| 8452 | if (Base->isEmpty() || CGF.getContext() | |||
| 8453 | .getASTRecordLayout(Base) | |||
| 8454 | .getNonVirtualSize() | |||
| 8455 | .isZero()) | |||
| 8456 | continue; | |||
| 8457 | ||||
| 8458 | unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base); | |||
| 8459 | RecordLayout[FieldIndex] = Base; | |||
| 8460 | } | |||
| 8461 | // Fill in virtual bases. | |||
| 8462 | for (const auto &I : RD->vbases()) { | |||
| 8463 | const auto *Base = I.getType()->getAsCXXRecordDecl(); | |||
| 8464 | // Ignore empty bases. | |||
| 8465 | if (Base->isEmpty()) | |||
| 8466 | continue; | |||
| 8467 | unsigned FieldIndex = RL.getVirtualBaseIndex(Base); | |||
| 8468 | if (RecordLayout[FieldIndex]) | |||
| 8469 | continue; | |||
| 8470 | RecordLayout[FieldIndex] = Base; | |||
| 8471 | } | |||
| 8472 | // Fill in all the fields. | |||
| 8473 | assert(!RD->isUnion() && "Unexpected union.")((void)0); | |||
| 8474 | for (const auto *Field : RD->fields()) { | |||
| 8475 | // Fill in non-bitfields. (Bitfields always use a zero pattern, which we | |||
| 8476 | // will fill in later.) | |||
| 8477 | if (!Field->isBitField() && !Field->isZeroSize(CGF.getContext())) { | |||
| 8478 | unsigned FieldIndex = RL.getLLVMFieldNo(Field); | |||
| 8479 | RecordLayout[FieldIndex] = Field; | |||
| 8480 | } | |||
| 8481 | } | |||
| 8482 | for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *> | |||
| 8483 | &Data : RecordLayout) { | |||
| 8484 | if (Data.isNull()) | |||
| 8485 | continue; | |||
| 8486 | if (const auto *Base = Data.dyn_cast<const CXXRecordDecl *>()) | |||
| 8487 | getPlainLayout(Base, Layout, /*AsBase=*/true); | |||
| 8488 | else | |||
| 8489 | Layout.push_back(Data.get<const FieldDecl *>()); | |||
| 8490 | } | |||
| 8491 | } | |||
| 8492 | ||||
| 8493 | /// Generate all the base pointers, section pointers, sizes, map types, and | |||
| 8494 | /// mappers for the extracted mappable expressions (all included in \a | |||
| 8495 | /// CombinedInfo). Also, for each item that relates with a device pointer, a | |||
| 8496 | /// pair of the relevant declaration and index where it occurs is appended to | |||
| 8497 | /// the device pointers info array. | |||
| 8498 | void generateAllInfoForClauses( | |||
| 8499 | ArrayRef<const OMPClause *> Clauses, MapCombinedInfoTy &CombinedInfo, | |||
| 8500 | const llvm::DenseSet<CanonicalDeclPtr<const Decl>> &SkipVarSet = | |||
| 8501 | llvm::DenseSet<CanonicalDeclPtr<const Decl>>()) const { | |||
| 8502 | // We have to process the component lists that relate with the same | |||
| 8503 | // declaration in a single chunk so that we can generate the map flags | |||
| 8504 | // correctly. Therefore, we organize all lists in a map. | |||
| 8505 | enum MapKind { Present, Allocs, Other, Total }; | |||
| 8506 | llvm::MapVector<CanonicalDeclPtr<const Decl>, | |||
| 8507 | SmallVector<SmallVector<MapInfo, 8>, 4>> | |||
| 8508 | Info; | |||
| 8509 | ||||
| 8510 | // Helper function to fill the information map for the different supported | |||
| 8511 | // clauses. | |||
| 8512 | auto &&InfoGen = | |||
| 8513 | [&Info, &SkipVarSet]( | |||
| 8514 | const ValueDecl *D, MapKind Kind, | |||
| 8515 | OMPClauseMappableExprCommon::MappableExprComponentListRef L, | |||
| 8516 | OpenMPMapClauseKind MapType, | |||
| 8517 | ArrayRef<OpenMPMapModifierKind> MapModifiers, | |||
| 8518 | ArrayRef<OpenMPMotionModifierKind> MotionModifiers, | |||
| 8519 | bool ReturnDevicePointer, bool IsImplicit, const ValueDecl *Mapper, | |||
| 8520 | const Expr *VarRef = nullptr, bool ForDeviceAddr = false) { | |||
| 8521 | if (SkipVarSet.contains(D)) | |||
| 8522 | return; | |||
| 8523 | auto It = Info.find(D); | |||
| 8524 | if (It == Info.end()) | |||
| 8525 | It = Info | |||
| 8526 | .insert(std::make_pair( | |||
| 8527 | D, SmallVector<SmallVector<MapInfo, 8>, 4>(Total))) | |||
| 8528 | .first; | |||
| 8529 | It->second[Kind].emplace_back( | |||
| 8530 | L, MapType, MapModifiers, MotionModifiers, ReturnDevicePointer, | |||
| 8531 | IsImplicit, Mapper, VarRef, ForDeviceAddr); | |||
| 8532 | }; | |||
| 8533 | ||||
| 8534 | for (const auto *Cl : Clauses) { | |||
| 8535 | const auto *C = dyn_cast<OMPMapClause>(Cl); | |||
| 8536 | if (!C) | |||
| 8537 | continue; | |||
| 8538 | MapKind Kind = Other; | |||
| 8539 | if (!C->getMapTypeModifiers().empty() && | |||
| 8540 | llvm::any_of(C->getMapTypeModifiers(), [](OpenMPMapModifierKind K) { | |||
| 8541 | return K == OMPC_MAP_MODIFIER_present; | |||
| 8542 | })) | |||
| 8543 | Kind = Present; | |||
| 8544 | else if (C->getMapType() == OMPC_MAP_alloc) | |||
| 8545 | Kind = Allocs; | |||
| 8546 | const auto *EI = C->getVarRefs().begin(); | |||
| 8547 | for (const auto L : C->component_lists()) { | |||
| 8548 | const Expr *E = (C->getMapLoc().isValid()) ? *EI : nullptr; | |||
| 8549 | InfoGen(std::get<0>(L), Kind, std::get<1>(L), C->getMapType(), | |||
| 8550 | C->getMapTypeModifiers(), llvm::None, | |||
| 8551 | /*ReturnDevicePointer=*/false, C->isImplicit(), std::get<2>(L), | |||
| 8552 | E); | |||
| 8553 | ++EI; | |||
| 8554 | } | |||
| 8555 | } | |||
| 8556 | for (const auto *Cl : Clauses) { | |||
| 8557 | const auto *C = dyn_cast<OMPToClause>(Cl); | |||
| 8558 | if (!C) | |||
| 8559 | continue; | |||
| 8560 | MapKind Kind = Other; | |||
| 8561 | if (!C->getMotionModifiers().empty() && | |||
| 8562 | llvm::any_of(C->getMotionModifiers(), [](OpenMPMotionModifierKind K) { | |||
| 8563 | return K == OMPC_MOTION_MODIFIER_present; | |||
| 8564 | })) | |||
| 8565 | Kind = Present; | |||
| 8566 | const auto *EI = C->getVarRefs().begin(); | |||
| 8567 | for (const auto L : C->component_lists()) { | |||
| 8568 | InfoGen(std::get<0>(L), Kind, std::get<1>(L), OMPC_MAP_to, llvm::None, | |||
| 8569 | C->getMotionModifiers(), /*ReturnDevicePointer=*/false, | |||
| 8570 | C->isImplicit(), std::get<2>(L), *EI); | |||
| 8571 | ++EI; | |||
| 8572 | } | |||
| 8573 | } | |||
| 8574 | for (const auto *Cl : Clauses) { | |||
| 8575 | const auto *C = dyn_cast<OMPFromClause>(Cl); | |||
| 8576 | if (!C) | |||
| 8577 | continue; | |||
| 8578 | MapKind Kind = Other; | |||
| 8579 | if (!C->getMotionModifiers().empty() && | |||
| 8580 | llvm::any_of(C->getMotionModifiers(), [](OpenMPMotionModifierKind K) { | |||
| 8581 | return K == OMPC_MOTION_MODIFIER_present; | |||
| 8582 | })) | |||
| 8583 | Kind = Present; | |||
| 8584 | const auto *EI = C->getVarRefs().begin(); | |||
| 8585 | for (const auto L : C->component_lists()) { | |||
| 8586 | InfoGen(std::get<0>(L), Kind, std::get<1>(L), OMPC_MAP_from, llvm::None, | |||
| 8587 | C->getMotionModifiers(), /*ReturnDevicePointer=*/false, | |||
| 8588 | C->isImplicit(), std::get<2>(L), *EI); | |||
| 8589 | ++EI; | |||
| 8590 | } | |||
| 8591 | } | |||
| 8592 | ||||
| 8593 | // Look at the use_device_ptr clause information and mark the existing map | |||
| 8594 | // entries as such. If there is no map information for an entry in the | |||
| 8595 | // use_device_ptr list, we create one with map type 'alloc' and zero size | |||
| 8596 | // section. It is the user fault if that was not mapped before. If there is | |||
| 8597 | // no map information and the pointer is a struct member, then we defer the | |||
| 8598 | // emission of that entry until the whole struct has been processed. | |||
| 8599 | llvm::MapVector<CanonicalDeclPtr<const Decl>, | |||
| 8600 | SmallVector<DeferredDevicePtrEntryTy, 4>> | |||
| 8601 | DeferredInfo; | |||
| 8602 | MapCombinedInfoTy UseDevicePtrCombinedInfo; | |||
| 8603 | ||||
| 8604 | for (const auto *Cl : Clauses) { | |||
| 8605 | const auto *C = dyn_cast<OMPUseDevicePtrClause>(Cl); | |||
| 8606 | if (!C) | |||
| 8607 | continue; | |||
| 8608 | for (const auto L : C->component_lists()) { | |||
| 8609 | OMPClauseMappableExprCommon::MappableExprComponentListRef Components = | |||
| 8610 | std::get<1>(L); | |||
| 8611 | assert(!Components.empty() &&((void)0) | |||
| 8612 | "Not expecting empty list of components!")((void)0); | |||
| 8613 | const ValueDecl *VD = Components.back().getAssociatedDeclaration(); | |||
| 8614 | VD = cast<ValueDecl>(VD->getCanonicalDecl()); | |||
| 8615 | const Expr *IE = Components.back().getAssociatedExpression(); | |||
| 8616 | // If the first component is a member expression, we have to look into | |||
| 8617 | // 'this', which maps to null in the map of map information. Otherwise | |||
| 8618 | // look directly for the information. | |||
| 8619 | auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD); | |||
| 8620 | ||||
| 8621 | // We potentially have map information for this declaration already. | |||
| 8622 | // Look for the first set of components that refer to it. | |||
| 8623 | if (It != Info.end()) { | |||
| 8624 | bool Found = false; | |||
| 8625 | for (auto &Data : It->second) { | |||
| 8626 | auto *CI = llvm::find_if(Data, [VD](const MapInfo &MI) { | |||
| 8627 | return MI.Components.back().getAssociatedDeclaration() == VD; | |||
| 8628 | }); | |||
| 8629 | // If we found a map entry, signal that the pointer has to be | |||
| 8630 | // returned and move on to the next declaration. Exclude cases where | |||
| 8631 | // the base pointer is mapped as array subscript, array section or | |||
| 8632 | // array shaping. The base address is passed as a pointer to base in | |||
| 8633 | // this case and cannot be used as a base for use_device_ptr list | |||
| 8634 | // item. | |||
| 8635 | if (CI != Data.end()) { | |||
| 8636 | auto PrevCI = std::next(CI->Components.rbegin()); | |||
| 8637 | const auto *VarD = dyn_cast<VarDecl>(VD); | |||
| 8638 | if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() || | |||
| 8639 | isa<MemberExpr>(IE) || | |||
| 8640 | !VD->getType().getNonReferenceType()->isPointerType() || | |||
| 8641 | PrevCI == CI->Components.rend() || | |||
| 8642 | isa<MemberExpr>(PrevCI->getAssociatedExpression()) || !VarD || | |||
| 8643 | VarD->hasLocalStorage()) { | |||
| 8644 | CI->ReturnDevicePointer = true; | |||
| 8645 | Found = true; | |||
| 8646 | break; | |||
| 8647 | } | |||
| 8648 | } | |||
| 8649 | } | |||
| 8650 | if (Found) | |||
| 8651 | continue; | |||
| 8652 | } | |||
| 8653 | ||||
| 8654 | // We didn't find any match in our map information - generate a zero | |||
| 8655 | // size array section - if the pointer is a struct member we defer this | |||
| 8656 | // action until the whole struct has been processed. | |||
| 8657 | if (isa<MemberExpr>(IE)) { | |||
| 8658 | // Insert the pointer into Info to be processed by | |||
| 8659 | // generateInfoForComponentList. Because it is a member pointer | |||
| 8660 | // without a pointee, no entry will be generated for it, therefore | |||
| 8661 | // we need to generate one after the whole struct has been processed. | |||
| 8662 | // Nonetheless, generateInfoForComponentList must be called to take | |||
| 8663 | // the pointer into account for the calculation of the range of the | |||
| 8664 | // partial struct. | |||
| 8665 | InfoGen(nullptr, Other, Components, OMPC_MAP_unknown, llvm::None, | |||
| 8666 | llvm::None, /*ReturnDevicePointer=*/false, C->isImplicit(), | |||
| 8667 | nullptr); | |||
| 8668 | DeferredInfo[nullptr].emplace_back(IE, VD, /*ForDeviceAddr=*/false); | |||
| 8669 | } else { | |||
| 8670 | llvm::Value *Ptr = | |||
| 8671 | CGF.EmitLoadOfScalar(CGF.EmitLValue(IE), IE->getExprLoc()); | |||
| 8672 | UseDevicePtrCombinedInfo.Exprs.push_back(VD); | |||
| 8673 | UseDevicePtrCombinedInfo.BasePointers.emplace_back(Ptr, VD); | |||
| 8674 | UseDevicePtrCombinedInfo.Pointers.push_back(Ptr); | |||
| 8675 | UseDevicePtrCombinedInfo.Sizes.push_back( | |||
| 8676 | llvm::Constant::getNullValue(CGF.Int64Ty)); | |||
| 8677 | UseDevicePtrCombinedInfo.Types.push_back(OMP_MAP_RETURN_PARAM); | |||
| 8678 | UseDevicePtrCombinedInfo.Mappers.push_back(nullptr); | |||
| 8679 | } | |||
| 8680 | } | |||
| 8681 | } | |||
| 8682 | ||||
| 8683 | // Look at the use_device_addr clause information and mark the existing map | |||
| 8684 | // entries as such. If there is no map information for an entry in the | |||
| 8685 | // use_device_addr list, we create one with map type 'alloc' and zero size | |||
| 8686 | // section. It is the user fault if that was not mapped before. If there is | |||
| 8687 | // no map information and the pointer is a struct member, then we defer the | |||
| 8688 | // emission of that entry until the whole struct has been processed. | |||
| 8689 | llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; | |||
| 8690 | for (const auto *Cl : Clauses) { | |||
| 8691 | const auto *C = dyn_cast<OMPUseDeviceAddrClause>(Cl); | |||
| 8692 | if (!C) | |||
| 8693 | continue; | |||
| 8694 | for (const auto L : C->component_lists()) { | |||
| 8695 | assert(!std::get<1>(L).empty() &&((void)0) | |||
| 8696 | "Not expecting empty list of components!")((void)0); | |||
| 8697 | const ValueDecl *VD = std::get<1>(L).back().getAssociatedDeclaration(); | |||
| 8698 | if (!Processed.insert(VD).second) | |||
| 8699 | continue; | |||
| 8700 | VD = cast<ValueDecl>(VD->getCanonicalDecl()); | |||
| 8701 | const Expr *IE = std::get<1>(L).back().getAssociatedExpression(); | |||
| 8702 | // If the first component is a member expression, we have to look into | |||
| 8703 | // 'this', which maps to null in the map of map information. Otherwise | |||
| 8704 | // look directly for the information. | |||
| 8705 | auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD); | |||
| 8706 | ||||
| 8707 | // We potentially have map information for this declaration already. | |||
| 8708 | // Look for the first set of components that refer to it. | |||
| 8709 | if (It != Info.end()) { | |||
| 8710 | bool Found = false; | |||
| 8711 | for (auto &Data : It->second) { | |||
| 8712 | auto *CI = llvm::find_if(Data, [VD](const MapInfo &MI) { | |||
| 8713 | return MI.Components.back().getAssociatedDeclaration() == VD; | |||
| 8714 | }); | |||
| 8715 | // If we found a map entry, signal that the pointer has to be | |||
| 8716 | // returned and move on to the next declaration. | |||
| 8717 | if (CI != Data.end()) { | |||
| 8718 | CI->ReturnDevicePointer = true; | |||
| 8719 | Found = true; | |||
| 8720 | break; | |||
| 8721 | } | |||
| 8722 | } | |||
| 8723 | if (Found) | |||
| 8724 | continue; | |||
| 8725 | } | |||
| 8726 | ||||
| 8727 | // We didn't find any match in our map information - generate a zero | |||
| 8728 | // size array section - if the pointer is a struct member we defer this | |||
| 8729 | // action until the whole struct has been processed. | |||
| 8730 | if (isa<MemberExpr>(IE)) { | |||
| 8731 | // Insert the pointer into Info to be processed by | |||
| 8732 | // generateInfoForComponentList. Because it is a member pointer | |||
| 8733 | // without a pointee, no entry will be generated for it, therefore | |||
| 8734 | // we need to generate one after the whole struct has been processed. | |||
| 8735 | // Nonetheless, generateInfoForComponentList must be called to take | |||
| 8736 | // the pointer into account for the calculation of the range of the | |||
| 8737 | // partial struct. | |||
| 8738 | InfoGen(nullptr, Other, std::get<1>(L), OMPC_MAP_unknown, llvm::None, | |||
| 8739 | llvm::None, /*ReturnDevicePointer=*/false, C->isImplicit(), | |||
| 8740 | nullptr, nullptr, /*ForDeviceAddr=*/true); | |||
| 8741 | DeferredInfo[nullptr].emplace_back(IE, VD, /*ForDeviceAddr=*/true); | |||
| 8742 | } else { | |||
| 8743 | llvm::Value *Ptr; | |||
| 8744 | if (IE->isGLValue()) | |||
| 8745 | Ptr = CGF.EmitLValue(IE).getPointer(CGF); | |||
| 8746 | else | |||
| 8747 | Ptr = CGF.EmitScalarExpr(IE); | |||
| 8748 | CombinedInfo.Exprs.push_back(VD); | |||
| 8749 | CombinedInfo.BasePointers.emplace_back(Ptr, VD); | |||
| 8750 | CombinedInfo.Pointers.push_back(Ptr); | |||
| 8751 | CombinedInfo.Sizes.push_back( | |||
| 8752 | llvm::Constant::getNullValue(CGF.Int64Ty)); | |||
| 8753 | CombinedInfo.Types.push_back(OMP_MAP_RETURN_PARAM); | |||
| 8754 | CombinedInfo.Mappers.push_back(nullptr); | |||
| 8755 | } | |||
| 8756 | } | |||
| 8757 | } | |||
| 8758 | ||||
| 8759 | for (const auto &Data : Info) { | |||
| 8760 | StructRangeInfoTy PartialStruct; | |||
| 8761 | // Temporary generated information. | |||
| 8762 | MapCombinedInfoTy CurInfo; | |||
| 8763 | const Decl *D = Data.first; | |||
| 8764 | const ValueDecl *VD = cast_or_null<ValueDecl>(D); | |||
| 8765 | for (const auto &M : Data.second) { | |||
| 8766 | for (const MapInfo &L : M) { | |||
| 8767 | assert(!L.Components.empty() &&((void)0) | |||
| 8768 | "Not expecting declaration with no component lists.")((void)0); | |||
| 8769 | ||||
| 8770 | // Remember the current base pointer index. | |||
| 8771 | unsigned CurrentBasePointersIdx = CurInfo.BasePointers.size(); | |||
| 8772 | CurInfo.NonContigInfo.IsNonContiguous = | |||
| 8773 | L.Components.back().isNonContiguous(); | |||
| 8774 | generateInfoForComponentList( | |||
| 8775 | L.MapType, L.MapModifiers, L.MotionModifiers, L.Components, | |||
| 8776 | CurInfo, PartialStruct, /*IsFirstComponentList=*/false, | |||
| 8777 | L.IsImplicit, L.Mapper, L.ForDeviceAddr, VD, L.VarRef); | |||
| 8778 | ||||
| 8779 | // If this entry relates with a device pointer, set the relevant | |||
| 8780 | // declaration and add the 'return pointer' flag. | |||
| 8781 | if (L.ReturnDevicePointer) { | |||
| 8782 | assert(CurInfo.BasePointers.size() > CurrentBasePointersIdx &&((void)0) | |||
| 8783 | "Unexpected number of mapped base pointers.")((void)0); | |||
| 8784 | ||||
| 8785 | const ValueDecl *RelevantVD = | |||
| 8786 | L.Components.back().getAssociatedDeclaration(); | |||
| 8787 | assert(RelevantVD &&((void)0) | |||
| 8788 | "No relevant declaration related with device pointer??")((void)0); | |||
| 8789 | ||||
| 8790 | CurInfo.BasePointers[CurrentBasePointersIdx].setDevicePtrDecl( | |||
| 8791 | RelevantVD); | |||
| 8792 | CurInfo.Types[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PARAM; | |||
| 8793 | } | |||
| 8794 | } | |||
| 8795 | } | |||
| 8796 | ||||
| 8797 | // Append any pending zero-length pointers which are struct members and | |||
| 8798 | // used with use_device_ptr or use_device_addr. | |||
| 8799 | auto CI = DeferredInfo.find(Data.first); | |||
| 8800 | if (CI != DeferredInfo.end()) { | |||
| 8801 | for (const DeferredDevicePtrEntryTy &L : CI->second) { | |||
| 8802 | llvm::Value *BasePtr; | |||
| 8803 | llvm::Value *Ptr; | |||
| 8804 | if (L.ForDeviceAddr) { | |||
| 8805 | if (L.IE->isGLValue()) | |||
| 8806 | Ptr = this->CGF.EmitLValue(L.IE).getPointer(CGF); | |||
| 8807 | else | |||
| 8808 | Ptr = this->CGF.EmitScalarExpr(L.IE); | |||
| 8809 | BasePtr = Ptr; | |||
| 8810 | // Entry is RETURN_PARAM. Also, set the placeholder value | |||
| 8811 | // MEMBER_OF=FFFF so that the entry is later updated with the | |||
| 8812 | // correct value of MEMBER_OF. | |||
| 8813 | CurInfo.Types.push_back(OMP_MAP_RETURN_PARAM | OMP_MAP_MEMBER_OF); | |||
| 8814 | } else { | |||
| 8815 | BasePtr = this->CGF.EmitLValue(L.IE).getPointer(CGF); | |||
| 8816 | Ptr = this->CGF.EmitLoadOfScalar(this->CGF.EmitLValue(L.IE), | |||
| 8817 | L.IE->getExprLoc()); | |||
| 8818 | // Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the | |||
| 8819 | // placeholder value MEMBER_OF=FFFF so that the entry is later | |||
| 8820 | // updated with the correct value of MEMBER_OF. | |||
| 8821 | CurInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_RETURN_PARAM | | |||
| 8822 | OMP_MAP_MEMBER_OF); | |||
| 8823 | } | |||
| 8824 | CurInfo.Exprs.push_back(L.VD); | |||
| 8825 | CurInfo.BasePointers.emplace_back(BasePtr, L.VD); | |||
| 8826 | CurInfo.Pointers.push_back(Ptr); | |||
| 8827 | CurInfo.Sizes.push_back( | |||
| 8828 | llvm::Constant::getNullValue(this->CGF.Int64Ty)); | |||
| 8829 | CurInfo.Mappers.push_back(nullptr); | |||
| 8830 | } | |||
| 8831 | } | |||
| 8832 | // If there is an entry in PartialStruct it means we have a struct with | |||
| 8833 | // individual members mapped. Emit an extra combined entry. | |||
| 8834 | if (PartialStruct.Base.isValid()) { | |||
| 8835 | CurInfo.NonContigInfo.Dims.push_back(0); | |||
| 8836 | emitCombinedEntry(CombinedInfo, CurInfo.Types, PartialStruct, VD); | |||
| 8837 | } | |||
| 8838 | ||||
| 8839 | // We need to append the results of this capture to what we already | |||
| 8840 | // have. | |||
| 8841 | CombinedInfo.append(CurInfo); | |||
| 8842 | } | |||
| 8843 | // Append data for use_device_ptr clauses. | |||
| 8844 | CombinedInfo.append(UseDevicePtrCombinedInfo); | |||
| 8845 | } | |||
| 8846 | ||||
| 8847 | public: | |||
| 8848 | MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF) | |||
| 8849 | : CurDir(&Dir), CGF(CGF) { | |||
| 8850 | // Extract firstprivate clause information. | |||
| 8851 | for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>()) | |||
| 8852 | for (const auto *D : C->varlists()) | |||
| 8853 | FirstPrivateDecls.try_emplace( | |||
| 8854 | cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl()), C->isImplicit()); | |||
| 8855 | // Extract implicit firstprivates from uses_allocators clauses. | |||
| 8856 | for (const auto *C : Dir.getClausesOfKind<OMPUsesAllocatorsClause>()) { | |||
| 8857 | for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) { | |||
| 8858 | OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I); | |||
| 8859 | if (const auto *DRE = dyn_cast_or_null<DeclRefExpr>(D.AllocatorTraits)) | |||
| 8860 | FirstPrivateDecls.try_emplace(cast<VarDecl>(DRE->getDecl()), | |||
| 8861 | /*Implicit=*/true); | |||
| 8862 | else if (const auto *VD = dyn_cast<VarDecl>( | |||
| 8863 | cast<DeclRefExpr>(D.Allocator->IgnoreParenImpCasts()) | |||
| 8864 | ->getDecl())) | |||
| 8865 | FirstPrivateDecls.try_emplace(VD, /*Implicit=*/true); | |||
| 8866 | } | |||
| 8867 | } | |||
| 8868 | // Extract device pointer clause information. | |||
| 8869 | for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>()) | |||
| 8870 | for (auto L : C->component_lists()) | |||
| 8871 | DevPointersMap[std::get<0>(L)].push_back(std::get<1>(L)); | |||
| 8872 | } | |||
| 8873 | ||||
| 8874 | /// Constructor for the declare mapper directive. | |||
| 8875 | MappableExprsHandler(const OMPDeclareMapperDecl &Dir, CodeGenFunction &CGF) | |||
| 8876 | : CurDir(&Dir), CGF(CGF) {} | |||
| 8877 | ||||
| 8878 | /// Generate code for the combined entry if we have a partially mapped struct | |||
| 8879 | /// and take care of the mapping flags of the arguments corresponding to | |||
| 8880 | /// individual struct members. | |||
| 8881 | void emitCombinedEntry(MapCombinedInfoTy &CombinedInfo, | |||
| 8882 | MapFlagsArrayTy &CurTypes, | |||
| 8883 | const StructRangeInfoTy &PartialStruct, | |||
| 8884 | const ValueDecl *VD = nullptr, | |||
| 8885 | bool NotTargetParams = true) const { | |||
| 8886 | if (CurTypes.size() == 1 && | |||
| 8887 | ((CurTypes.back() & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF) && | |||
| 8888 | !PartialStruct.IsArraySection) | |||
| 8889 | return; | |||
| 8890 | Address LBAddr = PartialStruct.LowestElem.second; | |||
| 8891 | Address HBAddr = PartialStruct.HighestElem.second; | |||
| 8892 | if (PartialStruct.HasCompleteRecord) { | |||
| 8893 | LBAddr = PartialStruct.LB; | |||
| 8894 | HBAddr = PartialStruct.LB; | |||
| 8895 | } | |||
| 8896 | CombinedInfo.Exprs.push_back(VD); | |||
| 8897 | // Base is the base of the struct | |||
| 8898 | CombinedInfo.BasePointers.push_back(PartialStruct.Base.getPointer()); | |||
| 8899 | // Pointer is the address of the lowest element | |||
| 8900 | llvm::Value *LB = LBAddr.getPointer(); | |||
| 8901 | CombinedInfo.Pointers.push_back(LB); | |||
| 8902 | // There should not be a mapper for a combined entry. | |||
| 8903 | CombinedInfo.Mappers.push_back(nullptr); | |||
| 8904 | // Size is (addr of {highest+1} element) - (addr of lowest element) | |||
| 8905 | llvm::Value *HB = HBAddr.getPointer(); | |||
| 8906 | llvm::Value *HAddr = | |||
| 8907 | CGF.Builder.CreateConstGEP1_32(HBAddr.getElementType(), HB, /*Idx0=*/1); | |||
| 8908 | llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy); | |||
| 8909 | llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy); | |||
| 8910 | llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CHAddr, CLAddr); | |||
| 8911 | llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.Int64Ty, | |||
| 8912 | /*isSigned=*/false); | |||
| 8913 | CombinedInfo.Sizes.push_back(Size); | |||
| 8914 | // Map type is always TARGET_PARAM, if generate info for captures. | |||
| 8915 | CombinedInfo.Types.push_back(NotTargetParams ? OMP_MAP_NONE | |||
| 8916 | : OMP_MAP_TARGET_PARAM); | |||
| 8917 | // If any element has the present modifier, then make sure the runtime | |||
| 8918 | // doesn't attempt to allocate the struct. | |||
| 8919 | if (CurTypes.end() != | |||
| 8920 | llvm::find_if(CurTypes, [](OpenMPOffloadMappingFlags Type) { | |||
| 8921 | return Type & OMP_MAP_PRESENT; | |||
| 8922 | })) | |||
| 8923 | CombinedInfo.Types.back() |= OMP_MAP_PRESENT; | |||
| 8924 | // Remove TARGET_PARAM flag from the first element | |||
| 8925 | (*CurTypes.begin()) &= ~OMP_MAP_TARGET_PARAM; | |||
| 8926 | ||||
| 8927 | // All other current entries will be MEMBER_OF the combined entry | |||
| 8928 | // (except for PTR_AND_OBJ entries which do not have a placeholder value | |||
| 8929 | // 0xFFFF in the MEMBER_OF field). | |||
| 8930 | OpenMPOffloadMappingFlags MemberOfFlag = | |||
| 8931 | getMemberOfFlag(CombinedInfo.BasePointers.size() - 1); | |||
| 8932 | for (auto &M : CurTypes) | |||
| 8933 | setCorrectMemberOfFlag(M, MemberOfFlag); | |||
| 8934 | } | |||
| 8935 | ||||
| 8936 | /// Generate all the base pointers, section pointers, sizes, map types, and | |||
| 8937 | /// mappers for the extracted mappable expressions (all included in \a | |||
| 8938 | /// CombinedInfo). Also, for each item that relates with a device pointer, a | |||
| 8939 | /// pair of the relevant declaration and index where it occurs is appended to | |||
| 8940 | /// the device pointers info array. | |||
| 8941 | void generateAllInfo( | |||
| 8942 | MapCombinedInfoTy &CombinedInfo, | |||
| 8943 | const llvm::DenseSet<CanonicalDeclPtr<const Decl>> &SkipVarSet = | |||
| 8944 | llvm::DenseSet<CanonicalDeclPtr<const Decl>>()) const { | |||
| 8945 | assert(CurDir.is<const OMPExecutableDirective *>() &&((void)0) | |||
| 8946 | "Expect a executable directive")((void)0); | |||
| 8947 | const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>(); | |||
| 8948 | generateAllInfoForClauses(CurExecDir->clauses(), CombinedInfo, SkipVarSet); | |||
| 8949 | } | |||
| 8950 | ||||
| 8951 | /// Generate all the base pointers, section pointers, sizes, map types, and | |||
| 8952 | /// mappers for the extracted map clauses of user-defined mapper (all included | |||
| 8953 | /// in \a CombinedInfo). | |||
| 8954 | void generateAllInfoForMapper(MapCombinedInfoTy &CombinedInfo) const { | |||
| 8955 | assert(CurDir.is<const OMPDeclareMapperDecl *>() &&((void)0) | |||
| 8956 | "Expect a declare mapper directive")((void)0); | |||
| 8957 | const auto *CurMapperDir = CurDir.get<const OMPDeclareMapperDecl *>(); | |||
| 8958 | generateAllInfoForClauses(CurMapperDir->clauses(), CombinedInfo); | |||
| 8959 | } | |||
| 8960 | ||||
| 8961 | /// Emit capture info for lambdas for variables captured by reference. | |||
| 8962 | void generateInfoForLambdaCaptures( | |||
| 8963 | const ValueDecl *VD, llvm::Value *Arg, MapCombinedInfoTy &CombinedInfo, | |||
| 8964 | llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const { | |||
| 8965 | const auto *RD = VD->getType() | |||
| 8966 | .getCanonicalType() | |||
| 8967 | .getNonReferenceType() | |||
| 8968 | ->getAsCXXRecordDecl(); | |||
| 8969 | if (!RD || !RD->isLambda()) | |||
| 8970 | return; | |||
| 8971 | Address VDAddr = Address(Arg, CGF.getContext().getDeclAlign(VD)); | |||
| 8972 | LValue VDLVal = CGF.MakeAddrLValue( | |||
| 8973 | VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); | |||
| 8974 | llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; | |||
| 8975 | FieldDecl *ThisCapture = nullptr; | |||
| 8976 | RD->getCaptureFields(Captures, ThisCapture); | |||
| 8977 | if (ThisCapture) { | |||
| 8978 | LValue ThisLVal = | |||
| 8979 | CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); | |||
| 8980 | LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture); | |||
| 8981 | LambdaPointers.try_emplace(ThisLVal.getPointer(CGF), | |||
| 8982 | VDLVal.getPointer(CGF)); | |||
| 8983 | CombinedInfo.Exprs.push_back(VD); | |||
| 8984 | CombinedInfo.BasePointers.push_back(ThisLVal.getPointer(CGF)); | |||
| 8985 | CombinedInfo.Pointers.push_back(ThisLValVal.getPointer(CGF)); | |||
| 8986 | CombinedInfo.Sizes.push_back( | |||
| 8987 | CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy), | |||
| 8988 | CGF.Int64Ty, /*isSigned=*/true)); | |||
| 8989 | CombinedInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL | | |||
| 8990 | OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT); | |||
| 8991 | CombinedInfo.Mappers.push_back(nullptr); | |||
| 8992 | } | |||
| 8993 | for (const LambdaCapture &LC : RD->captures()) { | |||
| 8994 | if (!LC.capturesVariable()) | |||
| 8995 | continue; | |||
| 8996 | const VarDecl *VD = LC.getCapturedVar(); | |||
| 8997 | if (LC.getCaptureKind() != LCK_ByRef && !VD->getType()->isPointerType()) | |||
| 8998 | continue; | |||
| 8999 | auto It = Captures.find(VD); | |||
| 9000 | assert(It != Captures.end() && "Found lambda capture without field.")((void)0); | |||
| 9001 | LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); | |||
| 9002 | if (LC.getCaptureKind() == LCK_ByRef) { | |||
| 9003 | LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second); | |||
| 9004 | LambdaPointers.try_emplace(VarLVal.getPointer(CGF), | |||
| 9005 | VDLVal.getPointer(CGF)); | |||
| 9006 | CombinedInfo.Exprs.push_back(VD); | |||
| 9007 | CombinedInfo.BasePointers.push_back(VarLVal.getPointer(CGF)); | |||
| 9008 | CombinedInfo.Pointers.push_back(VarLValVal.getPointer(CGF)); | |||
| 9009 | CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast( | |||
| 9010 | CGF.getTypeSize( | |||
| 9011 | VD->getType().getCanonicalType().getNonReferenceType()), | |||
| 9012 | CGF.Int64Ty, /*isSigned=*/true)); | |||
| 9013 | } else { | |||
| 9014 | RValue VarRVal = CGF.EmitLoadOfLValue(VarLVal, RD->getLocation()); | |||
| 9015 | LambdaPointers.try_emplace(VarLVal.getPointer(CGF), | |||
| 9016 | VDLVal.getPointer(CGF)); | |||
| 9017 | CombinedInfo.Exprs.push_back(VD); | |||
| 9018 | CombinedInfo.BasePointers.push_back(VarLVal.getPointer(CGF)); | |||
| 9019 | CombinedInfo.Pointers.push_back(VarRVal.getScalarVal()); | |||
| 9020 | CombinedInfo.Sizes.push_back(llvm::ConstantInt::get(CGF.Int64Ty, 0)); | |||
| 9021 | } | |||
| 9022 | CombinedInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL | | |||
| 9023 | OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT); | |||
| 9024 | CombinedInfo.Mappers.push_back(nullptr); | |||
| 9025 | } | |||
| 9026 | } | |||
| 9027 | ||||
| 9028 | /// Set correct indices for lambdas captures. | |||
| 9029 | void adjustMemberOfForLambdaCaptures( | |||
| 9030 | const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers, | |||
| 9031 | MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers, | |||
| 9032 | MapFlagsArrayTy &Types) const { | |||
| 9033 | for (unsigned I = 0, E = Types.size(); I < E; ++I) { | |||
| 9034 | // Set correct member_of idx for all implicit lambda captures. | |||
| 9035 | if (Types[I] != (OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL | | |||
| 9036 | OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT)) | |||
| 9037 | continue; | |||
| 9038 | llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]); | |||
| 9039 | assert(BasePtr && "Unable to find base lambda address.")((void)0); | |||
| 9040 | int TgtIdx = -1; | |||
| 9041 | for (unsigned J = I; J > 0; --J) { | |||
| 9042 | unsigned Idx = J - 1; | |||
| 9043 | if (Pointers[Idx] != BasePtr) | |||
| 9044 | continue; | |||
| 9045 | TgtIdx = Idx; | |||
| 9046 | break; | |||
| 9047 | } | |||
| 9048 | assert(TgtIdx != -1 && "Unable to find parent lambda.")((void)0); | |||
| 9049 | // All other current entries will be MEMBER_OF the combined entry | |||
| 9050 | // (except for PTR_AND_OBJ entries which do not have a placeholder value | |||
| 9051 | // 0xFFFF in the MEMBER_OF field). | |||
| 9052 | OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx); | |||
| 9053 | setCorrectMemberOfFlag(Types[I], MemberOfFlag); | |||
| 9054 | } | |||
| 9055 | } | |||
| 9056 | ||||
| 9057 | /// Generate the base pointers, section pointers, sizes, map types, and | |||
| 9058 | /// mappers associated to a given capture (all included in \a CombinedInfo). | |||
| 9059 | void generateInfoForCapture(const CapturedStmt::Capture *Cap, | |||
| 9060 | llvm::Value *Arg, MapCombinedInfoTy &CombinedInfo, | |||
| 9061 | StructRangeInfoTy &PartialStruct) const { | |||
| 9062 | assert(!Cap->capturesVariableArrayType() &&((void)0) | |||
| 9063 | "Not expecting to generate map info for a variable array type!")((void)0); | |||
| 9064 | ||||
| 9065 | // We need to know when we generating information for the first component | |||
| 9066 | const ValueDecl *VD = Cap->capturesThis() | |||
| 9067 | ? nullptr | |||
| 9068 | : Cap->getCapturedVar()->getCanonicalDecl(); | |||
| 9069 | ||||
| 9070 | // If this declaration appears in a is_device_ptr clause we just have to | |||
| 9071 | // pass the pointer by value. If it is a reference to a declaration, we just | |||
| 9072 | // pass its value. | |||
| 9073 | if (DevPointersMap.count(VD)) { | |||
| 9074 | CombinedInfo.Exprs.push_back(VD); | |||
| 9075 | CombinedInfo.BasePointers.emplace_back(Arg, VD); | |||
| 9076 | CombinedInfo.Pointers.push_back(Arg); | |||
| 9077 | CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast( | |||
| 9078 | CGF.getTypeSize(CGF.getContext().VoidPtrTy), CGF.Int64Ty, | |||
| 9079 | /*isSigned=*/true)); | |||
| 9080 | CombinedInfo.Types.push_back( | |||
| 9081 | (Cap->capturesVariable() ? OMP_MAP_TO : OMP_MAP_LITERAL) | | |||
| 9082 | OMP_MAP_TARGET_PARAM); | |||
| 9083 | CombinedInfo.Mappers.push_back(nullptr); | |||
| 9084 | return; | |||
| 9085 | } | |||
| 9086 | ||||
| 9087 | using MapData = | |||
| 9088 | std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef, | |||
| 9089 | OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool, | |||
| 9090 | const ValueDecl *, const Expr *>; | |||
| 9091 | SmallVector<MapData, 4> DeclComponentLists; | |||
| 9092 | assert(CurDir.is<const OMPExecutableDirective *>() &&((void)0) | |||
| 9093 | "Expect a executable directive")((void)0); | |||
| 9094 | const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>(); | |||
| 9095 | for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) { | |||
| 9096 | const auto *EI = C->getVarRefs().begin(); | |||
| 9097 | for (const auto L : C->decl_component_lists(VD)) { | |||
| 9098 | const ValueDecl *VDecl, *Mapper; | |||
| 9099 | // The Expression is not correct if the mapping is implicit | |||
| 9100 | const Expr *E = (C->getMapLoc().isValid()) ? *EI : nullptr; | |||
| 9101 | OMPClauseMappableExprCommon::MappableExprComponentListRef Components; | |||
| 9102 | std::tie(VDecl, Components, Mapper) = L; | |||
| 9103 | assert(VDecl == VD && "We got information for the wrong declaration??")((void)0); | |||
| 9104 | assert(!Components.empty() &&((void)0) | |||
| 9105 | "Not expecting declaration with no component lists.")((void)0); | |||
| 9106 | DeclComponentLists.emplace_back(Components, C->getMapType(), | |||
| 9107 | C->getMapTypeModifiers(), | |||
| 9108 | C->isImplicit(), Mapper, E); | |||
| 9109 | ++EI; | |||
| 9110 | } | |||
| 9111 | } | |||
| 9112 | llvm::stable_sort(DeclComponentLists, [](const MapData &LHS, | |||
| 9113 | const MapData &RHS) { | |||
| 9114 | ArrayRef<OpenMPMapModifierKind> MapModifiers = std::get<2>(LHS); | |||
| 9115 | OpenMPMapClauseKind MapType = std::get<1>(RHS); | |||
| 9116 | bool HasPresent = !MapModifiers.empty() && | |||
| 9117 | llvm::any_of(MapModifiers, [](OpenMPMapModifierKind K) { | |||
| 9118 | return K == clang::OMPC_MAP_MODIFIER_present; | |||
| 9119 | }); | |||
| 9120 | bool HasAllocs = MapType == OMPC_MAP_alloc; | |||
| 9121 | MapModifiers = std::get<2>(RHS); | |||
| 9122 | MapType = std::get<1>(LHS); | |||
| 9123 | bool HasPresentR = | |||
| 9124 | !MapModifiers.empty() && | |||
| 9125 | llvm::any_of(MapModifiers, [](OpenMPMapModifierKind K) { | |||
| 9126 | return K == clang::OMPC_MAP_MODIFIER_present; | |||
| 9127 | }); | |||
| 9128 | bool HasAllocsR = MapType == OMPC_MAP_alloc; | |||
| 9129 | return (HasPresent && !HasPresentR) || (HasAllocs && !HasAllocsR); | |||
| 9130 | }); | |||
| 9131 | ||||
| 9132 | // Find overlapping elements (including the offset from the base element). | |||
| 9133 | llvm::SmallDenseMap< | |||
| 9134 | const MapData *, | |||
| 9135 | llvm::SmallVector< | |||
| 9136 | OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>, | |||
| 9137 | 4> | |||
| 9138 | OverlappedData; | |||
| 9139 | size_t Count = 0; | |||
| 9140 | for (const MapData &L : DeclComponentLists) { | |||
| 9141 | OMPClauseMappableExprCommon::MappableExprComponentListRef Components; | |||
| 9142 | OpenMPMapClauseKind MapType; | |||
| 9143 | ArrayRef<OpenMPMapModifierKind> MapModifiers; | |||
| 9144 | bool IsImplicit; | |||
| 9145 | const ValueDecl *Mapper; | |||
| 9146 | const Expr *VarRef; | |||
| 9147 | std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) = | |||
| 9148 | L; | |||
| 9149 | ++Count; | |||
| 9150 | for (const MapData &L1 : makeArrayRef(DeclComponentLists).slice(Count)) { | |||
| 9151 | OMPClauseMappableExprCommon::MappableExprComponentListRef Components1; | |||
| 9152 | std::tie(Components1, MapType, MapModifiers, IsImplicit, Mapper, | |||
| 9153 | VarRef) = L1; | |||
| 9154 | auto CI = Components.rbegin(); | |||
| 9155 | auto CE = Components.rend(); | |||
| 9156 | auto SI = Components1.rbegin(); | |||
| 9157 | auto SE = Components1.rend(); | |||
| 9158 | for (; CI != CE && SI != SE; ++CI, ++SI) { | |||
| 9159 | if (CI->getAssociatedExpression()->getStmtClass() != | |||
| 9160 | SI->getAssociatedExpression()->getStmtClass()) | |||
| 9161 | break; | |||
| 9162 | // Are we dealing with different variables/fields? | |||
| 9163 | if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration()) | |||
| 9164 | break; | |||
| 9165 | } | |||
| 9166 | // Found overlapping if, at least for one component, reached the head | |||
| 9167 | // of the components list. | |||
| 9168 | if (CI == CE || SI == SE) { | |||
| 9169 | // Ignore it if it is the same component. | |||
| 9170 | if (CI == CE && SI == SE) | |||
| 9171 | continue; | |||
| 9172 | const auto It = (SI == SE) ? CI : SI; | |||
| 9173 | // If one component is a pointer and another one is a kind of | |||
| 9174 | // dereference of this pointer (array subscript, section, dereference, | |||
| 9175 | // etc.), it is not an overlapping. | |||
| 9176 | // Same, if one component is a base and another component is a | |||
| 9177 | // dereferenced pointer memberexpr with the same base. | |||
| 9178 | if (!isa<MemberExpr>(It->getAssociatedExpression()) || | |||
| 9179 | (std::prev(It)->getAssociatedDeclaration() && | |||
| 9180 | std::prev(It) | |||
| 9181 | ->getAssociatedDeclaration() | |||
| 9182 | ->getType() | |||
| 9183 | ->isPointerType()) || | |||
| 9184 | (It->getAssociatedDeclaration() && | |||
| 9185 | It->getAssociatedDeclaration()->getType()->isPointerType() && | |||
| 9186 | std::next(It) != CE && std::next(It) != SE)) | |||
| 9187 | continue; | |||
| 9188 | const MapData &BaseData = CI == CE ? L : L1; | |||
| 9189 | OMPClauseMappableExprCommon::MappableExprComponentListRef SubData = | |||
| 9190 | SI == SE ? Components : Components1; | |||
| 9191 | auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData); | |||
| 9192 | OverlappedElements.getSecond().push_back(SubData); | |||
| 9193 | } | |||
| 9194 | } | |||
| 9195 | } | |||
| 9196 | // Sort the overlapped elements for each item. | |||
| 9197 | llvm::SmallVector<const FieldDecl *, 4> Layout; | |||
| 9198 | if (!OverlappedData.empty()) { | |||
| 9199 | const Type *BaseType = VD->getType().getCanonicalType().getTypePtr(); | |||
| 9200 | const Type *OrigType = BaseType->getPointeeOrArrayElementType(); | |||
| 9201 | while (BaseType != OrigType) { | |||
| 9202 | BaseType = OrigType->getCanonicalTypeInternal().getTypePtr(); | |||
| 9203 | OrigType = BaseType->getPointeeOrArrayElementType(); | |||
| 9204 | } | |||
| 9205 | ||||
| 9206 | if (const auto *CRD = BaseType->getAsCXXRecordDecl()) | |||
| 9207 | getPlainLayout(CRD, Layout, /*AsBase=*/false); | |||
| 9208 | else { | |||
| 9209 | const auto *RD = BaseType->getAsRecordDecl(); | |||
| 9210 | Layout.append(RD->field_begin(), RD->field_end()); | |||
| 9211 | } | |||
| 9212 | } | |||
| 9213 | for (auto &Pair : OverlappedData) { | |||
| 9214 | llvm::stable_sort( | |||
| 9215 | Pair.getSecond(), | |||
| 9216 | [&Layout]( | |||
| 9217 | OMPClauseMappableExprCommon::MappableExprComponentListRef First, | |||
| 9218 | OMPClauseMappableExprCommon::MappableExprComponentListRef | |||
| 9219 | Second) { | |||
| 9220 | auto CI = First.rbegin(); | |||
| 9221 | auto CE = First.rend(); | |||
| 9222 | auto SI = Second.rbegin(); | |||
| 9223 | auto SE = Second.rend(); | |||
| 9224 | for (; CI != CE && SI != SE; ++CI, ++SI) { | |||
| 9225 | if (CI->getAssociatedExpression()->getStmtClass() != | |||
| 9226 | SI->getAssociatedExpression()->getStmtClass()) | |||
| 9227 | break; | |||
| 9228 | // Are we dealing with different variables/fields? | |||
| 9229 | if (CI->getAssociatedDeclaration() != | |||
| 9230 | SI->getAssociatedDeclaration()) | |||
| 9231 | break; | |||
| 9232 | } | |||
| 9233 | ||||
| 9234 | // Lists contain the same elements. | |||
| 9235 | if (CI == CE && SI == SE) | |||
| 9236 | return false; | |||
| 9237 | ||||
| 9238 | // List with less elements is less than list with more elements. | |||
| 9239 | if (CI == CE || SI == SE) | |||
| 9240 | return CI == CE; | |||
| 9241 | ||||
| 9242 | const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration()); | |||
| 9243 | const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration()); | |||
| 9244 | if (FD1->getParent() == FD2->getParent()) | |||
| 9245 | return FD1->getFieldIndex() < FD2->getFieldIndex(); | |||
| 9246 | const auto *It = | |||
| 9247 | llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) { | |||
| 9248 | return FD == FD1 || FD == FD2; | |||
| 9249 | }); | |||
| 9250 | return *It == FD1; | |||
| 9251 | }); | |||
| 9252 | } | |||
| 9253 | ||||
| 9254 | // Associated with a capture, because the mapping flags depend on it. | |||
| 9255 | // Go through all of the elements with the overlapped elements. | |||
| 9256 | bool IsFirstComponentList = true; | |||
| 9257 | for (const auto &Pair : OverlappedData) { | |||
| 9258 | const MapData &L = *Pair.getFirst(); | |||
| 9259 | OMPClauseMappableExprCommon::MappableExprComponentListRef Components; | |||
| 9260 | OpenMPMapClauseKind MapType; | |||
| 9261 | ArrayRef<OpenMPMapModifierKind> MapModifiers; | |||
| 9262 | bool IsImplicit; | |||
| 9263 | const ValueDecl *Mapper; | |||
| 9264 | const Expr *VarRef; | |||
| 9265 | std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) = | |||
| 9266 | L; | |||
| 9267 | ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef> | |||
| 9268 | OverlappedComponents = Pair.getSecond(); | |||
| 9269 | generateInfoForComponentList( | |||
| 9270 | MapType, MapModifiers, llvm::None, Components, CombinedInfo, | |||
| 9271 | PartialStruct, IsFirstComponentList, IsImplicit, Mapper, | |||
| 9272 | /*ForDeviceAddr=*/false, VD, VarRef, OverlappedComponents); | |||
| 9273 | IsFirstComponentList = false; | |||
| 9274 | } | |||
| 9275 | // Go through other elements without overlapped elements. | |||
| 9276 | for (const MapData &L : DeclComponentLists) { | |||
| 9277 | OMPClauseMappableExprCommon::MappableExprComponentListRef Components; | |||
| 9278 | OpenMPMapClauseKind MapType; | |||
| 9279 | ArrayRef<OpenMPMapModifierKind> MapModifiers; | |||
| 9280 | bool IsImplicit; | |||
| 9281 | const ValueDecl *Mapper; | |||
| 9282 | const Expr *VarRef; | |||
| 9283 | std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) = | |||
| 9284 | L; | |||
| 9285 | auto It = OverlappedData.find(&L); | |||
| 9286 | if (It == OverlappedData.end()) | |||
| 9287 | generateInfoForComponentList(MapType, MapModifiers, llvm::None, | |||
| 9288 | Components, CombinedInfo, PartialStruct, | |||
| 9289 | IsFirstComponentList, IsImplicit, Mapper, | |||
| 9290 | /*ForDeviceAddr=*/false, VD, VarRef); | |||
| 9291 | IsFirstComponentList = false; | |||
| 9292 | } | |||
| 9293 | } | |||
| 9294 | ||||
| 9295 | /// Generate the default map information for a given capture \a CI, | |||
| 9296 | /// record field declaration \a RI and captured value \a CV. | |||
| 9297 | void generateDefaultMapInfo(const CapturedStmt::Capture &CI, | |||
| 9298 | const FieldDecl &RI, llvm::Value *CV, | |||
| 9299 | MapCombinedInfoTy &CombinedInfo) const { | |||
| 9300 | bool IsImplicit = true; | |||
| 9301 | // Do the default mapping. | |||
| 9302 | if (CI.capturesThis()) { | |||
| 9303 | CombinedInfo.Exprs.push_back(nullptr); | |||
| 9304 | CombinedInfo.BasePointers.push_back(CV); | |||
| 9305 | CombinedInfo.Pointers.push_back(CV); | |||
| 9306 | const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr()); | |||
| 9307 | CombinedInfo.Sizes.push_back( | |||
| 9308 | CGF.Builder.CreateIntCast(CGF.getTypeSize(PtrTy->getPointeeType()), | |||
| 9309 | CGF.Int64Ty, /*isSigned=*/true)); | |||
| 9310 | // Default map type. | |||
| 9311 | CombinedInfo.Types.push_back(OMP_MAP_TO | OMP_MAP_FROM); | |||
| 9312 | } else if (CI.capturesVariableByCopy()) { | |||
| 9313 | const VarDecl *VD = CI.getCapturedVar(); | |||
| 9314 | CombinedInfo.Exprs.push_back(VD->getCanonicalDecl()); | |||
| 9315 | CombinedInfo.BasePointers.push_back(CV); | |||
| 9316 | CombinedInfo.Pointers.push_back(CV); | |||
| 9317 | if (!RI.getType()->isAnyPointerType()) { | |||
| 9318 | // We have to signal to the runtime captures passed by value that are | |||
| 9319 | // not pointers. | |||
| 9320 | CombinedInfo.Types.push_back(OMP_MAP_LITERAL); | |||
| 9321 | CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast( | |||
| 9322 | CGF.getTypeSize(RI.getType()), CGF.Int64Ty, /*isSigned=*/true)); | |||
| 9323 | } else { | |||
| 9324 | // Pointers are implicitly mapped with a zero size and no flags | |||
| 9325 | // (other than first map that is added for all implicit maps). | |||
| 9326 | CombinedInfo.Types.push_back(OMP_MAP_NONE); | |||
| 9327 | CombinedInfo.Sizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty)); | |||
| 9328 | } | |||
| 9329 | auto I = FirstPrivateDecls.find(VD); | |||
| 9330 | if (I != FirstPrivateDecls.end()) | |||
| 9331 | IsImplicit = I->getSecond(); | |||
| 9332 | } else { | |||
| 9333 | assert(CI.capturesVariable() && "Expected captured reference.")((void)0); | |||
| 9334 | const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr()); | |||
| 9335 | QualType ElementType = PtrTy->getPointeeType(); | |||
| 9336 | CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast( | |||
| 9337 | CGF.getTypeSize(ElementType), CGF.Int64Ty, /*isSigned=*/true)); | |||
| 9338 | // The default map type for a scalar/complex type is 'to' because by | |||
| 9339 | // default the value doesn't have to be retrieved. For an aggregate | |||
| 9340 | // type, the default is 'tofrom'. | |||
| 9341 | CombinedInfo.Types.push_back(getMapModifiersForPrivateClauses(CI)); | |||
| 9342 | const VarDecl *VD = CI.getCapturedVar(); | |||
| 9343 | auto I = FirstPrivateDecls.find(VD); | |||
| 9344 | CombinedInfo.Exprs.push_back(VD->getCanonicalDecl()); | |||
| 9345 | CombinedInfo.BasePointers.push_back(CV); | |||
| 9346 | if (I != FirstPrivateDecls.end() && ElementType->isAnyPointerType()) { | |||
| 9347 | Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue( | |||
| 9348 | CV, ElementType, CGF.getContext().getDeclAlign(VD), | |||
| 9349 | AlignmentSource::Decl)); | |||
| 9350 | CombinedInfo.Pointers.push_back(PtrAddr.getPointer()); | |||
| 9351 | } else { | |||
| 9352 | CombinedInfo.Pointers.push_back(CV); | |||
| 9353 | } | |||
| 9354 | if (I != FirstPrivateDecls.end()) | |||
| 9355 | IsImplicit = I->getSecond(); | |||
| 9356 | } | |||
| 9357 | // Every default map produces a single argument which is a target parameter. | |||
| 9358 | CombinedInfo.Types.back() |= OMP_MAP_TARGET_PARAM; | |||
| 9359 | ||||
| 9360 | // Add flag stating this is an implicit map. | |||
| 9361 | if (IsImplicit) | |||
| 9362 | CombinedInfo.Types.back() |= OMP_MAP_IMPLICIT; | |||
| 9363 | ||||
| 9364 | // No user-defined mapper for default mapping. | |||
| 9365 | CombinedInfo.Mappers.push_back(nullptr); | |||
| 9366 | } | |||
| 9367 | }; | |||
| 9368 | } // anonymous namespace | |||
| 9369 | ||||
| 9370 | static void emitNonContiguousDescriptor( | |||
| 9371 | CodeGenFunction &CGF, MappableExprsHandler::MapCombinedInfoTy &CombinedInfo, | |||
| 9372 | CGOpenMPRuntime::TargetDataInfo &Info) { | |||
| 9373 | CodeGenModule &CGM = CGF.CGM; | |||
| 9374 | MappableExprsHandler::MapCombinedInfoTy::StructNonContiguousInfo | |||
| 9375 | &NonContigInfo = CombinedInfo.NonContigInfo; | |||
| 9376 | ||||
| 9377 | // Build an array of struct descriptor_dim and then assign it to | |||
| 9378 | // offload_args. | |||
| 9379 | // | |||
| 9380 | // struct descriptor_dim { | |||
| 9381 | // uint64_t offset; | |||
| 9382 | // uint64_t count; | |||
| 9383 | // uint64_t stride | |||
| 9384 | // }; | |||
| 9385 | ASTContext &C = CGF.getContext(); | |||
| 9386 | QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0); | |||
| 9387 | RecordDecl *RD; | |||
| 9388 | RD = C.buildImplicitRecord("descriptor_dim"); | |||
| 9389 | RD->startDefinition(); | |||
| 9390 | addFieldToRecordDecl(C, RD, Int64Ty); | |||
| 9391 | addFieldToRecordDecl(C, RD, Int64Ty); | |||
| 9392 | addFieldToRecordDecl(C, RD, Int64Ty); | |||
| 9393 | RD->completeDefinition(); | |||
| 9394 | QualType DimTy = C.getRecordType(RD); | |||
| 9395 | ||||
| 9396 | enum { OffsetFD = 0, CountFD, StrideFD }; | |||
| 9397 | // We need two index variable here since the size of "Dims" is the same as the | |||
| 9398 | // size of Components, however, the size of offset, count, and stride is equal | |||
| 9399 | // to the size of base declaration that is non-contiguous. | |||
| 9400 | for (unsigned I = 0, L = 0, E = NonContigInfo.Dims.size(); I < E; ++I) { | |||
| 9401 | // Skip emitting ir if dimension size is 1 since it cannot be | |||
| 9402 | // non-contiguous. | |||
| 9403 | if (NonContigInfo.Dims[I] == 1) | |||
| 9404 | continue; | |||
| 9405 | llvm::APInt Size(/*numBits=*/32, NonContigInfo.Dims[I]); | |||
| 9406 | QualType ArrayTy = | |||
| 9407 | C.getConstantArrayType(DimTy, Size, nullptr, ArrayType::Normal, 0); | |||
| 9408 | Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims"); | |||
| 9409 | for (unsigned II = 0, EE = NonContigInfo.Dims[I]; II < EE; ++II) { | |||
| 9410 | unsigned RevIdx = EE - II - 1; | |||
| 9411 | LValue DimsLVal = CGF.MakeAddrLValue( | |||
| 9412 | CGF.Builder.CreateConstArrayGEP(DimsAddr, II), DimTy); | |||
| 9413 | // Offset | |||
| 9414 | LValue OffsetLVal = CGF.EmitLValueForField( | |||
| 9415 | DimsLVal, *std::next(RD->field_begin(), OffsetFD)); | |||
| 9416 | CGF.EmitStoreOfScalar(NonContigInfo.Offsets[L][RevIdx], OffsetLVal); | |||
| 9417 | // Count | |||
| 9418 | LValue CountLVal = CGF.EmitLValueForField( | |||
| 9419 | DimsLVal, *std::next(RD->field_begin(), CountFD)); | |||
| 9420 | CGF.EmitStoreOfScalar(NonContigInfo.Counts[L][RevIdx], CountLVal); | |||
| 9421 | // Stride | |||
| 9422 | LValue StrideLVal = CGF.EmitLValueForField( | |||
| 9423 | DimsLVal, *std::next(RD->field_begin(), StrideFD)); | |||
| 9424 | CGF.EmitStoreOfScalar(NonContigInfo.Strides[L][RevIdx], StrideLVal); | |||
| 9425 | } | |||
| 9426 | // args[I] = &dims | |||
| 9427 | Address DAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 9428 | DimsAddr, CGM.Int8PtrTy); | |||
| 9429 | llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32( | |||
| 9430 | llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), | |||
| 9431 | Info.PointersArray, 0, I); | |||
| 9432 | Address PAddr(P, CGF.getPointerAlign()); | |||
| 9433 | CGF.Builder.CreateStore(DAddr.getPointer(), PAddr); | |||
| 9434 | ++L; | |||
| 9435 | } | |||
| 9436 | } | |||
| 9437 | ||||
| 9438 | /// Emit a string constant containing the names of the values mapped to the | |||
| 9439 | /// offloading runtime library. | |||
| 9440 | llvm::Constant * | |||
| 9441 | emitMappingInformation(CodeGenFunction &CGF, llvm::OpenMPIRBuilder &OMPBuilder, | |||
| 9442 | MappableExprsHandler::MappingExprInfo &MapExprs) { | |||
| 9443 | llvm::Constant *SrcLocStr; | |||
| 9444 | if (!MapExprs.getMapDecl()) { | |||
| 9445 | SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr(); | |||
| 9446 | } else { | |||
| 9447 | std::string ExprName = ""; | |||
| 9448 | if (MapExprs.getMapExpr()) { | |||
| 9449 | PrintingPolicy P(CGF.getContext().getLangOpts()); | |||
| 9450 | llvm::raw_string_ostream OS(ExprName); | |||
| 9451 | MapExprs.getMapExpr()->printPretty(OS, nullptr, P); | |||
| 9452 | OS.flush(); | |||
| 9453 | } else { | |||
| 9454 | ExprName = MapExprs.getMapDecl()->getNameAsString(); | |||
| 9455 | } | |||
| 9456 | ||||
| 9457 | SourceLocation Loc = MapExprs.getMapDecl()->getLocation(); | |||
| 9458 | PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc); | |||
| 9459 | const char *FileName = PLoc.getFilename(); | |||
| 9460 | unsigned Line = PLoc.getLine(); | |||
| 9461 | unsigned Column = PLoc.getColumn(); | |||
| 9462 | SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(FileName, ExprName.c_str(), | |||
| 9463 | Line, Column); | |||
| 9464 | } | |||
| 9465 | return SrcLocStr; | |||
| 9466 | } | |||
| 9467 | ||||
| 9468 | /// Emit the arrays used to pass the captures and map information to the | |||
| 9469 | /// offloading runtime library. If there is no map or capture information, | |||
| 9470 | /// return nullptr by reference. | |||
| 9471 | static void emitOffloadingArrays( | |||
| 9472 | CodeGenFunction &CGF, MappableExprsHandler::MapCombinedInfoTy &CombinedInfo, | |||
| 9473 | CGOpenMPRuntime::TargetDataInfo &Info, llvm::OpenMPIRBuilder &OMPBuilder, | |||
| 9474 | bool IsNonContiguous = false) { | |||
| 9475 | CodeGenModule &CGM = CGF.CGM; | |||
| 9476 | ASTContext &Ctx = CGF.getContext(); | |||
| 9477 | ||||
| 9478 | // Reset the array information. | |||
| 9479 | Info.clearArrayInfo(); | |||
| 9480 | Info.NumberOfPtrs = CombinedInfo.BasePointers.size(); | |||
| 9481 | ||||
| 9482 | if (Info.NumberOfPtrs) { | |||
| 9483 | // Detect if we have any capture size requiring runtime evaluation of the | |||
| 9484 | // size so that a constant array could be eventually used. | |||
| 9485 | bool hasRuntimeEvaluationCaptureSize = false; | |||
| 9486 | for (llvm::Value *S : CombinedInfo.Sizes) | |||
| 9487 | if (!isa<llvm::Constant>(S)) { | |||
| 9488 | hasRuntimeEvaluationCaptureSize = true; | |||
| 9489 | break; | |||
| 9490 | } | |||
| 9491 | ||||
| 9492 | llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true); | |||
| 9493 | QualType PointerArrayType = Ctx.getConstantArrayType( | |||
| 9494 | Ctx.VoidPtrTy, PointerNumAP, nullptr, ArrayType::Normal, | |||
| 9495 | /*IndexTypeQuals=*/0); | |||
| 9496 | ||||
| 9497 | Info.BasePointersArray = | |||
| 9498 | CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer(); | |||
| 9499 | Info.PointersArray = | |||
| 9500 | CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer(); | |||
| 9501 | Address MappersArray = | |||
| 9502 | CGF.CreateMemTemp(PointerArrayType, ".offload_mappers"); | |||
| 9503 | Info.MappersArray = MappersArray.getPointer(); | |||
| 9504 | ||||
| 9505 | // If we don't have any VLA types or other types that require runtime | |||
| 9506 | // evaluation, we can use a constant array for the map sizes, otherwise we | |||
| 9507 | // need to fill up the arrays as we do for the pointers. | |||
| 9508 | QualType Int64Ty = | |||
| 9509 | Ctx.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); | |||
| 9510 | if (hasRuntimeEvaluationCaptureSize) { | |||
| 9511 | QualType SizeArrayType = Ctx.getConstantArrayType( | |||
| 9512 | Int64Ty, PointerNumAP, nullptr, ArrayType::Normal, | |||
| 9513 | /*IndexTypeQuals=*/0); | |||
| 9514 | Info.SizesArray = | |||
| 9515 | CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer(); | |||
| 9516 | } else { | |||
| 9517 | // We expect all the sizes to be constant, so we collect them to create | |||
| 9518 | // a constant array. | |||
| 9519 | SmallVector<llvm::Constant *, 16> ConstSizes; | |||
| 9520 | for (unsigned I = 0, E = CombinedInfo.Sizes.size(); I < E; ++I) { | |||
| 9521 | if (IsNonContiguous && | |||
| 9522 | (CombinedInfo.Types[I] & MappableExprsHandler::OMP_MAP_NON_CONTIG)) { | |||
| 9523 | ConstSizes.push_back(llvm::ConstantInt::get( | |||
| 9524 | CGF.Int64Ty, CombinedInfo.NonContigInfo.Dims[I])); | |||
| 9525 | } else { | |||
| 9526 | ConstSizes.push_back(cast<llvm::Constant>(CombinedInfo.Sizes[I])); | |||
| 9527 | } | |||
| 9528 | } | |||
| 9529 | ||||
| 9530 | auto *SizesArrayInit = llvm::ConstantArray::get( | |||
| 9531 | llvm::ArrayType::get(CGM.Int64Ty, ConstSizes.size()), ConstSizes); | |||
| 9532 | std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"}); | |||
| 9533 | auto *SizesArrayGbl = new llvm::GlobalVariable( | |||
| 9534 | CGM.getModule(), SizesArrayInit->getType(), | |||
| 9535 | /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, | |||
| 9536 | SizesArrayInit, Name); | |||
| 9537 | SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); | |||
| 9538 | Info.SizesArray = SizesArrayGbl; | |||
| 9539 | } | |||
| 9540 | ||||
| 9541 | // The map types are always constant so we don't need to generate code to | |||
| 9542 | // fill arrays. Instead, we create an array constant. | |||
| 9543 | SmallVector<uint64_t, 4> Mapping(CombinedInfo.Types.size(), 0); | |||
| 9544 | llvm::copy(CombinedInfo.Types, Mapping.begin()); | |||
| 9545 | std::string MaptypesName = | |||
| 9546 | CGM.getOpenMPRuntime().getName({"offload_maptypes"}); | |||
| 9547 | auto *MapTypesArrayGbl = | |||
| 9548 | OMPBuilder.createOffloadMaptypes(Mapping, MaptypesName); | |||
| 9549 | Info.MapTypesArray = MapTypesArrayGbl; | |||
| 9550 | ||||
| 9551 | // The information types are only built if there is debug information | |||
| 9552 | // requested. | |||
| 9553 | if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo) { | |||
| 9554 | Info.MapNamesArray = llvm::Constant::getNullValue( | |||
| 9555 | llvm::Type::getInt8Ty(CGF.Builder.getContext())->getPointerTo()); | |||
| 9556 | } else { | |||
| 9557 | auto fillInfoMap = [&](MappableExprsHandler::MappingExprInfo &MapExpr) { | |||
| 9558 | return emitMappingInformation(CGF, OMPBuilder, MapExpr); | |||
| 9559 | }; | |||
| 9560 | SmallVector<llvm::Constant *, 4> InfoMap(CombinedInfo.Exprs.size()); | |||
| 9561 | llvm::transform(CombinedInfo.Exprs, InfoMap.begin(), fillInfoMap); | |||
| 9562 | std::string MapnamesName = | |||
| 9563 | CGM.getOpenMPRuntime().getName({"offload_mapnames"}); | |||
| 9564 | auto *MapNamesArrayGbl = | |||
| 9565 | OMPBuilder.createOffloadMapnames(InfoMap, MapnamesName); | |||
| 9566 | Info.MapNamesArray = MapNamesArrayGbl; | |||
| 9567 | } | |||
| 9568 | ||||
| 9569 | // If there's a present map type modifier, it must not be applied to the end | |||
| 9570 | // of a region, so generate a separate map type array in that case. | |||
| 9571 | if (Info.separateBeginEndCalls()) { | |||
| 9572 | bool EndMapTypesDiffer = false; | |||
| 9573 | for (uint64_t &Type : Mapping) { | |||
| 9574 | if (Type & MappableExprsHandler::OMP_MAP_PRESENT) { | |||
| 9575 | Type &= ~MappableExprsHandler::OMP_MAP_PRESENT; | |||
| 9576 | EndMapTypesDiffer = true; | |||
| 9577 | } | |||
| 9578 | } | |||
| 9579 | if (EndMapTypesDiffer) { | |||
| 9580 | MapTypesArrayGbl = | |||
| 9581 | OMPBuilder.createOffloadMaptypes(Mapping, MaptypesName); | |||
| 9582 | Info.MapTypesArrayEnd = MapTypesArrayGbl; | |||
| 9583 | } | |||
| 9584 | } | |||
| 9585 | ||||
| 9586 | for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) { | |||
| 9587 | llvm::Value *BPVal = *CombinedInfo.BasePointers[I]; | |||
| 9588 | llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32( | |||
| 9589 | llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), | |||
| 9590 | Info.BasePointersArray, 0, I); | |||
| 9591 | BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 9592 | BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0)); | |||
| 9593 | Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy)); | |||
| 9594 | CGF.Builder.CreateStore(BPVal, BPAddr); | |||
| 9595 | ||||
| 9596 | if (Info.requiresDevicePointerInfo()) | |||
| 9597 | if (const ValueDecl *DevVD = | |||
| 9598 | CombinedInfo.BasePointers[I].getDevicePtrDecl()) | |||
| 9599 | Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr); | |||
| 9600 | ||||
| 9601 | llvm::Value *PVal = CombinedInfo.Pointers[I]; | |||
| 9602 | llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32( | |||
| 9603 | llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), | |||
| 9604 | Info.PointersArray, 0, I); | |||
| 9605 | P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 9606 | P, PVal->getType()->getPointerTo(/*AddrSpace=*/0)); | |||
| 9607 | Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy)); | |||
| 9608 | CGF.Builder.CreateStore(PVal, PAddr); | |||
| 9609 | ||||
| 9610 | if (hasRuntimeEvaluationCaptureSize) { | |||
| 9611 | llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32( | |||
| 9612 | llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), | |||
| 9613 | Info.SizesArray, | |||
| 9614 | /*Idx0=*/0, | |||
| 9615 | /*Idx1=*/I); | |||
| 9616 | Address SAddr(S, Ctx.getTypeAlignInChars(Int64Ty)); | |||
| 9617 | CGF.Builder.CreateStore(CGF.Builder.CreateIntCast(CombinedInfo.Sizes[I], | |||
| 9618 | CGM.Int64Ty, | |||
| 9619 | /*isSigned=*/true), | |||
| 9620 | SAddr); | |||
| 9621 | } | |||
| 9622 | ||||
| 9623 | // Fill up the mapper array. | |||
| 9624 | llvm::Value *MFunc = llvm::ConstantPointerNull::get(CGM.VoidPtrTy); | |||
| 9625 | if (CombinedInfo.Mappers[I]) { | |||
| 9626 | MFunc = CGM.getOpenMPRuntime().getOrCreateUserDefinedMapperFunc( | |||
| 9627 | cast<OMPDeclareMapperDecl>(CombinedInfo.Mappers[I])); | |||
| 9628 | MFunc = CGF.Builder.CreatePointerCast(MFunc, CGM.VoidPtrTy); | |||
| 9629 | Info.HasMapper = true; | |||
| 9630 | } | |||
| 9631 | Address MAddr = CGF.Builder.CreateConstArrayGEP(MappersArray, I); | |||
| 9632 | CGF.Builder.CreateStore(MFunc, MAddr); | |||
| 9633 | } | |||
| 9634 | } | |||
| 9635 | ||||
| 9636 | if (!IsNonContiguous || CombinedInfo.NonContigInfo.Offsets.empty() || | |||
| 9637 | Info.NumberOfPtrs == 0) | |||
| 9638 | return; | |||
| 9639 | ||||
| 9640 | emitNonContiguousDescriptor(CGF, CombinedInfo, Info); | |||
| 9641 | } | |||
| 9642 | ||||
| 9643 | namespace { | |||
| 9644 | /// Additional arguments for emitOffloadingArraysArgument function. | |||
| 9645 | struct ArgumentsOptions { | |||
| 9646 | bool ForEndCall = false; | |||
| 9647 | ArgumentsOptions() = default; | |||
| 9648 | ArgumentsOptions(bool ForEndCall) : ForEndCall(ForEndCall) {} | |||
| 9649 | }; | |||
| 9650 | } // namespace | |||
| 9651 | ||||
| 9652 | /// Emit the arguments to be passed to the runtime library based on the | |||
| 9653 | /// arrays of base pointers, pointers, sizes, map types, and mappers. If | |||
| 9654 | /// ForEndCall, emit map types to be passed for the end of the region instead of | |||
| 9655 | /// the beginning. | |||
| 9656 | static void emitOffloadingArraysArgument( | |||
| 9657 | CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg, | |||
| 9658 | llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg, | |||
| 9659 | llvm::Value *&MapTypesArrayArg, llvm::Value *&MapNamesArrayArg, | |||
| 9660 | llvm::Value *&MappersArrayArg, CGOpenMPRuntime::TargetDataInfo &Info, | |||
| 9661 | const ArgumentsOptions &Options = ArgumentsOptions()) { | |||
| 9662 | assert((!Options.ForEndCall || Info.separateBeginEndCalls()) &&((void)0) | |||
| 9663 | "expected region end call to runtime only when end call is separate")((void)0); | |||
| 9664 | CodeGenModule &CGM = CGF.CGM; | |||
| 9665 | if (Info.NumberOfPtrs) { | |||
| 9666 | BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( | |||
| 9667 | llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), | |||
| 9668 | Info.BasePointersArray, | |||
| 9669 | /*Idx0=*/0, /*Idx1=*/0); | |||
| 9670 | PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( | |||
| 9671 | llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), | |||
| 9672 | Info.PointersArray, | |||
| 9673 | /*Idx0=*/0, | |||
| 9674 | /*Idx1=*/0); | |||
| 9675 | SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( | |||
| 9676 | llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), Info.SizesArray, | |||
| 9677 | /*Idx0=*/0, /*Idx1=*/0); | |||
| 9678 | MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( | |||
| 9679 | llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), | |||
| 9680 | Options.ForEndCall && Info.MapTypesArrayEnd ? Info.MapTypesArrayEnd | |||
| 9681 | : Info.MapTypesArray, | |||
| 9682 | /*Idx0=*/0, | |||
| 9683 | /*Idx1=*/0); | |||
| 9684 | ||||
| 9685 | // Only emit the mapper information arrays if debug information is | |||
| 9686 | // requested. | |||
| 9687 | if (CGF.CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo) | |||
| 9688 | MapNamesArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); | |||
| 9689 | else | |||
| 9690 | MapNamesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( | |||
| 9691 | llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), | |||
| 9692 | Info.MapNamesArray, | |||
| 9693 | /*Idx0=*/0, | |||
| 9694 | /*Idx1=*/0); | |||
| 9695 | // If there is no user-defined mapper, set the mapper array to nullptr to | |||
| 9696 | // avoid an unnecessary data privatization | |||
| 9697 | if (!Info.HasMapper) | |||
| 9698 | MappersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); | |||
| 9699 | else | |||
| 9700 | MappersArrayArg = | |||
| 9701 | CGF.Builder.CreatePointerCast(Info.MappersArray, CGM.VoidPtrPtrTy); | |||
| 9702 | } else { | |||
| 9703 | BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); | |||
| 9704 | PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); | |||
| 9705 | SizesArrayArg = llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo()); | |||
| 9706 | MapTypesArrayArg = | |||
| 9707 | llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo()); | |||
| 9708 | MapNamesArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); | |||
| 9709 | MappersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); | |||
| 9710 | } | |||
| 9711 | } | |||
| 9712 | ||||
| 9713 | /// Check for inner distribute directive. | |||
| 9714 | static const OMPExecutableDirective * | |||
| 9715 | getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) { | |||
| 9716 | const auto *CS = D.getInnermostCapturedStmt(); | |||
| 9717 | const auto *Body = | |||
| 9718 | CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); | |||
| 9719 | const Stmt *ChildStmt = | |||
| 9720 | CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body); | |||
| 9721 | ||||
| 9722 | if (const auto *NestedDir = | |||
| 9723 | dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { | |||
| 9724 | OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); | |||
| 9725 | switch (D.getDirectiveKind()) { | |||
| 9726 | case OMPD_target: | |||
| 9727 | if (isOpenMPDistributeDirective(DKind)) | |||
| 9728 | return NestedDir; | |||
| 9729 | if (DKind == OMPD_teams) { | |||
| 9730 | Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( | |||
| 9731 | /*IgnoreCaptured=*/true); | |||
| 9732 | if (!Body) | |||
| 9733 | return nullptr; | |||
| 9734 | ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body); | |||
| 9735 | if (const auto *NND = | |||
| 9736 | dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { | |||
| 9737 | DKind = NND->getDirectiveKind(); | |||
| 9738 | if (isOpenMPDistributeDirective(DKind)) | |||
| 9739 | return NND; | |||
| 9740 | } | |||
| 9741 | } | |||
| 9742 | return nullptr; | |||
| 9743 | case OMPD_target_teams: | |||
| 9744 | if (isOpenMPDistributeDirective(DKind)) | |||
| 9745 | return NestedDir; | |||
| 9746 | return nullptr; | |||
| 9747 | case OMPD_target_parallel: | |||
| 9748 | case OMPD_target_simd: | |||
| 9749 | case OMPD_target_parallel_for: | |||
| 9750 | case OMPD_target_parallel_for_simd: | |||
| 9751 | return nullptr; | |||
| 9752 | case OMPD_target_teams_distribute: | |||
| 9753 | case OMPD_target_teams_distribute_simd: | |||
| 9754 | case OMPD_target_teams_distribute_parallel_for: | |||
| 9755 | case OMPD_target_teams_distribute_parallel_for_simd: | |||
| 9756 | case OMPD_parallel: | |||
| 9757 | case OMPD_for: | |||
| 9758 | case OMPD_parallel_for: | |||
| 9759 | case OMPD_parallel_master: | |||
| 9760 | case OMPD_parallel_sections: | |||
| 9761 | case OMPD_for_simd: | |||
| 9762 | case OMPD_parallel_for_simd: | |||
| 9763 | case OMPD_cancel: | |||
| 9764 | case OMPD_cancellation_point: | |||
| 9765 | case OMPD_ordered: | |||
| 9766 | case OMPD_threadprivate: | |||
| 9767 | case OMPD_allocate: | |||
| 9768 | case OMPD_task: | |||
| 9769 | case OMPD_simd: | |||
| 9770 | case OMPD_tile: | |||
| 9771 | case OMPD_unroll: | |||
| 9772 | case OMPD_sections: | |||
| 9773 | case OMPD_section: | |||
| 9774 | case OMPD_single: | |||
| 9775 | case OMPD_master: | |||
| 9776 | case OMPD_critical: | |||
| 9777 | case OMPD_taskyield: | |||
| 9778 | case OMPD_barrier: | |||
| 9779 | case OMPD_taskwait: | |||
| 9780 | case OMPD_taskgroup: | |||
| 9781 | case OMPD_atomic: | |||
| 9782 | case OMPD_flush: | |||
| 9783 | case OMPD_depobj: | |||
| 9784 | case OMPD_scan: | |||
| 9785 | case OMPD_teams: | |||
| 9786 | case OMPD_target_data: | |||
| 9787 | case OMPD_target_exit_data: | |||
| 9788 | case OMPD_target_enter_data: | |||
| 9789 | case OMPD_distribute: | |||
| 9790 | case OMPD_distribute_simd: | |||
| 9791 | case OMPD_distribute_parallel_for: | |||
| 9792 | case OMPD_distribute_parallel_for_simd: | |||
| 9793 | case OMPD_teams_distribute: | |||
| 9794 | case OMPD_teams_distribute_simd: | |||
| 9795 | case OMPD_teams_distribute_parallel_for: | |||
| 9796 | case OMPD_teams_distribute_parallel_for_simd: | |||
| 9797 | case OMPD_target_update: | |||
| 9798 | case OMPD_declare_simd: | |||
| 9799 | case OMPD_declare_variant: | |||
| 9800 | case OMPD_begin_declare_variant: | |||
| 9801 | case OMPD_end_declare_variant: | |||
| 9802 | case OMPD_declare_target: | |||
| 9803 | case OMPD_end_declare_target: | |||
| 9804 | case OMPD_declare_reduction: | |||
| 9805 | case OMPD_declare_mapper: | |||
| 9806 | case OMPD_taskloop: | |||
| 9807 | case OMPD_taskloop_simd: | |||
| 9808 | case OMPD_master_taskloop: | |||
| 9809 | case OMPD_master_taskloop_simd: | |||
| 9810 | case OMPD_parallel_master_taskloop: | |||
| 9811 | case OMPD_parallel_master_taskloop_simd: | |||
| 9812 | case OMPD_requires: | |||
| 9813 | case OMPD_unknown: | |||
| 9814 | default: | |||
| 9815 | llvm_unreachable("Unexpected directive.")__builtin_unreachable(); | |||
| 9816 | } | |||
| 9817 | } | |||
| 9818 | ||||
| 9819 | return nullptr; | |||
| 9820 | } | |||
| 9821 | ||||
| 9822 | /// Emit the user-defined mapper function. The code generation follows the | |||
| 9823 | /// pattern in the example below. | |||
| 9824 | /// \code | |||
| 9825 | /// void .omp_mapper.<type_name>.<mapper_id>.(void *rt_mapper_handle, | |||
| 9826 | /// void *base, void *begin, | |||
| 9827 | /// int64_t size, int64_t type, | |||
| 9828 | /// void *name = nullptr) { | |||
| 9829 | /// // Allocate space for an array section first or add a base/begin for | |||
| 9830 | /// // pointer dereference. | |||
| 9831 | /// if ((size > 1 || (base != begin && maptype.IsPtrAndObj)) && | |||
| 9832 | /// !maptype.IsDelete) | |||
| 9833 | /// __tgt_push_mapper_component(rt_mapper_handle, base, begin, | |||
| 9834 | /// size*sizeof(Ty), clearToFromMember(type)); | |||
| 9835 | /// // Map members. | |||
| 9836 | /// for (unsigned i = 0; i < size; i++) { | |||
| 9837 | /// // For each component specified by this mapper: | |||
| 9838 | /// for (auto c : begin[i]->all_components) { | |||
| 9839 | /// if (c.hasMapper()) | |||
| 9840 | /// (*c.Mapper())(rt_mapper_handle, c.arg_base, c.arg_begin, c.arg_size, | |||
| 9841 | /// c.arg_type, c.arg_name); | |||
| 9842 | /// else | |||
| 9843 | /// __tgt_push_mapper_component(rt_mapper_handle, c.arg_base, | |||
| 9844 | /// c.arg_begin, c.arg_size, c.arg_type, | |||
| 9845 | /// c.arg_name); | |||
| 9846 | /// } | |||
| 9847 | /// } | |||
| 9848 | /// // Delete the array section. | |||
| 9849 | /// if (size > 1 && maptype.IsDelete) | |||
| 9850 | /// __tgt_push_mapper_component(rt_mapper_handle, base, begin, | |||
| 9851 | /// size*sizeof(Ty), clearToFromMember(type)); | |||
| 9852 | /// } | |||
| 9853 | /// \endcode | |||
| 9854 | void CGOpenMPRuntime::emitUserDefinedMapper(const OMPDeclareMapperDecl *D, | |||
| 9855 | CodeGenFunction *CGF) { | |||
| 9856 | if (UDMMap.count(D) > 0) | |||
| 9857 | return; | |||
| 9858 | ASTContext &C = CGM.getContext(); | |||
| 9859 | QualType Ty = D->getType(); | |||
| 9860 | QualType PtrTy = C.getPointerType(Ty).withRestrict(); | |||
| 9861 | QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true); | |||
| 9862 | auto *MapperVarDecl = | |||
| 9863 | cast<VarDecl>(cast<DeclRefExpr>(D->getMapperVarRef())->getDecl()); | |||
| 9864 | SourceLocation Loc = D->getLocation(); | |||
| 9865 | CharUnits ElementSize = C.getTypeSizeInChars(Ty); | |||
| 9866 | ||||
| 9867 | // Prepare mapper function arguments and attributes. | |||
| 9868 | ImplicitParamDecl HandleArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, | |||
| 9869 | C.VoidPtrTy, ImplicitParamDecl::Other); | |||
| 9870 | ImplicitParamDecl BaseArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, | |||
| 9871 | ImplicitParamDecl::Other); | |||
| 9872 | ImplicitParamDecl BeginArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, | |||
| 9873 | C.VoidPtrTy, ImplicitParamDecl::Other); | |||
| 9874 | ImplicitParamDecl SizeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty, | |||
| 9875 | ImplicitParamDecl::Other); | |||
| 9876 | ImplicitParamDecl TypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty, | |||
| 9877 | ImplicitParamDecl::Other); | |||
| 9878 | ImplicitParamDecl NameArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, | |||
| 9879 | ImplicitParamDecl::Other); | |||
| 9880 | FunctionArgList Args; | |||
| 9881 | Args.push_back(&HandleArg); | |||
| 9882 | Args.push_back(&BaseArg); | |||
| 9883 | Args.push_back(&BeginArg); | |||
| 9884 | Args.push_back(&SizeArg); | |||
| 9885 | Args.push_back(&TypeArg); | |||
| 9886 | Args.push_back(&NameArg); | |||
| 9887 | const CGFunctionInfo &FnInfo = | |||
| 9888 | CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); | |||
| 9889 | llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); | |||
| 9890 | SmallString<64> TyStr; | |||
| 9891 | llvm::raw_svector_ostream Out(TyStr); | |||
| 9892 | CGM.getCXXABI().getMangleContext().mangleTypeName(Ty, Out); | |||
| 9893 | std::string Name = getName({"omp_mapper", TyStr, D->getName()}); | |||
| 9894 | auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, | |||
| 9895 | Name, &CGM.getModule()); | |||
| 9896 | CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); | |||
| 9897 | Fn->removeFnAttr(llvm::Attribute::OptimizeNone); | |||
| 9898 | // Start the mapper function code generation. | |||
| 9899 | CodeGenFunction MapperCGF(CGM); | |||
| 9900 | MapperCGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc); | |||
| 9901 | // Compute the starting and end addresses of array elements. | |||
| 9902 | llvm::Value *Size = MapperCGF.EmitLoadOfScalar( | |||
| 9903 | MapperCGF.GetAddrOfLocalVar(&SizeArg), /*Volatile=*/false, | |||
| 9904 | C.getPointerType(Int64Ty), Loc); | |||
| 9905 | // Prepare common arguments for array initiation and deletion. | |||
| 9906 | llvm::Value *Handle = MapperCGF.EmitLoadOfScalar( | |||
| 9907 | MapperCGF.GetAddrOfLocalVar(&HandleArg), | |||
| 9908 | /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); | |||
| 9909 | llvm::Value *BaseIn = MapperCGF.EmitLoadOfScalar( | |||
| 9910 | MapperCGF.GetAddrOfLocalVar(&BaseArg), | |||
| 9911 | /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); | |||
| 9912 | llvm::Value *BeginIn = MapperCGF.EmitLoadOfScalar( | |||
| 9913 | MapperCGF.GetAddrOfLocalVar(&BeginArg), | |||
| 9914 | /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); | |||
| 9915 | // Convert the size in bytes into the number of array elements. | |||
| 9916 | Size = MapperCGF.Builder.CreateExactUDiv( | |||
| 9917 | Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity())); | |||
| 9918 | llvm::Value *PtrBegin = MapperCGF.Builder.CreateBitCast( | |||
| 9919 | BeginIn, CGM.getTypes().ConvertTypeForMem(PtrTy)); | |||
| 9920 | llvm::Value *PtrEnd = MapperCGF.Builder.CreateGEP( | |||
| 9921 | PtrBegin->getType()->getPointerElementType(), PtrBegin, Size); | |||
| 9922 | llvm::Value *MapType = MapperCGF.EmitLoadOfScalar( | |||
| 9923 | MapperCGF.GetAddrOfLocalVar(&TypeArg), /*Volatile=*/false, | |||
| 9924 | C.getPointerType(Int64Ty), Loc); | |||
| 9925 | llvm::Value *MapName = MapperCGF.EmitLoadOfScalar( | |||
| 9926 | MapperCGF.GetAddrOfLocalVar(&NameArg), | |||
| 9927 | /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); | |||
| 9928 | ||||
| 9929 | // Emit array initiation if this is an array section and \p MapType indicates | |||
| 9930 | // that memory allocation is required. | |||
| 9931 | llvm::BasicBlock *HeadBB = MapperCGF.createBasicBlock("omp.arraymap.head"); | |||
| 9932 | emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType, | |||
| 9933 | MapName, ElementSize, HeadBB, /*IsInit=*/true); | |||
| 9934 | ||||
| 9935 | // Emit a for loop to iterate through SizeArg of elements and map all of them. | |||
| 9936 | ||||
| 9937 | // Emit the loop header block. | |||
| 9938 | MapperCGF.EmitBlock(HeadBB); | |||
| 9939 | llvm::BasicBlock *BodyBB = MapperCGF.createBasicBlock("omp.arraymap.body"); | |||
| 9940 | llvm::BasicBlock *DoneBB = MapperCGF.createBasicBlock("omp.done"); | |||
| 9941 | // Evaluate whether the initial condition is satisfied. | |||
| 9942 | llvm::Value *IsEmpty = | |||
| 9943 | MapperCGF.Builder.CreateICmpEQ(PtrBegin, PtrEnd, "omp.arraymap.isempty"); | |||
| 9944 | MapperCGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); | |||
| 9945 | llvm::BasicBlock *EntryBB = MapperCGF.Builder.GetInsertBlock(); | |||
| 9946 | ||||
| 9947 | // Emit the loop body block. | |||
| 9948 | MapperCGF.EmitBlock(BodyBB); | |||
| 9949 | llvm::BasicBlock *LastBB = BodyBB; | |||
| 9950 | llvm::PHINode *PtrPHI = MapperCGF.Builder.CreatePHI( | |||
| 9951 | PtrBegin->getType(), 2, "omp.arraymap.ptrcurrent"); | |||
| 9952 | PtrPHI->addIncoming(PtrBegin, EntryBB); | |||
| 9953 | Address PtrCurrent = | |||
| 9954 | Address(PtrPHI, MapperCGF.GetAddrOfLocalVar(&BeginArg) | |||
| 9955 | .getAlignment() | |||
| 9956 | .alignmentOfArrayElement(ElementSize)); | |||
| 9957 | // Privatize the declared variable of mapper to be the current array element. | |||
| 9958 | CodeGenFunction::OMPPrivateScope Scope(MapperCGF); | |||
| 9959 | Scope.addPrivate(MapperVarDecl, [PtrCurrent]() { return PtrCurrent; }); | |||
| 9960 | (void)Scope.Privatize(); | |||
| 9961 | ||||
| 9962 | // Get map clause information. Fill up the arrays with all mapped variables. | |||
| 9963 | MappableExprsHandler::MapCombinedInfoTy Info; | |||
| 9964 | MappableExprsHandler MEHandler(*D, MapperCGF); | |||
| 9965 | MEHandler.generateAllInfoForMapper(Info); | |||
| 9966 | ||||
| 9967 | // Call the runtime API __tgt_mapper_num_components to get the number of | |||
| 9968 | // pre-existing components. | |||
| 9969 | llvm::Value *OffloadingArgs[] = {Handle}; | |||
| 9970 | llvm::Value *PreviousSize = MapperCGF.EmitRuntimeCall( | |||
| 9971 | OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), | |||
| 9972 | OMPRTL___tgt_mapper_num_components), | |||
| 9973 | OffloadingArgs); | |||
| 9974 | llvm::Value *ShiftedPreviousSize = MapperCGF.Builder.CreateShl( | |||
| 9975 | PreviousSize, | |||
| 9976 | MapperCGF.Builder.getInt64(MappableExprsHandler::getFlagMemberOffset())); | |||
| 9977 | ||||
| 9978 | // Fill up the runtime mapper handle for all components. | |||
| 9979 | for (unsigned I = 0; I < Info.BasePointers.size(); ++I) { | |||
| 9980 | llvm::Value *CurBaseArg = MapperCGF.Builder.CreateBitCast( | |||
| 9981 | *Info.BasePointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy)); | |||
| 9982 | llvm::Value *CurBeginArg = MapperCGF.Builder.CreateBitCast( | |||
| 9983 | Info.Pointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy)); | |||
| 9984 | llvm::Value *CurSizeArg = Info.Sizes[I]; | |||
| 9985 | llvm::Value *CurNameArg = | |||
