Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h
Warning:line 85, column 47
The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Type.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -fhalf-no-semantic-interposition -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -D PIC -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -D_RET_PROTECTOR -ret-protector -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/IR/Type.cpp

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/IR/Type.cpp

1//===- Type.cpp - Implement the Type class --------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Type class for the IR library.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/IR/Type.h"
14#include "LLVMContextImpl.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/None.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/ADT/StringMap.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/IR/Constant.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/DerivedTypes.h"
23#include "llvm/IR/LLVMContext.h"
24#include "llvm/IR/Module.h"
25#include "llvm/IR/Value.h"
26#include "llvm/Support/Casting.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/TypeSize.h"
29#include "llvm/Support/raw_ostream.h"
30#include <cassert>
31#include <utility>
32
33using namespace llvm;
34
35//===----------------------------------------------------------------------===//
36// Type Class Implementation
37//===----------------------------------------------------------------------===//
38
39Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
40 switch (IDNumber) {
41 case VoidTyID : return getVoidTy(C);
42 case HalfTyID : return getHalfTy(C);
43 case BFloatTyID : return getBFloatTy(C);
44 case FloatTyID : return getFloatTy(C);
45 case DoubleTyID : return getDoubleTy(C);
46 case X86_FP80TyID : return getX86_FP80Ty(C);
47 case FP128TyID : return getFP128Ty(C);
48 case PPC_FP128TyID : return getPPC_FP128Ty(C);
49 case LabelTyID : return getLabelTy(C);
50 case MetadataTyID : return getMetadataTy(C);
51 case X86_MMXTyID : return getX86_MMXTy(C);
52 case X86_AMXTyID : return getX86_AMXTy(C);
53 case TokenTyID : return getTokenTy(C);
54 default:
55 return nullptr;
56 }
57}
58
59bool Type::isIntegerTy(unsigned Bitwidth) const {
60 return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
61}
62
63bool Type::isOpaquePointerTy() const {
64 if (auto *PTy = dyn_cast<PointerType>(this))
65 return PTy->isOpaque();
66 return false;
67}
68
69bool Type::canLosslesslyBitCastTo(Type *Ty) const {
70 // Identity cast means no change so return true
71 if (this == Ty)
72 return true;
73
74 // They are not convertible unless they are at least first class types
75 if (!this->isFirstClassType() || !Ty->isFirstClassType())
76 return false;
77
78 // Vector -> Vector conversions are always lossless if the two vector types
79 // have the same size, otherwise not.
80 if (isa<VectorType>(this) && isa<VectorType>(Ty))
81 return getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits();
82
83 // 64-bit fixed width vector types can be losslessly converted to x86mmx.
84 if (((isa<FixedVectorType>(this)) && Ty->isX86_MMXTy()) &&
85 getPrimitiveSizeInBits().getFixedSize() == 64)
86 return true;
87 if ((isX86_MMXTy() && isa<FixedVectorType>(Ty)) &&
88 Ty->getPrimitiveSizeInBits().getFixedSize() == 64)
89 return true;
90
91 // 8192-bit fixed width vector types can be losslessly converted to x86amx.
92 if (((isa<FixedVectorType>(this)) && Ty->isX86_AMXTy()) &&
93 getPrimitiveSizeInBits().getFixedSize() == 8192)
94 return true;
95 if ((isX86_AMXTy() && isa<FixedVectorType>(Ty)) &&
96 Ty->getPrimitiveSizeInBits().getFixedSize() == 8192)
97 return true;
98
99 // At this point we have only various mismatches of the first class types
100 // remaining and ptr->ptr. Just select the lossless conversions. Everything
101 // else is not lossless. Conservatively assume we can't losslessly convert
102 // between pointers with different address spaces.
103 if (auto *PTy = dyn_cast<PointerType>(this)) {
104 if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
105 return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
106 return false;
107 }
108 return false; // Other types have no identity values
109}
110
111bool Type::isEmptyTy() const {
112 if (auto *ATy = dyn_cast<ArrayType>(this)) {
113 unsigned NumElements = ATy->getNumElements();
114 return NumElements == 0 || ATy->getElementType()->isEmptyTy();
115 }
116
117 if (auto *STy = dyn_cast<StructType>(this)) {
118 unsigned NumElements = STy->getNumElements();
119 for (unsigned i = 0; i < NumElements; ++i)
120 if (!STy->getElementType(i)->isEmptyTy())
121 return false;
122 return true;
123 }
124
125 return false;
126}
127
128TypeSize Type::getPrimitiveSizeInBits() const {
129 switch (getTypeID()) {
130 case Type::HalfTyID: return TypeSize::Fixed(16);
131 case Type::BFloatTyID: return TypeSize::Fixed(16);
132 case Type::FloatTyID: return TypeSize::Fixed(32);
133 case Type::DoubleTyID: return TypeSize::Fixed(64);
134 case Type::X86_FP80TyID: return TypeSize::Fixed(80);
135 case Type::FP128TyID: return TypeSize::Fixed(128);
136 case Type::PPC_FP128TyID: return TypeSize::Fixed(128);
137 case Type::X86_MMXTyID: return TypeSize::Fixed(64);
138 case Type::X86_AMXTyID: return TypeSize::Fixed(8192);
139 case Type::IntegerTyID:
140 return TypeSize::Fixed(cast<IntegerType>(this)->getBitWidth());
141 case Type::FixedVectorTyID:
142 case Type::ScalableVectorTyID: {
143 const VectorType *VTy = cast<VectorType>(this);
144 ElementCount EC = VTy->getElementCount();
145 TypeSize ETS = VTy->getElementType()->getPrimitiveSizeInBits();
146 assert(!ETS.isScalable() && "Vector type should have fixed-width elements")((void)0);
147 return {ETS.getFixedSize() * EC.getKnownMinValue(), EC.isScalable()};
148 }
149 default: return TypeSize::Fixed(0);
150 }
151}
152
153unsigned Type::getScalarSizeInBits() const {
154 // It is safe to assume that the scalar types have a fixed size.
155 return getScalarType()->getPrimitiveSizeInBits().getFixedSize();
156}
157
158int Type::getFPMantissaWidth() const {
159 if (auto *VTy = dyn_cast<VectorType>(this))
160 return VTy->getElementType()->getFPMantissaWidth();
161 assert(isFloatingPointTy() && "Not a floating point type!")((void)0);
162 if (getTypeID() == HalfTyID) return 11;
163 if (getTypeID() == BFloatTyID) return 8;
164 if (getTypeID() == FloatTyID) return 24;
165 if (getTypeID() == DoubleTyID) return 53;
166 if (getTypeID() == X86_FP80TyID) return 64;
167 if (getTypeID() == FP128TyID) return 113;
168 assert(getTypeID() == PPC_FP128TyID && "unknown fp type")((void)0);
169 return -1;
170}
171
172bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
173 if (auto *ATy = dyn_cast<ArrayType>(this))
174 return ATy->getElementType()->isSized(Visited);
175
176 if (auto *VTy = dyn_cast<VectorType>(this))
177 return VTy->getElementType()->isSized(Visited);
178
179 return cast<StructType>(this)->isSized(Visited);
180}
181
182//===----------------------------------------------------------------------===//
183// Primitive 'Type' data
184//===----------------------------------------------------------------------===//
185
186Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
187Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
188Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
189Type *Type::getBFloatTy(LLVMContext &C) { return &C.pImpl->BFloatTy; }
190Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
191Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
192Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
193Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
194Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
195Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
196Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
197Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
198Type *Type::getX86_AMXTy(LLVMContext &C) { return &C.pImpl->X86_AMXTy; }
199
200IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
201IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
202IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
203IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
204IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
205IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
206
207IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
208 return IntegerType::get(C, N);
209}
210
211PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
212 return getHalfTy(C)->getPointerTo(AS);
213}
214
215PointerType *Type::getBFloatPtrTy(LLVMContext &C, unsigned AS) {
216 return getBFloatTy(C)->getPointerTo(AS);
217}
218
219PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
220 return getFloatTy(C)->getPointerTo(AS);
221}
222
223PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
224 return getDoubleTy(C)->getPointerTo(AS);
225}
226
227PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
228 return getX86_FP80Ty(C)->getPointerTo(AS);
229}
230
231PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
232 return getFP128Ty(C)->getPointerTo(AS);
233}
234
235PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
236 return getPPC_FP128Ty(C)->getPointerTo(AS);
237}
238
239PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
240 return getX86_MMXTy(C)->getPointerTo(AS);