| 9986 | (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo) | |||
| 9987 | ? llvm::ConstantPointerNull::get(CGM.VoidPtrTy) | |||
| 9988 | : emitMappingInformation(MapperCGF, OMPBuilder, Info.Exprs[I]); | |||
| 9989 | ||||
| 9990 | // Extract the MEMBER_OF field from the map type. | |||
| 9991 | llvm::Value *OriMapType = MapperCGF.Builder.getInt64(Info.Types[I]); | |||
| 9992 | llvm::Value *MemberMapType = | |||
| 9993 | MapperCGF.Builder.CreateNUWAdd(OriMapType, ShiftedPreviousSize); | |||
| 9994 | ||||
| 9995 | // Combine the map type inherited from user-defined mapper with that | |||
| 9996 | // specified in the program. According to the OMP_MAP_TO and OMP_MAP_FROM | |||
| 9997 | // bits of the \a MapType, which is the input argument of the mapper | |||
| 9998 | // function, the following code will set the OMP_MAP_TO and OMP_MAP_FROM | |||
| 9999 | // bits of MemberMapType. | |||
| 10000 | // [OpenMP 5.0], 1.2.6. map-type decay. | |||
| 10001 | // | alloc | to | from | tofrom | release | delete | |||
| 10002 | // ---------------------------------------------------------- | |||
| 10003 | // alloc | alloc | alloc | alloc | alloc | release | delete | |||
| 10004 | // to | alloc | to | alloc | to | release | delete | |||
| 10005 | // from | alloc | alloc | from | from | release | delete | |||
| 10006 | // tofrom | alloc | to | from | tofrom | release | delete | |||
| 10007 | llvm::Value *LeftToFrom = MapperCGF.Builder.CreateAnd( | |||
| 10008 | MapType, | |||
| 10009 | MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO | | |||
| 10010 | MappableExprsHandler::OMP_MAP_FROM)); | |||
| 10011 | llvm::BasicBlock *AllocBB = MapperCGF.createBasicBlock("omp.type.alloc"); | |||
| 10012 | llvm::BasicBlock *AllocElseBB = | |||
| 10013 | MapperCGF.createBasicBlock("omp.type.alloc.else"); | |||
| 10014 | llvm::BasicBlock *ToBB = MapperCGF.createBasicBlock("omp.type.to"); | |||
| 10015 | llvm::BasicBlock *ToElseBB = MapperCGF.createBasicBlock("omp.type.to.else"); | |||
| 10016 | llvm::BasicBlock *FromBB = MapperCGF.createBasicBlock("omp.type.from"); | |||
| 10017 | llvm::BasicBlock *EndBB = MapperCGF.createBasicBlock("omp.type.end"); | |||
| 10018 | llvm::Value *IsAlloc = MapperCGF.Builder.CreateIsNull(LeftToFrom); | |||
| 10019 | MapperCGF.Builder.CreateCondBr(IsAlloc, AllocBB, AllocElseBB); | |||
| 10020 | // In case of alloc, clear OMP_MAP_TO and OMP_MAP_FROM. | |||
| 10021 | MapperCGF.EmitBlock(AllocBB); | |||
| 10022 | llvm::Value *AllocMapType = MapperCGF.Builder.CreateAnd( | |||
| 10023 | MemberMapType, | |||
| 10024 | MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO | | |||
| 10025 | MappableExprsHandler::OMP_MAP_FROM))); | |||
| 10026 | MapperCGF.Builder.CreateBr(EndBB); | |||
| 10027 | MapperCGF.EmitBlock(AllocElseBB); | |||
| 10028 | llvm::Value *IsTo = MapperCGF.Builder.CreateICmpEQ( | |||
| 10029 | LeftToFrom, | |||
| 10030 | MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO)); | |||
| 10031 | MapperCGF.Builder.CreateCondBr(IsTo, ToBB, ToElseBB); | |||
| 10032 | // In case of to, clear OMP_MAP_FROM. | |||
| 10033 | MapperCGF.EmitBlock(ToBB); | |||
| 10034 | llvm::Value *ToMapType = MapperCGF.Builder.CreateAnd( | |||
| 10035 | MemberMapType, | |||
| 10036 | MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_FROM)); | |||
| 10037 | MapperCGF.Builder.CreateBr(EndBB); | |||
| 10038 | MapperCGF.EmitBlock(ToElseBB); | |||
| 10039 | llvm::Value *IsFrom = MapperCGF.Builder.CreateICmpEQ( | |||
| 10040 | LeftToFrom, | |||
| 10041 | MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_FROM)); | |||
| 10042 | MapperCGF.Builder.CreateCondBr(IsFrom, FromBB, EndBB); | |||
| 10043 | // In case of from, clear OMP_MAP_TO. | |||
| 10044 | MapperCGF.EmitBlock(FromBB); | |||
| 10045 | llvm::Value *FromMapType = MapperCGF.Builder.CreateAnd( | |||
| 10046 | MemberMapType, | |||
| 10047 | MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_TO)); | |||
| 10048 | // In case of tofrom, do nothing. | |||
| 10049 | MapperCGF.EmitBlock(EndBB); | |||
| 10050 | LastBB = EndBB; | |||
| 10051 | llvm::PHINode *CurMapType = | |||
| 10052 | MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.maptype"); | |||
| 10053 | CurMapType->addIncoming(AllocMapType, AllocBB); | |||
| 10054 | CurMapType->addIncoming(ToMapType, ToBB); | |||
| 10055 | CurMapType->addIncoming(FromMapType, FromBB); | |||
| 10056 | CurMapType->addIncoming(MemberMapType, ToElseBB); | |||
| 10057 | ||||
| 10058 | llvm::Value *OffloadingArgs[] = {Handle, CurBaseArg, CurBeginArg, | |||
| 10059 | CurSizeArg, CurMapType, CurNameArg}; | |||
| 10060 | if (Info.Mappers[I]) { | |||
| 10061 | // Call the corresponding mapper function. | |||
| 10062 | llvm::Function *MapperFunc = getOrCreateUserDefinedMapperFunc( | |||
| 10063 | cast<OMPDeclareMapperDecl>(Info.Mappers[I])); | |||
| 10064 | assert(MapperFunc && "Expect a valid mapper function is available.")((void)0); | |||
| 10065 | MapperCGF.EmitNounwindRuntimeCall(MapperFunc, OffloadingArgs); | |||
| 10066 | } else { | |||
| 10067 | // Call the runtime API __tgt_push_mapper_component to fill up the runtime | |||
| 10068 | // data structure. | |||
| 10069 | MapperCGF.EmitRuntimeCall( | |||
| 10070 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 10071 | CGM.getModule(), OMPRTL___tgt_push_mapper_component), | |||
| 10072 | OffloadingArgs); | |||
| 10073 | } | |||
| 10074 | } | |||
| 10075 | ||||
| 10076 | // Update the pointer to point to the next element that needs to be mapped, | |||
| 10077 | // and check whether we have mapped all elements. | |||
| 10078 | llvm::Type *ElemTy = PtrPHI->getType()->getPointerElementType(); | |||
| 10079 | llvm::Value *PtrNext = MapperCGF.Builder.CreateConstGEP1_32( | |||
| 10080 | ElemTy, PtrPHI, /*Idx0=*/1, "omp.arraymap.next"); | |||
| 10081 | PtrPHI->addIncoming(PtrNext, LastBB); | |||
| 10082 | llvm::Value *IsDone = | |||
| 10083 | MapperCGF.Builder.CreateICmpEQ(PtrNext, PtrEnd, "omp.arraymap.isdone"); | |||
| 10084 | llvm::BasicBlock *ExitBB = MapperCGF.createBasicBlock("omp.arraymap.exit"); | |||
| 10085 | MapperCGF.Builder.CreateCondBr(IsDone, ExitBB, BodyBB); | |||
| 10086 | ||||
| 10087 | MapperCGF.EmitBlock(ExitBB); | |||
| 10088 | // Emit array deletion if this is an array section and \p MapType indicates | |||
| 10089 | // that deletion is required. | |||
| 10090 | emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType, | |||
| 10091 | MapName, ElementSize, DoneBB, /*IsInit=*/false); | |||
| 10092 | ||||
| 10093 | // Emit the function exit block. | |||
| 10094 | MapperCGF.EmitBlock(DoneBB, /*IsFinished=*/true); | |||
| 10095 | MapperCGF.FinishFunction(); | |||
| 10096 | UDMMap.try_emplace(D, Fn); | |||
| 10097 | if (CGF) { | |||
| 10098 | auto &Decls = FunctionUDMMap.FindAndConstruct(CGF->CurFn); | |||
| 10099 | Decls.second.push_back(D); | |||
| 10100 | } | |||
| 10101 | } | |||
| 10102 | ||||
| 10103 | /// Emit the array initialization or deletion portion for user-defined mapper | |||
| 10104 | /// code generation. First, it evaluates whether an array section is mapped and | |||
| 10105 | /// whether the \a MapType instructs to delete this section. If \a IsInit is | |||
| 10106 | /// true, and \a MapType indicates to not delete this array, array | |||
| 10107 | /// initialization code is generated. If \a IsInit is false, and \a MapType | |||
| 10108 | /// indicates to not this array, array deletion code is generated. | |||
| 10109 | void CGOpenMPRuntime::emitUDMapperArrayInitOrDel( | |||
| 10110 | CodeGenFunction &MapperCGF, llvm::Value *Handle, llvm::Value *Base, | |||
| 10111 | llvm::Value *Begin, llvm::Value *Size, llvm::Value *MapType, | |||
| 10112 | llvm::Value *MapName, CharUnits ElementSize, llvm::BasicBlock *ExitBB, | |||
| 10113 | bool IsInit) { | |||
| 10114 | StringRef Prefix = IsInit ? ".init" : ".del"; | |||
| 10115 | ||||
| 10116 | // Evaluate if this is an array section. | |||
| 10117 | llvm::BasicBlock *BodyBB = | |||
| 10118 | MapperCGF.createBasicBlock(getName({"omp.array", Prefix})); | |||
| 10119 | llvm::Value *IsArray = MapperCGF.Builder.CreateICmpSGT( | |||
| 10120 | Size, MapperCGF.Builder.getInt64(1), "omp.arrayinit.isarray"); | |||
| 10121 | llvm::Value *DeleteBit = MapperCGF.Builder.CreateAnd( | |||
| 10122 | MapType, | |||
| 10123 | MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_DELETE)); | |||
| 10124 | llvm::Value *DeleteCond; | |||
| 10125 | llvm::Value *Cond; | |||
| 10126 | if (IsInit) { | |||
| 10127 | // base != begin? | |||
| 10128 | llvm::Value *BaseIsBegin = MapperCGF.Builder.CreateIsNotNull( | |||
| 10129 | MapperCGF.Builder.CreatePtrDiff(Base, Begin)); | |||
| 10130 | // IsPtrAndObj? | |||
| 10131 | llvm::Value *PtrAndObjBit = MapperCGF.Builder.CreateAnd( | |||
| 10132 | MapType, | |||
| 10133 | MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_PTR_AND_OBJ)); | |||
| 10134 | PtrAndObjBit = MapperCGF.Builder.CreateIsNotNull(PtrAndObjBit); | |||
| 10135 | BaseIsBegin = MapperCGF.Builder.CreateAnd(BaseIsBegin, PtrAndObjBit); | |||
| 10136 | Cond = MapperCGF.Builder.CreateOr(IsArray, BaseIsBegin); | |||
| 10137 | DeleteCond = MapperCGF.Builder.CreateIsNull( | |||
| 10138 | DeleteBit, getName({"omp.array", Prefix, ".delete"})); | |||
| 10139 | } else { | |||
| 10140 | Cond = IsArray; | |||
| 10141 | DeleteCond = MapperCGF.Builder.CreateIsNotNull( | |||
| 10142 | DeleteBit, getName({"omp.array", Prefix, ".delete"})); | |||
| 10143 | } | |||
| 10144 | Cond = MapperCGF.Builder.CreateAnd(Cond, DeleteCond); | |||
| 10145 | MapperCGF.Builder.CreateCondBr(Cond, BodyBB, ExitBB); | |||
| 10146 | ||||
| 10147 | MapperCGF.EmitBlock(BodyBB); | |||
| 10148 | // Get the array size by multiplying element size and element number (i.e., \p | |||
| 10149 | // Size). | |||
| 10150 | llvm::Value *ArraySize = MapperCGF.Builder.CreateNUWMul( | |||
| 10151 | Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity())); | |||
| 10152 | // Remove OMP_MAP_TO and OMP_MAP_FROM from the map type, so that it achieves | |||
| 10153 | // memory allocation/deletion purpose only. | |||
| 10154 | llvm::Value *MapTypeArg = MapperCGF.Builder.CreateAnd( | |||
| 10155 | MapType, | |||
| 10156 | MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO | | |||
| 10157 | MappableExprsHandler::OMP_MAP_FROM))); | |||
| 10158 | MapTypeArg = MapperCGF.Builder.CreateOr( | |||
| 10159 | MapTypeArg, | |||
| 10160 | MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_IMPLICIT)); | |||
| 10161 | ||||
| 10162 | // Call the runtime API __tgt_push_mapper_component to fill up the runtime | |||
| 10163 | // data structure. | |||
| 10164 | llvm::Value *OffloadingArgs[] = {Handle, Base, Begin, | |||
| 10165 | ArraySize, MapTypeArg, MapName}; | |||
| 10166 | MapperCGF.EmitRuntimeCall( | |||
| 10167 | OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), | |||
| 10168 | OMPRTL___tgt_push_mapper_component), | |||
| 10169 | OffloadingArgs); | |||
| 10170 | } | |||
| 10171 | ||||
| 10172 | llvm::Function *CGOpenMPRuntime::getOrCreateUserDefinedMapperFunc( | |||
| 10173 | const OMPDeclareMapperDecl *D) { | |||
| 10174 | auto I = UDMMap.find(D); | |||
| 10175 | if (I != UDMMap.end()) | |||
| 10176 | return I->second; | |||
| 10177 | emitUserDefinedMapper(D); | |||
| 10178 | return UDMMap.lookup(D); | |||
| 10179 | } | |||
| 10180 | ||||
| 10181 | void CGOpenMPRuntime::emitTargetNumIterationsCall( | |||
| 10182 | CodeGenFunction &CGF, const OMPExecutableDirective &D, | |||
| 10183 | llvm::Value *DeviceID, | |||
| 10184 | llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, | |||
| 10185 | const OMPLoopDirective &D)> | |||
| 10186 | SizeEmitter) { | |||
| 10187 | OpenMPDirectiveKind Kind = D.getDirectiveKind(); | |||
| 10188 | const OMPExecutableDirective *TD = &D; | |||
| 10189 | // Get nested teams distribute kind directive, if any. | |||
| 10190 | if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind)) | |||
| 10191 | TD = getNestedDistributeDirective(CGM.getContext(), D); | |||
| 10192 | if (!TD) | |||
| 10193 | return; | |||
| 10194 | const auto *LD = cast<OMPLoopDirective>(TD); | |||
| 10195 | auto &&CodeGen = [LD, DeviceID, SizeEmitter, &D, this](CodeGenFunction &CGF, | |||
| 10196 | PrePostActionTy &) { | |||
| 10197 | if (llvm::Value *NumIterations = SizeEmitter(CGF, *LD)) { | |||
| 10198 | llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc()); | |||
| 10199 | llvm::Value *Args[] = {RTLoc, DeviceID, NumIterations}; | |||
| 10200 | CGF.EmitRuntimeCall( | |||
| 10201 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 10202 | CGM.getModule(), OMPRTL___kmpc_push_target_tripcount_mapper), | |||
| 10203 | Args); | |||
| 10204 | } | |||
| 10205 | }; | |||
| 10206 | emitInlinedDirective(CGF, OMPD_unknown, CodeGen); | |||
| 10207 | } | |||
| 10208 | ||||
| 10209 | void CGOpenMPRuntime::emitTargetCall( | |||
| 10210 | CodeGenFunction &CGF, const OMPExecutableDirective &D, | |||
| 10211 | llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond, | |||
| 10212 | llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device, | |||
| 10213 | llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, | |||
| 10214 | const OMPLoopDirective &D)> | |||
| 10215 | SizeEmitter) { | |||
| 10216 | if (!CGF.HaveInsertPoint()) | |||
| 10217 | return; | |||
| 10218 | ||||
| 10219 | assert(OutlinedFn && "Invalid outlined function!")((void)0); | |||
| 10220 | ||||
| 10221 | const bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>() || | |||
| 10222 | D.hasClausesOfKind<OMPNowaitClause>(); | |||
| 10223 | llvm::SmallVector<llvm::Value *, 16> CapturedVars; | |||
| 10224 | const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target); | |||
| 10225 | auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF, | |||
| 10226 | PrePostActionTy &) { | |||
| 10227 | CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); | |||
| 10228 | }; | |||
| 10229 | emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen); | |||
| 10230 | ||||
| 10231 | CodeGenFunction::OMPTargetDataInfo InputInfo; | |||
| 10232 | llvm::Value *MapTypesArray = nullptr; | |||
| 10233 | llvm::Value *MapNamesArray = nullptr; | |||
| 10234 | // Fill up the pointer arrays and transfer execution to the device. | |||
| 10235 | auto &&ThenGen = [this, Device, OutlinedFn, OutlinedFnID, &D, &InputInfo, | |||
| 10236 | &MapTypesArray, &MapNamesArray, &CS, RequiresOuterTask, | |||
| 10237 | &CapturedVars, | |||
| 10238 | SizeEmitter](CodeGenFunction &CGF, PrePostActionTy &) { | |||
| 10239 | if (Device.getInt() == OMPC_DEVICE_ancestor) { | |||
| 10240 | // Reverse offloading is not supported, so just execute on the host. | |||
| 10241 | if (RequiresOuterTask) { | |||
| 10242 | CapturedVars.clear(); | |||
| 10243 | CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); | |||
| 10244 | } | |||
| 10245 | emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars); | |||
| 10246 | return; | |||
| 10247 | } | |||
| 10248 | ||||
| 10249 | // On top of the arrays that were filled up, the target offloading call | |||
| 10250 | // takes as arguments the device id as well as the host pointer. The host | |||
| 10251 | // pointer is used by the runtime library to identify the current target | |||
| 10252 | // region, so it only has to be unique and not necessarily point to | |||
| 10253 | // anything. It could be the pointer to the outlined function that | |||
| 10254 | // implements the target region, but we aren't using that so that the | |||
| 10255 | // compiler doesn't need to keep that, and could therefore inline the host | |||
| 10256 | // function if proven worthwhile during optimization. | |||
| 10257 | ||||
| 10258 | // From this point on, we need to have an ID of the target region defined. | |||
| 10259 | assert(OutlinedFnID && "Invalid outlined function ID!")((void)0); | |||
| 10260 | ||||
| 10261 | // Emit device ID if any. | |||
| 10262 | llvm::Value *DeviceID; | |||
| 10263 | if (Device.getPointer()) { | |||
| 10264 | assert((Device.getInt() == OMPC_DEVICE_unknown ||((void)0) | |||
| 10265 | Device.getInt() == OMPC_DEVICE_device_num) &&((void)0) | |||
| 10266 | "Expected device_num modifier.")((void)0); | |||
| 10267 | llvm::Value *DevVal = CGF.EmitScalarExpr(Device.getPointer()); | |||
| 10268 | DeviceID = | |||
| 10269 | CGF.Builder.CreateIntCast(DevVal, CGF.Int64Ty, /*isSigned=*/true); | |||
| 10270 | } else { | |||
| 10271 | DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); | |||
| 10272 | } | |||
| 10273 | ||||
| 10274 | // Emit the number of elements in the offloading arrays. | |||
| 10275 | llvm::Value *PointerNum = | |||
| 10276 | CGF.Builder.getInt32(InputInfo.NumberOfTargetItems); | |||
| 10277 | ||||
| 10278 | // Return value of the runtime offloading call. | |||
| 10279 | llvm::Value *Return; | |||
| 10280 | ||||
| 10281 | llvm::Value *NumTeams = emitNumTeamsForTargetDirective(CGF, D); | |||
| 10282 | llvm::Value *NumThreads = emitNumThreadsForTargetDirective(CGF, D); | |||
| 10283 | ||||
| 10284 | // Source location for the ident struct | |||
| 10285 | llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc()); | |||
| 10286 | ||||
| 10287 | // Emit tripcount for the target loop-based directive. | |||
| 10288 | emitTargetNumIterationsCall(CGF, D, DeviceID, SizeEmitter); | |||
| 10289 | ||||
| 10290 | bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>(); | |||
| 10291 | // The target region is an outlined function launched by the runtime | |||
| 10292 | // via calls __tgt_target() or __tgt_target_teams(). | |||
| 10293 | // | |||
| 10294 | // __tgt_target() launches a target region with one team and one thread, | |||
| 10295 | // executing a serial region. This master thread may in turn launch | |||
| 10296 | // more threads within its team upon encountering a parallel region, | |||
| 10297 | // however, no additional teams can be launched on the device. | |||
| 10298 | // | |||
| 10299 | // __tgt_target_teams() launches a target region with one or more teams, | |||
| 10300 | // each with one or more threads. This call is required for target | |||
| 10301 | // constructs such as: | |||
| 10302 | // 'target teams' | |||
| 10303 | // 'target' / 'teams' | |||
| 10304 | // 'target teams distribute parallel for' | |||
| 10305 | // 'target parallel' | |||
| 10306 | // and so on. | |||
| 10307 | // | |||
| 10308 | // Note that on the host and CPU targets, the runtime implementation of | |||
| 10309 | // these calls simply call the outlined function without forking threads. | |||
| 10310 | // The outlined functions themselves have runtime calls to | |||
| 10311 | // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by | |||
| 10312 | // the compiler in emitTeamsCall() and emitParallelCall(). | |||
| 10313 | // | |||
| 10314 | // In contrast, on the NVPTX target, the implementation of | |||
| 10315 | // __tgt_target_teams() launches a GPU kernel with the requested number | |||
| 10316 | // of teams and threads so no additional calls to the runtime are required. | |||
| 10317 | if (NumTeams) { | |||
| 10318 | // If we have NumTeams defined this means that we have an enclosed teams | |||
| 10319 | // region. Therefore we also expect to have NumThreads defined. These two | |||
| 10320 | // values should be defined in the presence of a teams directive, | |||
| 10321 | // regardless of having any clauses associated. If the user is using teams | |||
| 10322 | // but no clauses, these two values will be the default that should be | |||
| 10323 | // passed to the runtime library - a 32-bit integer with the value zero. | |||
| 10324 | assert(NumThreads && "Thread limit expression should be available along "((void)0) | |||
| 10325 | "with number of teams.")((void)0); | |||
| 10326 | SmallVector<llvm::Value *> OffloadingArgs = { | |||
| 10327 | RTLoc, | |||
| 10328 | DeviceID, | |||
| 10329 | OutlinedFnID, | |||
| 10330 | PointerNum, | |||
| 10331 | InputInfo.BasePointersArray.getPointer(), | |||
| 10332 | InputInfo.PointersArray.getPointer(), | |||
| 10333 | InputInfo.SizesArray.getPointer(), | |||
| 10334 | MapTypesArray, | |||
| 10335 | MapNamesArray, | |||
| 10336 | InputInfo.MappersArray.getPointer(), | |||
| 10337 | NumTeams, | |||
| 10338 | NumThreads}; | |||
| 10339 | if (HasNowait) { | |||
| 10340 | // Add int32_t depNum = 0, void *depList = nullptr, int32_t | |||
| 10341 | // noAliasDepNum = 0, void *noAliasDepList = nullptr. | |||
| 10342 | OffloadingArgs.push_back(CGF.Builder.getInt32(0)); | |||
| 10343 | OffloadingArgs.push_back(llvm::ConstantPointerNull::get(CGM.VoidPtrTy)); | |||
| 10344 | OffloadingArgs.push_back(CGF.Builder.getInt32(0)); | |||
| 10345 | OffloadingArgs.push_back(llvm::ConstantPointerNull::get(CGM.VoidPtrTy)); | |||
| 10346 | } | |||
| 10347 | Return = CGF.EmitRuntimeCall( | |||
| 10348 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 10349 | CGM.getModule(), HasNowait | |||
| 10350 | ? OMPRTL___tgt_target_teams_nowait_mapper | |||
| 10351 | : OMPRTL___tgt_target_teams_mapper), | |||
| 10352 | OffloadingArgs); | |||
| 10353 | } else { | |||
| 10354 | SmallVector<llvm::Value *> OffloadingArgs = { | |||
| 10355 | RTLoc, | |||
| 10356 | DeviceID, | |||
| 10357 | OutlinedFnID, | |||
| 10358 | PointerNum, | |||
| 10359 | InputInfo.BasePointersArray.getPointer(), | |||
| 10360 | InputInfo.PointersArray.getPointer(), | |||
| 10361 | InputInfo.SizesArray.getPointer(), | |||
| 10362 | MapTypesArray, | |||
| 10363 | MapNamesArray, | |||
| 10364 | InputInfo.MappersArray.getPointer()}; | |||
| 10365 | if (HasNowait) { | |||
| 10366 | // Add int32_t depNum = 0, void *depList = nullptr, int32_t | |||
| 10367 | // noAliasDepNum = 0, void *noAliasDepList = nullptr. | |||
| 10368 | OffloadingArgs.push_back(CGF.Builder.getInt32(0)); | |||
| 10369 | OffloadingArgs.push_back(llvm::ConstantPointerNull::get(CGM.VoidPtrTy)); | |||
| 10370 | OffloadingArgs.push_back(CGF.Builder.getInt32(0)); | |||
| 10371 | OffloadingArgs.push_back(llvm::ConstantPointerNull::get(CGM.VoidPtrTy)); | |||
| 10372 | } | |||
| 10373 | Return = CGF.EmitRuntimeCall( | |||
| 10374 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 10375 | CGM.getModule(), HasNowait ? OMPRTL___tgt_target_nowait_mapper | |||
| 10376 | : OMPRTL___tgt_target_mapper), | |||
| 10377 | OffloadingArgs); | |||
| 10378 | } | |||
| 10379 | ||||
| 10380 | // Check the error code and execute the host version if required. | |||
| 10381 | llvm::BasicBlock *OffloadFailedBlock = | |||
| 10382 | CGF.createBasicBlock("omp_offload.failed"); | |||
| 10383 | llvm::BasicBlock *OffloadContBlock = | |||
| 10384 | CGF.createBasicBlock("omp_offload.cont"); | |||
| 10385 | llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return); | |||
| 10386 | CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock); | |||
| 10387 | ||||
| 10388 | CGF.EmitBlock(OffloadFailedBlock); | |||
| 10389 | if (RequiresOuterTask) { | |||
| 10390 | CapturedVars.clear(); | |||
| 10391 | CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); | |||
| 10392 | } | |||
| 10393 | emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars); | |||
| 10394 | CGF.EmitBranch(OffloadContBlock); | |||
| 10395 | ||||
| 10396 | CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true); | |||
| 10397 | }; | |||
| 10398 | ||||
| 10399 | // Notify that the host version must be executed. | |||
| 10400 | auto &&ElseGen = [this, &D, OutlinedFn, &CS, &CapturedVars, | |||
| 10401 | RequiresOuterTask](CodeGenFunction &CGF, | |||
| 10402 | PrePostActionTy &) { | |||
| 10403 | if (RequiresOuterTask) { | |||
| 10404 | CapturedVars.clear(); | |||
| 10405 | CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); | |||
| 10406 | } | |||
| 10407 | emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars); | |||
| 10408 | }; | |||
| 10409 | ||||
| 10410 | auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray, | |||
| 10411 | &MapNamesArray, &CapturedVars, RequiresOuterTask, | |||
| 10412 | &CS](CodeGenFunction &CGF, PrePostActionTy &) { | |||
| 10413 | // Fill up the arrays with all the captured variables. | |||
| 10414 | MappableExprsHandler::MapCombinedInfoTy CombinedInfo; | |||
| 10415 | ||||
| 10416 | // Get mappable expression information. | |||
| 10417 | MappableExprsHandler MEHandler(D, CGF); | |||
| 10418 | llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers; | |||
| 10419 | llvm::DenseSet<CanonicalDeclPtr<const Decl>> MappedVarSet; | |||
| 10420 | ||||
| 10421 | auto RI = CS.getCapturedRecordDecl()->field_begin(); | |||
| 10422 | auto *CV = CapturedVars.begin(); | |||
| 10423 | for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(), | |||
| 10424 | CE = CS.capture_end(); | |||
| 10425 | CI != CE; ++CI, ++RI, ++CV) { | |||
| 10426 | MappableExprsHandler::MapCombinedInfoTy CurInfo; | |||
| 10427 | MappableExprsHandler::StructRangeInfoTy PartialStruct; | |||
| 10428 | ||||
| 10429 | // VLA sizes are passed to the outlined region by copy and do not have map | |||
| 10430 | // information associated. | |||
| 10431 | if (CI->capturesVariableArrayType()) { | |||
| 10432 | CurInfo.Exprs.push_back(nullptr); | |||
| 10433 | CurInfo.BasePointers.push_back(*CV); | |||
| 10434 | CurInfo.Pointers.push_back(*CV); | |||
| 10435 | CurInfo.Sizes.push_back(CGF.Builder.CreateIntCast( | |||
| 10436 | CGF.getTypeSize(RI->getType()), CGF.Int64Ty, /*isSigned=*/true)); | |||
| 10437 | // Copy to the device as an argument. No need to retrieve it. | |||
| 10438 | CurInfo.Types.push_back(MappableExprsHandler::OMP_MAP_LITERAL | | |||
| 10439 | MappableExprsHandler::OMP_MAP_TARGET_PARAM | | |||
| 10440 | MappableExprsHandler::OMP_MAP_IMPLICIT); | |||
| 10441 | CurInfo.Mappers.push_back(nullptr); | |||
| 10442 | } else { | |||
| 10443 | // If we have any information in the map clause, we use it, otherwise we | |||
| 10444 | // just do a default mapping. | |||
| 10445 | MEHandler.generateInfoForCapture(CI, *CV, CurInfo, PartialStruct); | |||
| 10446 | if (!CI->capturesThis()) | |||
| 10447 | MappedVarSet.insert(CI->getCapturedVar()); | |||
| 10448 | else | |||
| 10449 | MappedVarSet.insert(nullptr); | |||
| 10450 | if (CurInfo.BasePointers.empty() && !PartialStruct.Base.isValid()) | |||
| 10451 | MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurInfo); | |||
| 10452 | // Generate correct mapping for variables captured by reference in | |||
| 10453 | // lambdas. | |||
| 10454 | if (CI->capturesVariable()) | |||
| 10455 | MEHandler.generateInfoForLambdaCaptures(CI->getCapturedVar(), *CV, | |||
| 10456 | CurInfo, LambdaPointers); | |||
| 10457 | } | |||
| 10458 | // We expect to have at least an element of information for this capture. | |||
| 10459 | assert((!CurInfo.BasePointers.empty() || PartialStruct.Base.isValid()) &&((void)0) | |||
| 10460 | "Non-existing map pointer for capture!")((void)0); | |||
| 10461 | assert(CurInfo.BasePointers.size() == CurInfo.Pointers.size() &&((void)0) | |||
| 10462 | CurInfo.BasePointers.size() == CurInfo.Sizes.size() &&((void)0) | |||
| 10463 | CurInfo.BasePointers.size() == CurInfo.Types.size() &&((void)0) | |||
| 10464 | CurInfo.BasePointers.size() == CurInfo.Mappers.size() &&((void)0) | |||
| 10465 | "Inconsistent map information sizes!")((void)0); | |||
| 10466 | ||||
| 10467 | // If there is an entry in PartialStruct it means we have a struct with | |||
| 10468 | // individual members mapped. Emit an extra combined entry. | |||
| 10469 | if (PartialStruct.Base.isValid()) { | |||
| 10470 | CombinedInfo.append(PartialStruct.PreliminaryMapData); | |||
| 10471 | MEHandler.emitCombinedEntry( | |||
| 10472 | CombinedInfo, CurInfo.Types, PartialStruct, nullptr, | |||
| 10473 | !PartialStruct.PreliminaryMapData.BasePointers.empty()); | |||
| 10474 | } | |||
| 10475 | ||||
| 10476 | // We need to append the results of this capture to what we already have. | |||
| 10477 | CombinedInfo.append(CurInfo); | |||
| 10478 | } | |||
| 10479 | // Adjust MEMBER_OF flags for the lambdas captures. | |||
| 10480 | MEHandler.adjustMemberOfForLambdaCaptures( | |||
| 10481 | LambdaPointers, CombinedInfo.BasePointers, CombinedInfo.Pointers, | |||
| 10482 | CombinedInfo.Types); | |||
| 10483 | // Map any list items in a map clause that were not captures because they | |||
| 10484 | // weren't referenced within the construct. | |||
| 10485 | MEHandler.generateAllInfo(CombinedInfo, MappedVarSet); | |||
| 10486 | ||||
| 10487 | TargetDataInfo Info; | |||
| 10488 | // Fill up the arrays and create the arguments. | |||
| 10489 | emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder); | |||
| 10490 | emitOffloadingArraysArgument( | |||
| 10491 | CGF, Info.BasePointersArray, Info.PointersArray, Info.SizesArray, | |||
| 10492 | Info.MapTypesArray, Info.MapNamesArray, Info.MappersArray, Info, | |||
| 10493 | {/*ForEndTask=*/false}); | |||
| 10494 | ||||
| 10495 | InputInfo.NumberOfTargetItems = Info.NumberOfPtrs; | |||
| 10496 | InputInfo.BasePointersArray = | |||
| 10497 | Address(Info.BasePointersArray, CGM.getPointerAlign()); | |||
| 10498 | InputInfo.PointersArray = | |||
| 10499 | Address(Info.PointersArray, CGM.getPointerAlign()); | |||
| 10500 | InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign()); | |||
| 10501 | InputInfo.MappersArray = Address(Info.MappersArray, CGM.getPointerAlign()); | |||
| 10502 | MapTypesArray = Info.MapTypesArray; | |||
| 10503 | MapNamesArray = Info.MapNamesArray; | |||
| 10504 | if (RequiresOuterTask) | |||
| 10505 | CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo); | |||
| 10506 | else | |||
| 10507 | emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen); | |||
| 10508 | }; | |||
| 10509 | ||||
| 10510 | auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask]( | |||
| 10511 | CodeGenFunction &CGF, PrePostActionTy &) { | |||
| 10512 | if (RequiresOuterTask) { | |||
| 10513 | CodeGenFunction::OMPTargetDataInfo InputInfo; | |||
| 10514 | CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo); | |||
| 10515 | } else { | |||
| 10516 | emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen); | |||
| 10517 | } | |||
| 10518 | }; | |||
| 10519 | ||||
| 10520 | // If we have a target function ID it means that we need to support | |||
| 10521 | // offloading, otherwise, just execute on the host. We need to execute on host | |||
| 10522 | // regardless of the conditional in the if clause if, e.g., the user do not | |||
| 10523 | // specify target triples. | |||
| 10524 | if (OutlinedFnID) { | |||
| 10525 | if (IfCond) { | |||
| 10526 | emitIfClause(CGF, IfCond, TargetThenGen, TargetElseGen); | |||
| 10527 | } else { | |||
| 10528 | RegionCodeGenTy ThenRCG(TargetThenGen); | |||
| 10529 | ThenRCG(CGF); | |||
| 10530 | } | |||
| 10531 | } else { | |||
| 10532 | RegionCodeGenTy ElseRCG(TargetElseGen); | |||
| 10533 | ElseRCG(CGF); | |||
| 10534 | } | |||
| 10535 | } | |||
| 10536 | ||||
| 10537 | void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S, | |||
| 10538 | StringRef ParentName) { | |||
| 10539 | if (!S) | |||
| 10540 | return; | |||
| 10541 | ||||
| 10542 | // Codegen OMP target directives that offload compute to the device. | |||
| 10543 | bool RequiresDeviceCodegen = | |||
| 10544 | isa<OMPExecutableDirective>(S) && | |||
| 10545 | isOpenMPTargetExecutionDirective( | |||
| 10546 | cast<OMPExecutableDirective>(S)->getDirectiveKind()); | |||
| 10547 | ||||
| 10548 | if (RequiresDeviceCodegen) { | |||
| 10549 | const auto &E = *cast<OMPExecutableDirective>(S); | |||
| 10550 | unsigned DeviceID; | |||
| 10551 | unsigned FileID; | |||
| 10552 | unsigned Line; | |||
| 10553 | getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), DeviceID, | |||
| 10554 | FileID, Line); | |||
| 10555 | ||||
| 10556 | // Is this a target region that should not be emitted as an entry point? If | |||
| 10557 | // so just signal we are done with this target region. | |||
| 10558 | if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID, | |||
| 10559 | ParentName, Line)) | |||
| 10560 | return; | |||
| 10561 | ||||
| 10562 | switch (E.getDirectiveKind()) { | |||
| 10563 | case OMPD_target: | |||
| 10564 | CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName, | |||
| 10565 | cast<OMPTargetDirective>(E)); | |||
| 10566 | break; | |||
| 10567 | case OMPD_target_parallel: | |||
| 10568 | CodeGenFunction::EmitOMPTargetParallelDeviceFunction( | |||
| 10569 | CGM, ParentName, cast<OMPTargetParallelDirective>(E)); | |||
| 10570 | break; | |||
| 10571 | case OMPD_target_teams: | |||
| 10572 | CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( | |||
| 10573 | CGM, ParentName, cast<OMPTargetTeamsDirective>(E)); | |||
| 10574 | break; | |||
| 10575 | case OMPD_target_teams_distribute: | |||
| 10576 | CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( | |||
| 10577 | CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E)); | |||
| 10578 | break; | |||
| 10579 | case OMPD_target_teams_distribute_simd: | |||
| 10580 | CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( | |||
| 10581 | CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E)); | |||
| 10582 | break; | |||
| 10583 | case OMPD_target_parallel_for: | |||
| 10584 | CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( | |||
| 10585 | CGM, ParentName, cast<OMPTargetParallelForDirective>(E)); | |||
| 10586 | break; | |||
| 10587 | case OMPD_target_parallel_for_simd: | |||
| 10588 | CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( | |||
| 10589 | CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E)); | |||
| 10590 | break; | |||
| 10591 | case OMPD_target_simd: | |||
| 10592 | CodeGenFunction::EmitOMPTargetSimdDeviceFunction( | |||
| 10593 | CGM, ParentName, cast<OMPTargetSimdDirective>(E)); | |||
| 10594 | break; | |||
| 10595 | case OMPD_target_teams_distribute_parallel_for: | |||
| 10596 | CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( | |||
| 10597 | CGM, ParentName, | |||
| 10598 | cast<OMPTargetTeamsDistributeParallelForDirective>(E)); | |||
| 10599 | break; | |||
| 10600 | case OMPD_target_teams_distribute_parallel_for_simd: | |||
| 10601 | CodeGenFunction:: | |||
| 10602 | EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( | |||
| 10603 | CGM, ParentName, | |||
| 10604 | cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E)); | |||
| 10605 | break; | |||
| 10606 | case OMPD_parallel: | |||
| 10607 | case OMPD_for: | |||
| 10608 | case OMPD_parallel_for: | |||
| 10609 | case OMPD_parallel_master: | |||
| 10610 | case OMPD_parallel_sections: | |||
| 10611 | case OMPD_for_simd: | |||
| 10612 | case OMPD_parallel_for_simd: | |||
| 10613 | case OMPD_cancel: | |||
| 10614 | case OMPD_cancellation_point: | |||
| 10615 | case OMPD_ordered: | |||
| 10616 | case OMPD_threadprivate: | |||
| 10617 | case OMPD_allocate: | |||
| 10618 | case OMPD_task: | |||
| 10619 | case OMPD_simd: | |||
| 10620 | case OMPD_tile: | |||
| 10621 | case OMPD_unroll: | |||
| 10622 | case OMPD_sections: | |||
| 10623 | case OMPD_section: | |||
| 10624 | case OMPD_single: | |||
| 10625 | case OMPD_master: | |||
| 10626 | case OMPD_critical: | |||
| 10627 | case OMPD_taskyield: | |||
| 10628 | case OMPD_barrier: | |||
| 10629 | case OMPD_taskwait: | |||
| 10630 | case OMPD_taskgroup: | |||
| 10631 | case OMPD_atomic: | |||
| 10632 | case OMPD_flush: | |||
| 10633 | case OMPD_depobj: | |||
| 10634 | case OMPD_scan: | |||
| 10635 | case OMPD_teams: | |||
| 10636 | case OMPD_target_data: | |||
| 10637 | case OMPD_target_exit_data: | |||
| 10638 | case OMPD_target_enter_data: | |||
| 10639 | case OMPD_distribute: | |||
| 10640 | case OMPD_distribute_simd: | |||
| 10641 | case OMPD_distribute_parallel_for: | |||
| 10642 | case OMPD_distribute_parallel_for_simd: | |||
| 10643 | case OMPD_teams_distribute: | |||
| 10644 | case OMPD_teams_distribute_simd: | |||
| 10645 | case OMPD_teams_distribute_parallel_for: | |||
| 10646 | case OMPD_teams_distribute_parallel_for_simd: | |||
| 10647 | case OMPD_target_update: | |||
| 10648 | case OMPD_declare_simd: | |||
| 10649 | case OMPD_declare_variant: | |||
| 10650 | case OMPD_begin_declare_variant: | |||
| 10651 | case OMPD_end_declare_variant: | |||
| 10652 | case OMPD_declare_target: | |||
| 10653 | case OMPD_end_declare_target: | |||
| 10654 | case OMPD_declare_reduction: | |||
| 10655 | case OMPD_declare_mapper: | |||
| 10656 | case OMPD_taskloop: | |||
| 10657 | case OMPD_taskloop_simd: | |||
| 10658 | case OMPD_master_taskloop: | |||
| 10659 | case OMPD_master_taskloop_simd: | |||
| 10660 | case OMPD_parallel_master_taskloop: | |||
| 10661 | case OMPD_parallel_master_taskloop_simd: | |||
| 10662 | case OMPD_requires: | |||
| 10663 | case OMPD_unknown: | |||
| 10664 | default: | |||
| 10665 | llvm_unreachable("Unknown target directive for OpenMP device codegen.")__builtin_unreachable(); | |||
| 10666 | } | |||
| 10667 | return; | |||
| 10668 | } | |||
| 10669 | ||||
| 10670 | if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) { | |||
| 10671 | if (!E->hasAssociatedStmt() || !E->getAssociatedStmt()) | |||
| 10672 | return; | |||
| 10673 | ||||
| 10674 | scanForTargetRegionsFunctions(E->getRawStmt(), ParentName); | |||
| 10675 | return; | |||
| 10676 | } | |||
| 10677 | ||||
| 10678 | // If this is a lambda function, look into its body. | |||
| 10679 | if (const auto *L = dyn_cast<LambdaExpr>(S)) | |||
| 10680 | S = L->getBody(); | |||
| 10681 | ||||
| 10682 | // Keep looking for target regions recursively. | |||
| 10683 | for (const Stmt *II : S->children()) | |||
| 10684 | scanForTargetRegionsFunctions(II, ParentName); | |||
| 10685 | } | |||
| 10686 | ||||
| 10687 | static bool isAssumedToBeNotEmitted(const ValueDecl *VD, bool IsDevice) { | |||
| 10688 | Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = | |||
| 10689 | OMPDeclareTargetDeclAttr::getDeviceType(VD); | |||
| 10690 | if (!DevTy) | |||
| 10691 | return false; | |||
| 10692 | // Do not emit device_type(nohost) functions for the host. | |||
| 10693 | if (!IsDevice && DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) | |||
| 10694 | return true; | |||
| 10695 | // Do not emit device_type(host) functions for the device. | |||
| 10696 | if (IsDevice && DevTy == OMPDeclareTargetDeclAttr::DT_Host) | |||
| 10697 | return true; | |||
| 10698 | return false; | |||
| 10699 | } | |||
| 10700 | ||||
| 10701 | bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) { | |||
| 10702 | // If emitting code for the host, we do not process FD here. Instead we do | |||
| 10703 | // the normal code generation. | |||
| 10704 | if (!CGM.getLangOpts().OpenMPIsDevice) { | |||
| 10705 | if (const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) | |||
| 10706 | if (isAssumedToBeNotEmitted(cast<ValueDecl>(FD), | |||
| 10707 | CGM.getLangOpts().OpenMPIsDevice)) | |||
| 10708 | return true; | |||
| 10709 | return false; | |||
| 10710 | } | |||
| 10711 | ||||
| 10712 | const ValueDecl *VD = cast<ValueDecl>(GD.getDecl()); | |||
| 10713 | // Try to detect target regions in the function. | |||
| 10714 | if (const auto *FD = dyn_cast<FunctionDecl>(VD)) { | |||
| 10715 | StringRef Name = CGM.getMangledName(GD); | |||
| 10716 | scanForTargetRegionsFunctions(FD->getBody(), Name); | |||
| 10717 | if (isAssumedToBeNotEmitted(cast<ValueDecl>(FD), | |||
| 10718 | CGM.getLangOpts().OpenMPIsDevice)) | |||
| 10719 | return true; | |||
| 10720 | } | |||
| 10721 | ||||
| 10722 | // Do not to emit function if it is not marked as declare target. | |||
| 10723 | return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) && | |||
| 10724 | AlreadyEmittedTargetDecls.count(VD) == 0; | |||
| 10725 | } | |||
| 10726 | ||||
| 10727 | bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) { | |||
| 10728 | if (isAssumedToBeNotEmitted(cast<ValueDecl>(GD.getDecl()), | |||
| 10729 | CGM.getLangOpts().OpenMPIsDevice)) | |||
| 10730 | return true; | |||
| 10731 | ||||
| 10732 | if (!CGM.getLangOpts().OpenMPIsDevice) | |||
| 10733 | return false; | |||
| 10734 | ||||
| 10735 | // Check if there are Ctors/Dtors in this declaration and look for target | |||
| 10736 | // regions in it. We use the complete variant to produce the kernel name | |||
| 10737 | // mangling. | |||
| 10738 | QualType RDTy = cast<VarDecl>(GD.getDecl())->getType(); | |||
| 10739 | if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) { | |||
| 10740 | for (const CXXConstructorDecl *Ctor : RD->ctors()) { | |||
| 10741 | StringRef ParentName = | |||
| 10742 | CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete)); | |||
| 10743 | scanForTargetRegionsFunctions(Ctor->getBody(), ParentName); | |||
| 10744 | } | |||
| 10745 | if (const CXXDestructorDecl *Dtor = RD->getDestructor()) { | |||
| 10746 | StringRef ParentName = | |||
| 10747 | CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete)); | |||
| 10748 | scanForTargetRegionsFunctions(Dtor->getBody(), ParentName); | |||
| 10749 | } | |||
| 10750 | } | |||
| 10751 | ||||
| 10752 | // Do not to emit variable if it is not marked as declare target. | |||
| 10753 | llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = | |||
| 10754 | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration( | |||
| 10755 | cast<VarDecl>(GD.getDecl())); | |||
| 10756 | if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link || | |||
| 10757 | (*Res == OMPDeclareTargetDeclAttr::MT_To && | |||
| 10758 | HasRequiresUnifiedSharedMemory)) { | |||
| 10759 | DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl())); | |||
| 10760 | return true; | |||
| 10761 | } | |||
| 10762 | return false; | |||
| 10763 | } | |||
| 10764 | ||||
| 10765 | void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD, | |||
| 10766 | llvm::Constant *Addr) { | |||
| 10767 | if (CGM.getLangOpts().OMPTargetTriples.empty() && | |||
| 10768 | !CGM.getLangOpts().OpenMPIsDevice) | |||
| 10769 | return; | |||
| 10770 | ||||
| 10771 | // If we have host/nohost variables, they do not need to be registered. | |||
| 10772 | Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = | |||
| 10773 | OMPDeclareTargetDeclAttr::getDeviceType(VD); | |||
| 10774 | if (DevTy && DevTy.getValue() != OMPDeclareTargetDeclAttr::DT_Any) | |||
| 10775 | return; | |||
| 10776 | ||||
| 10777 | llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = | |||
| 10778 | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); | |||
| 10779 | if (!Res) { | |||
| 10780 | if (CGM.getLangOpts().OpenMPIsDevice) { | |||
| 10781 | // Register non-target variables being emitted in device code (debug info | |||
| 10782 | // may cause this). | |||
| 10783 | StringRef VarName = CGM.getMangledName(VD); | |||
| 10784 | EmittedNonTargetVariables.try_emplace(VarName, Addr); | |||
| 10785 | } | |||
| 10786 | return; | |||
| 10787 | } | |||
| 10788 | // Register declare target variables. | |||
| 10789 | OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags; | |||
| 10790 | StringRef VarName; | |||
| 10791 | CharUnits VarSize; | |||
| 10792 | llvm::GlobalValue::LinkageTypes Linkage; | |||
| 10793 | ||||
| 10794 | if (*Res == OMPDeclareTargetDeclAttr::MT_To && | |||
| 10795 | !HasRequiresUnifiedSharedMemory) { | |||
| 10796 | Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo; | |||
| 10797 | VarName = CGM.getMangledName(VD); | |||
| 10798 | if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) { | |||
| 10799 | VarSize = CGM.getContext().getTypeSizeInChars(VD->getType()); | |||
| 10800 | assert(!VarSize.isZero() && "Expected non-zero size of the variable")((void)0); | |||
| 10801 | } else { | |||
| 10802 | VarSize = CharUnits::Zero(); | |||
| 10803 | } | |||
| 10804 | Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false); | |||
| 10805 | // Temp solution to prevent optimizations of the internal variables. | |||
| 10806 | if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) { | |||
| 10807 | // Do not create a "ref-variable" if the original is not also available | |||
| 10808 | // on the host. | |||
| 10809 | if (!OffloadEntriesInfoManager.hasDeviceGlobalVarEntryInfo(VarName)) | |||
| 10810 | return; | |||
| 10811 | std::string RefName = getName({VarName, "ref"}); | |||
| 10812 | if (!CGM.GetGlobalValue(RefName)) { | |||
| 10813 | llvm::Constant *AddrRef = | |||
| 10814 | getOrCreateInternalVariable(Addr->getType(), RefName); | |||
| 10815 | auto *GVAddrRef = cast<llvm::GlobalVariable>(AddrRef); | |||
| 10816 | GVAddrRef->setConstant(/*Val=*/true); | |||
| 10817 | GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage); | |||
| 10818 | GVAddrRef->setInitializer(Addr); | |||
| 10819 | CGM.addCompilerUsedGlobal(GVAddrRef); | |||
| 10820 | } | |||
| 10821 | } | |||
| 10822 | } else { | |||
| 10823 | assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||((void)0) | |||
| 10824 | (*Res == OMPDeclareTargetDeclAttr::MT_To &&((void)0) | |||
| 10825 | HasRequiresUnifiedSharedMemory)) &&((void)0) | |||
| 10826 | "Declare target attribute must link or to with unified memory.")((void)0); | |||
| 10827 | if (*Res == OMPDeclareTargetDeclAttr::MT_Link) | |||
| 10828 | Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink; | |||
| 10829 | else | |||
| 10830 | Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo; | |||
| 10831 | ||||
| 10832 | if (CGM.getLangOpts().OpenMPIsDevice) { | |||
| 10833 | VarName = Addr->getName(); | |||
| 10834 | Addr = nullptr; | |||
| 10835 | } else { | |||
| 10836 | VarName = getAddrOfDeclareTargetVar(VD).getName(); | |||
| 10837 | Addr = cast<llvm::Constant>(getAddrOfDeclareTargetVar(VD).getPointer()); | |||
| 10838 | } | |||
| 10839 | VarSize = CGM.getPointerSize(); | |||
| 10840 | Linkage = llvm::GlobalValue::WeakAnyLinkage; | |||
| 10841 | } | |||
| 10842 | ||||
| 10843 | OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo( | |||
| 10844 | VarName, Addr, VarSize, Flags, Linkage); | |||
| 10845 | } | |||
| 10846 | ||||
| 10847 | bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) { | |||
| 10848 | if (isa<FunctionDecl>(GD.getDecl()) || | |||
| 10849 | isa<OMPDeclareReductionDecl>(GD.getDecl())) | |||
| 10850 | return emitTargetFunctions(GD); | |||
| 10851 | ||||
| 10852 | return emitTargetGlobalVariable(GD); | |||
| 10853 | } | |||
| 10854 | ||||
| 10855 | void CGOpenMPRuntime::emitDeferredTargetDecls() const { | |||
| 10856 | for (const VarDecl *VD : DeferredGlobalVariables) { | |||
| 10857 | llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = | |||
| 10858 | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); | |||
| 10859 | if (!Res) | |||
| 10860 | continue; | |||
| 10861 | if (*Res == OMPDeclareTargetDeclAttr::MT_To && | |||
| 10862 | !HasRequiresUnifiedSharedMemory) { | |||
| 10863 | CGM.EmitGlobal(VD); | |||
| 10864 | } else { | |||
| 10865 | assert((*Res == OMPDeclareTargetDeclAttr::MT_Link ||((void)0) | |||
| 10866 | (*Res == OMPDeclareTargetDeclAttr::MT_To &&((void)0) | |||
| 10867 | HasRequiresUnifiedSharedMemory)) &&((void)0) | |||
| 10868 | "Expected link clause or to clause with unified memory.")((void)0); | |||
| 10869 | (void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); | |||
| 10870 | } | |||
| 10871 | } | |||
| 10872 | } | |||
| 10873 | ||||
| 10874 | void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas( | |||
| 10875 | CodeGenFunction &CGF, const OMPExecutableDirective &D) const { | |||
| 10876 | assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&((void)0) | |||
| 10877 | " Expected target-based directive.")((void)0); | |||
| 10878 | } | |||
| 10879 | ||||
| 10880 | void CGOpenMPRuntime::processRequiresDirective(const OMPRequiresDecl *D) { | |||
| 10881 | for (const OMPClause *Clause : D->clauselists()) { | |||
| 10882 | if (Clause->getClauseKind() == OMPC_unified_shared_memory) { | |||
| 10883 | HasRequiresUnifiedSharedMemory = true; | |||
| 10884 | } else if (const auto *AC = | |||
| 10885 | dyn_cast<OMPAtomicDefaultMemOrderClause>(Clause)) { | |||
| 10886 | switch (AC->getAtomicDefaultMemOrderKind()) { | |||
| 10887 | case OMPC_ATOMIC_DEFAULT_MEM_ORDER_acq_rel: | |||
| 10888 | RequiresAtomicOrdering = llvm::AtomicOrdering::AcquireRelease; | |||
| 10889 | break; | |||
| 10890 | case OMPC_ATOMIC_DEFAULT_MEM_ORDER_seq_cst: | |||
| 10891 | RequiresAtomicOrdering = llvm::AtomicOrdering::SequentiallyConsistent; | |||
| 10892 | break; | |||
| 10893 | case OMPC_ATOMIC_DEFAULT_MEM_ORDER_relaxed: | |||
| 10894 | RequiresAtomicOrdering = llvm::AtomicOrdering::Monotonic; | |||
| 10895 | break; | |||
| 10896 | case OMPC_ATOMIC_DEFAULT_MEM_ORDER_unknown: | |||
| 10897 | break; | |||
| 10898 | } | |||
| 10899 | } | |||
| 10900 | } | |||
| 10901 | } | |||
| 10902 | ||||
| 10903 | llvm::AtomicOrdering CGOpenMPRuntime::getDefaultMemoryOrdering() const { | |||
| 10904 | return RequiresAtomicOrdering; | |||
| 10905 | } | |||
| 10906 | ||||
| 10907 | bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD, | |||
| 10908 | LangAS &AS) { | |||
| 10909 | if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) | |||
| 10910 | return false; | |||
| 10911 | const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); | |||
| 10912 | switch(A->getAllocatorType()) { | |||
| 10913 | case OMPAllocateDeclAttr::OMPNullMemAlloc: | |||
| 10914 | case OMPAllocateDeclAttr::OMPDefaultMemAlloc: | |||
| 10915 | // Not supported, fallback to the default mem space. | |||
| 10916 | case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: | |||
| 10917 | case OMPAllocateDeclAttr::OMPCGroupMemAlloc: | |||
| 10918 | case OMPAllocateDeclAttr::OMPHighBWMemAlloc: | |||
| 10919 | case OMPAllocateDeclAttr::OMPLowLatMemAlloc: | |||
| 10920 | case OMPAllocateDeclAttr::OMPThreadMemAlloc: | |||
| 10921 | case OMPAllocateDeclAttr::OMPConstMemAlloc: | |||
| 10922 | case OMPAllocateDeclAttr::OMPPTeamMemAlloc: | |||
| 10923 | AS = LangAS::Default; | |||
| 10924 | return true; | |||
| 10925 | case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: | |||
| 10926 | llvm_unreachable("Expected predefined allocator for the variables with the "__builtin_unreachable() | |||
| 10927 | "static storage.")__builtin_unreachable(); | |||
| 10928 | } | |||
| 10929 | return false; | |||
| 10930 | } | |||
| 10931 | ||||
| 10932 | bool CGOpenMPRuntime::hasRequiresUnifiedSharedMemory() const { | |||
| 10933 | return HasRequiresUnifiedSharedMemory; | |||
| 10934 | } | |||
| 10935 | ||||
| 10936 | CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII( | |||
| 10937 | CodeGenModule &CGM) | |||
| 10938 | : CGM(CGM) { | |||
| 10939 | if (CGM.getLangOpts().OpenMPIsDevice) { | |||
| 10940 | SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal; | |||
| 10941 | CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false; | |||
| 10942 | } | |||
| 10943 | } | |||
| 10944 | ||||
| 10945 | CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() { | |||
| 10946 | if (CGM.getLangOpts().OpenMPIsDevice) | |||
| 10947 | CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal; | |||
| 10948 | } | |||
| 10949 | ||||
| 10950 | bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) { | |||
| 10951 | if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal) | |||
| 10952 | return true; | |||
| 10953 | ||||
| 10954 | const auto *D = cast<FunctionDecl>(GD.getDecl()); | |||
| 10955 | // Do not to emit function if it is marked as declare target as it was already | |||
| 10956 | // emitted. | |||
| 10957 | if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) { | |||
| 10958 | if (D->hasBody() && AlreadyEmittedTargetDecls.count(D) == 0) { | |||
| 10959 | if (auto *F = dyn_cast_or_null<llvm::Function>( | |||
| 10960 | CGM.GetGlobalValue(CGM.getMangledName(GD)))) | |||
| 10961 | return !F->isDeclaration(); | |||
| 10962 | return false; | |||
| 10963 | } | |||
| 10964 | return true; | |||
| 10965 | } | |||
| 10966 | ||||
| 10967 | return !AlreadyEmittedTargetDecls.insert(D).second; | |||
| 10968 | } | |||
| 10969 | ||||
| 10970 | llvm::Function *CGOpenMPRuntime::emitRequiresDirectiveRegFun() { | |||
| 10971 | // If we don't have entries or if we are emitting code for the device, we | |||
| 10972 | // don't need to do anything. | |||
| 10973 | if (CGM.getLangOpts().OMPTargetTriples.empty() || | |||
| 10974 | CGM.getLangOpts().OpenMPSimd || CGM.getLangOpts().OpenMPIsDevice || | |||
| 10975 | (OffloadEntriesInfoManager.empty() && | |||
| 10976 | !HasEmittedDeclareTargetRegion && | |||
| 10977 | !HasEmittedTargetRegion)) | |||
| 10978 | return nullptr; | |||
| 10979 | ||||
| 10980 | // Create and register the function that handles the requires directives. | |||
| 10981 | ASTContext &C = CGM.getContext(); | |||
| 10982 | ||||
| 10983 | llvm::Function *RequiresRegFn; | |||
| 10984 | { | |||
| 10985 | CodeGenFunction CGF(CGM); | |||
| 10986 | const auto &FI = CGM.getTypes().arrangeNullaryFunction(); | |||
| 10987 | llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); | |||
| 10988 | std::string ReqName = getName({"omp_offloading", "requires_reg"}); | |||
| 10989 | RequiresRegFn = CGM.CreateGlobalInitOrCleanUpFunction(FTy, ReqName, FI); | |||
| 10990 | CGF.StartFunction(GlobalDecl(), C.VoidTy, RequiresRegFn, FI, {}); | |||
| 10991 | OpenMPOffloadingRequiresDirFlags Flags = OMP_REQ_NONE; | |||
| 10992 | // TODO: check for other requires clauses. | |||
| 10993 | // The requires directive takes effect only when a target region is | |||
| 10994 | // present in the compilation unit. Otherwise it is ignored and not | |||
| 10995 | // passed to the runtime. This avoids the runtime from throwing an error | |||
| 10996 | // for mismatching requires clauses across compilation units that don't | |||
| 10997 | // contain at least 1 target region. | |||
| 10998 | assert((HasEmittedTargetRegion ||((void)0) | |||
| 10999 | HasEmittedDeclareTargetRegion ||((void)0) | |||
| 11000 | !OffloadEntriesInfoManager.empty()) &&((void)0) | |||
| 11001 | "Target or declare target region expected.")((void)0); | |||
| 11002 | if (HasRequiresUnifiedSharedMemory) | |||
| 11003 | Flags = OMP_REQ_UNIFIED_SHARED_MEMORY; | |||
| 11004 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 11005 | CGM.getModule(), OMPRTL___tgt_register_requires), | |||
| 11006 | llvm::ConstantInt::get(CGM.Int64Ty, Flags)); | |||
| 11007 | CGF.FinishFunction(); | |||
| 11008 | } | |||
| 11009 | return RequiresRegFn; | |||
| 11010 | } | |||
| 11011 | ||||
| 11012 | void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF, | |||
| 11013 | const OMPExecutableDirective &D, | |||
| 11014 | SourceLocation Loc, | |||
| 11015 | llvm::Function *OutlinedFn, | |||
| 11016 | ArrayRef<llvm::Value *> CapturedVars) { | |||
| 11017 | if (!CGF.HaveInsertPoint()) | |||
| 11018 | return; | |||
| 11019 | ||||
| 11020 | llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); | |||
| 11021 | CodeGenFunction::RunCleanupsScope Scope(CGF); | |||
| 11022 | ||||
| 11023 | // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn); | |||
| 11024 | llvm::Value *Args[] = { | |||
| 11025 | RTLoc, | |||
| 11026 | CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars | |||
| 11027 | CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())}; | |||
| 11028 | llvm::SmallVector<llvm::Value *, 16> RealArgs; | |||
| 11029 | RealArgs.append(std::begin(Args), std::end(Args)); | |||
| 11030 | RealArgs.append(CapturedVars.begin(), CapturedVars.end()); | |||
| 11031 | ||||
| 11032 | llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction( | |||
| 11033 | CGM.getModule(), OMPRTL___kmpc_fork_teams); | |||
| 11034 | CGF.EmitRuntimeCall(RTLFn, RealArgs); | |||
| 11035 | } | |||
| 11036 | ||||
| 11037 | void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF, | |||
| 11038 | const Expr *NumTeams, | |||
| 11039 | const Expr *ThreadLimit, | |||
| 11040 | SourceLocation Loc) { | |||
| 11041 | if (!CGF.HaveInsertPoint()) | |||
| 11042 | return; | |||
| 11043 | ||||
| 11044 | llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); | |||
| 11045 | ||||
| 11046 | llvm::Value *NumTeamsVal = | |||
| 11047 | NumTeams | |||
| 11048 | ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams), | |||
| 11049 | CGF.CGM.Int32Ty, /* isSigned = */ true) | |||
| 11050 | : CGF.Builder.getInt32(0); | |||
| 11051 | ||||
| 11052 | llvm::Value *ThreadLimitVal = | |||
| 11053 | ThreadLimit | |||
| 11054 | ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit), | |||
| 11055 | CGF.CGM.Int32Ty, /* isSigned = */ true) | |||
| 11056 | : CGF.Builder.getInt32(0); | |||
| 11057 | ||||
| 11058 | // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit) | |||
| 11059 | llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal, | |||
| 11060 | ThreadLimitVal}; | |||
| 11061 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 11062 | CGM.getModule(), OMPRTL___kmpc_push_num_teams), | |||
| 11063 | PushNumTeamsArgs); | |||
| 11064 | } | |||
| 11065 | ||||
| 11066 | void CGOpenMPRuntime::emitTargetDataCalls( | |||
| 11067 | CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, | |||
| 11068 | const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) { | |||
| 11069 | if (!CGF.HaveInsertPoint()) | |||
| 11070 | return; | |||
| 11071 | ||||
| 11072 | // Action used to replace the default codegen action and turn privatization | |||
| 11073 | // off. | |||
| 11074 | PrePostActionTy NoPrivAction; | |||
| 11075 | ||||
| 11076 | // Generate the code for the opening of the data environment. Capture all the | |||
| 11077 | // arguments of the runtime call by reference because they are used in the | |||
| 11078 | // closing of the region. | |||
| 11079 | auto &&BeginThenGen = [this, &D, Device, &Info, | |||
| 11080 | &CodeGen](CodeGenFunction &CGF, PrePostActionTy &) { | |||
| 11081 | // Fill up the arrays with all the mapped variables. | |||
| 11082 | MappableExprsHandler::MapCombinedInfoTy CombinedInfo; | |||
| 11083 | ||||
| 11084 | // Get map clause information. | |||
| 11085 | MappableExprsHandler MEHandler(D, CGF); | |||
| 11086 | MEHandler.generateAllInfo(CombinedInfo); | |||
| 11087 | ||||
| 11088 | // Fill up the arrays and create the arguments. | |||
| 11089 | emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder, | |||
| 11090 | /*IsNonContiguous=*/true); | |||
| 11091 | ||||
| 11092 | llvm::Value *BasePointersArrayArg = nullptr; | |||
| 11093 | llvm::Value *PointersArrayArg = nullptr; | |||
| 11094 | llvm::Value *SizesArrayArg = nullptr; | |||
| 11095 | llvm::Value *MapTypesArrayArg = nullptr; | |||
| 11096 | llvm::Value *MapNamesArrayArg = nullptr; | |||
| 11097 | llvm::Value *MappersArrayArg = nullptr; | |||
| 11098 | emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg, | |||
| 11099 | SizesArrayArg, MapTypesArrayArg, | |||
| 11100 | MapNamesArrayArg, MappersArrayArg, Info); | |||
| 11101 | ||||
| 11102 | // Emit device ID if any. | |||
| 11103 | llvm::Value *DeviceID = nullptr; | |||
| 11104 | if (Device) { | |||
| 11105 | DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), | |||
| 11106 | CGF.Int64Ty, /*isSigned=*/true); | |||
| 11107 | } else { | |||
| 11108 | DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); | |||
| 11109 | } | |||
| 11110 | ||||
| 11111 | // Emit the number of elements in the offloading arrays. | |||
| 11112 | llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs); | |||
| 11113 | // | |||
| 11114 | // Source location for the ident struct | |||
| 11115 | llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc()); | |||
| 11116 | ||||
| 11117 | llvm::Value *OffloadingArgs[] = {RTLoc, | |||
| 11118 | DeviceID, | |||
| 11119 | PointerNum, | |||
| 11120 | BasePointersArrayArg, | |||
| 11121 | PointersArrayArg, | |||
| 11122 | SizesArrayArg, | |||
| 11123 | MapTypesArrayArg, | |||
| 11124 | MapNamesArrayArg, | |||
| 11125 | MappersArrayArg}; | |||
| 11126 | CGF.EmitRuntimeCall( | |||
| 11127 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 11128 | CGM.getModule(), OMPRTL___tgt_target_data_begin_mapper), | |||
| 11129 | OffloadingArgs); | |||
| 11130 | ||||
| 11131 | // If device pointer privatization is required, emit the body of the region | |||
| 11132 | // here. It will have to be duplicated: with and without privatization. | |||
| 11133 | if (!Info.CaptureDeviceAddrMap.empty()) | |||
| 11134 | CodeGen(CGF); | |||
| 11135 | }; | |||
| 11136 | ||||
| 11137 | // Generate code for the closing of the data region. | |||
| 11138 | auto &&EndThenGen = [this, Device, &Info, &D](CodeGenFunction &CGF, | |||
| 11139 | PrePostActionTy &) { | |||
| 11140 | assert(Info.isValid() && "Invalid data environment closing arguments.")((void)0); | |||
| 11141 | ||||
| 11142 | llvm::Value *BasePointersArrayArg = nullptr; | |||
| 11143 | llvm::Value *PointersArrayArg = nullptr; | |||
| 11144 | llvm::Value *SizesArrayArg = nullptr; | |||
| 11145 | llvm::Value *MapTypesArrayArg = nullptr; | |||
| 11146 | llvm::Value *MapNamesArrayArg = nullptr; | |||
| 11147 | llvm::Value *MappersArrayArg = nullptr; | |||
| 11148 | emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg, | |||
| 11149 | SizesArrayArg, MapTypesArrayArg, | |||
| 11150 | MapNamesArrayArg, MappersArrayArg, Info, | |||
| 11151 | {/*ForEndCall=*/true}); | |||
| 11152 | ||||
| 11153 | // Emit device ID if any. | |||
| 11154 | llvm::Value *DeviceID = nullptr; | |||
| 11155 | if (Device) { | |||
| 11156 | DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), | |||
| 11157 | CGF.Int64Ty, /*isSigned=*/true); | |||
| 11158 | } else { | |||
| 11159 | DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); | |||
| 11160 | } | |||
| 11161 | ||||
| 11162 | // Emit the number of elements in the offloading arrays. | |||
| 11163 | llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs); | |||
| 11164 | ||||
| 11165 | // Source location for the ident struct | |||
| 11166 | llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc()); | |||
| 11167 | ||||
| 11168 | llvm::Value *OffloadingArgs[] = {RTLoc, | |||
| 11169 | DeviceID, | |||
| 11170 | PointerNum, | |||
| 11171 | BasePointersArrayArg, | |||
| 11172 | PointersArrayArg, | |||
| 11173 | SizesArrayArg, | |||
| 11174 | MapTypesArrayArg, | |||
| 11175 | MapNamesArrayArg, | |||
| 11176 | MappersArrayArg}; | |||
| 11177 | CGF.EmitRuntimeCall( | |||
| 11178 | OMPBuilder.getOrCreateRuntimeFunction( | |||
| 11179 | CGM.getModule(), OMPRTL___tgt_target_data_end_mapper), | |||
| 11180 | OffloadingArgs); | |||
| 11181 | }; | |||
| 11182 | ||||
| 11183 | // If we need device pointer privatization, we need to emit the body of the | |||
| 11184 | // region with no privatization in the 'else' branch of the conditional. | |||
| 11185 | // Otherwise, we don't have to do anything. | |||
| 11186 | auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF, | |||
| 11187 | PrePostActionTy &) { | |||
| 11188 | if (!Info.CaptureDeviceAddrMap.empty()) { | |||
| 11189 | CodeGen.setAction(NoPrivAction); | |||
| 11190 | CodeGen(CGF); | |||
| 11191 | } | |||
| 11192 | }; | |||
| 11193 | ||||
| 11194 | // We don't have to do anything to close the region if the if clause evaluates | |||
| 11195 | // to false. | |||
| 11196 | auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {}; | |||
| 11197 | ||||
| 11198 | if (IfCond) { | |||
| 11199 | emitIfClause(CGF, IfCond, BeginThenGen, BeginElseGen); | |||
| 11200 | } else { | |||
| 11201 | RegionCodeGenTy RCG(BeginThenGen); | |||
| 11202 | RCG(CGF); | |||
| 11203 | } | |||
| 11204 | ||||
| 11205 | // If we don't require privatization of device pointers, we emit the body in | |||
| 11206 | // between the runtime calls. This avoids duplicating the body code. | |||
| 11207 | if (Info.CaptureDeviceAddrMap.empty()) { | |||
| 11208 | CodeGen.setAction(NoPrivAction); | |||
| 11209 | CodeGen(CGF); | |||
| 11210 | } | |||
| 11211 | ||||
| 11212 | if (IfCond) { | |||
| 11213 | emitIfClause(CGF, IfCond, EndThenGen, EndElseGen); | |||
| 11214 | } else { | |||
| 11215 | RegionCodeGenTy RCG(EndThenGen); | |||
| 11216 | RCG(CGF); | |||
| 11217 | } | |||
| 11218 | } | |||
| 11219 | ||||
| 11220 | void CGOpenMPRuntime::emitTargetDataStandAloneCall( | |||
| 11221 | CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, | |||
| 11222 | const Expr *Device) { | |||
| 11223 | if (!CGF.HaveInsertPoint()) | |||
| 11224 | return; | |||
| 11225 | ||||
| 11226 | assert((isa<OMPTargetEnterDataDirective>(D) ||((void)0) | |||
| 11227 | isa<OMPTargetExitDataDirective>(D) ||((void)0) | |||
| 11228 | isa<OMPTargetUpdateDirective>(D)) &&((void)0) | |||
| 11229 | "Expecting either target enter, exit data, or update directives.")((void)0); | |||
| 11230 | ||||
| 11231 | CodeGenFunction::OMPTargetDataInfo InputInfo; | |||
| 11232 | llvm::Value *MapTypesArray = nullptr; | |||
| 11233 | llvm::Value *MapNamesArray = nullptr; | |||
| 11234 | // Generate the code for the opening of the data environment. | |||
| 11235 | auto &&ThenGen = [this, &D, Device, &InputInfo, &MapTypesArray, | |||
| 11236 | &MapNamesArray](CodeGenFunction &CGF, PrePostActionTy &) { | |||
| 11237 | // Emit device ID if any. | |||
| 11238 | llvm::Value *DeviceID = nullptr; | |||
| 11239 | if (Device) { | |||
| 11240 | DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), | |||
| 11241 | CGF.Int64Ty, /*isSigned=*/true); | |||
| 11242 | } else { | |||
| 11243 | DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); | |||
| 11244 | } | |||
| 11245 | ||||
| 11246 | // Emit the number of elements in the offloading arrays. | |||
| 11247 | llvm::Constant *PointerNum = | |||
| 11248 | CGF.Builder.getInt32(InputInfo.NumberOfTargetItems); | |||
| 11249 | ||||
| 11250 | // Source location for the ident struct | |||
| 11251 | llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc()); | |||
| 11252 | ||||
| 11253 | llvm::Value *OffloadingArgs[] = {RTLoc, | |||
| 11254 | DeviceID, | |||
| 11255 | PointerNum, | |||
| 11256 | InputInfo.BasePointersArray.getPointer(), | |||
| 11257 | InputInfo.PointersArray.getPointer(), | |||
| 11258 | InputInfo.SizesArray.getPointer(), | |||
| 11259 | MapTypesArray, | |||
| 11260 | MapNamesArray, | |||
| 11261 | InputInfo.MappersArray.getPointer()}; | |||
| 11262 | ||||
| 11263 | // Select the right runtime function call for each standalone | |||
| 11264 | // directive. | |||
| 11265 | const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>(); | |||
| 11266 | RuntimeFunction RTLFn; | |||
| 11267 | switch (D.getDirectiveKind()) { | |||
| 11268 | case OMPD_target_enter_data: | |||
| 11269 | RTLFn = HasNowait ? OMPRTL___tgt_target_data_begin_nowait_mapper | |||
| 11270 | : OMPRTL___tgt_target_data_begin_mapper; | |||
| 11271 | break; | |||
| 11272 | case OMPD_target_exit_data: | |||
| 11273 | RTLFn = HasNowait ? OMPRTL___tgt_target_data_end_nowait_mapper | |||
| 11274 | : OMPRTL___tgt_target_data_end_mapper; | |||
| 11275 | break; | |||
| 11276 | case OMPD_target_update: | |||
| 11277 | RTLFn = HasNowait ? OMPRTL___tgt_target_data_update_nowait_mapper | |||
| 11278 | : OMPRTL___tgt_target_data_update_mapper; | |||
| 11279 | break; | |||
| 11280 | case OMPD_parallel: | |||
| 11281 | case OMPD_for: | |||
| 11282 | case OMPD_parallel_for: | |||
| 11283 | case OMPD_parallel_master: | |||
| 11284 | case OMPD_parallel_sections: | |||
| 11285 | case OMPD_for_simd: | |||
| 11286 | case OMPD_parallel_for_simd: | |||
| 11287 | case OMPD_cancel: | |||
| 11288 | case OMPD_cancellation_point: | |||
| 11289 | case OMPD_ordered: | |||
| 11290 | case OMPD_threadprivate: | |||
| 11291 | case OMPD_allocate: | |||
| 11292 | case OMPD_task: | |||
| 11293 | case OMPD_simd: | |||
| 11294 | case OMPD_tile: | |||
| 11295 | case OMPD_unroll: | |||
| 11296 | case OMPD_sections: | |||
| 11297 | case OMPD_section: | |||
| 11298 | case OMPD_single: | |||
| 11299 | case OMPD_master: | |||
| 11300 | case OMPD_critical: | |||
| 11301 | case OMPD_taskyield: | |||
| 11302 | case OMPD_barrier: | |||
| 11303 | case OMPD_taskwait: | |||
| 11304 | case OMPD_taskgroup: | |||
| 11305 | case OMPD_atomic: | |||
| 11306 | case OMPD_flush: | |||
| 11307 | case OMPD_depobj: | |||
| 11308 | case OMPD_scan: | |||
| 11309 | case OMPD_teams: | |||
| 11310 | case OMPD_target_data: | |||
| 11311 | case OMPD_distribute: | |||
| 11312 | case OMPD_distribute_simd: | |||
| 11313 | case OMPD_distribute_parallel_for: | |||
| 11314 | case OMPD_distribute_parallel_for_simd: | |||
| 11315 | case OMPD_teams_distribute: | |||
| 11316 | case OMPD_teams_distribute_simd: | |||
| 11317 | case OMPD_teams_distribute_parallel_for: | |||
| 11318 | case OMPD_teams_distribute_parallel_for_simd: | |||
| 11319 | case OMPD_declare_simd: | |||
| 11320 | case OMPD_declare_variant: | |||
| 11321 | case OMPD_begin_declare_variant: | |||
| 11322 | case OMPD_end_declare_variant: | |||
| 11323 | case OMPD_declare_target: | |||
| 11324 | case OMPD_end_declare_target: | |||
| 11325 | case OMPD_declare_reduction: | |||
| 11326 | case OMPD_declare_mapper: | |||
| 11327 | case OMPD_taskloop: | |||
| 11328 | case OMPD_taskloop_simd: | |||
| 11329 | case OMPD_master_taskloop: | |||
| 11330 | case OMPD_master_taskloop_simd: | |||
| 11331 | case OMPD_parallel_master_taskloop: | |||
| 11332 | case OMPD_parallel_master_taskloop_simd: | |||
| 11333 | case OMPD_target: | |||
| 11334 | case OMPD_target_simd: | |||
| 11335 | case OMPD_target_teams_distribute: | |||
| 11336 | case OMPD_target_teams_distribute_simd: | |||
| 11337 | case OMPD_target_teams_distribute_parallel_for: | |||
| 11338 | case OMPD_target_teams_distribute_parallel_for_simd: | |||
| 11339 | case OMPD_target_teams: | |||
| 11340 | case OMPD_target_parallel: | |||
| 11341 | case OMPD_target_parallel_for: | |||
| 11342 | case OMPD_target_parallel_for_simd: | |||
| 11343 | case OMPD_requires: | |||
| 11344 | case OMPD_unknown: | |||
| 11345 | default: | |||
| 11346 | llvm_unreachable("Unexpected standalone target data directive.")__builtin_unreachable(); | |||
| 11347 | break; | |||
| 11348 | } | |||
| 11349 | CGF.EmitRuntimeCall( | |||
| 11350 | OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), RTLFn), | |||
| 11351 | OffloadingArgs); | |||
| 11352 | }; | |||
| 11353 | ||||
| 11354 | auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray, | |||
| 11355 | &MapNamesArray](CodeGenFunction &CGF, | |||
| 11356 | PrePostActionTy &) { | |||
| 11357 | // Fill up the arrays with all the mapped variables. | |||
| 11358 | MappableExprsHandler::MapCombinedInfoTy CombinedInfo; | |||
| 11359 | ||||
| 11360 | // Get map clause information. | |||
| 11361 | MappableExprsHandler MEHandler(D, CGF); | |||
| 11362 | MEHandler.generateAllInfo(CombinedInfo); | |||
| 11363 | ||||
| 11364 | TargetDataInfo Info; | |||
| 11365 | // Fill up the arrays and create the arguments. | |||
| 11366 | emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder, | |||
| 11367 | /*IsNonContiguous=*/true); | |||
| 11368 | bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>() || | |||
| 11369 | D.hasClausesOfKind<OMPNowaitClause>(); | |||
| 11370 | emitOffloadingArraysArgument( | |||
| 11371 | CGF, Info.BasePointersArray, Info.PointersArray, Info.SizesArray, | |||
| 11372 | Info.MapTypesArray, Info.MapNamesArray, Info.MappersArray, Info, | |||
| 11373 | {/*ForEndTask=*/false}); | |||
| 11374 | InputInfo.NumberOfTargetItems = Info.NumberOfPtrs; | |||
| 11375 | InputInfo.BasePointersArray = | |||
| 11376 | Address(Info.BasePointersArray, CGM.getPointerAlign()); | |||
| 11377 | InputInfo.PointersArray = | |||
| 11378 | Address(Info.PointersArray, CGM.getPointerAlign()); | |||
| 11379 | InputInfo.SizesArray = | |||
| 11380 | Address(Info.SizesArray, CGM.getPointerAlign()); | |||
| 11381 | InputInfo.MappersArray = Address(Info.MappersArray, CGM.getPointerAlign()); | |||
| 11382 | MapTypesArray = Info.MapTypesArray; | |||
| 11383 | MapNamesArray = Info.MapNamesArray; | |||
| 11384 | if (RequiresOuterTask) | |||
| 11385 | CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo); | |||
| 11386 | else | |||
| 11387 | emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen); | |||
| 11388 | }; | |||
| 11389 | ||||
| 11390 | if (IfCond) { | |||
| 11391 | emitIfClause(CGF, IfCond, TargetThenGen, | |||
| 11392 | [](CodeGenFunction &CGF, PrePostActionTy &) {}); | |||
| 11393 | } else { | |||
| 11394 | RegionCodeGenTy ThenRCG(TargetThenGen); | |||
| 11395 | ThenRCG(CGF); | |||
| 11396 | } | |||
| 11397 | } | |||
| 11398 | ||||
| 11399 | namespace { | |||
| 11400 | /// Kind of parameter in a function with 'declare simd' directive. | |||
| 11401 | enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector }; | |||
| 11402 | /// Attribute set of the parameter. | |||
| 11403 | struct ParamAttrTy { | |||
| 11404 | ParamKindTy Kind = Vector; | |||
| 11405 | llvm::APSInt StrideOrArg; | |||
| 11406 | llvm::APSInt Alignment; | |||
| 11407 | }; | |||
| 11408 | } // namespace | |||
| 11409 | ||||
| 11410 | static unsigned evaluateCDTSize(const FunctionDecl *FD, | |||
| 11411 | ArrayRef<ParamAttrTy> ParamAttrs) { | |||
| 11412 | // Every vector variant of a SIMD-enabled function has a vector length (VLEN). | |||
| 11413 | // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument | |||
| 11414 | // of that clause. The VLEN value must be power of 2. | |||
| 11415 | // In other case the notion of the function`s "characteristic data type" (CDT) | |||
| 11416 | // is used to compute the vector length. | |||
| 11417 | // CDT is defined in the following order: | |||
| 11418 | // a) For non-void function, the CDT is the return type. | |||
| 11419 | // b) If the function has any non-uniform, non-linear parameters, then the | |||
| 11420 | // CDT is the type of the first such parameter. | |||
| 11421 | // c) If the CDT determined by a) or b) above is struct, union, or class | |||
| 11422 | // type which is pass-by-value (except for the type that maps to the | |||
| 11423 | // built-in complex data type), the characteristic data type is int. | |||
| 11424 | // d) If none of the above three cases is applicable, the CDT is int. | |||
| 11425 | // The VLEN is then determined based on the CDT and the size of vector | |||
| 11426 | // register of that ISA for which current vector version is generated. The | |||
| 11427 | // VLEN is computed using the formula below: | |||
| 11428 | // VLEN = sizeof(vector_register) / sizeof(CDT), | |||
| 11429 | // where vector register size specified in section 3.2.1 Registers and the | |||
| 11430 | // Stack Frame of original AMD64 ABI document. | |||
| 11431 | QualType RetType = FD->getReturnType(); | |||
| 11432 | if (RetType.isNull()) | |||
| 11433 | return 0; | |||
| 11434 | ASTContext &C = FD->getASTContext(); | |||
| 11435 | QualType CDT; | |||
| 11436 | if (!RetType.isNull() && !RetType->isVoidType()) { | |||
| 11437 | CDT = RetType; | |||
| 11438 | } else { | |||
| 11439 | unsigned Offset = 0; | |||
| 11440 | if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { | |||
| 11441 | if (ParamAttrs[Offset].Kind == Vector) | |||
| 11442 | CDT = C.getPointerType(C.getRecordType(MD->getParent())); | |||
| 11443 | ++Offset; | |||
| 11444 | } | |||
| 11445 | if (CDT.isNull()) { | |||
| 11446 | for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) { | |||
| 11447 | if (ParamAttrs[I + Offset].Kind == Vector) { | |||
| 11448 | CDT = FD->getParamDecl(I)->getType(); | |||
| 11449 | break; | |||
| 11450 | } | |||
| 11451 | } | |||
| 11452 | } | |||
| 11453 | } | |||
| 11454 | if (CDT.isNull()) | |||
| 11455 | CDT = C.IntTy; | |||
| 11456 | CDT = CDT->getCanonicalTypeUnqualified(); | |||
| 11457 | if (CDT->isRecordType() || CDT->isUnionType()) | |||
| 11458 | CDT = C.IntTy; | |||
| 11459 | return C.getTypeSize(CDT); | |||
| 11460 | } | |||
| 11461 | ||||
| 11462 | static void | |||
| 11463 | emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn, | |||
| 11464 | const llvm::APSInt &VLENVal, | |||
| 11465 | ArrayRef<ParamAttrTy> ParamAttrs, | |||
| 11466 | OMPDeclareSimdDeclAttr::BranchStateTy State) { | |||
| 11467 | struct ISADataTy { | |||
| 11468 | char ISA; | |||
| 11469 | unsigned VecRegSize; | |||
| 11470 | }; | |||
| 11471 | ISADataTy ISAData[] = { | |||
| 11472 | { | |||
| 11473 | 'b', 128 | |||
| 11474 | }, // SSE | |||
| 11475 | { | |||
| 11476 | 'c', 256 | |||
| 11477 | }, // AVX | |||
| 11478 | { | |||
| 11479 | 'd', 256 | |||
| 11480 | }, // AVX2 | |||
| 11481 | { | |||
| 11482 | 'e', 512 | |||
| 11483 | }, // AVX512 | |||
| 11484 | }; | |||
| 11485 | llvm::SmallVector<char, 2> Masked; | |||
| 11486 | switch (State) { | |||
| 11487 | case OMPDeclareSimdDeclAttr::BS_Undefined: | |||
| 11488 | Masked.push_back('N'); | |||
| 11489 | Masked.push_back('M'); | |||
| 11490 | break; | |||
| 11491 | case OMPDeclareSimdDeclAttr::BS_Notinbranch: | |||
| 11492 | Masked.push_back('N'); | |||
| 11493 | break; | |||
| 11494 | case OMPDeclareSimdDeclAttr::BS_Inbranch: | |||
| 11495 | Masked.push_back('M'); | |||
| 11496 | break; | |||
| 11497 | } | |||
| 11498 | for (char Mask : Masked) { | |||
| 11499 | for (const ISADataTy &Data : ISAData) { | |||
| 11500 | SmallString<256> Buffer; | |||
| 11501 | llvm::raw_svector_ostream Out(Buffer); | |||
| 11502 | Out << "_ZGV" << Data.ISA << Mask; | |||
| 11503 | if (!VLENVal) { | |||
| 11504 | unsigned NumElts = evaluateCDTSize(FD, ParamAttrs); | |||
| 11505 | assert(NumElts && "Non-zero simdlen/cdtsize expected")((void)0); | |||
| 11506 | Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts); | |||
| ||||
| 11507 | } else { | |||
| 11508 | Out << VLENVal; | |||
| 11509 | } | |||
| 11510 | for (const ParamAttrTy &ParamAttr : ParamAttrs) { | |||
| 11511 | switch (ParamAttr.Kind){ | |||
| 11512 | case LinearWithVarStride: | |||
| 11513 | Out << 's' << ParamAttr.StrideOrArg; | |||
| 11514 | break; | |||
| 11515 | case Linear: | |||
| 11516 | Out << 'l'; | |||
| 11517 | if (ParamAttr.StrideOrArg != 1) | |||
| 11518 | Out << ParamAttr.StrideOrArg; | |||
| 11519 | break; | |||
| 11520 | case Uniform: | |||
| 11521 | Out << 'u'; | |||
| 11522 | break; | |||
| 11523 | case Vector: | |||
| 11524 | Out << 'v'; | |||
| 11525 | break; | |||
| 11526 | } | |||
| 11527 | if (!!ParamAttr.Alignment) | |||
| 11528 | Out << 'a' << ParamAttr.Alignment; | |||
| 11529 | } | |||
| 11530 | Out << '_' << Fn->getName(); | |||
| 11531 | Fn->addFnAttr(Out.str()); | |||
| 11532 | } | |||
| 11533 | } | |||
| 11534 | } | |||
| 11535 | ||||
| 11536 | // This are the Functions that are needed to mangle the name of the | |||
| 11537 | // vector functions generated by the compiler, according to the rules | |||
| 11538 | // defined in the "Vector Function ABI specifications for AArch64", | |||
| 11539 | // available at | |||
| 11540 | // https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi. | |||
| 11541 | ||||
| 11542 | /// Maps To Vector (MTV), as defined in 3.1.1 of the AAVFABI. | |||
| 11543 | /// | |||
| 11544 | /// TODO: Need to implement the behavior for reference marked with a | |||
| 11545 | /// var or no linear modifiers (1.b in the section). For this, we | |||
| 11546 | /// need to extend ParamKindTy to support the linear modifiers. | |||
| 11547 | static bool getAArch64MTV(QualType QT, ParamKindTy Kind) { | |||
| 11548 | QT = QT.getCanonicalType(); | |||
| 11549 | ||||
| 11550 | if (QT->isVoidType()) | |||
| 11551 | return false; | |||
| 11552 | ||||
| 11553 | if (Kind == ParamKindTy::Uniform) | |||
| 11554 | return false; | |||
| 11555 | ||||
| 11556 | if (Kind == ParamKindTy::Linear) | |||
| 11557 | return false; | |||
| 11558 | ||||
| 11559 | // TODO: Handle linear references with modifiers | |||
| 11560 | ||||
| 11561 | if (Kind == ParamKindTy::LinearWithVarStride) | |||
| 11562 | return false; | |||
| 11563 | ||||
| 11564 | return true; | |||
| 11565 | } | |||
| 11566 | ||||
| 11567 | /// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI. | |||
| 11568 | static bool getAArch64PBV(QualType QT, ASTContext &C) { | |||
| 11569 | QT = QT.getCanonicalType(); | |||
| 11570 | unsigned Size = C.getTypeSize(QT); | |||
| 11571 | ||||
| 11572 | // Only scalars and complex within 16 bytes wide set PVB to true. | |||
| 11573 | if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128) | |||
| 11574 | return false; | |||
| 11575 | ||||
| 11576 | if (QT->isFloatingType()) | |||
| 11577 | return true; | |||
| 11578 | ||||
| 11579 | if (QT->isIntegerType()) | |||
| 11580 | return true; | |||
| 11581 | ||||
| 11582 | if (QT->isPointerType()) | |||
| 11583 | return true; | |||
| 11584 | ||||
| 11585 | // TODO: Add support for complex types (section 3.1.2, item 2). | |||
| 11586 | ||||
| 11587 | return false; | |||
| 11588 | } | |||
| 11589 | ||||
| 11590 | /// Computes the lane size (LS) of a return type or of an input parameter, | |||
| 11591 | /// as defined by `LS(P)` in 3.2.1 of the AAVFABI. | |||
| 11592 | /// TODO: Add support for references, section 3.2.1, item 1. | |||
| 11593 | static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) { | |||
| 11594 | if (!getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) { | |||
| 11595 | QualType PTy = QT.getCanonicalType()->getPointeeType(); | |||
| 11596 | if (getAArch64PBV(PTy, C)) | |||
| 11597 | return C.getTypeSize(PTy); | |||
| 11598 | } | |||
| 11599 | if (getAArch64PBV(QT, C)) | |||
| 11600 | return C.getTypeSize(QT); | |||
| 11601 | ||||
| 11602 | return C.getTypeSize(C.getUIntPtrType()); | |||
| 11603 | } | |||
| 11604 | ||||
| 11605 | // Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the | |||
| 11606 | // signature of the scalar function, as defined in 3.2.2 of the | |||
| 11607 | // AAVFABI. | |||
| 11608 | static std::tuple<unsigned, unsigned, bool> | |||
| 11609 | getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) { | |||
| 11610 | QualType RetType = FD->getReturnType().getCanonicalType(); | |||
| 11611 | ||||
| 11612 | ASTContext &C = FD->getASTContext(); | |||
| 11613 | ||||
| 11614 | bool OutputBecomesInput = false; | |||
| 11615 | ||||
| 11616 | llvm::SmallVector<unsigned, 8> Sizes; | |||
| 11617 | if (!RetType->isVoidType()) { | |||
| 11618 | Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C)); | |||
| 11619 | if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {})) | |||
| 11620 | OutputBecomesInput = true; | |||
| 11621 | } | |||
| 11622 | for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) { | |||
| 11623 | QualType QT = FD->getParamDecl(I)->getType().getCanonicalType(); | |||
| 11624 | Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C)); | |||
| 11625 | } | |||
| 11626 | ||||
| 11627 | assert(!Sizes.empty() && "Unable to determine NDS and WDS.")((void)0); | |||
| 11628 | // The LS of a function parameter / return value can only be a power | |||
| 11629 | // of 2, starting from 8 bits, up to 128. | |||
| 11630 | assert(std::all_of(Sizes.begin(), Sizes.end(),((void)0) | |||
| 11631 | [](unsigned Size) {((void)0) | |||
| 11632 | return Size == 8 || Size == 16 || Size == 32 ||((void)0) | |||
| 11633 | Size == 64 || Size == 128;((void)0) | |||
| 11634 | }) &&((void)0) | |||
| 11635 | "Invalid size")((void)0); | |||
| 11636 | ||||
| 11637 | return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)), | |||
| 11638 | *std::max_element(std::begin(Sizes), std::end(Sizes)), | |||
| 11639 | OutputBecomesInput); | |||
| 11640 | } | |||
| 11641 | ||||
| 11642 | /// Mangle the parameter part of the vector function name according to | |||
| 11643 | /// their OpenMP classification. The mangling function is defined in | |||
| 11644 | /// section 3.5 of the AAVFABI. | |||
| 11645 | static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) { | |||
| 11646 | SmallString<256> Buffer; | |||
| 11647 | llvm::raw_svector_ostream Out(Buffer); | |||
| 11648 | for (const auto &ParamAttr : ParamAttrs) { | |||
| 11649 | switch (ParamAttr.Kind) { | |||
| 11650 | case LinearWithVarStride: | |||
| 11651 | Out << "ls" << ParamAttr.StrideOrArg; | |||
| 11652 | break; | |||
| 11653 | case Linear: | |||
| 11654 | Out << 'l'; | |||
| 11655 | // Don't print the step value if it is not present or if it is | |||
| 11656 | // equal to 1. | |||
| 11657 | if (ParamAttr.StrideOrArg != 1) | |||
| 11658 | Out << ParamAttr.StrideOrArg; | |||
| 11659 | break; | |||
| 11660 | case Uniform: | |||
| 11661 | Out << 'u'; | |||
| 11662 | break; | |||
| 11663 | case Vector: | |||
| 11664 | Out << 'v'; | |||
| 11665 | break; | |||
| 11666 | } | |||
| 11667 | ||||
| 11668 | if (!!ParamAttr.Alignment) | |||
| 11669 | Out << 'a' << ParamAttr.Alignment; | |||
| 11670 | } | |||
| 11671 | ||||
| 11672 | return std::string(Out.str()); | |||
| 11673 | } | |||
| 11674 | ||||
| 11675 | // Function used to add the attribute. The parameter `VLEN` is | |||
| 11676 | // templated to allow the use of "x" when targeting scalable functions | |||
| 11677 | // for SVE. | |||
| 11678 | template <typename T> | |||
| 11679 | static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix, | |||
| 11680 | char ISA, StringRef ParSeq, | |||
| 11681 | StringRef MangledName, bool OutputBecomesInput, | |||
| 11682 | llvm::Function *Fn) { | |||
| 11683 | SmallString<256> Buffer; | |||
| 11684 | llvm::raw_svector_ostream Out(Buffer); | |||
| 11685 | Out << Prefix << ISA << LMask << VLEN; | |||
| 11686 | if (OutputBecomesInput) | |||
| 11687 | Out << "v"; | |||
| 11688 | Out << ParSeq << "_" << MangledName; | |||
| 11689 | Fn->addFnAttr(Out.str()); | |||
| 11690 | } | |||
| 11691 | ||||
| 11692 | // Helper function to generate the Advanced SIMD names depending on | |||
| 11693 | // the value of the NDS when simdlen is not present. | |||
| 11694 | static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask, | |||
| 11695 | StringRef Prefix, char ISA, | |||
| 11696 | StringRef ParSeq, StringRef MangledName, | |||
| 11697 | bool OutputBecomesInput, | |||
| 11698 | llvm::Function *Fn) { | |||
| 11699 | switch (NDS) { | |||
| 11700 | case 8: | |||
| 11701 | addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName, | |||
| 11702 | OutputBecomesInput, Fn); | |||
| 11703 | addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName, | |||
| 11704 | OutputBecomesInput, Fn); | |||
| 11705 | break; | |||
| 11706 | case 16: | |||
| 11707 | addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName, | |||
| 11708 | OutputBecomesInput, Fn); | |||
| 11709 | addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName, | |||
| 11710 | OutputBecomesInput, Fn); | |||
| 11711 | break; | |||
| 11712 | case 32: | |||
| 11713 | addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName, | |||
| 11714 | OutputBecomesInput, Fn); | |||
| 11715 | addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName, | |||
| 11716 | OutputBecomesInput, Fn); | |||
| 11717 | break; | |||
| 11718 | case 64: | |||
| 11719 | case 128: | |||
| 11720 | addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName, | |||
| 11721 | OutputBecomesInput, Fn); | |||
| 11722 | break; | |||
| 11723 | default: | |||
| 11724 | llvm_unreachable("Scalar type is too wide.")__builtin_unreachable(); | |||
| 11725 | } | |||
| 11726 | } | |||
| 11727 | ||||
| 11728 | /// Emit vector function attributes for AArch64, as defined in the AAVFABI. | |||
| 11729 | static void emitAArch64DeclareSimdFunction( | |||
| 11730 | CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN, | |||
| 11731 | ArrayRef<ParamAttrTy> ParamAttrs, | |||
| 11732 | OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName, | |||
| 11733 | char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) { | |||
| 11734 | ||||
| 11735 | // Get basic data for building the vector signature. | |||
| 11736 | const auto Data = getNDSWDS(FD, ParamAttrs); | |||
| 11737 | const unsigned NDS = std::get<0>(Data); | |||
| 11738 | const unsigned WDS = std::get<1>(Data); | |||
| 11739 | const bool OutputBecomesInput = std::get<2>(Data); | |||
| 11740 | ||||
| 11741 | // Check the values provided via `simdlen` by the user. | |||
| 11742 | // 1. A `simdlen(1)` doesn't produce vector signatures, | |||
| 11743 | if (UserVLEN == 1) { | |||
| 11744 | unsigned DiagID = CGM.getDiags().getCustomDiagID( | |||
| 11745 | DiagnosticsEngine::Warning, | |||
| 11746 | "The clause simdlen(1) has no effect when targeting aarch64."); | |||
| 11747 | CGM.getDiags().Report(SLoc, DiagID); | |||
| 11748 | return; | |||
| 11749 | } | |||
| 11750 | ||||
| 11751 | // 2. Section 3.3.1, item 1: user input must be a power of 2 for | |||
| 11752 | // Advanced SIMD output. | |||
| 11753 | if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) { | |||
| 11754 | unsigned DiagID = CGM.getDiags().getCustomDiagID( | |||
| 11755 | DiagnosticsEngine::Warning, "The value specified in simdlen must be a " | |||
| 11756 | "power of 2 when targeting Advanced SIMD."); | |||
| 11757 | CGM.getDiags().Report(SLoc, DiagID); | |||
| 11758 | return; | |||
| 11759 | } | |||
| 11760 | ||||
| 11761 | // 3. Section 3.4.1. SVE fixed lengh must obey the architectural | |||
| 11762 | // limits. | |||
| 11763 | if (ISA == 's' && UserVLEN != 0) { | |||
| 11764 | if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) { | |||
| 11765 | unsigned DiagID = CGM.getDiags().getCustomDiagID( | |||
| 11766 | DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit " | |||
| 11767 | "lanes in the architectural constraints " | |||
| 11768 | "for SVE (min is 128-bit, max is " | |||
| 11769 | "2048-bit, by steps of 128-bit)"); | |||
| 11770 | CGM.getDiags().Report(SLoc, DiagID) << WDS; | |||
| 11771 | return; | |||
| 11772 | } | |||
| 11773 | } | |||
| 11774 | ||||
| 11775 | // Sort out parameter sequence. | |||
| 11776 | const std::string ParSeq = mangleVectorParameters(ParamAttrs); | |||
| 11777 | StringRef Prefix = "_ZGV"; | |||
| 11778 | // Generate simdlen from user input (if any). | |||
| 11779 | if (UserVLEN) { | |||
| 11780 | if (ISA == 's') { | |||
| 11781 | // SVE generates only a masked function. | |||
| 11782 | addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName, | |||
| 11783 | OutputBecomesInput, Fn); | |||
| 11784 | } else { | |||
| 11785 | assert(ISA == 'n' && "Expected ISA either 's' or 'n'.")((void)0); | |||
| 11786 | // Advanced SIMD generates one or two functions, depending on | |||
| 11787 | // the `[not]inbranch` clause. | |||
| 11788 | switch (State) { | |||
| 11789 | case OMPDeclareSimdDeclAttr::BS_Undefined: | |||
| 11790 | addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName, | |||
| 11791 | OutputBecomesInput, Fn); | |||
| 11792 | addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName, | |||
| 11793 | OutputBecomesInput, Fn); | |||
| 11794 | break; | |||
| 11795 | case OMPDeclareSimdDeclAttr::BS_Notinbranch: | |||
| 11796 | addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName, | |||
| 11797 | OutputBecomesInput, Fn); | |||
| 11798 | break; | |||
| 11799 | case OMPDeclareSimdDeclAttr::BS_Inbranch: | |||
| 11800 | addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName, | |||
| 11801 | OutputBecomesInput, Fn); | |||
| 11802 | break; | |||
| 11803 | } | |||
| 11804 | } | |||
| 11805 | } else { | |||
| 11806 | // If no user simdlen is provided, follow the AAVFABI rules for | |||
| 11807 | // generating the vector length. | |||
| 11808 | if (ISA == 's') { | |||
| 11809 | // SVE, section 3.4.1, item 1. | |||
| 11810 | addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName, | |||
| 11811 | OutputBecomesInput, Fn); | |||
| 11812 | } else { | |||
| 11813 | assert(ISA == 'n' && "Expected ISA either 's' or 'n'.")((void)0); | |||
| 11814 | // Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or | |||
| 11815 | // two vector names depending on the use of the clause | |||
| 11816 | // `[not]inbranch`. | |||
| 11817 | switch (State) { | |||
| 11818 | case OMPDeclareSimdDeclAttr::BS_Undefined: | |||
| 11819 | addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName, | |||
| 11820 | OutputBecomesInput, Fn); | |||
| 11821 | addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName, | |||
| 11822 | OutputBecomesInput, Fn); | |||
| 11823 | break; | |||
| 11824 | case OMPDeclareSimdDeclAttr::BS_Notinbranch: | |||
| 11825 | addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName, | |||
| 11826 | OutputBecomesInput, Fn); | |||
| 11827 | break; | |||
| 11828 | case OMPDeclareSimdDeclAttr::BS_Inbranch: | |||
| 11829 | addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName, | |||
| 11830 | OutputBecomesInput, Fn); | |||
| 11831 | break; | |||
| 11832 | } | |||
| 11833 | } | |||
| 11834 | } | |||
| 11835 | } | |||
| 11836 | ||||
| 11837 | void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD, | |||
| 11838 | llvm::Function *Fn) { | |||
| 11839 | ASTContext &C = CGM.getContext(); | |||
| 11840 | FD = FD->getMostRecentDecl(); | |||
| 11841 | // Map params to their positions in function decl. | |||
| 11842 | llvm::DenseMap<const Decl *, unsigned> ParamPositions; | |||
| 11843 | if (isa<CXXMethodDecl>(FD)) | |||
| ||||
| 11844 | ParamPositions.try_emplace(FD, 0); | |||
| 11845 | unsigned ParamPos = ParamPositions.size(); | |||
| 11846 | for (const ParmVarDecl *P : FD->parameters()) { | |||
| 11847 | ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos); | |||
| 11848 | ++ParamPos; | |||
| 11849 | } | |||
| 11850 | while (FD) { | |||
| 11851 | for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) { | |||
| 11852 | llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size()); | |||
| 11853 | // Mark uniform parameters. | |||
| 11854 | for (const Expr *E : Attr->uniforms()) { | |||
| 11855 | E = E->IgnoreParenImpCasts(); | |||
| 11856 | unsigned Pos; | |||
| 11857 | if (isa<CXXThisExpr>(E)) { | |||
| 11858 | Pos = ParamPositions[FD]; | |||
| 11859 | } else { | |||
| 11860 | const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl()) | |||
| 11861 | ->getCanonicalDecl(); | |||
| 11862 | Pos = ParamPositions[PVD]; | |||
| 11863 | } | |||
| 11864 | ParamAttrs[Pos].Kind = Uniform; | |||
| 11865 | } | |||
| 11866 | // Get alignment info. | |||
| 11867 | auto NI = Attr->alignments_begin(); | |||
| 11868 | for (const Expr *E : Attr->aligneds()) { | |||
| 11869 | E = E->IgnoreParenImpCasts(); | |||
| 11870 | unsigned Pos; | |||
| 11871 | QualType ParmTy; | |||
| 11872 | if (isa<CXXThisExpr>(E)) { | |||
| 11873 | Pos = ParamPositions[FD]; | |||
| 11874 | ParmTy = E->getType(); | |||
| 11875 | } else { | |||
| 11876 | const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl()) | |||
| 11877 | ->getCanonicalDecl(); | |||
| 11878 | Pos = ParamPositions[PVD]; | |||
| 11879 | ParmTy = PVD->getType(); | |||
| 11880 | } | |||
| 11881 | ParamAttrs[Pos].Alignment = | |||
| 11882 | (*NI) | |||
| 11883 | ? (*NI)->EvaluateKnownConstInt(C) | |||
| 11884 | : llvm::APSInt::getUnsigned( | |||
| 11885 | C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy)) | |||
| 11886 | .getQuantity()); | |||
| 11887 | ++NI; | |||
| 11888 | } | |||
| 11889 | // Mark linear parameters. | |||
| 11890 | auto SI = Attr->steps_begin(); | |||
| 11891 | auto MI = Attr->modifiers_begin(); | |||
| 11892 | for (const Expr *E : Attr->linears()) { | |||
| 11893 | E = E->IgnoreParenImpCasts(); | |||
| 11894 | unsigned Pos; | |||
| 11895 | // Rescaling factor needed to compute the linear parameter | |||
| 11896 | // value in the mangled name. | |||
| 11897 | unsigned PtrRescalingFactor = 1; | |||
| 11898 | if (isa<CXXThisExpr>(E)) { | |||
| 11899 | Pos = ParamPositions[FD]; | |||
| 11900 | } else { | |||
| 11901 | const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl()) | |||
| 11902 | ->getCanonicalDecl(); | |||
| 11903 | Pos = ParamPositions[PVD]; | |||
| 11904 | if (auto *P = dyn_cast<PointerType>(PVD->getType())) | |||
| 11905 | PtrRescalingFactor = CGM.getContext() | |||
| 11906 | .getTypeSizeInChars(P->getPointeeType()) | |||
| 11907 | .getQuantity(); | |||
| 11908 | } | |||
| 11909 | ParamAttrTy &ParamAttr = ParamAttrs[Pos]; | |||
| 11910 | ParamAttr.Kind = Linear; | |||
| 11911 | // Assuming a stride of 1, for `linear` without modifiers. | |||
| 11912 | ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(1); | |||
| 11913 | if (*SI) { | |||
| 11914 | Expr::EvalResult Result; | |||
| 11915 | if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) { | |||
| 11916 | if (const auto *DRE = | |||
| 11917 | cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) { | |||
| 11918 | if (const auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) { | |||
| 11919 | ParamAttr.Kind = LinearWithVarStride; | |||
| 11920 | ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned( | |||
| 11921 | ParamPositions[StridePVD->getCanonicalDecl()]); | |||
| 11922 | } | |||
| 11923 | } | |||
| 11924 | } else { | |||
| 11925 | ParamAttr.StrideOrArg = Result.Val.getInt(); | |||
| 11926 | } | |||
| 11927 | } | |||
| 11928 | // If we are using a linear clause on a pointer, we need to | |||
| 11929 | // rescale the value of linear_step with the byte size of the | |||
| 11930 | // pointee type. | |||
| 11931 | if (Linear == ParamAttr.Kind) | |||
| 11932 | ParamAttr.StrideOrArg = ParamAttr.StrideOrArg * PtrRescalingFactor; | |||
| 11933 | ++SI; | |||
| 11934 | ++MI; | |||
| 11935 | } | |||
| 11936 | llvm::APSInt VLENVal; | |||
| 11937 | SourceLocation ExprLoc; | |||
| 11938 | const Expr *VLENExpr = Attr->getSimdlen(); | |||
| 11939 | if (VLENExpr) { | |||
| 11940 | VLENVal = VLENExpr->EvaluateKnownConstInt(C); | |||
| 11941 | ExprLoc = VLENExpr->getExprLoc(); | |||
| 11942 | } | |||
| 11943 | OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState(); | |||
| 11944 | if (CGM.getTriple().isX86()) { | |||
| 11945 | emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State); | |||
| 11946 | } else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) { | |||
| 11947 | unsigned VLEN = VLENVal.getExtValue(); | |||
| 11948 | StringRef MangledName = Fn->getName(); | |||
| 11949 | if (CGM.getTarget().hasFeature("sve")) | |||
| 11950 | emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State, | |||
| 11951 | MangledName, 's', 128, Fn, ExprLoc); | |||
| 11952 | if (CGM.getTarget().hasFeature("neon")) | |||
| 11953 | emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State, | |||
| 11954 | MangledName, 'n', 128, Fn, ExprLoc); | |||
| 11955 | } | |||
| 11956 | } | |||
| 11957 | FD = FD->getPreviousDecl(); | |||
| 11958 | } | |||
| 11959 | } | |||
| 11960 | ||||
| 11961 | namespace { | |||
| 11962 | /// Cleanup action for doacross support. | |||
| 11963 | class DoacrossCleanupTy final : public EHScopeStack::Cleanup { | |||
| 11964 | public: | |||
| 11965 | static const int DoacrossFinArgs = 2; | |||
| 11966 | ||||
| 11967 | private: | |||
| 11968 | llvm::FunctionCallee RTLFn; | |||
| 11969 | llvm::Value *Args[DoacrossFinArgs]; | |||
| 11970 | ||||
| 11971 | public: | |||
| 11972 | DoacrossCleanupTy(llvm::FunctionCallee RTLFn, | |||
| 11973 | ArrayRef<llvm::Value *> CallArgs) | |||
| 11974 | : RTLFn(RTLFn) { | |||
| 11975 | assert(CallArgs.size() == DoacrossFinArgs)((void)0); | |||
| 11976 | std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args)); | |||
| 11977 | } | |||
| 11978 | void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { | |||
| 11979 | if (!CGF.HaveInsertPoint()) | |||
| 11980 | return; | |||
| 11981 | CGF.EmitRuntimeCall(RTLFn, Args); | |||
| 11982 | } | |||
| 11983 | }; | |||
| 11984 | } // namespace | |||
| 11985 | ||||
| 11986 | void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF, | |||
| 11987 | const OMPLoopDirective &D, | |||
| 11988 | ArrayRef<Expr *> NumIterations) { | |||
| 11989 | if (!CGF.HaveInsertPoint()) | |||
| 11990 | return; | |||
| 11991 | ||||
| 11992 | ASTContext &C = CGM.getContext(); | |||
| 11993 | QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true); | |||
| 11994 | RecordDecl *RD; | |||
| 11995 | if (KmpDimTy.isNull()) { | |||
| 11996 | // Build struct kmp_dim { // loop bounds info casted to kmp_int64 | |||
| 11997 | // kmp_int64 lo; // lower | |||
| 11998 | // kmp_int64 up; // upper | |||
| 11999 | // kmp_int64 st; // stride | |||
| 12000 | // }; | |||
| 12001 | RD = C.buildImplicitRecord("kmp_dim"); | |||
| 12002 | RD->startDefinition(); | |||
| 12003 | addFieldToRecordDecl(C, RD, Int64Ty); | |||
| 12004 | addFieldToRecordDecl(C, RD, Int64Ty); | |||
| 12005 | addFieldToRecordDecl(C, RD, Int64Ty); | |||
| 12006 | RD->completeDefinition(); | |||
| 12007 | KmpDimTy = C.getRecordType(RD); | |||
| 12008 | } else { | |||
| 12009 | RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl()); | |||
| 12010 | } | |||
| 12011 | llvm::APInt Size(/*numBits=*/32, NumIterations.size()); | |||
| 12012 | QualType ArrayTy = | |||
| 12013 | C.getConstantArrayType(KmpDimTy, Size, nullptr, ArrayType::Normal, 0); | |||
| 12014 | ||||
| 12015 | Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims"); | |||
| 12016 | CGF.EmitNullInitialization(DimsAddr, ArrayTy); | |||
| 12017 | enum { LowerFD = 0, UpperFD, StrideFD }; | |||
| 12018 | // Fill dims with data. | |||
| 12019 | for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) { | |||
| 12020 | LValue DimsLVal = CGF.MakeAddrLValue( | |||
| 12021 | CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy); | |||
| 12022 | // dims.upper = num_iterations; | |||
| 12023 | LValue UpperLVal = CGF.EmitLValueForField( | |||
| 12024 | DimsLVal, *std::next(RD->field_begin(), UpperFD)); | |||
| 12025 | llvm::Value *NumIterVal = CGF.EmitScalarConversion( | |||
| 12026 | CGF.EmitScalarExpr(NumIterations[I]), NumIterations[I]->getType(), | |||
| 12027 | Int64Ty, NumIterations[I]->getExprLoc()); | |||
| 12028 | CGF.EmitStoreOfScalar(NumIterVal, UpperLVal); | |||
| 12029 | // dims.stride = 1; | |||
| 12030 | LValue StrideLVal = CGF.EmitLValueForField( | |||
| 12031 | DimsLVal, *std::next(RD->field_begin(), StrideFD)); | |||
| 12032 | CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1), | |||
| 12033 | StrideLVal); | |||
| 12034 | } | |||
| 12035 | ||||
| 12036 | // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, | |||
| 12037 | // kmp_int32 num_dims, struct kmp_dim * dims); | |||
| 12038 | llvm::Value *Args[] = { | |||
| 12039 | emitUpdateLocation(CGF, D.getBeginLoc()), | |||
| 12040 | getThreadID(CGF, D.getBeginLoc()), | |||
| 12041 | llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()), | |||
| 12042 | CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 12043 | CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).getPointer(), | |||
| 12044 | CGM.VoidPtrTy)}; | |||
| 12045 | ||||
| 12046 | llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction( | |||
| 12047 | CGM.getModule(), OMPRTL___kmpc_doacross_init); | |||
| 12048 | CGF.EmitRuntimeCall(RTLFn, Args); | |||
| 12049 | llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = { | |||
| 12050 | emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())}; | |||
| 12051 | llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction( | |||
| 12052 | CGM.getModule(), OMPRTL___kmpc_doacross_fini); | |||
| 12053 | CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn, | |||
| 12054 | llvm::makeArrayRef(FiniArgs)); | |||
| 12055 | } | |||
| 12056 | ||||
| 12057 | void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF, | |||
| 12058 | const OMPDependClause *C) { | |||
| 12059 | QualType Int64Ty = | |||
| 12060 | CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); | |||
| 12061 | llvm::APInt Size(/*numBits=*/32, C->getNumLoops()); | |||
| 12062 | QualType ArrayTy = CGM.getContext().getConstantArrayType( | |||
| 12063 | Int64Ty, Size, nullptr, ArrayType::Normal, 0); | |||
| 12064 | Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr"); | |||
| 12065 | for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) { | |||
| 12066 | const Expr *CounterVal = C->getLoopData(I); | |||
| 12067 | assert(CounterVal)((void)0); | |||
| 12068 | llvm::Value *CntVal = CGF.EmitScalarConversion( | |||
| 12069 | CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty, | |||
| 12070 | CounterVal->getExprLoc()); | |||
| 12071 | CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I), | |||
| 12072 | /*Volatile=*/false, Int64Ty); | |||
| 12073 | } | |||
| 12074 | llvm::Value *Args[] = { | |||
| 12075 | emitUpdateLocation(CGF, C->getBeginLoc()), | |||
| 12076 | getThreadID(CGF, C->getBeginLoc()), | |||
| 12077 | CGF.Builder.CreateConstArrayGEP(CntAddr, 0).getPointer()}; | |||
| 12078 | llvm::FunctionCallee RTLFn; | |||
| 12079 | if (C->getDependencyKind() == OMPC_DEPEND_source) { | |||
| 12080 | RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), | |||
| 12081 | OMPRTL___kmpc_doacross_post); | |||
| 12082 | } else { | |||
| 12083 | assert(C->getDependencyKind() == OMPC_DEPEND_sink)((void)0); | |||
| 12084 | RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), | |||
| 12085 | OMPRTL___kmpc_doacross_wait); | |||
| 12086 | } | |||
| 12087 | CGF.EmitRuntimeCall(RTLFn, Args); | |||
| 12088 | } | |||
| 12089 | ||||
| 12090 | void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc, | |||
| 12091 | llvm::FunctionCallee Callee, | |||
| 12092 | ArrayRef<llvm::Value *> Args) const { | |||
| 12093 | assert(Loc.isValid() && "Outlined function call location must be valid.")((void)0); | |||
| 12094 | auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc); | |||
| 12095 | ||||
| 12096 | if (auto *Fn = dyn_cast<llvm::Function>(Callee.getCallee())) { | |||
| 12097 | if (Fn->doesNotThrow()) { | |||
| 12098 | CGF.EmitNounwindRuntimeCall(Fn, Args); | |||
| 12099 | return; | |||
| 12100 | } | |||
| 12101 | } | |||
| 12102 | CGF.EmitRuntimeCall(Callee, Args); | |||
| 12103 | } | |||
| 12104 | ||||
| 12105 | void CGOpenMPRuntime::emitOutlinedFunctionCall( | |||
| 12106 | CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, | |||
| 12107 | ArrayRef<llvm::Value *> Args) const { | |||
| 12108 | emitCall(CGF, Loc, OutlinedFn, Args); | |||
| 12109 | } | |||
| 12110 | ||||
| 12111 | void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) { | |||
| 12112 | if (const auto *FD = dyn_cast<FunctionDecl>(D)) | |||
| 12113 | if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD)) | |||
| 12114 | HasEmittedDeclareTargetRegion = true; | |||
| 12115 | } | |||
| 12116 | ||||
| 12117 | Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF, | |||
| 12118 | const VarDecl *NativeParam, | |||
| 12119 | const VarDecl *TargetParam) const { | |||
| 12120 | return CGF.GetAddrOfLocalVar(NativeParam); | |||
| 12121 | } | |||
| 12122 | ||||
| 12123 | Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF, | |||
| 12124 | const VarDecl *VD) { | |||
| 12125 | if (!VD) | |||
| 12126 | return Address::invalid(); | |||
| 12127 | Address UntiedAddr = Address::invalid(); | |||
| 12128 | Address UntiedRealAddr = Address::invalid(); | |||
| 12129 | auto It = FunctionToUntiedTaskStackMap.find(CGF.CurFn); | |||
| 12130 | if (It != FunctionToUntiedTaskStackMap.end()) { | |||
| 12131 | const UntiedLocalVarsAddressesMap &UntiedData = | |||
| 12132 | UntiedLocalVarsStack[It->second]; | |||
| 12133 | auto I = UntiedData.find(VD); | |||
| 12134 | if (I != UntiedData.end()) { | |||
| 12135 | UntiedAddr = I->second.first; | |||
| 12136 | UntiedRealAddr = I->second.second; | |||
| 12137 | } | |||
| 12138 | } | |||
| 12139 | const VarDecl *CVD = VD->getCanonicalDecl(); | |||
| 12140 | if (CVD->hasAttr<OMPAllocateDeclAttr>()) { | |||
| 12141 | // Use the default allocation. | |||
| 12142 | if (!isAllocatableDecl(VD)) | |||
| 12143 | return UntiedAddr; | |||
| 12144 | llvm::Value *Size; | |||
| 12145 | CharUnits Align = CGM.getContext().getDeclAlign(CVD); | |||
| 12146 | if (CVD->getType()->isVariablyModifiedType()) { | |||
| 12147 | Size = CGF.getTypeSize(CVD->getType()); | |||
| 12148 | // Align the size: ((size + align - 1) / align) * align | |||
| 12149 | Size = CGF.Builder.CreateNUWAdd( | |||
| 12150 | Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); | |||
| 12151 | Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); | |||
| 12152 | Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); | |||
| 12153 | } else { | |||
| 12154 | CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); | |||
| 12155 | Size = CGM.getSize(Sz.alignTo(Align)); | |||
| 12156 | } | |||
| 12157 | llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc()); | |||
| 12158 | const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); | |||
| 12159 | assert(AA->getAllocator() &&((void)0) | |||
| 12160 | "Expected allocator expression for non-default allocator.")((void)0); | |||
| 12161 | llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); | |||
| 12162 | // According to the standard, the original allocator type is a enum | |||
| 12163 | // (integer). Convert to pointer type, if required. | |||
| 12164 | Allocator = CGF.EmitScalarConversion( | |||
| 12165 | Allocator, AA->getAllocator()->getType(), CGF.getContext().VoidPtrTy, | |||
| 12166 | AA->getAllocator()->getExprLoc()); | |||
| 12167 | llvm::Value *Args[] = {ThreadID, Size, Allocator}; | |||
| 12168 | ||||
| 12169 | llvm::Value *Addr = | |||
| 12170 | CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( | |||
| 12171 | CGM.getModule(), OMPRTL___kmpc_alloc), | |||
| 12172 | Args, getName({CVD->getName(), ".void.addr"})); | |||
| 12173 | llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction( | |||
| 12174 | CGM.getModule(), OMPRTL___kmpc_free); | |||
| 12175 | QualType Ty = CGM.getContext().getPointerType(CVD->getType()); | |||
| 12176 | Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 12177 | Addr, CGF.ConvertTypeForMem(Ty), getName({CVD->getName(), ".addr"})); | |||
| 12178 | if (UntiedAddr.isValid()) | |||
| 12179 | CGF.EmitStoreOfScalar(Addr, UntiedAddr, /*Volatile=*/false, Ty); | |||
| 12180 | ||||
| 12181 | // Cleanup action for allocate support. | |||
| 12182 | class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { | |||
| 12183 | llvm::FunctionCallee RTLFn; | |||
| 12184 | SourceLocation::UIntTy LocEncoding; | |||
| 12185 | Address Addr; | |||
| 12186 | const Expr *Allocator; | |||
| 12187 | ||||
| 12188 | public: | |||
| 12189 | OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn, | |||
| 12190 | SourceLocation::UIntTy LocEncoding, Address Addr, | |||
| 12191 | const Expr *Allocator) | |||
| 12192 | : RTLFn(RTLFn), LocEncoding(LocEncoding), Addr(Addr), | |||
| 12193 | Allocator(Allocator) {} | |||
| 12194 | void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { | |||
| 12195 | if (!CGF.HaveInsertPoint()) | |||
| 12196 | return; | |||
| 12197 | llvm::Value *Args[3]; | |||
| 12198 | Args[0] = CGF.CGM.getOpenMPRuntime().getThreadID( | |||
| 12199 | CGF, SourceLocation::getFromRawEncoding(LocEncoding)); | |||
| 12200 | Args[1] = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 12201 | Addr.getPointer(), CGF.VoidPtrTy); | |||
| 12202 | llvm::Value *AllocVal = CGF.EmitScalarExpr(Allocator); | |||
| 12203 | // According to the standard, the original allocator type is a enum | |||
| 12204 | // (integer). Convert to pointer type, if required. | |||
| 12205 | AllocVal = CGF.EmitScalarConversion(AllocVal, Allocator->getType(), | |||
| 12206 | CGF.getContext().VoidPtrTy, | |||
| 12207 | Allocator->getExprLoc()); | |||
| 12208 | Args[2] = AllocVal; | |||
| 12209 | ||||
| 12210 | CGF.EmitRuntimeCall(RTLFn, Args); | |||
| 12211 | } | |||
| 12212 | }; | |||
| 12213 | Address VDAddr = | |||
| 12214 | UntiedRealAddr.isValid() ? UntiedRealAddr : Address(Addr, Align); | |||
| 12215 | CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>( | |||
| 12216 | NormalAndEHCleanup, FiniRTLFn, CVD->getLocation().getRawEncoding(), | |||
| 12217 | VDAddr, AA->getAllocator()); | |||
| 12218 | if (UntiedRealAddr.isValid()) | |||
| 12219 | if (auto *Region = | |||
| 12220 | dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) | |||
| 12221 | Region->emitUntiedSwitch(CGF); | |||
| 12222 | return VDAddr; | |||
| 12223 | } | |||
| 12224 | return UntiedAddr; | |||
| 12225 | } | |||
| 12226 | ||||
| 12227 | bool CGOpenMPRuntime::isLocalVarInUntiedTask(CodeGenFunction &CGF, | |||
| 12228 | const VarDecl *VD) const { | |||
| 12229 | auto It = FunctionToUntiedTaskStackMap.find(CGF.CurFn); | |||
| 12230 | if (It == FunctionToUntiedTaskStackMap.end()) | |||
| 12231 | return false; | |||
| 12232 | return UntiedLocalVarsStack[It->second].count(VD) > 0; | |||
| 12233 | } | |||
| 12234 | ||||
| 12235 | CGOpenMPRuntime::NontemporalDeclsRAII::NontemporalDeclsRAII( | |||
| 12236 | CodeGenModule &CGM, const OMPLoopDirective &S) | |||
| 12237 | : CGM(CGM), NeedToPush(S.hasClausesOfKind<OMPNontemporalClause>()) { | |||
| 12238 | assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.")((void)0); | |||
| 12239 | if (!NeedToPush) | |||
| 12240 | return; | |||
| 12241 | NontemporalDeclsSet &DS = | |||
| 12242 | CGM.getOpenMPRuntime().NontemporalDeclsStack.emplace_back(); | |||
| 12243 | for (const auto *C : S.getClausesOfKind<OMPNontemporalClause>()) { | |||
| 12244 | for (const Stmt *Ref : C->private_refs()) { | |||
| 12245 | const auto *SimpleRefExpr = cast<Expr>(Ref)->IgnoreParenImpCasts(); | |||
| 12246 | const ValueDecl *VD; | |||
| 12247 | if (const auto *DRE = dyn_cast<DeclRefExpr>(SimpleRefExpr)) { | |||
| 12248 | VD = DRE->getDecl(); | |||
| 12249 | } else { | |||
| 12250 | const auto *ME = cast<MemberExpr>(SimpleRefExpr); | |||
| 12251 | assert((ME->isImplicitCXXThis() ||((void)0) | |||
| 12252 | isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts())) &&((void)0) | |||
| 12253 | "Expected member of current class.")((void)0); | |||
| 12254 | VD = ME->getMemberDecl(); | |||
| 12255 | } | |||
| 12256 | DS.insert(VD); | |||
| 12257 | } | |||
| 12258 | } | |||
| 12259 | } | |||
| 12260 | ||||
| 12261 | CGOpenMPRuntime::NontemporalDeclsRAII::~NontemporalDeclsRAII() { | |||
| 12262 | if (!NeedToPush) | |||
| 12263 | return; | |||
| 12264 | CGM.getOpenMPRuntime().NontemporalDeclsStack.pop_back(); | |||
| 12265 | } | |||
| 12266 | ||||
| 12267 | CGOpenMPRuntime::UntiedTaskLocalDeclsRAII::UntiedTaskLocalDeclsRAII( | |||
| 12268 | CodeGenFunction &CGF, | |||
| 12269 | const llvm::MapVector<CanonicalDeclPtr<const VarDecl>, | |||
| 12270 | std::pair<Address, Address>> &LocalVars) | |||
| 12271 | : CGM(CGF.CGM), NeedToPush(!LocalVars.empty()) { | |||
| 12272 | if (!NeedToPush) | |||
| 12273 | return; | |||
| 12274 | CGM.getOpenMPRuntime().FunctionToUntiedTaskStackMap.try_emplace( | |||
| 12275 | CGF.CurFn, CGM.getOpenMPRuntime().UntiedLocalVarsStack.size()); | |||
| 12276 | CGM.getOpenMPRuntime().UntiedLocalVarsStack.push_back(LocalVars); | |||
| 12277 | } | |||
| 12278 | ||||
| 12279 | CGOpenMPRuntime::UntiedTaskLocalDeclsRAII::~UntiedTaskLocalDeclsRAII() { | |||
| 12280 | if (!NeedToPush) | |||
| 12281 | return; | |||
| 12282 | CGM.getOpenMPRuntime().UntiedLocalVarsStack.pop_back(); | |||
| 12283 | } | |||
| 12284 | ||||
| 12285 | bool CGOpenMPRuntime::isNontemporalDecl(const ValueDecl *VD) const { | |||
| 12286 | assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.")((void)0); | |||
| 12287 | ||||
| 12288 | return llvm::any_of( | |||
| 12289 | CGM.getOpenMPRuntime().NontemporalDeclsStack, | |||
| 12290 | [VD](const NontemporalDeclsSet &Set) { return Set.count(VD) > 0; }); | |||
| 12291 | } | |||
| 12292 | ||||
| 12293 | void CGOpenMPRuntime::LastprivateConditionalRAII::tryToDisableInnerAnalysis( | |||
| 12294 | const OMPExecutableDirective &S, | |||
| 12295 | llvm::DenseSet<CanonicalDeclPtr<const Decl>> &NeedToAddForLPCsAsDisabled) | |||
| 12296 | const { | |||
| 12297 | llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToCheckForLPCs; | |||
| 12298 | // Vars in target/task regions must be excluded completely. | |||
| 12299 | if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()) || | |||
| 12300 | isOpenMPTaskingDirective(S.getDirectiveKind())) { | |||
| 12301 | SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; | |||
| 12302 | getOpenMPCaptureRegions(CaptureRegions, S.getDirectiveKind()); | |||
| 12303 | const CapturedStmt *CS = S.getCapturedStmt(CaptureRegions.front()); | |||
| 12304 | for (const CapturedStmt::Capture &Cap : CS->captures()) { | |||
| 12305 | if (Cap.capturesVariable() || Cap.capturesVariableByCopy()) | |||
| 12306 | NeedToCheckForLPCs.insert(Cap.getCapturedVar()); | |||
| 12307 | } | |||
| 12308 | } | |||
| 12309 | // Exclude vars in private clauses. | |||
| 12310 | for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { | |||
| 12311 | for (const Expr *Ref : C->varlists()) { | |||
| 12312 | if (!Ref->getType()->isScalarType()) | |||
| 12313 | continue; | |||
| 12314 | const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); | |||
| 12315 | if (!DRE) | |||
| 12316 | continue; | |||
| 12317 | NeedToCheckForLPCs.insert(DRE->getDecl()); | |||
| 12318 | } | |||
| 12319 | } | |||
| 12320 | for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { | |||
| 12321 | for (const Expr *Ref : C->varlists()) { | |||
| 12322 | if (!Ref->getType()->isScalarType()) | |||
| 12323 | continue; | |||
| 12324 | const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); | |||
| 12325 | if (!DRE) | |||
| 12326 | continue; | |||
| 12327 | NeedToCheckForLPCs.insert(DRE->getDecl()); | |||
| 12328 | } | |||
| 12329 | } | |||
| 12330 | for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { | |||
| 12331 | for (const Expr *Ref : C->varlists()) { | |||
| 12332 | if (!Ref->getType()->isScalarType()) | |||
| 12333 | continue; | |||
| 12334 | const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); | |||
| 12335 | if (!DRE) | |||
| 12336 | continue; | |||
| 12337 | NeedToCheckForLPCs.insert(DRE->getDecl()); | |||
| 12338 | } | |||
| 12339 | } | |||
| 12340 | for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { | |||
| 12341 | for (const Expr *Ref : C->varlists()) { | |||
| 12342 | if (!Ref->getType()->isScalarType()) | |||
| 12343 | continue; | |||
| 12344 | const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); | |||
| 12345 | if (!DRE) | |||
| 12346 | continue; | |||
| 12347 | NeedToCheckForLPCs.insert(DRE->getDecl()); | |||
| 12348 | } | |||
| 12349 | } | |||
| 12350 | for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { | |||
| 12351 | for (const Expr *Ref : C->varlists()) { | |||
| 12352 | if (!Ref->getType()->isScalarType()) | |||
| 12353 | continue; | |||
| 12354 | const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); | |||
| 12355 | if (!DRE) | |||
| 12356 | continue; | |||
| 12357 | NeedToCheckForLPCs.insert(DRE->getDecl()); | |||
| 12358 | } | |||
| 12359 | } | |||
| 12360 | for (const Decl *VD : NeedToCheckForLPCs) { | |||
| 12361 | for (const LastprivateConditionalData &Data : | |||
| 12362 | llvm::reverse(CGM.getOpenMPRuntime().LastprivateConditionalStack)) { | |||
| 12363 | if (Data.DeclToUniqueName.count(VD) > 0) { | |||
| 12364 | if (!Data.Disabled) | |||
| 12365 | NeedToAddForLPCsAsDisabled.insert(VD); | |||
| 12366 | break; | |||
| 12367 | } | |||
| 12368 | } | |||
| 12369 | } | |||
| 12370 | } | |||
| 12371 | ||||
| 12372 | CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII( | |||
| 12373 | CodeGenFunction &CGF, const OMPExecutableDirective &S, LValue IVLVal) | |||
| 12374 | : CGM(CGF.CGM), | |||
| 12375 | Action((CGM.getLangOpts().OpenMP >= 50 && | |||
| 12376 | llvm::any_of(S.getClausesOfKind<OMPLastprivateClause>(), | |||
| 12377 | [](const OMPLastprivateClause *C) { | |||
| 12378 | return C->getKind() == | |||
| 12379 | OMPC_LASTPRIVATE_conditional; | |||
| 12380 | })) | |||
| 12381 | ? ActionToDo::PushAsLastprivateConditional | |||
| 12382 | : ActionToDo::DoNotPush) { | |||
| 12383 | assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.")((void)0); | |||
| 12384 | if (CGM.getLangOpts().OpenMP < 50 || Action == ActionToDo::DoNotPush) | |||
| 12385 | return; | |||
| 12386 | assert(Action == ActionToDo::PushAsLastprivateConditional &&((void)0) | |||
| 12387 | "Expected a push action.")((void)0); | |||
| 12388 | LastprivateConditionalData &Data = | |||
| 12389 | CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back(); | |||
| 12390 | for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { | |||
| 12391 | if (C->getKind() != OMPC_LASTPRIVATE_conditional) | |||
| 12392 | continue; | |||
| 12393 | ||||
| 12394 | for (const Expr *Ref : C->varlists()) { | |||
| 12395 | Data.DeclToUniqueName.insert(std::make_pair( | |||
| 12396 | cast<DeclRefExpr>(Ref->IgnoreParenImpCasts())->getDecl(), | |||
| 12397 | SmallString<16>(generateUniqueName(CGM, "pl_cond", Ref)))); | |||
| 12398 | } | |||
| 12399 | } | |||
| 12400 | Data.IVLVal = IVLVal; | |||
| 12401 | Data.Fn = CGF.CurFn; | |||
| 12402 | } | |||
| 12403 | ||||
| 12404 | CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII( | |||
| 12405 | CodeGenFunction &CGF, const OMPExecutableDirective &S) | |||
| 12406 | : CGM(CGF.CGM), Action(ActionToDo::DoNotPush) { | |||
| 12407 | assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.")((void)0); | |||
| 12408 | if (CGM.getLangOpts().OpenMP < 50) | |||
| 12409 | return; | |||
| 12410 | llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToAddForLPCsAsDisabled; | |||
| 12411 | tryToDisableInnerAnalysis(S, NeedToAddForLPCsAsDisabled); | |||
| 12412 | if (!NeedToAddForLPCsAsDisabled.empty()) { | |||
| 12413 | Action = ActionToDo::DisableLastprivateConditional; | |||
| 12414 | LastprivateConditionalData &Data = | |||
| 12415 | CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back(); | |||
| 12416 | for (const Decl *VD : NeedToAddForLPCsAsDisabled) | |||
| 12417 | Data.DeclToUniqueName.insert(std::make_pair(VD, SmallString<16>())); | |||
| 12418 | Data.Fn = CGF.CurFn; | |||
| 12419 | Data.Disabled = true; | |||
| 12420 | } | |||
| 12421 | } | |||
| 12422 | ||||
| 12423 | CGOpenMPRuntime::LastprivateConditionalRAII | |||
| 12424 | CGOpenMPRuntime::LastprivateConditionalRAII::disable( | |||
| 12425 | CodeGenFunction &CGF, const OMPExecutableDirective &S) { | |||
| 12426 | return LastprivateConditionalRAII(CGF, S); | |||
| 12427 | } | |||
| 12428 | ||||
| 12429 | CGOpenMPRuntime::LastprivateConditionalRAII::~LastprivateConditionalRAII() { | |||
| 12430 | if (CGM.getLangOpts().OpenMP < 50) | |||
| 12431 | return; | |||
| 12432 | if (Action == ActionToDo::DisableLastprivateConditional) { | |||
| 12433 | assert(CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&((void)0) | |||
| 12434 | "Expected list of disabled private vars.")((void)0); | |||
| 12435 | CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back(); | |||
| 12436 | } | |||
| 12437 | if (Action == ActionToDo::PushAsLastprivateConditional) { | |||
| 12438 | assert(((void)0) | |||
| 12439 | !CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&((void)0) | |||
| 12440 | "Expected list of lastprivate conditional vars.")((void)0); | |||
| 12441 | CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back(); | |||
| 12442 | } | |||
| 12443 | } | |||
| 12444 | ||||
| 12445 | Address CGOpenMPRuntime::emitLastprivateConditionalInit(CodeGenFunction &CGF, | |||
| 12446 | const VarDecl *VD) { | |||
| 12447 | ASTContext &C = CGM.getContext(); | |||
| 12448 | auto I = LastprivateConditionalToTypes.find(CGF.CurFn); | |||
| 12449 | if (I == LastprivateConditionalToTypes.end()) | |||
| 12450 | I = LastprivateConditionalToTypes.try_emplace(CGF.CurFn).first; | |||
| 12451 | QualType NewType; | |||
| 12452 | const FieldDecl *VDField; | |||
| 12453 | const FieldDecl *FiredField; | |||
| 12454 | LValue BaseLVal; | |||
| 12455 | auto VI = I->getSecond().find(VD); | |||
| 12456 | if (VI == I->getSecond().end()) { | |||
| 12457 | RecordDecl *RD = C.buildImplicitRecord("lasprivate.conditional"); | |||
| 12458 | RD->startDefinition(); | |||
| 12459 | VDField = addFieldToRecordDecl(C, RD, VD->getType().getNonReferenceType()); | |||
| 12460 | FiredField = addFieldToRecordDecl(C, RD, C.CharTy); | |||
| 12461 | RD->completeDefinition(); | |||
| 12462 | NewType = C.getRecordType(RD); | |||
| 12463 | Address Addr = CGF.CreateMemTemp(NewType, C.getDeclAlign(VD), VD->getName()); | |||
| 12464 | BaseLVal = CGF.MakeAddrLValue(Addr, NewType, AlignmentSource::Decl); | |||
| 12465 | I->getSecond().try_emplace(VD, NewType, VDField, FiredField, BaseLVal); | |||
| 12466 | } else { | |||
| 12467 | NewType = std::get<0>(VI->getSecond()); | |||
| 12468 | VDField = std::get<1>(VI->getSecond()); | |||
| 12469 | FiredField = std::get<2>(VI->getSecond()); | |||
| 12470 | BaseLVal = std::get<3>(VI->getSecond()); | |||
| 12471 | } | |||
| 12472 | LValue FiredLVal = | |||
| 12473 | CGF.EmitLValueForField(BaseLVal, FiredField); | |||
| 12474 | CGF.EmitStoreOfScalar( | |||
| 12475 | llvm::ConstantInt::getNullValue(CGF.ConvertTypeForMem(C.CharTy)), | |||
| 12476 | FiredLVal); | |||
| 12477 | return CGF.EmitLValueForField(BaseLVal, VDField).getAddress(CGF); | |||
| 12478 | } | |||
| 12479 | ||||
| 12480 | namespace { | |||
| 12481 | /// Checks if the lastprivate conditional variable is referenced in LHS. | |||
| 12482 | class LastprivateConditionalRefChecker final | |||
| 12483 | : public ConstStmtVisitor<LastprivateConditionalRefChecker, bool> { | |||
| 12484 | ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM; | |||
| 12485 | const Expr *FoundE = nullptr; | |||
| 12486 | const Decl *FoundD = nullptr; | |||
| 12487 | StringRef UniqueDeclName; | |||
| 12488 | LValue IVLVal; | |||
| 12489 | llvm::Function *FoundFn = nullptr; | |||
| 12490 | SourceLocation Loc; | |||
| 12491 | ||||
| 12492 | public: | |||
| 12493 | bool VisitDeclRefExpr(const DeclRefExpr *E) { | |||
| 12494 | for (const CGOpenMPRuntime::LastprivateConditionalData &D : | |||
| 12495 | llvm::reverse(LPM)) { | |||
| 12496 | auto It = D.DeclToUniqueName.find(E->getDecl()); | |||
| 12497 | if (It == D.DeclToUniqueName.end()) | |||
| 12498 | continue; | |||
| 12499 | if (D.Disabled) | |||
| 12500 | return false; | |||
| 12501 | FoundE = E; | |||
| 12502 | FoundD = E->getDecl()->getCanonicalDecl(); | |||
| 12503 | UniqueDeclName = It->second; | |||
| 12504 | IVLVal = D.IVLVal; | |||
| 12505 | FoundFn = D.Fn; | |||
| 12506 | break; | |||
| 12507 | } | |||
| 12508 | return FoundE == E; | |||
| 12509 | } | |||
| 12510 | bool VisitMemberExpr(const MemberExpr *E) { | |||
| 12511 | if (!CodeGenFunction::IsWrappedCXXThis(E->getBase())) | |||
| 12512 | return false; | |||
| 12513 | for (const CGOpenMPRuntime::LastprivateConditionalData &D : | |||
| 12514 | llvm::reverse(LPM)) { | |||
| 12515 | auto It = D.DeclToUniqueName.find(E->getMemberDecl()); | |||
| 12516 | if (It == D.DeclToUniqueName.end()) | |||
| 12517 | continue; | |||
| 12518 | if (D.Disabled) | |||
| 12519 | return false; | |||
| 12520 | FoundE = E; | |||
| 12521 | FoundD = E->getMemberDecl()->getCanonicalDecl(); | |||
| 12522 | UniqueDeclName = It->second; | |||
| 12523 | IVLVal = D.IVLVal; | |||
| 12524 | FoundFn = D.Fn; | |||
| 12525 | break; | |||
| 12526 | } | |||
| 12527 | return FoundE == E; | |||
| 12528 | } | |||
| 12529 | bool VisitStmt(const Stmt *S) { | |||
| 12530 | for (const Stmt *Child : S->children()) { | |||
| 12531 | if (!Child) | |||
| 12532 | continue; | |||
| 12533 | if (const auto *E = dyn_cast<Expr>(Child)) | |||
| 12534 | if (!E->isGLValue()) | |||
| 12535 | continue; | |||
| 12536 | if (Visit(Child)) | |||
| 12537 | return true; | |||
| 12538 | } | |||
| 12539 | return false; | |||
| 12540 | } | |||
| 12541 | explicit LastprivateConditionalRefChecker( | |||
| 12542 | ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM) | |||
| 12543 | : LPM(LPM) {} | |||
| 12544 | std::tuple<const Expr *, const Decl *, StringRef, LValue, llvm::Function *> | |||
| 12545 | getFoundData() const { | |||
| 12546 | return std::make_tuple(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn); | |||
| 12547 | } | |||
| 12548 | }; | |||
| 12549 | } // namespace | |||
| 12550 | ||||
| 12551 | void CGOpenMPRuntime::emitLastprivateConditionalUpdate(CodeGenFunction &CGF, | |||
| 12552 | LValue IVLVal, | |||
| 12553 | StringRef UniqueDeclName, | |||
| 12554 | LValue LVal, | |||
| 12555 | SourceLocation Loc) { | |||
| 12556 | // Last updated loop counter for the lastprivate conditional var. | |||
| 12557 | // int<xx> last_iv = 0; | |||
| 12558 | llvm::Type *LLIVTy = CGF.ConvertTypeForMem(IVLVal.getType()); | |||
| 12559 | llvm::Constant *LastIV = | |||
| 12560 | getOrCreateInternalVariable(LLIVTy, getName({UniqueDeclName, "iv"})); | |||
| 12561 | cast<llvm::GlobalVariable>(LastIV)->setAlignment( | |||
| 12562 | IVLVal.getAlignment().getAsAlign()); | |||
| 12563 | LValue LastIVLVal = CGF.MakeNaturalAlignAddrLValue(LastIV, IVLVal.getType()); | |||
| 12564 | ||||
| 12565 | // Last value of the lastprivate conditional. | |||
| 12566 | // decltype(priv_a) last_a; | |||
| 12567 | llvm::Constant *Last = getOrCreateInternalVariable( | |||
| 12568 | CGF.ConvertTypeForMem(LVal.getType()), UniqueDeclName); | |||
| 12569 | cast<llvm::GlobalVariable>(Last)->setAlignment( | |||
| 12570 | LVal.getAlignment().getAsAlign()); | |||
| 12571 | LValue LastLVal = | |||
| 12572 | CGF.MakeAddrLValue(Last, LVal.getType(), LVal.getAlignment()); | |||
| 12573 | ||||
| 12574 | // Global loop counter. Required to handle inner parallel-for regions. | |||
| 12575 | // iv | |||
| 12576 | llvm::Value *IVVal = CGF.EmitLoadOfScalar(IVLVal, Loc); | |||
| 12577 | ||||
| 12578 | // #pragma omp critical(a) | |||
| 12579 | // if (last_iv <= iv) { | |||
| 12580 | // last_iv = iv; | |||
| 12581 | // last_a = priv_a; | |||
| 12582 | // } | |||
| 12583 | auto &&CodeGen = [&LastIVLVal, &IVLVal, IVVal, &LVal, &LastLVal, | |||
| 12584 | Loc](CodeGenFunction &CGF, PrePostActionTy &Action) { | |||
| 12585 | Action.Enter(CGF); | |||
| 12586 | llvm::Value *LastIVVal = CGF.EmitLoadOfScalar(LastIVLVal, Loc); | |||
| 12587 | // (last_iv <= iv) ? Check if the variable is updated and store new | |||
| 12588 | // value in global var. | |||
| 12589 | llvm::Value *CmpRes; | |||
| 12590 | if (IVLVal.getType()->isSignedIntegerType()) { | |||
| 12591 | CmpRes = CGF.Builder.CreateICmpSLE(LastIVVal, IVVal); | |||
| 12592 | } else { | |||
| 12593 | assert(IVLVal.getType()->isUnsignedIntegerType() &&((void)0) | |||
| 12594 | "Loop iteration variable must be integer.")((void)0); | |||
| 12595 | CmpRes = CGF.Builder.CreateICmpULE(LastIVVal, IVVal); | |||
| 12596 | } | |||
| 12597 | llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lp_cond_then"); | |||
| 12598 | llvm::BasicBlock *ExitBB = CGF.createBasicBlock("lp_cond_exit"); | |||
| 12599 | CGF.Builder.CreateCondBr(CmpRes, ThenBB, ExitBB); | |||
| 12600 | // { | |||
| 12601 | CGF.EmitBlock(ThenBB); | |||
| 12602 | ||||
| 12603 | // last_iv = iv; | |||
| 12604 | CGF.EmitStoreOfScalar(IVVal, LastIVLVal); | |||
| 12605 | ||||
| 12606 | // last_a = priv_a; | |||
| 12607 | switch (CGF.getEvaluationKind(LVal.getType())) { | |||
| 12608 | case TEK_Scalar: { | |||
| 12609 | llvm::Value *PrivVal = CGF.EmitLoadOfScalar(LVal, Loc); | |||
| 12610 | CGF.EmitStoreOfScalar(PrivVal, LastLVal); | |||
| 12611 | break; | |||
| 12612 | } | |||
| 12613 | case TEK_Complex: { | |||
| 12614 | CodeGenFunction::ComplexPairTy PrivVal = CGF.EmitLoadOfComplex(LVal, Loc); | |||
| 12615 | CGF.EmitStoreOfComplex(PrivVal, LastLVal, /*isInit=*/false); | |||
| 12616 | break; | |||
| 12617 | } | |||
| 12618 | case TEK_Aggregate: | |||
| 12619 | llvm_unreachable(__builtin_unreachable() | |||
| 12620 | "Aggregates are not supported in lastprivate conditional.")__builtin_unreachable(); | |||
| 12621 | } | |||
| 12622 | // } | |||
| 12623 | CGF.EmitBranch(ExitBB); | |||
| 12624 | // There is no need to emit line number for unconditional branch. | |||
| 12625 | (void)ApplyDebugLocation::CreateEmpty(CGF); | |||
| 12626 | CGF.EmitBlock(ExitBB, /*IsFinished=*/true); | |||
| 12627 | }; | |||
| 12628 | ||||
| 12629 | if (CGM.getLangOpts().OpenMPSimd) { | |||
| 12630 | // Do not emit as a critical region as no parallel region could be emitted. | |||
| 12631 | RegionCodeGenTy ThenRCG(CodeGen); | |||
| 12632 | ThenRCG(CGF); | |||
| 12633 | } else { | |||
| 12634 | emitCriticalRegion(CGF, UniqueDeclName, CodeGen, Loc); | |||
| 12635 | } | |||
| 12636 | } | |||
| 12637 | ||||
| 12638 | void CGOpenMPRuntime::checkAndEmitLastprivateConditional(CodeGenFunction &CGF, | |||
| 12639 | const Expr *LHS) { | |||
| 12640 | if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty()) | |||
| 12641 | return; | |||
| 12642 | LastprivateConditionalRefChecker Checker(LastprivateConditionalStack); | |||
| 12643 | if (!Checker.Visit(LHS)) | |||
| 12644 | return; | |||
| 12645 | const Expr *FoundE; | |||
| 12646 | const Decl *FoundD; | |||
| 12647 | StringRef UniqueDeclName; | |||
| 12648 | LValue IVLVal; | |||
| 12649 | llvm::Function *FoundFn; | |||
| 12650 | std::tie(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn) = | |||
| 12651 | Checker.getFoundData(); | |||
| 12652 | if (FoundFn != CGF.CurFn) { | |||
| 12653 | // Special codegen for inner parallel regions. | |||
| 12654 | // ((struct.lastprivate.conditional*)&priv_a)->Fired = 1; | |||
| 12655 | auto It = LastprivateConditionalToTypes[FoundFn].find(FoundD); | |||
| 12656 | assert(It != LastprivateConditionalToTypes[FoundFn].end() &&((void)0) | |||
| 12657 | "Lastprivate conditional is not found in outer region.")((void)0); | |||
| 12658 | QualType StructTy = std::get<0>(It->getSecond()); | |||
| 12659 | const FieldDecl* FiredDecl = std::get<2>(It->getSecond()); | |||
| 12660 | LValue PrivLVal = CGF.EmitLValue(FoundE); | |||
| 12661 | Address StructAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( | |||
| 12662 | PrivLVal.getAddress(CGF), | |||
| 12663 | CGF.ConvertTypeForMem(CGF.getContext().getPointerType(StructTy))); | |||
| 12664 | LValue BaseLVal = | |||
| 12665 | CGF.MakeAddrLValue(StructAddr, StructTy, AlignmentSource::Decl); | |||
| 12666 | LValue FiredLVal = CGF.EmitLValueForField(BaseLVal, FiredDecl); | |||
| 12667 | CGF.EmitAtomicStore(RValue::get(llvm::ConstantInt::get( | |||
| 12668 | CGF.ConvertTypeForMem(FiredDecl->getType()), 1)), | |||
| 12669 | FiredLVal, llvm::AtomicOrdering::Unordered, | |||
| 12670 | /*IsVolatile=*/true, /*isInit=*/false); | |||
| 12671 | return; | |||
| 12672 | } | |||
| 12673 | ||||
| 12674 | // Private address of the lastprivate conditional in the current context. | |||
| 12675 | // priv_a | |||
| 12676 | LValue LVal = CGF.EmitLValue(FoundE); | |||
| 12677 | emitLastprivateConditionalUpdate(CGF, IVLVal, UniqueDeclName, LVal, | |||
| 12678 | FoundE->getExprLoc()); | |||
| 12679 | } | |||
| 12680 | ||||
| 12681 | void CGOpenMPRuntime::checkAndEmitSharedLastprivateConditional( | |||
| 12682 | CodeGenFunction &CGF, const OMPExecutableDirective &D, | |||
| 12683 | const llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> &IgnoredDecls) { | |||
| 12684 | if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty()) | |||
| 12685 | return; | |||
| 12686 | auto Range = llvm::reverse(LastprivateConditionalStack); | |||
| 12687 | auto It = llvm::find_if( | |||
| 12688 | Range, [](const LastprivateConditionalData &D) { return !D.Disabled; }); | |||
| 12689 | if (It == Range.end() || It->Fn != CGF.CurFn) | |||
| 12690 | return; | |||
| 12691 | auto LPCI = LastprivateConditionalToTypes.find(It->Fn); | |||
| 12692 | assert(LPCI != LastprivateConditionalToTypes.end() &&((void)0) | |||
| 12693 | "Lastprivates must be registered already.")((void)0); | |||
| 12694 | SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; | |||
| 12695 | getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); | |||
| 12696 | const CapturedStmt *CS = D.getCapturedStmt(CaptureRegions.back()); | |||
| 12697 | for (const auto &Pair : It->DeclToUniqueName) { | |||
| 12698 | const auto *VD = cast<VarDecl>(Pair.first->getCanonicalDecl()); | |||
| 12699 | if (!CS->capturesVariable(VD) || IgnoredDecls.count(VD) > 0) | |||
| 12700 | continue; | |||
| 12701 | auto I = LPCI->getSecond().find(Pair.first); | |||
| 12702 | assert(I != LPCI->getSecond().end() &&((void)0) | |||
| 12703 | "Lastprivate must be rehistered already.")((void)0); | |||
| 12704 | // bool Cmp = priv_a.Fired != 0; | |||
| 12705 | LValue BaseLVal = std::get<3>(I->getSecond()); | |||
| 12706 | LValue FiredLVal = | |||
| 12707 | CGF.EmitLValueForField(BaseLVal, std::get<2>(I->getSecond())); | |||
| 12708 | llvm::Value *Res = CGF.EmitLoadOfScalar(FiredLVal, D.getBeginLoc()); | |||
| 12709 | llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Res); | |||
| 12710 | llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lpc.then"); | |||
| 12711 | llvm::BasicBlock *DoneBB = CGF.createBasicBlock("lpc.done"); | |||
| 12712 | // if (Cmp) { | |||
| 12713 | CGF.Builder.CreateCondBr(Cmp, ThenBB, DoneBB); | |||
| 12714 | CGF.EmitBlock(ThenBB); | |||
| 12715 | Address Addr = CGF.GetAddrOfLocalVar(VD); | |||
| 12716 | LValue LVal; | |||
| 12717 | if (VD->getType()->isReferenceType()) | |||
| 12718 | LVal = CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), | |||
| 12719 | AlignmentSource::Decl); | |||
| 12720 | else | |||
| 12721 | LVal = CGF.MakeAddrLValue(Addr, VD->getType().getNonReferenceType(), | |||
| 12722 | AlignmentSource::Decl); | |||
| 12723 | emitLastprivateConditionalUpdate(CGF, It->IVLVal, Pair.second, LVal, | |||
| 12724 | D.getBeginLoc()); | |||
| 12725 | auto AL = ApplyDebugLocation::CreateArtificial(CGF); | |||
| 12726 | CGF.EmitBlock(DoneBB, /*IsFinal=*/true); | |||
| 12727 | // } | |||
| 12728 | } | |||
| 12729 | } | |||
| 12730 | ||||
| 12731 | void CGOpenMPRuntime::emitLastprivateConditionalFinalUpdate( | |||
| 12732 | CodeGenFunction &CGF, LValue PrivLVal, const VarDecl *VD, | |||
| 12733 | SourceLocation Loc) { | |||
| 12734 | if (CGF.getLangOpts().OpenMP < 50) | |||
| 12735 | return; | |||
| 12736 | auto It = LastprivateConditionalStack.back().DeclToUniqueName.find(VD); | |||
| 12737 | assert(It != LastprivateConditionalStack.back().DeclToUniqueName.end() &&((void)0) | |||
| 12738 | "Unknown lastprivate conditional variable.")((void)0); | |||
| 12739 | StringRef UniqueName = It->second; | |||
| 12740 | llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(UniqueName); | |||
| 12741 | // The variable was not updated in the region - exit. | |||
| 12742 | if (!GV) | |||
| 12743 | return; | |||
| 12744 | LValue LPLVal = CGF.MakeAddrLValue( | |||
| 12745 | GV, PrivLVal.getType().getNonReferenceType(), PrivLVal.getAlignment()); | |||
| 12746 | llvm::Value *Res = CGF.EmitLoadOfScalar(LPLVal, Loc); | |||
| 12747 | CGF.EmitStoreOfScalar(Res, PrivLVal); | |||
| 12748 | } | |||
| 12749 | ||||
| 12750 | llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction( | |||
| 12751 | const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, | |||
| 12752 | OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { | |||
| 12753 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12754 | } | |||
| 12755 | ||||
| 12756 | llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction( | |||
| 12757 | const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, | |||
| 12758 | OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { | |||
| 12759 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12760 | } | |||
| 12761 | ||||
| 12762 | llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction( | |||
| 12763 | const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, | |||
| 12764 | const VarDecl *PartIDVar, const VarDecl *TaskTVar, | |||
| 12765 | OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, | |||
| 12766 | bool Tied, unsigned &NumberOfParts) { | |||
| 12767 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12768 | } | |||
| 12769 | ||||
| 12770 | void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF, | |||
| 12771 | SourceLocation Loc, | |||
| 12772 | llvm::Function *OutlinedFn, | |||
| 12773 | ArrayRef<llvm::Value *> CapturedVars, | |||
| 12774 | const Expr *IfCond) { | |||
| 12775 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12776 | } | |||
| 12777 | ||||
| 12778 | void CGOpenMPSIMDRuntime::emitCriticalRegion( | |||
| 12779 | CodeGenFunction &CGF, StringRef CriticalName, | |||
| 12780 | const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, | |||
| 12781 | const Expr *Hint) { | |||
| 12782 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12783 | } | |||
| 12784 | ||||
| 12785 | void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF, | |||
| 12786 | const RegionCodeGenTy &MasterOpGen, | |||
| 12787 | SourceLocation Loc) { | |||
| 12788 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12789 | } | |||
| 12790 | ||||
| 12791 | void CGOpenMPSIMDRuntime::emitMaskedRegion(CodeGenFunction &CGF, | |||
| 12792 | const RegionCodeGenTy &MasterOpGen, | |||
| 12793 | SourceLocation Loc, | |||
| 12794 | const Expr *Filter) { | |||
| 12795 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12796 | } | |||
| 12797 | ||||
| 12798 | void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF, | |||
| 12799 | SourceLocation Loc) { | |||
| 12800 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12801 | } | |||
| 12802 | ||||
| 12803 | void CGOpenMPSIMDRuntime::emitTaskgroupRegion( | |||
| 12804 | CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen, | |||
| 12805 | SourceLocation Loc) { | |||
| 12806 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12807 | } | |||
| 12808 | ||||
| 12809 | void CGOpenMPSIMDRuntime::emitSingleRegion( | |||
| 12810 | CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen, | |||
| 12811 | SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars, | |||
| 12812 | ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs, | |||
| 12813 | ArrayRef<const Expr *> AssignmentOps) { | |||
| 12814 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12815 | } | |||
| 12816 | ||||
| 12817 | void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF, | |||
| 12818 | const RegionCodeGenTy &OrderedOpGen, | |||
| 12819 | SourceLocation Loc, | |||
| 12820 | bool IsThreads) { | |||
| 12821 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12822 | } | |||
| 12823 | ||||
| 12824 | void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF, | |||
| 12825 | SourceLocation Loc, | |||
| 12826 | OpenMPDirectiveKind Kind, | |||
| 12827 | bool EmitChecks, | |||
| 12828 | bool ForceSimpleCall) { | |||
| 12829 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12830 | } | |||
| 12831 | ||||
| 12832 | void CGOpenMPSIMDRuntime::emitForDispatchInit( | |||
| 12833 | CodeGenFunction &CGF, SourceLocation Loc, | |||
| 12834 | const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned, | |||
| 12835 | bool Ordered, const DispatchRTInput &DispatchValues) { | |||
| 12836 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12837 | } | |||
| 12838 | ||||
| 12839 | void CGOpenMPSIMDRuntime::emitForStaticInit( | |||
| 12840 | CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind, | |||
| 12841 | const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) { | |||
| 12842 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12843 | } | |||
| 12844 | ||||
| 12845 | void CGOpenMPSIMDRuntime::emitDistributeStaticInit( | |||
| 12846 | CodeGenFunction &CGF, SourceLocation Loc, | |||
| 12847 | OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) { | |||
| 12848 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12849 | } | |||
| 12850 | ||||
| 12851 | void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF, | |||
| 12852 | SourceLocation Loc, | |||
| 12853 | unsigned IVSize, | |||
| 12854 | bool IVSigned) { | |||
| 12855 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12856 | } | |||
| 12857 | ||||
| 12858 | void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF, | |||
| 12859 | SourceLocation Loc, | |||
| 12860 | OpenMPDirectiveKind DKind) { | |||
| 12861 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12862 | } | |||
| 12863 | ||||
| 12864 | llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF, | |||
| 12865 | SourceLocation Loc, | |||
| 12866 | unsigned IVSize, bool IVSigned, | |||
| 12867 | Address IL, Address LB, | |||
| 12868 | Address UB, Address ST) { | |||
| 12869 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12870 | } | |||
| 12871 | ||||
| 12872 | void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF, | |||
| 12873 | llvm::Value *NumThreads, | |||
| 12874 | SourceLocation Loc) { | |||
| 12875 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12876 | } | |||
| 12877 | ||||
| 12878 | void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF, | |||
| 12879 | ProcBindKind ProcBind, | |||
| 12880 | SourceLocation Loc) { | |||
| 12881 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12882 | } | |||
| 12883 | ||||
| 12884 | Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF, | |||
| 12885 | const VarDecl *VD, | |||
| 12886 | Address VDAddr, | |||
| 12887 | SourceLocation Loc) { | |||
| 12888 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12889 | } | |||
| 12890 | ||||
| 12891 | llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition( | |||
| 12892 | const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit, | |||
| 12893 | CodeGenFunction *CGF) { | |||
| 12894 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12895 | } | |||
| 12896 | ||||
| 12897 | Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate( | |||
| 12898 | CodeGenFunction &CGF, QualType VarType, StringRef Name) { | |||
| 12899 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12900 | } | |||
| 12901 | ||||
| 12902 | void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF, | |||
| 12903 | ArrayRef<const Expr *> Vars, | |||
| 12904 | SourceLocation Loc, | |||
| 12905 | llvm::AtomicOrdering AO) { | |||
| 12906 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12907 | } | |||
| 12908 | ||||
| 12909 | void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc, | |||
| 12910 | const OMPExecutableDirective &D, | |||
| 12911 | llvm::Function *TaskFunction, | |||
| 12912 | QualType SharedsTy, Address Shareds, | |||
| 12913 | const Expr *IfCond, | |||
| 12914 | const OMPTaskDataTy &Data) { | |||
| 12915 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12916 | } | |||
| 12917 | ||||
| 12918 | void CGOpenMPSIMDRuntime::emitTaskLoopCall( | |||
| 12919 | CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D, | |||
| 12920 | llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds, | |||
| 12921 | const Expr *IfCond, const OMPTaskDataTy &Data) { | |||
| 12922 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12923 | } | |||
| 12924 | ||||
| 12925 | void CGOpenMPSIMDRuntime::emitReduction( | |||
| 12926 | CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, | |||
| 12927 | ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, | |||
| 12928 | ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { | |||
| 12929 | assert(Options.SimpleReduction && "Only simple reduction is expected.")((void)0); | |||
| 12930 | CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, | |||
| 12931 | ReductionOps, Options); | |||
| 12932 | } | |||
| 12933 | ||||
| 12934 | llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit( | |||
| 12935 | CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs, | |||
| 12936 | ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) { | |||
| 12937 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12938 | } | |||
| 12939 | ||||
| 12940 | void CGOpenMPSIMDRuntime::emitTaskReductionFini(CodeGenFunction &CGF, | |||
| 12941 | SourceLocation Loc, | |||
| 12942 | bool IsWorksharingReduction) { | |||
| 12943 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12944 | } | |||
| 12945 | ||||
| 12946 | void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF, | |||
| 12947 | SourceLocation Loc, | |||
| 12948 | ReductionCodeGen &RCG, | |||
| 12949 | unsigned N) { | |||
| 12950 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12951 | } | |||
| 12952 | ||||
| 12953 | Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF, | |||
| 12954 | SourceLocation Loc, | |||
| 12955 | llvm::Value *ReductionsPtr, | |||
| 12956 | LValue SharedLVal) { | |||
| 12957 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12958 | } | |||
| 12959 | ||||
| 12960 | void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF, | |||
| 12961 | SourceLocation Loc) { | |||
| 12962 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12963 | } | |||
| 12964 | ||||
| 12965 | void CGOpenMPSIMDRuntime::emitCancellationPointCall( | |||
| 12966 | CodeGenFunction &CGF, SourceLocation Loc, | |||
| 12967 | OpenMPDirectiveKind CancelRegion) { | |||
| 12968 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12969 | } | |||
| 12970 | ||||
| 12971 | void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF, | |||
| 12972 | SourceLocation Loc, const Expr *IfCond, | |||
| 12973 | OpenMPDirectiveKind CancelRegion) { | |||
| 12974 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12975 | } | |||
| 12976 | ||||
| 12977 | void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction( | |||
| 12978 | const OMPExecutableDirective &D, StringRef ParentName, | |||
| 12979 | llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, | |||
| 12980 | bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { | |||
| 12981 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12982 | } | |||
| 12983 | ||||
| 12984 | void CGOpenMPSIMDRuntime::emitTargetCall( | |||
| 12985 | CodeGenFunction &CGF, const OMPExecutableDirective &D, | |||
| 12986 | llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond, | |||
| 12987 | llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device, | |||
| 12988 | llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, | |||
| 12989 | const OMPLoopDirective &D)> | |||
| 12990 | SizeEmitter) { | |||
| 12991 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12992 | } | |||
| 12993 | ||||
| 12994 | bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) { | |||
| 12995 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 12996 | } | |||
| 12997 | ||||
| 12998 | bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) { | |||
| 12999 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 13000 | } | |||
| 13001 | ||||
| 13002 | bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) { | |||
| 13003 | return false; | |||
| 13004 | } | |||
| 13005 | ||||
| 13006 | void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF, | |||
| 13007 | const OMPExecutableDirective &D, | |||
| 13008 | SourceLocation Loc, | |||
| 13009 | llvm::Function *OutlinedFn, | |||
| 13010 | ArrayRef<llvm::Value *> CapturedVars) { | |||
| 13011 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 13012 | } | |||
| 13013 | ||||
| 13014 | void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF, | |||
| 13015 | const Expr *NumTeams, | |||
| 13016 | const Expr *ThreadLimit, | |||
| 13017 | SourceLocation Loc) { | |||
| 13018 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 13019 | } | |||
| 13020 | ||||
| 13021 | void CGOpenMPSIMDRuntime::emitTargetDataCalls( | |||
| 13022 | CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, | |||
| 13023 | const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) { | |||
| 13024 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 13025 | } | |||
| 13026 | ||||
| 13027 | void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall( | |||
| 13028 | CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, | |||
| 13029 | const Expr *Device) { | |||
| 13030 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 13031 | } | |||
| 13032 | ||||
| 13033 | void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF, | |||
| 13034 | const OMPLoopDirective &D, | |||
| 13035 | ArrayRef<Expr *> NumIterations) { | |||
| 13036 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 13037 | } | |||
| 13038 | ||||
| 13039 | void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF, | |||
| 13040 | const OMPDependClause *C) { | |||
| 13041 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 13042 | } | |||
| 13043 | ||||
| 13044 | const VarDecl * | |||
| 13045 | CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD, | |||
| 13046 | const VarDecl *NativeParam) const { | |||
| 13047 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 13048 | } | |||
| 13049 | ||||
| 13050 | Address | |||
| 13051 | CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF, | |||
| 13052 | const VarDecl *NativeParam, | |||
| 13053 | const VarDecl *TargetParam) const { | |||
| 13054 | llvm_unreachable("Not supported in SIMD-only mode")__builtin_unreachable(); | |||
| 13055 | } |
| 1 | //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file implements a class to represent arbitrary precision |
| 11 | /// integral constant values and operations on them. |
| 12 | /// |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_ADT_APINT_H |
| 16 | #define LLVM_ADT_APINT_H |
| 17 | |
| 18 | #include "llvm/Support/Compiler.h" |
| 19 | #include "llvm/Support/MathExtras.h" |
| 20 | #include <cassert> |
| 21 | #include <climits> |
| 22 | #include <cstring> |
| 23 | #include <utility> |
| 24 | |
| 25 | namespace llvm { |
| 26 | class FoldingSetNodeID; |
| 27 | class StringRef; |
| 28 | class hash_code; |
| 29 | class raw_ostream; |
| 30 | |
| 31 | template <typename T> class SmallVectorImpl; |
| 32 | template <typename T> class ArrayRef; |
| 33 | template <typename T> class Optional; |
| 34 | template <typename T> struct DenseMapInfo; |
| 35 | |
| 36 | class APInt; |
| 37 | |
| 38 | inline APInt operator-(APInt); |
| 39 | |
| 40 | //===----------------------------------------------------------------------===// |
| 41 | // APInt Class |
| 42 | //===----------------------------------------------------------------------===// |
| 43 | |
| 44 | /// Class for arbitrary precision integers. |
| 45 | /// |
| 46 | /// APInt is a functional replacement for common case unsigned integer type like |
| 47 | /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width |
| 48 | /// integer sizes and large integer value types such as 3-bits, 15-bits, or more |
| 49 | /// than 64-bits of precision. APInt provides a variety of arithmetic operators |
| 50 | /// and methods to manipulate integer values of any bit-width. It supports both |
| 51 | /// the typical integer arithmetic and comparison operations as well as bitwise |
| 52 | /// manipulation. |
| 53 | /// |
| 54 | /// The class has several invariants worth noting: |
| 55 | /// * All bit, byte, and word positions are zero-based. |
| 56 | /// * Once the bit width is set, it doesn't change except by the Truncate, |
| 57 | /// SignExtend, or ZeroExtend operations. |
| 58 | /// * All binary operators must be on APInt instances of the same bit width. |
| 59 | /// Attempting to use these operators on instances with different bit |
| 60 | /// widths will yield an assertion. |
| 61 | /// * The value is stored canonically as an unsigned value. For operations |
| 62 | /// where it makes a difference, there are both signed and unsigned variants |
| 63 | /// of the operation. For example, sdiv and udiv. However, because the bit |
| 64 | /// widths must be the same, operations such as Mul and Add produce the same |
| 65 | /// results regardless of whether the values are interpreted as signed or |
| 66 | /// not. |
| 67 | /// * In general, the class tries to follow the style of computation that LLVM |
| 68 | /// uses in its IR. This simplifies its use for LLVM. |
| 69 | /// |
| 70 | class LLVM_NODISCARD[[clang::warn_unused_result]] APInt { |
| 71 | public: |
| 72 | typedef uint64_t WordType; |
| 73 | |
| 74 | /// This enum is used to hold the constants we needed for APInt. |
| 75 | enum : unsigned { |
| 76 | /// Byte size of a word. |
| 77 | APINT_WORD_SIZE = sizeof(WordType), |
| 78 | /// Bits in a word. |
| 79 | APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT8 |
| 80 | }; |
| 81 | |
| 82 | enum class Rounding { |
| 83 | DOWN, |
| 84 | TOWARD_ZERO, |
| 85 | UP, |
| 86 | }; |
| 87 | |
| 88 | static constexpr WordType WORDTYPE_MAX = ~WordType(0); |
| 89 | |
| 90 | private: |
| 91 | /// This union is used to store the integer value. When the |
| 92 | /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. |
| 93 | union { |
| 94 | uint64_t VAL; ///< Used to store the <= 64 bits integer value. |
| 95 | uint64_t *pVal; ///< Used to store the >64 bits integer value. |
| 96 | } U; |
| 97 | |
| 98 | unsigned BitWidth; ///< The number of bits in this APInt. |
| 99 | |
| 100 | friend struct DenseMapInfo<APInt>; |
| 101 | |
| 102 | friend class APSInt; |
| 103 | |
| 104 | /// Fast internal constructor |
| 105 | /// |
| 106 | /// This constructor is used only internally for speed of construction of |
| 107 | /// temporaries. It is unsafe for general use so it is not public. |
| 108 | APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { |
| 109 | U.pVal = val; |
| 110 | } |
| 111 | |
| 112 | /// Determine which word a bit is in. |
| 113 | /// |
| 114 | /// \returns the word position for the specified bit position. |
| 115 | static unsigned whichWord(unsigned bitPosition) { |
| 116 | return bitPosition / APINT_BITS_PER_WORD; |
| 117 | } |
| 118 | |
| 119 | /// Determine which bit in a word a bit is in. |
| 120 | /// |
| 121 | /// \returns the bit position in a word for the specified bit position |
| 122 | /// in the APInt. |
| 123 | static unsigned whichBit(unsigned bitPosition) { |
| 124 | return bitPosition % APINT_BITS_PER_WORD; |
| 125 | } |
| 126 | |
| 127 | /// Get a single bit mask. |
| 128 | /// |
| 129 | /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set |
| 130 | /// This method generates and returns a uint64_t (word) mask for a single |
| 131 | /// bit at a specific bit position. This is used to mask the bit in the |
| 132 | /// corresponding word. |
| 133 | static uint64_t maskBit(unsigned bitPosition) { |
| 134 | return 1ULL << whichBit(bitPosition); |
| 135 | } |
| 136 | |
| 137 | /// Clear unused high order bits |
| 138 | /// |
| 139 | /// This method is used internally to clear the top "N" bits in the high order |
| 140 | /// word that are not used by the APInt. This is needed after the most |
| 141 | /// significant word is assigned a value to ensure that those bits are |
| 142 | /// zero'd out. |
| 143 | APInt &clearUnusedBits() { |
| 144 | // Compute how many bits are used in the final word |
| 145 | unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1; |
| 146 | |
| 147 | // Mask out the high bits. |
| 148 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits); |
| 149 | if (isSingleWord()) |
| 150 | U.VAL &= mask; |
| 151 | else |
| 152 | U.pVal[getNumWords() - 1] &= mask; |
| 153 | return *this; |
| 154 | } |
| 155 | |
| 156 | /// Get the word corresponding to a bit position |
| 157 | /// \returns the corresponding word for the specified bit position. |
| 158 | uint64_t getWord(unsigned bitPosition) const { |
| 159 | return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; |
| 160 | } |
| 161 | |
| 162 | /// Utility method to change the bit width of this APInt to new bit width, |
| 163 | /// allocating and/or deallocating as necessary. There is no guarantee on the |
| 164 | /// value of any bits upon return. Caller should populate the bits after. |
| 165 | void reallocate(unsigned NewBitWidth); |
| 166 | |
| 167 | /// Convert a char array into an APInt |
| 168 | /// |
| 169 | /// \param radix 2, 8, 10, 16, or 36 |
| 170 | /// Converts a string into a number. The string must be non-empty |
| 171 | /// and well-formed as a number of the given base. The bit-width |
| 172 | /// must be sufficient to hold the result. |
| 173 | /// |
| 174 | /// This is used by the constructors that take string arguments. |
| 175 | /// |
| 176 | /// StringRef::getAsInteger is superficially similar but (1) does |
| 177 | /// not assume that the string is well-formed and (2) grows the |
| 178 | /// result to hold the input. |
| 179 | void fromString(unsigned numBits, StringRef str, uint8_t radix); |
| 180 | |
| 181 | /// An internal division function for dividing APInts. |
| 182 | /// |
| 183 | /// This is used by the toString method to divide by the radix. It simply |
| 184 | /// provides a more convenient form of divide for internal use since KnuthDiv |
| 185 | /// has specific constraints on its inputs. If those constraints are not met |
| 186 | /// then it provides a simpler form of divide. |
| 187 | static void divide(const WordType *LHS, unsigned lhsWords, |
| 188 | const WordType *RHS, unsigned rhsWords, WordType *Quotient, |
| 189 | WordType *Remainder); |
| 190 | |
| 191 | /// out-of-line slow case for inline constructor |
| 192 | void initSlowCase(uint64_t val, bool isSigned); |
| 193 | |
| 194 | /// shared code between two array constructors |
| 195 | void initFromArray(ArrayRef<uint64_t> array); |
| 196 | |
| 197 | /// out-of-line slow case for inline copy constructor |
| 198 | void initSlowCase(const APInt &that); |
| 199 | |
| 200 | /// out-of-line slow case for shl |
| 201 | void shlSlowCase(unsigned ShiftAmt); |
| 202 | |
| 203 | /// out-of-line slow case for lshr. |
| 204 | void lshrSlowCase(unsigned ShiftAmt); |
| 205 | |
| 206 | /// out-of-line slow case for ashr. |
| 207 | void ashrSlowCase(unsigned ShiftAmt); |
| 208 | |
| 209 | /// out-of-line slow case for operator= |
| 210 | void AssignSlowCase(const APInt &RHS); |
| 211 | |
| 212 | /// out-of-line slow case for operator== |
| 213 | bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); |
| 214 | |
| 215 | /// out-of-line slow case for countLeadingZeros |
| 216 | unsigned countLeadingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__)); |
| 217 | |
| 218 | /// out-of-line slow case for countLeadingOnes. |
| 219 | unsigned countLeadingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__)); |
| 220 | |
| 221 | /// out-of-line slow case for countTrailingZeros. |
| 222 | unsigned countTrailingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__)); |
| 223 | |
| 224 | /// out-of-line slow case for countTrailingOnes |
| 225 | unsigned countTrailingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__)); |
| 226 | |
| 227 | /// out-of-line slow case for countPopulation |
| 228 | unsigned countPopulationSlowCase() const LLVM_READONLY__attribute__((__pure__)); |
| 229 | |
| 230 | /// out-of-line slow case for intersects. |
| 231 | bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); |
| 232 | |
| 233 | /// out-of-line slow case for isSubsetOf. |
| 234 | bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); |
| 235 | |
| 236 | /// out-of-line slow case for setBits. |
| 237 | void setBitsSlowCase(unsigned loBit, unsigned hiBit); |
| 238 | |
| 239 | /// out-of-line slow case for flipAllBits. |
| 240 | void flipAllBitsSlowCase(); |
| 241 | |
| 242 | /// out-of-line slow case for operator&=. |
| 243 | void AndAssignSlowCase(const APInt& RHS); |
| 244 | |
| 245 | /// out-of-line slow case for operator|=. |
| 246 | void OrAssignSlowCase(const APInt& RHS); |
| 247 | |
| 248 | /// out-of-line slow case for operator^=. |
| 249 | void XorAssignSlowCase(const APInt& RHS); |
| 250 | |
| 251 | /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
| 252 | /// to, or greater than RHS. |
| 253 | int compare(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); |
| 254 | |
| 255 | /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
| 256 | /// to, or greater than RHS. |
| 257 | int compareSigned(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); |
| 258 | |
| 259 | public: |
| 260 | /// \name Constructors |
| 261 | /// @{ |
| 262 | |
| 263 | /// Create a new APInt of numBits width, initialized as val. |
| 264 | /// |
| 265 | /// If isSigned is true then val is treated as if it were a signed value |
| 266 | /// (i.e. as an int64_t) and the appropriate sign extension to the bit width |
| 267 | /// will be done. Otherwise, no sign extension occurs (high order bits beyond |
| 268 | /// the range of val are zero filled). |
| 269 | /// |
| 270 | /// \param numBits the bit width of the constructed APInt |
| 271 | /// \param val the initial value of the APInt |
| 272 | /// \param isSigned how to treat signedness of val |
| 273 | APInt(unsigned numBits, uint64_t val, bool isSigned = false) |
| 274 | : BitWidth(numBits) { |
| 275 | assert(BitWidth && "bitwidth too small")((void)0); |
| 276 | if (isSingleWord()) { |
| 277 | U.VAL = val; |
| 278 | clearUnusedBits(); |
| 279 | } else { |
| 280 | initSlowCase(val, isSigned); |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | /// Construct an APInt of numBits width, initialized as bigVal[]. |
| 285 | /// |
| 286 | /// Note that bigVal.size() can be smaller or larger than the corresponding |
| 287 | /// bit width but any extraneous bits will be dropped. |
| 288 | /// |
| 289 | /// \param numBits the bit width of the constructed APInt |
| 290 | /// \param bigVal a sequence of words to form the initial value of the APInt |
| 291 | APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); |
| 292 | |
| 293 | /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but |
| 294 | /// deprecated because this constructor is prone to ambiguity with the |
| 295 | /// APInt(unsigned, uint64_t, bool) constructor. |
| 296 | /// |
| 297 | /// If this overload is ever deleted, care should be taken to prevent calls |
| 298 | /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) |
| 299 | /// constructor. |
| 300 | APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); |
| 301 | |
| 302 | /// Construct an APInt from a string representation. |
| 303 | /// |
| 304 | /// This constructor interprets the string \p str in the given radix. The |
| 305 | /// interpretation stops when the first character that is not suitable for the |
| 306 | /// radix is encountered, or the end of the string. Acceptable radix values |
| 307 | /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the |
| 308 | /// string to require more bits than numBits. |
| 309 | /// |
| 310 | /// \param numBits the bit width of the constructed APInt |
| 311 | /// \param str the string to be interpreted |
| 312 | /// \param radix the radix to use for the conversion |
| 313 | APInt(unsigned numBits, StringRef str, uint8_t radix); |
| 314 | |
| 315 | /// Simply makes *this a copy of that. |
| 316 | /// Copy Constructor. |
| 317 | APInt(const APInt &that) : BitWidth(that.BitWidth) { |
| 318 | if (isSingleWord()) |
| 319 | U.VAL = that.U.VAL; |
| 320 | else |
| 321 | initSlowCase(that); |
| 322 | } |
| 323 | |
| 324 | /// Move Constructor. |
| 325 | APInt(APInt &&that) : BitWidth(that.BitWidth) { |
| 326 | memcpy(&U, &that.U, sizeof(U)); |
| 327 | that.BitWidth = 0; |
| 328 | } |
| 329 | |
| 330 | /// Destructor. |
| 331 | ~APInt() { |
| 332 | if (needsCleanup()) |
| 333 | delete[] U.pVal; |
| 334 | } |
| 335 | |
| 336 | /// Default constructor that creates an uninteresting APInt |
| 337 | /// representing a 1-bit zero value. |
| 338 | /// |
| 339 | /// This is useful for object deserialization (pair this with the static |
| 340 | /// method Read). |
| 341 | explicit APInt() : BitWidth(1) { U.VAL = 0; } |
| 342 | |
| 343 | /// Returns whether this instance allocated memory. |
| 344 | bool needsCleanup() const { return !isSingleWord(); } |
| 345 | |
| 346 | /// Used to insert APInt objects, or objects that contain APInt objects, into |
| 347 | /// FoldingSets. |
| 348 | void Profile(FoldingSetNodeID &id) const; |
| 349 | |
| 350 | /// @} |
| 351 | /// \name Value Tests |
| 352 | /// @{ |
| 353 | |
| 354 | /// Determine if this APInt just has one word to store value. |
| 355 | /// |
| 356 | /// \returns true if the number of bits <= 64, false otherwise. |
| 357 | bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } |
| 358 | |
| 359 | /// Determine sign of this APInt. |
| 360 | /// |
| 361 | /// This tests the high bit of this APInt to determine if it is set. |
| 362 | /// |
| 363 | /// \returns true if this APInt is negative, false otherwise |
| 364 | bool isNegative() const { return (*this)[BitWidth - 1]; } |
| 365 | |
| 366 | /// Determine if this APInt Value is non-negative (>= 0) |
| 367 | /// |
| 368 | /// This tests the high bit of the APInt to determine if it is unset. |
| 369 | bool isNonNegative() const { return !isNegative(); } |
| 370 | |
| 371 | /// Determine if sign bit of this APInt is set. |
| 372 | /// |
| 373 | /// This tests the high bit of this APInt to determine if it is set. |
| 374 | /// |
| 375 | /// \returns true if this APInt has its sign bit set, false otherwise. |
| 376 | bool isSignBitSet() const { return (*this)[BitWidth-1]; } |
| 377 | |
| 378 | /// Determine if sign bit of this APInt is clear. |
| 379 | /// |
| 380 | /// This tests the high bit of this APInt to determine if it is clear. |
| 381 | /// |
| 382 | /// \returns true if this APInt has its sign bit clear, false otherwise. |
| 383 | bool isSignBitClear() const { return !isSignBitSet(); } |
| 384 | |
| 385 | /// Determine if this APInt Value is positive. |
| 386 | /// |
| 387 | /// This tests if the value of this APInt is positive (> 0). Note |
| 388 | /// that 0 is not a positive value. |
| 389 | /// |
| 390 | /// \returns true if this APInt is positive. |
| 391 | bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); } |
| 392 | |
| 393 | /// Determine if this APInt Value is non-positive (<= 0). |
| 394 | /// |
| 395 | /// \returns true if this APInt is non-positive. |
| 396 | bool isNonPositive() const { return !isStrictlyPositive(); } |
| 397 | |
| 398 | /// Determine if all bits are set |
| 399 | /// |
| 400 | /// This checks to see if the value has all bits of the APInt are set or not. |
| 401 | bool isAllOnesValue() const { |
| 402 | if (isSingleWord()) |
| 403 | return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth); |
| 404 | return countTrailingOnesSlowCase() == BitWidth; |
| 405 | } |
| 406 | |
| 407 | /// Determine if all bits are clear |
| 408 | /// |
| 409 | /// This checks to see if the value has all bits of the APInt are clear or |
| 410 | /// not. |
| 411 | bool isNullValue() const { return !*this; } |
| 412 | |
| 413 | /// Determine if this is a value of 1. |
| 414 | /// |
| 415 | /// This checks to see if the value of this APInt is one. |
| 416 | bool isOneValue() const { |
| 417 | if (isSingleWord()) |
| 418 | return U.VAL == 1; |
| 419 | return countLeadingZerosSlowCase() == BitWidth - 1; |
| 420 | } |
| 421 | |
| 422 | /// Determine if this is the largest unsigned value. |
| 423 | /// |
| 424 | /// This checks to see if the value of this APInt is the maximum unsigned |
| 425 | /// value for the APInt's bit width. |
| 426 | bool isMaxValue() const { return isAllOnesValue(); } |
| 427 | |
| 428 | /// Determine if this is the largest signed value. |
| 429 | /// |
| 430 | /// This checks to see if the value of this APInt is the maximum signed |
| 431 | /// value for the APInt's bit width. |
| 432 | bool isMaxSignedValue() const { |
| 433 | if (isSingleWord()) |
| 434 | return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); |
| 435 | return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; |
| 436 | } |
| 437 | |
| 438 | /// Determine if this is the smallest unsigned value. |
| 439 | /// |
| 440 | /// This checks to see if the value of this APInt is the minimum unsigned |
| 441 | /// value for the APInt's bit width. |
| 442 | bool isMinValue() const { return isNullValue(); } |
| 443 | |
| 444 | /// Determine if this is the smallest signed value. |
| 445 | /// |
| 446 | /// This checks to see if the value of this APInt is the minimum signed |
| 447 | /// value for the APInt's bit width. |
| 448 | bool isMinSignedValue() const { |
| 449 | if (isSingleWord()) |
| 450 | return U.VAL == (WordType(1) << (BitWidth - 1)); |
| 451 | return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; |
| 452 | } |
| 453 | |
| 454 | /// Check if this APInt has an N-bits unsigned integer value. |
| 455 | bool isIntN(unsigned N) const { |
| 456 | assert(N && "N == 0 ???")((void)0); |
| 457 | return getActiveBits() <= N; |
| 458 | } |
| 459 | |
| 460 | /// Check if this APInt has an N-bits signed integer value. |
| 461 | bool isSignedIntN(unsigned N) const { |
| 462 | assert(N && "N == 0 ???")((void)0); |
| 463 | return getMinSignedBits() <= N; |
| 464 | } |
| 465 | |
| 466 | /// Check if this APInt's value is a power of two greater than zero. |
| 467 | /// |
| 468 | /// \returns true if the argument APInt value is a power of two > 0. |
| 469 | bool isPowerOf2() const { |
| 470 | if (isSingleWord()) |
| 471 | return isPowerOf2_64(U.VAL); |
| 472 | return countPopulationSlowCase() == 1; |
| 473 | } |
| 474 | |
| 475 | /// Check if the APInt's value is returned by getSignMask. |
| 476 | /// |
| 477 | /// \returns true if this is the value returned by getSignMask. |
| 478 | bool isSignMask() const { return isMinSignedValue(); } |
| 479 | |
| 480 | /// Convert APInt to a boolean value. |
| 481 | /// |
| 482 | /// This converts the APInt to a boolean value as a test against zero. |
| 483 | bool getBoolValue() const { return !!*this; } |
| 484 | |
| 485 | /// If this value is smaller than the specified limit, return it, otherwise |
| 486 | /// return the limit value. This causes the value to saturate to the limit. |
| 487 | uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX0xffffffffffffffffULL) const { |
| 488 | return ugt(Limit) ? Limit : getZExtValue(); |
| 489 | } |
| 490 | |
| 491 | /// Check if the APInt consists of a repeated bit pattern. |
| 492 | /// |
| 493 | /// e.g. 0x01010101 satisfies isSplat(8). |
| 494 | /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit |
| 495 | /// width without remainder. |
| 496 | bool isSplat(unsigned SplatSizeInBits) const; |
| 497 | |
| 498 | /// \returns true if this APInt value is a sequence of \param numBits ones |
| 499 | /// starting at the least significant bit with the remainder zero. |
| 500 | bool isMask(unsigned numBits) const { |
| 501 | assert(numBits != 0 && "numBits must be non-zero")((void)0); |
| 502 | assert(numBits <= BitWidth && "numBits out of range")((void)0); |
| 503 | if (isSingleWord()) |
| 504 | return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits)); |
| 505 | unsigned Ones = countTrailingOnesSlowCase(); |
| 506 | return (numBits == Ones) && |
| 507 | ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
| 508 | } |
| 509 | |
| 510 | /// \returns true if this APInt is a non-empty sequence of ones starting at |
| 511 | /// the least significant bit with the remainder zero. |
| 512 | /// Ex. isMask(0x0000FFFFU) == true. |
| 513 | bool isMask() const { |
| 514 | if (isSingleWord()) |
| 515 | return isMask_64(U.VAL); |
| 516 | unsigned Ones = countTrailingOnesSlowCase(); |
| 517 | return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
| 518 | } |
| 519 | |
| 520 | /// Return true if this APInt value contains a sequence of ones with |
| 521 | /// the remainder zero. |
| 522 | bool isShiftedMask() const { |
| 523 | if (isSingleWord()) |
| 524 | return isShiftedMask_64(U.VAL); |
| 525 | unsigned Ones = countPopulationSlowCase(); |
| 526 | unsigned LeadZ = countLeadingZerosSlowCase(); |
| 527 | return (Ones + LeadZ + countTrailingZeros()) == BitWidth; |
| 528 | } |
| 529 | |
| 530 | /// @} |
| 531 | /// \name Value Generators |
| 532 | /// @{ |
| 533 | |
| 534 | /// Gets maximum unsigned value of APInt for specific bit width. |
| 535 | static APInt getMaxValue(unsigned numBits) { |
| 536 | return getAllOnesValue(numBits); |
| 537 | } |
| 538 | |
| 539 | /// Gets maximum signed value of APInt for a specific bit width. |
| 540 | static APInt getSignedMaxValue(unsigned numBits) { |
| 541 | APInt API = getAllOnesValue(numBits); |
| 542 | API.clearBit(numBits - 1); |
| 543 | return API; |
| 544 | } |
| 545 | |
| 546 | /// Gets minimum unsigned value of APInt for a specific bit width. |
| 547 | static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } |
| 548 | |
| 549 | /// Gets minimum signed value of APInt for a specific bit width. |
| 550 | static APInt getSignedMinValue(unsigned numBits) { |
| 551 | APInt API(numBits, 0); |
| 552 | API.setBit(numBits - 1); |
| 553 | return API; |
| 554 | } |
| 555 | |
| 556 | /// Get the SignMask for a specific bit width. |
| 557 | /// |
| 558 | /// This is just a wrapper function of getSignedMinValue(), and it helps code |
| 559 | /// readability when we want to get a SignMask. |
| 560 | static APInt getSignMask(unsigned BitWidth) { |
| 561 | return getSignedMinValue(BitWidth); |
| 562 | } |
| 563 | |
| 564 | /// Get the all-ones value. |
| 565 | /// |
| 566 | /// \returns the all-ones value for an APInt of the specified bit-width. |
| 567 | static APInt getAllOnesValue(unsigned numBits) { |
| 568 | return APInt(numBits, WORDTYPE_MAX, true); |
| 569 | } |
| 570 | |
| 571 | /// Get the '0' value. |
| 572 | /// |
| 573 | /// \returns the '0' value for an APInt of the specified bit-width. |
| 574 | static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); } |
| 575 | |
| 576 | /// Compute an APInt containing numBits highbits from this APInt. |
| 577 | /// |
| 578 | /// Get an APInt with the same BitWidth as this APInt, just zero mask |
| 579 | /// the low bits and right shift to the least significant bit. |
| 580 | /// |
| 581 | /// \returns the high "numBits" bits of this APInt. |
| 582 | APInt getHiBits(unsigned numBits) const; |
| 583 | |
| 584 | /// Compute an APInt containing numBits lowbits from this APInt. |
| 585 | /// |
| 586 | /// Get an APInt with the same BitWidth as this APInt, just zero mask |
| 587 | /// the high bits. |
| 588 | /// |
| 589 | /// \returns the low "numBits" bits of this APInt. |
| 590 | APInt getLoBits(unsigned numBits) const; |
| 591 | |
| 592 | /// Return an APInt with exactly one bit set in the result. |
| 593 | static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { |
| 594 | APInt Res(numBits, 0); |
| 595 | Res.setBit(BitNo); |
| 596 | return Res; |
| 597 | } |
| 598 | |
| 599 | /// Get a value with a block of bits set. |
| 600 | /// |
| 601 | /// Constructs an APInt value that has a contiguous range of bits set. The |
| 602 | /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other |
| 603 | /// bits will be zero. For example, with parameters(32, 0, 16) you would get |
| 604 | /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than |
| 605 | /// \p hiBit. |
| 606 | /// |
| 607 | /// \param numBits the intended bit width of the result |
| 608 | /// \param loBit the index of the lowest bit set. |
| 609 | /// \param hiBit the index of the highest bit set. |
| 610 | /// |
| 611 | /// \returns An APInt value with the requested bits set. |
| 612 | static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { |
| 613 | assert(loBit <= hiBit && "loBit greater than hiBit")((void)0); |
| 614 | APInt Res(numBits, 0); |
| 615 | Res.setBits(loBit, hiBit); |
| 616 | return Res; |
| 617 | } |
| 618 | |
| 619 | /// Wrap version of getBitsSet. |
| 620 | /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet. |
| 621 | /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example, |
| 622 | /// with parameters (32, 28, 4), you would get 0xF000000F. |
| 623 | /// If \p hiBit is equal to \p loBit, you would get a result with all bits |
| 624 | /// set. |
| 625 | static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, |
| 626 | unsigned hiBit) { |
| 627 | APInt Res(numBits, 0); |
| 628 | Res.setBitsWithWrap(loBit, hiBit); |
| 629 | return Res; |
| 630 | } |
| 631 | |
| 632 | /// Get a value with upper bits starting at loBit set. |
| 633 | /// |
| 634 | /// Constructs an APInt value that has a contiguous range of bits set. The |
| 635 | /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other |
| 636 | /// bits will be zero. For example, with parameters(32, 12) you would get |
| 637 | /// 0xFFFFF000. |
| 638 | /// |
| 639 | /// \param numBits the intended bit width of the result |
| 640 | /// \param loBit the index of the lowest bit to set. |
| 641 | /// |
| 642 | /// \returns An APInt value with the requested bits set. |
| 643 | static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { |
| 644 | APInt Res(numBits, 0); |
| 645 | Res.setBitsFrom(loBit); |
| 646 | return Res; |
| 647 | } |
| 648 | |
| 649 | /// Get a value with high bits set |
| 650 | /// |
| 651 | /// Constructs an APInt value that has the top hiBitsSet bits set. |
| 652 | /// |
| 653 | /// \param numBits the bitwidth of the result |
| 654 | /// \param hiBitsSet the number of high-order bits set in the result. |
| 655 | static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { |
| 656 | APInt Res(numBits, 0); |
| 657 | Res.setHighBits(hiBitsSet); |
| 658 | return Res; |
| 659 | } |
| 660 | |
| 661 | /// Get a value with low bits set |
| 662 | /// |
| 663 | /// Constructs an APInt value that has the bottom loBitsSet bits set. |
| 664 | /// |
| 665 | /// \param numBits the bitwidth of the result |
| 666 | /// \param loBitsSet the number of low-order bits set in the result. |
| 667 | static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { |
| 668 | APInt Res(numBits, 0); |
| 669 | Res.setLowBits(loBitsSet); |
| 670 | return Res; |
| 671 | } |
| 672 | |
| 673 | /// Return a value containing V broadcasted over NewLen bits. |
| 674 | static APInt getSplat(unsigned NewLen, const APInt &V); |
| 675 | |
| 676 | /// Determine if two APInts have the same value, after zero-extending |
| 677 | /// one of them (if needed!) to ensure that the bit-widths match. |
| 678 | static bool isSameValue(const APInt &I1, const APInt &I2) { |
| 679 | if (I1.getBitWidth() == I2.getBitWidth()) |
| 680 | return I1 == I2; |
| 681 | |
| 682 | if (I1.getBitWidth() > I2.getBitWidth()) |
| 683 | return I1 == I2.zext(I1.getBitWidth()); |
| 684 | |
| 685 | return I1.zext(I2.getBitWidth()) == I2; |
| 686 | } |
| 687 | |
| 688 | /// Overload to compute a hash_code for an APInt value. |
| 689 | friend hash_code hash_value(const APInt &Arg); |
| 690 | |
| 691 | /// This function returns a pointer to the internal storage of the APInt. |
| 692 | /// This is useful for writing out the APInt in binary form without any |
| 693 | /// conversions. |
| 694 | const uint64_t *getRawData() const { |
| 695 | if (isSingleWord()) |
| 696 | return &U.VAL; |
| 697 | return &U.pVal[0]; |
| 698 | } |
| 699 | |
| 700 | /// @} |
| 701 | /// \name Unary Operators |
| 702 | /// @{ |
| 703 | |
| 704 | /// Postfix increment operator. |
| 705 | /// |
| 706 | /// Increments *this by 1. |
| 707 | /// |
| 708 | /// \returns a new APInt value representing the original value of *this. |
| 709 | const APInt operator++(int) { |
| 710 | APInt API(*this); |
| 711 | ++(*this); |
| 712 | return API; |
| 713 | } |
| 714 | |
| 715 | /// Prefix increment operator. |
| 716 | /// |
| 717 | /// \returns *this incremented by one |
| 718 | APInt &operator++(); |
| 719 | |
| 720 | /// Postfix decrement operator. |
| 721 | /// |
| 722 | /// Decrements *this by 1. |
| 723 | /// |
| 724 | /// \returns a new APInt value representing the original value of *this. |
| 725 | const APInt operator--(int) { |
| 726 | APInt API(*this); |
| 727 | --(*this); |
| 728 | return API; |
| 729 | } |
| 730 | |
| 731 | /// Prefix decrement operator. |
| 732 | /// |
| 733 | /// \returns *this decremented by one. |
| 734 | APInt &operator--(); |
| 735 | |
| 736 | /// Logical negation operator. |
| 737 | /// |
| 738 | /// Performs logical negation operation on this APInt. |
| 739 | /// |
| 740 | /// \returns true if *this is zero, false otherwise. |
| 741 | bool operator!() const { |
| 742 | if (isSingleWord()) |
| 743 | return U.VAL == 0; |
| 744 | return countLeadingZerosSlowCase() == BitWidth; |
| 745 | } |
| 746 | |
| 747 | /// @} |
| 748 | /// \name Assignment Operators |
| 749 | /// @{ |
| 750 | |
| 751 | /// Copy assignment operator. |
| 752 | /// |
| 753 | /// \returns *this after assignment of RHS. |
| 754 | APInt &operator=(const APInt &RHS) { |
| 755 | // If the bitwidths are the same, we can avoid mucking with memory |
| 756 | if (isSingleWord() && RHS.isSingleWord()) { |
| 757 | U.VAL = RHS.U.VAL; |
| 758 | BitWidth = RHS.BitWidth; |
| 759 | return clearUnusedBits(); |
| 760 | } |
| 761 | |
| 762 | AssignSlowCase(RHS); |
| 763 | return *this; |
| 764 | } |
| 765 | |
| 766 | /// Move assignment operator. |
| 767 | APInt &operator=(APInt &&that) { |
| 768 | #ifdef EXPENSIVE_CHECKS |
| 769 | // Some std::shuffle implementations still do self-assignment. |
| 770 | if (this == &that) |
| 771 | return *this; |
| 772 | #endif |
| 773 | assert(this != &that && "Self-move not supported")((void)0); |
| 774 | if (!isSingleWord()) |
| 775 | delete[] U.pVal; |
| 776 | |
| 777 | // Use memcpy so that type based alias analysis sees both VAL and pVal |
| 778 | // as modified. |
| 779 | memcpy(&U, &that.U, sizeof(U)); |
| 780 | |
| 781 | BitWidth = that.BitWidth; |
| 782 | that.BitWidth = 0; |
| 783 | |
| 784 | return *this; |
| 785 | } |
| 786 | |
| 787 | /// Assignment operator. |
| 788 | /// |
| 789 | /// The RHS value is assigned to *this. If the significant bits in RHS exceed |
| 790 | /// the bit width, the excess bits are truncated. If the bit width is larger |
| 791 | /// than 64, the value is zero filled in the unspecified high order bits. |
| 792 | /// |
| 793 | /// \returns *this after assignment of RHS value. |
| 794 | APInt &operator=(uint64_t RHS) { |
| 795 | if (isSingleWord()) { |
| 796 | U.VAL = RHS; |
| 797 | return clearUnusedBits(); |
| 798 | } |
| 799 | U.pVal[0] = RHS; |
| 800 | memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
| 801 | return *this; |
| 802 | } |
| 803 | |
| 804 | /// Bitwise AND assignment operator. |
| 805 | /// |
| 806 | /// Performs a bitwise AND operation on this APInt and RHS. The result is |
| 807 | /// assigned to *this. |
| 808 | /// |
| 809 | /// \returns *this after ANDing with RHS. |
| 810 | APInt &operator&=(const APInt &RHS) { |
| 811 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); |
| 812 | if (isSingleWord()) |
| 813 | U.VAL &= RHS.U.VAL; |
| 814 | else |
| 815 | AndAssignSlowCase(RHS); |
| 816 | return *this; |
| 817 | } |
| 818 | |
| 819 | /// Bitwise AND assignment operator. |
| 820 | /// |
| 821 | /// Performs a bitwise AND operation on this APInt and RHS. RHS is |
| 822 | /// logically zero-extended or truncated to match the bit-width of |
| 823 | /// the LHS. |
| 824 | APInt &operator&=(uint64_t RHS) { |
| 825 | if (isSingleWord()) { |
| 826 | U.VAL &= RHS; |
| 827 | return *this; |
| 828 | } |
| 829 | U.pVal[0] &= RHS; |
| 830 | memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
| 831 | return *this; |
| 832 | } |
| 833 | |
| 834 | /// Bitwise OR assignment operator. |
| 835 | /// |
| 836 | /// Performs a bitwise OR operation on this APInt and RHS. The result is |
| 837 | /// assigned *this; |
| 838 | /// |
| 839 | /// \returns *this after ORing with RHS. |
| 840 | APInt &operator|=(const APInt &RHS) { |
| 841 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); |
| 842 | if (isSingleWord()) |
| 843 | U.VAL |= RHS.U.VAL; |
| 844 | else |
| 845 | OrAssignSlowCase(RHS); |
| 846 | return *this; |
| 847 | } |
| 848 | |
| 849 | /// Bitwise OR assignment operator. |
| 850 | /// |
| 851 | /// Performs a bitwise OR operation on this APInt and RHS. RHS is |
| 852 | /// logically zero-extended or truncated to match the bit-width of |
| 853 | /// the LHS. |
| 854 | APInt &operator|=(uint64_t RHS) { |
| 855 | if (isSingleWord()) { |
| 856 | U.VAL |= RHS; |
| 857 | return clearUnusedBits(); |
| 858 | } |
| 859 | U.pVal[0] |= RHS; |
| 860 | return *this; |
| 861 | } |
| 862 | |
| 863 | /// Bitwise XOR assignment operator. |
| 864 | /// |
| 865 | /// Performs a bitwise XOR operation on this APInt and RHS. The result is |
| 866 | /// assigned to *this. |
| 867 | /// |
| 868 | /// \returns *this after XORing with RHS. |
| 869 | APInt &operator^=(const APInt &RHS) { |
| 870 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); |
| 871 | if (isSingleWord()) |
| 872 | U.VAL ^= RHS.U.VAL; |
| 873 | else |
| 874 | XorAssignSlowCase(RHS); |
| 875 | return *this; |
| 876 | } |
| 877 | |
| 878 | /// Bitwise XOR assignment operator. |
| 879 | /// |
| 880 | /// Performs a bitwise XOR operation on this APInt and RHS. RHS is |
| 881 | /// logically zero-extended or truncated to match the bit-width of |
| 882 | /// the LHS. |
| 883 | APInt &operator^=(uint64_t RHS) { |
| 884 | if (isSingleWord()) { |
| 885 | U.VAL ^= RHS; |
| 886 | return clearUnusedBits(); |
| 887 | } |
| 888 | U.pVal[0] ^= RHS; |
| 889 | return *this; |
| 890 | } |
| 891 | |
| 892 | /// Multiplication assignment operator. |
| 893 | /// |
| 894 | /// Multiplies this APInt by RHS and assigns the result to *this. |
| 895 | /// |
| 896 | /// \returns *this |
| 897 | APInt &operator*=(const APInt &RHS); |
| 898 | APInt &operator*=(uint64_t RHS); |
| 899 | |
| 900 | /// Addition assignment operator. |
| 901 | /// |
| 902 | /// Adds RHS to *this and assigns the result to *this. |
| 903 | /// |
| 904 | /// \returns *this |
| 905 | APInt &operator+=(const APInt &RHS); |
| 906 | APInt &operator+=(uint64_t RHS); |
| 907 | |
| 908 | /// Subtraction assignment operator. |
| 909 | /// |
| 910 | /// Subtracts RHS from *this and assigns the result to *this. |
| 911 | /// |
| 912 | /// \returns *this |
| 913 | APInt &operator-=(const APInt &RHS); |
| 914 | APInt &operator-=(uint64_t RHS); |
| 915 | |
| 916 | /// Left-shift assignment function. |
| 917 | /// |
| 918 | /// Shifts *this left by shiftAmt and assigns the result to *this. |
| 919 | /// |
| 920 | /// \returns *this after shifting left by ShiftAmt |
| 921 | APInt &operator<<=(unsigned ShiftAmt) { |
| 922 | assert(ShiftAmt <= BitWidth && "Invalid shift amount")((void)0); |
| 923 | if (isSingleWord()) { |
| 924 | if (ShiftAmt == BitWidth) |
| 925 | U.VAL = 0; |
| 926 | else |
| 927 | U.VAL <<= ShiftAmt; |
| 928 | return clearUnusedBits(); |
| 929 | } |
| 930 | shlSlowCase(ShiftAmt); |
| 931 | return *this; |
| 932 | } |
| 933 | |
| 934 | /// Left-shift assignment function. |
| 935 | /// |
| 936 | /// Shifts *this left by shiftAmt and assigns the result to *this. |
| 937 | /// |
| 938 | /// \returns *this after shifting left by ShiftAmt |
| 939 | APInt &operator<<=(const APInt &ShiftAmt); |
| 940 | |
| 941 | /// @} |
| 942 | /// \name Binary Operators |
| 943 | /// @{ |
| 944 | |
| 945 | /// Multiplication operator. |
| 946 | /// |
| 947 | /// Multiplies this APInt by RHS and returns the result. |
| 948 | APInt operator*(const APInt &RHS) const; |
| 949 | |
| 950 | /// Left logical shift operator. |
| 951 | /// |
| 952 | /// Shifts this APInt left by \p Bits and returns the result. |
| 953 | APInt operator<<(unsigned Bits) const { return shl(Bits); } |
| 954 | |
| 955 | /// Left logical shift operator. |
| 956 | /// |
| 957 | /// Shifts this APInt left by \p Bits and returns the result. |
| 958 | APInt operator<<(const APInt &Bits) const { return shl(Bits); } |
| 959 | |
| 960 | /// Arithmetic right-shift function. |
| 961 | /// |
| 962 | /// Arithmetic right-shift this APInt by shiftAmt. |
| 963 | APInt ashr(unsigned ShiftAmt) const { |
| 964 | APInt R(*this); |
| 965 | R.ashrInPlace(ShiftAmt); |
| 966 | return R; |
| 967 | } |
| 968 | |
| 969 | /// Arithmetic right-shift this APInt by ShiftAmt in place. |
| 970 | void ashrInPlace(unsigned ShiftAmt) { |
| 971 | assert(ShiftAmt <= BitWidth && "Invalid shift amount")((void)0); |
| 972 | if (isSingleWord()) { |
| 973 | int64_t SExtVAL = SignExtend64(U.VAL, BitWidth); |
| 974 | if (ShiftAmt == BitWidth) |
| 975 | U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. |
| 976 | else |
| 977 | U.VAL = SExtVAL >> ShiftAmt; |
| 978 | clearUnusedBits(); |
| 979 | return; |
| 980 | } |
| 981 | ashrSlowCase(ShiftAmt); |
| 982 | } |
| 983 | |
| 984 | /// Logical right-shift function. |
| 985 | /// |
| 986 | /// Logical right-shift this APInt by shiftAmt. |
| 987 | APInt lshr(unsigned shiftAmt) const { |
| 988 | APInt R(*this); |
| 989 | R.lshrInPlace(shiftAmt); |
| 990 | return R; |
| 991 | } |
| 992 | |
| 993 | /// Logical right-shift this APInt by ShiftAmt in place. |
| 994 | void lshrInPlace(unsigned ShiftAmt) { |
| 995 | assert(ShiftAmt <= BitWidth && "Invalid shift amount")((void)0); |
| 996 | if (isSingleWord()) { |
| 997 | if (ShiftAmt == BitWidth) |
| 998 | U.VAL = 0; |
| 999 | else |
| 1000 | U.VAL >>= ShiftAmt; |
| 1001 | return; |
| 1002 | } |
| 1003 | lshrSlowCase(ShiftAmt); |
| 1004 | } |
| 1005 | |
| 1006 | /// Left-shift function. |
| 1007 | /// |
| 1008 | /// Left-shift this APInt by shiftAmt. |
| 1009 | APInt shl(unsigned shiftAmt) const { |
| 1010 | APInt R(*this); |
| 1011 | R <<= shiftAmt; |
| 1012 | return R; |
| 1013 | } |
| 1014 | |
| 1015 | /// Rotate left by rotateAmt. |
| 1016 | APInt rotl(unsigned rotateAmt) const; |
| 1017 | |
| 1018 | /// Rotate right by rotateAmt. |
| 1019 | APInt rotr(unsigned rotateAmt) const; |
| 1020 | |
| 1021 | /// Arithmetic right-shift function. |
| 1022 | /// |
| 1023 | /// Arithmetic right-shift this APInt by shiftAmt. |
| 1024 | APInt ashr(const APInt &ShiftAmt) const { |
| 1025 | APInt R(*this); |
| 1026 | R.ashrInPlace(ShiftAmt); |
| 1027 | return R; |
| 1028 | } |
| 1029 | |
| 1030 | /// Arithmetic right-shift this APInt by shiftAmt in place. |
| 1031 | void ashrInPlace(const APInt &shiftAmt); |
| 1032 | |
| 1033 | /// Logical right-shift function. |
| 1034 | /// |
| 1035 | /// Logical right-shift this APInt by shiftAmt. |
| 1036 | APInt lshr(const APInt &ShiftAmt) const { |
| 1037 | APInt R(*this); |
| 1038 | R.lshrInPlace(ShiftAmt); |
| 1039 | return R; |
| 1040 | } |
| 1041 | |
| 1042 | /// Logical right-shift this APInt by ShiftAmt in place. |
| 1043 | void lshrInPlace(const APInt &ShiftAmt); |
| 1044 | |
| 1045 | /// Left-shift function. |
| 1046 | /// |
| 1047 | /// Left-shift this APInt by shiftAmt. |
| 1048 | APInt shl(const APInt &ShiftAmt) const { |
| 1049 | APInt R(*this); |
| 1050 | R <<= ShiftAmt; |
| 1051 | return R; |
| 1052 | } |
| 1053 | |
| 1054 | /// Rotate left by rotateAmt. |
| 1055 | APInt rotl(const APInt &rotateAmt) const; |
| 1056 | |
| 1057 | /// Rotate right by rotateAmt. |
| 1058 | APInt rotr(const APInt &rotateAmt) const; |
| 1059 | |
| 1060 | /// Unsigned division operation. |
| 1061 | /// |
| 1062 | /// Perform an unsigned divide operation on this APInt by RHS. Both this and |
| 1063 | /// RHS are treated as unsigned quantities for purposes of this division. |
| 1064 | /// |
| 1065 | /// \returns a new APInt value containing the division result, rounded towards |
| 1066 | /// zero. |
| 1067 | APInt udiv(const APInt &RHS) const; |
| 1068 | APInt udiv(uint64_t RHS) const; |
| 1069 | |
| 1070 | /// Signed division function for APInt. |
| 1071 | /// |
| 1072 | /// Signed divide this APInt by APInt RHS. |
| 1073 | /// |
| 1074 | /// The result is rounded towards zero. |
| 1075 | APInt sdiv(const APInt &RHS) const; |
| 1076 | APInt sdiv(int64_t RHS) const; |
| 1077 | |
| 1078 | /// Unsigned remainder operation. |
| 1079 | /// |
| 1080 | /// Perform an unsigned remainder operation on this APInt with RHS being the |
| 1081 | /// divisor. Both this and RHS are treated as unsigned quantities for purposes |
| 1082 | /// of this operation. Note that this is a true remainder operation and not a |
| 1083 | /// modulo operation because the sign follows the sign of the dividend which |
| 1084 | /// is *this. |
| 1085 | /// |
| 1086 | /// \returns a new APInt value containing the remainder result |
| 1087 | APInt urem(const APInt &RHS) const; |
| 1088 | uint64_t urem(uint64_t RHS) const; |
| 1089 | |
| 1090 | /// Function for signed remainder operation. |
| 1091 | /// |
| 1092 | /// Signed remainder operation on APInt. |
| 1093 | APInt srem(const APInt &RHS) const; |
| 1094 | int64_t srem(int64_t RHS) const; |
| 1095 | |
| 1096 | /// Dual division/remainder interface. |
| 1097 | /// |
| 1098 | /// Sometimes it is convenient to divide two APInt values and obtain both the |
| 1099 | /// quotient and remainder. This function does both operations in the same |
| 1100 | /// computation making it a little more efficient. The pair of input arguments |
| 1101 | /// may overlap with the pair of output arguments. It is safe to call |
| 1102 | /// udivrem(X, Y, X, Y), for example. |
| 1103 | static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
| 1104 | APInt &Remainder); |
| 1105 | static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, |
| 1106 | uint64_t &Remainder); |
| 1107 | |
| 1108 | static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
| 1109 | APInt &Remainder); |
| 1110 | static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, |
| 1111 | int64_t &Remainder); |
| 1112 | |
| 1113 | // Operations that return overflow indicators. |
| 1114 | APInt sadd_ov(const APInt &RHS, bool &Overflow) const; |
| 1115 | APInt uadd_ov(const APInt &RHS, bool &Overflow) const; |
| 1116 | APInt ssub_ov(const APInt &RHS, bool &Overflow) const; |
| 1117 | APInt usub_ov(const APInt &RHS, bool &Overflow) const; |
| 1118 | APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; |
| 1119 | APInt smul_ov(const APInt &RHS, bool &Overflow) const; |
| 1120 | APInt umul_ov(const APInt &RHS, bool &Overflow) const; |
| 1121 | APInt sshl_ov(const APInt &Amt, bool &Overflow) const; |
| 1122 | APInt ushl_ov(const APInt &Amt, bool &Overflow) const; |
| 1123 | |
| 1124 | // Operations that saturate |
| 1125 | APInt sadd_sat(const APInt &RHS) const; |
| 1126 | APInt uadd_sat(const APInt &RHS) const; |
| 1127 | APInt ssub_sat(const APInt &RHS) const; |
| 1128 | APInt usub_sat(const APInt &RHS) const; |
| 1129 | APInt smul_sat(const APInt &RHS) const; |
| 1130 | APInt umul_sat(const APInt &RHS) const; |
| 1131 | APInt sshl_sat(const APInt &RHS) const; |
| 1132 | APInt ushl_sat(const APInt &RHS) const; |
| 1133 | |
| 1134 | /// Array-indexing support. |
| 1135 | /// |
| 1136 | /// \returns the bit value at bitPosition |
| 1137 | bool operator[](unsigned bitPosition) const { |
| 1138 | assert(bitPosition < getBitWidth() && "Bit position out of bounds!")((void)0); |
| 1139 | return (maskBit(bitPosition) & getWord(bitPosition)) != 0; |
| 1140 | } |
| 1141 | |
| 1142 | /// @} |
| 1143 | /// \name Comparison Operators |
| 1144 | /// @{ |
| 1145 | |
| 1146 | /// Equality operator. |
| 1147 | /// |
| 1148 | /// Compares this APInt with RHS for the validity of the equality |
| 1149 | /// relationship. |
| 1150 | bool operator==(const APInt &RHS) const { |
| 1151 | assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths")((void)0); |
| 1152 | if (isSingleWord()) |
| 1153 | return U.VAL == RHS.U.VAL; |
| 1154 | return EqualSlowCase(RHS); |
| 1155 | } |
| 1156 | |
| 1157 | /// Equality operator. |
| 1158 | /// |
| 1159 | /// Compares this APInt with a uint64_t for the validity of the equality |
| 1160 | /// relationship. |
| 1161 | /// |
| 1162 | /// \returns true if *this == Val |
| 1163 | bool operator==(uint64_t Val) const { |
| 1164 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; |
| 1165 | } |
| 1166 | |
| 1167 | /// Equality comparison. |
| 1168 | /// |
| 1169 | /// Compares this APInt with RHS for the validity of the equality |
| 1170 | /// relationship. |
| 1171 | /// |
| 1172 | /// \returns true if *this == Val |
| 1173 | bool eq(const APInt &RHS) const { return (*this) == RHS; } |
| 1174 | |
| 1175 | /// Inequality operator. |
| 1176 | /// |
| 1177 | /// Compares this APInt with RHS for the validity of the inequality |
| 1178 | /// relationship. |
| 1179 | /// |
| 1180 | /// \returns true if *this != Val |
| 1181 | bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } |
| 1182 | |
| 1183 | /// Inequality operator. |
| 1184 | /// |
| 1185 | /// Compares this APInt with a uint64_t for the validity of the inequality |
| 1186 | /// relationship. |
| 1187 | /// |
| 1188 | /// \returns true if *this != Val |
| 1189 | bool operator!=(uint64_t Val) const { return !((*this) == Val); } |
| 1190 | |
| 1191 | /// Inequality comparison |
| 1192 | /// |
| 1193 | /// Compares this APInt with RHS for the validity of the inequality |
| 1194 | /// relationship. |
| 1195 | /// |
| 1196 | /// \returns true if *this != Val |
| 1197 | bool ne(const APInt &RHS) const { return !((*this) == RHS); } |
| 1198 | |
| 1199 | /// Unsigned less than comparison |
| 1200 | /// |
| 1201 | /// Regards both *this and RHS as unsigned quantities and compares them for |
| 1202 | /// the validity of the less-than relationship. |
| 1203 | /// |
| 1204 | /// \returns true if *this < RHS when both are considered unsigned. |
| 1205 | bool ult(const APInt &RHS) const { return compare(RHS) < 0; } |
| 1206 | |
| 1207 | /// Unsigned less than comparison |
| 1208 | /// |
| 1209 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
| 1210 | /// the validity of the less-than relationship. |
| 1211 | /// |
| 1212 | /// \returns true if *this < RHS when considered unsigned. |
| 1213 | bool ult(uint64_t RHS) const { |
| 1214 | // Only need to check active bits if not a single word. |
| 1215 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; |
| 1216 | } |
| 1217 | |
| 1218 | /// Signed less than comparison |
| 1219 | /// |
| 1220 | /// Regards both *this and RHS as signed quantities and compares them for |
| 1221 | /// validity of the less-than relationship. |
| 1222 | /// |
| 1223 | /// \returns true if *this < RHS when both are considered signed. |
| 1224 | bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } |
| 1225 | |
| 1226 | /// Signed less than comparison |
| 1227 | /// |
| 1228 | /// Regards both *this as a signed quantity and compares it with RHS for |
| 1229 | /// the validity of the less-than relationship. |
| 1230 | /// |
| 1231 | /// \returns true if *this < RHS when considered signed. |
| 1232 | bool slt(int64_t RHS) const { |
| 1233 | return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative() |
| 1234 | : getSExtValue() < RHS; |
| 1235 | } |
| 1236 | |
| 1237 | /// Unsigned less or equal comparison |
| 1238 | /// |
| 1239 | /// Regards both *this and RHS as unsigned quantities and compares them for |
| 1240 | /// validity of the less-or-equal relationship. |
| 1241 | /// |
| 1242 | /// \returns true if *this <= RHS when both are considered unsigned. |
| 1243 | bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } |
| 1244 | |
| 1245 | /// Unsigned less or equal comparison |
| 1246 | /// |
| 1247 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
| 1248 | /// the validity of the less-or-equal relationship. |
| 1249 | /// |
| 1250 | /// \returns true if *this <= RHS when considered unsigned. |
| 1251 | bool ule(uint64_t RHS) const { return !ugt(RHS); } |
| 1252 | |
| 1253 | /// Signed less or equal comparison |
| 1254 | /// |
| 1255 | /// Regards both *this and RHS as signed quantities and compares them for |
| 1256 | /// validity of the less-or-equal relationship. |
| 1257 | /// |
| 1258 | /// \returns true if *this <= RHS when both are considered signed. |
| 1259 | bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } |
| 1260 | |
| 1261 | /// Signed less or equal comparison |
| 1262 | /// |
| 1263 | /// Regards both *this as a signed quantity and compares it with RHS for the |
| 1264 | /// validity of the less-or-equal relationship. |
| 1265 | /// |
| 1266 | /// \returns true if *this <= RHS when considered signed. |
| 1267 | bool sle(uint64_t RHS) const { return !sgt(RHS); } |
| 1268 | |
| 1269 | /// Unsigned greater than comparison |
| 1270 | /// |
| 1271 | /// Regards both *this and RHS as unsigned quantities and compares them for |
| 1272 | /// the validity of the greater-than relationship. |
| 1273 | /// |
| 1274 | /// \returns true if *this > RHS when both are considered unsigned. |
| 1275 | bool ugt(const APInt &RHS) const { return !ule(RHS); } |
| 1276 | |
| 1277 | /// Unsigned greater than comparison |
| 1278 | /// |
| 1279 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
| 1280 | /// the validity of the greater-than relationship. |
| 1281 | /// |
| 1282 | /// \returns true if *this > RHS when considered unsigned. |
| 1283 | bool ugt(uint64_t RHS) const { |
| 1284 | // Only need to check active bits if not a single word. |
| 1285 | return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; |
| 1286 | } |
| 1287 | |
| 1288 | /// Signed greater than comparison |
| 1289 | /// |
| 1290 | /// Regards both *this and RHS as signed quantities and compares them for the |
| 1291 | /// validity of the greater-than relationship. |
| 1292 | /// |
| 1293 | /// \returns true if *this > RHS when both are considered signed. |
| 1294 | bool sgt(const APInt &RHS) const { return !sle(RHS); } |
| 1295 | |
| 1296 | /// Signed greater than comparison |
| 1297 | /// |
| 1298 | /// Regards both *this as a signed quantity and compares it with RHS for |
| 1299 | /// the validity of the greater-than relationship. |
| 1300 | /// |
| 1301 | /// \returns true if *this > RHS when considered signed. |
| 1302 | bool sgt(int64_t RHS) const { |
| 1303 | return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative() |
| 1304 | : getSExtValue() > RHS; |
| 1305 | } |
| 1306 | |
| 1307 | /// Unsigned greater or equal comparison |
| 1308 | /// |
| 1309 | /// Regards both *this and RHS as unsigned quantities and compares them for |
| 1310 | /// validity of the greater-or-equal relationship. |
| 1311 | /// |
| 1312 | /// \returns true if *this >= RHS when both are considered unsigned. |
| 1313 | bool uge(const APInt &RHS) const { return !ult(RHS); } |
| 1314 | |
| 1315 | /// Unsigned greater or equal comparison |
| 1316 | /// |
| 1317 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
| 1318 | /// the validity of the greater-or-equal relationship. |
| 1319 | /// |
| 1320 | /// \returns true if *this >= RHS when considered unsigned. |
| 1321 | bool uge(uint64_t RHS) const { return !ult(RHS); } |
| 1322 | |
| 1323 | /// Signed greater or equal comparison |
| 1324 | /// |
| 1325 | /// Regards both *this and RHS as signed quantities and compares them for |
| 1326 | /// validity of the greater-or-equal relationship. |
| 1327 | /// |
| 1328 | /// \returns true if *this >= RHS when both are considered signed. |
| 1329 | bool sge(const APInt &RHS) const { return !slt(RHS); } |
| 1330 | |
| 1331 | /// Signed greater or equal comparison |
| 1332 | /// |
| 1333 | /// Regards both *this as a signed quantity and compares it with RHS for |
| 1334 | /// the validity of the greater-or-equal relationship. |
| 1335 | /// |
| 1336 | /// \returns true if *this >= RHS when considered signed. |
| 1337 | bool sge(int64_t RHS) const { return !slt(RHS); } |
| 1338 | |
| 1339 | /// This operation tests if there are any pairs of corresponding bits |
| 1340 | /// between this APInt and RHS that are both set. |
| 1341 | bool intersects(const APInt &RHS) const { |
| 1342 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); |
| 1343 | if (isSingleWord()) |
| 1344 | return (U.VAL & RHS.U.VAL) != 0; |
| 1345 | return intersectsSlowCase(RHS); |
| 1346 | } |
| 1347 | |
| 1348 | /// This operation checks that all bits set in this APInt are also set in RHS. |
| 1349 | bool isSubsetOf(const APInt &RHS) const { |
| 1350 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); |
| 1351 | if (isSingleWord()) |
| 1352 | return (U.VAL & ~RHS.U.VAL) == 0; |
| 1353 | return isSubsetOfSlowCase(RHS); |
| 1354 | } |
| 1355 | |
| 1356 | /// @} |
| 1357 | /// \name Resizing Operators |
| 1358 | /// @{ |
| 1359 | |
| 1360 | /// Truncate to new width. |
| 1361 | /// |
| 1362 | /// Truncate the APInt to a specified width. It is an error to specify a width |
| 1363 | /// that is greater than or equal to the current width. |
| 1364 | APInt trunc(unsigned width) const; |
| 1365 | |
| 1366 | /// Truncate to new width with unsigned saturation. |
| 1367 | /// |
| 1368 | /// If the APInt, treated as unsigned integer, can be losslessly truncated to |
| 1369 | /// the new bitwidth, then return truncated APInt. Else, return max value. |
| 1370 | APInt truncUSat(unsigned width) const; |
| 1371 | |
| 1372 | /// Truncate to new width with signed saturation. |
| 1373 | /// |
| 1374 | /// If this APInt, treated as signed integer, can be losslessly truncated to |
| 1375 | /// the new bitwidth, then return truncated APInt. Else, return either |
| 1376 | /// signed min value if the APInt was negative, or signed max value. |
| 1377 | APInt truncSSat(unsigned width) const; |
| 1378 | |
| 1379 | /// Sign extend to a new width. |
| 1380 | /// |
| 1381 | /// This operation sign extends the APInt to a new width. If the high order |
| 1382 | /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. |
| 1383 | /// It is an error to specify a width that is less than or equal to the |
| 1384 | /// current width. |
| 1385 | APInt sext(unsigned width) const; |
| 1386 | |
| 1387 | /// Zero extend to a new width. |
| 1388 | /// |
| 1389 | /// This operation zero extends the APInt to a new width. The high order bits |
| 1390 | /// are filled with 0 bits. It is an error to specify a width that is less |
| 1391 | /// than or equal to the current width. |
| 1392 | APInt zext(unsigned width) const; |
| 1393 | |
| 1394 | /// Sign extend or truncate to width |
| 1395 | /// |
| 1396 | /// Make this APInt have the bit width given by \p width. The value is sign |
| 1397 | /// extended, truncated, or left alone to make it that width. |
| 1398 | APInt sextOrTrunc(unsigned width) const; |
| 1399 | |
| 1400 | /// Zero extend or truncate to width |
| 1401 | /// |
| 1402 | /// Make this APInt have the bit width given by \p width. The value is zero |
| 1403 | /// extended, truncated, or left alone to make it that width. |
| 1404 | APInt zextOrTrunc(unsigned width) const; |
| 1405 | |
| 1406 | /// Truncate to width |
| 1407 | /// |
| 1408 | /// Make this APInt have the bit width given by \p width. The value is |
| 1409 | /// truncated or left alone to make it that width. |
| 1410 | APInt truncOrSelf(unsigned width) const; |
| 1411 | |
| 1412 | /// Sign extend or truncate to width |
| 1413 | /// |
| 1414 | /// Make this APInt have the bit width given by \p width. The value is sign |
| 1415 | /// extended, or left alone to make it that width. |
| 1416 | APInt sextOrSelf(unsigned width) const; |
| 1417 | |
| 1418 | /// Zero extend or truncate to width |
| 1419 | /// |
| 1420 | /// Make this APInt have the bit width given by \p width. The value is zero |
| 1421 | /// extended, or left alone to make it that width. |
| 1422 | APInt zextOrSelf(unsigned width) const; |
| 1423 | |
| 1424 | /// @} |
| 1425 | /// \name Bit Manipulation Operators |
| 1426 | /// @{ |
| 1427 | |
| 1428 | /// Set every bit to 1. |
| 1429 | void setAllBits() { |
| 1430 | if (isSingleWord()) |
| 1431 | U.VAL = WORDTYPE_MAX; |
| 1432 | else |
| 1433 | // Set all the bits in all the words. |
| 1434 | memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE); |
| 1435 | // Clear the unused ones |
| 1436 | clearUnusedBits(); |
| 1437 | } |
| 1438 | |
| 1439 | /// Set a given bit to 1. |
| 1440 | /// |
| 1441 | /// Set the given bit to 1 whose position is given as "bitPosition". |
| 1442 | void setBit(unsigned BitPosition) { |
| 1443 | assert(BitPosition < BitWidth && "BitPosition out of range")((void)0); |
| 1444 | WordType Mask = maskBit(BitPosition); |
| 1445 | if (isSingleWord()) |
| 1446 | U.VAL |= Mask; |
| 1447 | else |
| 1448 | U.pVal[whichWord(BitPosition)] |= Mask; |
| 1449 | } |
| 1450 | |
| 1451 | /// Set the sign bit to 1. |
| 1452 | void setSignBit() { |
| 1453 | setBit(BitWidth - 1); |
| 1454 | } |
| 1455 | |
| 1456 | /// Set a given bit to a given value. |
| 1457 | void setBitVal(unsigned BitPosition, bool BitValue) { |
| 1458 | if (BitValue) |
| 1459 | setBit(BitPosition); |
| 1460 | else |
| 1461 | clearBit(BitPosition); |
| 1462 | } |
| 1463 | |
| 1464 | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
| 1465 | /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls |
| 1466 | /// setBits when \p loBit < \p hiBit. |
| 1467 | /// For \p loBit == \p hiBit wrap case, set every bit to 1. |
| 1468 | void setBitsWithWrap(unsigned loBit, unsigned hiBit) { |
| 1469 | assert(hiBit <= BitWidth && "hiBit out of range")((void)0); |
| 1470 | assert(loBit <= BitWidth && "loBit out of range")((void)0); |
| 1471 | if (loBit < hiBit) { |
| 1472 | setBits(loBit, hiBit); |
| 1473 | return; |
| 1474 | } |
| 1475 | setLowBits(hiBit); |
| 1476 | setHighBits(BitWidth - loBit); |
| 1477 | } |
| 1478 | |
| 1479 | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
| 1480 | /// This function handles case when \p loBit <= \p hiBit. |
| 1481 | void setBits(unsigned loBit, unsigned hiBit) { |
| 1482 | assert(hiBit <= BitWidth && "hiBit out of range")((void)0); |
| 1483 | assert(loBit <= BitWidth && "loBit out of range")((void)0); |
| 1484 | assert(loBit <= hiBit && "loBit greater than hiBit")((void)0); |
| 1485 | if (loBit == hiBit) |
| 1486 | return; |
| 1487 | if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { |
| 1488 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); |
| 1489 | mask <<= loBit; |
| 1490 | if (isSingleWord()) |
| 1491 | U.VAL |= mask; |
| 1492 | else |
| 1493 | U.pVal[0] |= mask; |
| 1494 | } else { |
| 1495 | setBitsSlowCase(loBit, hiBit); |
| 1496 | } |
| 1497 | } |
| 1498 | |
| 1499 | /// Set the top bits starting from loBit. |
| 1500 | void setBitsFrom(unsigned loBit) { |
| 1501 | return setBits(loBit, BitWidth); |
| 1502 | } |
| 1503 | |
| 1504 | /// Set the bottom loBits bits. |
| 1505 | void setLowBits(unsigned loBits) { |
| 1506 | return setBits(0, loBits); |
| 1507 | } |
| 1508 | |
| 1509 | /// Set the top hiBits bits. |
| 1510 | void setHighBits(unsigned hiBits) { |
| 1511 | return setBits(BitWidth - hiBits, BitWidth); |
| 1512 | } |
| 1513 | |
| 1514 | /// Set every bit to 0. |
| 1515 | void clearAllBits() { |
| 1516 | if (isSingleWord()) |
| 1517 | U.VAL = 0; |
| 1518 | else |
| 1519 | memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE); |
| 1520 | } |
| 1521 | |
| 1522 | /// Set a given bit to 0. |
| 1523 | /// |
| 1524 | /// Set the given bit to 0 whose position is given as "bitPosition". |
| 1525 | void clearBit(unsigned BitPosition) { |
| 1526 | assert(BitPosition < BitWidth && "BitPosition out of range")((void)0); |
| 1527 | WordType Mask = ~maskBit(BitPosition); |
| 1528 | if (isSingleWord()) |
| 1529 | U.VAL &= Mask; |
| 1530 | else |
| 1531 | U.pVal[whichWord(BitPosition)] &= Mask; |
| 1532 | } |
| 1533 | |
| 1534 | /// Set bottom loBits bits to 0. |
| 1535 | void clearLowBits(unsigned loBits) { |
| 1536 | assert(loBits <= BitWidth && "More bits than bitwidth")((void)0); |
| 1537 | APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits); |
| 1538 | *this &= Keep; |
| 1539 | } |
| 1540 | |
| 1541 | /// Set the sign bit to 0. |
| 1542 | void clearSignBit() { |
| 1543 | clearBit(BitWidth - 1); |
| 1544 | } |
| 1545 | |
| 1546 | /// Toggle every bit to its opposite value. |
| 1547 | void flipAllBits() { |
| 1548 | if (isSingleWord()) { |
| 1549 | U.VAL ^= WORDTYPE_MAX; |
| 1550 | clearUnusedBits(); |
| 1551 | } else { |
| 1552 | flipAllBitsSlowCase(); |
| 1553 | } |
| 1554 | } |
| 1555 | |
| 1556 | /// Toggles a given bit to its opposite value. |
| 1557 | /// |
| 1558 | /// Toggle a given bit to its opposite value whose position is given |
| 1559 | /// as "bitPosition". |
| 1560 | void flipBit(unsigned bitPosition); |
| 1561 | |
| 1562 | /// Negate this APInt in place. |
| 1563 | void negate() { |
| 1564 | flipAllBits(); |
| 1565 | ++(*this); |
| 1566 | } |
| 1567 | |
| 1568 | /// Insert the bits from a smaller APInt starting at bitPosition. |
| 1569 | void insertBits(const APInt &SubBits, unsigned bitPosition); |
| 1570 | void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits); |
| 1571 | |
| 1572 | /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). |
| 1573 | APInt extractBits(unsigned numBits, unsigned bitPosition) const; |
| 1574 | uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const; |
| 1575 | |
| 1576 | /// @} |
| 1577 | /// \name Value Characterization Functions |
| 1578 | /// @{ |
| 1579 | |
| 1580 | /// Return the number of bits in the APInt. |
| 1581 | unsigned getBitWidth() const { return BitWidth; } |
| 1582 | |
| 1583 | /// Get the number of words. |
| 1584 | /// |
| 1585 | /// Here one word's bitwidth equals to that of uint64_t. |
| 1586 | /// |
| 1587 | /// \returns the number of words to hold the integer value of this APInt. |
| 1588 | unsigned getNumWords() const { return getNumWords(BitWidth); } |
| 1589 | |
| 1590 | /// Get the number of words. |
| 1591 | /// |
| 1592 | /// *NOTE* Here one word's bitwidth equals to that of uint64_t. |
| 1593 | /// |
| 1594 | /// \returns the number of words to hold the integer value with a given bit |
| 1595 | /// width. |
| 1596 | static unsigned getNumWords(unsigned BitWidth) { |
| 1597 | return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; |
| 1598 | } |
| 1599 | |
| 1600 | /// Compute the number of active bits in the value |
| 1601 | /// |
| 1602 | /// This function returns the number of active bits which is defined as the |
| 1603 | /// bit width minus the number of leading zeros. This is used in several |
| 1604 | /// computations to see how "wide" the value is. |
| 1605 | unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } |
| 1606 | |
| 1607 | /// Compute the number of active words in the value of this APInt. |
| 1608 | /// |
| 1609 | /// This is used in conjunction with getActiveData to extract the raw value of |
| 1610 | /// the APInt. |
| 1611 | unsigned getActiveWords() const { |
| 1612 | unsigned numActiveBits = getActiveBits(); |
| 1613 | return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; |
| 1614 | } |
| 1615 | |
| 1616 | /// Get the minimum bit size for this signed APInt |
| 1617 | /// |
| 1618 | /// Computes the minimum bit width for this APInt while considering it to be a |
| 1619 | /// signed (and probably negative) value. If the value is not negative, this |
| 1620 | /// function returns the same value as getActiveBits()+1. Otherwise, it |
| 1621 | /// returns the smallest bit width that will retain the negative value. For |
| 1622 | /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so |
| 1623 | /// for -1, this function will always return 1. |
| 1624 | unsigned getMinSignedBits() const { return BitWidth - getNumSignBits() + 1; } |
| 1625 | |
| 1626 | /// Get zero extended value |
| 1627 | /// |
| 1628 | /// This method attempts to return the value of this APInt as a zero extended |
| 1629 | /// uint64_t. The bitwidth must be <= 64 or the value must fit within a |
| 1630 | /// uint64_t. Otherwise an assertion will result. |
| 1631 | uint64_t getZExtValue() const { |
| 1632 | if (isSingleWord()) |
| 1633 | return U.VAL; |
| 1634 | assert(getActiveBits() <= 64 && "Too many bits for uint64_t")((void)0); |
| 1635 | return U.pVal[0]; |
| 1636 | } |
| 1637 | |
| 1638 | /// Get sign extended value |
| 1639 | /// |
| 1640 | /// This method attempts to return the value of this APInt as a sign extended |
| 1641 | /// int64_t. The bit width must be <= 64 or the value must fit within an |
| 1642 | /// int64_t. Otherwise an assertion will result. |
| 1643 | int64_t getSExtValue() const { |
| 1644 | if (isSingleWord()) |
| 1645 | return SignExtend64(U.VAL, BitWidth); |
| 1646 | assert(getMinSignedBits() <= 64 && "Too many bits for int64_t")((void)0); |
| 1647 | return int64_t(U.pVal[0]); |
| 1648 | } |
| 1649 | |
| 1650 | /// Get bits required for string value. |
| 1651 | /// |
| 1652 | /// This method determines how many bits are required to hold the APInt |
| 1653 | /// equivalent of the string given by \p str. |
| 1654 | static unsigned getBitsNeeded(StringRef str, uint8_t radix); |
| 1655 | |
| 1656 | /// The APInt version of the countLeadingZeros functions in |
| 1657 | /// MathExtras.h. |
| 1658 | /// |
| 1659 | /// It counts the number of zeros from the most significant bit to the first |
| 1660 | /// one bit. |
| 1661 | /// |
| 1662 | /// \returns BitWidth if the value is zero, otherwise returns the number of |
| 1663 | /// zeros from the most significant bit to the first one bits. |
| 1664 | unsigned countLeadingZeros() const { |
| 1665 | if (isSingleWord()) { |
| 1666 | unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; |
| 1667 | return llvm::countLeadingZeros(U.VAL) - unusedBits; |
| 1668 | } |
| 1669 | return countLeadingZerosSlowCase(); |
| 1670 | } |
| 1671 | |
| 1672 | /// Count the number of leading one bits. |
| 1673 | /// |
| 1674 | /// This function is an APInt version of the countLeadingOnes |
| 1675 | /// functions in MathExtras.h. It counts the number of ones from the most |
| 1676 | /// significant bit to the first zero bit. |
| 1677 | /// |
| 1678 | /// \returns 0 if the high order bit is not set, otherwise returns the number |
| 1679 | /// of 1 bits from the most significant to the least |
| 1680 | unsigned countLeadingOnes() const { |
| 1681 | if (isSingleWord()) |
| 1682 | return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth)); |
| 1683 | return countLeadingOnesSlowCase(); |
| 1684 | } |
| 1685 | |
| 1686 | /// Computes the number of leading bits of this APInt that are equal to its |
| 1687 | /// sign bit. |
| 1688 | unsigned getNumSignBits() const { |
| 1689 | return isNegative() ? countLeadingOnes() : countLeadingZeros(); |
| 1690 | } |
| 1691 | |
| 1692 | /// Count the number of trailing zero bits. |
| 1693 | /// |
| 1694 | /// This function is an APInt version of the countTrailingZeros |
| 1695 | /// functions in MathExtras.h. It counts the number of zeros from the least |
| 1696 | /// significant bit to the first set bit. |
| 1697 | /// |
| 1698 | /// \returns BitWidth if the value is zero, otherwise returns the number of |
| 1699 | /// zeros from the least significant bit to the first one bit. |
| 1700 | unsigned countTrailingZeros() const { |
| 1701 | if (isSingleWord()) { |
| 1702 | unsigned TrailingZeros = llvm::countTrailingZeros(U.VAL); |
| 1703 | return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros); |
| 1704 | } |
| 1705 | return countTrailingZerosSlowCase(); |
| 1706 | } |
| 1707 | |
| 1708 | /// Count the number of trailing one bits. |
| 1709 | /// |
| 1710 | /// This function is an APInt version of the countTrailingOnes |
| 1711 | /// functions in MathExtras.h. It counts the number of ones from the least |
| 1712 | /// significant bit to the first zero bit. |
| 1713 | /// |
| 1714 | /// \returns BitWidth if the value is all ones, otherwise returns the number |
| 1715 | /// of ones from the least significant bit to the first zero bit. |
| 1716 | unsigned countTrailingOnes() const { |
| 1717 | if (isSingleWord()) |
| 1718 | return llvm::countTrailingOnes(U.VAL); |
| 1719 | return countTrailingOnesSlowCase(); |
| 1720 | } |
| 1721 | |
| 1722 | /// Count the number of bits set. |
| 1723 | /// |
| 1724 | /// This function is an APInt version of the countPopulation functions |
| 1725 | /// in MathExtras.h. It counts the number of 1 bits in the APInt value. |
| 1726 | /// |
| 1727 | /// \returns 0 if the value is zero, otherwise returns the number of set bits. |
| 1728 | unsigned countPopulation() const { |
| 1729 | if (isSingleWord()) |
| 1730 | return llvm::countPopulation(U.VAL); |
| 1731 | return countPopulationSlowCase(); |
| 1732 | } |
| 1733 | |
| 1734 | /// @} |
| 1735 | /// \name Conversion Functions |
| 1736 | /// @{ |
| 1737 | void print(raw_ostream &OS, bool isSigned) const; |
| 1738 | |
| 1739 | /// Converts an APInt to a string and append it to Str. Str is commonly a |
| 1740 | /// SmallString. |
| 1741 | void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, |
| 1742 | bool formatAsCLiteral = false) const; |
| 1743 | |
| 1744 | /// Considers the APInt to be unsigned and converts it into a string in the |
| 1745 | /// radix given. The radix can be 2, 8, 10 16, or 36. |
| 1746 | void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
| 1747 | toString(Str, Radix, false, false); |
| 1748 | } |
| 1749 | |
| 1750 | /// Considers the APInt to be signed and converts it into a string in the |
| 1751 | /// radix given. The radix can be 2, 8, 10, 16, or 36. |
| 1752 | void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
| 1753 | toString(Str, Radix, true, false); |
| 1754 | } |
| 1755 | |
| 1756 | /// \returns a byte-swapped representation of this APInt Value. |
| 1757 | APInt byteSwap() const; |
| 1758 | |
| 1759 | /// \returns the value with the bit representation reversed of this APInt |
| 1760 | /// Value. |
| 1761 | APInt reverseBits() const; |
| 1762 | |
| 1763 | /// Converts this APInt to a double value. |
| 1764 | double roundToDouble(bool isSigned) const; |
| 1765 | |
| 1766 | /// Converts this unsigned APInt to a double value. |
| 1767 | double roundToDouble() const { return roundToDouble(false); } |
| 1768 | |
| 1769 | /// Converts this signed APInt to a double value. |
| 1770 | double signedRoundToDouble() const { return roundToDouble(true); } |
| 1771 | |
| 1772 | /// Converts APInt bits to a double |
| 1773 | /// |
| 1774 | /// The conversion does not do a translation from integer to double, it just |
| 1775 | /// re-interprets the bits as a double. Note that it is valid to do this on |
| 1776 | /// any bit width. Exactly 64 bits will be translated. |
| 1777 | double bitsToDouble() const { |
| 1778 | return BitsToDouble(getWord(0)); |
| 1779 | } |
| 1780 | |
| 1781 | /// Converts APInt bits to a float |
| 1782 | /// |
| 1783 | /// The conversion does not do a translation from integer to float, it just |
| 1784 | /// re-interprets the bits as a float. Note that it is valid to do this on |
| 1785 | /// any bit width. Exactly 32 bits will be translated. |
| 1786 | float bitsToFloat() const { |
| 1787 | return BitsToFloat(static_cast<uint32_t>(getWord(0))); |
| 1788 | } |
| 1789 | |
| 1790 | /// Converts a double to APInt bits. |
| 1791 | /// |
| 1792 | /// The conversion does not do a translation from double to integer, it just |
| 1793 | /// re-interprets the bits of the double. |
| 1794 | static APInt doubleToBits(double V) { |
| 1795 | return APInt(sizeof(double) * CHAR_BIT8, DoubleToBits(V)); |
| 1796 | } |
| 1797 | |
| 1798 | /// Converts a float to APInt bits. |
| 1799 | /// |
| 1800 | /// The conversion does not do a translation from float to integer, it just |
| 1801 | /// re-interprets the bits of the float. |
| 1802 | static APInt floatToBits(float V) { |
| 1803 | return APInt(sizeof(float) * CHAR_BIT8, FloatToBits(V)); |
| 1804 | } |
| 1805 | |
| 1806 | /// @} |
| 1807 | /// \name Mathematics Operations |
| 1808 | /// @{ |
| 1809 | |
| 1810 | /// \returns the floor log base 2 of this APInt. |
| 1811 | unsigned logBase2() const { return getActiveBits() - 1; } |
| 1812 | |
| 1813 | /// \returns the ceil log base 2 of this APInt. |
| 1814 | unsigned ceilLogBase2() const { |
| 1815 | APInt temp(*this); |
| 1816 | --temp; |
| 1817 | return temp.getActiveBits(); |
| 1818 | } |
| 1819 | |
| 1820 | /// \returns the nearest log base 2 of this APInt. Ties round up. |
| 1821 | /// |
| 1822 | /// NOTE: When we have a BitWidth of 1, we define: |
| 1823 | /// |
| 1824 | /// log2(0) = UINT32_MAX |
| 1825 | /// log2(1) = 0 |
| 1826 | /// |
| 1827 | /// to get around any mathematical concerns resulting from |
| 1828 | /// referencing 2 in a space where 2 does no exist. |
| 1829 | unsigned nearestLogBase2() const { |
| 1830 | // Special case when we have a bitwidth of 1. If VAL is 1, then we |
| 1831 | // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to |
| 1832 | // UINT32_MAX. |
| 1833 | if (BitWidth == 1) |
| 1834 | return U.VAL - 1; |
| 1835 | |
| 1836 | // Handle the zero case. |
| 1837 | if (isNullValue()) |
| 1838 | return UINT32_MAX0xffffffffU; |
| 1839 | |
| 1840 | // The non-zero case is handled by computing: |
| 1841 | // |
| 1842 | // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. |
| 1843 | // |
| 1844 | // where x[i] is referring to the value of the ith bit of x. |
| 1845 | unsigned lg = logBase2(); |
| 1846 | return lg + unsigned((*this)[lg - 1]); |
| 1847 | } |
| 1848 | |
| 1849 | /// \returns the log base 2 of this APInt if its an exact power of two, -1 |
| 1850 | /// otherwise |
| 1851 | int32_t exactLogBase2() const { |
| 1852 | if (!isPowerOf2()) |
| 1853 | return -1; |
| 1854 | return logBase2(); |
| 1855 | } |
| 1856 | |
| 1857 | /// Compute the square root |
| 1858 | APInt sqrt() const; |
| 1859 | |
| 1860 | /// Get the absolute value; |
| 1861 | /// |
| 1862 | /// If *this is < 0 then return -(*this), otherwise *this; |
| 1863 | APInt abs() const { |
| 1864 | if (isNegative()) |
| 1865 | return -(*this); |
| 1866 | return *this; |
| 1867 | } |
| 1868 | |
| 1869 | /// \returns the multiplicative inverse for a given modulo. |
| 1870 | APInt multiplicativeInverse(const APInt &modulo) const; |
| 1871 | |
| 1872 | /// @} |
| 1873 | /// \name Support for division by constant |
| 1874 | /// @{ |
| 1875 | |
| 1876 | /// Calculate the magic number for signed division by a constant. |
| 1877 | struct ms; |
| 1878 | ms magic() const; |
| 1879 | |
| 1880 | /// Calculate the magic number for unsigned division by a constant. |
| 1881 | struct mu; |
| 1882 | mu magicu(unsigned LeadingZeros = 0) const; |
| 1883 | |
| 1884 | /// @} |
| 1885 | /// \name Building-block Operations for APInt and APFloat |
| 1886 | /// @{ |
| 1887 | |
| 1888 | // These building block operations operate on a representation of arbitrary |
| 1889 | // precision, two's-complement, bignum integer values. They should be |
| 1890 | // sufficient to implement APInt and APFloat bignum requirements. Inputs are |
| 1891 | // generally a pointer to the base of an array of integer parts, representing |
| 1892 | // an unsigned bignum, and a count of how many parts there are. |
| 1893 | |
| 1894 | /// Sets the least significant part of a bignum to the input value, and zeroes |
| 1895 | /// out higher parts. |
| 1896 | static void tcSet(WordType *, WordType, unsigned); |
| 1897 | |
| 1898 | /// Assign one bignum to another. |
| 1899 | static void tcAssign(WordType *, const WordType *, unsigned); |
| 1900 | |
| 1901 | /// Returns true if a bignum is zero, false otherwise. |
| 1902 | static bool tcIsZero(const WordType *, unsigned); |
| 1903 | |
| 1904 | /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. |
| 1905 | static int tcExtractBit(const WordType *, unsigned bit); |
| 1906 | |
| 1907 | /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to |
| 1908 | /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least |
| 1909 | /// significant bit of DST. All high bits above srcBITS in DST are |
| 1910 | /// zero-filled. |
| 1911 | static void tcExtract(WordType *, unsigned dstCount, |
| 1912 | const WordType *, unsigned srcBits, |
| 1913 | unsigned srcLSB); |
| 1914 | |
| 1915 | /// Set the given bit of a bignum. Zero-based. |
| 1916 | static void tcSetBit(WordType *, unsigned bit); |
| 1917 | |
| 1918 | /// Clear the given bit of a bignum. Zero-based. |
| 1919 | static void tcClearBit(WordType *, unsigned bit); |
| 1920 | |
| 1921 | /// Returns the bit number of the least or most significant set bit of a |
| 1922 | /// number. If the input number has no bits set -1U is returned. |
| 1923 | static unsigned tcLSB(const WordType *, unsigned n); |
| 1924 | static unsigned tcMSB(const WordType *parts, unsigned n); |
| 1925 | |
| 1926 | /// Negate a bignum in-place. |
| 1927 | static void tcNegate(WordType *, unsigned); |
| 1928 | |
| 1929 | /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
| 1930 | static WordType tcAdd(WordType *, const WordType *, |
| 1931 | WordType carry, unsigned); |
| 1932 | /// DST += RHS. Returns the carry flag. |
| 1933 | static WordType tcAddPart(WordType *, WordType, unsigned); |
| 1934 | |
| 1935 | /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
| 1936 | static WordType tcSubtract(WordType *, const WordType *, |
| 1937 | WordType carry, unsigned); |
| 1938 | /// DST -= RHS. Returns the carry flag. |
| 1939 | static WordType tcSubtractPart(WordType *, WordType, unsigned); |
| 1940 | |
| 1941 | /// DST += SRC * MULTIPLIER + PART if add is true |
| 1942 | /// DST = SRC * MULTIPLIER + PART if add is false |
| 1943 | /// |
| 1944 | /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must |
| 1945 | /// start at the same point, i.e. DST == SRC. |
| 1946 | /// |
| 1947 | /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. |
| 1948 | /// Otherwise DST is filled with the least significant DSTPARTS parts of the |
| 1949 | /// result, and if all of the omitted higher parts were zero return zero, |
| 1950 | /// otherwise overflow occurred and return one. |
| 1951 | static int tcMultiplyPart(WordType *dst, const WordType *src, |
| 1952 | WordType multiplier, WordType carry, |
| 1953 | unsigned srcParts, unsigned dstParts, |
| 1954 | bool add); |
| 1955 | |
| 1956 | /// DST = LHS * RHS, where DST has the same width as the operands and is |
| 1957 | /// filled with the least significant parts of the result. Returns one if |
| 1958 | /// overflow occurred, otherwise zero. DST must be disjoint from both |
| 1959 | /// operands. |
| 1960 | static int tcMultiply(WordType *, const WordType *, const WordType *, |
| 1961 | unsigned); |
| 1962 | |
| 1963 | /// DST = LHS * RHS, where DST has width the sum of the widths of the |
| 1964 | /// operands. No overflow occurs. DST must be disjoint from both operands. |
| 1965 | static void tcFullMultiply(WordType *, const WordType *, |
| 1966 | const WordType *, unsigned, unsigned); |
| 1967 | |
| 1968 | /// If RHS is zero LHS and REMAINDER are left unchanged, return one. |
| 1969 | /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set |
| 1970 | /// REMAINDER to the remainder, return zero. i.e. |
| 1971 | /// |
| 1972 | /// OLD_LHS = RHS * LHS + REMAINDER |
| 1973 | /// |
| 1974 | /// SCRATCH is a bignum of the same size as the operands and result for use by |
| 1975 | /// the routine; its contents need not be initialized and are destroyed. LHS, |
| 1976 | /// REMAINDER and SCRATCH must be distinct. |
| 1977 | static int tcDivide(WordType *lhs, const WordType *rhs, |
| 1978 | WordType *remainder, WordType *scratch, |
| 1979 | unsigned parts); |
| 1980 | |
| 1981 | /// Shift a bignum left Count bits. Shifted in bits are zero. There are no |
| 1982 | /// restrictions on Count. |
| 1983 | static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); |
| 1984 | |
| 1985 | /// Shift a bignum right Count bits. Shifted in bits are zero. There are no |
| 1986 | /// restrictions on Count. |
| 1987 | static void tcShiftRight(WordType *, unsigned Words, unsigned Count); |
| 1988 | |
| 1989 | /// The obvious AND, OR and XOR and complement operations. |
| 1990 | static void tcAnd(WordType *, const WordType *, unsigned); |
| 1991 | static void tcOr(WordType *, const WordType *, unsigned); |
| 1992 | static void tcXor(WordType *, const WordType *, unsigned); |
| 1993 | static void tcComplement(WordType *, unsigned); |
| 1994 | |
| 1995 | /// Comparison (unsigned) of two bignums. |
| 1996 | static int tcCompare(const WordType *, const WordType *, unsigned); |
| 1997 | |
| 1998 | /// Increment a bignum in-place. Return the carry flag. |
| 1999 | static WordType tcIncrement(WordType *dst, unsigned parts) { |
| 2000 | return tcAddPart(dst, 1, parts); |
| 2001 | } |
| 2002 | |
| 2003 | /// Decrement a bignum in-place. Return the borrow flag. |
| 2004 | static WordType tcDecrement(WordType *dst, unsigned parts) { |
| 2005 | return tcSubtractPart(dst, 1, parts); |
| 2006 | } |
| 2007 | |
| 2008 | /// Set the least significant BITS and clear the rest. |
| 2009 | static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits); |
| 2010 | |
| 2011 | /// debug method |
| 2012 | void dump() const; |
| 2013 | |
| 2014 | /// @} |
| 2015 | }; |
| 2016 | |
| 2017 | /// Magic data for optimising signed division by a constant. |
| 2018 | struct APInt::ms { |
| 2019 | APInt m; ///< magic number |
| 2020 | unsigned s; ///< shift amount |
| 2021 | }; |
| 2022 | |
| 2023 | /// Magic data for optimising unsigned division by a constant. |
| 2024 | struct APInt::mu { |
| 2025 | APInt m; ///< magic number |
| 2026 | bool a; ///< add indicator |
| 2027 | unsigned s; ///< shift amount |
| 2028 | }; |
| 2029 | |
| 2030 | inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } |
| 2031 | |
| 2032 | inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } |
| 2033 | |
| 2034 | /// Unary bitwise complement operator. |
| 2035 | /// |
| 2036 | /// \returns an APInt that is the bitwise complement of \p v. |
| 2037 | inline APInt operator~(APInt v) { |
| 2038 | v.flipAllBits(); |
| 2039 | return v; |
| 2040 | } |
| 2041 | |
| 2042 | inline APInt operator&(APInt a, const APInt &b) { |
| 2043 | a &= b; |
| 2044 | return a; |
| 2045 | } |
| 2046 | |
| 2047 | inline APInt operator&(const APInt &a, APInt &&b) { |
| 2048 | b &= a; |
| 2049 | return std::move(b); |
| 2050 | } |
| 2051 | |
| 2052 | inline APInt operator&(APInt a, uint64_t RHS) { |
| 2053 | a &= RHS; |
| 2054 | return a; |
| 2055 | } |
| 2056 | |
| 2057 | inline APInt operator&(uint64_t LHS, APInt b) { |
| 2058 | b &= LHS; |
| 2059 | return b; |
| 2060 | } |
| 2061 | |
| 2062 | inline APInt operator|(APInt a, const APInt &b) { |
| 2063 | a |= b; |
| 2064 | return a; |
| 2065 | } |
| 2066 | |
| 2067 | inline APInt operator|(const APInt &a, APInt &&b) { |
| 2068 | b |= a; |
| 2069 | return std::move(b); |
| 2070 | } |
| 2071 | |
| 2072 | inline APInt operator|(APInt a, uint64_t RHS) { |
| 2073 | a |= RHS; |
| 2074 | return a; |
| 2075 | } |
| 2076 | |
| 2077 | inline APInt operator|(uint64_t LHS, APInt b) { |
| 2078 | b |= LHS; |
| 2079 | return b; |
| 2080 | } |
| 2081 | |
| 2082 | inline APInt operator^(APInt a, const APInt &b) { |
| 2083 | a ^= b; |
| 2084 | return a; |
| 2085 | } |
| 2086 | |
| 2087 | inline APInt operator^(const APInt &a, APInt &&b) { |
| 2088 | b ^= a; |
| 2089 | return std::move(b); |
| 2090 | } |
| 2091 | |
| 2092 | inline APInt operator^(APInt a, uint64_t RHS) { |
| 2093 | a ^= RHS; |
| 2094 | return a; |
| 2095 | } |
| 2096 | |
| 2097 | inline APInt operator^(uint64_t LHS, APInt b) { |
| 2098 | b ^= LHS; |
| 2099 | return b; |
| 2100 | } |
| 2101 | |
| 2102 | inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { |
| 2103 | I.print(OS, true); |
| 2104 | return OS; |
| 2105 | } |
| 2106 | |
| 2107 | inline APInt operator-(APInt v) { |
| 2108 | v.negate(); |
| 2109 | return v; |
| 2110 | } |
| 2111 | |
| 2112 | inline APInt operator+(APInt a, const APInt &b) { |
| 2113 | a += b; |
| 2114 | return a; |
| 2115 | } |
| 2116 | |
| 2117 | inline APInt operator+(const APInt &a, APInt &&b) { |
| 2118 | b += a; |
| 2119 | return std::move(b); |
| 2120 | } |
| 2121 | |
| 2122 | inline APInt operator+(APInt a, uint64_t RHS) { |
| 2123 | a += RHS; |
| 2124 | return a; |
| 2125 | } |
| 2126 | |
| 2127 | inline APInt operator+(uint64_t LHS, APInt b) { |
| 2128 | b += LHS; |
| 2129 | return b; |
| 2130 | } |
| 2131 | |
| 2132 | inline APInt operator-(APInt a, const APInt &b) { |
| 2133 | a -= b; |
| 2134 | return a; |
| 2135 | } |
| 2136 | |
| 2137 | inline APInt operator-(const APInt &a, APInt &&b) { |
| 2138 | b.negate(); |
| 2139 | b += a; |
| 2140 | return std::move(b); |
| 2141 | } |
| 2142 | |
| 2143 | inline APInt operator-(APInt a, uint64_t RHS) { |
| 2144 | a -= RHS; |
| 2145 | return a; |
| 2146 | } |
| 2147 | |
| 2148 | inline APInt operator-(uint64_t LHS, APInt b) { |
| 2149 | b.negate(); |
| 2150 | b += LHS; |
| 2151 | return b; |
| 2152 | } |
| 2153 | |
| 2154 | inline APInt operator*(APInt a, uint64_t RHS) { |
| 2155 | a *= RHS; |
| 2156 | return a; |
| 2157 | } |
| 2158 | |
| 2159 | inline APInt operator*(uint64_t LHS, APInt b) { |
| 2160 | b *= LHS; |
| 2161 | return b; |
| 2162 | } |
| 2163 | |
| 2164 | |
| 2165 | namespace APIntOps { |
| 2166 | |
| 2167 | /// Determine the smaller of two APInts considered to be signed. |
| 2168 | inline const APInt &smin(const APInt &A, const APInt &B) { |
| 2169 | return A.slt(B) ? A : B; |
| 2170 | } |
| 2171 | |
| 2172 | /// Determine the larger of two APInts considered to be signed. |
| 2173 | inline const APInt &smax(const APInt &A, const APInt &B) { |
| 2174 | return A.sgt(B) ? A : B; |
| 2175 | } |
| 2176 | |
| 2177 | /// Determine the smaller of two APInts considered to be unsigned. |
| 2178 | inline const APInt &umin(const APInt &A, const APInt &B) { |
| 2179 | return A.ult(B) ? A : B; |
| 2180 | } |
| 2181 | |
| 2182 | /// Determine the larger of two APInts considered to be unsigned. |
| 2183 | inline const APInt &umax(const APInt &A, const APInt &B) { |
| 2184 | return A.ugt(B) ? A : B; |
| 2185 | } |
| 2186 | |
| 2187 | /// Compute GCD of two unsigned APInt values. |
| 2188 | /// |
| 2189 | /// This function returns the greatest common divisor of the two APInt values |
| 2190 | /// using Stein's algorithm. |
| 2191 | /// |
| 2192 | /// \returns the greatest common divisor of A and B. |
| 2193 | APInt GreatestCommonDivisor(APInt A, APInt B); |
| 2194 | |
| 2195 | /// Converts the given APInt to a double value. |
| 2196 | /// |
| 2197 | /// Treats the APInt as an unsigned value for conversion purposes. |
| 2198 | inline double RoundAPIntToDouble(const APInt &APIVal) { |
| 2199 | return APIVal.roundToDouble(); |
| 2200 | } |
| 2201 | |
| 2202 | /// Converts the given APInt to a double value. |
| 2203 | /// |
| 2204 | /// Treats the APInt as a signed value for conversion purposes. |
| 2205 | inline double RoundSignedAPIntToDouble(const APInt &APIVal) { |
| 2206 | return APIVal.signedRoundToDouble(); |
| 2207 | } |
| 2208 | |
| 2209 | /// Converts the given APInt to a float value. |
| 2210 | inline float RoundAPIntToFloat(const APInt &APIVal) { |
| 2211 | return float(RoundAPIntToDouble(APIVal)); |
| 2212 | } |
| 2213 | |
| 2214 | /// Converts the given APInt to a float value. |
| 2215 | /// |
| 2216 | /// Treats the APInt as a signed value for conversion purposes. |
| 2217 | inline float RoundSignedAPIntToFloat(const APInt &APIVal) { |
| 2218 | return float(APIVal.signedRoundToDouble()); |
| 2219 | } |
| 2220 | |
| 2221 | /// Converts the given double value into a APInt. |
| 2222 | /// |
| 2223 | /// This function convert a double value to an APInt value. |
| 2224 | APInt RoundDoubleToAPInt(double Double, unsigned width); |
| 2225 | |
| 2226 | /// Converts a float value into a APInt. |
| 2227 | /// |
| 2228 | /// Converts a float value into an APInt value. |
| 2229 | inline APInt RoundFloatToAPInt(float Float, unsigned width) { |
| 2230 | return RoundDoubleToAPInt(double(Float), width); |
| 2231 | } |
| 2232 | |
| 2233 | /// Return A unsign-divided by B, rounded by the given rounding mode. |
| 2234 | APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
| 2235 | |
| 2236 | /// Return A sign-divided by B, rounded by the given rounding mode. |
| 2237 | APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
| 2238 | |
| 2239 | /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range |
| 2240 | /// (e.g. 32 for i32). |
| 2241 | /// This function finds the smallest number n, such that |
| 2242 | /// (a) n >= 0 and q(n) = 0, or |
| 2243 | /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all |
| 2244 | /// integers, belong to two different intervals [Rk, Rk+R), |
| 2245 | /// where R = 2^BW, and k is an integer. |
| 2246 | /// The idea here is to find when q(n) "overflows" 2^BW, while at the |
| 2247 | /// same time "allowing" subtraction. In unsigned modulo arithmetic a |
| 2248 | /// subtraction (treated as addition of negated numbers) would always |
| 2249 | /// count as an overflow, but here we want to allow values to decrease |
| 2250 | /// and increase as long as they are within the same interval. |
| 2251 | /// Specifically, adding of two negative numbers should not cause an |
| 2252 | /// overflow (as long as the magnitude does not exceed the bit width). |
| 2253 | /// On the other hand, given a positive number, adding a negative |
| 2254 | /// number to it can give a negative result, which would cause the |
| 2255 | /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is |
| 2256 | /// treated as a special case of an overflow. |
| 2257 | /// |
| 2258 | /// This function returns None if after finding k that minimizes the |
| 2259 | /// positive solution to q(n) = kR, both solutions are contained between |
| 2260 | /// two consecutive integers. |
| 2261 | /// |
| 2262 | /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation |
| 2263 | /// in arithmetic modulo 2^BW, and treating the values as signed) by the |
| 2264 | /// virtue of *signed* overflow. This function will *not* find such an n, |
| 2265 | /// however it may find a value of n satisfying the inequalities due to |
| 2266 | /// an *unsigned* overflow (if the values are treated as unsigned). |
| 2267 | /// To find a solution for a signed overflow, treat it as a problem of |
| 2268 | /// finding an unsigned overflow with a range with of BW-1. |
| 2269 | /// |
| 2270 | /// The returned value may have a different bit width from the input |
| 2271 | /// coefficients. |
| 2272 | Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, |
| 2273 | unsigned RangeWidth); |
| 2274 | |
| 2275 | /// Compare two values, and if they are different, return the position of the |
| 2276 | /// most significant bit that is different in the values. |
| 2277 | Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A, |
| 2278 | const APInt &B); |
| 2279 | |
| 2280 | } // End of APIntOps namespace |
| 2281 | |
| 2282 | // See friend declaration above. This additional declaration is required in |
| 2283 | // order to compile LLVM with IBM xlC compiler. |
| 2284 | hash_code hash_value(const APInt &Arg); |
| 2285 | |
| 2286 | /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst |
| 2287 | /// with the integer held in IntVal. |
| 2288 | void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes); |
| 2289 | |
| 2290 | /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting |
| 2291 | /// from Src into IntVal, which is assumed to be wide enough and to hold zero. |
| 2292 | void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes); |
| 2293 | |
| 2294 | /// Provide DenseMapInfo for APInt. |
| 2295 | template <> struct DenseMapInfo<APInt> { |
| 2296 | static inline APInt getEmptyKey() { |
| 2297 | APInt V(nullptr, 0); |
| 2298 | V.U.VAL = 0; |
| 2299 | return V; |
| 2300 | } |
| 2301 | |
| 2302 | static inline APInt getTombstoneKey() { |
| 2303 | APInt V(nullptr, 0); |
| 2304 | V.U.VAL = 1; |
| 2305 | return V; |
| 2306 | } |
| 2307 | |
| 2308 | static unsigned getHashValue(const APInt &Key); |
| 2309 | |
| 2310 | static bool isEqual(const APInt &LHS, const APInt &RHS) { |
| 2311 | return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS; |
| 2312 | } |
| 2313 | }; |
| 2314 | |
| 2315 | } // namespace llvm |
| 2316 | |
| 2317 | #endif |
| 1 | //===- Type.h - C Language Family Type Representation -----------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// C Language Family Type Representation |
| 11 | /// |
| 12 | /// This file defines the clang::Type interface and subclasses, used to |
| 13 | /// represent types for languages in the C family. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #ifndef LLVM_CLANG_AST_TYPE_H |
| 18 | #define LLVM_CLANG_AST_TYPE_H |
| 19 | |
| 20 | #include "clang/AST/DependenceFlags.h" |
| 21 | #include "clang/AST/NestedNameSpecifier.h" |
| 22 | #include "clang/AST/TemplateName.h" |
| 23 | #include "clang/Basic/AddressSpaces.h" |
| 24 | #include "clang/Basic/AttrKinds.h" |
| 25 | #include "clang/Basic/Diagnostic.h" |
| 26 | #include "clang/Basic/ExceptionSpecificationType.h" |
| 27 | #include "clang/Basic/LLVM.h" |
| 28 | #include "clang/Basic/Linkage.h" |
| 29 | #include "clang/Basic/PartialDiagnostic.h" |
| 30 | #include "clang/Basic/SourceLocation.h" |
| 31 | #include "clang/Basic/Specifiers.h" |
| 32 | #include "clang/Basic/Visibility.h" |
| 33 | #include "llvm/ADT/APInt.h" |
| 34 | #include "llvm/ADT/APSInt.h" |
| 35 | #include "llvm/ADT/ArrayRef.h" |
| 36 | #include "llvm/ADT/FoldingSet.h" |
| 37 | #include "llvm/ADT/None.h" |
| 38 | #include "llvm/ADT/Optional.h" |
| 39 | #include "llvm/ADT/PointerIntPair.h" |
| 40 | #include "llvm/ADT/PointerUnion.h" |
| 41 | #include "llvm/ADT/StringRef.h" |
| 42 | #include "llvm/ADT/Twine.h" |
| 43 | #include "llvm/ADT/iterator_range.h" |
| 44 | #include "llvm/Support/Casting.h" |
| 45 | #include "llvm/Support/Compiler.h" |
| 46 | #include "llvm/Support/ErrorHandling.h" |
| 47 | #include "llvm/Support/PointerLikeTypeTraits.h" |
| 48 | #include "llvm/Support/TrailingObjects.h" |
| 49 | #include "llvm/Support/type_traits.h" |
| 50 | #include <cassert> |
| 51 | #include <cstddef> |
| 52 | #include <cstdint> |
| 53 | #include <cstring> |
| 54 | #include <string> |
| 55 | #include <type_traits> |
| 56 | #include <utility> |
| 57 | |
| 58 | namespace clang { |
| 59 | |
| 60 | class ExtQuals; |
| 61 | class QualType; |
| 62 | class ConceptDecl; |
| 63 | class TagDecl; |
| 64 | class TemplateParameterList; |
| 65 | class Type; |
| 66 | |
| 67 | enum { |
| 68 | TypeAlignmentInBits = 4, |
| 69 | TypeAlignment = 1 << TypeAlignmentInBits |
| 70 | }; |
| 71 | |
| 72 | namespace serialization { |
| 73 | template <class T> class AbstractTypeReader; |
| 74 | template <class T> class AbstractTypeWriter; |
| 75 | } |
| 76 | |
| 77 | } // namespace clang |
| 78 | |
| 79 | namespace llvm { |
| 80 | |
| 81 | template <typename T> |
| 82 | struct PointerLikeTypeTraits; |
| 83 | template<> |
| 84 | struct PointerLikeTypeTraits< ::clang::Type*> { |
| 85 | static inline void *getAsVoidPointer(::clang::Type *P) { return P; } |
| 86 | |
| 87 | static inline ::clang::Type *getFromVoidPointer(void *P) { |
| 88 | return static_cast< ::clang::Type*>(P); |
| 89 | } |
| 90 | |
| 91 | static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits; |
| 92 | }; |
| 93 | |
| 94 | template<> |
| 95 | struct PointerLikeTypeTraits< ::clang::ExtQuals*> { |
| 96 | static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; } |
| 97 | |
| 98 | static inline ::clang::ExtQuals *getFromVoidPointer(void *P) { |
| 99 | return static_cast< ::clang::ExtQuals*>(P); |
| 100 | } |
| 101 | |
| 102 | static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits; |
| 103 | }; |
| 104 | |
| 105 | } // namespace llvm |
| 106 | |
| 107 | namespace clang { |
| 108 | |
| 109 | class ASTContext; |
| 110 | template <typename> class CanQual; |
| 111 | class CXXRecordDecl; |
| 112 | class DeclContext; |
| 113 | class EnumDecl; |
| 114 | class Expr; |
| 115 | class ExtQualsTypeCommonBase; |
| 116 | class FunctionDecl; |
| 117 | class IdentifierInfo; |
| 118 | class NamedDecl; |
| 119 | class ObjCInterfaceDecl; |
| 120 | class ObjCProtocolDecl; |
| 121 | class ObjCTypeParamDecl; |
| 122 | struct PrintingPolicy; |
| 123 | class RecordDecl; |
| 124 | class Stmt; |
| 125 | class TagDecl; |
| 126 | class TemplateArgument; |
| 127 | class TemplateArgumentListInfo; |
| 128 | class TemplateArgumentLoc; |
| 129 | class TemplateTypeParmDecl; |
| 130 | class TypedefNameDecl; |
| 131 | class UnresolvedUsingTypenameDecl; |
| 132 | |
| 133 | using CanQualType = CanQual<Type>; |
| 134 | |
| 135 | // Provide forward declarations for all of the *Type classes. |
| 136 | #define TYPE(Class, Base) class Class##Type; |
| 137 | #include "clang/AST/TypeNodes.inc" |
| 138 | |
| 139 | /// The collection of all-type qualifiers we support. |
| 140 | /// Clang supports five independent qualifiers: |
| 141 | /// * C99: const, volatile, and restrict |
| 142 | /// * MS: __unaligned |
| 143 | /// * Embedded C (TR18037): address spaces |
| 144 | /// * Objective C: the GC attributes (none, weak, or strong) |
| 145 | class Qualifiers { |
| 146 | public: |
| 147 | enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ. |
| 148 | Const = 0x1, |
| 149 | Restrict = 0x2, |
| 150 | Volatile = 0x4, |
| 151 | CVRMask = Const | Volatile | Restrict |
| 152 | }; |
| 153 | |
| 154 | enum GC { |
| 155 | GCNone = 0, |
| 156 | Weak, |
| 157 | Strong |
| 158 | }; |
| 159 | |
| 160 | enum ObjCLifetime { |
| 161 | /// There is no lifetime qualification on this type. |
| 162 | OCL_None, |
| 163 | |
| 164 | /// This object can be modified without requiring retains or |
| 165 | /// releases. |
| 166 | OCL_ExplicitNone, |
| 167 | |
| 168 | /// Assigning into this object requires the old value to be |
| 169 | /// released and the new value to be retained. The timing of the |
| 170 | /// release of the old value is inexact: it may be moved to |
| 171 | /// immediately after the last known point where the value is |
| 172 | /// live. |
| 173 | OCL_Strong, |
| 174 | |
| 175 | /// Reading or writing from this object requires a barrier call. |
| 176 | OCL_Weak, |
| 177 | |
| 178 | /// Assigning into this object requires a lifetime extension. |
| 179 | OCL_Autoreleasing |
| 180 | }; |
| 181 | |
| 182 | enum { |
| 183 | /// The maximum supported address space number. |
| 184 | /// 23 bits should be enough for anyone. |
| 185 | MaxAddressSpace = 0x7fffffu, |
| 186 | |
| 187 | /// The width of the "fast" qualifier mask. |
| 188 | FastWidth = 3, |
| 189 | |
| 190 | /// The fast qualifier mask. |
| 191 | FastMask = (1 << FastWidth) - 1 |
| 192 | }; |
| 193 | |
| 194 | /// Returns the common set of qualifiers while removing them from |
| 195 | /// the given sets. |
| 196 | static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) { |
| 197 | // If both are only CVR-qualified, bit operations are sufficient. |
| 198 | if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) { |
| 199 | Qualifiers Q; |
| 200 | Q.Mask = L.Mask & R.Mask; |
| 201 | L.Mask &= ~Q.Mask; |
| 202 | R.Mask &= ~Q.Mask; |
| 203 | return Q; |
| 204 | } |
| 205 | |
| 206 | Qualifiers Q; |
| 207 | unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers(); |
| 208 | Q.addCVRQualifiers(CommonCRV); |
| 209 | L.removeCVRQualifiers(CommonCRV); |
| 210 | R.removeCVRQualifiers(CommonCRV); |
| 211 | |
| 212 | if (L.getObjCGCAttr() == R.getObjCGCAttr()) { |
| 213 | Q.setObjCGCAttr(L.getObjCGCAttr()); |
| 214 | L.removeObjCGCAttr(); |
| 215 | R.removeObjCGCAttr(); |
| 216 | } |
| 217 | |
| 218 | if (L.getObjCLifetime() == R.getObjCLifetime()) { |
| 219 | Q.setObjCLifetime(L.getObjCLifetime()); |
| 220 | L.removeObjCLifetime(); |
| 221 | R.removeObjCLifetime(); |
| 222 | } |
| 223 | |
| 224 | if (L.getAddressSpace() == R.getAddressSpace()) { |
| 225 | Q.setAddressSpace(L.getAddressSpace()); |
| 226 | L.removeAddressSpace(); |
| 227 | R.removeAddressSpace(); |
| 228 | } |
| 229 | return Q; |
| 230 | } |
| 231 | |
| 232 | static Qualifiers fromFastMask(unsigned Mask) { |
| 233 | Qualifiers Qs; |
| 234 | Qs.addFastQualifiers(Mask); |
| 235 | return Qs; |
| 236 | } |
| 237 | |
| 238 | static Qualifiers fromCVRMask(unsigned CVR) { |
| 239 | Qualifiers Qs; |
| 240 | Qs.addCVRQualifiers(CVR); |
| 241 | return Qs; |
| 242 | } |
| 243 | |
| 244 | static Qualifiers fromCVRUMask(unsigned CVRU) { |
| 245 | Qualifiers Qs; |
| 246 | Qs.addCVRUQualifiers(CVRU); |
| 247 | return Qs; |
| 248 | } |
| 249 | |
| 250 | // Deserialize qualifiers from an opaque representation. |
| 251 | static Qualifiers fromOpaqueValue(unsigned opaque) { |
| 252 | Qualifiers Qs; |
| 253 | Qs.Mask = opaque; |
| 254 | return Qs; |
| 255 | } |
| 256 | |
| 257 | // Serialize these qualifiers into an opaque representation. |
| 258 | unsigned getAsOpaqueValue() const { |
| 259 | return Mask; |
| 260 | } |
| 261 | |
| 262 | bool hasConst() const { return Mask & Const; } |
| 263 | bool hasOnlyConst() const { return Mask == Const; } |
| 264 | void removeConst() { Mask &= ~Const; } |
| 265 | void addConst() { Mask |= Const; } |
| 266 | |
| 267 | bool hasVolatile() const { return Mask & Volatile; } |
| 268 | bool hasOnlyVolatile() const { return Mask == Volatile; } |
| 269 | void removeVolatile() { Mask &= ~Volatile; } |
| 270 | void addVolatile() { Mask |= Volatile; } |
| 271 | |
| 272 | bool hasRestrict() const { return Mask & Restrict; } |
| 273 | bool hasOnlyRestrict() const { return Mask == Restrict; } |
| 274 | void removeRestrict() { Mask &= ~Restrict; } |
| 275 | void addRestrict() { Mask |= Restrict; } |
| 276 | |
| 277 | bool hasCVRQualifiers() const { return getCVRQualifiers(); } |
| 278 | unsigned getCVRQualifiers() const { return Mask & CVRMask; } |
| 279 | unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); } |
| 280 | |
| 281 | void setCVRQualifiers(unsigned mask) { |
| 282 | assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((void)0); |
| 283 | Mask = (Mask & ~CVRMask) | mask; |
| 284 | } |
| 285 | void removeCVRQualifiers(unsigned mask) { |
| 286 | assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((void)0); |
| 287 | Mask &= ~mask; |
| 288 | } |
| 289 | void removeCVRQualifiers() { |
| 290 | removeCVRQualifiers(CVRMask); |
| 291 | } |
| 292 | void addCVRQualifiers(unsigned mask) { |
| 293 | assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((void)0); |
| 294 | Mask |= mask; |
| 295 | } |
| 296 | void addCVRUQualifiers(unsigned mask) { |
| 297 | assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((void)0); |
| 298 | Mask |= mask; |
| 299 | } |
| 300 | |
| 301 | bool hasUnaligned() const { return Mask & UMask; } |
| 302 | void setUnaligned(bool flag) { |
| 303 | Mask = (Mask & ~UMask) | (flag ? UMask : 0); |
| 304 | } |
| 305 | void removeUnaligned() { Mask &= ~UMask; } |
| 306 | void addUnaligned() { Mask |= UMask; } |
| 307 | |
| 308 | bool hasObjCGCAttr() const { return Mask & GCAttrMask; } |
| 309 | GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); } |
| 310 | void setObjCGCAttr(GC type) { |
| 311 | Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift); |
| 312 | } |
| 313 | void removeObjCGCAttr() { setObjCGCAttr(GCNone); } |
| 314 | void addObjCGCAttr(GC type) { |
| 315 | assert(type)((void)0); |
| 316 | setObjCGCAttr(type); |
| 317 | } |
| 318 | Qualifiers withoutObjCGCAttr() const { |
| 319 | Qualifiers qs = *this; |
| 320 | qs.removeObjCGCAttr(); |
| 321 | return qs; |
| 322 | } |
| 323 | Qualifiers withoutObjCLifetime() const { |
| 324 | Qualifiers qs = *this; |
| 325 | qs.removeObjCLifetime(); |
| 326 | return qs; |
| 327 | } |
| 328 | Qualifiers withoutAddressSpace() const { |
| 329 | Qualifiers qs = *this; |
| 330 | qs.removeAddressSpace(); |
| 331 | return qs; |
| 332 | } |
| 333 | |
| 334 | bool hasObjCLifetime() const { return Mask & LifetimeMask; } |
| 335 | ObjCLifetime getObjCLifetime() const { |
| 336 | return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift); |
| 337 | } |
| 338 | void setObjCLifetime(ObjCLifetime type) { |
| 339 | Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift); |
| 340 | } |
| 341 | void removeObjCLifetime() { setObjCLifetime(OCL_None); } |
| 342 | void addObjCLifetime(ObjCLifetime type) { |
| 343 | assert(type)((void)0); |
| 344 | assert(!hasObjCLifetime())((void)0); |
| 345 | Mask |= (type << LifetimeShift); |
| 346 | } |
| 347 | |
| 348 | /// True if the lifetime is neither None or ExplicitNone. |
| 349 | bool hasNonTrivialObjCLifetime() const { |
| 350 | ObjCLifetime lifetime = getObjCLifetime(); |
| 351 | return (lifetime > OCL_ExplicitNone); |
| 352 | } |
| 353 | |
| 354 | /// True if the lifetime is either strong or weak. |
| 355 | bool hasStrongOrWeakObjCLifetime() const { |
| 356 | ObjCLifetime lifetime = getObjCLifetime(); |
| 357 | return (lifetime == OCL_Strong || lifetime == OCL_Weak); |
| 358 | } |
| 359 | |
| 360 | bool hasAddressSpace() const { return Mask & AddressSpaceMask; } |
| 361 | LangAS getAddressSpace() const { |
| 362 | return static_cast<LangAS>(Mask >> AddressSpaceShift); |
| 363 | } |
| 364 | bool hasTargetSpecificAddressSpace() const { |
| 365 | return isTargetAddressSpace(getAddressSpace()); |
| 366 | } |
| 367 | /// Get the address space attribute value to be printed by diagnostics. |
| 368 | unsigned getAddressSpaceAttributePrintValue() const { |
| 369 | auto Addr = getAddressSpace(); |
| 370 | // This function is not supposed to be used with language specific |
| 371 | // address spaces. If that happens, the diagnostic message should consider |
| 372 | // printing the QualType instead of the address space value. |
| 373 | assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((void)0); |
| 374 | if (Addr != LangAS::Default) |
| 375 | return toTargetAddressSpace(Addr); |
| 376 | // TODO: The diagnostic messages where Addr may be 0 should be fixed |
| 377 | // since it cannot differentiate the situation where 0 denotes the default |
| 378 | // address space or user specified __attribute__((address_space(0))). |
| 379 | return 0; |
| 380 | } |
| 381 | void setAddressSpace(LangAS space) { |
| 382 | assert((unsigned)space <= MaxAddressSpace)((void)0); |
| 383 | Mask = (Mask & ~AddressSpaceMask) |
| 384 | | (((uint32_t) space) << AddressSpaceShift); |
| 385 | } |
| 386 | void removeAddressSpace() { setAddressSpace(LangAS::Default); } |
| 387 | void addAddressSpace(LangAS space) { |
| 388 | assert(space != LangAS::Default)((void)0); |
| 389 | setAddressSpace(space); |
| 390 | } |
| 391 | |
| 392 | // Fast qualifiers are those that can be allocated directly |
| 393 | // on a QualType object. |
| 394 | bool hasFastQualifiers() const { return getFastQualifiers(); } |
| 395 | unsigned getFastQualifiers() const { return Mask & FastMask; } |
| 396 | void setFastQualifiers(unsigned mask) { |
| 397 | assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((void)0); |
| 398 | Mask = (Mask & ~FastMask) | mask; |
| 399 | } |
| 400 | void removeFastQualifiers(unsigned mask) { |
| 401 | assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((void)0); |
| 402 | Mask &= ~mask; |
| 403 | } |
| 404 | void removeFastQualifiers() { |
| 405 | removeFastQualifiers(FastMask); |
| 406 | } |
| 407 | void addFastQualifiers(unsigned mask) { |
| 408 | assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((void)0); |
| 409 | Mask |= mask; |
| 410 | } |
| 411 | |
| 412 | /// Return true if the set contains any qualifiers which require an ExtQuals |
| 413 | /// node to be allocated. |
| 414 | bool hasNonFastQualifiers() const { return Mask & ~FastMask; } |
| 415 | Qualifiers getNonFastQualifiers() const { |
| 416 | Qualifiers Quals = *this; |
| 417 | Quals.setFastQualifiers(0); |
| 418 | return Quals; |
| 419 | } |
| 420 | |
| 421 | /// Return true if the set contains any qualifiers. |
| 422 | bool hasQualifiers() const { return Mask; } |
| 423 | bool empty() const { return !Mask; } |
| 424 | |
| 425 | /// Add the qualifiers from the given set to this set. |
| 426 | void addQualifiers(Qualifiers Q) { |
| 427 | // If the other set doesn't have any non-boolean qualifiers, just |
| 428 | // bit-or it in. |
| 429 | if (!(Q.Mask & ~CVRMask)) |
| 430 | Mask |= Q.Mask; |
| 431 | else { |
| 432 | Mask |= (Q.Mask & CVRMask); |
| 433 | if (Q.hasAddressSpace()) |
| 434 | addAddressSpace(Q.getAddressSpace()); |
| 435 | if (Q.hasObjCGCAttr()) |
| 436 | addObjCGCAttr(Q.getObjCGCAttr()); |
| 437 | if (Q.hasObjCLifetime()) |
| 438 | addObjCLifetime(Q.getObjCLifetime()); |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | /// Remove the qualifiers from the given set from this set. |
| 443 | void removeQualifiers(Qualifiers Q) { |
| 444 | // If the other set doesn't have any non-boolean qualifiers, just |
| 445 | // bit-and the inverse in. |
| 446 | if (!(Q.Mask & ~CVRMask)) |
| 447 | Mask &= ~Q.Mask; |
| 448 | else { |
| 449 | Mask &= ~(Q.Mask & CVRMask); |
| 450 | if (getObjCGCAttr() == Q.getObjCGCAttr()) |
| 451 | removeObjCGCAttr(); |
| 452 | if (getObjCLifetime() == Q.getObjCLifetime()) |
| 453 | removeObjCLifetime(); |
| 454 | if (getAddressSpace() == Q.getAddressSpace()) |
| 455 | removeAddressSpace(); |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | /// Add the qualifiers from the given set to this set, given that |
| 460 | /// they don't conflict. |
| 461 | void addConsistentQualifiers(Qualifiers qs) { |
| 462 | assert(getAddressSpace() == qs.getAddressSpace() ||((void)0) |
| 463 | !hasAddressSpace() || !qs.hasAddressSpace())((void)0); |
| 464 | assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((void)0) |
| 465 | !hasObjCGCAttr() || !qs.hasObjCGCAttr())((void)0); |
| 466 | assert(getObjCLifetime() == qs.getObjCLifetime() ||((void)0) |
| 467 | !hasObjCLifetime() || !qs.hasObjCLifetime())((void)0); |
| 468 | Mask |= qs.Mask; |
| 469 | } |
| 470 | |
| 471 | /// Returns true if address space A is equal to or a superset of B. |
| 472 | /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of |
| 473 | /// overlapping address spaces. |
| 474 | /// CL1.1 or CL1.2: |
| 475 | /// every address space is a superset of itself. |
| 476 | /// CL2.0 adds: |
| 477 | /// __generic is a superset of any address space except for __constant. |
| 478 | static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) { |
| 479 | // Address spaces must match exactly. |
| 480 | return A == B || |
| 481 | // Otherwise in OpenCLC v2.0 s6.5.5: every address space except |
| 482 | // for __constant can be used as __generic. |
| 483 | (A == LangAS::opencl_generic && B != LangAS::opencl_constant) || |
| 484 | // We also define global_device and global_host address spaces, |
| 485 | // to distinguish global pointers allocated on host from pointers |
| 486 | // allocated on device, which are a subset of __global. |
| 487 | (A == LangAS::opencl_global && (B == LangAS::opencl_global_device || |
| 488 | B == LangAS::opencl_global_host)) || |
| 489 | (A == LangAS::sycl_global && (B == LangAS::sycl_global_device || |
| 490 | B == LangAS::sycl_global_host)) || |
| 491 | // Consider pointer size address spaces to be equivalent to default. |
| 492 | ((isPtrSizeAddressSpace(A) || A == LangAS::Default) && |
| 493 | (isPtrSizeAddressSpace(B) || B == LangAS::Default)) || |
| 494 | // Default is a superset of SYCL address spaces. |
| 495 | (A == LangAS::Default && |
| 496 | (B == LangAS::sycl_private || B == LangAS::sycl_local || |
| 497 | B == LangAS::sycl_global || B == LangAS::sycl_global_device || |
| 498 | B == LangAS::sycl_global_host)); |
| 499 | } |
| 500 | |
| 501 | /// Returns true if the address space in these qualifiers is equal to or |
| 502 | /// a superset of the address space in the argument qualifiers. |
| 503 | bool isAddressSpaceSupersetOf(Qualifiers other) const { |
| 504 | return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace()); |
| 505 | } |
| 506 | |
| 507 | /// Determines if these qualifiers compatibly include another set. |
| 508 | /// Generally this answers the question of whether an object with the other |
| 509 | /// qualifiers can be safely used as an object with these qualifiers. |
| 510 | bool compatiblyIncludes(Qualifiers other) const { |
| 511 | return isAddressSpaceSupersetOf(other) && |
| 512 | // ObjC GC qualifiers can match, be added, or be removed, but can't |
| 513 | // be changed. |
| 514 | (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() || |
| 515 | !other.hasObjCGCAttr()) && |
| 516 | // ObjC lifetime qualifiers must match exactly. |
| 517 | getObjCLifetime() == other.getObjCLifetime() && |
| 518 | // CVR qualifiers may subset. |
| 519 | (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) && |
| 520 | // U qualifier may superset. |
| 521 | (!other.hasUnaligned() || hasUnaligned()); |
| 522 | } |
| 523 | |
| 524 | /// Determines if these qualifiers compatibly include another set of |
| 525 | /// qualifiers from the narrow perspective of Objective-C ARC lifetime. |
| 526 | /// |
| 527 | /// One set of Objective-C lifetime qualifiers compatibly includes the other |
| 528 | /// if the lifetime qualifiers match, or if both are non-__weak and the |
| 529 | /// including set also contains the 'const' qualifier, or both are non-__weak |
| 530 | /// and one is None (which can only happen in non-ARC modes). |
| 531 | bool compatiblyIncludesObjCLifetime(Qualifiers other) const { |
| 532 | if (getObjCLifetime() == other.getObjCLifetime()) |
| 533 | return true; |
| 534 | |
| 535 | if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak) |
| 536 | return false; |
| 537 | |
| 538 | if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None) |
| 539 | return true; |
| 540 | |
| 541 | return hasConst(); |
| 542 | } |
| 543 | |
| 544 | /// Determine whether this set of qualifiers is a strict superset of |
| 545 | /// another set of qualifiers, not considering qualifier compatibility. |
| 546 | bool isStrictSupersetOf(Qualifiers Other) const; |
| 547 | |
| 548 | bool operator==(Qualifiers Other) const { return Mask == Other.Mask; } |
| 549 | bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; } |
| 550 | |
| 551 | explicit operator bool() const { return hasQualifiers(); } |
| 552 | |
| 553 | Qualifiers &operator+=(Qualifiers R) { |
| 554 | addQualifiers(R); |
| 555 | return *this; |
| 556 | } |
| 557 | |
| 558 | // Union two qualifier sets. If an enumerated qualifier appears |
| 559 | // in both sets, use the one from the right. |
| 560 | friend Qualifiers operator+(Qualifiers L, Qualifiers R) { |
| 561 | L += R; |
| 562 | return L; |
| 563 | } |
| 564 | |
| 565 | Qualifiers &operator-=(Qualifiers R) { |
| 566 | removeQualifiers(R); |
| 567 | return *this; |
| 568 | } |
| 569 | |
| 570 | /// Compute the difference between two qualifier sets. |
| 571 | friend Qualifiers operator-(Qualifiers L, Qualifiers R) { |
| 572 | L -= R; |
| 573 | return L; |
| 574 | } |
| 575 | |
| 576 | std::string getAsString() const; |
| 577 | std::string getAsString(const PrintingPolicy &Policy) const; |
| 578 | |
| 579 | static std::string getAddrSpaceAsString(LangAS AS); |
| 580 | |
| 581 | bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const; |
| 582 | void print(raw_ostream &OS, const PrintingPolicy &Policy, |
| 583 | bool appendSpaceIfNonEmpty = false) const; |
| 584 | |
| 585 | void Profile(llvm::FoldingSetNodeID &ID) const { |
| 586 | ID.AddInteger(Mask); |
| 587 | } |
| 588 | |
| 589 | private: |
| 590 | // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31| |
| 591 | // |C R V|U|GCAttr|Lifetime|AddressSpace| |
| 592 | uint32_t Mask = 0; |
| 593 | |
| 594 | static const uint32_t UMask = 0x8; |
| 595 | static const uint32_t UShift = 3; |
| 596 | static const uint32_t GCAttrMask = 0x30; |
| 597 | static const uint32_t GCAttrShift = 4; |
| 598 | static const uint32_t LifetimeMask = 0x1C0; |
| 599 | static const uint32_t LifetimeShift = 6; |
| 600 | static const uint32_t AddressSpaceMask = |
| 601 | ~(CVRMask | UMask | GCAttrMask | LifetimeMask); |
| 602 | static const uint32_t AddressSpaceShift = 9; |
| 603 | }; |
| 604 | |
| 605 | /// A std::pair-like structure for storing a qualified type split |
| 606 | /// into its local qualifiers and its locally-unqualified type. |
| 607 | struct SplitQualType { |
| 608 | /// The locally-unqualified type. |
| 609 | const Type *Ty = nullptr; |
| 610 | |
| 611 | /// The local qualifiers. |
| 612 | Qualifiers Quals; |
| 613 | |
| 614 | SplitQualType() = default; |
| 615 | SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {} |
| 616 | |
| 617 | SplitQualType getSingleStepDesugaredType() const; // end of this file |
| 618 | |
| 619 | // Make std::tie work. |
| 620 | std::pair<const Type *,Qualifiers> asPair() const { |
| 621 | return std::pair<const Type *, Qualifiers>(Ty, Quals); |
| 622 | } |
| 623 | |
| 624 | friend bool operator==(SplitQualType a, SplitQualType b) { |
| 625 | return a.Ty == b.Ty && a.Quals == b.Quals; |
| 626 | } |
| 627 | friend bool operator!=(SplitQualType a, SplitQualType b) { |
| 628 | return a.Ty != b.Ty || a.Quals != b.Quals; |
| 629 | } |
| 630 | }; |
| 631 | |
| 632 | /// The kind of type we are substituting Objective-C type arguments into. |
| 633 | /// |
| 634 | /// The kind of substitution affects the replacement of type parameters when |
| 635 | /// no concrete type information is provided, e.g., when dealing with an |
| 636 | /// unspecialized type. |
| 637 | enum class ObjCSubstitutionContext { |
| 638 | /// An ordinary type. |
| 639 | Ordinary, |
| 640 | |
| 641 | /// The result type of a method or function. |
| 642 | Result, |
| 643 | |
| 644 | /// The parameter type of a method or function. |
| 645 | Parameter, |
| 646 | |
| 647 | /// The type of a property. |
| 648 | Property, |
| 649 | |
| 650 | /// The superclass of a type. |
| 651 | Superclass, |
| 652 | }; |
| 653 | |
| 654 | /// A (possibly-)qualified type. |
| 655 | /// |
| 656 | /// For efficiency, we don't store CV-qualified types as nodes on their |
| 657 | /// own: instead each reference to a type stores the qualifiers. This |
| 658 | /// greatly reduces the number of nodes we need to allocate for types (for |
| 659 | /// example we only need one for 'int', 'const int', 'volatile int', |
| 660 | /// 'const volatile int', etc). |
| 661 | /// |
| 662 | /// As an added efficiency bonus, instead of making this a pair, we |
| 663 | /// just store the two bits we care about in the low bits of the |
| 664 | /// pointer. To handle the packing/unpacking, we make QualType be a |
| 665 | /// simple wrapper class that acts like a smart pointer. A third bit |
| 666 | /// indicates whether there are extended qualifiers present, in which |
| 667 | /// case the pointer points to a special structure. |
| 668 | class QualType { |
| 669 | friend class QualifierCollector; |
| 670 | |
| 671 | // Thankfully, these are efficiently composable. |
| 672 | llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>, |
| 673 | Qualifiers::FastWidth> Value; |
| 674 | |
| 675 | const ExtQuals *getExtQualsUnsafe() const { |
| 676 | return Value.getPointer().get<const ExtQuals*>(); |
| 677 | } |
| 678 | |
| 679 | const Type *getTypePtrUnsafe() const { |
| 680 | return Value.getPointer().get<const Type*>(); |
| 681 | } |
| 682 | |
| 683 | const ExtQualsTypeCommonBase *getCommonPtr() const { |
| 684 | assert(!isNull() && "Cannot retrieve a NULL type pointer")((void)0); |
| 685 | auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue()); |
| 686 | CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1); |
| 687 | return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal); |
| 688 | } |
| 689 | |
| 690 | public: |
| 691 | QualType() = default; |
| 692 | QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {} |
| 693 | QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {} |
| 694 | |
| 695 | unsigned getLocalFastQualifiers() const { return Value.getInt(); } |
| 696 | void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); } |
| 697 | |
| 698 | /// Retrieves a pointer to the underlying (unqualified) type. |
| 699 | /// |
| 700 | /// This function requires that the type not be NULL. If the type might be |
| 701 | /// NULL, use the (slightly less efficient) \c getTypePtrOrNull(). |
| 702 | const Type *getTypePtr() const; |
| 703 | |
| 704 | const Type *getTypePtrOrNull() const; |
| 705 | |
| 706 | /// Retrieves a pointer to the name of the base type. |
| 707 | const IdentifierInfo *getBaseTypeIdentifier() const; |
| 708 | |
| 709 | /// Divides a QualType into its unqualified type and a set of local |
| 710 | /// qualifiers. |
| 711 | SplitQualType split() const; |
| 712 | |
| 713 | void *getAsOpaquePtr() const { return Value.getOpaqueValue(); } |
| 714 | |
| 715 | static QualType getFromOpaquePtr(const void *Ptr) { |
| 716 | QualType T; |
| 717 | T.Value.setFromOpaqueValue(const_cast<void*>(Ptr)); |
| 718 | return T; |
| 719 | } |
| 720 | |
| 721 | const Type &operator*() const { |
| 722 | return *getTypePtr(); |
| 723 | } |
| 724 | |
| 725 | const Type *operator->() const { |
| 726 | return getTypePtr(); |
| 727 | } |
| 728 | |
| 729 | bool isCanonical() const; |
| 730 | bool isCanonicalAsParam() const; |
| 731 | |
| 732 | /// Return true if this QualType doesn't point to a type yet. |
| 733 | bool isNull() const { |
| 734 | return Value.getPointer().isNull(); |
| 735 | } |
| 736 | |
| 737 | /// Determine whether this particular QualType instance has the |
| 738 | /// "const" qualifier set, without looking through typedefs that may have |
| 739 | /// added "const" at a different level. |
| 740 | bool isLocalConstQualified() const { |
| 741 | return (getLocalFastQualifiers() & Qualifiers::Const); |
| 742 | } |
| 743 | |
| 744 | /// Determine whether this type is const-qualified. |
| 745 | bool isConstQualified() const; |
| 746 | |
| 747 | /// Determine whether this particular QualType instance has the |
| 748 | /// "restrict" qualifier set, without looking through typedefs that may have |
| 749 | /// added "restrict" at a different level. |
| 750 | bool isLocalRestrictQualified() const { |
| 751 | return (getLocalFastQualifiers() & Qualifiers::Restrict); |
| 752 | } |
| 753 | |
| 754 | /// Determine whether this type is restrict-qualified. |
| 755 | bool isRestrictQualified() const; |
| 756 | |
| 757 | /// Determine whether this particular QualType instance has the |
| 758 | /// "volatile" qualifier set, without looking through typedefs that may have |
| 759 | /// added "volatile" at a different level. |
| 760 | bool isLocalVolatileQualified() const { |
| 761 | return (getLocalFastQualifiers() & Qualifiers::Volatile); |
| 762 | } |
| 763 | |
| 764 | /// Determine whether this type is volatile-qualified. |
| 765 | bool isVolatileQualified() const; |
| 766 | |
| 767 | /// Determine whether this particular QualType instance has any |
| 768 | /// qualifiers, without looking through any typedefs that might add |
| 769 | /// qualifiers at a different level. |
| 770 | bool hasLocalQualifiers() const { |
| 771 | return getLocalFastQualifiers() || hasLocalNonFastQualifiers(); |
| 772 | } |
| 773 | |
| 774 | /// Determine whether this type has any qualifiers. |
| 775 | bool hasQualifiers() const; |
| 776 | |
| 777 | /// Determine whether this particular QualType instance has any |
| 778 | /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType |
| 779 | /// instance. |
| 780 | bool hasLocalNonFastQualifiers() const { |
| 781 | return Value.getPointer().is<const ExtQuals*>(); |
| 782 | } |
| 783 | |
| 784 | /// Retrieve the set of qualifiers local to this particular QualType |
| 785 | /// instance, not including any qualifiers acquired through typedefs or |
| 786 | /// other sugar. |
| 787 | Qualifiers getLocalQualifiers() const; |
| 788 | |
| 789 | /// Retrieve the set of qualifiers applied to this type. |
| 790 | Qualifiers getQualifiers() const; |
| 791 | |
| 792 | /// Retrieve the set of CVR (const-volatile-restrict) qualifiers |
| 793 | /// local to this particular QualType instance, not including any qualifiers |
| 794 | /// acquired through typedefs or other sugar. |
| 795 | unsigned getLocalCVRQualifiers() const { |
| 796 | return getLocalFastQualifiers(); |
| 797 | } |
| 798 | |
| 799 | /// Retrieve the set of CVR (const-volatile-restrict) qualifiers |
| 800 | /// applied to this type. |
| 801 | unsigned getCVRQualifiers() const; |
| 802 | |
| 803 | bool isConstant(const ASTContext& Ctx) const { |
| 804 | return QualType::isConstant(*this, Ctx); |
| 805 | } |
| 806 | |
| 807 | /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10). |
| 808 | bool isPODType(const ASTContext &Context) const; |
| 809 | |
| 810 | /// Return true if this is a POD type according to the rules of the C++98 |
| 811 | /// standard, regardless of the current compilation's language. |
| 812 | bool isCXX98PODType(const ASTContext &Context) const; |
| 813 | |
| 814 | /// Return true if this is a POD type according to the more relaxed rules |
| 815 | /// of the C++11 standard, regardless of the current compilation's language. |
| 816 | /// (C++0x [basic.types]p9). Note that, unlike |
| 817 | /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account. |
| 818 | bool isCXX11PODType(const ASTContext &Context) const; |
| 819 | |
| 820 | /// Return true if this is a trivial type per (C++0x [basic.types]p9) |
| 821 | bool isTrivialType(const ASTContext &Context) const; |
| 822 | |
| 823 | /// Return true if this is a trivially copyable type (C++0x [basic.types]p9) |
| 824 | bool isTriviallyCopyableType(const ASTContext &Context) const; |
| 825 | |
| 826 | |
| 827 | /// Returns true if it is a class and it might be dynamic. |
| 828 | bool mayBeDynamicClass() const; |
| 829 | |
| 830 | /// Returns true if it is not a class or if the class might not be dynamic. |
| 831 | bool mayBeNotDynamicClass() const; |
| 832 | |
| 833 | // Don't promise in the API that anything besides 'const' can be |
| 834 | // easily added. |
| 835 | |
| 836 | /// Add the `const` type qualifier to this QualType. |
| 837 | void addConst() { |
| 838 | addFastQualifiers(Qualifiers::Const); |
| 839 | } |
| 840 | QualType withConst() const { |
| 841 | return withFastQualifiers(Qualifiers::Const); |
| 842 | } |
| 843 | |
| 844 | /// Add the `volatile` type qualifier to this QualType. |
| 845 | void addVolatile() { |
| 846 | addFastQualifiers(Qualifiers::Volatile); |
| 847 | } |
| 848 | QualType withVolatile() const { |
| 849 | return withFastQualifiers(Qualifiers::Volatile); |
| 850 | } |
| 851 | |
| 852 | /// Add the `restrict` qualifier to this QualType. |
| 853 | void addRestrict() { |
| 854 | addFastQualifiers(Qualifiers::Restrict); |
| 855 | } |
| 856 | QualType withRestrict() const { |
| 857 | return withFastQualifiers(Qualifiers::Restrict); |
| 858 | } |
| 859 | |
| 860 | QualType withCVRQualifiers(unsigned CVR) const { |
| 861 | return withFastQualifiers(CVR); |
| 862 | } |
| 863 | |
| 864 | void addFastQualifiers(unsigned TQs) { |
| 865 | assert(!(TQs & ~Qualifiers::FastMask)((void)0) |
| 866 | && "non-fast qualifier bits set in mask!")((void)0); |
| 867 | Value.setInt(Value.getInt() | TQs); |
| 868 | } |
| 869 | |
| 870 | void removeLocalConst(); |
| 871 | void removeLocalVolatile(); |
| 872 | void removeLocalRestrict(); |
| 873 | void removeLocalCVRQualifiers(unsigned Mask); |
| 874 | |
| 875 | void removeLocalFastQualifiers() { Value.setInt(0); } |
| 876 | void removeLocalFastQualifiers(unsigned Mask) { |
| 877 | assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((void)0); |
| 878 | Value.setInt(Value.getInt() & ~Mask); |
| 879 | } |
| 880 | |
| 881 | // Creates a type with the given qualifiers in addition to any |
| 882 | // qualifiers already on this type. |
| 883 | QualType withFastQualifiers(unsigned TQs) const { |
| 884 | QualType T = *this; |
| 885 | T.addFastQualifiers(TQs); |
| 886 | return T; |
| 887 | } |
| 888 | |
| 889 | // Creates a type with exactly the given fast qualifiers, removing |
| 890 | // any existing fast qualifiers. |
| 891 | QualType withExactLocalFastQualifiers(unsigned TQs) const { |
| 892 | return withoutLocalFastQualifiers().withFastQualifiers(TQs); |
| 893 | } |
| 894 | |
| 895 | // Removes fast qualifiers, but leaves any extended qualifiers in place. |
| 896 | QualType withoutLocalFastQualifiers() const { |
| 897 | QualType T = *this; |
| 898 | T.removeLocalFastQualifiers(); |
| 899 | return T; |
| 900 | } |
| 901 | |
| 902 | QualType getCanonicalType() const; |
| 903 | |
| 904 | /// Return this type with all of the instance-specific qualifiers |
| 905 | /// removed, but without removing any qualifiers that may have been applied |
| 906 | /// through typedefs. |
| 907 | QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); } |
| 908 | |
| 909 | /// Retrieve the unqualified variant of the given type, |
| 910 | /// removing as little sugar as possible. |
| 911 | /// |
| 912 | /// This routine looks through various kinds of sugar to find the |
| 913 | /// least-desugared type that is unqualified. For example, given: |
| 914 | /// |
| 915 | /// \code |
| 916 | /// typedef int Integer; |
| 917 | /// typedef const Integer CInteger; |
| 918 | /// typedef CInteger DifferenceType; |
| 919 | /// \endcode |
| 920 | /// |
| 921 | /// Executing \c getUnqualifiedType() on the type \c DifferenceType will |
| 922 | /// desugar until we hit the type \c Integer, which has no qualifiers on it. |
| 923 | /// |
| 924 | /// The resulting type might still be qualified if it's sugar for an array |
| 925 | /// type. To strip qualifiers even from within a sugared array type, use |
| 926 | /// ASTContext::getUnqualifiedArrayType. |
| 927 | inline QualType getUnqualifiedType() const; |
| 928 | |
| 929 | /// Retrieve the unqualified variant of the given type, removing as little |
| 930 | /// sugar as possible. |
| 931 | /// |
| 932 | /// Like getUnqualifiedType(), but also returns the set of |
| 933 | /// qualifiers that were built up. |
| 934 | /// |
| 935 | /// The resulting type might still be qualified if it's sugar for an array |
| 936 | /// type. To strip qualifiers even from within a sugared array type, use |
| 937 | /// ASTContext::getUnqualifiedArrayType. |
| 938 | inline SplitQualType getSplitUnqualifiedType() const; |
| 939 | |
| 940 | /// Determine whether this type is more qualified than the other |
| 941 | /// given type, requiring exact equality for non-CVR qualifiers. |
| 942 | bool isMoreQualifiedThan(QualType Other) const; |
| 943 | |
| 944 | /// Determine whether this type is at least as qualified as the other |
| 945 | /// given type, requiring exact equality for non-CVR qualifiers. |
| 946 | bool isAtLeastAsQualifiedAs(QualType Other) const; |
| 947 | |
| 948 | QualType getNonReferenceType() const; |
| 949 | |
| 950 | /// Determine the type of a (typically non-lvalue) expression with the |
| 951 | /// specified result type. |
| 952 | /// |
| 953 | /// This routine should be used for expressions for which the return type is |
| 954 | /// explicitly specified (e.g., in a cast or call) and isn't necessarily |
| 955 | /// an lvalue. It removes a top-level reference (since there are no |
| 956 | /// expressions of reference type) and deletes top-level cvr-qualifiers |
| 957 | /// from non-class types (in C++) or all types (in C). |
| 958 | QualType getNonLValueExprType(const ASTContext &Context) const; |
| 959 | |
| 960 | /// Remove an outer pack expansion type (if any) from this type. Used as part |
| 961 | /// of converting the type of a declaration to the type of an expression that |
| 962 | /// references that expression. It's meaningless for an expression to have a |
| 963 | /// pack expansion type. |
| 964 | QualType getNonPackExpansionType() const; |
| 965 | |
| 966 | /// Return the specified type with any "sugar" removed from |
| 967 | /// the type. This takes off typedefs, typeof's etc. If the outer level of |
| 968 | /// the type is already concrete, it returns it unmodified. This is similar |
| 969 | /// to getting the canonical type, but it doesn't remove *all* typedefs. For |
| 970 | /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is |
| 971 | /// concrete. |
| 972 | /// |
| 973 | /// Qualifiers are left in place. |
| 974 | QualType getDesugaredType(const ASTContext &Context) const { |
| 975 | return getDesugaredType(*this, Context); |
| 976 | } |
| 977 | |
| 978 | SplitQualType getSplitDesugaredType() const { |
| 979 | return getSplitDesugaredType(*this); |
| 980 | } |
| 981 | |
| 982 | /// Return the specified type with one level of "sugar" removed from |
| 983 | /// the type. |
| 984 | /// |
| 985 | /// This routine takes off the first typedef, typeof, etc. If the outer level |
| 986 | /// of the type is already concrete, it returns it unmodified. |
| 987 | QualType getSingleStepDesugaredType(const ASTContext &Context) const { |
| 988 | return getSingleStepDesugaredTypeImpl(*this, Context); |
| 989 | } |
| 990 | |
| 991 | /// Returns the specified type after dropping any |
| 992 | /// outer-level parentheses. |
| 993 | QualType IgnoreParens() const { |
| 994 | if (isa<ParenType>(*this)) |
| 995 | return QualType::IgnoreParens(*this); |
| 996 | return *this; |
| 997 | } |
| 998 | |
| 999 | /// Indicate whether the specified types and qualifiers are identical. |
| 1000 | friend bool operator==(const QualType &LHS, const QualType &RHS) { |
| 1001 | return LHS.Value == RHS.Value; |
| 1002 | } |
| 1003 | friend bool operator!=(const QualType &LHS, const QualType &RHS) { |
| 1004 | return LHS.Value != RHS.Value; |
| 1005 | } |
| 1006 | friend bool operator<(const QualType &LHS, const QualType &RHS) { |
| 1007 | return LHS.Value < RHS.Value; |
| 1008 | } |
| 1009 | |
| 1010 | static std::string getAsString(SplitQualType split, |
| 1011 | const PrintingPolicy &Policy) { |
| 1012 | return getAsString(split.Ty, split.Quals, Policy); |
| 1013 | } |
| 1014 | static std::string getAsString(const Type *ty, Qualifiers qs, |
| 1015 | const PrintingPolicy &Policy); |
| 1016 | |
| 1017 | std::string getAsString() const; |
| 1018 | std::string getAsString(const PrintingPolicy &Policy) const; |
| 1019 | |
| 1020 | void print(raw_ostream &OS, const PrintingPolicy &Policy, |
| 1021 | const Twine &PlaceHolder = Twine(), |
| 1022 | unsigned Indentation = 0) const; |
| 1023 | |
| 1024 | static void print(SplitQualType split, raw_ostream &OS, |
| 1025 | const PrintingPolicy &policy, const Twine &PlaceHolder, |
| 1026 | unsigned Indentation = 0) { |
| 1027 | return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation); |
| 1028 | } |
| 1029 | |
| 1030 | static void print(const Type *ty, Qualifiers qs, |
| 1031 | raw_ostream &OS, const PrintingPolicy &policy, |
| 1032 | const Twine &PlaceHolder, |
| 1033 | unsigned Indentation = 0); |
| 1034 | |
| 1035 | void getAsStringInternal(std::string &Str, |
| 1036 | const PrintingPolicy &Policy) const; |
| 1037 | |
| 1038 | static void getAsStringInternal(SplitQualType split, std::string &out, |
| 1039 | const PrintingPolicy &policy) { |
| 1040 | return getAsStringInternal(split.Ty, split.Quals, out, policy); |
| 1041 | } |
| 1042 | |
| 1043 | static void getAsStringInternal(const Type *ty, Qualifiers qs, |
| 1044 | std::string &out, |
| 1045 | const PrintingPolicy &policy); |
| 1046 | |
| 1047 | class StreamedQualTypeHelper { |
| 1048 | const QualType &T; |
| 1049 | const PrintingPolicy &Policy; |
| 1050 | const Twine &PlaceHolder; |
| 1051 | unsigned Indentation; |
| 1052 | |
| 1053 | public: |
| 1054 | StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy, |
| 1055 | const Twine &PlaceHolder, unsigned Indentation) |
| 1056 | : T(T), Policy(Policy), PlaceHolder(PlaceHolder), |
| 1057 | Indentation(Indentation) {} |
| 1058 | |
| 1059 | friend raw_ostream &operator<<(raw_ostream &OS, |
| 1060 | const StreamedQualTypeHelper &SQT) { |
| 1061 | SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation); |
| 1062 | return OS; |
| 1063 | } |
| 1064 | }; |
| 1065 | |
| 1066 | StreamedQualTypeHelper stream(const PrintingPolicy &Policy, |
| 1067 | const Twine &PlaceHolder = Twine(), |
| 1068 | unsigned Indentation = 0) const { |
| 1069 | return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation); |
| 1070 | } |
| 1071 | |
| 1072 | void dump(const char *s) const; |
| 1073 | void dump() const; |
| 1074 | void dump(llvm::raw_ostream &OS, const ASTContext &Context) const; |
| 1075 | |
| 1076 | void Profile(llvm::FoldingSetNodeID &ID) const { |
| 1077 | ID.AddPointer(getAsOpaquePtr()); |
| 1078 | } |
| 1079 | |
| 1080 | /// Check if this type has any address space qualifier. |
| 1081 | inline bool hasAddressSpace() const; |
| 1082 | |
| 1083 | /// Return the address space of this type. |
| 1084 | inline LangAS getAddressSpace() const; |
| 1085 | |
| 1086 | /// Returns true if address space qualifiers overlap with T address space |
| 1087 | /// qualifiers. |
| 1088 | /// OpenCL C defines conversion rules for pointers to different address spaces |
| 1089 | /// and notion of overlapping address spaces. |
| 1090 | /// CL1.1 or CL1.2: |
| 1091 | /// address spaces overlap iff they are they same. |
| 1092 | /// OpenCL C v2.0 s6.5.5 adds: |
| 1093 | /// __generic overlaps with any address space except for __constant. |
| 1094 | bool isAddressSpaceOverlapping(QualType T) const { |
| 1095 | Qualifiers Q = getQualifiers(); |
| 1096 | Qualifiers TQ = T.getQualifiers(); |
| 1097 | // Address spaces overlap if at least one of them is a superset of another |
| 1098 | return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q); |
| 1099 | } |
| 1100 | |
| 1101 | /// Returns gc attribute of this type. |
| 1102 | inline Qualifiers::GC getObjCGCAttr() const; |
| 1103 | |
| 1104 | /// true when Type is objc's weak. |
| 1105 | bool isObjCGCWeak() const { |
| 1106 | return getObjCGCAttr() == Qualifiers::Weak; |
| 1107 | } |
| 1108 | |
| 1109 | /// true when Type is objc's strong. |
| 1110 | bool isObjCGCStrong() const { |
| 1111 | return getObjCGCAttr() == Qualifiers::Strong; |
| 1112 | } |
| 1113 | |
| 1114 | /// Returns lifetime attribute of this type. |
| 1115 | Qualifiers::ObjCLifetime getObjCLifetime() const { |
| 1116 | return getQualifiers().getObjCLifetime(); |
| 1117 | } |
| 1118 | |
| 1119 | bool hasNonTrivialObjCLifetime() const { |
| 1120 | return getQualifiers().hasNonTrivialObjCLifetime(); |
| 1121 | } |
| 1122 | |
| 1123 | bool hasStrongOrWeakObjCLifetime() const { |
| 1124 | return getQualifiers().hasStrongOrWeakObjCLifetime(); |
| 1125 | } |
| 1126 | |
| 1127 | // true when Type is objc's weak and weak is enabled but ARC isn't. |
| 1128 | bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const; |
| 1129 | |
| 1130 | enum PrimitiveDefaultInitializeKind { |
| 1131 | /// The type does not fall into any of the following categories. Note that |
| 1132 | /// this case is zero-valued so that values of this enum can be used as a |
| 1133 | /// boolean condition for non-triviality. |
| 1134 | PDIK_Trivial, |
| 1135 | |
| 1136 | /// The type is an Objective-C retainable pointer type that is qualified |
| 1137 | /// with the ARC __strong qualifier. |
| 1138 | PDIK_ARCStrong, |
| 1139 | |
| 1140 | /// The type is an Objective-C retainable pointer type that is qualified |
| 1141 | /// with the ARC __weak qualifier. |
| 1142 | PDIK_ARCWeak, |
| 1143 | |
| 1144 | /// The type is a struct containing a field whose type is not PCK_Trivial. |
| 1145 | PDIK_Struct |
| 1146 | }; |
| 1147 | |
| 1148 | /// Functions to query basic properties of non-trivial C struct types. |
| 1149 | |
| 1150 | /// Check if this is a non-trivial type that would cause a C struct |
| 1151 | /// transitively containing this type to be non-trivial to default initialize |
| 1152 | /// and return the kind. |
| 1153 | PrimitiveDefaultInitializeKind |
| 1154 | isNonTrivialToPrimitiveDefaultInitialize() const; |
| 1155 | |
| 1156 | enum PrimitiveCopyKind { |
| 1157 | /// The type does not fall into any of the following categories. Note that |
| 1158 | /// this case is zero-valued so that values of this enum can be used as a |
| 1159 | /// boolean condition for non-triviality. |
| 1160 | PCK_Trivial, |
| 1161 | |
| 1162 | /// The type would be trivial except that it is volatile-qualified. Types |
| 1163 | /// that fall into one of the other non-trivial cases may additionally be |
| 1164 | /// volatile-qualified. |
| 1165 | PCK_VolatileTrivial, |
| 1166 | |
| 1167 | /// The type is an Objective-C retainable pointer type that is qualified |
| 1168 | /// with the ARC __strong qualifier. |
| 1169 | PCK_ARCStrong, |
| 1170 | |
| 1171 | /// The type is an Objective-C retainable pointer type that is qualified |
| 1172 | /// with the ARC __weak qualifier. |
| 1173 | PCK_ARCWeak, |
| 1174 | |
| 1175 | /// The type is a struct containing a field whose type is neither |
| 1176 | /// PCK_Trivial nor PCK_VolatileTrivial. |
| 1177 | /// Note that a C++ struct type does not necessarily match this; C++ copying |
| 1178 | /// semantics are too complex to express here, in part because they depend |
| 1179 | /// on the exact constructor or assignment operator that is chosen by |
| 1180 | /// overload resolution to do the copy. |
| 1181 | PCK_Struct |
| 1182 | }; |
| 1183 | |
| 1184 | /// Check if this is a non-trivial type that would cause a C struct |
| 1185 | /// transitively containing this type to be non-trivial to copy and return the |
| 1186 | /// kind. |
| 1187 | PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const; |
| 1188 | |
| 1189 | /// Check if this is a non-trivial type that would cause a C struct |
| 1190 | /// transitively containing this type to be non-trivial to destructively |
| 1191 | /// move and return the kind. Destructive move in this context is a C++-style |
| 1192 | /// move in which the source object is placed in a valid but unspecified state |
| 1193 | /// after it is moved, as opposed to a truly destructive move in which the |
| 1194 | /// source object is placed in an uninitialized state. |
| 1195 | PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const; |
| 1196 | |
| 1197 | enum DestructionKind { |
| 1198 | DK_none, |
| 1199 | DK_cxx_destructor, |
| 1200 | DK_objc_strong_lifetime, |
| 1201 | DK_objc_weak_lifetime, |
| 1202 | DK_nontrivial_c_struct |
| 1203 | }; |
| 1204 | |
| 1205 | /// Returns a nonzero value if objects of this type require |
| 1206 | /// non-trivial work to clean up after. Non-zero because it's |
| 1207 | /// conceivable that qualifiers (objc_gc(weak)?) could make |
| 1208 | /// something require destruction. |
| 1209 | DestructionKind isDestructedType() const { |
| 1210 | return isDestructedTypeImpl(*this); |
| 1211 | } |
| 1212 | |
| 1213 | /// Check if this is or contains a C union that is non-trivial to |
| 1214 | /// default-initialize, which is a union that has a member that is non-trivial |
| 1215 | /// to default-initialize. If this returns true, |
| 1216 | /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct. |
| 1217 | bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const; |
| 1218 | |
| 1219 | /// Check if this is or contains a C union that is non-trivial to destruct, |
| 1220 | /// which is a union that has a member that is non-trivial to destruct. If |
| 1221 | /// this returns true, isDestructedType returns DK_nontrivial_c_struct. |
| 1222 | bool hasNonTrivialToPrimitiveDestructCUnion() const; |
| 1223 | |
| 1224 | /// Check if this is or contains a C union that is non-trivial to copy, which |
| 1225 | /// is a union that has a member that is non-trivial to copy. If this returns |
| 1226 | /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct. |
| 1227 | bool hasNonTrivialToPrimitiveCopyCUnion() const; |
| 1228 | |
| 1229 | /// Determine whether expressions of the given type are forbidden |
| 1230 | /// from being lvalues in C. |
| 1231 | /// |
| 1232 | /// The expression types that are forbidden to be lvalues are: |
| 1233 | /// - 'void', but not qualified void |
| 1234 | /// - function types |
| 1235 | /// |
| 1236 | /// The exact rule here is C99 6.3.2.1: |
| 1237 | /// An lvalue is an expression with an object type or an incomplete |
| 1238 | /// type other than void. |
| 1239 | bool isCForbiddenLValueType() const; |
| 1240 | |
| 1241 | /// Substitute type arguments for the Objective-C type parameters used in the |
| 1242 | /// subject type. |
| 1243 | /// |
| 1244 | /// \param ctx ASTContext in which the type exists. |
| 1245 | /// |
| 1246 | /// \param typeArgs The type arguments that will be substituted for the |
| 1247 | /// Objective-C type parameters in the subject type, which are generally |
| 1248 | /// computed via \c Type::getObjCSubstitutions. If empty, the type |
| 1249 | /// parameters will be replaced with their bounds or id/Class, as appropriate |
| 1250 | /// for the context. |
| 1251 | /// |
| 1252 | /// \param context The context in which the subject type was written. |
| 1253 | /// |
| 1254 | /// \returns the resulting type. |
| 1255 | QualType substObjCTypeArgs(ASTContext &ctx, |
| 1256 | ArrayRef<QualType> typeArgs, |
| 1257 | ObjCSubstitutionContext context) const; |
| 1258 | |
| 1259 | /// Substitute type arguments from an object type for the Objective-C type |
| 1260 | /// parameters used in the subject type. |
| 1261 | /// |
| 1262 | /// This operation combines the computation of type arguments for |
| 1263 | /// substitution (\c Type::getObjCSubstitutions) with the actual process of |
| 1264 | /// substitution (\c QualType::substObjCTypeArgs) for the convenience of |
| 1265 | /// callers that need to perform a single substitution in isolation. |
| 1266 | /// |
| 1267 | /// \param objectType The type of the object whose member type we're |
| 1268 | /// substituting into. For example, this might be the receiver of a message |
| 1269 | /// or the base of a property access. |
| 1270 | /// |
| 1271 | /// \param dc The declaration context from which the subject type was |
| 1272 | /// retrieved, which indicates (for example) which type parameters should |
| 1273 | /// be substituted. |
| 1274 | /// |
| 1275 | /// \param context The context in which the subject type was written. |
| 1276 | /// |
| 1277 | /// \returns the subject type after replacing all of the Objective-C type |
| 1278 | /// parameters with their corresponding arguments. |
| 1279 | QualType substObjCMemberType(QualType objectType, |
| 1280 | const DeclContext *dc, |
| 1281 | ObjCSubstitutionContext context) const; |
| 1282 | |
| 1283 | /// Strip Objective-C "__kindof" types from the given type. |
| 1284 | QualType stripObjCKindOfType(const ASTContext &ctx) const; |
| 1285 | |
| 1286 | /// Remove all qualifiers including _Atomic. |
| 1287 | QualType getAtomicUnqualifiedType() const; |
| 1288 | |
| 1289 | private: |
| 1290 | // These methods are implemented in a separate translation unit; |
| 1291 | // "static"-ize them to avoid creating temporary QualTypes in the |
| 1292 | // caller. |
| 1293 | static bool isConstant(QualType T, const ASTContext& Ctx); |
| 1294 | static QualType getDesugaredType(QualType T, const ASTContext &Context); |
| 1295 | static SplitQualType getSplitDesugaredType(QualType T); |
| 1296 | static SplitQualType getSplitUnqualifiedTypeImpl(QualType type); |
| 1297 | static QualType getSingleStepDesugaredTypeImpl(QualType type, |
| 1298 | const ASTContext &C); |
| 1299 | static QualType IgnoreParens(QualType T); |
| 1300 | static DestructionKind isDestructedTypeImpl(QualType type); |
| 1301 | |
| 1302 | /// Check if \param RD is or contains a non-trivial C union. |
| 1303 | static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD); |
| 1304 | static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD); |
| 1305 | static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD); |
| 1306 | }; |
| 1307 | |
| 1308 | } // namespace clang |
| 1309 | |
| 1310 | namespace llvm { |
| 1311 | |
| 1312 | /// Implement simplify_type for QualType, so that we can dyn_cast from QualType |
| 1313 | /// to a specific Type class. |
| 1314 | template<> struct simplify_type< ::clang::QualType> { |
| 1315 | using SimpleType = const ::clang::Type *; |
| 1316 | |
| 1317 | static SimpleType getSimplifiedValue(::clang::QualType Val) { |
| 1318 | return Val.getTypePtr(); |
| 1319 | } |
| 1320 | }; |
| 1321 | |
| 1322 | // Teach SmallPtrSet that QualType is "basically a pointer". |
| 1323 | template<> |
| 1324 | struct PointerLikeTypeTraits<clang::QualType> { |
| 1325 | static inline void *getAsVoidPointer(clang::QualType P) { |
| 1326 | return P.getAsOpaquePtr(); |
| 1327 | } |
| 1328 | |
| 1329 | static inline clang::QualType getFromVoidPointer(void *P) { |
| 1330 | return clang::QualType::getFromOpaquePtr(P); |
| 1331 | } |
| 1332 | |
| 1333 | // Various qualifiers go in low bits. |
| 1334 | static constexpr int NumLowBitsAvailable = 0; |
| 1335 | }; |
| 1336 | |
| 1337 | } // namespace llvm |
| 1338 | |
| 1339 | namespace clang { |
| 1340 | |
| 1341 | /// Base class that is common to both the \c ExtQuals and \c Type |
| 1342 | /// classes, which allows \c QualType to access the common fields between the |
| 1343 | /// two. |
| 1344 | class ExtQualsTypeCommonBase { |
| 1345 | friend class ExtQuals; |
| 1346 | friend class QualType; |
| 1347 | friend class Type; |
| 1348 | |
| 1349 | /// The "base" type of an extended qualifiers type (\c ExtQuals) or |
| 1350 | /// a self-referential pointer (for \c Type). |
| 1351 | /// |
| 1352 | /// This pointer allows an efficient mapping from a QualType to its |
| 1353 | /// underlying type pointer. |
| 1354 | const Type *const BaseType; |
| 1355 | |
| 1356 | /// The canonical type of this type. A QualType. |
| 1357 | QualType CanonicalType; |
| 1358 | |
| 1359 | ExtQualsTypeCommonBase(const Type *baseType, QualType canon) |
| 1360 | : BaseType(baseType), CanonicalType(canon) {} |
| 1361 | }; |
| 1362 | |
| 1363 | /// We can encode up to four bits in the low bits of a |
| 1364 | /// type pointer, but there are many more type qualifiers that we want |
| 1365 | /// to be able to apply to an arbitrary type. Therefore we have this |
| 1366 | /// struct, intended to be heap-allocated and used by QualType to |
| 1367 | /// store qualifiers. |
| 1368 | /// |
| 1369 | /// The current design tags the 'const', 'restrict', and 'volatile' qualifiers |
| 1370 | /// in three low bits on the QualType pointer; a fourth bit records whether |
| 1371 | /// the pointer is an ExtQuals node. The extended qualifiers (address spaces, |
| 1372 | /// Objective-C GC attributes) are much more rare. |
| 1373 | class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode { |
| 1374 | // NOTE: changing the fast qualifiers should be straightforward as |
| 1375 | // long as you don't make 'const' non-fast. |
| 1376 | // 1. Qualifiers: |
| 1377 | // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ). |
| 1378 | // Fast qualifiers must occupy the low-order bits. |
| 1379 | // b) Update Qualifiers::FastWidth and FastMask. |
| 1380 | // 2. QualType: |
| 1381 | // a) Update is{Volatile,Restrict}Qualified(), defined inline. |
| 1382 | // b) Update remove{Volatile,Restrict}, defined near the end of |
| 1383 | // this header. |
| 1384 | // 3. ASTContext: |
| 1385 | // a) Update get{Volatile,Restrict}Type. |
| 1386 | |
| 1387 | /// The immutable set of qualifiers applied by this node. Always contains |
| 1388 | /// extended qualifiers. |
| 1389 | Qualifiers Quals; |
| 1390 | |
| 1391 | ExtQuals *this_() { return this; } |
| 1392 | |
| 1393 | public: |
| 1394 | ExtQuals(const Type *baseType, QualType canon, Qualifiers quals) |
| 1395 | : ExtQualsTypeCommonBase(baseType, |
| 1396 | canon.isNull() ? QualType(this_(), 0) : canon), |
| 1397 | Quals(quals) { |
| 1398 | assert(Quals.hasNonFastQualifiers()((void)0) |
| 1399 | && "ExtQuals created with no fast qualifiers")((void)0); |
| 1400 | assert(!Quals.hasFastQualifiers()((void)0) |
| 1401 | && "ExtQuals created with fast qualifiers")((void)0); |
| 1402 | } |
| 1403 | |
| 1404 | Qualifiers getQualifiers() const { return Quals; } |
| 1405 | |
| 1406 | bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); } |
| 1407 | Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); } |
| 1408 | |
| 1409 | bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); } |
| 1410 | Qualifiers::ObjCLifetime getObjCLifetime() const { |
| 1411 | return Quals.getObjCLifetime(); |
| 1412 | } |
| 1413 | |
| 1414 | bool hasAddressSpace() const { return Quals.hasAddressSpace(); } |
| 1415 | LangAS getAddressSpace() const { return Quals.getAddressSpace(); } |
| 1416 | |
| 1417 | const Type *getBaseType() const { return BaseType; } |
| 1418 | |
| 1419 | public: |
| 1420 | void Profile(llvm::FoldingSetNodeID &ID) const { |
| 1421 | Profile(ID, getBaseType(), Quals); |
| 1422 | } |
| 1423 | |
| 1424 | static void Profile(llvm::FoldingSetNodeID &ID, |
| 1425 | const Type *BaseType, |
| 1426 | Qualifiers Quals) { |
| 1427 | assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")((void)0); |
| 1428 | ID.AddPointer(BaseType); |
| 1429 | Quals.Profile(ID); |
| 1430 | } |
| 1431 | }; |
| 1432 | |
| 1433 | /// The kind of C++11 ref-qualifier associated with a function type. |
| 1434 | /// This determines whether a member function's "this" object can be an |
| 1435 | /// lvalue, rvalue, or neither. |
| 1436 | enum RefQualifierKind { |
| 1437 | /// No ref-qualifier was provided. |
| 1438 | RQ_None = 0, |
| 1439 | |
| 1440 | /// An lvalue ref-qualifier was provided (\c &). |
| 1441 | RQ_LValue, |
| 1442 | |
| 1443 | /// An rvalue ref-qualifier was provided (\c &&). |
| 1444 | RQ_RValue |
| 1445 | }; |
| 1446 | |
| 1447 | /// Which keyword(s) were used to create an AutoType. |
| 1448 | enum class AutoTypeKeyword { |
| 1449 | /// auto |
| 1450 | Auto, |
| 1451 | |
| 1452 | /// decltype(auto) |
| 1453 | DecltypeAuto, |
| 1454 | |
| 1455 | /// __auto_type (GNU extension) |
| 1456 | GNUAutoType |
| 1457 | }; |
| 1458 | |
| 1459 | /// The base class of the type hierarchy. |
| 1460 | /// |
| 1461 | /// A central concept with types is that each type always has a canonical |
| 1462 | /// type. A canonical type is the type with any typedef names stripped out |
| 1463 | /// of it or the types it references. For example, consider: |
| 1464 | /// |
| 1465 | /// typedef int foo; |
| 1466 | /// typedef foo* bar; |
| 1467 | /// 'int *' 'foo *' 'bar' |
| 1468 | /// |
| 1469 | /// There will be a Type object created for 'int'. Since int is canonical, its |
| 1470 | /// CanonicalType pointer points to itself. There is also a Type for 'foo' (a |
| 1471 | /// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next |
| 1472 | /// there is a PointerType that represents 'int*', which, like 'int', is |
| 1473 | /// canonical. Finally, there is a PointerType type for 'foo*' whose canonical |
| 1474 | /// type is 'int*', and there is a TypedefType for 'bar', whose canonical type |
| 1475 | /// is also 'int*'. |
| 1476 | /// |
| 1477 | /// Non-canonical types are useful for emitting diagnostics, without losing |
| 1478 | /// information about typedefs being used. Canonical types are useful for type |
| 1479 | /// comparisons (they allow by-pointer equality tests) and useful for reasoning |
| 1480 | /// about whether something has a particular form (e.g. is a function type), |
| 1481 | /// because they implicitly, recursively, strip all typedefs out of a type. |
| 1482 | /// |
| 1483 | /// Types, once created, are immutable. |
| 1484 | /// |
| 1485 | class alignas(8) Type : public ExtQualsTypeCommonBase { |
| 1486 | public: |
| 1487 | enum TypeClass { |
| 1488 | #define TYPE(Class, Base) Class, |
| 1489 | #define LAST_TYPE(Class) TypeLast = Class |
| 1490 | #define ABSTRACT_TYPE(Class, Base) |
| 1491 | #include "clang/AST/TypeNodes.inc" |
| 1492 | }; |
| 1493 | |
| 1494 | private: |
| 1495 | /// Bitfields required by the Type class. |
| 1496 | class TypeBitfields { |
| 1497 | friend class Type; |
| 1498 | template <class T> friend class TypePropertyCache; |
| 1499 | |
| 1500 | /// TypeClass bitfield - Enum that specifies what subclass this belongs to. |
| 1501 | unsigned TC : 8; |
| 1502 | |
| 1503 | /// Store information on the type dependency. |
| 1504 | unsigned Dependence : llvm::BitWidth<TypeDependence>; |
| 1505 | |
| 1506 | /// True if the cache (i.e. the bitfields here starting with |
| 1507 | /// 'Cache') is valid. |
| 1508 | mutable unsigned CacheValid : 1; |
| 1509 | |
| 1510 | /// Linkage of this type. |
| 1511 | mutable unsigned CachedLinkage : 3; |
| 1512 | |
| 1513 | /// Whether this type involves and local or unnamed types. |
| 1514 | mutable unsigned CachedLocalOrUnnamed : 1; |
| 1515 | |
| 1516 | /// Whether this type comes from an AST file. |
| 1517 | mutable unsigned FromAST : 1; |
| 1518 | |
| 1519 | bool isCacheValid() const { |
| 1520 | return CacheValid; |
| 1521 | } |
| 1522 | |
| 1523 | Linkage getLinkage() const { |
| 1524 | assert(isCacheValid() && "getting linkage from invalid cache")((void)0); |
| 1525 | return static_cast<Linkage>(CachedLinkage); |
| 1526 | } |
| 1527 | |
| 1528 | bool hasLocalOrUnnamedType() const { |
| 1529 | assert(isCacheValid() && "getting linkage from invalid cache")((void)0); |
| 1530 | return CachedLocalOrUnnamed; |
| 1531 | } |
| 1532 | }; |
| 1533 | enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 }; |
| 1534 | |
| 1535 | protected: |
| 1536 | // These classes allow subclasses to somewhat cleanly pack bitfields |
| 1537 | // into Type. |
| 1538 | |
| 1539 | class ArrayTypeBitfields { |
| 1540 | friend class ArrayType; |
| 1541 | |
| 1542 | unsigned : NumTypeBits; |
| 1543 | |
| 1544 | /// CVR qualifiers from declarations like |
| 1545 | /// 'int X[static restrict 4]'. For function parameters only. |
| 1546 | unsigned IndexTypeQuals : 3; |
| 1547 | |
| 1548 | /// Storage class qualifiers from declarations like |
| 1549 | /// 'int X[static restrict 4]'. For function parameters only. |
| 1550 | /// Actually an ArrayType::ArraySizeModifier. |
| 1551 | unsigned SizeModifier : 3; |
| 1552 | }; |
| 1553 | |
| 1554 | class ConstantArrayTypeBitfields { |
| 1555 | friend class ConstantArrayType; |
| 1556 | |
| 1557 | unsigned : NumTypeBits + 3 + 3; |
| 1558 | |
| 1559 | /// Whether we have a stored size expression. |
| 1560 | unsigned HasStoredSizeExpr : 1; |
| 1561 | }; |
| 1562 | |
| 1563 | class BuiltinTypeBitfields { |
| 1564 | friend class BuiltinType; |
| 1565 | |
| 1566 | unsigned : NumTypeBits; |
| 1567 | |
| 1568 | /// The kind (BuiltinType::Kind) of builtin type this is. |
| 1569 | unsigned Kind : 8; |
| 1570 | }; |
| 1571 | |
| 1572 | /// FunctionTypeBitfields store various bits belonging to FunctionProtoType. |
| 1573 | /// Only common bits are stored here. Additional uncommon bits are stored |
| 1574 | /// in a trailing object after FunctionProtoType. |
| 1575 | class FunctionTypeBitfields { |
| 1576 | friend class FunctionProtoType; |
| 1577 | friend class FunctionType; |
| 1578 | |
| 1579 | unsigned : NumTypeBits; |
| 1580 | |
| 1581 | /// Extra information which affects how the function is called, like |
| 1582 | /// regparm and the calling convention. |
| 1583 | unsigned ExtInfo : 13; |
| 1584 | |
| 1585 | /// The ref-qualifier associated with a \c FunctionProtoType. |
| 1586 | /// |
| 1587 | /// This is a value of type \c RefQualifierKind. |
| 1588 | unsigned RefQualifier : 2; |
| 1589 | |
| 1590 | /// Used only by FunctionProtoType, put here to pack with the |
| 1591 | /// other bitfields. |
| 1592 | /// The qualifiers are part of FunctionProtoType because... |
| 1593 | /// |
| 1594 | /// C++ 8.3.5p4: The return type, the parameter type list and the |
| 1595 | /// cv-qualifier-seq, [...], are part of the function type. |
| 1596 | unsigned FastTypeQuals : Qualifiers::FastWidth; |
| 1597 | /// Whether this function has extended Qualifiers. |
| 1598 | unsigned HasExtQuals : 1; |
| 1599 | |
| 1600 | /// The number of parameters this function has, not counting '...'. |
| 1601 | /// According to [implimits] 8 bits should be enough here but this is |
| 1602 | /// somewhat easy to exceed with metaprogramming and so we would like to |
| 1603 | /// keep NumParams as wide as reasonably possible. |
| 1604 | unsigned NumParams : 16; |
| 1605 | |
| 1606 | /// The type of exception specification this function has. |
| 1607 | unsigned ExceptionSpecType : 4; |
| 1608 | |
| 1609 | /// Whether this function has extended parameter information. |
| 1610 | unsigned HasExtParameterInfos : 1; |
| 1611 | |
| 1612 | /// Whether the function is variadic. |
| 1613 | unsigned Variadic : 1; |
| 1614 | |
| 1615 | /// Whether this function has a trailing return type. |
| 1616 | unsigned HasTrailingReturn : 1; |
| 1617 | }; |
| 1618 | |
| 1619 | class ObjCObjectTypeBitfields { |
| 1620 | friend class ObjCObjectType; |
| 1621 | |
| 1622 | unsigned : NumTypeBits; |
| 1623 | |
| 1624 | /// The number of type arguments stored directly on this object type. |
| 1625 | unsigned NumTypeArgs : 7; |
| 1626 | |
| 1627 | /// The number of protocols stored directly on this object type. |
| 1628 | unsigned NumProtocols : 6; |
| 1629 | |
| 1630 | /// Whether this is a "kindof" type. |
| 1631 | unsigned IsKindOf : 1; |
| 1632 | }; |
| 1633 | |
| 1634 | class ReferenceTypeBitfields { |
| 1635 | friend class ReferenceType; |
| 1636 | |
| 1637 | unsigned : NumTypeBits; |
| 1638 | |
| 1639 | /// True if the type was originally spelled with an lvalue sigil. |
| 1640 | /// This is never true of rvalue references but can also be false |
| 1641 | /// on lvalue references because of C++0x [dcl.typedef]p9, |
| 1642 | /// as follows: |
| 1643 | /// |
| 1644 | /// typedef int &ref; // lvalue, spelled lvalue |
| 1645 | /// typedef int &&rvref; // rvalue |
| 1646 | /// ref &a; // lvalue, inner ref, spelled lvalue |
| 1647 | /// ref &&a; // lvalue, inner ref |
| 1648 | /// rvref &a; // lvalue, inner ref, spelled lvalue |
| 1649 | /// rvref &&a; // rvalue, inner ref |
| 1650 | unsigned SpelledAsLValue : 1; |
| 1651 | |
| 1652 | /// True if the inner type is a reference type. This only happens |
| 1653 | /// in non-canonical forms. |
| 1654 | unsigned InnerRef : 1; |
| 1655 | }; |
| 1656 | |
| 1657 | class TypeWithKeywordBitfields { |
| 1658 | friend class TypeWithKeyword; |
| 1659 | |
| 1660 | unsigned : NumTypeBits; |
| 1661 | |
| 1662 | /// An ElaboratedTypeKeyword. 8 bits for efficient access. |
| 1663 | unsigned Keyword : 8; |
| 1664 | }; |
| 1665 | |
| 1666 | enum { NumTypeWithKeywordBits = 8 }; |
| 1667 | |
| 1668 | class ElaboratedTypeBitfields { |
| 1669 | friend class ElaboratedType; |
| 1670 | |
| 1671 | unsigned : NumTypeBits; |
| 1672 | unsigned : NumTypeWithKeywordBits; |
| 1673 | |
| 1674 | /// Whether the ElaboratedType has a trailing OwnedTagDecl. |
| 1675 | unsigned HasOwnedTagDecl : 1; |
| 1676 | }; |
| 1677 | |
| 1678 | class VectorTypeBitfields { |
| 1679 | friend class VectorType; |
| 1680 | friend class DependentVectorType; |
| 1681 | |
| 1682 | unsigned : NumTypeBits; |
| 1683 | |
| 1684 | /// The kind of vector, either a generic vector type or some |
| 1685 | /// target-specific vector type such as for AltiVec or Neon. |
| 1686 | unsigned VecKind : 3; |
| 1687 | /// The number of elements in the vector. |
| 1688 | uint32_t NumElements; |
| 1689 | }; |
| 1690 | |
| 1691 | class AttributedTypeBitfields { |
| 1692 | friend class AttributedType; |
| 1693 | |
| 1694 | unsigned : NumTypeBits; |
| 1695 | |
| 1696 | /// An AttributedType::Kind |
| 1697 | unsigned AttrKind : 32 - NumTypeBits; |
| 1698 | }; |
| 1699 | |
| 1700 | class AutoTypeBitfields { |
| 1701 | friend class AutoType; |
| 1702 | |
| 1703 | unsigned : NumTypeBits; |
| 1704 | |
| 1705 | /// Was this placeholder type spelled as 'auto', 'decltype(auto)', |
| 1706 | /// or '__auto_type'? AutoTypeKeyword value. |
| 1707 | unsigned Keyword : 2; |
| 1708 | |
| 1709 | /// The number of template arguments in the type-constraints, which is |
| 1710 | /// expected to be able to hold at least 1024 according to [implimits]. |
| 1711 | /// However as this limit is somewhat easy to hit with template |
| 1712 | /// metaprogramming we'd prefer to keep it as large as possible. |
| 1713 | /// At the moment it has been left as a non-bitfield since this type |
| 1714 | /// safely fits in 64 bits as an unsigned, so there is no reason to |
| 1715 | /// introduce the performance impact of a bitfield. |
| 1716 | unsigned NumArgs; |
| 1717 | }; |
| 1718 | |
| 1719 | class SubstTemplateTypeParmPackTypeBitfields { |
| 1720 | friend class SubstTemplateTypeParmPackType; |
| 1721 | |
| 1722 | unsigned : NumTypeBits; |
| 1723 | |
| 1724 | /// The number of template arguments in \c Arguments, which is |
| 1725 | /// expected to be able to hold at least 1024 according to [implimits]. |
| 1726 | /// However as this limit is somewhat easy to hit with template |
| 1727 | /// metaprogramming we'd prefer to keep it as large as possible. |
| 1728 | /// At the moment it has been left as a non-bitfield since this type |
| 1729 | /// safely fits in 64 bits as an unsigned, so there is no reason to |
| 1730 | /// introduce the performance impact of a bitfield. |
| 1731 | unsigned NumArgs; |
| 1732 | }; |
| 1733 | |
| 1734 | class TemplateSpecializationTypeBitfields { |
| 1735 | friend class TemplateSpecializationType; |
| 1736 | |
| 1737 | unsigned : NumTypeBits; |
| 1738 | |
| 1739 | /// Whether this template specialization type is a substituted type alias. |
| 1740 | unsigned TypeAlias : 1; |
| 1741 | |
| 1742 | /// The number of template arguments named in this class template |
| 1743 | /// specialization, which is expected to be able to hold at least 1024 |
| 1744 | /// according to [implimits]. However, as this limit is somewhat easy to |
| 1745 | /// hit with template metaprogramming we'd prefer to keep it as large |
| 1746 | /// as possible. At the moment it has been left as a non-bitfield since |
| 1747 | /// this type safely fits in 64 bits as an unsigned, so there is no reason |
| 1748 | /// to introduce the performance impact of a bitfield. |
| 1749 | unsigned NumArgs; |
| 1750 | }; |
| 1751 | |
| 1752 | class DependentTemplateSpecializationTypeBitfields { |
| 1753 | friend class DependentTemplateSpecializationType; |
| 1754 | |
| 1755 | unsigned : NumTypeBits; |
| 1756 | unsigned : NumTypeWithKeywordBits; |
| 1757 | |
| 1758 | /// The number of template arguments named in this class template |
| 1759 | /// specialization, which is expected to be able to hold at least 1024 |
| 1760 | /// according to [implimits]. However, as this limit is somewhat easy to |
| 1761 | /// hit with template metaprogramming we'd prefer to keep it as large |
| 1762 | /// as possible. At the moment it has been left as a non-bitfield since |
| 1763 | /// this type safely fits in 64 bits as an unsigned, so there is no reason |
| 1764 | /// to introduce the performance impact of a bitfield. |
| 1765 | unsigned NumArgs; |
| 1766 | }; |
| 1767 | |
| 1768 | class PackExpansionTypeBitfields { |
| 1769 | friend class PackExpansionType; |
| 1770 | |
| 1771 | unsigned : NumTypeBits; |
| 1772 | |
| 1773 | /// The number of expansions that this pack expansion will |
| 1774 | /// generate when substituted (+1), which is expected to be able to |
| 1775 | /// hold at least 1024 according to [implimits]. However, as this limit |
| 1776 | /// is somewhat easy to hit with template metaprogramming we'd prefer to |
| 1777 | /// keep it as large as possible. At the moment it has been left as a |
| 1778 | /// non-bitfield since this type safely fits in 64 bits as an unsigned, so |
| 1779 | /// there is no reason to introduce the performance impact of a bitfield. |
| 1780 | /// |
| 1781 | /// This field will only have a non-zero value when some of the parameter |
| 1782 | /// packs that occur within the pattern have been substituted but others |
| 1783 | /// have not. |
| 1784 | unsigned NumExpansions; |
| 1785 | }; |
| 1786 | |
| 1787 | union { |
| 1788 | TypeBitfields TypeBits; |
| 1789 | ArrayTypeBitfields ArrayTypeBits; |
| 1790 | ConstantArrayTypeBitfields ConstantArrayTypeBits; |
| 1791 | AttributedTypeBitfields AttributedTypeBits; |
| 1792 | AutoTypeBitfields AutoTypeBits; |
| 1793 | BuiltinTypeBitfields BuiltinTypeBits; |
| 1794 | FunctionTypeBitfields FunctionTypeBits; |
| 1795 | ObjCObjectTypeBitfields ObjCObjectTypeBits; |
| 1796 | ReferenceTypeBitfields ReferenceTypeBits; |
| 1797 | TypeWithKeywordBitfields TypeWithKeywordBits; |
| 1798 | ElaboratedTypeBitfields ElaboratedTypeBits; |
| 1799 | VectorTypeBitfields VectorTypeBits; |
| 1800 | SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits; |
| 1801 | TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits; |
| 1802 | DependentTemplateSpecializationTypeBitfields |
| 1803 | DependentTemplateSpecializationTypeBits; |
| 1804 | PackExpansionTypeBitfields PackExpansionTypeBits; |
| 1805 | }; |
| 1806 | |
| 1807 | private: |
| 1808 | template <class T> friend class TypePropertyCache; |
| 1809 | |
| 1810 | /// Set whether this type comes from an AST file. |
| 1811 | void setFromAST(bool V = true) const { |
| 1812 | TypeBits.FromAST = V; |
| 1813 | } |
| 1814 | |
| 1815 | protected: |
| 1816 | friend class ASTContext; |
| 1817 | |
| 1818 | Type(TypeClass tc, QualType canon, TypeDependence Dependence) |
| 1819 | : ExtQualsTypeCommonBase(this, |
| 1820 | canon.isNull() ? QualType(this_(), 0) : canon) { |
| 1821 | static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase), |
| 1822 | "changing bitfields changed sizeof(Type)!"); |
| 1823 | static_assert(alignof(decltype(*this)) % sizeof(void *) == 0, |
| 1824 | "Insufficient alignment!"); |
| 1825 | TypeBits.TC = tc; |
| 1826 | TypeBits.Dependence = static_cast<unsigned>(Dependence); |
| 1827 | TypeBits.CacheValid = false; |
| 1828 | TypeBits.CachedLocalOrUnnamed = false; |
| 1829 | TypeBits.CachedLinkage = NoLinkage; |
| 1830 | TypeBits.FromAST = false; |
| 1831 | } |
| 1832 | |
| 1833 | // silence VC++ warning C4355: 'this' : used in base member initializer list |
| 1834 | Type *this_() { return this; } |
| 1835 | |
| 1836 | void setDependence(TypeDependence D) { |
| 1837 | TypeBits.Dependence = static_cast<unsigned>(D); |
| 1838 | } |
| 1839 | |
| 1840 | void addDependence(TypeDependence D) { setDependence(getDependence() | D); } |
| 1841 | |
| 1842 | public: |
| 1843 | friend class ASTReader; |
| 1844 | friend class ASTWriter; |
| 1845 | template <class T> friend class serialization::AbstractTypeReader; |
| 1846 | template <class T> friend class serialization::AbstractTypeWriter; |
| 1847 | |
| 1848 | Type(const Type &) = delete; |
| 1849 | Type(Type &&) = delete; |
| 1850 | Type &operator=(const Type &) = delete; |
| 1851 | Type &operator=(Type &&) = delete; |
| 1852 | |
| 1853 | TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); } |
| 1854 | |
| 1855 | /// Whether this type comes from an AST file. |
| 1856 | bool isFromAST() const { return TypeBits.FromAST; } |
| 1857 | |
| 1858 | /// Whether this type is or contains an unexpanded parameter |
| 1859 | /// pack, used to support C++0x variadic templates. |
| 1860 | /// |
| 1861 | /// A type that contains a parameter pack shall be expanded by the |
| 1862 | /// ellipsis operator at some point. For example, the typedef in the |
| 1863 | /// following example contains an unexpanded parameter pack 'T': |
| 1864 | /// |
| 1865 | /// \code |
| 1866 | /// template<typename ...T> |
| 1867 | /// struct X { |
| 1868 | /// typedef T* pointer_types; // ill-formed; T is a parameter pack. |
| 1869 | /// }; |
| 1870 | /// \endcode |
| 1871 | /// |
| 1872 | /// Note that this routine does not specify which |
| 1873 | bool containsUnexpandedParameterPack() const { |
| 1874 | return getDependence() & TypeDependence::UnexpandedPack; |
| 1875 | } |
| 1876 | |
| 1877 | /// Determines if this type would be canonical if it had no further |
| 1878 | /// qualification. |
| 1879 | bool isCanonicalUnqualified() const { |
| 1880 | return CanonicalType == QualType(this, 0); |
| 1881 | } |
| 1882 | |
| 1883 | /// Pull a single level of sugar off of this locally-unqualified type. |
| 1884 | /// Users should generally prefer SplitQualType::getSingleStepDesugaredType() |
| 1885 | /// or QualType::getSingleStepDesugaredType(const ASTContext&). |
| 1886 | QualType getLocallyUnqualifiedSingleStepDesugaredType() const; |
| 1887 | |
| 1888 | /// As an extension, we classify types as one of "sized" or "sizeless"; |
| 1889 | /// every type is one or the other. Standard types are all sized; |
| 1890 | /// sizeless types are purely an extension. |
| 1891 | /// |
| 1892 | /// Sizeless types contain data with no specified size, alignment, |
| 1893 | /// or layout. |
| 1894 | bool isSizelessType() const; |
| 1895 | bool isSizelessBuiltinType() const; |
| 1896 | |
| 1897 | /// Determines if this is a sizeless type supported by the |
| 1898 | /// 'arm_sve_vector_bits' type attribute, which can be applied to a single |
| 1899 | /// SVE vector or predicate, excluding tuple types such as svint32x4_t. |
| 1900 | bool isVLSTBuiltinType() const; |
| 1901 | |
| 1902 | /// Returns the representative type for the element of an SVE builtin type. |
| 1903 | /// This is used to represent fixed-length SVE vectors created with the |
| 1904 | /// 'arm_sve_vector_bits' type attribute as VectorType. |
| 1905 | QualType getSveEltType(const ASTContext &Ctx) const; |
| 1906 | |
| 1907 | /// Types are partitioned into 3 broad categories (C99 6.2.5p1): |
| 1908 | /// object types, function types, and incomplete types. |
| 1909 | |
| 1910 | /// Return true if this is an incomplete type. |
| 1911 | /// A type that can describe objects, but which lacks information needed to |
| 1912 | /// determine its size (e.g. void, or a fwd declared struct). Clients of this |
| 1913 | /// routine will need to determine if the size is actually required. |
| 1914 | /// |
| 1915 | /// Def If non-null, and the type refers to some kind of declaration |
| 1916 | /// that can be completed (such as a C struct, C++ class, or Objective-C |
| 1917 | /// class), will be set to the declaration. |
| 1918 | bool isIncompleteType(NamedDecl **Def = nullptr) const; |
| 1919 | |
| 1920 | /// Return true if this is an incomplete or object |
| 1921 | /// type, in other words, not a function type. |
| 1922 | bool isIncompleteOrObjectType() const { |
| 1923 | return !isFunctionType(); |
| 1924 | } |
| 1925 | |
| 1926 | /// Determine whether this type is an object type. |
| 1927 | bool isObjectType() const { |
| 1928 | // C++ [basic.types]p8: |
| 1929 | // An object type is a (possibly cv-qualified) type that is not a |
| 1930 | // function type, not a reference type, and not a void type. |
| 1931 | return !isReferenceType() && !isFunctionType() && !isVoidType(); |
| 1932 | } |
| 1933 | |
| 1934 | /// Return true if this is a literal type |
| 1935 | /// (C++11 [basic.types]p10) |
| 1936 | bool isLiteralType(const ASTContext &Ctx) const; |
| 1937 | |
| 1938 | /// Determine if this type is a structural type, per C++20 [temp.param]p7. |
| 1939 | bool isStructuralType() const; |
| 1940 | |
| 1941 | /// Test if this type is a standard-layout type. |
| 1942 | /// (C++0x [basic.type]p9) |
| 1943 | bool isStandardLayoutType() const; |
| 1944 | |
| 1945 | /// Helper methods to distinguish type categories. All type predicates |
| 1946 | /// operate on the canonical type, ignoring typedefs and qualifiers. |
| 1947 | |
| 1948 | /// Returns true if the type is a builtin type. |
| 1949 | bool isBuiltinType() const; |
| 1950 | |
| 1951 | /// Test for a particular builtin type. |
| 1952 | bool isSpecificBuiltinType(unsigned K) const; |
| 1953 | |
| 1954 | /// Test for a type which does not represent an actual type-system type but |
| 1955 | /// is instead used as a placeholder for various convenient purposes within |
| 1956 | /// Clang. All such types are BuiltinTypes. |
| 1957 | bool isPlaceholderType() const; |
| 1958 | const BuiltinType *getAsPlaceholderType() const; |
| 1959 | |
| 1960 | /// Test for a specific placeholder type. |
| 1961 | bool isSpecificPlaceholderType(unsigned K) const; |
| 1962 | |
| 1963 | /// Test for a placeholder type other than Overload; see |
| 1964 | /// BuiltinType::isNonOverloadPlaceholderType. |
| 1965 | bool isNonOverloadPlaceholderType() const; |
| 1966 | |
| 1967 | /// isIntegerType() does *not* include complex integers (a GCC extension). |
| 1968 | /// isComplexIntegerType() can be used to test for complex integers. |
| 1969 | bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum) |
| 1970 | bool isEnumeralType() const; |
| 1971 | |
| 1972 | /// Determine whether this type is a scoped enumeration type. |
| 1973 | bool isScopedEnumeralType() const; |
| 1974 | bool isBooleanType() const; |
| 1975 | bool isCharType() const; |
| 1976 | bool isWideCharType() const; |
| 1977 | bool isChar8Type() const; |
| 1978 | bool isChar16Type() const; |
| 1979 | bool isChar32Type() const; |
| 1980 | bool isAnyCharacterType() const; |
| 1981 | bool isIntegralType(const ASTContext &Ctx) const; |
| 1982 | |
| 1983 | /// Determine whether this type is an integral or enumeration type. |
| 1984 | bool isIntegralOrEnumerationType() const; |
| 1985 | |
| 1986 | /// Determine whether this type is an integral or unscoped enumeration type. |
| 1987 | bool isIntegralOrUnscopedEnumerationType() const; |
| 1988 | bool isUnscopedEnumerationType() const; |
| 1989 | |
| 1990 | /// Floating point categories. |
| 1991 | bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double) |
| 1992 | /// isComplexType() does *not* include complex integers (a GCC extension). |
| 1993 | /// isComplexIntegerType() can be used to test for complex integers. |
| 1994 | bool isComplexType() const; // C99 6.2.5p11 (complex) |
| 1995 | bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int. |
| 1996 | bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex) |
| 1997 | bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half) |
| 1998 | bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661 |
| 1999 | bool isBFloat16Type() const; |
| 2000 | bool isFloat128Type() const; |
| 2001 | bool isRealType() const; // C99 6.2.5p17 (real floating + integer) |
| 2002 | bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating) |
| 2003 | bool isVoidType() const; // C99 6.2.5p19 |
| 2004 | bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers) |
| 2005 | bool isAggregateType() const; |
| 2006 | bool isFundamentalType() const; |
| 2007 | bool isCompoundType() const; |
| 2008 | |
| 2009 | // Type Predicates: Check to see if this type is structurally the specified |
| 2010 | // type, ignoring typedefs and qualifiers. |
| 2011 | bool isFunctionType() const; |
| 2012 | bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); } |
| 2013 | bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); } |
| 2014 | bool isPointerType() const; |
| 2015 | bool isAnyPointerType() const; // Any C pointer or ObjC object pointer |
| 2016 | bool isBlockPointerType() const; |
| 2017 | bool isVoidPointerType() const; |
| 2018 | bool isReferenceType() const; |
| 2019 | bool isLValueReferenceType() const; |
| 2020 | bool isRValueReferenceType() const; |
| 2021 | bool isObjectPointerType() const; |
| 2022 | bool isFunctionPointerType() const; |
| 2023 | bool isFunctionReferenceType() const; |
| 2024 | bool isMemberPointerType() const; |
| 2025 | bool isMemberFunctionPointerType() const; |
| 2026 | bool isMemberDataPointerType() const; |
| 2027 | bool isArrayType() const; |
| 2028 | bool isConstantArrayType() const; |
| 2029 | bool isIncompleteArrayType() const; |
| 2030 | bool isVariableArrayType() const; |
| 2031 | bool isDependentSizedArrayType() const; |
| 2032 | bool isRecordType() const; |
| 2033 | bool isClassType() const; |
| 2034 | bool isStructureType() const; |
| 2035 | bool isObjCBoxableRecordType() const; |
| 2036 | bool isInterfaceType() const; |
| 2037 | bool isStructureOrClassType() const; |
| 2038 | bool isUnionType() const; |
| 2039 | bool isComplexIntegerType() const; // GCC _Complex integer type. |
| 2040 | bool isVectorType() const; // GCC vector type. |
| 2041 | bool isExtVectorType() const; // Extended vector type. |
| 2042 | bool isMatrixType() const; // Matrix type. |
| 2043 | bool isConstantMatrixType() const; // Constant matrix type. |
| 2044 | bool isDependentAddressSpaceType() const; // value-dependent address space qualifier |
| 2045 | bool isObjCObjectPointerType() const; // pointer to ObjC object |
| 2046 | bool isObjCRetainableType() const; // ObjC object or block pointer |
| 2047 | bool isObjCLifetimeType() const; // (array of)* retainable type |
| 2048 | bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type |
| 2049 | bool isObjCNSObjectType() const; // __attribute__((NSObject)) |
| 2050 | bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class)) |
| 2051 | // FIXME: change this to 'raw' interface type, so we can used 'interface' type |
| 2052 | // for the common case. |
| 2053 | bool isObjCObjectType() const; // NSString or typeof(*(id)0) |
| 2054 | bool isObjCQualifiedInterfaceType() const; // NSString<foo> |
| 2055 | bool isObjCQualifiedIdType() const; // id<foo> |
| 2056 | bool isObjCQualifiedClassType() const; // Class<foo> |
| 2057 | bool isObjCObjectOrInterfaceType() const; |
| 2058 | bool isObjCIdType() const; // id |
| 2059 | bool isDecltypeType() const; |
| 2060 | /// Was this type written with the special inert-in-ARC __unsafe_unretained |
| 2061 | /// qualifier? |
| 2062 | /// |
| 2063 | /// This approximates the answer to the following question: if this |
| 2064 | /// translation unit were compiled in ARC, would this type be qualified |
| 2065 | /// with __unsafe_unretained? |
| 2066 | bool isObjCInertUnsafeUnretainedType() const { |
| 2067 | return hasAttr(attr::ObjCInertUnsafeUnretained); |
| 2068 | } |
| 2069 | |
| 2070 | /// Whether the type is Objective-C 'id' or a __kindof type of an |
| 2071 | /// object type, e.g., __kindof NSView * or __kindof id |
| 2072 | /// <NSCopying>. |
| 2073 | /// |
| 2074 | /// \param bound Will be set to the bound on non-id subtype types, |
| 2075 | /// which will be (possibly specialized) Objective-C class type, or |
| 2076 | /// null for 'id. |
| 2077 | bool isObjCIdOrObjectKindOfType(const ASTContext &ctx, |
| 2078 | const ObjCObjectType *&bound) const; |
| 2079 | |
| 2080 | bool isObjCClassType() const; // Class |
| 2081 | |
| 2082 | /// Whether the type is Objective-C 'Class' or a __kindof type of an |
| 2083 | /// Class type, e.g., __kindof Class <NSCopying>. |
| 2084 | /// |
| 2085 | /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound |
| 2086 | /// here because Objective-C's type system cannot express "a class |
| 2087 | /// object for a subclass of NSFoo". |
| 2088 | bool isObjCClassOrClassKindOfType() const; |
| 2089 | |
| 2090 | bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const; |
| 2091 | bool isObjCSelType() const; // Class |
| 2092 | bool isObjCBuiltinType() const; // 'id' or 'Class' |
| 2093 | bool isObjCARCBridgableType() const; |
| 2094 | bool isCARCBridgableType() const; |
| 2095 | bool isTemplateTypeParmType() const; // C++ template type parameter |
| 2096 | bool isNullPtrType() const; // C++11 std::nullptr_t |
| 2097 | bool isNothrowT() const; // C++ std::nothrow_t |
| 2098 | bool isAlignValT() const; // C++17 std::align_val_t |
| 2099 | bool isStdByteType() const; // C++17 std::byte |
| 2100 | bool isAtomicType() const; // C11 _Atomic() |
| 2101 | bool isUndeducedAutoType() const; // C++11 auto or |
| 2102 | // C++14 decltype(auto) |
| 2103 | bool isTypedefNameType() const; // typedef or alias template |
| 2104 | |
| 2105 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| 2106 | bool is##Id##Type() const; |
| 2107 | #include "clang/Basic/OpenCLImageTypes.def" |
| 2108 | |
| 2109 | bool isImageType() const; // Any OpenCL image type |
| 2110 | |
| 2111 | bool isSamplerT() const; // OpenCL sampler_t |
| 2112 | bool isEventT() const; // OpenCL event_t |
| 2113 | bool isClkEventT() const; // OpenCL clk_event_t |
| 2114 | bool isQueueT() const; // OpenCL queue_t |
| 2115 | bool isReserveIDT() const; // OpenCL reserve_id_t |
| 2116 | |
| 2117 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
| 2118 | bool is##Id##Type() const; |
| 2119 | #include "clang/Basic/OpenCLExtensionTypes.def" |
| 2120 | // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension |
| 2121 | bool isOCLIntelSubgroupAVCType() const; |
| 2122 | bool isOCLExtOpaqueType() const; // Any OpenCL extension type |
| 2123 | |
| 2124 | bool isPipeType() const; // OpenCL pipe type |
| 2125 | bool isExtIntType() const; // Extended Int Type |
| 2126 | bool isOpenCLSpecificType() const; // Any OpenCL specific type |
| 2127 | |
| 2128 | /// Determines if this type, which must satisfy |
| 2129 | /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather |
| 2130 | /// than implicitly __strong. |
| 2131 | bool isObjCARCImplicitlyUnretainedType() const; |
| 2132 | |
| 2133 | /// Check if the type is the CUDA device builtin surface type. |
| 2134 | bool isCUDADeviceBuiltinSurfaceType() const; |
| 2135 | /// Check if the type is the CUDA device builtin texture type. |
| 2136 | bool isCUDADeviceBuiltinTextureType() const; |
| 2137 | |
| 2138 | /// Return the implicit lifetime for this type, which must not be dependent. |
| 2139 | Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const; |
| 2140 | |
| 2141 | enum ScalarTypeKind { |
| 2142 | STK_CPointer, |
| 2143 | STK_BlockPointer, |
| 2144 | STK_ObjCObjectPointer, |
| 2145 | STK_MemberPointer, |
| 2146 | STK_Bool, |
| 2147 | STK_Integral, |
| 2148 | STK_Floating, |
| 2149 | STK_IntegralComplex, |
| 2150 | STK_FloatingComplex, |
| 2151 | STK_FixedPoint |
| 2152 | }; |
| 2153 | |
| 2154 | /// Given that this is a scalar type, classify it. |
| 2155 | ScalarTypeKind getScalarTypeKind() const; |
| 2156 | |
| 2157 | TypeDependence getDependence() const { |
| 2158 | return static_cast<TypeDependence>(TypeBits.Dependence); |
| 2159 | } |
| 2160 | |
| 2161 | /// Whether this type is an error type. |
| 2162 | bool containsErrors() const { |
| 2163 | return getDependence() & TypeDependence::Error; |
| 2164 | } |
| 2165 | |
| 2166 | /// Whether this type is a dependent type, meaning that its definition |
| 2167 | /// somehow depends on a template parameter (C++ [temp.dep.type]). |
| 2168 | bool isDependentType() const { |
| 2169 | return getDependence() & TypeDependence::Dependent; |
| 2170 | } |
| 2171 | |
| 2172 | /// Determine whether this type is an instantiation-dependent type, |
| 2173 | /// meaning that the type involves a template parameter (even if the |
| 2174 | /// definition does not actually depend on the type substituted for that |
| 2175 | /// template parameter). |
| 2176 | bool isInstantiationDependentType() const { |
| 2177 | return getDependence() & TypeDependence::Instantiation; |
| 2178 | } |
| 2179 | |
| 2180 | /// Determine whether this type is an undeduced type, meaning that |
| 2181 | /// it somehow involves a C++11 'auto' type or similar which has not yet been |
| 2182 | /// deduced. |
| 2183 | bool isUndeducedType() const; |
| 2184 | |
| 2185 | /// Whether this type is a variably-modified type (C99 6.7.5). |
| 2186 | bool isVariablyModifiedType() const { |
| 2187 | return getDependence() & TypeDependence::VariablyModified; |
| 2188 | } |
| 2189 | |
| 2190 | /// Whether this type involves a variable-length array type |
| 2191 | /// with a definite size. |
| 2192 | bool hasSizedVLAType() const; |
| 2193 | |
| 2194 | /// Whether this type is or contains a local or unnamed type. |
| 2195 | bool hasUnnamedOrLocalType() const; |
| 2196 | |
| 2197 | bool isOverloadableType() const; |
| 2198 | |
| 2199 | /// Determine wither this type is a C++ elaborated-type-specifier. |
| 2200 | bool isElaboratedTypeSpecifier() const; |
| 2201 | |
| 2202 | bool canDecayToPointerType() const; |
| 2203 | |
| 2204 | /// Whether this type is represented natively as a pointer. This includes |
| 2205 | /// pointers, references, block pointers, and Objective-C interface, |
| 2206 | /// qualified id, and qualified interface types, as well as nullptr_t. |
| 2207 | bool hasPointerRepresentation() const; |
| 2208 | |
| 2209 | /// Whether this type can represent an objective pointer type for the |
| 2210 | /// purpose of GC'ability |
| 2211 | bool hasObjCPointerRepresentation() const; |
| 2212 | |
| 2213 | /// Determine whether this type has an integer representation |
| 2214 | /// of some sort, e.g., it is an integer type or a vector. |
| 2215 | bool hasIntegerRepresentation() const; |
| 2216 | |
| 2217 | /// Determine whether this type has an signed integer representation |
| 2218 | /// of some sort, e.g., it is an signed integer type or a vector. |
| 2219 | bool hasSignedIntegerRepresentation() const; |
| 2220 | |
| 2221 | /// Determine whether this type has an unsigned integer representation |
| 2222 | /// of some sort, e.g., it is an unsigned integer type or a vector. |
| 2223 | bool hasUnsignedIntegerRepresentation() const; |
| 2224 | |
| 2225 | /// Determine whether this type has a floating-point representation |
| 2226 | /// of some sort, e.g., it is a floating-point type or a vector thereof. |
| 2227 | bool hasFloatingRepresentation() const; |
| 2228 | |
| 2229 | // Type Checking Functions: Check to see if this type is structurally the |
| 2230 | // specified type, ignoring typedefs and qualifiers, and return a pointer to |
| 2231 | // the best type we can. |
| 2232 | const RecordType *getAsStructureType() const; |
| 2233 | /// NOTE: getAs*ArrayType are methods on ASTContext. |
| 2234 | const RecordType *getAsUnionType() const; |
| 2235 | const ComplexType *getAsComplexIntegerType() const; // GCC complex int type. |
| 2236 | const ObjCObjectType *getAsObjCInterfaceType() const; |
| 2237 | |
| 2238 | // The following is a convenience method that returns an ObjCObjectPointerType |
| 2239 | // for object declared using an interface. |
| 2240 | const ObjCObjectPointerType *getAsObjCInterfacePointerType() const; |
| 2241 | const ObjCObjectPointerType *getAsObjCQualifiedIdType() const; |
| 2242 | const ObjCObjectPointerType *getAsObjCQualifiedClassType() const; |
| 2243 | const ObjCObjectType *getAsObjCQualifiedInterfaceType() const; |
| 2244 | |
| 2245 | /// Retrieves the CXXRecordDecl that this type refers to, either |
| 2246 | /// because the type is a RecordType or because it is the injected-class-name |
| 2247 | /// type of a class template or class template partial specialization. |
| 2248 | CXXRecordDecl *getAsCXXRecordDecl() const; |
| 2249 | |
| 2250 | /// Retrieves the RecordDecl this type refers to. |
| 2251 | RecordDecl *getAsRecordDecl() const; |
| 2252 | |
| 2253 | /// Retrieves the TagDecl that this type refers to, either |
| 2254 | /// because the type is a TagType or because it is the injected-class-name |
| 2255 | /// type of a class template or class template partial specialization. |
| 2256 | TagDecl *getAsTagDecl() const; |
| 2257 | |
| 2258 | /// If this is a pointer or reference to a RecordType, return the |
| 2259 | /// CXXRecordDecl that the type refers to. |
| 2260 | /// |
| 2261 | /// If this is not a pointer or reference, or the type being pointed to does |
| 2262 | /// not refer to a CXXRecordDecl, returns NULL. |
| 2263 | const CXXRecordDecl *getPointeeCXXRecordDecl() const; |
| 2264 | |
| 2265 | /// Get the DeducedType whose type will be deduced for a variable with |
| 2266 | /// an initializer of this type. This looks through declarators like pointer |
| 2267 | /// types, but not through decltype or typedefs. |
| 2268 | DeducedType *getContainedDeducedType() const; |
| 2269 | |
| 2270 | /// Get the AutoType whose type will be deduced for a variable with |
| 2271 | /// an initializer of this type. This looks through declarators like pointer |
| 2272 | /// types, but not through decltype or typedefs. |
| 2273 | AutoType *getContainedAutoType() const { |
| 2274 | return dyn_cast_or_null<AutoType>(getContainedDeducedType()); |
| 2275 | } |
| 2276 | |
| 2277 | /// Determine whether this type was written with a leading 'auto' |
| 2278 | /// corresponding to a trailing return type (possibly for a nested |
| 2279 | /// function type within a pointer to function type or similar). |
| 2280 | bool hasAutoForTrailingReturnType() const; |
| 2281 | |
| 2282 | /// Member-template getAs<specific type>'. Look through sugar for |
| 2283 | /// an instance of \<specific type>. This scheme will eventually |
| 2284 | /// replace the specific getAsXXXX methods above. |
| 2285 | /// |
| 2286 | /// There are some specializations of this member template listed |
| 2287 | /// immediately following this class. |
| 2288 | template <typename T> const T *getAs() const; |
| 2289 | |
| 2290 | /// Member-template getAsAdjusted<specific type>. Look through specific kinds |
| 2291 | /// of sugar (parens, attributes, etc) for an instance of \<specific type>. |
| 2292 | /// This is used when you need to walk over sugar nodes that represent some |
| 2293 | /// kind of type adjustment from a type that was written as a \<specific type> |
| 2294 | /// to another type that is still canonically a \<specific type>. |
| 2295 | template <typename T> const T *getAsAdjusted() const; |
| 2296 | |
| 2297 | /// A variant of getAs<> for array types which silently discards |
| 2298 | /// qualifiers from the outermost type. |
| 2299 | const ArrayType *getAsArrayTypeUnsafe() const; |
| 2300 | |
| 2301 | /// Member-template castAs<specific type>. Look through sugar for |
| 2302 | /// the underlying instance of \<specific type>. |
| 2303 | /// |
| 2304 | /// This method has the same relationship to getAs<T> as cast<T> has |
| 2305 | /// to dyn_cast<T>; which is to say, the underlying type *must* |
| 2306 | /// have the intended type, and this method will never return null. |
| 2307 | template <typename T> const T *castAs() const; |
| 2308 | |
| 2309 | /// A variant of castAs<> for array type which silently discards |
| 2310 | /// qualifiers from the outermost type. |
| 2311 | const ArrayType *castAsArrayTypeUnsafe() const; |
| 2312 | |
| 2313 | /// Determine whether this type had the specified attribute applied to it |
| 2314 | /// (looking through top-level type sugar). |
| 2315 | bool hasAttr(attr::Kind AK) const; |
| 2316 | |
| 2317 | /// Get the base element type of this type, potentially discarding type |
| 2318 | /// qualifiers. This should never be used when type qualifiers |
| 2319 | /// are meaningful. |
| 2320 | const Type *getBaseElementTypeUnsafe() const; |
| 2321 | |
| 2322 | /// If this is an array type, return the element type of the array, |
| 2323 | /// potentially with type qualifiers missing. |
| 2324 | /// This should never be used when type qualifiers are meaningful. |
| 2325 | const Type *getArrayElementTypeNoTypeQual() const; |
| 2326 | |
| 2327 | /// If this is a pointer type, return the pointee type. |
| 2328 | /// If this is an array type, return the array element type. |
| 2329 | /// This should never be used when type qualifiers are meaningful. |
| 2330 | const Type *getPointeeOrArrayElementType() const; |
| 2331 | |
| 2332 | /// If this is a pointer, ObjC object pointer, or block |
| 2333 | /// pointer, this returns the respective pointee. |
| 2334 | QualType getPointeeType() const; |
| 2335 | |
| 2336 | /// Return the specified type with any "sugar" removed from the type, |
| 2337 | /// removing any typedefs, typeofs, etc., as well as any qualifiers. |
| 2338 | const Type *getUnqualifiedDesugaredType() const; |
| 2339 | |
| 2340 | /// More type predicates useful for type checking/promotion |
| 2341 | bool isPromotableIntegerType() const; // C99 6.3.1.1p2 |
| 2342 | |
| 2343 | /// Return true if this is an integer type that is |
| 2344 | /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..], |
| 2345 | /// or an enum decl which has a signed representation. |
| 2346 | bool isSignedIntegerType() const; |
| 2347 | |
| 2348 | /// Return true if this is an integer type that is |
| 2349 | /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], |
| 2350 | /// or an enum decl which has an unsigned representation. |
| 2351 | bool isUnsignedIntegerType() const; |
| 2352 | |
| 2353 | /// Determines whether this is an integer type that is signed or an |
| 2354 | /// enumeration types whose underlying type is a signed integer type. |
| 2355 | bool isSignedIntegerOrEnumerationType() const; |
| 2356 | |
| 2357 | /// Determines whether this is an integer type that is unsigned or an |
| 2358 | /// enumeration types whose underlying type is a unsigned integer type. |
| 2359 | bool isUnsignedIntegerOrEnumerationType() const; |
| 2360 | |
| 2361 | /// Return true if this is a fixed point type according to |
| 2362 | /// ISO/IEC JTC1 SC22 WG14 N1169. |
| 2363 | bool isFixedPointType() const; |
| 2364 | |
| 2365 | /// Return true if this is a fixed point or integer type. |
| 2366 | bool isFixedPointOrIntegerType() const; |
| 2367 | |
| 2368 | /// Return true if this is a saturated fixed point type according to |
| 2369 | /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned. |
| 2370 | bool isSaturatedFixedPointType() const; |
| 2371 | |
| 2372 | /// Return true if this is a saturated fixed point type according to |
| 2373 | /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned. |
| 2374 | bool isUnsaturatedFixedPointType() const; |
| 2375 | |
| 2376 | /// Return true if this is a fixed point type that is signed according |
| 2377 | /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated. |
| 2378 | bool isSignedFixedPointType() const; |
| 2379 | |
| 2380 | /// Return true if this is a fixed point type that is unsigned according |
| 2381 | /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated. |
| 2382 | bool isUnsignedFixedPointType() const; |
| 2383 | |
| 2384 | /// Return true if this is not a variable sized type, |
| 2385 | /// according to the rules of C99 6.7.5p3. It is not legal to call this on |
| 2386 | /// incomplete types. |
| 2387 | bool isConstantSizeType() const; |
| 2388 | |
| 2389 | /// Returns true if this type can be represented by some |
| 2390 | /// set of type specifiers. |
| 2391 | bool isSpecifierType() const; |
| 2392 | |
| 2393 | /// Determine the linkage of this type. |
| 2394 | Linkage getLinkage() const; |
| 2395 | |
| 2396 | /// Determine the visibility of this type. |
| 2397 | Visibility getVisibility() const { |
| 2398 | return getLinkageAndVisibility().getVisibility(); |
| 2399 | } |
| 2400 | |
| 2401 | /// Return true if the visibility was explicitly set is the code. |
| 2402 | bool isVisibilityExplicit() const { |
| 2403 | return getLinkageAndVisibility().isVisibilityExplicit(); |
| 2404 | } |
| 2405 | |
| 2406 | /// Determine the linkage and visibility of this type. |
| 2407 | LinkageInfo getLinkageAndVisibility() const; |
| 2408 | |
| 2409 | /// True if the computed linkage is valid. Used for consistency |
| 2410 | /// checking. Should always return true. |
| 2411 | bool isLinkageValid() const; |
| 2412 | |
| 2413 | /// Determine the nullability of the given type. |
| 2414 | /// |
| 2415 | /// Note that nullability is only captured as sugar within the type |
| 2416 | /// system, not as part of the canonical type, so nullability will |
| 2417 | /// be lost by canonicalization and desugaring. |
| 2418 | Optional<NullabilityKind> getNullability(const ASTContext &context) const; |
| 2419 | |
| 2420 | /// Determine whether the given type can have a nullability |
| 2421 | /// specifier applied to it, i.e., if it is any kind of pointer type. |
| 2422 | /// |
| 2423 | /// \param ResultIfUnknown The value to return if we don't yet know whether |
| 2424 | /// this type can have nullability because it is dependent. |
| 2425 | bool canHaveNullability(bool ResultIfUnknown = true) const; |
| 2426 | |
| 2427 | /// Retrieve the set of substitutions required when accessing a member |
| 2428 | /// of the Objective-C receiver type that is declared in the given context. |
| 2429 | /// |
| 2430 | /// \c *this is the type of the object we're operating on, e.g., the |
| 2431 | /// receiver for a message send or the base of a property access, and is |
| 2432 | /// expected to be of some object or object pointer type. |
| 2433 | /// |
| 2434 | /// \param dc The declaration context for which we are building up a |
| 2435 | /// substitution mapping, which should be an Objective-C class, extension, |
| 2436 | /// category, or method within. |
| 2437 | /// |
| 2438 | /// \returns an array of type arguments that can be substituted for |
| 2439 | /// the type parameters of the given declaration context in any type described |
| 2440 | /// within that context, or an empty optional to indicate that no |
| 2441 | /// substitution is required. |
| 2442 | Optional<ArrayRef<QualType>> |
| 2443 | getObjCSubstitutions(const DeclContext *dc) const; |
| 2444 | |
| 2445 | /// Determines if this is an ObjC interface type that may accept type |
| 2446 | /// parameters. |
| 2447 | bool acceptsObjCTypeParams() const; |
| 2448 | |
| 2449 | const char *getTypeClassName() const; |
| 2450 | |
| 2451 | QualType getCanonicalTypeInternal() const { |
| 2452 | return CanonicalType; |
| 2453 | } |
| 2454 | |
| 2455 | CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h |
| 2456 | void dump() const; |
| 2457 | void dump(llvm::raw_ostream &OS, const ASTContext &Context) const; |
| 2458 | }; |
| 2459 | |
| 2460 | /// This will check for a TypedefType by removing any existing sugar |
| 2461 | /// until it reaches a TypedefType or a non-sugared type. |
| 2462 | template <> const TypedefType *Type::getAs() const; |
| 2463 | |
| 2464 | /// This will check for a TemplateSpecializationType by removing any |
| 2465 | /// existing sugar until it reaches a TemplateSpecializationType or a |
| 2466 | /// non-sugared type. |
| 2467 | template <> const TemplateSpecializationType *Type::getAs() const; |
| 2468 | |
| 2469 | /// This will check for an AttributedType by removing any existing sugar |
| 2470 | /// until it reaches an AttributedType or a non-sugared type. |
| 2471 | template <> const AttributedType *Type::getAs() const; |
| 2472 | |
| 2473 | // We can do canonical leaf types faster, because we don't have to |
| 2474 | // worry about preserving child type decoration. |
| 2475 | #define TYPE(Class, Base) |
| 2476 | #define LEAF_TYPE(Class) \ |
| 2477 | template <> inline const Class##Type *Type::getAs() const { \ |
| 2478 | return dyn_cast<Class##Type>(CanonicalType); \ |
| 2479 | } \ |
| 2480 | template <> inline const Class##Type *Type::castAs() const { \ |
| 2481 | return cast<Class##Type>(CanonicalType); \ |
| 2482 | } |
| 2483 | #include "clang/AST/TypeNodes.inc" |
| 2484 | |
| 2485 | /// This class is used for builtin types like 'int'. Builtin |
| 2486 | /// types are always canonical and have a literal name field. |
| 2487 | class BuiltinType : public Type { |
| 2488 | public: |
| 2489 | enum Kind { |
| 2490 | // OpenCL image types |
| 2491 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id, |
| 2492 | #include "clang/Basic/OpenCLImageTypes.def" |
| 2493 | // OpenCL extension types |
| 2494 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id, |
| 2495 | #include "clang/Basic/OpenCLExtensionTypes.def" |
| 2496 | // SVE Types |
| 2497 | #define SVE_TYPE(Name, Id, SingletonId) Id, |
| 2498 | #include "clang/Basic/AArch64SVEACLETypes.def" |
| 2499 | // PPC MMA Types |
| 2500 | #define PPC_VECTOR_TYPE(Name, Id, Size) Id, |
| 2501 | #include "clang/Basic/PPCTypes.def" |
| 2502 | // RVV Types |
| 2503 | #define RVV_TYPE(Name, Id, SingletonId) Id, |
| 2504 | #include "clang/Basic/RISCVVTypes.def" |
| 2505 | // All other builtin types |
| 2506 | #define BUILTIN_TYPE(Id, SingletonId) Id, |
| 2507 | #define LAST_BUILTIN_TYPE(Id) LastKind = Id |
| 2508 | #include "clang/AST/BuiltinTypes.def" |
| 2509 | }; |
| 2510 | |
| 2511 | private: |
| 2512 | friend class ASTContext; // ASTContext creates these. |
| 2513 | |
| 2514 | BuiltinType(Kind K) |
| 2515 | : Type(Builtin, QualType(), |
| 2516 | K == Dependent ? TypeDependence::DependentInstantiation |
| 2517 | : TypeDependence::None) { |
| 2518 | BuiltinTypeBits.Kind = K; |
| 2519 | } |
| 2520 | |
| 2521 | public: |
| 2522 | Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); } |
| 2523 | StringRef getName(const PrintingPolicy &Policy) const; |
| 2524 | |
| 2525 | const char *getNameAsCString(const PrintingPolicy &Policy) const { |
| 2526 | // The StringRef is null-terminated. |
| 2527 | StringRef str = getName(Policy); |
| 2528 | assert(!str.empty() && str.data()[str.size()] == '\0')((void)0); |
| 2529 | return str.data(); |
| 2530 | } |
| 2531 | |
| 2532 | bool isSugared() const { return false; } |
| 2533 | QualType desugar() const { return QualType(this, 0); } |
| 2534 | |
| 2535 | bool isInteger() const { |
| 2536 | return getKind() >= Bool && getKind() <= Int128; |
| 2537 | } |
| 2538 | |
| 2539 | bool isSignedInteger() const { |
| 2540 | return getKind() >= Char_S && getKind() <= Int128; |
| 2541 | } |
| 2542 | |
| 2543 | bool isUnsignedInteger() const { |
| 2544 | return getKind() >= Bool && getKind() <= UInt128; |
| 2545 | } |
| 2546 | |
| 2547 | bool isFloatingPoint() const { |
| 2548 | return getKind() >= Half && getKind() <= Float128; |
| 2549 | } |
| 2550 | |
| 2551 | /// Determines whether the given kind corresponds to a placeholder type. |
| 2552 | static bool isPlaceholderTypeKind(Kind K) { |
| 2553 | return K >= Overload; |
| 2554 | } |
| 2555 | |
| 2556 | /// Determines whether this type is a placeholder type, i.e. a type |
| 2557 | /// which cannot appear in arbitrary positions in a fully-formed |
| 2558 | /// expression. |
| 2559 | bool isPlaceholderType() const { |
| 2560 | return isPlaceholderTypeKind(getKind()); |
| 2561 | } |
| 2562 | |
| 2563 | /// Determines whether this type is a placeholder type other than |
| 2564 | /// Overload. Most placeholder types require only syntactic |
| 2565 | /// information about their context in order to be resolved (e.g. |
| 2566 | /// whether it is a call expression), which means they can (and |
| 2567 | /// should) be resolved in an earlier "phase" of analysis. |
| 2568 | /// Overload expressions sometimes pick up further information |
| 2569 | /// from their context, like whether the context expects a |
| 2570 | /// specific function-pointer type, and so frequently need |
| 2571 | /// special treatment. |
| 2572 | bool isNonOverloadPlaceholderType() const { |
| 2573 | return getKind() > Overload; |
| 2574 | } |
| 2575 | |
| 2576 | static bool classof(const Type *T) { return T->getTypeClass() == Builtin; } |
| 2577 | }; |
| 2578 | |
| 2579 | /// Complex values, per C99 6.2.5p11. This supports the C99 complex |
| 2580 | /// types (_Complex float etc) as well as the GCC integer complex extensions. |
| 2581 | class ComplexType : public Type, public llvm::FoldingSetNode { |
| 2582 | friend class ASTContext; // ASTContext creates these. |
| 2583 | |
| 2584 | QualType ElementType; |
| 2585 | |
| 2586 | ComplexType(QualType Element, QualType CanonicalPtr) |
| 2587 | : Type(Complex, CanonicalPtr, Element->getDependence()), |
| 2588 | ElementType(Element) {} |
| 2589 | |
| 2590 | public: |
| 2591 | QualType getElementType() const { return ElementType; } |
| 2592 | |
| 2593 | bool isSugared() const { return false; } |
| 2594 | QualType desugar() const { return QualType(this, 0); } |
| 2595 | |
| 2596 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 2597 | Profile(ID, getElementType()); |
| 2598 | } |
| 2599 | |
| 2600 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) { |
| 2601 | ID.AddPointer(Element.getAsOpaquePtr()); |
| 2602 | } |
| 2603 | |
| 2604 | static bool classof(const Type *T) { return T->getTypeClass() == Complex; } |
| 2605 | }; |
| 2606 | |
| 2607 | /// Sugar for parentheses used when specifying types. |
| 2608 | class ParenType : public Type, public llvm::FoldingSetNode { |
| 2609 | friend class ASTContext; // ASTContext creates these. |
| 2610 | |
| 2611 | QualType Inner; |
| 2612 | |
| 2613 | ParenType(QualType InnerType, QualType CanonType) |
| 2614 | : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {} |
| 2615 | |
| 2616 | public: |
| 2617 | QualType getInnerType() const { return Inner; } |
| 2618 | |
| 2619 | bool isSugared() const { return true; } |
| 2620 | QualType desugar() const { return getInnerType(); } |
| 2621 | |
| 2622 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 2623 | Profile(ID, getInnerType()); |
| 2624 | } |
| 2625 | |
| 2626 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) { |
| 2627 | Inner.Profile(ID); |
| 2628 | } |
| 2629 | |
| 2630 | static bool classof(const Type *T) { return T->getTypeClass() == Paren; } |
| 2631 | }; |
| 2632 | |
| 2633 | /// PointerType - C99 6.7.5.1 - Pointer Declarators. |
| 2634 | class PointerType : public Type, public llvm::FoldingSetNode { |
| 2635 | friend class ASTContext; // ASTContext creates these. |
| 2636 | |
| 2637 | QualType PointeeType; |
| 2638 | |
| 2639 | PointerType(QualType Pointee, QualType CanonicalPtr) |
| 2640 | : Type(Pointer, CanonicalPtr, Pointee->getDependence()), |
| 2641 | PointeeType(Pointee) {} |
| 2642 | |
| 2643 | public: |
| 2644 | QualType getPointeeType() const { return PointeeType; } |
| 2645 | |
| 2646 | bool isSugared() const { return false; } |
| 2647 | QualType desugar() const { return QualType(this, 0); } |
| 2648 | |
| 2649 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 2650 | Profile(ID, getPointeeType()); |
| 2651 | } |
| 2652 | |
| 2653 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) { |
| 2654 | ID.AddPointer(Pointee.getAsOpaquePtr()); |
| 2655 | } |
| 2656 | |
| 2657 | static bool classof(const Type *T) { return T->getTypeClass() == Pointer; } |
| 2658 | }; |
| 2659 | |
| 2660 | /// Represents a type which was implicitly adjusted by the semantic |
| 2661 | /// engine for arbitrary reasons. For example, array and function types can |
| 2662 | /// decay, and function types can have their calling conventions adjusted. |
| 2663 | class AdjustedType : public Type, public llvm::FoldingSetNode { |
| 2664 | QualType OriginalTy; |
| 2665 | QualType AdjustedTy; |
| 2666 | |
| 2667 | protected: |
| 2668 | friend class ASTContext; // ASTContext creates these. |
| 2669 | |
| 2670 | AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy, |
| 2671 | QualType CanonicalPtr) |
| 2672 | : Type(TC, CanonicalPtr, OriginalTy->getDependence()), |
| 2673 | OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {} |
| 2674 | |
| 2675 | public: |
| 2676 | QualType getOriginalType() const { return OriginalTy; } |
| 2677 | QualType getAdjustedType() const { return AdjustedTy; } |
| 2678 | |
| 2679 | bool isSugared() const { return true; } |
| 2680 | QualType desugar() const { return AdjustedTy; } |
| 2681 | |
| 2682 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 2683 | Profile(ID, OriginalTy, AdjustedTy); |
| 2684 | } |
| 2685 | |
| 2686 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) { |
| 2687 | ID.AddPointer(Orig.getAsOpaquePtr()); |
| 2688 | ID.AddPointer(New.getAsOpaquePtr()); |
| 2689 | } |
| 2690 | |
| 2691 | static bool classof(const Type *T) { |
| 2692 | return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed; |
| 2693 | } |
| 2694 | }; |
| 2695 | |
| 2696 | /// Represents a pointer type decayed from an array or function type. |
| 2697 | class DecayedType : public AdjustedType { |
| 2698 | friend class ASTContext; // ASTContext creates these. |
| 2699 | |
| 2700 | inline |
| 2701 | DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical); |
| 2702 | |
| 2703 | public: |
| 2704 | QualType getDecayedType() const { return getAdjustedType(); } |
| 2705 | |
| 2706 | inline QualType getPointeeType() const; |
| 2707 | |
| 2708 | static bool classof(const Type *T) { return T->getTypeClass() == Decayed; } |
| 2709 | }; |
| 2710 | |
| 2711 | /// Pointer to a block type. |
| 2712 | /// This type is to represent types syntactically represented as |
| 2713 | /// "void (^)(int)", etc. Pointee is required to always be a function type. |
| 2714 | class BlockPointerType : public Type, public llvm::FoldingSetNode { |
| 2715 | friend class ASTContext; // ASTContext creates these. |
| 2716 | |
| 2717 | // Block is some kind of pointer type |
| 2718 | QualType PointeeType; |
| 2719 | |
| 2720 | BlockPointerType(QualType Pointee, QualType CanonicalCls) |
| 2721 | : Type(BlockPointer, CanonicalCls, Pointee->getDependence()), |
| 2722 | PointeeType(Pointee) {} |
| 2723 | |
| 2724 | public: |
| 2725 | // Get the pointee type. Pointee is required to always be a function type. |
| 2726 | QualType getPointeeType() const { return PointeeType; } |
| 2727 | |
| 2728 | bool isSugared() const { return false; } |
| 2729 | QualType desugar() const { return QualType(this, 0); } |
| 2730 | |
| 2731 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 2732 | Profile(ID, getPointeeType()); |
| 2733 | } |
| 2734 | |
| 2735 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) { |
| 2736 | ID.AddPointer(Pointee.getAsOpaquePtr()); |
| 2737 | } |
| 2738 | |
| 2739 | static bool classof(const Type *T) { |
| 2740 | return T->getTypeClass() == BlockPointer; |
| 2741 | } |
| 2742 | }; |
| 2743 | |
| 2744 | /// Base for LValueReferenceType and RValueReferenceType |
| 2745 | class ReferenceType : public Type, public llvm::FoldingSetNode { |
| 2746 | QualType PointeeType; |
| 2747 | |
| 2748 | protected: |
| 2749 | ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef, |
| 2750 | bool SpelledAsLValue) |
| 2751 | : Type(tc, CanonicalRef, Referencee->getDependence()), |
| 2752 | PointeeType(Referencee) { |
| 2753 | ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue; |
| 2754 | ReferenceTypeBits.InnerRef = Referencee->isReferenceType(); |
| 2755 | } |
| 2756 | |
| 2757 | public: |
| 2758 | bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; } |
| 2759 | bool isInnerRef() const { return ReferenceTypeBits.InnerRef; } |
| 2760 | |
| 2761 | QualType getPointeeTypeAsWritten() const { return PointeeType; } |
| 2762 | |
| 2763 | QualType getPointeeType() const { |
| 2764 | // FIXME: this might strip inner qualifiers; okay? |
| 2765 | const ReferenceType *T = this; |
| 2766 | while (T->isInnerRef()) |
| 2767 | T = T->PointeeType->castAs<ReferenceType>(); |
| 2768 | return T->PointeeType; |
| 2769 | } |
| 2770 | |
| 2771 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 2772 | Profile(ID, PointeeType, isSpelledAsLValue()); |
| 2773 | } |
| 2774 | |
| 2775 | static void Profile(llvm::FoldingSetNodeID &ID, |
| 2776 | QualType Referencee, |
| 2777 | bool SpelledAsLValue) { |
| 2778 | ID.AddPointer(Referencee.getAsOpaquePtr()); |
| 2779 | ID.AddBoolean(SpelledAsLValue); |
| 2780 | } |
| 2781 | |
| 2782 | static bool classof(const Type *T) { |
| 2783 | return T->getTypeClass() == LValueReference || |
| 2784 | T->getTypeClass() == RValueReference; |
| 2785 | } |
| 2786 | }; |
| 2787 | |
| 2788 | /// An lvalue reference type, per C++11 [dcl.ref]. |
| 2789 | class LValueReferenceType : public ReferenceType { |
| 2790 | friend class ASTContext; // ASTContext creates these |
| 2791 | |
| 2792 | LValueReferenceType(QualType Referencee, QualType CanonicalRef, |
| 2793 | bool SpelledAsLValue) |
| 2794 | : ReferenceType(LValueReference, Referencee, CanonicalRef, |
| 2795 | SpelledAsLValue) {} |
| 2796 | |
| 2797 | public: |
| 2798 | bool isSugared() const { return false; } |
| 2799 | QualType desugar() const { return QualType(this, 0); } |
| 2800 | |
| 2801 | static bool classof(const Type *T) { |
| 2802 | return T->getTypeClass() == LValueReference; |
| 2803 | } |
| 2804 | }; |
| 2805 | |
| 2806 | /// An rvalue reference type, per C++11 [dcl.ref]. |
| 2807 | class RValueReferenceType : public ReferenceType { |
| 2808 | friend class ASTContext; // ASTContext creates these |
| 2809 | |
| 2810 | RValueReferenceType(QualType Referencee, QualType CanonicalRef) |
| 2811 | : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {} |
| 2812 | |
| 2813 | public: |
| 2814 | bool isSugared() const { return false; } |
| 2815 | QualType desugar() const { return QualType(this, 0); } |
| 2816 | |
| 2817 | static bool classof(const Type *T) { |
| 2818 | return T->getTypeClass() == RValueReference; |
| 2819 | } |
| 2820 | }; |
| 2821 | |
| 2822 | /// A pointer to member type per C++ 8.3.3 - Pointers to members. |
| 2823 | /// |
| 2824 | /// This includes both pointers to data members and pointer to member functions. |
| 2825 | class MemberPointerType : public Type, public llvm::FoldingSetNode { |
| 2826 | friend class ASTContext; // ASTContext creates these. |
| 2827 | |
| 2828 | QualType PointeeType; |
| 2829 | |
| 2830 | /// The class of which the pointee is a member. Must ultimately be a |
| 2831 | /// RecordType, but could be a typedef or a template parameter too. |
| 2832 | const Type *Class; |
| 2833 | |
| 2834 | MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) |
| 2835 | : Type(MemberPointer, CanonicalPtr, |
| 2836 | (Cls->getDependence() & ~TypeDependence::VariablyModified) | |
| 2837 | Pointee->getDependence()), |
| 2838 | PointeeType(Pointee), Class(Cls) {} |
| 2839 | |
| 2840 | public: |
| 2841 | QualType getPointeeType() const { return PointeeType; } |
| 2842 | |
| 2843 | /// Returns true if the member type (i.e. the pointee type) is a |
| 2844 | /// function type rather than a data-member type. |
| 2845 | bool isMemberFunctionPointer() const { |
| 2846 | return PointeeType->isFunctionProtoType(); |
| 2847 | } |
| 2848 | |
| 2849 | /// Returns true if the member type (i.e. the pointee type) is a |
| 2850 | /// data type rather than a function type. |
| 2851 | bool isMemberDataPointer() const { |
| 2852 | return !PointeeType->isFunctionProtoType(); |
| 2853 | } |
| 2854 | |
| 2855 | const Type *getClass() const { return Class; } |
| 2856 | CXXRecordDecl *getMostRecentCXXRecordDecl() const; |
| 2857 | |
| 2858 | bool isSugared() const { return false; } |
| 2859 | QualType desugar() const { return QualType(this, 0); } |
| 2860 | |
| 2861 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 2862 | Profile(ID, getPointeeType(), getClass()); |
| 2863 | } |
| 2864 | |
| 2865 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee, |
| 2866 | const Type *Class) { |
| 2867 | ID.AddPointer(Pointee.getAsOpaquePtr()); |
| 2868 | ID.AddPointer(Class); |
| 2869 | } |
| 2870 | |
| 2871 | static bool classof(const Type *T) { |
| 2872 | return T->getTypeClass() == MemberPointer; |
| 2873 | } |
| 2874 | }; |
| 2875 | |
| 2876 | /// Represents an array type, per C99 6.7.5.2 - Array Declarators. |
| 2877 | class ArrayType : public Type, public llvm::FoldingSetNode { |
| 2878 | public: |
| 2879 | /// Capture whether this is a normal array (e.g. int X[4]) |
| 2880 | /// an array with a static size (e.g. int X[static 4]), or an array |
| 2881 | /// with a star size (e.g. int X[*]). |
| 2882 | /// 'static' is only allowed on function parameters. |
| 2883 | enum ArraySizeModifier { |
| 2884 | Normal, Static, Star |
| 2885 | }; |
| 2886 | |
| 2887 | private: |
| 2888 | /// The element type of the array. |
| 2889 | QualType ElementType; |
| 2890 | |
| 2891 | protected: |
| 2892 | friend class ASTContext; // ASTContext creates these. |
| 2893 | |
| 2894 | ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm, |
| 2895 | unsigned tq, const Expr *sz = nullptr); |
| 2896 | |
| 2897 | public: |
| 2898 | QualType getElementType() const { return ElementType; } |
| 2899 | |
| 2900 | ArraySizeModifier getSizeModifier() const { |
| 2901 | return ArraySizeModifier(ArrayTypeBits.SizeModifier); |
| 2902 | } |
| 2903 | |
| 2904 | Qualifiers getIndexTypeQualifiers() const { |
| 2905 | return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers()); |
| 2906 | } |
| 2907 | |
| 2908 | unsigned getIndexTypeCVRQualifiers() const { |
| 2909 | return ArrayTypeBits.IndexTypeQuals; |
| 2910 | } |
| 2911 | |
| 2912 | static bool classof(const Type *T) { |
| 2913 | return T->getTypeClass() == ConstantArray || |
| 2914 | T->getTypeClass() == VariableArray || |
| 2915 | T->getTypeClass() == IncompleteArray || |
| 2916 | T->getTypeClass() == DependentSizedArray; |
| 2917 | } |
| 2918 | }; |
| 2919 | |
| 2920 | /// Represents the canonical version of C arrays with a specified constant size. |
| 2921 | /// For example, the canonical type for 'int A[4 + 4*100]' is a |
| 2922 | /// ConstantArrayType where the element type is 'int' and the size is 404. |
| 2923 | class ConstantArrayType final |
| 2924 | : public ArrayType, |
| 2925 | private llvm::TrailingObjects<ConstantArrayType, const Expr *> { |
| 2926 | friend class ASTContext; // ASTContext creates these. |
| 2927 | friend TrailingObjects; |
| 2928 | |
| 2929 | llvm::APInt Size; // Allows us to unique the type. |
| 2930 | |
| 2931 | ConstantArrayType(QualType et, QualType can, const llvm::APInt &size, |
| 2932 | const Expr *sz, ArraySizeModifier sm, unsigned tq) |
| 2933 | : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) { |
| 2934 | ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr; |
| 2935 | if (ConstantArrayTypeBits.HasStoredSizeExpr) { |
| 2936 | assert(!can.isNull() && "canonical constant array should not have size")((void)0); |
| 2937 | *getTrailingObjects<const Expr*>() = sz; |
| 2938 | } |
| 2939 | } |
| 2940 | |
| 2941 | unsigned numTrailingObjects(OverloadToken<const Expr*>) const { |
| 2942 | return ConstantArrayTypeBits.HasStoredSizeExpr; |
| 2943 | } |
| 2944 | |
| 2945 | public: |
| 2946 | const llvm::APInt &getSize() const { return Size; } |
| 2947 | const Expr *getSizeExpr() const { |
| 2948 | return ConstantArrayTypeBits.HasStoredSizeExpr |
| 2949 | ? *getTrailingObjects<const Expr *>() |
| 2950 | : nullptr; |
| 2951 | } |
| 2952 | bool isSugared() const { return false; } |
| 2953 | QualType desugar() const { return QualType(this, 0); } |
| 2954 | |
| 2955 | /// Determine the number of bits required to address a member of |
| 2956 | // an array with the given element type and number of elements. |
| 2957 | static unsigned getNumAddressingBits(const ASTContext &Context, |
| 2958 | QualType ElementType, |
| 2959 | const llvm::APInt &NumElements); |
| 2960 | |
| 2961 | /// Determine the maximum number of active bits that an array's size |
| 2962 | /// can require, which limits the maximum size of the array. |
| 2963 | static unsigned getMaxSizeBits(const ASTContext &Context); |
| 2964 | |
| 2965 | void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) { |
| 2966 | Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(), |
| 2967 | getSizeModifier(), getIndexTypeCVRQualifiers()); |
| 2968 | } |
| 2969 | |
| 2970 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx, |
| 2971 | QualType ET, const llvm::APInt &ArraySize, |
| 2972 | const Expr *SizeExpr, ArraySizeModifier SizeMod, |
| 2973 | unsigned TypeQuals); |
| 2974 | |
| 2975 | static bool classof(const Type *T) { |
| 2976 | return T->getTypeClass() == ConstantArray; |
| 2977 | } |
| 2978 | }; |
| 2979 | |
| 2980 | /// Represents a C array with an unspecified size. For example 'int A[]' has |
| 2981 | /// an IncompleteArrayType where the element type is 'int' and the size is |
| 2982 | /// unspecified. |
| 2983 | class IncompleteArrayType : public ArrayType { |
| 2984 | friend class ASTContext; // ASTContext creates these. |
| 2985 | |
| 2986 | IncompleteArrayType(QualType et, QualType can, |
| 2987 | ArraySizeModifier sm, unsigned tq) |
| 2988 | : ArrayType(IncompleteArray, et, can, sm, tq) {} |
| 2989 | |
| 2990 | public: |
| 2991 | friend class StmtIteratorBase; |
| 2992 | |
| 2993 | bool isSugared() const { return false; } |
| 2994 | QualType desugar() const { return QualType(this, 0); } |
| 2995 | |
| 2996 | static bool classof(const Type *T) { |
| 2997 | return T->getTypeClass() == IncompleteArray; |
| 2998 | } |
| 2999 | |
| 3000 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 3001 | Profile(ID, getElementType(), getSizeModifier(), |
| 3002 | getIndexTypeCVRQualifiers()); |
| 3003 | } |
| 3004 | |
| 3005 | static void Profile(llvm::FoldingSetNodeID &ID, QualType ET, |
| 3006 | ArraySizeModifier SizeMod, unsigned TypeQuals) { |
| 3007 | ID.AddPointer(ET.getAsOpaquePtr()); |
| 3008 | ID.AddInteger(SizeMod); |
| 3009 | ID.AddInteger(TypeQuals); |
| 3010 | } |
| 3011 | }; |
| 3012 | |
| 3013 | /// Represents a C array with a specified size that is not an |
| 3014 | /// integer-constant-expression. For example, 'int s[x+foo()]'. |
| 3015 | /// Since the size expression is an arbitrary expression, we store it as such. |
| 3016 | /// |
| 3017 | /// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and |
| 3018 | /// should not be: two lexically equivalent variable array types could mean |
| 3019 | /// different things, for example, these variables do not have the same type |
| 3020 | /// dynamically: |
| 3021 | /// |
| 3022 | /// void foo(int x) { |
| 3023 | /// int Y[x]; |
| 3024 | /// ++x; |
| 3025 | /// int Z[x]; |
| 3026 | /// } |
| 3027 | class VariableArrayType : public ArrayType { |
| 3028 | friend class ASTContext; // ASTContext creates these. |
| 3029 | |
| 3030 | /// An assignment-expression. VLA's are only permitted within |
| 3031 | /// a function block. |
| 3032 | Stmt *SizeExpr; |
| 3033 | |
| 3034 | /// The range spanned by the left and right array brackets. |
| 3035 | SourceRange Brackets; |
| 3036 | |
| 3037 | VariableArrayType(QualType et, QualType can, Expr *e, |
| 3038 | ArraySizeModifier sm, unsigned tq, |
| 3039 | SourceRange brackets) |
| 3040 | : ArrayType(VariableArray, et, can, sm, tq, e), |
| 3041 | SizeExpr((Stmt*) e), Brackets(brackets) {} |
| 3042 | |
| 3043 | public: |
| 3044 | friend class StmtIteratorBase; |
| 3045 | |
| 3046 | Expr *getSizeExpr() const { |
| 3047 | // We use C-style casts instead of cast<> here because we do not wish |
| 3048 | // to have a dependency of Type.h on Stmt.h/Expr.h. |
| 3049 | return (Expr*) SizeExpr; |
| 3050 | } |
| 3051 | |
| 3052 | SourceRange getBracketsRange() const { return Brackets; } |
| 3053 | SourceLocation getLBracketLoc() const { return Brackets.getBegin(); } |
| 3054 | SourceLocation getRBracketLoc() const { return Brackets.getEnd(); } |
| 3055 | |
| 3056 | bool isSugared() const { return false; } |
| 3057 | QualType desugar() const { return QualType(this, 0); } |
| 3058 | |
| 3059 | static bool classof(const Type *T) { |
| 3060 | return T->getTypeClass() == VariableArray; |
| 3061 | } |
| 3062 | |
| 3063 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 3064 | llvm_unreachable("Cannot unique VariableArrayTypes.")__builtin_unreachable(); |
| 3065 | } |
| 3066 | }; |
| 3067 | |
| 3068 | /// Represents an array type in C++ whose size is a value-dependent expression. |
| 3069 | /// |
| 3070 | /// For example: |
| 3071 | /// \code |
| 3072 | /// template<typename T, int Size> |
| 3073 | /// class array { |
| 3074 | /// T data[Size]; |
| 3075 | /// }; |
| 3076 | /// \endcode |
| 3077 | /// |
| 3078 | /// For these types, we won't actually know what the array bound is |
| 3079 | /// until template instantiation occurs, at which point this will |
| 3080 | /// become either a ConstantArrayType or a VariableArrayType. |
| 3081 | class DependentSizedArrayType : public ArrayType { |
| 3082 | friend class ASTContext; // ASTContext creates these. |
| 3083 | |
| 3084 | const ASTContext &Context; |
| 3085 | |
| 3086 | /// An assignment expression that will instantiate to the |
| 3087 | /// size of the array. |
| 3088 | /// |
| 3089 | /// The expression itself might be null, in which case the array |
| 3090 | /// type will have its size deduced from an initializer. |
| 3091 | Stmt *SizeExpr; |
| 3092 | |
| 3093 | /// The range spanned by the left and right array brackets. |
| 3094 | SourceRange Brackets; |
| 3095 | |
| 3096 | DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can, |
| 3097 | Expr *e, ArraySizeModifier sm, unsigned tq, |
| 3098 | SourceRange brackets); |
| 3099 | |
| 3100 | public: |
| 3101 | friend class StmtIteratorBase; |
| 3102 | |
| 3103 | Expr *getSizeExpr() const { |
| 3104 | // We use C-style casts instead of cast<> here because we do not wish |
| 3105 | // to have a dependency of Type.h on Stmt.h/Expr.h. |
| 3106 | return (Expr*) SizeExpr; |
| 3107 | } |
| 3108 | |
| 3109 | SourceRange getBracketsRange() const { return Brackets; } |
| 3110 | SourceLocation getLBracketLoc() const { return Brackets.getBegin(); } |
| 3111 | SourceLocation getRBracketLoc() const { return Brackets.getEnd(); } |
| 3112 | |
| 3113 | bool isSugared() const { return false; } |
| 3114 | QualType desugar() const { return QualType(this, 0); } |
| 3115 | |
| 3116 | static bool classof(const Type *T) { |
| 3117 | return T->getTypeClass() == DependentSizedArray; |
| 3118 | } |
| 3119 | |
| 3120 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 3121 | Profile(ID, Context, getElementType(), |
| 3122 | getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr()); |
| 3123 | } |
| 3124 | |
| 3125 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
| 3126 | QualType ET, ArraySizeModifier SizeMod, |
| 3127 | unsigned TypeQuals, Expr *E); |
| 3128 | }; |
| 3129 | |
| 3130 | /// Represents an extended address space qualifier where the input address space |
| 3131 | /// value is dependent. Non-dependent address spaces are not represented with a |
| 3132 | /// special Type subclass; they are stored on an ExtQuals node as part of a QualType. |
| 3133 | /// |
| 3134 | /// For example: |
| 3135 | /// \code |
| 3136 | /// template<typename T, int AddrSpace> |
| 3137 | /// class AddressSpace { |
| 3138 | /// typedef T __attribute__((address_space(AddrSpace))) type; |
| 3139 | /// } |
| 3140 | /// \endcode |
| 3141 | class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode { |
| 3142 | friend class ASTContext; |
| 3143 | |
| 3144 | const ASTContext &Context; |
| 3145 | Expr *AddrSpaceExpr; |
| 3146 | QualType PointeeType; |
| 3147 | SourceLocation loc; |
| 3148 | |
| 3149 | DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType, |
| 3150 | QualType can, Expr *AddrSpaceExpr, |
| 3151 | SourceLocation loc); |
| 3152 | |
| 3153 | public: |
| 3154 | Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; } |
| 3155 | QualType getPointeeType() const { return PointeeType; } |
| 3156 | SourceLocation getAttributeLoc() const { return loc; } |
| 3157 | |
| 3158 | bool isSugared() const { return false; } |
| 3159 | QualType desugar() const { return QualType(this, 0); } |
| 3160 | |
| 3161 | static bool classof(const Type *T) { |
| 3162 | return T->getTypeClass() == DependentAddressSpace; |
| 3163 | } |
| 3164 | |
| 3165 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 3166 | Profile(ID, Context, getPointeeType(), getAddrSpaceExpr()); |
| 3167 | } |
| 3168 | |
| 3169 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
| 3170 | QualType PointeeType, Expr *AddrSpaceExpr); |
| 3171 | }; |
| 3172 | |
| 3173 | /// Represents an extended vector type where either the type or size is |
| 3174 | /// dependent. |
| 3175 | /// |
| 3176 | /// For example: |
| 3177 | /// \code |
| 3178 | /// template<typename T, int Size> |
| 3179 | /// class vector { |
| 3180 | /// typedef T __attribute__((ext_vector_type(Size))) type; |
| 3181 | /// } |
| 3182 | /// \endcode |
| 3183 | class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode { |
| 3184 | friend class ASTContext; |
| 3185 | |
| 3186 | const ASTContext &Context; |
| 3187 | Expr *SizeExpr; |
| 3188 | |
| 3189 | /// The element type of the array. |
| 3190 | QualType ElementType; |
| 3191 | |
| 3192 | SourceLocation loc; |
| 3193 | |
| 3194 | DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType, |
| 3195 | QualType can, Expr *SizeExpr, SourceLocation loc); |
| 3196 | |
| 3197 | public: |
| 3198 | Expr *getSizeExpr() const { return SizeExpr; } |
| 3199 | QualType getElementType() const { return ElementType; } |
| 3200 | SourceLocation getAttributeLoc() const { return loc; } |
| 3201 | |
| 3202 | bool isSugared() const { return false; } |
| 3203 | QualType desugar() const { return QualType(this, 0); } |
| 3204 | |
| 3205 | static bool classof(const Type *T) { |
| 3206 | return T->getTypeClass() == DependentSizedExtVector; |
| 3207 | } |
| 3208 | |
| 3209 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 3210 | Profile(ID, Context, getElementType(), getSizeExpr()); |
| 3211 | } |
| 3212 | |
| 3213 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
| 3214 | QualType ElementType, Expr *SizeExpr); |
| 3215 | }; |
| 3216 | |
| 3217 | |
| 3218 | /// Represents a GCC generic vector type. This type is created using |
| 3219 | /// __attribute__((vector_size(n)), where "n" specifies the vector size in |
| 3220 | /// bytes; or from an Altivec __vector or vector declaration. |
| 3221 | /// Since the constructor takes the number of vector elements, the |
| 3222 | /// client is responsible for converting the size into the number of elements. |
| 3223 | class VectorType : public Type, public llvm::FoldingSetNode { |
| 3224 | public: |
| 3225 | enum VectorKind { |
| 3226 | /// not a target-specific vector type |
| 3227 | GenericVector, |
| 3228 | |
| 3229 | /// is AltiVec vector |
| 3230 | AltiVecVector, |
| 3231 | |
| 3232 | /// is AltiVec 'vector Pixel' |
| 3233 | AltiVecPixel, |
| 3234 | |
| 3235 | /// is AltiVec 'vector bool ...' |
| 3236 | AltiVecBool, |
| 3237 | |
| 3238 | /// is ARM Neon vector |
| 3239 | NeonVector, |
| 3240 | |
| 3241 | /// is ARM Neon polynomial vector |
| 3242 | NeonPolyVector, |
| 3243 | |
| 3244 | /// is AArch64 SVE fixed-length data vector |
| 3245 | SveFixedLengthDataVector, |
| 3246 | |
| 3247 | /// is AArch64 SVE fixed-length predicate vector |
| 3248 | SveFixedLengthPredicateVector |
| 3249 | }; |
| 3250 | |
| 3251 | protected: |
| 3252 | friend class ASTContext; // ASTContext creates these. |
| 3253 | |
| 3254 | /// The element type of the vector. |
| 3255 | QualType ElementType; |
| 3256 | |
| 3257 | VectorType(QualType vecType, unsigned nElements, QualType canonType, |
| 3258 | VectorKind vecKind); |
| 3259 | |
| 3260 | VectorType(TypeClass tc, QualType vecType, unsigned nElements, |
| 3261 | QualType canonType, VectorKind vecKind); |
| 3262 | |
| 3263 | public: |
| 3264 | QualType getElementType() const { return ElementType; } |
| 3265 | unsigned getNumElements() const { return VectorTypeBits.NumElements; } |
| 3266 | |
| 3267 | bool isSugared() const { return false; } |
| 3268 | QualType desugar() const { return QualType(this, 0); } |
| 3269 | |
| 3270 | VectorKind getVectorKind() const { |
| 3271 | return VectorKind(VectorTypeBits.VecKind); |
| 3272 | } |
| 3273 | |
| 3274 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 3275 | Profile(ID, getElementType(), getNumElements(), |
| 3276 | getTypeClass(), getVectorKind()); |
| 3277 | } |
| 3278 | |
| 3279 | static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType, |
| 3280 | unsigned NumElements, TypeClass TypeClass, |
| 3281 | VectorKind VecKind) { |
| 3282 | ID.AddPointer(ElementType.getAsOpaquePtr()); |
| 3283 | ID.AddInteger(NumElements); |
| 3284 | ID.AddInteger(TypeClass); |
| 3285 | ID.AddInteger(VecKind); |
| 3286 | } |
| 3287 | |
| 3288 | static bool classof(const Type *T) { |
| 3289 | return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector; |
| 3290 | } |
| 3291 | }; |
| 3292 | |
| 3293 | /// Represents a vector type where either the type or size is dependent. |
| 3294 | //// |
| 3295 | /// For example: |
| 3296 | /// \code |
| 3297 | /// template<typename T, int Size> |
| 3298 | /// class vector { |
| 3299 | /// typedef T __attribute__((vector_size(Size))) type; |
| 3300 | /// } |
| 3301 | /// \endcode |
| 3302 | class DependentVectorType : public Type, public llvm::FoldingSetNode { |
| 3303 | friend class ASTContext; |
| 3304 | |
| 3305 | const ASTContext &Context; |
| 3306 | QualType ElementType; |
| 3307 | Expr *SizeExpr; |
| 3308 | SourceLocation Loc; |
| 3309 | |
| 3310 | DependentVectorType(const ASTContext &Context, QualType ElementType, |
| 3311 | QualType CanonType, Expr *SizeExpr, |
| 3312 | SourceLocation Loc, VectorType::VectorKind vecKind); |
| 3313 | |
| 3314 | public: |
| 3315 | Expr *getSizeExpr() const { return SizeExpr; } |
| 3316 | QualType getElementType() const { return ElementType; } |
| 3317 | SourceLocation getAttributeLoc() const { return Loc; } |
| 3318 | VectorType::VectorKind getVectorKind() const { |
| 3319 | return VectorType::VectorKind(VectorTypeBits.VecKind); |
| 3320 | } |
| 3321 | |
| 3322 | bool isSugared() const { return false; } |
| 3323 | QualType desugar() const { return QualType(this, 0); } |
| 3324 | |
| 3325 | static bool classof(const Type *T) { |
| 3326 | return T->getTypeClass() == DependentVector; |
| 3327 | } |
| 3328 | |
| 3329 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 3330 | Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind()); |
| 3331 | } |
| 3332 | |
| 3333 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
| 3334 | QualType ElementType, const Expr *SizeExpr, |
| 3335 | VectorType::VectorKind VecKind); |
| 3336 | }; |
| 3337 | |
| 3338 | /// ExtVectorType - Extended vector type. This type is created using |
| 3339 | /// __attribute__((ext_vector_type(n)), where "n" is the number of elements. |
| 3340 | /// Unlike vector_size, ext_vector_type is only allowed on typedef's. This |
| 3341 | /// class enables syntactic extensions, like Vector Components for accessing |
| 3342 | /// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL |
| 3343 | /// Shading Language). |
| 3344 | class ExtVectorType : public VectorType { |
| 3345 | friend class ASTContext; // ASTContext creates these. |
| 3346 | |
| 3347 | ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) |
| 3348 | : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {} |
| 3349 | |
| 3350 | public: |
| 3351 | static int getPointAccessorIdx(char c) { |
| 3352 | switch (c) { |
| 3353 | default: return -1; |
| 3354 | case 'x': case 'r': return 0; |
| 3355 | case 'y': case 'g': return 1; |
| 3356 | case 'z': case 'b': return 2; |
| 3357 | case 'w': case 'a': return 3; |
| 3358 | } |
| 3359 | } |
| 3360 | |
| 3361 | static int getNumericAccessorIdx(char c) { |
| 3362 | switch (c) { |
| 3363 | default: return -1; |
| 3364 | case '0': return 0; |
| 3365 | case '1': return 1; |
| 3366 | case '2': return 2; |
| 3367 | case '3': return 3; |
| 3368 | case '4': return 4; |
| 3369 | case '5': return 5; |
| 3370 | case '6': return 6; |
| 3371 | case '7': return 7; |
| 3372 | case '8': return 8; |
| 3373 | case '9': return 9; |
| 3374 | case 'A': |
| 3375 | case 'a': return 10; |
| 3376 | case 'B': |
| 3377 | case 'b': return 11; |
| 3378 | case 'C': |
| 3379 | case 'c': return 12; |
| 3380 | case 'D': |
| 3381 | case 'd': return 13; |
| 3382 | case 'E': |
| 3383 | case 'e': return 14; |
| 3384 | case 'F': |
| 3385 | case 'f': return 15; |
| 3386 | } |
| 3387 | } |
| 3388 | |
| 3389 | static int getAccessorIdx(char c, bool isNumericAccessor) { |
| 3390 | if (isNumericAccessor) |
| 3391 | return getNumericAccessorIdx(c); |
| 3392 | else |
| 3393 | return getPointAccessorIdx(c); |
| 3394 | } |
| 3395 | |
| 3396 | bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const { |
| 3397 | if (int idx = getAccessorIdx(c, isNumericAccessor)+1) |
| 3398 | return unsigned(idx-1) < getNumElements(); |
| 3399 | return false; |
| 3400 | } |
| 3401 | |
| 3402 | bool isSugared() const { return false; } |
| 3403 | QualType desugar() const { return QualType(this, 0); } |
| 3404 | |
| 3405 | static bool classof(const Type *T) { |
| 3406 | return T->getTypeClass() == ExtVector; |
| 3407 | } |
| 3408 | }; |
| 3409 | |
| 3410 | /// Represents a matrix type, as defined in the Matrix Types clang extensions. |
| 3411 | /// __attribute__((matrix_type(rows, columns))), where "rows" specifies |
| 3412 | /// number of rows and "columns" specifies the number of columns. |
| 3413 | class MatrixType : public Type, public llvm::FoldingSetNode { |
| 3414 | protected: |
| 3415 | friend class ASTContext; |
| 3416 | |
| 3417 | /// The element type of the matrix. |
| 3418 | QualType ElementType; |
| 3419 | |
| 3420 | MatrixType(QualType ElementTy, QualType CanonElementTy); |
| 3421 | |
| 3422 | MatrixType(TypeClass TypeClass, QualType ElementTy, QualType CanonElementTy, |
| 3423 | const Expr *RowExpr = nullptr, const Expr *ColumnExpr = nullptr); |
| 3424 | |
| 3425 | public: |
| 3426 | /// Returns type of the elements being stored in the matrix |
| 3427 | QualType getElementType() const { return ElementType; } |
| 3428 | |
| 3429 | /// Valid elements types are the following: |
| 3430 | /// * an integer type (as in C2x 6.2.5p19), but excluding enumerated types |
| 3431 | /// and _Bool |
| 3432 | /// * the standard floating types float or double |
| 3433 | /// * a half-precision floating point type, if one is supported on the target |
| 3434 | static bool isValidElementType(QualType T) { |
| 3435 | return T->isDependentType() || |
| 3436 | (T->isRealType() && !T->isBooleanType() && !T->isEnumeralType()); |
| 3437 | } |
| 3438 | |
| 3439 | bool isSugared() const { return false; } |
| 3440 | QualType desugar() const { return QualType(this, 0); } |
| 3441 | |
| 3442 | static bool classof(const Type *T) { |
| 3443 | return T->getTypeClass() == ConstantMatrix || |
| 3444 | T->getTypeClass() == DependentSizedMatrix; |
| 3445 | } |
| 3446 | }; |
| 3447 | |
| 3448 | /// Represents a concrete matrix type with constant number of rows and columns |
| 3449 | class ConstantMatrixType final : public MatrixType { |
| 3450 | protected: |
| 3451 | friend class ASTContext; |
| 3452 | |
| 3453 | /// The element type of the matrix. |
| 3454 | // FIXME: Appears to be unused? There is also MatrixType::ElementType... |
| 3455 | QualType ElementType; |
| 3456 | |
| 3457 | /// Number of rows and columns. |
| 3458 | unsigned NumRows; |
| 3459 | unsigned NumColumns; |
| 3460 | |
| 3461 | static constexpr unsigned MaxElementsPerDimension = (1 << 20) - 1; |
| 3462 | |
| 3463 | ConstantMatrixType(QualType MatrixElementType, unsigned NRows, |
| 3464 | unsigned NColumns, QualType CanonElementType); |
| 3465 | |
| 3466 | ConstantMatrixType(TypeClass typeClass, QualType MatrixType, unsigned NRows, |
| 3467 | unsigned NColumns, QualType CanonElementType); |
| 3468 | |
| 3469 | public: |
| 3470 | /// Returns the number of rows in the matrix. |
| 3471 | unsigned getNumRows() const { return NumRows; } |
| 3472 | |
| 3473 | /// Returns the number of columns in the matrix. |
| 3474 | unsigned getNumColumns() const { return NumColumns; } |
| 3475 | |
| 3476 | /// Returns the number of elements required to embed the matrix into a vector. |
| 3477 | unsigned getNumElementsFlattened() const { |
| 3478 | return getNumRows() * getNumColumns(); |
| 3479 | } |
| 3480 | |
| 3481 | /// Returns true if \p NumElements is a valid matrix dimension. |
| 3482 | static constexpr bool isDimensionValid(size_t NumElements) { |
| 3483 | return NumElements > 0 && NumElements <= MaxElementsPerDimension; |
| 3484 | } |
| 3485 | |
| 3486 | /// Returns the maximum number of elements per dimension. |
| 3487 | static constexpr unsigned getMaxElementsPerDimension() { |
| 3488 | return MaxElementsPerDimension; |
| 3489 | } |
| 3490 | |
| 3491 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 3492 | Profile(ID, getElementType(), getNumRows(), getNumColumns(), |
| 3493 | getTypeClass()); |
| 3494 | } |
| 3495 | |
| 3496 | static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType, |
| 3497 | unsigned NumRows, unsigned NumColumns, |
| 3498 | TypeClass TypeClass) { |
| 3499 | ID.AddPointer(ElementType.getAsOpaquePtr()); |
| 3500 | ID.AddInteger(NumRows); |
| 3501 | ID.AddInteger(NumColumns); |
| 3502 | ID.AddInteger(TypeClass); |
| 3503 | } |
| 3504 | |
| 3505 | static bool classof(const Type *T) { |
| 3506 | return T->getTypeClass() == ConstantMatrix; |
| 3507 | } |
| 3508 | }; |
| 3509 | |
| 3510 | /// Represents a matrix type where the type and the number of rows and columns |
| 3511 | /// is dependent on a template. |
| 3512 | class DependentSizedMatrixType final : public MatrixType { |
| 3513 | friend class ASTContext; |
| 3514 | |
| 3515 | const ASTContext &Context; |
| 3516 | Expr *RowExpr; |
| 3517 | Expr *ColumnExpr; |
| 3518 | |
| 3519 | SourceLocation loc; |
| 3520 | |
| 3521 | DependentSizedMatrixType(const ASTContext &Context, QualType ElementType, |
| 3522 | QualType CanonicalType, Expr *RowExpr, |
| 3523 | Expr *ColumnExpr, SourceLocation loc); |
| 3524 | |
| 3525 | public: |
| 3526 | QualType getElementType() const { return ElementType; } |
| 3527 | Expr *getRowExpr() const { return RowExpr; } |
| 3528 | Expr *getColumnExpr() const { return ColumnExpr; } |
| 3529 | SourceLocation getAttributeLoc() const { return loc; } |
| 3530 | |
| 3531 | bool isSugared() const { return false; } |
| 3532 | QualType desugar() const { return QualType(this, 0); } |
| 3533 | |
| 3534 | static bool classof(const Type *T) { |
| 3535 | return T->getTypeClass() == DependentSizedMatrix; |
| 3536 | } |
| 3537 | |
| 3538 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 3539 | Profile(ID, Context, getElementType(), getRowExpr(), getColumnExpr()); |
| 3540 | } |
| 3541 | |
| 3542 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
| 3543 | QualType ElementType, Expr *RowExpr, Expr *ColumnExpr); |
| 3544 | }; |
| 3545 | |
| 3546 | /// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base |
| 3547 | /// class of FunctionNoProtoType and FunctionProtoType. |
| 3548 | class FunctionType : public Type { |
| 3549 | // The type returned by the function. |
| 3550 | QualType ResultType; |
| 3551 | |
| 3552 | public: |
| 3553 | /// Interesting information about a specific parameter that can't simply |
| 3554 | /// be reflected in parameter's type. This is only used by FunctionProtoType |
| 3555 | /// but is in FunctionType to make this class available during the |
| 3556 | /// specification of the bases of FunctionProtoType. |
| 3557 | /// |
| 3558 | /// It makes sense to model language features this way when there's some |
| 3559 | /// sort of parameter-specific override (such as an attribute) that |
| 3560 | /// affects how the function is called. For example, the ARC ns_consumed |
| 3561 | /// attribute changes whether a parameter is passed at +0 (the default) |
| 3562 | /// or +1 (ns_consumed). This must be reflected in the function type, |
| 3563 | /// but isn't really a change to the parameter type. |
| 3564 | /// |
| 3565 | /// One serious disadvantage of modelling language features this way is |
| 3566 | /// that they generally do not work with language features that attempt |
| 3567 | /// to destructure types. For example, template argument deduction will |
| 3568 | /// not be able to match a parameter declared as |
| 3569 | /// T (*)(U) |
| 3570 | /// against an argument of type |
| 3571 | /// void (*)(__attribute__((ns_consumed)) id) |
| 3572 | /// because the substitution of T=void, U=id into the former will |
| 3573 | /// not produce the latter. |
| 3574 | class ExtParameterInfo { |
| 3575 | enum { |
| 3576 | ABIMask = 0x0F, |
| 3577 | IsConsumed = 0x10, |
| 3578 | HasPassObjSize = 0x20, |
| 3579 | IsNoEscape = 0x40, |
| 3580 | }; |
| 3581 | unsigned char Data = 0; |
| 3582 | |
| 3583 | public: |
| 3584 | ExtParameterInfo() = default; |
| 3585 | |
| 3586 | /// Return the ABI treatment of this parameter. |
| 3587 | ParameterABI getABI() const { return ParameterABI(Data & ABIMask); } |
| 3588 | ExtParameterInfo withABI(ParameterABI kind) const { |
| 3589 | ExtParameterInfo copy = *this; |
| 3590 | copy.Data = (copy.Data & ~ABIMask) | unsigned(kind); |
| 3591 | return copy; |
| 3592 | } |
| 3593 | |
| 3594 | /// Is this parameter considered "consumed" by Objective-C ARC? |
| 3595 | /// Consumed parameters must have retainable object type. |
| 3596 | bool isConsumed() const { return (Data & IsConsumed); } |
| 3597 | ExtParameterInfo withIsConsumed(bool consumed) const { |
| 3598 | ExtParameterInfo copy = *this; |
| 3599 | if (consumed) |
| 3600 | copy.Data |= IsConsumed; |
| 3601 | else |
| 3602 | copy.Data &= ~IsConsumed; |
| 3603 | return copy; |
| 3604 | } |
| 3605 | |
| 3606 | bool hasPassObjectSize() const { return Data & HasPassObjSize; } |
| 3607 | ExtParameterInfo withHasPassObjectSize() const { |
| 3608 | ExtParameterInfo Copy = *this; |
| 3609 | Copy.Data |= HasPassObjSize; |
| 3610 | return Copy; |
| 3611 | } |
| 3612 | |
| 3613 | bool isNoEscape() const { return Data & IsNoEscape; } |
| 3614 | ExtParameterInfo withIsNoEscape(bool NoEscape) const { |
| 3615 | ExtParameterInfo Copy = *this; |
| 3616 | if (NoEscape) |
| 3617 | Copy.Data |= IsNoEscape; |
| 3618 | else |
| 3619 | Copy.Data &= ~IsNoEscape; |
| 3620 | return Copy; |
| 3621 | } |
| 3622 | |
| 3623 | unsigned char getOpaqueValue() const { return Data; } |
| 3624 | static ExtParameterInfo getFromOpaqueValue(unsigned char data) { |
| 3625 | ExtParameterInfo result; |
| 3626 | result.Data = data; |
| 3627 | return result; |
| 3628 | } |
| 3629 | |
| 3630 | friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) { |
| 3631 | return lhs.Data == rhs.Data; |
| 3632 | } |
| 3633 | |
| 3634 | friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) { |
| 3635 | return lhs.Data != rhs.Data; |
| 3636 | } |
| 3637 | }; |
| 3638 | |
| 3639 | /// A class which abstracts out some details necessary for |
| 3640 | /// making a call. |
| 3641 | /// |
| 3642 | /// It is not actually used directly for storing this information in |
| 3643 | /// a FunctionType, although FunctionType does currently use the |
| 3644 | /// same bit-pattern. |
| 3645 | /// |
| 3646 | // If you add a field (say Foo), other than the obvious places (both, |
| 3647 | // constructors, compile failures), what you need to update is |
| 3648 | // * Operator== |
| 3649 | // * getFoo |
| 3650 | // * withFoo |
| 3651 | // * functionType. Add Foo, getFoo. |
| 3652 | // * ASTContext::getFooType |
| 3653 | // * ASTContext::mergeFunctionTypes |
| 3654 | // * FunctionNoProtoType::Profile |
| 3655 | // * FunctionProtoType::Profile |
| 3656 | // * TypePrinter::PrintFunctionProto |
| 3657 | // * AST read and write |
| 3658 | // * Codegen |
| 3659 | class ExtInfo { |
| 3660 | friend class FunctionType; |
| 3661 | |
| 3662 | // Feel free to rearrange or add bits, but if you go over 16, you'll need to |
| 3663 | // adjust the Bits field below, and if you add bits, you'll need to adjust |
| 3664 | // Type::FunctionTypeBitfields::ExtInfo as well. |
| 3665 | |
| 3666 | // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|cmsenscall| |
| 3667 | // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 | 12 | |
| 3668 | // |
| 3669 | // regparm is either 0 (no regparm attribute) or the regparm value+1. |
| 3670 | enum { CallConvMask = 0x1F }; |
| 3671 | enum { NoReturnMask = 0x20 }; |
| 3672 | enum { ProducesResultMask = 0x40 }; |
| 3673 | enum { NoCallerSavedRegsMask = 0x80 }; |
| 3674 | enum { |
| 3675 | RegParmMask = 0x700, |
| 3676 | RegParmOffset = 8 |
| 3677 | }; |
| 3678 | enum { NoCfCheckMask = 0x800 }; |
| 3679 | enum { CmseNSCallMask = 0x1000 }; |
| 3680 | uint16_t Bits = CC_C; |
| 3681 | |
| 3682 | ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {} |
| 3683 | |
| 3684 | public: |
| 3685 | // Constructor with no defaults. Use this when you know that you |
| 3686 | // have all the elements (when reading an AST file for example). |
| 3687 | ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc, |
| 3688 | bool producesResult, bool noCallerSavedRegs, bool NoCfCheck, |
| 3689 | bool cmseNSCall) { |
| 3690 | assert((!hasRegParm || regParm < 7) && "Invalid regparm value")((void)0); |
| 3691 | Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) | |
| 3692 | (producesResult ? ProducesResultMask : 0) | |
| 3693 | (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) | |
| 3694 | (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) | |
| 3695 | (NoCfCheck ? NoCfCheckMask : 0) | |
| 3696 | (cmseNSCall ? CmseNSCallMask : 0); |
| 3697 | } |
| 3698 | |
| 3699 | // Constructor with all defaults. Use when for example creating a |
| 3700 | // function known to use defaults. |
| 3701 | ExtInfo() = default; |
| 3702 | |
| 3703 | // Constructor with just the calling convention, which is an important part |
| 3704 | // of the canonical type. |
| 3705 | ExtInfo(CallingConv CC) : Bits(CC) {} |
| 3706 | |
| 3707 | bool getNoReturn() const { return Bits & NoReturnMask; } |
| 3708 | bool getProducesResult() const { return Bits & ProducesResultMask; } |
| 3709 | bool getCmseNSCall() const { return Bits & CmseNSCallMask; } |
| 3710 | bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; } |
| 3711 | bool getNoCfCheck() const { return Bits & NoCfCheckMask; } |
| 3712 | bool getHasRegParm() const { return ((Bits & RegParmMask) >> RegParmOffset) != 0; } |
| 3713 | |
| 3714 | unsigned getRegParm() const { |
| 3715 | unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset; |
| 3716 | if (RegParm > 0) |
| 3717 | --RegParm; |
| 3718 | return RegParm; |
| 3719 | } |
| 3720 | |
| 3721 | CallingConv getCC() const { return CallingConv(Bits & CallConvMask); } |
| 3722 | |
| 3723 | bool operator==(ExtInfo Other) const { |
| 3724 | return Bits == Other.Bits; |
| 3725 | } |
| 3726 | bool operator!=(ExtInfo Other) const { |
| 3727 | return Bits != Other.Bits; |
| 3728 | } |
| 3729 | |
| 3730 | // Note that we don't have setters. That is by design, use |
| 3731 | // the following with methods instead of mutating these objects. |
| 3732 | |
| 3733 | ExtInfo withNoReturn(bool noReturn) const { |
| 3734 | if (noReturn) |
| 3735 | return ExtInfo(Bits | NoReturnMask); |
| 3736 | else |
| 3737 | return ExtInfo(Bits & ~NoReturnMask); |
| 3738 | } |
| 3739 | |
| 3740 | ExtInfo withProducesResult(bool producesResult) const { |
| 3741 | if (producesResult) |
| 3742 | return ExtInfo(Bits | ProducesResultMask); |
| 3743 | else |
| 3744 | return ExtInfo(Bits & ~ProducesResultMask); |
| 3745 | } |
| 3746 | |
| 3747 | ExtInfo withCmseNSCall(bool cmseNSCall) const { |
| 3748 | if (cmseNSCall) |
| 3749 | return ExtInfo(Bits | CmseNSCallMask); |
| 3750 | else |
| 3751 | return ExtInfo(Bits & ~CmseNSCallMask); |
| 3752 | } |
| 3753 | |
| 3754 | ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const { |
| 3755 | if (noCallerSavedRegs) |
| 3756 | return ExtInfo(Bits | NoCallerSavedRegsMask); |
| 3757 | else |
| 3758 | return ExtInfo(Bits & ~NoCallerSavedRegsMask); |
| 3759 | } |
| 3760 | |
| 3761 | ExtInfo withNoCfCheck(bool noCfCheck) const { |
| 3762 | if (noCfCheck) |
| 3763 | return ExtInfo(Bits | NoCfCheckMask); |
| 3764 | else |
| 3765 | return ExtInfo(Bits & ~NoCfCheckMask); |
| 3766 | } |
| 3767 | |
| 3768 | ExtInfo withRegParm(unsigned RegParm) const { |
| 3769 | assert(RegParm < 7 && "Invalid regparm value")((void)0); |
| 3770 | return ExtInfo((Bits & ~RegParmMask) | |
| 3771 | ((RegParm + 1) << RegParmOffset)); |
| 3772 | } |
| 3773 | |
| 3774 | ExtInfo withCallingConv(CallingConv cc) const { |
| 3775 | return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc); |
| 3776 | } |
| 3777 | |
| 3778 | void Profile(llvm::FoldingSetNodeID &ID) const { |
| 3779 | ID.AddInteger(Bits); |
| 3780 | } |
| 3781 | }; |
| 3782 | |
| 3783 | /// A simple holder for a QualType representing a type in an |
| 3784 | /// exception specification. Unfortunately needed by FunctionProtoType |
| 3785 | /// because TrailingObjects cannot handle repeated types. |
| 3786 | struct ExceptionType { QualType Type; }; |
| 3787 | |
| 3788 | /// A simple holder for various uncommon bits which do not fit in |
| 3789 | /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the |
| 3790 | /// alignment of subsequent objects in TrailingObjects. You must update |
| 3791 | /// hasExtraBitfields in FunctionProtoType after adding extra data here. |
| 3792 | struct alignas(void *) FunctionTypeExtraBitfields { |
| 3793 | /// The number of types in the exception specification. |
| 3794 | /// A whole unsigned is not needed here and according to |
| 3795 | /// [implimits] 8 bits would be enough here. |
| 3796 | unsigned NumExceptionType; |
| 3797 | }; |
| 3798 | |
| 3799 | protected: |
| 3800 | FunctionType(TypeClass tc, QualType res, QualType Canonical, |
| 3801 | TypeDependence Dependence, ExtInfo Info) |
| 3802 | : Type(tc, Canonical, Dependence), ResultType(res) { |
| 3803 | FunctionTypeBits.ExtInfo = Info.Bits; |
| 3804 | } |
| 3805 | |
| 3806 | Qualifiers getFastTypeQuals() const { |
| 3807 | return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals); |
| 3808 | } |
| 3809 | |
| 3810 | public: |
| 3811 | QualType getReturnType() const { return ResultType; } |
| 3812 | |
| 3813 | bool getHasRegParm() const { return getExtInfo().getHasRegParm(); } |
| 3814 | unsigned getRegParmType() const { return getExtInfo().getRegParm(); } |
| 3815 | |
| 3816 | /// Determine whether this function type includes the GNU noreturn |
| 3817 | /// attribute. The C++11 [[noreturn]] attribute does not affect the function |
| 3818 | /// type. |
| 3819 | bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); } |
| 3820 | |
| 3821 | bool getCmseNSCallAttr() const { return getExtInfo().getCmseNSCall(); } |
| 3822 | CallingConv getCallConv() const { return getExtInfo().getCC(); } |
| 3823 | ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); } |
| 3824 | |
| 3825 | static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0, |
| 3826 | "Const, volatile and restrict are assumed to be a subset of " |
| 3827 | "the fast qualifiers."); |
| 3828 | |
| 3829 | bool isConst() const { return getFastTypeQuals().hasConst(); } |
| 3830 | bool isVolatile() const { return getFastTypeQuals().hasVolatile(); } |
| 3831 | bool isRestrict() const { return getFastTypeQuals().hasRestrict(); } |
| 3832 | |
| 3833 | /// Determine the type of an expression that calls a function of |
| 3834 | /// this type. |
| 3835 | QualType getCallResultType(const ASTContext &Context) const { |
| 3836 | return getReturnType().getNonLValueExprType(Context); |
| 3837 | } |
| 3838 | |
| 3839 | static StringRef getNameForCallConv(CallingConv CC); |
| 3840 | |
| 3841 | static bool classof(const Type *T) { |
| 3842 | return T->getTypeClass() == FunctionNoProto || |
| 3843 | T->getTypeClass() == FunctionProto; |
| 3844 | } |
| 3845 | }; |
| 3846 | |
| 3847 | /// Represents a K&R-style 'int foo()' function, which has |
| 3848 | /// no information available about its arguments. |
| 3849 | class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode { |
| 3850 | friend class ASTContext; // ASTContext creates these. |
| 3851 | |
| 3852 | FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info) |
| 3853 | : FunctionType(FunctionNoProto, Result, Canonical, |
| 3854 | Result->getDependence() & |
| 3855 | ~(TypeDependence::DependentInstantiation | |
| 3856 | TypeDependence::UnexpandedPack), |
| 3857 | Info) {} |
| 3858 | |
| 3859 | public: |
| 3860 | // No additional state past what FunctionType provides. |
| 3861 | |
| 3862 | bool isSugared() const { return false; } |
| 3863 | QualType desugar() const { return QualType(this, 0); } |
| 3864 | |
| 3865 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 3866 | Profile(ID, getReturnType(), getExtInfo()); |
| 3867 | } |
| 3868 | |
| 3869 | static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType, |
| 3870 | ExtInfo Info) { |
| 3871 | Info.Profile(ID); |
| 3872 | ID.AddPointer(ResultType.getAsOpaquePtr()); |
| 3873 | } |
| 3874 | |
| 3875 | static bool classof(const Type *T) { |
| 3876 | return T->getTypeClass() == FunctionNoProto; |
| 3877 | } |
| 3878 | }; |
| 3879 | |
| 3880 | /// Represents a prototype with parameter type info, e.g. |
| 3881 | /// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no |
| 3882 | /// parameters, not as having a single void parameter. Such a type can have |
| 3883 | /// an exception specification, but this specification is not part of the |
| 3884 | /// canonical type. FunctionProtoType has several trailing objects, some of |
| 3885 | /// which optional. For more information about the trailing objects see |
| 3886 | /// the first comment inside FunctionProtoType. |
| 3887 | class FunctionProtoType final |
| 3888 | : public FunctionType, |
| 3889 | public llvm::FoldingSetNode, |
| 3890 | private llvm::TrailingObjects< |
| 3891 | FunctionProtoType, QualType, SourceLocation, |
| 3892 | FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType, |
| 3893 | Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> { |
| 3894 | friend class ASTContext; // ASTContext creates these. |
| 3895 | friend TrailingObjects; |
| 3896 | |
| 3897 | // FunctionProtoType is followed by several trailing objects, some of |
| 3898 | // which optional. They are in order: |
| 3899 | // |
| 3900 | // * An array of getNumParams() QualType holding the parameter types. |
| 3901 | // Always present. Note that for the vast majority of FunctionProtoType, |
| 3902 | // these will be the only trailing objects. |
| 3903 | // |
| 3904 | // * Optionally if the function is variadic, the SourceLocation of the |
| 3905 | // ellipsis. |
| 3906 | // |
| 3907 | // * Optionally if some extra data is stored in FunctionTypeExtraBitfields |
| 3908 | // (see FunctionTypeExtraBitfields and FunctionTypeBitfields): |
| 3909 | // a single FunctionTypeExtraBitfields. Present if and only if |
| 3910 | // hasExtraBitfields() is true. |
| 3911 | // |
| 3912 | // * Optionally exactly one of: |
| 3913 | // * an array of getNumExceptions() ExceptionType, |
| 3914 | // * a single Expr *, |
| 3915 | // * a pair of FunctionDecl *, |
| 3916 | // * a single FunctionDecl * |
| 3917 | // used to store information about the various types of exception |
| 3918 | // specification. See getExceptionSpecSize for the details. |
| 3919 | // |
| 3920 | // * Optionally an array of getNumParams() ExtParameterInfo holding |
| 3921 | // an ExtParameterInfo for each of the parameters. Present if and |
| 3922 | // only if hasExtParameterInfos() is true. |
| 3923 | // |
| 3924 | // * Optionally a Qualifiers object to represent extra qualifiers that can't |
| 3925 | // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only |
| 3926 | // if hasExtQualifiers() is true. |
| 3927 | // |
| 3928 | // The optional FunctionTypeExtraBitfields has to be before the data |
| 3929 | // related to the exception specification since it contains the number |
| 3930 | // of exception types. |
| 3931 | // |
| 3932 | // We put the ExtParameterInfos last. If all were equal, it would make |
| 3933 | // more sense to put these before the exception specification, because |
| 3934 | // it's much easier to skip past them compared to the elaborate switch |
| 3935 | // required to skip the exception specification. However, all is not |
| 3936 | // equal; ExtParameterInfos are used to model very uncommon features, |
| 3937 | // and it's better not to burden the more common paths. |
| 3938 | |
| 3939 | public: |
| 3940 | /// Holds information about the various types of exception specification. |
| 3941 | /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is |
| 3942 | /// used to group together the various bits of information about the |
| 3943 | /// exception specification. |
| 3944 | struct ExceptionSpecInfo { |
| 3945 | /// The kind of exception specification this is. |
| 3946 | ExceptionSpecificationType Type = EST_None; |
| 3947 | |
| 3948 | /// Explicitly-specified list of exception types. |
| 3949 | ArrayRef<QualType> Exceptions; |
| 3950 | |
| 3951 | /// Noexcept expression, if this is a computed noexcept specification. |
| 3952 | Expr *NoexceptExpr = nullptr; |
| 3953 | |
| 3954 | /// The function whose exception specification this is, for |
| 3955 | /// EST_Unevaluated and EST_Uninstantiated. |
| 3956 | FunctionDecl *SourceDecl = nullptr; |
| 3957 | |
| 3958 | /// The function template whose exception specification this is instantiated |
| 3959 | /// from, for EST_Uninstantiated. |
| 3960 | FunctionDecl *SourceTemplate = nullptr; |
| 3961 | |
| 3962 | ExceptionSpecInfo() = default; |
| 3963 | |
| 3964 | ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {} |
| 3965 | }; |
| 3966 | |
| 3967 | /// Extra information about a function prototype. ExtProtoInfo is not |
| 3968 | /// stored as such in FunctionProtoType but is used to group together |
| 3969 | /// the various bits of extra information about a function prototype. |
| 3970 | struct ExtProtoInfo { |
| 3971 | FunctionType::ExtInfo ExtInfo; |
| 3972 | bool Variadic : 1; |
| 3973 | bool HasTrailingReturn : 1; |
| 3974 | Qualifiers TypeQuals; |
| 3975 | RefQualifierKind RefQualifier = RQ_None; |
| 3976 | ExceptionSpecInfo ExceptionSpec; |
| 3977 | const ExtParameterInfo *ExtParameterInfos = nullptr; |
| 3978 | SourceLocation EllipsisLoc; |
| 3979 | |
| 3980 | ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {} |
| 3981 | |
| 3982 | ExtProtoInfo(CallingConv CC) |
| 3983 | : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {} |
| 3984 | |
| 3985 | ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) { |
| 3986 | ExtProtoInfo Result(*this); |
| 3987 | Result.ExceptionSpec = ESI; |
| 3988 | return Result; |
| 3989 | } |
| 3990 | }; |
| 3991 | |
| 3992 | private: |
| 3993 | unsigned numTrailingObjects(OverloadToken<QualType>) const { |
| 3994 | return getNumParams(); |
| 3995 | } |
| 3996 | |
| 3997 | unsigned numTrailingObjects(OverloadToken<SourceLocation>) const { |
| 3998 | return isVariadic(); |
| 3999 | } |
| 4000 | |
| 4001 | unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const { |
| 4002 | return hasExtraBitfields(); |
| 4003 | } |
| 4004 | |
| 4005 | unsigned numTrailingObjects(OverloadToken<ExceptionType>) const { |
| 4006 | return getExceptionSpecSize().NumExceptionType; |
| 4007 | } |
| 4008 | |
| 4009 | unsigned numTrailingObjects(OverloadToken<Expr *>) const { |
| 4010 | return getExceptionSpecSize().NumExprPtr; |
| 4011 | } |
| 4012 | |
| 4013 | unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const { |
| 4014 | return getExceptionSpecSize().NumFunctionDeclPtr; |
| 4015 | } |
| 4016 | |
| 4017 | unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const { |
| 4018 | return hasExtParameterInfos() ? getNumParams() : 0; |
| 4019 | } |
| 4020 | |
| 4021 | /// Determine whether there are any argument types that |
| 4022 | /// contain an unexpanded parameter pack. |
| 4023 | static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray, |
| 4024 | unsigned numArgs) { |
| 4025 | for (unsigned Idx = 0; Idx < numArgs; ++Idx) |
| 4026 | if (ArgArray[Idx]->containsUnexpandedParameterPack()) |
| 4027 | return true; |
| 4028 | |
| 4029 | return false; |
| 4030 | } |
| 4031 | |
| 4032 | FunctionProtoType(QualType result, ArrayRef<QualType> params, |
| 4033 | QualType canonical, const ExtProtoInfo &epi); |
| 4034 | |
| 4035 | /// This struct is returned by getExceptionSpecSize and is used to |
| 4036 | /// translate an ExceptionSpecificationType to the number and kind |
| 4037 | /// of trailing objects related to the exception specification. |
| 4038 | struct ExceptionSpecSizeHolder { |
| 4039 | unsigned NumExceptionType; |
| 4040 | unsigned NumExprPtr; |
| 4041 | unsigned NumFunctionDeclPtr; |
| 4042 | }; |
| 4043 | |
| 4044 | /// Return the number and kind of trailing objects |
| 4045 | /// related to the exception specification. |
| 4046 | static ExceptionSpecSizeHolder |
| 4047 | getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) { |
| 4048 | switch (EST) { |
| 4049 | case EST_None: |
| 4050 | case EST_DynamicNone: |
| 4051 | case EST_MSAny: |
| 4052 | case EST_BasicNoexcept: |
| 4053 | case EST_Unparsed: |
| 4054 | case EST_NoThrow: |
| 4055 | return {0, 0, 0}; |
| 4056 | |
| 4057 | case EST_Dynamic: |
| 4058 | return {NumExceptions, 0, 0}; |
| 4059 | |
| 4060 | case EST_DependentNoexcept: |
| 4061 | case EST_NoexceptFalse: |
| 4062 | case EST_NoexceptTrue: |
| 4063 | return {0, 1, 0}; |
| 4064 | |
| 4065 | case EST_Uninstantiated: |
| 4066 | return {0, 0, 2}; |
| 4067 | |
| 4068 | case EST_Unevaluated: |
| 4069 | return {0, 0, 1}; |
| 4070 | } |
| 4071 | llvm_unreachable("bad exception specification kind")__builtin_unreachable(); |
| 4072 | } |
| 4073 | |
| 4074 | /// Return the number and kind of trailing objects |
| 4075 | /// related to the exception specification. |
| 4076 | ExceptionSpecSizeHolder getExceptionSpecSize() const { |
| 4077 | return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions()); |
| 4078 | } |
| 4079 | |
| 4080 | /// Whether the trailing FunctionTypeExtraBitfields is present. |
| 4081 | static bool hasExtraBitfields(ExceptionSpecificationType EST) { |
| 4082 | // If the exception spec type is EST_Dynamic then we have > 0 exception |
| 4083 | // types and the exact number is stored in FunctionTypeExtraBitfields. |
| 4084 | return EST == EST_Dynamic; |
| 4085 | } |
| 4086 | |
| 4087 | /// Whether the trailing FunctionTypeExtraBitfields is present. |
| 4088 | bool hasExtraBitfields() const { |
| 4089 | return hasExtraBitfields(getExceptionSpecType()); |
| 4090 | } |
| 4091 | |
| 4092 | bool hasExtQualifiers() const { |
| 4093 | return FunctionTypeBits.HasExtQuals; |
| 4094 | } |
| 4095 | |
| 4096 | public: |
| 4097 | unsigned getNumParams() const { return FunctionTypeBits.NumParams; } |
| 4098 | |
| 4099 | QualType getParamType(unsigned i) const { |
| 4100 | assert(i < getNumParams() && "invalid parameter index")((void)0); |
| 4101 | return param_type_begin()[i]; |
| 4102 | } |
| 4103 | |
| 4104 | ArrayRef<QualType> getParamTypes() const { |
| 4105 | return llvm::makeArrayRef(param_type_begin(), param_type_end()); |
| 4106 | } |
| 4107 | |
| 4108 | ExtProtoInfo getExtProtoInfo() const { |
| 4109 | ExtProtoInfo EPI; |
| 4110 | EPI.ExtInfo = getExtInfo(); |
| 4111 | EPI.Variadic = isVariadic(); |
| 4112 | EPI.EllipsisLoc = getEllipsisLoc(); |
| 4113 | EPI.HasTrailingReturn = hasTrailingReturn(); |
| 4114 | EPI.ExceptionSpec = getExceptionSpecInfo(); |
| 4115 | EPI.TypeQuals = getMethodQuals(); |
| 4116 | EPI.RefQualifier = getRefQualifier(); |
| 4117 | EPI.ExtParameterInfos = getExtParameterInfosOrNull(); |
| 4118 | return EPI; |
| 4119 | } |
| 4120 | |
| 4121 | /// Get the kind of exception specification on this function. |
| 4122 | ExceptionSpecificationType getExceptionSpecType() const { |
| 4123 | return static_cast<ExceptionSpecificationType>( |
| 4124 | FunctionTypeBits.ExceptionSpecType); |
| 4125 | } |
| 4126 | |
| 4127 | /// Return whether this function has any kind of exception spec. |
| 4128 | bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; } |
| 4129 | |
| 4130 | /// Return whether this function has a dynamic (throw) exception spec. |
| 4131 | bool hasDynamicExceptionSpec() const { |
| 4132 | return isDynamicExceptionSpec(getExceptionSpecType()); |
| 4133 | } |
| 4134 | |
| 4135 | /// Return whether this function has a noexcept exception spec. |
| 4136 | bool hasNoexceptExceptionSpec() const { |
| 4137 | return isNoexceptExceptionSpec(getExceptionSpecType()); |
| 4138 | } |
| 4139 | |
| 4140 | /// Return whether this function has a dependent exception spec. |
| 4141 | bool hasDependentExceptionSpec() const; |
| 4142 | |
| 4143 | /// Return whether this function has an instantiation-dependent exception |
| 4144 | /// spec. |
| 4145 | bool hasInstantiationDependentExceptionSpec() const; |
| 4146 | |
| 4147 | /// Return all the available information about this type's exception spec. |
| 4148 | ExceptionSpecInfo getExceptionSpecInfo() const { |
| 4149 | ExceptionSpecInfo Result; |
| 4150 | Result.Type = getExceptionSpecType(); |
| 4151 | if (Result.Type == EST_Dynamic) { |
| 4152 | Result.Exceptions = exceptions(); |
| 4153 | } else if (isComputedNoexcept(Result.Type)) { |
| 4154 | Result.NoexceptExpr = getNoexceptExpr(); |
| 4155 | } else if (Result.Type == EST_Uninstantiated) { |
| 4156 | Result.SourceDecl = getExceptionSpecDecl(); |
| 4157 | Result.SourceTemplate = getExceptionSpecTemplate(); |
| 4158 | } else if (Result.Type == EST_Unevaluated) { |
| 4159 | Result.SourceDecl = getExceptionSpecDecl(); |
| 4160 | } |
| 4161 | return Result; |
| 4162 | } |
| 4163 | |
| 4164 | /// Return the number of types in the exception specification. |
| 4165 | unsigned getNumExceptions() const { |
| 4166 | return getExceptionSpecType() == EST_Dynamic |
| 4167 | ? getTrailingObjects<FunctionTypeExtraBitfields>() |
| 4168 | ->NumExceptionType |
| 4169 | : 0; |
| 4170 | } |
| 4171 | |
| 4172 | /// Return the ith exception type, where 0 <= i < getNumExceptions(). |
| 4173 | QualType getExceptionType(unsigned i) const { |
| 4174 | assert(i < getNumExceptions() && "Invalid exception number!")((void)0); |
| 4175 | return exception_begin()[i]; |
| 4176 | } |
| 4177 | |
| 4178 | /// Return the expression inside noexcept(expression), or a null pointer |
| 4179 | /// if there is none (because the exception spec is not of this form). |
| 4180 | Expr *getNoexceptExpr() const { |
| 4181 | if (!isComputedNoexcept(getExceptionSpecType())) |
| 4182 | return nullptr; |
| 4183 | return *getTrailingObjects<Expr *>(); |
| 4184 | } |
| 4185 | |
| 4186 | /// If this function type has an exception specification which hasn't |
| 4187 | /// been determined yet (either because it has not been evaluated or because |
| 4188 | /// it has not been instantiated), this is the function whose exception |
| 4189 | /// specification is represented by this type. |
| 4190 | FunctionDecl *getExceptionSpecDecl() const { |
| 4191 | if (getExceptionSpecType() != EST_Uninstantiated && |
| 4192 | getExceptionSpecType() != EST_Unevaluated) |
| 4193 | return nullptr; |
| 4194 | return getTrailingObjects<FunctionDecl *>()[0]; |
| 4195 | } |
| 4196 | |
| 4197 | /// If this function type has an uninstantiated exception |
| 4198 | /// specification, this is the function whose exception specification |
| 4199 | /// should be instantiated to find the exception specification for |
| 4200 | /// this type. |
| 4201 | FunctionDecl *getExceptionSpecTemplate() const { |
| 4202 | if (getExceptionSpecType() != EST_Uninstantiated) |
| 4203 | return nullptr; |
| 4204 | return getTrailingObjects<FunctionDecl *>()[1]; |
| 4205 | } |
| 4206 | |
| 4207 | /// Determine whether this function type has a non-throwing exception |
| 4208 | /// specification. |
| 4209 | CanThrowResult canThrow() const; |
| 4210 | |
| 4211 | /// Determine whether this function type has a non-throwing exception |
| 4212 | /// specification. If this depends on template arguments, returns |
| 4213 | /// \c ResultIfDependent. |
| 4214 | bool isNothrow(bool ResultIfDependent = false) const { |
| 4215 | return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot; |
| 4216 | } |
| 4217 | |
| 4218 | /// Whether this function prototype is variadic. |
| 4219 | bool isVariadic() const { return FunctionTypeBits.Variadic; } |
| 4220 | |
| 4221 | SourceLocation getEllipsisLoc() const { |
| 4222 | return isVariadic() ? *getTrailingObjects<SourceLocation>() |
| 4223 | : SourceLocation(); |
| 4224 | } |
| 4225 | |
| 4226 | /// Determines whether this function prototype contains a |
| 4227 | /// parameter pack at the end. |
| 4228 | /// |
| 4229 | /// A function template whose last parameter is a parameter pack can be |
| 4230 | /// called with an arbitrary number of arguments, much like a variadic |
| 4231 | /// function. |
| 4232 | bool isTemplateVariadic() const; |
| 4233 | |
| 4234 | /// Whether this function prototype has a trailing return type. |
| 4235 | bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; } |
| 4236 | |
| 4237 | Qualifiers getMethodQuals() const { |
| 4238 | if (hasExtQualifiers()) |
| 4239 | return *getTrailingObjects<Qualifiers>(); |
| 4240 | else |
| 4241 | return getFastTypeQuals(); |
| 4242 | } |
| 4243 | |
| 4244 | /// Retrieve the ref-qualifier associated with this function type. |
| 4245 | RefQualifierKind getRefQualifier() const { |
| 4246 | return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier); |
| 4247 | } |
| 4248 | |
| 4249 | using param_type_iterator = const QualType *; |
| 4250 | using param_type_range = llvm::iterator_range<param_type_iterator>; |
| 4251 | |
| 4252 | param_type_range param_types() const { |
| 4253 | return param_type_range(param_type_begin(), param_type_end()); |
| 4254 | } |
| 4255 | |
| 4256 | param_type_iterator param_type_begin() const { |
| 4257 | return getTrailingObjects<QualType>(); |
| 4258 | } |
| 4259 | |
| 4260 | param_type_iterator param_type_end() const { |
| 4261 | return param_type_begin() + getNumParams(); |
| 4262 | } |
| 4263 | |
| 4264 | using exception_iterator = const QualType *; |
| 4265 | |
| 4266 | ArrayRef<QualType> exceptions() const { |
| 4267 | return llvm::makeArrayRef(exception_begin(), exception_end()); |
| 4268 | } |
| 4269 | |
| 4270 | exception_iterator exception_begin() const { |
| 4271 | return reinterpret_cast<exception_iterator>( |
| 4272 | getTrailingObjects<ExceptionType>()); |
| 4273 | } |
| 4274 | |
| 4275 | exception_iterator exception_end() const { |
| 4276 | return exception_begin() + getNumExceptions(); |
| 4277 | } |
| 4278 | |
| 4279 | /// Is there any interesting extra information for any of the parameters |
| 4280 | /// of this function type? |
| 4281 | bool hasExtParameterInfos() const { |
| 4282 | return FunctionTypeBits.HasExtParameterInfos; |
| 4283 | } |
| 4284 | |
| 4285 | ArrayRef<ExtParameterInfo> getExtParameterInfos() const { |
| 4286 | assert(hasExtParameterInfos())((void)0); |
| 4287 | return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(), |
| 4288 | getNumParams()); |
| 4289 | } |
| 4290 | |
| 4291 | /// Return a pointer to the beginning of the array of extra parameter |
| 4292 | /// information, if present, or else null if none of the parameters |
| 4293 | /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos. |
| 4294 | const ExtParameterInfo *getExtParameterInfosOrNull() const { |
| 4295 | if (!hasExtParameterInfos()) |
| 4296 | return nullptr; |
| 4297 | return getTrailingObjects<ExtParameterInfo>(); |
| 4298 | } |
| 4299 | |
| 4300 | ExtParameterInfo getExtParameterInfo(unsigned I) const { |
| 4301 | assert(I < getNumParams() && "parameter index out of range")((void)0); |
| 4302 | if (hasExtParameterInfos()) |
| 4303 | return getTrailingObjects<ExtParameterInfo>()[I]; |
| 4304 | return ExtParameterInfo(); |
| 4305 | } |
| 4306 | |
| 4307 | ParameterABI getParameterABI(unsigned I) const { |
| 4308 | assert(I < getNumParams() && "parameter index out of range")((void)0); |
| 4309 | if (hasExtParameterInfos()) |
| 4310 | return getTrailingObjects<ExtParameterInfo>()[I].getABI(); |
| 4311 | return ParameterABI::Ordinary; |
| 4312 | } |
| 4313 | |
| 4314 | bool isParamConsumed(unsigned I) const { |
| 4315 | assert(I < getNumParams() && "parameter index out of range")((void)0); |
| 4316 | if (hasExtParameterInfos()) |
| 4317 | return getTrailingObjects<ExtParameterInfo>()[I].isConsumed(); |
| 4318 | return false; |
| 4319 | } |
| 4320 | |
| 4321 | bool isSugared() const { return false; } |
| 4322 | QualType desugar() const { return QualType(this, 0); } |
| 4323 | |
| 4324 | void printExceptionSpecification(raw_ostream &OS, |
| 4325 | const PrintingPolicy &Policy) const; |
| 4326 | |
| 4327 | static bool classof(const Type *T) { |
| 4328 | return T->getTypeClass() == FunctionProto; |
| 4329 | } |
| 4330 | |
| 4331 | void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx); |
| 4332 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Result, |
| 4333 | param_type_iterator ArgTys, unsigned NumArgs, |
| 4334 | const ExtProtoInfo &EPI, const ASTContext &Context, |
| 4335 | bool Canonical); |
| 4336 | }; |
| 4337 | |
| 4338 | /// Represents the dependent type named by a dependently-scoped |
| 4339 | /// typename using declaration, e.g. |
| 4340 | /// using typename Base<T>::foo; |
| 4341 | /// |
| 4342 | /// Template instantiation turns these into the underlying type. |
| 4343 | class UnresolvedUsingType : public Type { |
| 4344 | friend class ASTContext; // ASTContext creates these. |
| 4345 | |
| 4346 | UnresolvedUsingTypenameDecl *Decl; |
| 4347 | |
| 4348 | UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D) |
| 4349 | : Type(UnresolvedUsing, QualType(), |
| 4350 | TypeDependence::DependentInstantiation), |
| 4351 | Decl(const_cast<UnresolvedUsingTypenameDecl *>(D)) {} |
| 4352 | |
| 4353 | public: |
| 4354 | UnresolvedUsingTypenameDecl *getDecl() const { return Decl; } |
| 4355 | |
| 4356 | bool isSugared() const { return false; } |
| 4357 | QualType desugar() const { return QualType(this, 0); } |
| 4358 | |
| 4359 | static bool classof(const Type *T) { |
| 4360 | return T->getTypeClass() == UnresolvedUsing; |
| 4361 | } |
| 4362 | |
| 4363 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 4364 | return Profile(ID, Decl); |
| 4365 | } |
| 4366 | |
| 4367 | static void Profile(llvm::FoldingSetNodeID &ID, |
| 4368 | UnresolvedUsingTypenameDecl *D) { |
| 4369 | ID.AddPointer(D); |
| 4370 | } |
| 4371 | }; |
| 4372 | |
| 4373 | class TypedefType : public Type { |
| 4374 | TypedefNameDecl *Decl; |
| 4375 | |
| 4376 | private: |
| 4377 | friend class ASTContext; // ASTContext creates these. |
| 4378 | |
| 4379 | TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType underlying, |
| 4380 | QualType can); |
| 4381 | |
| 4382 | public: |
| 4383 | TypedefNameDecl *getDecl() const { return Decl; } |
| 4384 | |
| 4385 | bool isSugared() const { return true; } |
| 4386 | QualType desugar() const; |
| 4387 | |
| 4388 | static bool classof(const Type *T) { return T->getTypeClass() == Typedef; } |
| 4389 | }; |
| 4390 | |
| 4391 | /// Sugar type that represents a type that was qualified by a qualifier written |
| 4392 | /// as a macro invocation. |
| 4393 | class MacroQualifiedType : public Type { |
| 4394 | friend class ASTContext; // ASTContext creates these. |
| 4395 | |
| 4396 | QualType UnderlyingTy; |
| 4397 | const IdentifierInfo *MacroII; |
| 4398 | |
| 4399 | MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy, |
| 4400 | const IdentifierInfo *MacroII) |
| 4401 | : Type(MacroQualified, CanonTy, UnderlyingTy->getDependence()), |
| 4402 | UnderlyingTy(UnderlyingTy), MacroII(MacroII) { |
| 4403 | assert(isa<AttributedType>(UnderlyingTy) &&((void)0) |
| 4404 | "Expected a macro qualified type to only wrap attributed types.")((void)0); |
| 4405 | } |
| 4406 | |
| 4407 | public: |
| 4408 | const IdentifierInfo *getMacroIdentifier() const { return MacroII; } |
| 4409 | QualType getUnderlyingType() const { return UnderlyingTy; } |
| 4410 | |
| 4411 | /// Return this attributed type's modified type with no qualifiers attached to |
| 4412 | /// it. |
| 4413 | QualType getModifiedType() const; |
| 4414 | |
| 4415 | bool isSugared() const { return true; } |
| 4416 | QualType desugar() const; |
| 4417 | |
| 4418 | static bool classof(const Type *T) { |
| 4419 | return T->getTypeClass() == MacroQualified; |
| 4420 | } |
| 4421 | }; |
| 4422 | |
| 4423 | /// Represents a `typeof` (or __typeof__) expression (a GCC extension). |
| 4424 | class TypeOfExprType : public Type { |
| 4425 | Expr *TOExpr; |
| 4426 | |
| 4427 | protected: |
| 4428 | friend class ASTContext; // ASTContext creates these. |
| 4429 | |
| 4430 | TypeOfExprType(Expr *E, QualType can = QualType()); |
| 4431 | |
| 4432 | public: |
| 4433 | Expr *getUnderlyingExpr() const { return TOExpr; } |
| 4434 | |
| 4435 | /// Remove a single level of sugar. |
| 4436 | QualType desugar() const; |
| 4437 | |
| 4438 | /// Returns whether this type directly provides sugar. |
| 4439 | bool isSugared() const; |
| 4440 | |
| 4441 | static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; } |
| 4442 | }; |
| 4443 | |
| 4444 | /// Internal representation of canonical, dependent |
| 4445 | /// `typeof(expr)` types. |
| 4446 | /// |
| 4447 | /// This class is used internally by the ASTContext to manage |
| 4448 | /// canonical, dependent types, only. Clients will only see instances |
| 4449 | /// of this class via TypeOfExprType nodes. |
| 4450 | class DependentTypeOfExprType |
| 4451 | : public TypeOfExprType, public llvm::FoldingSetNode { |
| 4452 | const ASTContext &Context; |
| 4453 | |
| 4454 | public: |
| 4455 | DependentTypeOfExprType(const ASTContext &Context, Expr *E) |
| 4456 | : TypeOfExprType(E), Context(Context) {} |
| 4457 | |
| 4458 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 4459 | Profile(ID, Context, getUnderlyingExpr()); |
| 4460 | } |
| 4461 | |
| 4462 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
| 4463 | Expr *E); |
| 4464 | }; |
| 4465 | |
| 4466 | /// Represents `typeof(type)`, a GCC extension. |
| 4467 | class TypeOfType : public Type { |
| 4468 | friend class ASTContext; // ASTContext creates these. |
| 4469 | |
| 4470 | QualType TOType; |
| 4471 | |
| 4472 | TypeOfType(QualType T, QualType can) |
| 4473 | : Type(TypeOf, can, T->getDependence()), TOType(T) { |
| 4474 | assert(!isa<TypedefType>(can) && "Invalid canonical type")((void)0); |
| 4475 | } |
| 4476 | |
| 4477 | public: |
| 4478 | QualType getUnderlyingType() const { return TOType; } |
| 4479 | |
| 4480 | /// Remove a single level of sugar. |
| 4481 | QualType desugar() const { return getUnderlyingType(); } |
| 4482 | |
| 4483 | /// Returns whether this type directly provides sugar. |
| 4484 | bool isSugared() const { return true; } |
| 4485 | |
| 4486 | static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; } |
| 4487 | }; |
| 4488 | |
| 4489 | /// Represents the type `decltype(expr)` (C++11). |
| 4490 | class DecltypeType : public Type { |
| 4491 | Expr *E; |
| 4492 | QualType UnderlyingType; |
| 4493 | |
| 4494 | protected: |
| 4495 | friend class ASTContext; // ASTContext creates these. |
| 4496 | |
| 4497 | DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType()); |
| 4498 | |
| 4499 | public: |
| 4500 | Expr *getUnderlyingExpr() const { return E; } |
| 4501 | QualType getUnderlyingType() const { return UnderlyingType; } |
| 4502 | |
| 4503 | /// Remove a single level of sugar. |
| 4504 | QualType desugar() const; |
| 4505 | |
| 4506 | /// Returns whether this type directly provides sugar. |
| 4507 | bool isSugared() const; |
| 4508 | |
| 4509 | static bool classof(const Type *T) { return T->getTypeClass() == Decltype; } |
| 4510 | }; |
| 4511 | |
| 4512 | /// Internal representation of canonical, dependent |
| 4513 | /// decltype(expr) types. |
| 4514 | /// |
| 4515 | /// This class is used internally by the ASTContext to manage |
| 4516 | /// canonical, dependent types, only. Clients will only see instances |
| 4517 | /// of this class via DecltypeType nodes. |
| 4518 | class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode { |
| 4519 | const ASTContext &Context; |
| 4520 | |
| 4521 | public: |
| 4522 | DependentDecltypeType(const ASTContext &Context, Expr *E); |
| 4523 | |
| 4524 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 4525 | Profile(ID, Context, getUnderlyingExpr()); |
| 4526 | } |
| 4527 | |
| 4528 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
| 4529 | Expr *E); |
| 4530 | }; |
| 4531 | |
| 4532 | /// A unary type transform, which is a type constructed from another. |
| 4533 | class UnaryTransformType : public Type { |
| 4534 | public: |
| 4535 | enum UTTKind { |
| 4536 | EnumUnderlyingType |
| 4537 | }; |
| 4538 | |
| 4539 | private: |
| 4540 | /// The untransformed type. |
| 4541 | QualType BaseType; |
| 4542 | |
| 4543 | /// The transformed type if not dependent, otherwise the same as BaseType. |
| 4544 | QualType UnderlyingType; |
| 4545 | |
| 4546 | UTTKind UKind; |
| 4547 | |
| 4548 | protected: |
| 4549 | friend class ASTContext; |
| 4550 | |
| 4551 | UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind, |
| 4552 | QualType CanonicalTy); |
| 4553 | |
| 4554 | public: |
| 4555 | bool isSugared() const { return !isDependentType(); } |
| 4556 | QualType desugar() const { return UnderlyingType; } |
| 4557 | |
| 4558 | QualType getUnderlyingType() const { return UnderlyingType; } |
| 4559 | QualType getBaseType() const { return BaseType; } |
| 4560 | |
| 4561 | UTTKind getUTTKind() const { return UKind; } |
| 4562 | |
| 4563 | static bool classof(const Type *T) { |
| 4564 | return T->getTypeClass() == UnaryTransform; |
| 4565 | } |
| 4566 | }; |
| 4567 | |
| 4568 | /// Internal representation of canonical, dependent |
| 4569 | /// __underlying_type(type) types. |
| 4570 | /// |
| 4571 | /// This class is used internally by the ASTContext to manage |
| 4572 | /// canonical, dependent types, only. Clients will only see instances |
| 4573 | /// of this class via UnaryTransformType nodes. |
| 4574 | class DependentUnaryTransformType : public UnaryTransformType, |
| 4575 | public llvm::FoldingSetNode { |
| 4576 | public: |
| 4577 | DependentUnaryTransformType(const ASTContext &C, QualType BaseType, |
| 4578 | UTTKind UKind); |
| 4579 | |
| 4580 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 4581 | Profile(ID, getBaseType(), getUTTKind()); |
| 4582 | } |
| 4583 | |
| 4584 | static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType, |
| 4585 | UTTKind UKind) { |
| 4586 | ID.AddPointer(BaseType.getAsOpaquePtr()); |
| 4587 | ID.AddInteger((unsigned)UKind); |
| 4588 | } |
| 4589 | }; |
| 4590 | |
| 4591 | class TagType : public Type { |
| 4592 | friend class ASTReader; |
| 4593 | template <class T> friend class serialization::AbstractTypeReader; |
| 4594 | |
| 4595 | /// Stores the TagDecl associated with this type. The decl may point to any |
| 4596 | /// TagDecl that declares the entity. |
| 4597 | TagDecl *decl; |
| 4598 | |
| 4599 | protected: |
| 4600 | TagType(TypeClass TC, const TagDecl *D, QualType can); |
| 4601 | |
| 4602 | public: |
| 4603 | TagDecl *getDecl() const; |
| 4604 | |
| 4605 | /// Determines whether this type is in the process of being defined. |
| 4606 | bool isBeingDefined() const; |
| 4607 | |
| 4608 | static bool classof(const Type *T) { |
| 4609 | return T->getTypeClass() == Enum || T->getTypeClass() == Record; |
| 4610 | } |
| 4611 | }; |
| 4612 | |
| 4613 | /// A helper class that allows the use of isa/cast/dyncast |
| 4614 | /// to detect TagType objects of structs/unions/classes. |
| 4615 | class RecordType : public TagType { |
| 4616 | protected: |
| 4617 | friend class ASTContext; // ASTContext creates these. |
| 4618 | |
| 4619 | explicit RecordType(const RecordDecl *D) |
| 4620 | : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {} |
| 4621 | explicit RecordType(TypeClass TC, RecordDecl *D) |
| 4622 | : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {} |
| 4623 | |
| 4624 | public: |
| 4625 | RecordDecl *getDecl() const { |
| 4626 | return reinterpret_cast<RecordDecl*>(TagType::getDecl()); |
| 4627 | } |
| 4628 | |
| 4629 | /// Recursively check all fields in the record for const-ness. If any field |
| 4630 | /// is declared const, return true. Otherwise, return false. |
| 4631 | bool hasConstFields() const; |
| 4632 | |
| 4633 | bool isSugared() const { return false; } |
| 4634 | QualType desugar() const { return QualType(this, 0); } |
| 4635 | |
| 4636 | static bool classof(const Type *T) { return T->getTypeClass() == Record; } |
| 4637 | }; |
| 4638 | |
| 4639 | /// A helper class that allows the use of isa/cast/dyncast |
| 4640 | /// to detect TagType objects of enums. |
| 4641 | class EnumType : public TagType { |
| 4642 | friend class ASTContext; // ASTContext creates these. |
| 4643 | |
| 4644 | explicit EnumType(const EnumDecl *D) |
| 4645 | : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {} |
| 4646 | |
| 4647 | public: |
| 4648 | EnumDecl *getDecl() const { |
| 4649 | return reinterpret_cast<EnumDecl*>(TagType::getDecl()); |
| 4650 | } |
| 4651 | |
| 4652 | bool isSugared() const { return false; } |
| 4653 | QualType desugar() const { return QualType(this, 0); } |
| 4654 | |
| 4655 | static bool classof(const Type *T) { return T->getTypeClass() == Enum; } |
| 4656 | }; |
| 4657 | |
| 4658 | /// An attributed type is a type to which a type attribute has been applied. |
| 4659 | /// |
| 4660 | /// The "modified type" is the fully-sugared type to which the attributed |
| 4661 | /// type was applied; generally it is not canonically equivalent to the |
| 4662 | /// attributed type. The "equivalent type" is the minimally-desugared type |
| 4663 | /// which the type is canonically equivalent to. |
| 4664 | /// |
| 4665 | /// For example, in the following attributed type: |
| 4666 | /// int32_t __attribute__((vector_size(16))) |
| 4667 | /// - the modified type is the TypedefType for int32_t |
| 4668 | /// - the equivalent type is VectorType(16, int32_t) |
| 4669 | /// - the canonical type is VectorType(16, int) |
| 4670 | class AttributedType : public Type, public llvm::FoldingSetNode { |
| 4671 | public: |
| 4672 | using Kind = attr::Kind; |
| 4673 | |
| 4674 | private: |
| 4675 | friend class ASTContext; // ASTContext creates these |
| 4676 | |
| 4677 | QualType ModifiedType; |
| 4678 | QualType EquivalentType; |
| 4679 | |
| 4680 | AttributedType(QualType canon, attr::Kind attrKind, QualType modified, |
| 4681 | QualType equivalent) |
| 4682 | : Type(Attributed, canon, equivalent->getDependence()), |
| 4683 | ModifiedType(modified), EquivalentType(equivalent) { |
| 4684 | AttributedTypeBits.AttrKind = attrKind; |
| 4685 | } |
| 4686 | |
| 4687 | public: |
| 4688 | Kind getAttrKind() const { |
| 4689 | return static_cast<Kind>(AttributedTypeBits.AttrKind); |
| 4690 | } |
| 4691 | |
| 4692 | QualType getModifiedType() const { return ModifiedType; } |
| 4693 | QualType getEquivalentType() const { return EquivalentType; } |
| 4694 | |
| 4695 | bool isSugared() const { return true; } |
| 4696 | QualType desugar() const { return getEquivalentType(); } |
| 4697 | |
| 4698 | /// Does this attribute behave like a type qualifier? |
| 4699 | /// |
| 4700 | /// A type qualifier adjusts a type to provide specialized rules for |
| 4701 | /// a specific object, like the standard const and volatile qualifiers. |
| 4702 | /// This includes attributes controlling things like nullability, |
| 4703 | /// address spaces, and ARC ownership. The value of the object is still |
| 4704 | /// largely described by the modified type. |
| 4705 | /// |
| 4706 | /// In contrast, many type attributes "rewrite" their modified type to |
| 4707 | /// produce a fundamentally different type, not necessarily related in any |
| 4708 | /// formalizable way to the original type. For example, calling convention |
| 4709 | /// and vector attributes are not simple type qualifiers. |
| 4710 | /// |
| 4711 | /// Type qualifiers are often, but not always, reflected in the canonical |
| 4712 | /// type. |
| 4713 | bool isQualifier() const; |
| 4714 | |
| 4715 | bool isMSTypeSpec() const; |
| 4716 | |
| 4717 | bool isCallingConv() const; |
| 4718 | |
| 4719 | llvm::Optional<NullabilityKind> getImmediateNullability() const; |
| 4720 | |
| 4721 | /// Retrieve the attribute kind corresponding to the given |
| 4722 | /// nullability kind. |
| 4723 | static Kind getNullabilityAttrKind(NullabilityKind kind) { |
| 4724 | switch (kind) { |
| 4725 | case NullabilityKind::NonNull: |
| 4726 | return attr::TypeNonNull; |
| 4727 | |
| 4728 | case NullabilityKind::Nullable: |
| 4729 | return attr::TypeNullable; |
| 4730 | |
| 4731 | case NullabilityKind::NullableResult: |
| 4732 | return attr::TypeNullableResult; |
| 4733 | |
| 4734 | case NullabilityKind::Unspecified: |
| 4735 | return attr::TypeNullUnspecified; |
| 4736 | } |
| 4737 | llvm_unreachable("Unknown nullability kind.")__builtin_unreachable(); |
| 4738 | } |
| 4739 | |
| 4740 | /// Strip off the top-level nullability annotation on the given |
| 4741 | /// type, if it's there. |
| 4742 | /// |
| 4743 | /// \param T The type to strip. If the type is exactly an |
| 4744 | /// AttributedType specifying nullability (without looking through |
| 4745 | /// type sugar), the nullability is returned and this type changed |
| 4746 | /// to the underlying modified type. |
| 4747 | /// |
| 4748 | /// \returns the top-level nullability, if present. |
| 4749 | static Optional<NullabilityKind> stripOuterNullability(QualType &T); |
| 4750 | |
| 4751 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 4752 | Profile(ID, getAttrKind(), ModifiedType, EquivalentType); |
| 4753 | } |
| 4754 | |
| 4755 | static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind, |
| 4756 | QualType modified, QualType equivalent) { |
| 4757 | ID.AddInteger(attrKind); |
| 4758 | ID.AddPointer(modified.getAsOpaquePtr()); |
| 4759 | ID.AddPointer(equivalent.getAsOpaquePtr()); |
| 4760 | } |
| 4761 | |
| 4762 | static bool classof(const Type *T) { |
| 4763 | return T->getTypeClass() == Attributed; |
| 4764 | } |
| 4765 | }; |
| 4766 | |
| 4767 | class TemplateTypeParmType : public Type, public llvm::FoldingSetNode { |
| 4768 | friend class ASTContext; // ASTContext creates these |
| 4769 | |
| 4770 | // Helper data collector for canonical types. |
| 4771 | struct CanonicalTTPTInfo { |
| 4772 | unsigned Depth : 15; |
| 4773 | unsigned ParameterPack : 1; |
| 4774 | unsigned Index : 16; |
| 4775 | }; |
| 4776 | |
| 4777 | union { |
| 4778 | // Info for the canonical type. |
| 4779 | CanonicalTTPTInfo CanTTPTInfo; |
| 4780 | |
| 4781 | // Info for the non-canonical type. |
| 4782 | TemplateTypeParmDecl *TTPDecl; |
| 4783 | }; |
| 4784 | |
| 4785 | /// Build a non-canonical type. |
| 4786 | TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon) |
| 4787 | : Type(TemplateTypeParm, Canon, |
| 4788 | TypeDependence::DependentInstantiation | |
| 4789 | (Canon->getDependence() & TypeDependence::UnexpandedPack)), |
| 4790 | TTPDecl(TTPDecl) {} |
| 4791 | |
| 4792 | /// Build the canonical type. |
| 4793 | TemplateTypeParmType(unsigned D, unsigned I, bool PP) |
| 4794 | : Type(TemplateTypeParm, QualType(this, 0), |
| 4795 | TypeDependence::DependentInstantiation | |
| 4796 | (PP ? TypeDependence::UnexpandedPack : TypeDependence::None)) { |
| 4797 | CanTTPTInfo.Depth = D; |
| 4798 | CanTTPTInfo.Index = I; |
| 4799 | CanTTPTInfo.ParameterPack = PP; |
| 4800 | } |
| 4801 | |
| 4802 | const CanonicalTTPTInfo& getCanTTPTInfo() const { |
| 4803 | QualType Can = getCanonicalTypeInternal(); |
| 4804 | return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo; |
| 4805 | } |
| 4806 | |
| 4807 | public: |
| 4808 | unsigned getDepth() const { return getCanTTPTInfo().Depth; } |
| 4809 | unsigned getIndex() const { return getCanTTPTInfo().Index; } |
| 4810 | bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; } |
| 4811 | |
| 4812 | TemplateTypeParmDecl *getDecl() const { |
| 4813 | return isCanonicalUnqualified() ? nullptr : TTPDecl; |
| 4814 | } |
| 4815 | |
| 4816 | IdentifierInfo *getIdentifier() const; |
| 4817 | |
| 4818 | bool isSugared() const { return false; } |
| 4819 | QualType desugar() const { return QualType(this, 0); } |
| 4820 | |
| 4821 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 4822 | Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl()); |
| 4823 | } |
| 4824 | |
| 4825 | static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth, |
| 4826 | unsigned Index, bool ParameterPack, |
| 4827 | TemplateTypeParmDecl *TTPDecl) { |
| 4828 | ID.AddInteger(Depth); |
| 4829 | ID.AddInteger(Index); |
| 4830 | ID.AddBoolean(ParameterPack); |
| 4831 | ID.AddPointer(TTPDecl); |
| 4832 | } |
| 4833 | |
| 4834 | static bool classof(const Type *T) { |
| 4835 | return T->getTypeClass() == TemplateTypeParm; |
| 4836 | } |
| 4837 | }; |
| 4838 | |
| 4839 | /// Represents the result of substituting a type for a template |
| 4840 | /// type parameter. |
| 4841 | /// |
| 4842 | /// Within an instantiated template, all template type parameters have |
| 4843 | /// been replaced with these. They are used solely to record that a |
| 4844 | /// type was originally written as a template type parameter; |
| 4845 | /// therefore they are never canonical. |
| 4846 | class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode { |
| 4847 | friend class ASTContext; |
| 4848 | |
| 4849 | // The original type parameter. |
| 4850 | const TemplateTypeParmType *Replaced; |
| 4851 | |
| 4852 | SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon) |
| 4853 | : Type(SubstTemplateTypeParm, Canon, Canon->getDependence()), |
| 4854 | Replaced(Param) {} |
| 4855 | |
| 4856 | public: |
| 4857 | /// Gets the template parameter that was substituted for. |
| 4858 | const TemplateTypeParmType *getReplacedParameter() const { |
| 4859 | return Replaced; |
| 4860 | } |
| 4861 | |
| 4862 | /// Gets the type that was substituted for the template |
| 4863 | /// parameter. |
| 4864 | QualType getReplacementType() const { |
| 4865 | return getCanonicalTypeInternal(); |
| 4866 | } |
| 4867 | |
| 4868 | bool isSugared() const { return true; } |
| 4869 | QualType desugar() const { return getReplacementType(); } |
| 4870 | |
| 4871 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 4872 | Profile(ID, getReplacedParameter(), getReplacementType()); |
| 4873 | } |
| 4874 | |
| 4875 | static void Profile(llvm::FoldingSetNodeID &ID, |
| 4876 | const TemplateTypeParmType *Replaced, |
| 4877 | QualType Replacement) { |
| 4878 | ID.AddPointer(Replaced); |
| 4879 | ID.AddPointer(Replacement.getAsOpaquePtr()); |
| 4880 | } |
| 4881 | |
| 4882 | static bool classof(const Type *T) { |
| 4883 | return T->getTypeClass() == SubstTemplateTypeParm; |
| 4884 | } |
| 4885 | }; |
| 4886 | |
| 4887 | /// Represents the result of substituting a set of types for a template |
| 4888 | /// type parameter pack. |
| 4889 | /// |
| 4890 | /// When a pack expansion in the source code contains multiple parameter packs |
| 4891 | /// and those parameter packs correspond to different levels of template |
| 4892 | /// parameter lists, this type node is used to represent a template type |
| 4893 | /// parameter pack from an outer level, which has already had its argument pack |
| 4894 | /// substituted but that still lives within a pack expansion that itself |
| 4895 | /// could not be instantiated. When actually performing a substitution into |
| 4896 | /// that pack expansion (e.g., when all template parameters have corresponding |
| 4897 | /// arguments), this type will be replaced with the \c SubstTemplateTypeParmType |
| 4898 | /// at the current pack substitution index. |
| 4899 | class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode { |
| 4900 | friend class ASTContext; |
| 4901 | |
| 4902 | /// The original type parameter. |
| 4903 | const TemplateTypeParmType *Replaced; |
| 4904 | |
| 4905 | /// A pointer to the set of template arguments that this |
| 4906 | /// parameter pack is instantiated with. |
| 4907 | const TemplateArgument *Arguments; |
| 4908 | |
| 4909 | SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param, |
| 4910 | QualType Canon, |
| 4911 | const TemplateArgument &ArgPack); |
| 4912 | |
| 4913 | public: |
| 4914 | IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); } |
| 4915 | |
| 4916 | /// Gets the template parameter that was substituted for. |
| 4917 | const TemplateTypeParmType *getReplacedParameter() const { |
| 4918 | return Replaced; |
| 4919 | } |
| 4920 | |
| 4921 | unsigned getNumArgs() const { |
| 4922 | return SubstTemplateTypeParmPackTypeBits.NumArgs; |
| 4923 | } |
| 4924 | |
| 4925 | bool isSugared() const { return false; } |
| 4926 | QualType desugar() const { return QualType(this, 0); } |
| 4927 | |
| 4928 | TemplateArgument getArgumentPack() const; |
| 4929 | |
| 4930 | void Profile(llvm::FoldingSetNodeID &ID); |
| 4931 | static void Profile(llvm::FoldingSetNodeID &ID, |
| 4932 | const TemplateTypeParmType *Replaced, |
| 4933 | const TemplateArgument &ArgPack); |
| 4934 | |
| 4935 | static bool classof(const Type *T) { |
| 4936 | return T->getTypeClass() == SubstTemplateTypeParmPack; |
| 4937 | } |
| 4938 | }; |
| 4939 | |
| 4940 | /// Common base class for placeholders for types that get replaced by |
| 4941 | /// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced |
| 4942 | /// class template types, and constrained type names. |
| 4943 | /// |
| 4944 | /// These types are usually a placeholder for a deduced type. However, before |
| 4945 | /// the initializer is attached, or (usually) if the initializer is |
| 4946 | /// type-dependent, there is no deduced type and the type is canonical. In |
| 4947 | /// the latter case, it is also a dependent type. |
| 4948 | class DeducedType : public Type { |
| 4949 | protected: |
| 4950 | DeducedType(TypeClass TC, QualType DeducedAsType, |
| 4951 | TypeDependence ExtraDependence) |
| 4952 | : Type(TC, |
| 4953 | // FIXME: Retain the sugared deduced type? |
| 4954 | DeducedAsType.isNull() ? QualType(this, 0) |
| 4955 | : DeducedAsType.getCanonicalType(), |
| 4956 | ExtraDependence | (DeducedAsType.isNull() |
| 4957 | ? TypeDependence::None |
| 4958 | : DeducedAsType->getDependence() & |
| 4959 | ~TypeDependence::VariablyModified)) {} |
| 4960 | |
| 4961 | public: |
| 4962 | bool isSugared() const { return !isCanonicalUnqualified(); } |
| 4963 | QualType desugar() const { return getCanonicalTypeInternal(); } |
| 4964 | |
| 4965 | /// Get the type deduced for this placeholder type, or null if it's |
| 4966 | /// either not been deduced or was deduced to a dependent type. |
| 4967 | QualType getDeducedType() const { |
| 4968 | return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType(); |
| 4969 | } |
| 4970 | bool isDeduced() const { |
| 4971 | return !isCanonicalUnqualified() || isDependentType(); |
| 4972 | } |
| 4973 | |
| 4974 | static bool classof(const Type *T) { |
| 4975 | return T->getTypeClass() == Auto || |
| 4976 | T->getTypeClass() == DeducedTemplateSpecialization; |
| 4977 | } |
| 4978 | }; |
| 4979 | |
| 4980 | /// Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained |
| 4981 | /// by a type-constraint. |
| 4982 | class alignas(8) AutoType : public DeducedType, public llvm::FoldingSetNode { |
| 4983 | friend class ASTContext; // ASTContext creates these |
| 4984 | |
| 4985 | ConceptDecl *TypeConstraintConcept; |
| 4986 | |
| 4987 | AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword, |
| 4988 | TypeDependence ExtraDependence, ConceptDecl *CD, |
| 4989 | ArrayRef<TemplateArgument> TypeConstraintArgs); |
| 4990 | |
| 4991 | const TemplateArgument *getArgBuffer() const { |
| 4992 | return reinterpret_cast<const TemplateArgument*>(this+1); |
| 4993 | } |
| 4994 | |
| 4995 | TemplateArgument *getArgBuffer() { |
| 4996 | return reinterpret_cast<TemplateArgument*>(this+1); |
| 4997 | } |
| 4998 | |
| 4999 | public: |
| 5000 | /// Retrieve the template arguments. |
| 5001 | const TemplateArgument *getArgs() const { |
| 5002 | return getArgBuffer(); |
| 5003 | } |
| 5004 | |
| 5005 | /// Retrieve the number of template arguments. |
| 5006 | unsigned getNumArgs() const { |
| 5007 | return AutoTypeBits.NumArgs; |
| 5008 | } |
| 5009 | |
| 5010 | const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h |
| 5011 | |
| 5012 | ArrayRef<TemplateArgument> getTypeConstraintArguments() const { |
| 5013 | return {getArgs(), getNumArgs()}; |
| 5014 | } |
| 5015 | |
| 5016 | ConceptDecl *getTypeConstraintConcept() const { |
| 5017 | return TypeConstraintConcept; |
| 5018 | } |
| 5019 | |
| 5020 | bool isConstrained() const { |
| 5021 | return TypeConstraintConcept != nullptr; |
| 5022 | } |
| 5023 | |
| 5024 | bool isDecltypeAuto() const { |
| 5025 | return getKeyword() == AutoTypeKeyword::DecltypeAuto; |
| 5026 | } |
| 5027 | |
| 5028 | AutoTypeKeyword getKeyword() const { |
| 5029 | return (AutoTypeKeyword)AutoTypeBits.Keyword; |
| 5030 | } |
| 5031 | |
| 5032 | void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) { |
| 5033 | Profile(ID, Context, getDeducedType(), getKeyword(), isDependentType(), |
| 5034 | getTypeConstraintConcept(), getTypeConstraintArguments()); |
| 5035 | } |
| 5036 | |
| 5037 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
| 5038 | QualType Deduced, AutoTypeKeyword Keyword, |
| 5039 | bool IsDependent, ConceptDecl *CD, |
| 5040 | ArrayRef<TemplateArgument> Arguments); |
| 5041 | |
| 5042 | static bool classof(const Type *T) { |
| 5043 | return T->getTypeClass() == Auto; |
| 5044 | } |
| 5045 | }; |
| 5046 | |
| 5047 | /// Represents a C++17 deduced template specialization type. |
| 5048 | class DeducedTemplateSpecializationType : public DeducedType, |
| 5049 | public llvm::FoldingSetNode { |
| 5050 | friend class ASTContext; // ASTContext creates these |
| 5051 | |
| 5052 | /// The name of the template whose arguments will be deduced. |
| 5053 | TemplateName Template; |
| 5054 | |
| 5055 | DeducedTemplateSpecializationType(TemplateName Template, |
| 5056 | QualType DeducedAsType, |
| 5057 | bool IsDeducedAsDependent) |
| 5058 | : DeducedType(DeducedTemplateSpecialization, DeducedAsType, |
| 5059 | toTypeDependence(Template.getDependence()) | |
| 5060 | (IsDeducedAsDependent |
| 5061 | ? TypeDependence::DependentInstantiation |
| 5062 | : TypeDependence::None)), |
| 5063 | Template(Template) {} |
| 5064 | |
| 5065 | public: |
| 5066 | /// Retrieve the name of the template that we are deducing. |
| 5067 | TemplateName getTemplateName() const { return Template;} |
| 5068 | |
| 5069 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 5070 | Profile(ID, getTemplateName(), getDeducedType(), isDependentType()); |
| 5071 | } |
| 5072 | |
| 5073 | static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template, |
| 5074 | QualType Deduced, bool IsDependent) { |
| 5075 | Template.Profile(ID); |
| 5076 | ID.AddPointer(Deduced.getAsOpaquePtr()); |
| 5077 | ID.AddBoolean(IsDependent); |
| 5078 | } |
| 5079 | |
| 5080 | static bool classof(const Type *T) { |
| 5081 | return T->getTypeClass() == DeducedTemplateSpecialization; |
| 5082 | } |
| 5083 | }; |
| 5084 | |
| 5085 | /// Represents a type template specialization; the template |
| 5086 | /// must be a class template, a type alias template, or a template |
| 5087 | /// template parameter. A template which cannot be resolved to one of |
| 5088 | /// these, e.g. because it is written with a dependent scope |
| 5089 | /// specifier, is instead represented as a |
| 5090 | /// @c DependentTemplateSpecializationType. |
| 5091 | /// |
| 5092 | /// A non-dependent template specialization type is always "sugar", |
| 5093 | /// typically for a \c RecordType. For example, a class template |
| 5094 | /// specialization type of \c vector<int> will refer to a tag type for |
| 5095 | /// the instantiation \c std::vector<int, std::allocator<int>> |
| 5096 | /// |
| 5097 | /// Template specializations are dependent if either the template or |
| 5098 | /// any of the template arguments are dependent, in which case the |
| 5099 | /// type may also be canonical. |
| 5100 | /// |
| 5101 | /// Instances of this type are allocated with a trailing array of |
| 5102 | /// TemplateArguments, followed by a QualType representing the |
| 5103 | /// non-canonical aliased type when the template is a type alias |
| 5104 | /// template. |
| 5105 | class alignas(8) TemplateSpecializationType |
| 5106 | : public Type, |
| 5107 | public llvm::FoldingSetNode { |
| 5108 | friend class ASTContext; // ASTContext creates these |
| 5109 | |
| 5110 | /// The name of the template being specialized. This is |
| 5111 | /// either a TemplateName::Template (in which case it is a |
| 5112 | /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a |
| 5113 | /// TypeAliasTemplateDecl*), a |
| 5114 | /// TemplateName::SubstTemplateTemplateParmPack, or a |
| 5115 | /// TemplateName::SubstTemplateTemplateParm (in which case the |
| 5116 | /// replacement must, recursively, be one of these). |
| 5117 | TemplateName Template; |
| 5118 | |
| 5119 | TemplateSpecializationType(TemplateName T, |
| 5120 | ArrayRef<TemplateArgument> Args, |
| 5121 | QualType Canon, |
| 5122 | QualType Aliased); |
| 5123 | |
| 5124 | public: |
| 5125 | /// Determine whether any of the given template arguments are dependent. |
| 5126 | /// |
| 5127 | /// The converted arguments should be supplied when known; whether an |
| 5128 | /// argument is dependent can depend on the conversions performed on it |
| 5129 | /// (for example, a 'const int' passed as a template argument might be |
| 5130 | /// dependent if the parameter is a reference but non-dependent if the |
| 5131 | /// parameter is an int). |
| 5132 | /// |
| 5133 | /// Note that the \p Args parameter is unused: this is intentional, to remind |
| 5134 | /// the caller that they need to pass in the converted arguments, not the |
| 5135 | /// specified arguments. |
| 5136 | static bool |
| 5137 | anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args, |
| 5138 | ArrayRef<TemplateArgument> Converted); |
| 5139 | static bool |
| 5140 | anyDependentTemplateArguments(const TemplateArgumentListInfo &, |
| 5141 | ArrayRef<TemplateArgument> Converted); |
| 5142 | static bool anyInstantiationDependentTemplateArguments( |
| 5143 | ArrayRef<TemplateArgumentLoc> Args); |
| 5144 | |
| 5145 | /// True if this template specialization type matches a current |
| 5146 | /// instantiation in the context in which it is found. |
| 5147 | bool isCurrentInstantiation() const { |
| 5148 | return isa<InjectedClassNameType>(getCanonicalTypeInternal()); |
| 5149 | } |
| 5150 | |
| 5151 | /// Determine if this template specialization type is for a type alias |
| 5152 | /// template that has been substituted. |
| 5153 | /// |
| 5154 | /// Nearly every template specialization type whose template is an alias |
| 5155 | /// template will be substituted. However, this is not the case when |
| 5156 | /// the specialization contains a pack expansion but the template alias |
| 5157 | /// does not have a corresponding parameter pack, e.g., |
| 5158 | /// |
| 5159 | /// \code |
| 5160 | /// template<typename T, typename U, typename V> struct S; |
| 5161 | /// template<typename T, typename U> using A = S<T, int, U>; |
| 5162 | /// template<typename... Ts> struct X { |
| 5163 | /// typedef A<Ts...> type; // not a type alias |
| 5164 | /// }; |
| 5165 | /// \endcode |
| 5166 | bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; } |
| 5167 | |
| 5168 | /// Get the aliased type, if this is a specialization of a type alias |
| 5169 | /// template. |
| 5170 | QualType getAliasedType() const { |
| 5171 | assert(isTypeAlias() && "not a type alias template specialization")((void)0); |
| 5172 | return *reinterpret_cast<const QualType*>(end()); |
| 5173 | } |
| 5174 | |
| 5175 | using iterator = const TemplateArgument *; |
| 5176 | |
| 5177 | iterator begin() const { return getArgs(); } |
| 5178 | iterator end() const; // defined inline in TemplateBase.h |
| 5179 | |
| 5180 | /// Retrieve the name of the template that we are specializing. |
| 5181 | TemplateName getTemplateName() const { return Template; } |
| 5182 | |
| 5183 | /// Retrieve the template arguments. |
| 5184 | const TemplateArgument *getArgs() const { |
| 5185 | return reinterpret_cast<const TemplateArgument *>(this + 1); |
| 5186 | } |
| 5187 | |
| 5188 | /// Retrieve the number of template arguments. |
| 5189 | unsigned getNumArgs() const { |
| 5190 | return TemplateSpecializationTypeBits.NumArgs; |
| 5191 | } |
| 5192 | |
| 5193 | /// Retrieve a specific template argument as a type. |
| 5194 | /// \pre \c isArgType(Arg) |
| 5195 | const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h |
| 5196 | |
| 5197 | ArrayRef<TemplateArgument> template_arguments() const { |
| 5198 | return {getArgs(), getNumArgs()}; |
| 5199 | } |
| 5200 | |
| 5201 | bool isSugared() const { |
| 5202 | return !isDependentType() || isCurrentInstantiation() || isTypeAlias(); |
| 5203 | } |
| 5204 | |
| 5205 | QualType desugar() const { |
| 5206 | return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal(); |
| 5207 | } |
| 5208 | |
| 5209 | void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) { |
| 5210 | Profile(ID, Template, template_arguments(), Ctx); |
| 5211 | if (isTypeAlias()) |
| 5212 | getAliasedType().Profile(ID); |
| 5213 | } |
| 5214 | |
| 5215 | static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T, |
| 5216 | ArrayRef<TemplateArgument> Args, |
| 5217 | const ASTContext &Context); |
| 5218 | |
| 5219 | static bool classof(const Type *T) { |
| 5220 | return T->getTypeClass() == TemplateSpecialization; |
| 5221 | } |
| 5222 | }; |
| 5223 | |
| 5224 | /// Print a template argument list, including the '<' and '>' |
| 5225 | /// enclosing the template arguments. |
| 5226 | void printTemplateArgumentList(raw_ostream &OS, |
| 5227 | ArrayRef<TemplateArgument> Args, |
| 5228 | const PrintingPolicy &Policy, |
| 5229 | const TemplateParameterList *TPL = nullptr); |
| 5230 | |
| 5231 | void printTemplateArgumentList(raw_ostream &OS, |
| 5232 | ArrayRef<TemplateArgumentLoc> Args, |
| 5233 | const PrintingPolicy &Policy, |
| 5234 | const TemplateParameterList *TPL = nullptr); |
| 5235 | |
| 5236 | void printTemplateArgumentList(raw_ostream &OS, |
| 5237 | const TemplateArgumentListInfo &Args, |
| 5238 | const PrintingPolicy &Policy, |
| 5239 | const TemplateParameterList *TPL = nullptr); |
| 5240 | |
| 5241 | /// The injected class name of a C++ class template or class |
| 5242 | /// template partial specialization. Used to record that a type was |
| 5243 | /// spelled with a bare identifier rather than as a template-id; the |
| 5244 | /// equivalent for non-templated classes is just RecordType. |
| 5245 | /// |
| 5246 | /// Injected class name types are always dependent. Template |
| 5247 | /// instantiation turns these into RecordTypes. |
| 5248 | /// |
| 5249 | /// Injected class name types are always canonical. This works |
| 5250 | /// because it is impossible to compare an injected class name type |
| 5251 | /// with the corresponding non-injected template type, for the same |
| 5252 | /// reason that it is impossible to directly compare template |
| 5253 | /// parameters from different dependent contexts: injected class name |
| 5254 | /// types can only occur within the scope of a particular templated |
| 5255 | /// declaration, and within that scope every template specialization |
| 5256 | /// will canonicalize to the injected class name (when appropriate |
| 5257 | /// according to the rules of the language). |
| 5258 | class InjectedClassNameType : public Type { |
| 5259 | friend class ASTContext; // ASTContext creates these. |
| 5260 | friend class ASTNodeImporter; |
| 5261 | friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not |
| 5262 | // currently suitable for AST reading, too much |
| 5263 | // interdependencies. |
| 5264 | template <class T> friend class serialization::AbstractTypeReader; |
| 5265 | |
| 5266 | CXXRecordDecl *Decl; |
| 5267 | |
| 5268 | /// The template specialization which this type represents. |
| 5269 | /// For example, in |
| 5270 | /// template <class T> class A { ... }; |
| 5271 | /// this is A<T>, whereas in |
| 5272 | /// template <class X, class Y> class A<B<X,Y> > { ... }; |
| 5273 | /// this is A<B<X,Y> >. |
| 5274 | /// |
| 5275 | /// It is always unqualified, always a template specialization type, |
| 5276 | /// and always dependent. |
| 5277 | QualType InjectedType; |
| 5278 | |
| 5279 | InjectedClassNameType(CXXRecordDecl *D, QualType TST) |
| 5280 | : Type(InjectedClassName, QualType(), |
| 5281 | TypeDependence::DependentInstantiation), |
| 5282 | Decl(D), InjectedType(TST) { |
| 5283 | assert(isa<TemplateSpecializationType>(TST))((void)0); |
| 5284 | assert(!TST.hasQualifiers())((void)0); |
| 5285 | assert(TST->isDependentType())((void)0); |
| 5286 | } |
| 5287 | |
| 5288 | public: |
| 5289 | QualType getInjectedSpecializationType() const { return InjectedType; } |
| 5290 | |
| 5291 | const TemplateSpecializationType *getInjectedTST() const { |
| 5292 | return cast<TemplateSpecializationType>(InjectedType.getTypePtr()); |
| 5293 | } |
| 5294 | |
| 5295 | TemplateName getTemplateName() const { |
| 5296 | return getInjectedTST()->getTemplateName(); |
| 5297 | } |
| 5298 | |
| 5299 | CXXRecordDecl *getDecl() const; |
| 5300 | |
| 5301 | bool isSugared() const { return false; } |
| 5302 | QualType desugar() const { return QualType(this, 0); } |
| 5303 | |
| 5304 | static bool classof(const Type *T) { |
| 5305 | return T->getTypeClass() == InjectedClassName; |
| 5306 | } |
| 5307 | }; |
| 5308 | |
| 5309 | /// The kind of a tag type. |
| 5310 | enum TagTypeKind { |
| 5311 | /// The "struct" keyword. |
| 5312 | TTK_Struct, |
| 5313 | |
| 5314 | /// The "__interface" keyword. |
| 5315 | TTK_Interface, |
| 5316 | |
| 5317 | /// The "union" keyword. |
| 5318 | TTK_Union, |
| 5319 | |
| 5320 | /// The "class" keyword. |
| 5321 | TTK_Class, |
| 5322 | |
| 5323 | /// The "enum" keyword. |
| 5324 | TTK_Enum |
| 5325 | }; |
| 5326 | |
| 5327 | /// The elaboration keyword that precedes a qualified type name or |
| 5328 | /// introduces an elaborated-type-specifier. |
| 5329 | enum ElaboratedTypeKeyword { |
| 5330 | /// The "struct" keyword introduces the elaborated-type-specifier. |
| 5331 | ETK_Struct, |
| 5332 | |
| 5333 | /// The "__interface" keyword introduces the elaborated-type-specifier. |
| 5334 | ETK_Interface, |
| 5335 | |
| 5336 | /// The "union" keyword introduces the elaborated-type-specifier. |
| 5337 | ETK_Union, |
| 5338 | |
| 5339 | /// The "class" keyword introduces the elaborated-type-specifier. |
| 5340 | ETK_Class, |
| 5341 | |
| 5342 | /// The "enum" keyword introduces the elaborated-type-specifier. |
| 5343 | ETK_Enum, |
| 5344 | |
| 5345 | /// The "typename" keyword precedes the qualified type name, e.g., |
| 5346 | /// \c typename T::type. |
| 5347 | ETK_Typename, |
| 5348 | |
| 5349 | /// No keyword precedes the qualified type name. |
| 5350 | ETK_None |
| 5351 | }; |
| 5352 | |
| 5353 | /// A helper class for Type nodes having an ElaboratedTypeKeyword. |
| 5354 | /// The keyword in stored in the free bits of the base class. |
| 5355 | /// Also provides a few static helpers for converting and printing |
| 5356 | /// elaborated type keyword and tag type kind enumerations. |
| 5357 | class TypeWithKeyword : public Type { |
| 5358 | protected: |
| 5359 | TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc, |
| 5360 | QualType Canonical, TypeDependence Dependence) |
| 5361 | : Type(tc, Canonical, Dependence) { |
| 5362 | TypeWithKeywordBits.Keyword = Keyword; |
| 5363 | } |
| 5364 | |
| 5365 | public: |
| 5366 | ElaboratedTypeKeyword getKeyword() const { |
| 5367 | return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword); |
| 5368 | } |
| 5369 | |
| 5370 | /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword. |
| 5371 | static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec); |
| 5372 | |
| 5373 | /// Converts a type specifier (DeclSpec::TST) into a tag type kind. |
| 5374 | /// It is an error to provide a type specifier which *isn't* a tag kind here. |
| 5375 | static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec); |
| 5376 | |
| 5377 | /// Converts a TagTypeKind into an elaborated type keyword. |
| 5378 | static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag); |
| 5379 | |
| 5380 | /// Converts an elaborated type keyword into a TagTypeKind. |
| 5381 | /// It is an error to provide an elaborated type keyword |
| 5382 | /// which *isn't* a tag kind here. |
| 5383 | static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword); |
| 5384 | |
| 5385 | static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword); |
| 5386 | |
| 5387 | static StringRef getKeywordName(ElaboratedTypeKeyword Keyword); |
| 5388 | |
| 5389 | static StringRef getTagTypeKindName(TagTypeKind Kind) { |
| 5390 | return getKeywordName(getKeywordForTagTypeKind(Kind)); |
| 5391 | } |
| 5392 | |
| 5393 | class CannotCastToThisType {}; |
| 5394 | static CannotCastToThisType classof(const Type *); |
| 5395 | }; |
| 5396 | |
| 5397 | /// Represents a type that was referred to using an elaborated type |
| 5398 | /// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type, |
| 5399 | /// or both. |
| 5400 | /// |
| 5401 | /// This type is used to keep track of a type name as written in the |
| 5402 | /// source code, including tag keywords and any nested-name-specifiers. |
| 5403 | /// The type itself is always "sugar", used to express what was written |
| 5404 | /// in the source code but containing no additional semantic information. |
| 5405 | class ElaboratedType final |
| 5406 | : public TypeWithKeyword, |
| 5407 | public llvm::FoldingSetNode, |
| 5408 | private llvm::TrailingObjects<ElaboratedType, TagDecl *> { |
| 5409 | friend class ASTContext; // ASTContext creates these |
| 5410 | friend TrailingObjects; |
| 5411 | |
| 5412 | /// The nested name specifier containing the qualifier. |
| 5413 | NestedNameSpecifier *NNS; |
| 5414 | |
| 5415 | /// The type that this qualified name refers to. |
| 5416 | QualType NamedType; |
| 5417 | |
| 5418 | /// The (re)declaration of this tag type owned by this occurrence is stored |
| 5419 | /// as a trailing object if there is one. Use getOwnedTagDecl to obtain |
| 5420 | /// it, or obtain a null pointer if there is none. |
| 5421 | |
| 5422 | ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, |
| 5423 | QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl) |
| 5424 | : TypeWithKeyword(Keyword, Elaborated, CanonType, |
| 5425 | // Any semantic dependence on the qualifier will have |
| 5426 | // been incorporated into NamedType. We still need to |
| 5427 | // track syntactic (instantiation / error / pack) |
| 5428 | // dependence on the qualifier. |
| 5429 | NamedType->getDependence() | |
| 5430 | (NNS ? toSyntacticDependence( |
| 5431 | toTypeDependence(NNS->getDependence())) |
| 5432 | : TypeDependence::None)), |
| 5433 | NNS(NNS), NamedType(NamedType) { |
| 5434 | ElaboratedTypeBits.HasOwnedTagDecl = false; |
| 5435 | if (OwnedTagDecl) { |
| 5436 | ElaboratedTypeBits.HasOwnedTagDecl = true; |
| 5437 | *getTrailingObjects<TagDecl *>() = OwnedTagDecl; |
| 5438 | } |
| 5439 | assert(!(Keyword == ETK_None && NNS == nullptr) &&((void)0) |
| 5440 | "ElaboratedType cannot have elaborated type keyword "((void)0) |
| 5441 | "and name qualifier both null.")((void)0); |
| 5442 | } |
| 5443 | |
| 5444 | public: |
| 5445 | /// Retrieve the qualification on this type. |
| 5446 | NestedNameSpecifier *getQualifier() const { return NNS; } |
| 5447 | |
| 5448 | /// Retrieve the type named by the qualified-id. |
| 5449 | QualType getNamedType() const { return NamedType; } |
| 5450 | |
| 5451 | /// Remove a single level of sugar. |
| 5452 | QualType desugar() const { return getNamedType(); } |
| 5453 | |
| 5454 | /// Returns whether this type directly provides sugar. |
| 5455 | bool isSugared() const { return true; } |
| 5456 | |
| 5457 | /// Return the (re)declaration of this type owned by this occurrence of this |
| 5458 | /// type, or nullptr if there is none. |
| 5459 | TagDecl *getOwnedTagDecl() const { |
| 5460 | return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>() |
| 5461 | : nullptr; |
| 5462 | } |
| 5463 | |
| 5464 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 5465 | Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl()); |
| 5466 | } |
| 5467 | |
| 5468 | static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword, |
| 5469 | NestedNameSpecifier *NNS, QualType NamedType, |
| 5470 | TagDecl *OwnedTagDecl) { |
| 5471 | ID.AddInteger(Keyword); |
| 5472 | ID.AddPointer(NNS); |
| 5473 | NamedType.Profile(ID); |
| 5474 | ID.AddPointer(OwnedTagDecl); |
| 5475 | } |
| 5476 | |
| 5477 | static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; } |
| 5478 | }; |
| 5479 | |
| 5480 | /// Represents a qualified type name for which the type name is |
| 5481 | /// dependent. |
| 5482 | /// |
| 5483 | /// DependentNameType represents a class of dependent types that involve a |
| 5484 | /// possibly dependent nested-name-specifier (e.g., "T::") followed by a |
| 5485 | /// name of a type. The DependentNameType may start with a "typename" (for a |
| 5486 | /// typename-specifier), "class", "struct", "union", or "enum" (for a |
| 5487 | /// dependent elaborated-type-specifier), or nothing (in contexts where we |
| 5488 | /// know that we must be referring to a type, e.g., in a base class specifier). |
| 5489 | /// Typically the nested-name-specifier is dependent, but in MSVC compatibility |
| 5490 | /// mode, this type is used with non-dependent names to delay name lookup until |
| 5491 | /// instantiation. |
| 5492 | class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode { |
| 5493 | friend class ASTContext; // ASTContext creates these |
| 5494 | |
| 5495 | /// The nested name specifier containing the qualifier. |
| 5496 | NestedNameSpecifier *NNS; |
| 5497 | |
| 5498 | /// The type that this typename specifier refers to. |
| 5499 | const IdentifierInfo *Name; |
| 5500 | |
| 5501 | DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, |
| 5502 | const IdentifierInfo *Name, QualType CanonType) |
| 5503 | : TypeWithKeyword(Keyword, DependentName, CanonType, |
| 5504 | TypeDependence::DependentInstantiation | |
| 5505 | toTypeDependence(NNS->getDependence())), |
| 5506 | NNS(NNS), Name(Name) {} |
| 5507 | |
| 5508 | public: |
| 5509 | /// Retrieve the qualification on this type. |
| 5510 | NestedNameSpecifier *getQualifier() const { return NNS; } |
| 5511 | |
| 5512 | /// Retrieve the type named by the typename specifier as an identifier. |
| 5513 | /// |
| 5514 | /// This routine will return a non-NULL identifier pointer when the |
| 5515 | /// form of the original typename was terminated by an identifier, |
| 5516 | /// e.g., "typename T::type". |
| 5517 | const IdentifierInfo *getIdentifier() const { |
| 5518 | return Name; |
| 5519 | } |
| 5520 | |
| 5521 | bool isSugared() const { return false; } |
| 5522 | QualType desugar() const { return QualType(this, 0); } |
| 5523 | |
| 5524 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 5525 | Profile(ID, getKeyword(), NNS, Name); |
| 5526 | } |
| 5527 | |
| 5528 | static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword, |
| 5529 | NestedNameSpecifier *NNS, const IdentifierInfo *Name) { |
| 5530 | ID.AddInteger(Keyword); |
| 5531 | ID.AddPointer(NNS); |
| 5532 | ID.AddPointer(Name); |
| 5533 | } |
| 5534 | |
| 5535 | static bool classof(const Type *T) { |
| 5536 | return T->getTypeClass() == DependentName; |
| 5537 | } |
| 5538 | }; |
| 5539 | |
| 5540 | /// Represents a template specialization type whose template cannot be |
| 5541 | /// resolved, e.g. |
| 5542 | /// A<T>::template B<T> |
| 5543 | class alignas(8) DependentTemplateSpecializationType |
| 5544 | : public TypeWithKeyword, |
| 5545 | public llvm::FoldingSetNode { |
| 5546 | friend class ASTContext; // ASTContext creates these |
| 5547 | |
| 5548 | /// The nested name specifier containing the qualifier. |
| 5549 | NestedNameSpecifier *NNS; |
| 5550 | |
| 5551 | /// The identifier of the template. |
| 5552 | const IdentifierInfo *Name; |
| 5553 | |
| 5554 | DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword, |
| 5555 | NestedNameSpecifier *NNS, |
| 5556 | const IdentifierInfo *Name, |
| 5557 | ArrayRef<TemplateArgument> Args, |
| 5558 | QualType Canon); |
| 5559 | |
| 5560 | const TemplateArgument *getArgBuffer() const { |
| 5561 | return reinterpret_cast<const TemplateArgument*>(this+1); |
| 5562 | } |
| 5563 | |
| 5564 | TemplateArgument *getArgBuffer() { |
| 5565 | return reinterpret_cast<TemplateArgument*>(this+1); |
| 5566 | } |
| 5567 | |
| 5568 | public: |
| 5569 | NestedNameSpecifier *getQualifier() const { return NNS; } |
| 5570 | const IdentifierInfo *getIdentifier() const { return Name; } |
| 5571 | |
| 5572 | /// Retrieve the template arguments. |
| 5573 | const TemplateArgument *getArgs() const { |
| 5574 | return getArgBuffer(); |
| 5575 | } |
| 5576 | |
| 5577 | /// Retrieve the number of template arguments. |
| 5578 | unsigned getNumArgs() const { |
| 5579 | return DependentTemplateSpecializationTypeBits.NumArgs; |
| 5580 | } |
| 5581 | |
| 5582 | const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h |
| 5583 | |
| 5584 | ArrayRef<TemplateArgument> template_arguments() const { |
| 5585 | return {getArgs(), getNumArgs()}; |
| 5586 | } |
| 5587 | |
| 5588 | using iterator = const TemplateArgument *; |
| 5589 | |
| 5590 | iterator begin() const { return getArgs(); } |
| 5591 | iterator end() const; // inline in TemplateBase.h |
| 5592 | |
| 5593 | bool isSugared() const { return false; } |
| 5594 | QualType desugar() const { return QualType(this, 0); } |
| 5595 | |
| 5596 | void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) { |
| 5597 | Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()}); |
| 5598 | } |
| 5599 | |
| 5600 | static void Profile(llvm::FoldingSetNodeID &ID, |
| 5601 | const ASTContext &Context, |
| 5602 | ElaboratedTypeKeyword Keyword, |
| 5603 | NestedNameSpecifier *Qualifier, |
| 5604 | const IdentifierInfo *Name, |
| 5605 | ArrayRef<TemplateArgument> Args); |
| 5606 | |
| 5607 | static bool classof(const Type *T) { |
| 5608 | return T->getTypeClass() == DependentTemplateSpecialization; |
| 5609 | } |
| 5610 | }; |
| 5611 | |
| 5612 | /// Represents a pack expansion of types. |
| 5613 | /// |
| 5614 | /// Pack expansions are part of C++11 variadic templates. A pack |
| 5615 | /// expansion contains a pattern, which itself contains one or more |
| 5616 | /// "unexpanded" parameter packs. When instantiated, a pack expansion |
| 5617 | /// produces a series of types, each instantiated from the pattern of |
| 5618 | /// the expansion, where the Ith instantiation of the pattern uses the |
| 5619 | /// Ith arguments bound to each of the unexpanded parameter packs. The |
| 5620 | /// pack expansion is considered to "expand" these unexpanded |
| 5621 | /// parameter packs. |
| 5622 | /// |
| 5623 | /// \code |
| 5624 | /// template<typename ...Types> struct tuple; |
| 5625 | /// |
| 5626 | /// template<typename ...Types> |
| 5627 | /// struct tuple_of_references { |
| 5628 | /// typedef tuple<Types&...> type; |
| 5629 | /// }; |
| 5630 | /// \endcode |
| 5631 | /// |
| 5632 | /// Here, the pack expansion \c Types&... is represented via a |
| 5633 | /// PackExpansionType whose pattern is Types&. |
| 5634 | class PackExpansionType : public Type, public llvm::FoldingSetNode { |
| 5635 | friend class ASTContext; // ASTContext creates these |
| 5636 | |
| 5637 | /// The pattern of the pack expansion. |
| 5638 | QualType Pattern; |
| 5639 | |
| 5640 | PackExpansionType(QualType Pattern, QualType Canon, |
| 5641 | Optional<unsigned> NumExpansions) |
| 5642 | : Type(PackExpansion, Canon, |
| 5643 | (Pattern->getDependence() | TypeDependence::Dependent | |
| 5644 | TypeDependence::Instantiation) & |
| 5645 | ~TypeDependence::UnexpandedPack), |
| 5646 | Pattern(Pattern) { |
| 5647 | PackExpansionTypeBits.NumExpansions = |
| 5648 | NumExpansions ? *NumExpansions + 1 : 0; |
| 5649 | } |
| 5650 | |
| 5651 | public: |
| 5652 | /// Retrieve the pattern of this pack expansion, which is the |
| 5653 | /// type that will be repeatedly instantiated when instantiating the |
| 5654 | /// pack expansion itself. |
| 5655 | QualType getPattern() const { return Pattern; } |
| 5656 | |
| 5657 | /// Retrieve the number of expansions that this pack expansion will |
| 5658 | /// generate, if known. |
| 5659 | Optional<unsigned> getNumExpansions() const { |
| 5660 | if (PackExpansionTypeBits.NumExpansions) |
| 5661 | return PackExpansionTypeBits.NumExpansions - 1; |
| 5662 | return None; |
| 5663 | } |
| 5664 | |
| 5665 | bool isSugared() const { return false; } |
| 5666 | QualType desugar() const { return QualType(this, 0); } |
| 5667 | |
| 5668 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 5669 | Profile(ID, getPattern(), getNumExpansions()); |
| 5670 | } |
| 5671 | |
| 5672 | static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern, |
| 5673 | Optional<unsigned> NumExpansions) { |
| 5674 | ID.AddPointer(Pattern.getAsOpaquePtr()); |
| 5675 | ID.AddBoolean(NumExpansions.hasValue()); |
| 5676 | if (NumExpansions) |
| 5677 | ID.AddInteger(*NumExpansions); |
| 5678 | } |
| 5679 | |
| 5680 | static bool classof(const Type *T) { |
| 5681 | return T->getTypeClass() == PackExpansion; |
| 5682 | } |
| 5683 | }; |
| 5684 | |
| 5685 | /// This class wraps the list of protocol qualifiers. For types that can |
| 5686 | /// take ObjC protocol qualifers, they can subclass this class. |
| 5687 | template <class T> |
| 5688 | class ObjCProtocolQualifiers { |
| 5689 | protected: |
| 5690 | ObjCProtocolQualifiers() = default; |
| 5691 | |
| 5692 | ObjCProtocolDecl * const *getProtocolStorage() const { |
| 5693 | return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage(); |
| 5694 | } |
| 5695 | |
| 5696 | ObjCProtocolDecl **getProtocolStorage() { |
| 5697 | return static_cast<T*>(this)->getProtocolStorageImpl(); |
| 5698 | } |
| 5699 | |
| 5700 | void setNumProtocols(unsigned N) { |
| 5701 | static_cast<T*>(this)->setNumProtocolsImpl(N); |
| 5702 | } |
| 5703 | |
| 5704 | void initialize(ArrayRef<ObjCProtocolDecl *> protocols) { |
| 5705 | setNumProtocols(protocols.size()); |
| 5706 | assert(getNumProtocols() == protocols.size() &&((void)0) |
| 5707 | "bitfield overflow in protocol count")((void)0); |
| 5708 | if (!protocols.empty()) |
| 5709 | memcpy(getProtocolStorage(), protocols.data(), |
| 5710 | protocols.size() * sizeof(ObjCProtocolDecl*)); |
| 5711 | } |
| 5712 | |
| 5713 | public: |
| 5714 | using qual_iterator = ObjCProtocolDecl * const *; |
| 5715 | using qual_range = llvm::iterator_range<qual_iterator>; |
| 5716 | |
| 5717 | qual_range quals() const { return qual_range(qual_begin(), qual_end()); } |
| 5718 | qual_iterator qual_begin() const { return getProtocolStorage(); } |
| 5719 | qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); } |
| 5720 | |
| 5721 | bool qual_empty() const { return getNumProtocols() == 0; } |
| 5722 | |
| 5723 | /// Return the number of qualifying protocols in this type, or 0 if |
| 5724 | /// there are none. |
| 5725 | unsigned getNumProtocols() const { |
| 5726 | return static_cast<const T*>(this)->getNumProtocolsImpl(); |
| 5727 | } |
| 5728 | |
| 5729 | /// Fetch a protocol by index. |
| 5730 | ObjCProtocolDecl *getProtocol(unsigned I) const { |
| 5731 | assert(I < getNumProtocols() && "Out-of-range protocol access")((void)0); |
| 5732 | return qual_begin()[I]; |
| 5733 | } |
| 5734 | |
| 5735 | /// Retrieve all of the protocol qualifiers. |
| 5736 | ArrayRef<ObjCProtocolDecl *> getProtocols() const { |
| 5737 | return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols()); |
| 5738 | } |
| 5739 | }; |
| 5740 | |
| 5741 | /// Represents a type parameter type in Objective C. It can take |
| 5742 | /// a list of protocols. |
| 5743 | class ObjCTypeParamType : public Type, |
| 5744 | public ObjCProtocolQualifiers<ObjCTypeParamType>, |
| 5745 | public llvm::FoldingSetNode { |
| 5746 | friend class ASTContext; |
| 5747 | friend class ObjCProtocolQualifiers<ObjCTypeParamType>; |
| 5748 | |
| 5749 | /// The number of protocols stored on this type. |
| 5750 | unsigned NumProtocols : 6; |
| 5751 | |
| 5752 | ObjCTypeParamDecl *OTPDecl; |
| 5753 | |
| 5754 | /// The protocols are stored after the ObjCTypeParamType node. In the |
| 5755 | /// canonical type, the list of protocols are sorted alphabetically |
| 5756 | /// and uniqued. |
| 5757 | ObjCProtocolDecl **getProtocolStorageImpl(); |
| 5758 | |
| 5759 | /// Return the number of qualifying protocols in this interface type, |
| 5760 | /// or 0 if there are none. |
| 5761 | unsigned getNumProtocolsImpl() const { |
| 5762 | return NumProtocols; |
| 5763 | } |
| 5764 | |
| 5765 | void setNumProtocolsImpl(unsigned N) { |
| 5766 | NumProtocols = N; |
| 5767 | } |
| 5768 | |
| 5769 | ObjCTypeParamType(const ObjCTypeParamDecl *D, |
| 5770 | QualType can, |
| 5771 | ArrayRef<ObjCProtocolDecl *> protocols); |
| 5772 | |
| 5773 | public: |
| 5774 | bool isSugared() const { return true; } |
| 5775 | QualType desugar() const { return getCanonicalTypeInternal(); } |
| 5776 | |
| 5777 | static bool classof(const Type *T) { |
| 5778 | return T->getTypeClass() == ObjCTypeParam; |
| 5779 | } |
| 5780 | |
| 5781 | void Profile(llvm::FoldingSetNodeID &ID); |
| 5782 | static void Profile(llvm::FoldingSetNodeID &ID, |
| 5783 | const ObjCTypeParamDecl *OTPDecl, |
| 5784 | QualType CanonicalType, |
| 5785 | ArrayRef<ObjCProtocolDecl *> protocols); |
| 5786 | |
| 5787 | ObjCTypeParamDecl *getDecl() const { return OTPDecl; } |
| 5788 | }; |
| 5789 | |
| 5790 | /// Represents a class type in Objective C. |
| 5791 | /// |
| 5792 | /// Every Objective C type is a combination of a base type, a set of |
| 5793 | /// type arguments (optional, for parameterized classes) and a list of |
| 5794 | /// protocols. |
| 5795 | /// |
| 5796 | /// Given the following declarations: |
| 5797 | /// \code |
| 5798 | /// \@class C<T>; |
| 5799 | /// \@protocol P; |
| 5800 | /// \endcode |
| 5801 | /// |
| 5802 | /// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType |
| 5803 | /// with base C and no protocols. |
| 5804 | /// |
| 5805 | /// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P]. |
| 5806 | /// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no |
| 5807 | /// protocol list. |
| 5808 | /// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*', |
| 5809 | /// and protocol list [P]. |
| 5810 | /// |
| 5811 | /// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose |
| 5812 | /// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType |
| 5813 | /// and no protocols. |
| 5814 | /// |
| 5815 | /// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType |
| 5816 | /// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually |
| 5817 | /// this should get its own sugar class to better represent the source. |
| 5818 | class ObjCObjectType : public Type, |
| 5819 | public ObjCProtocolQualifiers<ObjCObjectType> { |
| 5820 | friend class ObjCProtocolQualifiers<ObjCObjectType>; |
| 5821 | |
| 5822 | // ObjCObjectType.NumTypeArgs - the number of type arguments stored |
| 5823 | // after the ObjCObjectPointerType node. |
| 5824 | // ObjCObjectType.NumProtocols - the number of protocols stored |
| 5825 | // after the type arguments of ObjCObjectPointerType node. |
| 5826 | // |
| 5827 | // These protocols are those written directly on the type. If |
| 5828 | // protocol qualifiers ever become additive, the iterators will need |
| 5829 | // to get kindof complicated. |
| 5830 | // |
| 5831 | // In the canonical object type, these are sorted alphabetically |
| 5832 | // and uniqued. |
| 5833 | |
| 5834 | /// Either a BuiltinType or an InterfaceType or sugar for either. |
| 5835 | QualType BaseType; |
| 5836 | |
| 5837 | /// Cached superclass type. |
| 5838 | mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool> |
| 5839 | CachedSuperClassType; |
| 5840 | |
| 5841 | QualType *getTypeArgStorage(); |
| 5842 | const QualType *getTypeArgStorage() const { |
| 5843 | return const_cast<ObjCObjectType *>(this)->getTypeArgStorage(); |
| 5844 | } |
| 5845 | |
| 5846 | ObjCProtocolDecl **getProtocolStorageImpl(); |
| 5847 | /// Return the number of qualifying protocols in this interface type, |
| 5848 | /// or 0 if there are none. |
| 5849 | unsigned getNumProtocolsImpl() const { |
| 5850 | return ObjCObjectTypeBits.NumProtocols; |
| 5851 | } |
| 5852 | void setNumProtocolsImpl(unsigned N) { |
| 5853 | ObjCObjectTypeBits.NumProtocols = N; |
| 5854 | } |
| 5855 | |
| 5856 | protected: |
| 5857 | enum Nonce_ObjCInterface { Nonce_ObjCInterface }; |
| 5858 | |
| 5859 | ObjCObjectType(QualType Canonical, QualType Base, |
| 5860 | ArrayRef<QualType> typeArgs, |
| 5861 | ArrayRef<ObjCProtocolDecl *> protocols, |
| 5862 | bool isKindOf); |
| 5863 | |
| 5864 | ObjCObjectType(enum Nonce_ObjCInterface) |
| 5865 | : Type(ObjCInterface, QualType(), TypeDependence::None), |
| 5866 | BaseType(QualType(this_(), 0)) { |
| 5867 | ObjCObjectTypeBits.NumProtocols = 0; |
| 5868 | ObjCObjectTypeBits.NumTypeArgs = 0; |
| 5869 | ObjCObjectTypeBits.IsKindOf = 0; |
| 5870 | } |
| 5871 | |
| 5872 | void computeSuperClassTypeSlow() const; |
| 5873 | |
| 5874 | public: |
| 5875 | /// Gets the base type of this object type. This is always (possibly |
| 5876 | /// sugar for) one of: |
| 5877 | /// - the 'id' builtin type (as opposed to the 'id' type visible to the |
| 5878 | /// user, which is a typedef for an ObjCObjectPointerType) |
| 5879 | /// - the 'Class' builtin type (same caveat) |
| 5880 | /// - an ObjCObjectType (currently always an ObjCInterfaceType) |
| 5881 | QualType getBaseType() const { return BaseType; } |
| 5882 | |
| 5883 | bool isObjCId() const { |
| 5884 | return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId); |
| 5885 | } |
| 5886 | |
| 5887 | bool isObjCClass() const { |
| 5888 | return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass); |
| 5889 | } |
| 5890 | |
| 5891 | bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); } |
| 5892 | bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); } |
| 5893 | bool isObjCUnqualifiedIdOrClass() const { |
| 5894 | if (!qual_empty()) return false; |
| 5895 | if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>()) |
| 5896 | return T->getKind() == BuiltinType::ObjCId || |
| 5897 | T->getKind() == BuiltinType::ObjCClass; |
| 5898 | return false; |
| 5899 | } |
| 5900 | bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); } |
| 5901 | bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); } |
| 5902 | |
| 5903 | /// Gets the interface declaration for this object type, if the base type |
| 5904 | /// really is an interface. |
| 5905 | ObjCInterfaceDecl *getInterface() const; |
| 5906 | |
| 5907 | /// Determine whether this object type is "specialized", meaning |
| 5908 | /// that it has type arguments. |
| 5909 | bool isSpecialized() const; |
| 5910 | |
| 5911 | /// Determine whether this object type was written with type arguments. |
| 5912 | bool isSpecializedAsWritten() const { |
| 5913 | return ObjCObjectTypeBits.NumTypeArgs > 0; |
| 5914 | } |
| 5915 | |
| 5916 | /// Determine whether this object type is "unspecialized", meaning |
| 5917 | /// that it has no type arguments. |
| 5918 | bool isUnspecialized() const { return !isSpecialized(); } |
| 5919 | |
| 5920 | /// Determine whether this object type is "unspecialized" as |
| 5921 | /// written, meaning that it has no type arguments. |
| 5922 | bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); } |
| 5923 | |
| 5924 | /// Retrieve the type arguments of this object type (semantically). |
| 5925 | ArrayRef<QualType> getTypeArgs() const; |
| 5926 | |
| 5927 | /// Retrieve the type arguments of this object type as they were |
| 5928 | /// written. |
| 5929 | ArrayRef<QualType> getTypeArgsAsWritten() const { |
| 5930 | return llvm::makeArrayRef(getTypeArgStorage(), |
| 5931 | ObjCObjectTypeBits.NumTypeArgs); |
| 5932 | } |
| 5933 | |
| 5934 | /// Whether this is a "__kindof" type as written. |
| 5935 | bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; } |
| 5936 | |
| 5937 | /// Whether this ia a "__kindof" type (semantically). |
| 5938 | bool isKindOfType() const; |
| 5939 | |
| 5940 | /// Retrieve the type of the superclass of this object type. |
| 5941 | /// |
| 5942 | /// This operation substitutes any type arguments into the |
| 5943 | /// superclass of the current class type, potentially producing a |
| 5944 | /// specialization of the superclass type. Produces a null type if |
| 5945 | /// there is no superclass. |
| 5946 | QualType getSuperClassType() const { |
| 5947 | if (!CachedSuperClassType.getInt()) |
| 5948 | computeSuperClassTypeSlow(); |
| 5949 | |
| 5950 | assert(CachedSuperClassType.getInt() && "Superclass not set?")((void)0); |
| 5951 | return QualType(CachedSuperClassType.getPointer(), 0); |
| 5952 | } |
| 5953 | |
| 5954 | /// Strip off the Objective-C "kindof" type and (with it) any |
| 5955 | /// protocol qualifiers. |
| 5956 | QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const; |
| 5957 | |
| 5958 | bool isSugared() const { return false; } |
| 5959 | QualType desugar() const { return QualType(this, 0); } |
| 5960 | |
| 5961 | static bool classof(const Type *T) { |
| 5962 | return T->getTypeClass() == ObjCObject || |
| 5963 | T->getTypeClass() == ObjCInterface; |
| 5964 | } |
| 5965 | }; |
| 5966 | |
| 5967 | /// A class providing a concrete implementation |
| 5968 | /// of ObjCObjectType, so as to not increase the footprint of |
| 5969 | /// ObjCInterfaceType. Code outside of ASTContext and the core type |
| 5970 | /// system should not reference this type. |
| 5971 | class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode { |
| 5972 | friend class ASTContext; |
| 5973 | |
| 5974 | // If anyone adds fields here, ObjCObjectType::getProtocolStorage() |
| 5975 | // will need to be modified. |
| 5976 | |
| 5977 | ObjCObjectTypeImpl(QualType Canonical, QualType Base, |
| 5978 | ArrayRef<QualType> typeArgs, |
| 5979 | ArrayRef<ObjCProtocolDecl *> protocols, |
| 5980 | bool isKindOf) |
| 5981 | : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {} |
| 5982 | |
| 5983 | public: |
| 5984 | void Profile(llvm::FoldingSetNodeID &ID); |
| 5985 | static void Profile(llvm::FoldingSetNodeID &ID, |
| 5986 | QualType Base, |
| 5987 | ArrayRef<QualType> typeArgs, |
| 5988 | ArrayRef<ObjCProtocolDecl *> protocols, |
| 5989 | bool isKindOf); |
| 5990 | }; |
| 5991 | |
| 5992 | inline QualType *ObjCObjectType::getTypeArgStorage() { |
| 5993 | return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1); |
| 5994 | } |
| 5995 | |
| 5996 | inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() { |
| 5997 | return reinterpret_cast<ObjCProtocolDecl**>( |
| 5998 | getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs); |
| 5999 | } |
| 6000 | |
| 6001 | inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() { |
| 6002 | return reinterpret_cast<ObjCProtocolDecl**>( |
| 6003 | static_cast<ObjCTypeParamType*>(this)+1); |
| 6004 | } |
| 6005 | |
| 6006 | /// Interfaces are the core concept in Objective-C for object oriented design. |
| 6007 | /// They basically correspond to C++ classes. There are two kinds of interface |
| 6008 | /// types: normal interfaces like `NSString`, and qualified interfaces, which |
| 6009 | /// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`. |
| 6010 | /// |
| 6011 | /// ObjCInterfaceType guarantees the following properties when considered |
| 6012 | /// as a subtype of its superclass, ObjCObjectType: |
| 6013 | /// - There are no protocol qualifiers. To reinforce this, code which |
| 6014 | /// tries to invoke the protocol methods via an ObjCInterfaceType will |
| 6015 | /// fail to compile. |
| 6016 | /// - It is its own base type. That is, if T is an ObjCInterfaceType*, |
| 6017 | /// T->getBaseType() == QualType(T, 0). |
| 6018 | class ObjCInterfaceType : public ObjCObjectType { |
| 6019 | friend class ASTContext; // ASTContext creates these. |
| 6020 | friend class ASTReader; |
| 6021 | friend class ObjCInterfaceDecl; |
| 6022 | template <class T> friend class serialization::AbstractTypeReader; |
| 6023 | |
| 6024 | mutable ObjCInterfaceDecl *Decl; |
| 6025 | |
| 6026 | ObjCInterfaceType(const ObjCInterfaceDecl *D) |
| 6027 | : ObjCObjectType(Nonce_ObjCInterface), |
| 6028 | Decl(const_cast<ObjCInterfaceDecl*>(D)) {} |
| 6029 | |
| 6030 | public: |
| 6031 | /// Get the declaration of this interface. |
| 6032 | ObjCInterfaceDecl *getDecl() const { return Decl; } |
| 6033 | |
| 6034 | bool isSugared() const { return false; } |
| 6035 | QualType desugar() const { return QualType(this, 0); } |
| 6036 | |
| 6037 | static bool classof(const Type *T) { |
| 6038 | return T->getTypeClass() == ObjCInterface; |
| 6039 | } |
| 6040 | |
| 6041 | // Nonsense to "hide" certain members of ObjCObjectType within this |
| 6042 | // class. People asking for protocols on an ObjCInterfaceType are |
| 6043 | // not going to get what they want: ObjCInterfaceTypes are |
| 6044 | // guaranteed to have no protocols. |
| 6045 | enum { |
| 6046 | qual_iterator, |
| 6047 | qual_begin, |
| 6048 | qual_end, |
| 6049 | getNumProtocols, |
| 6050 | getProtocol |
| 6051 | }; |
| 6052 | }; |
| 6053 | |
| 6054 | inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const { |
| 6055 | QualType baseType = getBaseType(); |
| 6056 | while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) { |
| 6057 | if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT)) |
| 6058 | return T->getDecl(); |
| 6059 | |
| 6060 | baseType = ObjT->getBaseType(); |
| 6061 | } |
| 6062 | |
| 6063 | return nullptr; |
| 6064 | } |
| 6065 | |
| 6066 | /// Represents a pointer to an Objective C object. |
| 6067 | /// |
| 6068 | /// These are constructed from pointer declarators when the pointee type is |
| 6069 | /// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class' |
| 6070 | /// types are typedefs for these, and the protocol-qualified types 'id<P>' |
| 6071 | /// and 'Class<P>' are translated into these. |
| 6072 | /// |
| 6073 | /// Pointers to pointers to Objective C objects are still PointerTypes; |
| 6074 | /// only the first level of pointer gets it own type implementation. |
| 6075 | class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode { |
| 6076 | friend class ASTContext; // ASTContext creates these. |
| 6077 | |
| 6078 | QualType PointeeType; |
| 6079 | |
| 6080 | ObjCObjectPointerType(QualType Canonical, QualType Pointee) |
| 6081 | : Type(ObjCObjectPointer, Canonical, Pointee->getDependence()), |
| 6082 | PointeeType(Pointee) {} |
| 6083 | |
| 6084 | public: |
| 6085 | /// Gets the type pointed to by this ObjC pointer. |
| 6086 | /// The result will always be an ObjCObjectType or sugar thereof. |
| 6087 | QualType getPointeeType() const { return PointeeType; } |
| 6088 | |
| 6089 | /// Gets the type pointed to by this ObjC pointer. Always returns non-null. |
| 6090 | /// |
| 6091 | /// This method is equivalent to getPointeeType() except that |
| 6092 | /// it discards any typedefs (or other sugar) between this |
| 6093 | /// type and the "outermost" object type. So for: |
| 6094 | /// \code |
| 6095 | /// \@class A; \@protocol P; \@protocol Q; |
| 6096 | /// typedef A<P> AP; |
| 6097 | /// typedef A A1; |
| 6098 | /// typedef A1<P> A1P; |
| 6099 | /// typedef A1P<Q> A1PQ; |
| 6100 | /// \endcode |
| 6101 | /// For 'A*', getObjectType() will return 'A'. |
| 6102 | /// For 'A<P>*', getObjectType() will return 'A<P>'. |
| 6103 | /// For 'AP*', getObjectType() will return 'A<P>'. |
| 6104 | /// For 'A1*', getObjectType() will return 'A'. |
| 6105 | /// For 'A1<P>*', getObjectType() will return 'A1<P>'. |
| 6106 | /// For 'A1P*', getObjectType() will return 'A1<P>'. |
| 6107 | /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because |
| 6108 | /// adding protocols to a protocol-qualified base discards the |
| 6109 | /// old qualifiers (for now). But if it didn't, getObjectType() |
| 6110 | /// would return 'A1P<Q>' (and we'd have to make iterating over |
| 6111 | /// qualifiers more complicated). |
| 6112 | const ObjCObjectType *getObjectType() const { |
| 6113 | return PointeeType->castAs<ObjCObjectType>(); |
| 6114 | } |
| 6115 | |
| 6116 | /// If this pointer points to an Objective C |
| 6117 | /// \@interface type, gets the type for that interface. Any protocol |
| 6118 | /// qualifiers on the interface are ignored. |
| 6119 | /// |
| 6120 | /// \return null if the base type for this pointer is 'id' or 'Class' |
| 6121 | const ObjCInterfaceType *getInterfaceType() const; |
| 6122 | |
| 6123 | /// If this pointer points to an Objective \@interface |
| 6124 | /// type, gets the declaration for that interface. |
| 6125 | /// |
| 6126 | /// \return null if the base type for this pointer is 'id' or 'Class' |
| 6127 | ObjCInterfaceDecl *getInterfaceDecl() const { |
| 6128 | return getObjectType()->getInterface(); |
| 6129 | } |
| 6130 | |
| 6131 | /// True if this is equivalent to the 'id' type, i.e. if |
| 6132 | /// its object type is the primitive 'id' type with no protocols. |
| 6133 | bool isObjCIdType() const { |
| 6134 | return getObjectType()->isObjCUnqualifiedId(); |
| 6135 | } |
| 6136 | |
| 6137 | /// True if this is equivalent to the 'Class' type, |
| 6138 | /// i.e. if its object tive is the primitive 'Class' type with no protocols. |
| 6139 | bool isObjCClassType() const { |
| 6140 | return getObjectType()->isObjCUnqualifiedClass(); |
| 6141 | } |
| 6142 | |
| 6143 | /// True if this is equivalent to the 'id' or 'Class' type, |
| 6144 | bool isObjCIdOrClassType() const { |
| 6145 | return getObjectType()->isObjCUnqualifiedIdOrClass(); |
| 6146 | } |
| 6147 | |
| 6148 | /// True if this is equivalent to 'id<P>' for some non-empty set of |
| 6149 | /// protocols. |
| 6150 | bool isObjCQualifiedIdType() const { |
| 6151 | return getObjectType()->isObjCQualifiedId(); |
| 6152 | } |
| 6153 | |
| 6154 | /// True if this is equivalent to 'Class<P>' for some non-empty set of |
| 6155 | /// protocols. |
| 6156 | bool isObjCQualifiedClassType() const { |
| 6157 | return getObjectType()->isObjCQualifiedClass(); |
| 6158 | } |
| 6159 | |
| 6160 | /// Whether this is a "__kindof" type. |
| 6161 | bool isKindOfType() const { return getObjectType()->isKindOfType(); } |
| 6162 | |
| 6163 | /// Whether this type is specialized, meaning that it has type arguments. |
| 6164 | bool isSpecialized() const { return getObjectType()->isSpecialized(); } |
| 6165 | |
| 6166 | /// Whether this type is specialized, meaning that it has type arguments. |
| 6167 | bool isSpecializedAsWritten() const { |
| 6168 | return getObjectType()->isSpecializedAsWritten(); |
| 6169 | } |
| 6170 | |
| 6171 | /// Whether this type is unspecialized, meaning that is has no type arguments. |
| 6172 | bool isUnspecialized() const { return getObjectType()->isUnspecialized(); } |
| 6173 | |
| 6174 | /// Determine whether this object type is "unspecialized" as |
| 6175 | /// written, meaning that it has no type arguments. |
| 6176 | bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); } |
| 6177 | |
| 6178 | /// Retrieve the type arguments for this type. |
| 6179 | ArrayRef<QualType> getTypeArgs() const { |
| 6180 | return getObjectType()->getTypeArgs(); |
| 6181 | } |
| 6182 | |
| 6183 | /// Retrieve the type arguments for this type. |
| 6184 | ArrayRef<QualType> getTypeArgsAsWritten() const { |
| 6185 | return getObjectType()->getTypeArgsAsWritten(); |
| 6186 | } |
| 6187 | |
| 6188 | /// An iterator over the qualifiers on the object type. Provided |
| 6189 | /// for convenience. This will always iterate over the full set of |
| 6190 | /// protocols on a type, not just those provided directly. |
| 6191 | using qual_iterator = ObjCObjectType::qual_iterator; |
| 6192 | using qual_range = llvm::iterator_range<qual_iterator>; |
| 6193 | |
| 6194 | qual_range quals() const { return qual_range(qual_begin(), qual_end()); } |
| 6195 | |
| 6196 | qual_iterator qual_begin() const { |
| 6197 | return getObjectType()->qual_begin(); |
| 6198 | } |
| 6199 | |
| 6200 | qual_iterator qual_end() const { |
| 6201 | return getObjectType()->qual_end(); |
| 6202 | } |
| 6203 | |
| 6204 | bool qual_empty() const { return getObjectType()->qual_empty(); } |
| 6205 | |
| 6206 | /// Return the number of qualifying protocols on the object type. |
| 6207 | unsigned getNumProtocols() const { |
| 6208 | return getObjectType()->getNumProtocols(); |
| 6209 | } |
| 6210 | |
| 6211 | /// Retrieve a qualifying protocol by index on the object type. |
| 6212 | ObjCProtocolDecl *getProtocol(unsigned I) const { |
| 6213 | return getObjectType()->getProtocol(I); |
| 6214 | } |
| 6215 | |
| 6216 | bool isSugared() const { return false; } |
| 6217 | QualType desugar() const { return QualType(this, 0); } |
| 6218 | |
| 6219 | /// Retrieve the type of the superclass of this object pointer type. |
| 6220 | /// |
| 6221 | /// This operation substitutes any type arguments into the |
| 6222 | /// superclass of the current class type, potentially producing a |
| 6223 | /// pointer to a specialization of the superclass type. Produces a |
| 6224 | /// null type if there is no superclass. |
| 6225 | QualType getSuperClassType() const; |
| 6226 | |
| 6227 | /// Strip off the Objective-C "kindof" type and (with it) any |
| 6228 | /// protocol qualifiers. |
| 6229 | const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals( |
| 6230 | const ASTContext &ctx) const; |
| 6231 | |
| 6232 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 6233 | Profile(ID, getPointeeType()); |
| 6234 | } |
| 6235 | |
| 6236 | static void Profile(llvm::FoldingSetNodeID &ID, QualType T) { |
| 6237 | ID.AddPointer(T.getAsOpaquePtr()); |
| 6238 | } |
| 6239 | |
| 6240 | static bool classof(const Type *T) { |
| 6241 | return T->getTypeClass() == ObjCObjectPointer; |
| 6242 | } |
| 6243 | }; |
| 6244 | |
| 6245 | class AtomicType : public Type, public llvm::FoldingSetNode { |
| 6246 | friend class ASTContext; // ASTContext creates these. |
| 6247 | |
| 6248 | QualType ValueType; |
| 6249 | |
| 6250 | AtomicType(QualType ValTy, QualType Canonical) |
| 6251 | : Type(Atomic, Canonical, ValTy->getDependence()), ValueType(ValTy) {} |
| 6252 | |
| 6253 | public: |
| 6254 | /// Gets the type contained by this atomic type, i.e. |
| 6255 | /// the type returned by performing an atomic load of this atomic type. |
| 6256 | QualType getValueType() const { return ValueType; } |
| 6257 | |
| 6258 | bool isSugared() const { return false; } |
| 6259 | QualType desugar() const { return QualType(this, 0); } |
| 6260 | |
| 6261 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 6262 | Profile(ID, getValueType()); |
| 6263 | } |
| 6264 | |
| 6265 | static void Profile(llvm::FoldingSetNodeID &ID, QualType T) { |
| 6266 | ID.AddPointer(T.getAsOpaquePtr()); |
| 6267 | } |
| 6268 | |
| 6269 | static bool classof(const Type *T) { |
| 6270 | return T->getTypeClass() == Atomic; |
| 6271 | } |
| 6272 | }; |
| 6273 | |
| 6274 | /// PipeType - OpenCL20. |
| 6275 | class PipeType : public Type, public llvm::FoldingSetNode { |
| 6276 | friend class ASTContext; // ASTContext creates these. |
| 6277 | |
| 6278 | QualType ElementType; |
| 6279 | bool isRead; |
| 6280 | |
| 6281 | PipeType(QualType elemType, QualType CanonicalPtr, bool isRead) |
| 6282 | : Type(Pipe, CanonicalPtr, elemType->getDependence()), |
| 6283 | ElementType(elemType), isRead(isRead) {} |
| 6284 | |
| 6285 | public: |
| 6286 | QualType getElementType() const { return ElementType; } |
| 6287 | |
| 6288 | bool isSugared() const { return false; } |
| 6289 | |
| 6290 | QualType desugar() const { return QualType(this, 0); } |
| 6291 | |
| 6292 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 6293 | Profile(ID, getElementType(), isReadOnly()); |
| 6294 | } |
| 6295 | |
| 6296 | static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) { |
| 6297 | ID.AddPointer(T.getAsOpaquePtr()); |
| 6298 | ID.AddBoolean(isRead); |
| 6299 | } |
| 6300 | |
| 6301 | static bool classof(const Type *T) { |
| 6302 | return T->getTypeClass() == Pipe; |
| 6303 | } |
| 6304 | |
| 6305 | bool isReadOnly() const { return isRead; } |
| 6306 | }; |
| 6307 | |
| 6308 | /// A fixed int type of a specified bitwidth. |
| 6309 | class ExtIntType final : public Type, public llvm::FoldingSetNode { |
| 6310 | friend class ASTContext; |
| 6311 | unsigned IsUnsigned : 1; |
| 6312 | unsigned NumBits : 24; |
| 6313 | |
| 6314 | protected: |
| 6315 | ExtIntType(bool isUnsigned, unsigned NumBits); |
| 6316 | |
| 6317 | public: |
| 6318 | bool isUnsigned() const { return IsUnsigned; } |
| 6319 | bool isSigned() const { return !IsUnsigned; } |
| 6320 | unsigned getNumBits() const { return NumBits; } |
| 6321 | |
| 6322 | bool isSugared() const { return false; } |
| 6323 | QualType desugar() const { return QualType(this, 0); } |
| 6324 | |
| 6325 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 6326 | Profile(ID, isUnsigned(), getNumBits()); |
| 6327 | } |
| 6328 | |
| 6329 | static void Profile(llvm::FoldingSetNodeID &ID, bool IsUnsigned, |
| 6330 | unsigned NumBits) { |
| 6331 | ID.AddBoolean(IsUnsigned); |
| 6332 | ID.AddInteger(NumBits); |
| 6333 | } |
| 6334 | |
| 6335 | static bool classof(const Type *T) { return T->getTypeClass() == ExtInt; } |
| 6336 | }; |
| 6337 | |
| 6338 | class DependentExtIntType final : public Type, public llvm::FoldingSetNode { |
| 6339 | friend class ASTContext; |
| 6340 | const ASTContext &Context; |
| 6341 | llvm::PointerIntPair<Expr*, 1, bool> ExprAndUnsigned; |
| 6342 | |
| 6343 | protected: |
| 6344 | DependentExtIntType(const ASTContext &Context, bool IsUnsigned, |
| 6345 | Expr *NumBits); |
| 6346 | |
| 6347 | public: |
| 6348 | bool isUnsigned() const; |
| 6349 | bool isSigned() const { return !isUnsigned(); } |
| 6350 | Expr *getNumBitsExpr() const; |
| 6351 | |
| 6352 | bool isSugared() const { return false; } |
| 6353 | QualType desugar() const { return QualType(this, 0); } |
| 6354 | |
| 6355 | void Profile(llvm::FoldingSetNodeID &ID) { |
| 6356 | Profile(ID, Context, isUnsigned(), getNumBitsExpr()); |
| 6357 | } |
| 6358 | static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, |
| 6359 | bool IsUnsigned, Expr *NumBitsExpr); |
| 6360 | |
| 6361 | static bool classof(const Type *T) { |
| 6362 | return T->getTypeClass() == DependentExtInt; |
| 6363 | } |
| 6364 | }; |
| 6365 | |
| 6366 | /// A qualifier set is used to build a set of qualifiers. |
| 6367 | class QualifierCollector : public Qualifiers { |
| 6368 | public: |
| 6369 | QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {} |
| 6370 | |
| 6371 | /// Collect any qualifiers on the given type and return an |
| 6372 | /// unqualified type. The qualifiers are assumed to be consistent |
| 6373 | /// with those already in the type. |
| 6374 | const Type *strip(QualType type) { |
| 6375 | addFastQualifiers(type.getLocalFastQualifiers()); |
| 6376 | if (!type.hasLocalNonFastQualifiers()) |
| 6377 | return type.getTypePtrUnsafe(); |
| 6378 | |
| 6379 | const ExtQuals *extQuals = type.getExtQualsUnsafe(); |
| 6380 | addConsistentQualifiers(extQuals->getQualifiers()); |
| 6381 | return extQuals->getBaseType(); |
| 6382 | } |
| 6383 | |
| 6384 | /// Apply the collected qualifiers to the given type. |
| 6385 | QualType apply(const ASTContext &Context, QualType QT) const; |
| 6386 | |
| 6387 | /// Apply the collected qualifiers to the given type. |
| 6388 | QualType apply(const ASTContext &Context, const Type* T) const; |
| 6389 | }; |
| 6390 | |
| 6391 | /// A container of type source information. |
| 6392 | /// |
| 6393 | /// A client can read the relevant info using TypeLoc wrappers, e.g: |
| 6394 | /// @code |
| 6395 | /// TypeLoc TL = TypeSourceInfo->getTypeLoc(); |
| 6396 | /// TL.getBeginLoc().print(OS, SrcMgr); |
| 6397 | /// @endcode |
| 6398 | class alignas(8) TypeSourceInfo { |
| 6399 | // Contains a memory block after the class, used for type source information, |
| 6400 | // allocated by ASTContext. |
| 6401 | friend class ASTContext; |
| 6402 | |
| 6403 | QualType Ty; |
| 6404 | |
| 6405 | TypeSourceInfo(QualType ty) : Ty(ty) {} |
| 6406 | |
| 6407 | public: |
| 6408 | /// Return the type wrapped by this type source info. |
| 6409 | QualType getType() const { return Ty; } |
| 6410 | |
| 6411 | /// Return the TypeLoc wrapper for the type source info. |
| 6412 | TypeLoc getTypeLoc() const; // implemented in TypeLoc.h |
| 6413 | |
| 6414 | /// Override the type stored in this TypeSourceInfo. Use with caution! |
| 6415 | void overrideType(QualType T) { Ty = T; } |
| 6416 | }; |
| 6417 | |
| 6418 | // Inline function definitions. |
| 6419 | |
| 6420 | inline SplitQualType SplitQualType::getSingleStepDesugaredType() const { |
| 6421 | SplitQualType desugar = |
| 6422 | Ty->getLocallyUnqualifiedSingleStepDesugaredType().split(); |
| 6423 | desugar.Quals.addConsistentQualifiers(Quals); |
| 6424 | return desugar; |
| 6425 | } |
| 6426 | |
| 6427 | inline const Type *QualType::getTypePtr() const { |
| 6428 | return getCommonPtr()->BaseType; |
| 6429 | } |
| 6430 | |
| 6431 | inline const Type *QualType::getTypePtrOrNull() const { |
| 6432 | return (isNull() ? nullptr : getCommonPtr()->BaseType); |
| 6433 | } |
| 6434 | |
| 6435 | inline SplitQualType QualType::split() const { |
| 6436 | if (!hasLocalNonFastQualifiers()) |
| 6437 | return SplitQualType(getTypePtrUnsafe(), |
| 6438 | Qualifiers::fromFastMask(getLocalFastQualifiers())); |
| 6439 | |
| 6440 | const ExtQuals *eq = getExtQualsUnsafe(); |
| 6441 | Qualifiers qs = eq->getQualifiers(); |
| 6442 | qs.addFastQualifiers(getLocalFastQualifiers()); |
| 6443 | return SplitQualType(eq->getBaseType(), qs); |
| 6444 | } |
| 6445 | |
| 6446 | inline Qualifiers QualType::getLocalQualifiers() const { |
| 6447 | Qualifiers Quals; |
| 6448 | if (hasLocalNonFastQualifiers()) |
| 6449 | Quals = getExtQualsUnsafe()->getQualifiers(); |
| 6450 | Quals.addFastQualifiers(getLocalFastQualifiers()); |
| 6451 | return Quals; |
| 6452 | } |
| 6453 | |
| 6454 | inline Qualifiers QualType::getQualifiers() const { |
| 6455 | Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers(); |
| 6456 | quals.addFastQualifiers(getLocalFastQualifiers()); |
| 6457 | return quals; |
| 6458 | } |
| 6459 | |
| 6460 | inline unsigned QualType::getCVRQualifiers() const { |
| 6461 | unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers(); |
| 6462 | cvr |= getLocalCVRQualifiers(); |
| 6463 | return cvr; |
| 6464 | } |
| 6465 | |
| 6466 | inline QualType QualType::getCanonicalType() const { |
| 6467 | QualType canon = getCommonPtr()->CanonicalType; |
| 6468 | return canon.withFastQualifiers(getLocalFastQualifiers()); |
| 6469 | } |
| 6470 | |
| 6471 | inline bool QualType::isCanonical() const { |
| 6472 | return getTypePtr()->isCanonicalUnqualified(); |
| 6473 | } |
| 6474 | |
| 6475 | inline bool QualType::isCanonicalAsParam() const { |
| 6476 | if (!isCanonical()) return false; |
| 6477 | if (hasLocalQualifiers()) return false; |
| 6478 | |
| 6479 | const Type *T = getTypePtr(); |
| 6480 | if (T->isVariablyModifiedType() && T->hasSizedVLAType()) |
| 6481 | return false; |
| 6482 | |
| 6483 | return !isa<FunctionType>(T) && !isa<ArrayType>(T); |
| 6484 | } |
| 6485 | |
| 6486 | inline bool QualType::isConstQualified() const { |
| 6487 | return isLocalConstQualified() || |
| 6488 | getCommonPtr()->CanonicalType.isLocalConstQualified(); |
| 6489 | } |
| 6490 | |
| 6491 | inline bool QualType::isRestrictQualified() const { |
| 6492 | return isLocalRestrictQualified() || |
| 6493 | getCommonPtr()->CanonicalType.isLocalRestrictQualified(); |
| 6494 | } |
| 6495 | |
| 6496 | |
| 6497 | inline bool QualType::isVolatileQualified() const { |
| 6498 | return isLocalVolatileQualified() || |
| 6499 | getCommonPtr()->CanonicalType.isLocalVolatileQualified(); |
| 6500 | } |
| 6501 | |
| 6502 | inline bool QualType::hasQualifiers() const { |
| 6503 | return hasLocalQualifiers() || |
| 6504 | getCommonPtr()->CanonicalType.hasLocalQualifiers(); |
| 6505 | } |
| 6506 | |
| 6507 | inline QualType QualType::getUnqualifiedType() const { |
| 6508 | if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers()) |
| 6509 | return QualType(getTypePtr(), 0); |
| 6510 | |
| 6511 | return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0); |
| 6512 | } |
| 6513 | |
| 6514 | inline SplitQualType QualType::getSplitUnqualifiedType() const { |
| 6515 | if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers()) |
| 6516 | return split(); |
| 6517 | |
| 6518 | return getSplitUnqualifiedTypeImpl(*this); |
| 6519 | } |
| 6520 | |
| 6521 | inline void QualType::removeLocalConst() { |
| 6522 | removeLocalFastQualifiers(Qualifiers::Const); |
| 6523 | } |
| 6524 | |
| 6525 | inline void QualType::removeLocalRestrict() { |
| 6526 | removeLocalFastQualifiers(Qualifiers::Restrict); |
| 6527 | } |
| 6528 | |
| 6529 | inline void QualType::removeLocalVolatile() { |
| 6530 | removeLocalFastQualifiers(Qualifiers::Volatile); |
| 6531 | } |
| 6532 | |
| 6533 | inline void QualType::removeLocalCVRQualifiers(unsigned Mask) { |
| 6534 | assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")((void)0); |
| 6535 | static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask, |
| 6536 | "Fast bits differ from CVR bits!"); |
| 6537 | |
| 6538 | // Fast path: we don't need to touch the slow qualifiers. |
| 6539 | removeLocalFastQualifiers(Mask); |
| 6540 | } |
| 6541 | |
| 6542 | /// Check if this type has any address space qualifier. |
| 6543 | inline bool QualType::hasAddressSpace() const { |
| 6544 | return getQualifiers().hasAddressSpace(); |
| 6545 | } |
| 6546 | |
| 6547 | /// Return the address space of this type. |
| 6548 | inline LangAS QualType::getAddressSpace() const { |
| 6549 | return getQualifiers().getAddressSpace(); |
| 6550 | } |
| 6551 | |
| 6552 | /// Return the gc attribute of this type. |
| 6553 | inline Qualifiers::GC QualType::getObjCGCAttr() const { |
| 6554 | return getQualifiers().getObjCGCAttr(); |
| 6555 | } |
| 6556 | |
| 6557 | inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const { |
| 6558 | if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl()) |
| 6559 | return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD); |
| 6560 | return false; |
| 6561 | } |
| 6562 | |
| 6563 | inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const { |
| 6564 | if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl()) |
| 6565 | return hasNonTrivialToPrimitiveDestructCUnion(RD); |
| 6566 | return false; |
| 6567 | } |
| 6568 | |
| 6569 | inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const { |
| 6570 | if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl()) |
| 6571 | return hasNonTrivialToPrimitiveCopyCUnion(RD); |
| 6572 | return false; |
| 6573 | } |
| 6574 | |
| 6575 | inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) { |
| 6576 | if (const auto *PT = t.getAs<PointerType>()) { |
| 6577 | if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>()) |
| 6578 | return FT->getExtInfo(); |
| 6579 | } else if (const auto *FT = t.getAs<FunctionType>()) |
| 6580 | return FT->getExtInfo(); |
| 6581 | |
| 6582 | return FunctionType::ExtInfo(); |
| 6583 | } |
| 6584 | |
| 6585 | inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) { |
| 6586 | return getFunctionExtInfo(*t); |
| 6587 | } |
| 6588 | |
| 6589 | /// Determine whether this type is more |
| 6590 | /// qualified than the Other type. For example, "const volatile int" |
| 6591 | /// is more qualified than "const int", "volatile int", and |
| 6592 | /// "int". However, it is not more qualified than "const volatile |
| 6593 | /// int". |
| 6594 | inline bool QualType::isMoreQualifiedThan(QualType other) const { |
| 6595 | Qualifiers MyQuals = getQualifiers(); |
| 6596 | Qualifiers OtherQuals = other.getQualifiers(); |
| 6597 | return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals)); |
| 6598 | } |
| 6599 | |
| 6600 | /// Determine whether this type is at last |
| 6601 | /// as qualified as the Other type. For example, "const volatile |
| 6602 | /// int" is at least as qualified as "const int", "volatile int", |
| 6603 | /// "int", and "const volatile int". |
| 6604 | inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const { |
| 6605 | Qualifiers OtherQuals = other.getQualifiers(); |
| 6606 | |
| 6607 | // Ignore __unaligned qualifier if this type is a void. |
| 6608 | if (getUnqualifiedType()->isVoidType()) |
| 6609 | OtherQuals.removeUnaligned(); |
| 6610 | |
| 6611 | return getQualifiers().compatiblyIncludes(OtherQuals); |
| 6612 | } |
| 6613 | |
| 6614 | /// If Type is a reference type (e.g., const |
| 6615 | /// int&), returns the type that the reference refers to ("const |
| 6616 | /// int"). Otherwise, returns the type itself. This routine is used |
| 6617 | /// throughout Sema to implement C++ 5p6: |
| 6618 | /// |
| 6619 | /// If an expression initially has the type "reference to T" (8.3.2, |
| 6620 | /// 8.5.3), the type is adjusted to "T" prior to any further |
| 6621 | /// analysis, the expression designates the object or function |
| 6622 | /// denoted by the reference, and the expression is an lvalue. |
| 6623 | inline QualType QualType::getNonReferenceType() const { |
| 6624 | if (const auto *RefType = (*this)->getAs<ReferenceType>()) |
| 6625 | return RefType->getPointeeType(); |
| 6626 | else |
| 6627 | return *this; |
| 6628 | } |
| 6629 | |
| 6630 | inline bool QualType::isCForbiddenLValueType() const { |
| 6631 | return ((getTypePtr()->isVoidType() && !hasQualifiers()) || |
| 6632 | getTypePtr()->isFunctionType()); |
| 6633 | } |
| 6634 | |
| 6635 | /// Tests whether the type is categorized as a fundamental type. |
| 6636 | /// |
| 6637 | /// \returns True for types specified in C++0x [basic.fundamental]. |
| 6638 | inline bool Type::isFundamentalType() const { |
| 6639 | return isVoidType() || |
| 6640 | isNullPtrType() || |
| 6641 | // FIXME: It's really annoying that we don't have an |
| 6642 | // 'isArithmeticType()' which agrees with the standard definition. |
| 6643 | (isArithmeticType() && !isEnumeralType()); |
| 6644 | } |
| 6645 | |
| 6646 | /// Tests whether the type is categorized as a compound type. |
| 6647 | /// |
| 6648 | /// \returns True for types specified in C++0x [basic.compound]. |
| 6649 | inline bool Type::isCompoundType() const { |
| 6650 | // C++0x [basic.compound]p1: |
| 6651 | // Compound types can be constructed in the following ways: |
| 6652 | // -- arrays of objects of a given type [...]; |
| 6653 | return isArrayType() || |
| 6654 | // -- functions, which have parameters of given types [...]; |
| 6655 | isFunctionType() || |
| 6656 | // -- pointers to void or objects or functions [...]; |
| 6657 | isPointerType() || |
| 6658 | // -- references to objects or functions of a given type. [...] |
| 6659 | isReferenceType() || |
| 6660 | // -- classes containing a sequence of objects of various types, [...]; |
| 6661 | isRecordType() || |
| 6662 | // -- unions, which are classes capable of containing objects of different |
| 6663 | // types at different times; |
| 6664 | isUnionType() || |
| 6665 | // -- enumerations, which comprise a set of named constant values. [...]; |
| 6666 | isEnumeralType() || |
| 6667 | // -- pointers to non-static class members, [...]. |
| 6668 | isMemberPointerType(); |
| 6669 | } |
| 6670 | |
| 6671 | inline bool Type::isFunctionType() const { |
| 6672 | return isa<FunctionType>(CanonicalType); |
| 6673 | } |
| 6674 | |
| 6675 | inline bool Type::isPointerType() const { |
| 6676 | return isa<PointerType>(CanonicalType); |
| 6677 | } |
| 6678 | |
| 6679 | inline bool Type::isAnyPointerType() const { |
| 6680 | return isPointerType() || isObjCObjectPointerType(); |
| 6681 | } |
| 6682 | |
| 6683 | inline bool Type::isBlockPointerType() const { |
| 6684 | return isa<BlockPointerType>(CanonicalType); |
| 6685 | } |
| 6686 | |
| 6687 | inline bool Type::isReferenceType() const { |
| 6688 | return isa<ReferenceType>(CanonicalType); |
| 6689 | } |
| 6690 | |
| 6691 | inline bool Type::isLValueReferenceType() const { |
| 6692 | return isa<LValueReferenceType>(CanonicalType); |
| 6693 | } |
| 6694 | |
| 6695 | inline bool Type::isRValueReferenceType() const { |
| 6696 | return isa<RValueReferenceType>(CanonicalType); |
| 6697 | } |
| 6698 | |
| 6699 | inline bool Type::isObjectPointerType() const { |
| 6700 | // Note: an "object pointer type" is not the same thing as a pointer to an |
| 6701 | // object type; rather, it is a pointer to an object type or a pointer to cv |
| 6702 | // void. |
| 6703 | if (const auto *T = getAs<PointerType>()) |
| 6704 | return !T->getPointeeType()->isFunctionType(); |
| 6705 | else |
| 6706 | return false; |
| 6707 | } |
| 6708 | |
| 6709 | inline bool Type::isFunctionPointerType() const { |
| 6710 | if (const auto *T = getAs<PointerType>()) |
| 6711 | return T->getPointeeType()->isFunctionType(); |
| 6712 | else |
| 6713 | return false; |
| 6714 | } |
| 6715 | |
| 6716 | inline bool Type::isFunctionReferenceType() const { |
| 6717 | if (const auto *T = getAs<ReferenceType>()) |
| 6718 | return T->getPointeeType()->isFunctionType(); |
| 6719 | else |
| 6720 | return false; |
| 6721 | } |
| 6722 | |
| 6723 | inline bool Type::isMemberPointerType() const { |
| 6724 | return isa<MemberPointerType>(CanonicalType); |
| 6725 | } |
| 6726 | |
| 6727 | inline bool Type::isMemberFunctionPointerType() const { |
| 6728 | if (const auto *T = getAs<MemberPointerType>()) |
| 6729 | return T->isMemberFunctionPointer(); |
| 6730 | else |
| 6731 | return false; |
| 6732 | } |
| 6733 | |
| 6734 | inline bool Type::isMemberDataPointerType() const { |
| 6735 | if (const auto *T = getAs<MemberPointerType>()) |
| 6736 | return T->isMemberDataPointer(); |
| 6737 | else |
| 6738 | return false; |
| 6739 | } |
| 6740 | |
| 6741 | inline bool Type::isArrayType() const { |
| 6742 | return isa<ArrayType>(CanonicalType); |
| 6743 | } |
| 6744 | |
| 6745 | inline bool Type::isConstantArrayType() const { |
| 6746 | return isa<ConstantArrayType>(CanonicalType); |
| 6747 | } |
| 6748 | |
| 6749 | inline bool Type::isIncompleteArrayType() const { |
| 6750 | return isa<IncompleteArrayType>(CanonicalType); |
| 6751 | } |
| 6752 | |
| 6753 | inline bool Type::isVariableArrayType() const { |
| 6754 | return isa<VariableArrayType>(CanonicalType); |
| 6755 | } |
| 6756 | |
| 6757 | inline bool Type::isDependentSizedArrayType() const { |
| 6758 | return isa<DependentSizedArrayType>(CanonicalType); |
| 6759 | } |
| 6760 | |
| 6761 | inline bool Type::isBuiltinType() const { |
| 6762 | return isa<BuiltinType>(CanonicalType); |
| 6763 | } |
| 6764 | |
| 6765 | inline bool Type::isRecordType() const { |
| 6766 | return isa<RecordType>(CanonicalType); |
| 6767 | } |
| 6768 | |
| 6769 | inline bool Type::isEnumeralType() const { |
| 6770 | return isa<EnumType>(CanonicalType); |
| 6771 | } |
| 6772 | |
| 6773 | inline bool Type::isAnyComplexType() const { |
| 6774 | return isa<ComplexType>(CanonicalType); |
| 6775 | } |
| 6776 | |
| 6777 | inline bool Type::isVectorType() const { |
| 6778 | return isa<VectorType>(CanonicalType); |
| 6779 | } |
| 6780 | |
| 6781 | inline bool Type::isExtVectorType() const { |
| 6782 | return isa<ExtVectorType>(CanonicalType); |
| 6783 | } |
| 6784 | |
| 6785 | inline bool Type::isMatrixType() const { |
| 6786 | return isa<MatrixType>(CanonicalType); |
| 6787 | } |
| 6788 | |
| 6789 | inline bool Type::isConstantMatrixType() const { |
| 6790 | return isa<ConstantMatrixType>(CanonicalType); |
| 6791 | } |
| 6792 | |
| 6793 | inline bool Type::isDependentAddressSpaceType() const { |
| 6794 | return isa<DependentAddressSpaceType>(CanonicalType); |
| 6795 | } |
| 6796 | |
| 6797 | inline bool Type::isObjCObjectPointerType() const { |
| 6798 | return isa<ObjCObjectPointerType>(CanonicalType); |
| 6799 | } |
| 6800 | |
| 6801 | inline bool Type::isObjCObjectType() const { |
| 6802 | return isa<ObjCObjectType>(CanonicalType); |
| 6803 | } |
| 6804 | |
| 6805 | inline bool Type::isObjCObjectOrInterfaceType() const { |
| 6806 | return isa<ObjCInterfaceType>(CanonicalType) || |
| 6807 | isa<ObjCObjectType>(CanonicalType); |
| 6808 | } |
| 6809 | |
| 6810 | inline bool Type::isAtomicType() const { |
| 6811 | return isa<AtomicType>(CanonicalType); |
| 6812 | } |
| 6813 | |
| 6814 | inline bool Type::isUndeducedAutoType() const { |
| 6815 | return isa<AutoType>(CanonicalType); |
| 6816 | } |
| 6817 | |
| 6818 | inline bool Type::isObjCQualifiedIdType() const { |
| 6819 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) |
| 6820 | return OPT->isObjCQualifiedIdType(); |
| 6821 | return false; |
| 6822 | } |
| 6823 | |
| 6824 | inline bool Type::isObjCQualifiedClassType() const { |
| 6825 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) |
| 6826 | return OPT->isObjCQualifiedClassType(); |
| 6827 | return false; |
| 6828 | } |
| 6829 | |
| 6830 | inline bool Type::isObjCIdType() const { |
| 6831 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) |
| 6832 | return OPT->isObjCIdType(); |
| 6833 | return false; |
| 6834 | } |
| 6835 | |
| 6836 | inline bool Type::isObjCClassType() const { |
| 6837 | if (const auto *OPT = getAs<ObjCObjectPointerType>()) |
| 6838 | return OPT->isObjCClassType(); |
| 6839 | return false; |
| 6840 | } |
| 6841 | |
| 6842 | inline bool Type::isObjCSelType() const { |
| 6843 | if (const auto *OPT = getAs<PointerType>()) |
| 6844 | return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel); |
| 6845 | return false; |
| 6846 | } |
| 6847 | |
| 6848 | inline bool Type::isObjCBuiltinType() const { |
| 6849 | return isObjCIdType() || isObjCClassType() || isObjCSelType(); |
| 6850 | } |
| 6851 | |
| 6852 | inline bool Type::isDecltypeType() const { |
| 6853 | return isa<DecltypeType>(this); |
| 6854 | } |
| 6855 | |
| 6856 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| 6857 | inline bool Type::is##Id##Type() const { \ |
| 6858 | return isSpecificBuiltinType(BuiltinType::Id); \ |
| 6859 | } |
| 6860 | #include "clang/Basic/OpenCLImageTypes.def" |
| 6861 | |
| 6862 | inline bool Type::isSamplerT() const { |
| 6863 | return isSpecificBuiltinType(BuiltinType::OCLSampler); |
| 6864 | } |
| 6865 | |
| 6866 | inline bool Type::isEventT() const { |
| 6867 | return isSpecificBuiltinType(BuiltinType::OCLEvent); |
| 6868 | } |
| 6869 | |
| 6870 | inline bool Type::isClkEventT() const { |
| 6871 | return isSpecificBuiltinType(BuiltinType::OCLClkEvent); |
| 6872 | } |
| 6873 | |
| 6874 | inline bool Type::isQueueT() const { |
| 6875 | return isSpecificBuiltinType(BuiltinType::OCLQueue); |
| 6876 | } |
| 6877 | |
| 6878 | inline bool Type::isReserveIDT() const { |
| 6879 | return isSpecificBuiltinType(BuiltinType::OCLReserveID); |
| 6880 | } |
| 6881 | |
| 6882 | inline bool Type::isImageType() const { |
| 6883 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() || |
| 6884 | return |
| 6885 | #include "clang/Basic/OpenCLImageTypes.def" |
| 6886 | false; // end boolean or operation |
| 6887 | } |
| 6888 | |
| 6889 | inline bool Type::isPipeType() const { |
| 6890 | return isa<PipeType>(CanonicalType); |
| 6891 | } |
| 6892 | |
| 6893 | inline bool Type::isExtIntType() const { |
| 6894 | return isa<ExtIntType>(CanonicalType); |
| 6895 | } |
| 6896 | |
| 6897 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
| 6898 | inline bool Type::is##Id##Type() const { \ |
| 6899 | return isSpecificBuiltinType(BuiltinType::Id); \ |
| 6900 | } |
| 6901 | #include "clang/Basic/OpenCLExtensionTypes.def" |
| 6902 | |
| 6903 | inline bool Type::isOCLIntelSubgroupAVCType() const { |
| 6904 | #define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \ |
| 6905 | isOCLIntelSubgroupAVC##Id##Type() || |
| 6906 | return |
| 6907 | #include "clang/Basic/OpenCLExtensionTypes.def" |
| 6908 | false; // end of boolean or operation |
| 6909 | } |
| 6910 | |
| 6911 | inline bool Type::isOCLExtOpaqueType() const { |
| 6912 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() || |
| 6913 | return |
| 6914 | #include "clang/Basic/OpenCLExtensionTypes.def" |
| 6915 | false; // end of boolean or operation |
| 6916 | } |
| 6917 | |
| 6918 | inline bool Type::isOpenCLSpecificType() const { |
| 6919 | return isSamplerT() || isEventT() || isImageType() || isClkEventT() || |
| 6920 | isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType(); |
| 6921 | } |
| 6922 | |
| 6923 | inline bool Type::isTemplateTypeParmType() const { |
| 6924 | return isa<TemplateTypeParmType>(CanonicalType); |
| 6925 | } |
| 6926 | |
| 6927 | inline bool Type::isSpecificBuiltinType(unsigned K) const { |
| 6928 | if (const BuiltinType *BT = getAs<BuiltinType>()) { |
| 6929 | return BT->getKind() == static_cast<BuiltinType::Kind>(K); |
| 6930 | } |
| 6931 | return false; |
| 6932 | } |
| 6933 | |
| 6934 | inline bool Type::isPlaceholderType() const { |
| 6935 | if (const auto *BT = dyn_cast<BuiltinType>(this)) |
| 6936 | return BT->isPlaceholderType(); |
| 6937 | return false; |
| 6938 | } |
| 6939 | |
| 6940 | inline const BuiltinType *Type::getAsPlaceholderType() const { |
| 6941 | if (const auto *BT = dyn_cast<BuiltinType>(this)) |
| 6942 | if (BT->isPlaceholderType()) |
| 6943 | return BT; |
| 6944 | return nullptr; |
| 6945 | } |
| 6946 | |
| 6947 | inline bool Type::isSpecificPlaceholderType(unsigned K) const { |
| 6948 | assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))((void)0); |
| 6949 | return isSpecificBuiltinType(K); |
| 6950 | } |
| 6951 | |
| 6952 | inline bool Type::isNonOverloadPlaceholderType() const { |
| 6953 | if (const auto *BT = dyn_cast<BuiltinType>(this)) |
| 6954 | return BT->isNonOverloadPlaceholderType(); |
| 6955 | return false; |
| 6956 | } |
| 6957 | |
| 6958 | inline bool Type::isVoidType() const { |
| 6959 | return isSpecificBuiltinType(BuiltinType::Void); |
| 6960 | } |
| 6961 | |
| 6962 | inline bool Type::isHalfType() const { |
| 6963 | // FIXME: Should we allow complex __fp16? Probably not. |
| 6964 | return isSpecificBuiltinType(BuiltinType::Half); |
| 6965 | } |
| 6966 | |
| 6967 | inline bool Type::isFloat16Type() const { |
| 6968 | return isSpecificBuiltinType(BuiltinType::Float16); |
| 6969 | } |
| 6970 | |
| 6971 | inline bool Type::isBFloat16Type() const { |
| 6972 | return isSpecificBuiltinType(BuiltinType::BFloat16); |
| 6973 | } |
| 6974 | |
| 6975 | inline bool Type::isFloat128Type() const { |
| 6976 | return isSpecificBuiltinType(BuiltinType::Float128); |
| 6977 | } |
| 6978 | |
| 6979 | inline bool Type::isNullPtrType() const { |
| 6980 | return isSpecificBuiltinType(BuiltinType::NullPtr); |
| 6981 | } |
| 6982 | |
| 6983 | bool IsEnumDeclComplete(EnumDecl *); |
| 6984 | bool IsEnumDeclScoped(EnumDecl *); |
| 6985 | |
| 6986 | inline bool Type::isIntegerType() const { |
| 6987 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
| 6988 | return BT->getKind() >= BuiltinType::Bool && |
| 6989 | BT->getKind() <= BuiltinType::Int128; |
| 6990 | if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) { |
| 6991 | // Incomplete enum types are not treated as integer types. |
| 6992 | // FIXME: In C++, enum types are never integer types. |
| 6993 | return IsEnumDeclComplete(ET->getDecl()) && |
| 6994 | !IsEnumDeclScoped(ET->getDecl()); |
| 6995 | } |
| 6996 | return isExtIntType(); |
| 6997 | } |
| 6998 | |
| 6999 | inline bool Type::isFixedPointType() const { |
| 7000 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) { |
| 7001 | return BT->getKind() >= BuiltinType::ShortAccum && |
| 7002 | BT->getKind() <= BuiltinType::SatULongFract; |
| 7003 | } |
| 7004 | return false; |
| 7005 | } |
| 7006 | |
| 7007 | inline bool Type::isFixedPointOrIntegerType() const { |
| 7008 | return isFixedPointType() || isIntegerType(); |
| 7009 | } |
| 7010 | |
| 7011 | inline bool Type::isSaturatedFixedPointType() const { |
| 7012 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) { |
| 7013 | return BT->getKind() >= BuiltinType::SatShortAccum && |
| 7014 | BT->getKind() <= BuiltinType::SatULongFract; |
| 7015 | } |
| 7016 | return false; |
| 7017 | } |
| 7018 | |
| 7019 | inline bool Type::isUnsaturatedFixedPointType() const { |
| 7020 | return isFixedPointType() && !isSaturatedFixedPointType(); |
| 7021 | } |
| 7022 | |
| 7023 | inline bool Type::isSignedFixedPointType() const { |
| 7024 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) { |
| 7025 | return ((BT->getKind() >= BuiltinType::ShortAccum && |
| 7026 | BT->getKind() <= BuiltinType::LongAccum) || |
| 7027 | (BT->getKind() >= BuiltinType::ShortFract && |
| 7028 | BT->getKind() <= BuiltinType::LongFract) || |
| 7029 | (BT->getKind() >= BuiltinType::SatShortAccum && |
| 7030 | BT->getKind() <= BuiltinType::SatLongAccum) || |
| 7031 | (BT->getKind() >= BuiltinType::SatShortFract && |
| 7032 | BT->getKind() <= BuiltinType::SatLongFract)); |
| 7033 | } |
| 7034 | return false; |
| 7035 | } |
| 7036 | |
| 7037 | inline bool Type::isUnsignedFixedPointType() const { |
| 7038 | return isFixedPointType() && !isSignedFixedPointType(); |
| 7039 | } |
| 7040 | |
| 7041 | inline bool Type::isScalarType() const { |
| 7042 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
| 7043 | return BT->getKind() > BuiltinType::Void && |
| 7044 | BT->getKind() <= BuiltinType::NullPtr; |
| 7045 | if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) |
| 7046 | // Enums are scalar types, but only if they are defined. Incomplete enums |
| 7047 | // are not treated as scalar types. |
| 7048 | return IsEnumDeclComplete(ET->getDecl()); |
| 7049 | return isa<PointerType>(CanonicalType) || |
| 7050 | isa<BlockPointerType>(CanonicalType) || |
| 7051 | isa<MemberPointerType>(CanonicalType) || |
| 7052 | isa<ComplexType>(CanonicalType) || |
| 7053 | isa<ObjCObjectPointerType>(CanonicalType) || |
| 7054 | isExtIntType(); |
| 7055 | } |
| 7056 | |
| 7057 | inline bool Type::isIntegralOrEnumerationType() const { |
| 7058 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
| 7059 | return BT->getKind() >= BuiltinType::Bool && |
| 7060 | BT->getKind() <= BuiltinType::Int128; |
| 7061 | |
| 7062 | // Check for a complete enum type; incomplete enum types are not properly an |
| 7063 | // enumeration type in the sense required here. |
| 7064 | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) |
| 7065 | return IsEnumDeclComplete(ET->getDecl()); |
| 7066 | |
| 7067 | return isExtIntType(); |
| 7068 | } |
| 7069 | |
| 7070 | inline bool Type::isBooleanType() const { |
| 7071 | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) |
| 7072 | return BT->getKind() == BuiltinType::Bool; |
| 7073 | return false; |
| 7074 | } |
| 7075 | |
| 7076 | inline bool Type::isUndeducedType() const { |
| 7077 | auto *DT = getContainedDeducedType(); |
| 7078 | return DT && !DT->isDeduced(); |
| 7079 | } |
| 7080 | |
| 7081 | /// Determines whether this is a type for which one can define |
| 7082 | /// an overloaded operator. |
| 7083 | inline bool Type::isOverloadableType() const { |
| 7084 | return isDependentType() || isRecordType() || isEnumeralType(); |
| 7085 | } |
| 7086 | |
| 7087 | /// Determines whether this type is written as a typedef-name. |
| 7088 | inline bool Type::isTypedefNameType() const { |
| 7089 | if (getAs<TypedefType>()) |
| 7090 | return true; |
| 7091 | if (auto *TST = getAs<TemplateSpecializationType>()) |
| 7092 | return TST->isTypeAlias(); |
| 7093 | return false; |
| 7094 | } |
| 7095 | |
| 7096 | /// Determines whether this type can decay to a pointer type. |
| 7097 | inline bool Type::canDecayToPointerType() const { |
| 7098 | return isFunctionType() || isArrayType(); |
| 7099 | } |
| 7100 | |
| 7101 | inline bool Type::hasPointerRepresentation() const { |
| 7102 | return (isPointerType() || isReferenceType() || isBlockPointerType() || |
| 7103 | isObjCObjectPointerType() || isNullPtrType()); |
| 7104 | } |
| 7105 | |
| 7106 | inline bool Type::hasObjCPointerRepresentation() const { |
| 7107 | return isObjCObjectPointerType(); |
| 7108 | } |
| 7109 | |
| 7110 | inline const Type *Type::getBaseElementTypeUnsafe() const { |
| 7111 | const Type *type = this; |
| 7112 | while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe()) |
| 7113 | type = arrayType->getElementType().getTypePtr(); |
| 7114 | return type; |
| 7115 | } |
| 7116 | |
| 7117 | inline const Type *Type::getPointeeOrArrayElementType() const { |
| 7118 | const Type *type = this; |
| 7119 | if (type->isAnyPointerType()) |
| 7120 | return type->getPointeeType().getTypePtr(); |
| 7121 | else if (type->isArrayType()) |
| 7122 | return type->getBaseElementTypeUnsafe(); |
| 7123 | return type; |
| 7124 | } |
| 7125 | /// Insertion operator for partial diagnostics. This allows sending adress |
| 7126 | /// spaces into a diagnostic with <<. |
| 7127 | inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD, |
| 7128 | LangAS AS) { |
| 7129 | PD.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS), |
| 7130 | DiagnosticsEngine::ArgumentKind::ak_addrspace); |
| 7131 | return PD; |
| 7132 | } |
| 7133 | |
| 7134 | /// Insertion operator for partial diagnostics. This allows sending Qualifiers |
| 7135 | /// into a diagnostic with <<. |
| 7136 | inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD, |
| 7137 | Qualifiers Q) { |
| 7138 | PD.AddTaggedVal(Q.getAsOpaqueValue(), |
| 7139 | DiagnosticsEngine::ArgumentKind::ak_qual); |
| 7140 | return PD; |
| 7141 | } |
| 7142 | |
| 7143 | /// Insertion operator for partial diagnostics. This allows sending QualType's |
| 7144 | /// into a diagnostic with <<. |
| 7145 | inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD, |
| 7146 | QualType T) { |
| 7147 | PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()), |
| 7148 | DiagnosticsEngine::ak_qualtype); |
| 7149 | return PD; |
| 7150 | } |
| 7151 | |
| 7152 | // Helper class template that is used by Type::getAs to ensure that one does |
| 7153 | // not try to look through a qualified type to get to an array type. |
| 7154 | template <typename T> |
| 7155 | using TypeIsArrayType = |
| 7156 | std::integral_constant<bool, std::is_same<T, ArrayType>::value || |
| 7157 | std::is_base_of<ArrayType, T>::value>; |
| 7158 | |
| 7159 | // Member-template getAs<specific type>'. |
| 7160 | template <typename T> const T *Type::getAs() const { |
| 7161 | static_assert(!TypeIsArrayType<T>::value, |
| 7162 | "ArrayType cannot be used with getAs!"); |
| 7163 | |
| 7164 | // If this is directly a T type, return it. |
| 7165 | if (const auto *Ty = dyn_cast<T>(this)) |
| 7166 | return Ty; |
| 7167 | |
| 7168 | // If the canonical form of this type isn't the right kind, reject it. |
| 7169 | if (!isa<T>(CanonicalType)) |
| 7170 | return nullptr; |
| 7171 | |
| 7172 | // If this is a typedef for the type, strip the typedef off without |
| 7173 | // losing all typedef information. |
| 7174 | return cast<T>(getUnqualifiedDesugaredType()); |
| 7175 | } |
| 7176 | |
| 7177 | template <typename T> const T *Type::getAsAdjusted() const { |
| 7178 | static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!"); |
| 7179 | |
| 7180 | // If this is directly a T type, return it. |
| 7181 | if (const auto *Ty = dyn_cast<T>(this)) |
| 7182 | return Ty; |
| 7183 | |
| 7184 | // If the canonical form of this type isn't the right kind, reject it. |
| 7185 | if (!isa<T>(CanonicalType)) |
| 7186 | return nullptr; |
| 7187 | |
| 7188 | // Strip off type adjustments that do not modify the underlying nature of the |
| 7189 | // type. |
| 7190 | const Type *Ty = this; |
| 7191 | while (Ty) { |
| 7192 | if (const auto *A = dyn_cast<AttributedType>(Ty)) |
| 7193 | Ty = A->getModifiedType().getTypePtr(); |
| 7194 | else if (const auto *E = dyn_cast<ElaboratedType>(Ty)) |
| 7195 | Ty = E->desugar().getTypePtr(); |
| 7196 | else if (const auto *P = dyn_cast<ParenType>(Ty)) |
| 7197 | Ty = P->desugar().getTypePtr(); |
| 7198 | else if (const auto *A = dyn_cast<AdjustedType>(Ty)) |
| 7199 | Ty = A->desugar().getTypePtr(); |
| 7200 | else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty)) |
| 7201 | Ty = M->desugar().getTypePtr(); |
| 7202 | else |
| 7203 | break; |
| 7204 | } |
| 7205 | |
| 7206 | // Just because the canonical type is correct does not mean we can use cast<>, |
| 7207 | // since we may not have stripped off all the sugar down to the base type. |
| 7208 | return dyn_cast<T>(Ty); |
| 7209 | } |
| 7210 | |
| 7211 | inline const ArrayType *Type::getAsArrayTypeUnsafe() const { |
| 7212 | // If this is directly an array type, return it. |
| 7213 | if (const auto *arr = dyn_cast<ArrayType>(this)) |
| 7214 | return arr; |
| 7215 | |
| 7216 | // If the canonical form of this type isn't the right kind, reject it. |
| 7217 | if (!isa<ArrayType>(CanonicalType)) |
| 7218 | return nullptr; |
| 7219 | |
| 7220 | // If this is a typedef for the type, strip the typedef off without |
| 7221 | // losing all typedef information. |
| 7222 | return cast<ArrayType>(getUnqualifiedDesugaredType()); |
| 7223 | } |
| 7224 | |
| 7225 | template <typename T> const T *Type::castAs() const { |
| 7226 | static_assert(!TypeIsArrayType<T>::value, |
| 7227 | "ArrayType cannot be used with castAs!"); |
| 7228 | |
| 7229 | if (const auto *ty = dyn_cast<T>(this)) return ty; |
| 7230 | assert(isa<T>(CanonicalType))((void)0); |
| 7231 | return cast<T>(getUnqualifiedDesugaredType()); |
| 7232 | } |
| 7233 | |
| 7234 | inline const ArrayType *Type::castAsArrayTypeUnsafe() const { |
| 7235 | assert(isa<ArrayType>(CanonicalType))((void)0); |
| 7236 | if (const auto *arr = dyn_cast<ArrayType>(this)) return arr; |
| 7237 | return cast<ArrayType>(getUnqualifiedDesugaredType()); |
| 7238 | } |
| 7239 | |
| 7240 | DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr, |
| 7241 | QualType CanonicalPtr) |
| 7242 | : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) { |
| 7243 | #ifndef NDEBUG1 |
| 7244 | QualType Adjusted = getAdjustedType(); |
| 7245 | (void)AttributedType::stripOuterNullability(Adjusted); |
| 7246 | assert(isa<PointerType>(Adjusted))((void)0); |
| 7247 | #endif |
| 7248 | } |
| 7249 | |
| 7250 | QualType DecayedType::getPointeeType() const { |
| 7251 | QualType Decayed = getDecayedType(); |
| 7252 | (void)AttributedType::stripOuterNullability(Decayed); |
| 7253 | return cast<PointerType>(Decayed)->getPointeeType(); |
| 7254 | } |
| 7255 | |
| 7256 | // Get the decimal string representation of a fixed point type, represented |
| 7257 | // as a scaled integer. |
| 7258 | // TODO: At some point, we should change the arguments to instead just accept an |
| 7259 | // APFixedPoint instead of APSInt and scale. |
| 7260 | void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val, |
| 7261 | unsigned Scale); |
| 7262 | |
| 7263 | } // namespace clang |
| 7264 | |
| 7265 | #endif // LLVM_CLANG_AST_TYPE_H |
| 1 | //===- llvm/ADT/PointerUnion.h - Discriminated Union of 2 Ptrs --*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the PointerUnion class, which is a discriminated union of |
| 10 | // pointer types. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_ADT_POINTERUNION_H |
| 15 | #define LLVM_ADT_POINTERUNION_H |
| 16 | |
| 17 | #include "llvm/ADT/DenseMapInfo.h" |
| 18 | #include "llvm/ADT/PointerIntPair.h" |
| 19 | #include "llvm/Support/PointerLikeTypeTraits.h" |
| 20 | #include <cassert> |
| 21 | #include <cstddef> |
| 22 | #include <cstdint> |
| 23 | |
| 24 | namespace llvm { |
| 25 | |
| 26 | template <typename T> struct PointerUnionTypeSelectorReturn { |
| 27 | using Return = T; |
| 28 | }; |
| 29 | |
| 30 | /// Get a type based on whether two types are the same or not. |
| 31 | /// |
| 32 | /// For: |
| 33 | /// |
| 34 | /// \code |
| 35 | /// using Ret = typename PointerUnionTypeSelector<T1, T2, EQ, NE>::Return; |
| 36 | /// \endcode |
| 37 | /// |
| 38 | /// Ret will be EQ type if T1 is same as T2 or NE type otherwise. |
| 39 | template <typename T1, typename T2, typename RET_EQ, typename RET_NE> |
| 40 | struct PointerUnionTypeSelector { |
| 41 | using Return = typename PointerUnionTypeSelectorReturn<RET_NE>::Return; |
| 42 | }; |
| 43 | |
| 44 | template <typename T, typename RET_EQ, typename RET_NE> |
| 45 | struct PointerUnionTypeSelector<T, T, RET_EQ, RET_NE> { |
| 46 | using Return = typename PointerUnionTypeSelectorReturn<RET_EQ>::Return; |
| 47 | }; |
| 48 | |
| 49 | template <typename T1, typename T2, typename RET_EQ, typename RET_NE> |
| 50 | struct PointerUnionTypeSelectorReturn< |
| 51 | PointerUnionTypeSelector<T1, T2, RET_EQ, RET_NE>> { |
| 52 | using Return = |
| 53 | typename PointerUnionTypeSelector<T1, T2, RET_EQ, RET_NE>::Return; |
| 54 | }; |
| 55 | |
| 56 | namespace pointer_union_detail { |
| 57 | /// Determine the number of bits required to store integers with values < n. |
| 58 | /// This is ceil(log2(n)). |
| 59 | constexpr int bitsRequired(unsigned n) { |
| 60 | return n > 1 ? 1 + bitsRequired((n + 1) / 2) : 0; |
| 61 | } |
| 62 | |
| 63 | template <typename... Ts> constexpr int lowBitsAvailable() { |
| 64 | return std::min<int>({PointerLikeTypeTraits<Ts>::NumLowBitsAvailable...}); |
| 65 | } |
| 66 | |
| 67 | /// Find the index of a type in a list of types. TypeIndex<T, Us...>::Index |
| 68 | /// is the index of T in Us, or sizeof...(Us) if T does not appear in the |
| 69 | /// list. |
| 70 | template <typename T, typename ...Us> struct TypeIndex; |
| 71 | template <typename T, typename ...Us> struct TypeIndex<T, T, Us...> { |
| 72 | static constexpr int Index = 0; |
| 73 | }; |
| 74 | template <typename T, typename U, typename... Us> |
| 75 | struct TypeIndex<T, U, Us...> { |
| 76 | static constexpr int Index = 1 + TypeIndex<T, Us...>::Index; |
| 77 | }; |
| 78 | template <typename T> struct TypeIndex<T> { |
| 79 | static constexpr int Index = 0; |
| 80 | }; |
| 81 | |
| 82 | /// Find the first type in a list of types. |
| 83 | template <typename T, typename...> struct GetFirstType { |
| 84 | using type = T; |
| 85 | }; |
| 86 | |
| 87 | /// Provide PointerLikeTypeTraits for void* that is used by PointerUnion |
| 88 | /// for the template arguments. |
| 89 | template <typename ...PTs> class PointerUnionUIntTraits { |
| 90 | public: |
| 91 | static inline void *getAsVoidPointer(void *P) { return P; } |
| 92 | static inline void *getFromVoidPointer(void *P) { return P; } |
| 93 | static constexpr int NumLowBitsAvailable = lowBitsAvailable<PTs...>(); |
| 94 | }; |
| 95 | |
| 96 | template <typename Derived, typename ValTy, int I, typename ...Types> |
| 97 | class PointerUnionMembers; |
| 98 | |
| 99 | template <typename Derived, typename ValTy, int I> |
| 100 | class PointerUnionMembers<Derived, ValTy, I> { |
| 101 | protected: |
| 102 | ValTy Val; |
| 103 | PointerUnionMembers() = default; |
| 104 | PointerUnionMembers(ValTy Val) : Val(Val) {} |
| 105 | |
| 106 | friend struct PointerLikeTypeTraits<Derived>; |
| 107 | }; |
| 108 | |
| 109 | template <typename Derived, typename ValTy, int I, typename Type, |
| 110 | typename ...Types> |
| 111 | class PointerUnionMembers<Derived, ValTy, I, Type, Types...> |
| 112 | : public PointerUnionMembers<Derived, ValTy, I + 1, Types...> { |
| 113 | using Base = PointerUnionMembers<Derived, ValTy, I + 1, Types...>; |
| 114 | public: |
| 115 | using Base::Base; |
| 116 | PointerUnionMembers() = default; |
| 117 | PointerUnionMembers(Type V) |
| 118 | : Base(ValTy(const_cast<void *>( |
| 119 | PointerLikeTypeTraits<Type>::getAsVoidPointer(V)), |
| 120 | I)) {} |
| 121 | |
| 122 | using Base::operator=; |
| 123 | Derived &operator=(Type V) { |
| 124 | this->Val = ValTy( |
| 125 | const_cast<void *>(PointerLikeTypeTraits<Type>::getAsVoidPointer(V)), |
| 126 | I); |
| 127 | return static_cast<Derived &>(*this); |
| 128 | }; |
| 129 | }; |
| 130 | } |
| 131 | |
| 132 | /// A discriminated union of two or more pointer types, with the discriminator |
| 133 | /// in the low bit of the pointer. |
| 134 | /// |
| 135 | /// This implementation is extremely efficient in space due to leveraging the |
| 136 | /// low bits of the pointer, while exposing a natural and type-safe API. |
| 137 | /// |
| 138 | /// Common use patterns would be something like this: |
| 139 | /// PointerUnion<int*, float*> P; |
| 140 | /// P = (int*)0; |
| 141 | /// printf("%d %d", P.is<int*>(), P.is<float*>()); // prints "1 0" |
| 142 | /// X = P.get<int*>(); // ok. |
| 143 | /// Y = P.get<float*>(); // runtime assertion failure. |
| 144 | /// Z = P.get<double*>(); // compile time failure. |
| 145 | /// P = (float*)0; |
| 146 | /// Y = P.get<float*>(); // ok. |
| 147 | /// X = P.get<int*>(); // runtime assertion failure. |
| 148 | template <typename... PTs> |
| 149 | class PointerUnion |
| 150 | : public pointer_union_detail::PointerUnionMembers< |
| 151 | PointerUnion<PTs...>, |
| 152 | PointerIntPair< |
| 153 | void *, pointer_union_detail::bitsRequired(sizeof...(PTs)), int, |
| 154 | pointer_union_detail::PointerUnionUIntTraits<PTs...>>, |
| 155 | 0, PTs...> { |
| 156 | // The first type is special because we want to directly cast a pointer to a |
| 157 | // default-initialized union to a pointer to the first type. But we don't |
| 158 | // want PointerUnion to be a 'template <typename First, typename ...Rest>' |
| 159 | // because it's much more convenient to have a name for the whole pack. So |
| 160 | // split off the first type here. |
| 161 | using First = typename pointer_union_detail::GetFirstType<PTs...>::type; |
| 162 | using Base = typename PointerUnion::PointerUnionMembers; |
| 163 | |
| 164 | public: |
| 165 | PointerUnion() = default; |
| 166 | |
| 167 | PointerUnion(std::nullptr_t) : PointerUnion() {} |
| 168 | using Base::Base; |
| 169 | |
| 170 | /// Test if the pointer held in the union is null, regardless of |
| 171 | /// which type it is. |
| 172 | bool isNull() const { return !this->Val.getPointer(); } |
| 173 | |
| 174 | explicit operator bool() const { return !isNull(); } |
| 175 | |
| 176 | /// Test if the Union currently holds the type matching T. |
| 177 | template <typename T> bool is() const { |
| 178 | constexpr int Index = pointer_union_detail::TypeIndex<T, PTs...>::Index; |
| 179 | static_assert(Index < sizeof...(PTs), |
| 180 | "PointerUnion::is<T> given type not in the union"); |
| 181 | return this->Val.getInt() == Index; |
| 182 | } |
| 183 | |
| 184 | /// Returns the value of the specified pointer type. |
| 185 | /// |
| 186 | /// If the specified pointer type is incorrect, assert. |
| 187 | template <typename T> T get() const { |
| 188 | assert(is<T>() && "Invalid accessor called")((void)0); |
| 189 | return PointerLikeTypeTraits<T>::getFromVoidPointer(this->Val.getPointer()); |
| 190 | } |
| 191 | |
| 192 | /// Returns the current pointer if it is of the specified pointer type, |
| 193 | /// otherwise returns null. |
| 194 | template <typename T> T dyn_cast() const { |
| 195 | if (is<T>()) |
| 196 | return get<T>(); |
| 197 | return T(); |
| 198 | } |
| 199 | |
| 200 | /// If the union is set to the first pointer type get an address pointing to |
| 201 | /// it. |
| 202 | First const *getAddrOfPtr1() const { |
| 203 | return const_cast<PointerUnion *>(this)->getAddrOfPtr1(); |
| 204 | } |
| 205 | |
| 206 | /// If the union is set to the first pointer type get an address pointing to |
| 207 | /// it. |
| 208 | First *getAddrOfPtr1() { |
| 209 | assert(is<First>() && "Val is not the first pointer")((void)0); |
| 210 | assert(((void)0) |
| 211 | PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) ==((void)0) |
| 212 | this->Val.getPointer() &&((void)0) |
| 213 | "Can't get the address because PointerLikeTypeTraits changes the ptr")((void)0); |
| 214 | return const_cast<First *>( |
| 215 | reinterpret_cast<const First *>(this->Val.getAddrOfPointer())); |
| 216 | } |
| 217 | |
| 218 | /// Assignment from nullptr which just clears the union. |
| 219 | const PointerUnion &operator=(std::nullptr_t) { |
| 220 | this->Val.initWithPointer(nullptr); |
| 221 | return *this; |
| 222 | } |
| 223 | |
| 224 | /// Assignment from elements of the union. |
| 225 | using Base::operator=; |
| 226 | |
| 227 | void *getOpaqueValue() const { return this->Val.getOpaqueValue(); } |
| 228 | static inline PointerUnion getFromOpaqueValue(void *VP) { |
| 229 | PointerUnion V; |
| 230 | V.Val = decltype(V.Val)::getFromOpaqueValue(VP); |
| 231 | return V; |
| 232 | } |
| 233 | }; |
| 234 | |
| 235 | template <typename ...PTs> |
| 236 | bool operator==(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) { |
| 237 | return lhs.getOpaqueValue() == rhs.getOpaqueValue(); |
| 238 | } |
| 239 | |
| 240 | template <typename ...PTs> |
| 241 | bool operator!=(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) { |
| 242 | return lhs.getOpaqueValue() != rhs.getOpaqueValue(); |
| 243 | } |
| 244 | |
| 245 | template <typename ...PTs> |
| 246 | bool operator<(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) { |
| 247 | return lhs.getOpaqueValue() < rhs.getOpaqueValue(); |
| 248 | } |
| 249 | |
| 250 | // Teach SmallPtrSet that PointerUnion is "basically a pointer", that has |
| 251 | // # low bits available = min(PT1bits,PT2bits)-1. |
| 252 | template <typename ...PTs> |
| 253 | struct PointerLikeTypeTraits<PointerUnion<PTs...>> { |
| 254 | static inline void *getAsVoidPointer(const PointerUnion<PTs...> &P) { |
| 255 | return P.getOpaqueValue(); |
| 256 | } |
| 257 | |
| 258 | static inline PointerUnion<PTs...> getFromVoidPointer(void *P) { |
| 259 | return PointerUnion<PTs...>::getFromOpaqueValue(P); |
| 260 | } |
| 261 | |
| 262 | // The number of bits available are the min of the pointer types minus the |
| 263 | // bits needed for the discriminator. |
| 264 | static constexpr int NumLowBitsAvailable = PointerLikeTypeTraits<decltype( |
| 265 | PointerUnion<PTs...>::Val)>::NumLowBitsAvailable; |
| 266 | }; |
| 267 | |
| 268 | // Teach DenseMap how to use PointerUnions as keys. |
| 269 | template <typename ...PTs> struct DenseMapInfo<PointerUnion<PTs...>> { |
| 270 | using Union = PointerUnion<PTs...>; |
| 271 | using FirstInfo = |
| 272 | DenseMapInfo<typename pointer_union_detail::GetFirstType<PTs...>::type>; |
| 273 | |
| 274 | static inline Union getEmptyKey() { return Union(FirstInfo::getEmptyKey()); } |
| 275 | |
| 276 | static inline Union getTombstoneKey() { |
| 277 | return Union(FirstInfo::getTombstoneKey()); |
| 278 | } |
| 279 | |
| 280 | static unsigned getHashValue(const Union &UnionVal) { |
| 281 | intptr_t key = (intptr_t)UnionVal.getOpaqueValue(); |
| 282 | return DenseMapInfo<intptr_t>::getHashValue(key); |
| 283 | } |
| 284 | |
| 285 | static bool isEqual(const Union &LHS, const Union &RHS) { |
| 286 | return LHS == RHS; |
| 287 | } |
| 288 | }; |
| 289 | |
| 290 | } // end namespace llvm |
| 291 | |
| 292 | #endif // LLVM_ADT_POINTERUNION_H |