241}
242
243PointerType *Type::getX86_AMXPtrTy(LLVMContext &C, unsigned AS) {
244 return getX86_AMXTy(C)->getPointerTo(AS);
245}
246
247PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
248 return getIntNTy(C, N)->getPointerTo(AS);
249}
250
251PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
252 return getInt1Ty(C)->getPointerTo(AS);
253}
254
255PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
256 return getInt8Ty(C)->getPointerTo(AS);
257}
258
259PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
260 return getInt16Ty(C)->getPointerTo(AS);
261}
262
263PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
264 return getInt32Ty(C)->getPointerTo(AS);
265}
266
267PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
268 return getInt64Ty(C)->getPointerTo(AS);
269}
270
271//===----------------------------------------------------------------------===//
272// IntegerType Implementation
273//===----------------------------------------------------------------------===//
274
275IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
276 assert(NumBits >= MIN_INT_BITS && "bitwidth too small")((void)0);
277 assert(NumBits <= MAX_INT_BITS && "bitwidth too large")((void)0);
278
279 // Check for the built-in integer types
280 switch (NumBits) {
281 case 1: return cast<IntegerType>(Type::getInt1Ty(C));
282 case 8: return cast<IntegerType>(Type::getInt8Ty(C));
283 case 16: return cast<IntegerType>(Type::getInt16Ty(C));
284 case 32: return cast<IntegerType>(Type::getInt32Ty(C));
285 case 64: return cast<IntegerType>(Type::getInt64Ty(C));
286 case 128: return cast<IntegerType>(Type::getInt128Ty(C));
287 default:
288 break;
289 }
290
291 IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
292
293 if (!Entry)
294 Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits);
295
296 return Entry;
297}
298
299APInt IntegerType::getMask() const {
300 return APInt::getAllOnesValue(getBitWidth());
301}
302
303//===----------------------------------------------------------------------===//
304// FunctionType Implementation
305//===----------------------------------------------------------------------===//
306
307FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
308 bool IsVarArgs)
309 : Type(Result->getContext(), FunctionTyID) {
310 Type **SubTys = reinterpret_cast<Type**>(this+1);
311 assert(isValidReturnType(Result) && "invalid return type for function")((void)0);
312 setSubclassData(IsVarArgs);
313
314 SubTys[0] = Result;
315
316 for (unsigned i = 0, e = Params.size(); i != e; ++i) {
317 assert(isValidArgumentType(Params[i]) &&((void)0)
318 "Not a valid type for function argument!")((void)0);
319 SubTys[i+1] = Params[i];
320 }
321
322 ContainedTys = SubTys;
323 NumContainedTys = Params.size() + 1; // + 1 for result type
324}
325
326// This is the factory function for the FunctionType class.
327FunctionType *FunctionType::get(Type *ReturnType,
328 ArrayRef<Type*> Params, bool isVarArg) {
329 LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
330 const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
331 FunctionType *FT;
332 // Since we only want to allocate a fresh function type in case none is found
333 // and we don't want to perform two lookups (one for checking if existent and
334 // one for inserting the newly allocated one), here we instead lookup based on
335 // Key and update the reference to the function type in-place to a newly
336 // allocated one if not found.
337 auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key);
338 if (Insertion.second) {
339 // The function type was not found. Allocate one and update FunctionTypes
340 // in-place.
341 FT = (FunctionType *)pImpl->Alloc.Allocate(
342 sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
343 alignof(FunctionType));
344 new (FT) FunctionType(ReturnType, Params, isVarArg);
345 *Insertion.first = FT;
346 } else {
347 // The function type was found. Just return it.
348 FT = *Insertion.first;
349 }
350 return FT;
351}
352
353FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
354 return get(Result, None, isVarArg);
355}
356
357bool FunctionType::isValidReturnType(Type *RetTy) {
358 return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
359 !RetTy->isMetadataTy();
360}
361
362bool FunctionType::isValidArgumentType(Type *ArgTy) {
363 return ArgTy->isFirstClassType();
364}
365
366//===----------------------------------------------------------------------===//
367// StructType Implementation
368//===----------------------------------------------------------------------===//
369
370// Primitive Constructors.
371
372StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
373 bool isPacked) {
374 LLVMContextImpl *pImpl = Context.pImpl;
375 const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
376
377 StructType *ST;
378 // Since we only want to allocate a fresh struct type in case none is found
379 // and we don't want to perform two lookups (one for checking if existent and
380 // one for inserting the newly allocated one), here we instead lookup based on
381 // Key and update the reference to the struct type in-place to a newly
382 // allocated one if not found.
383 auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key);
384 if (Insertion.second) {
385 // The struct type was not found. Allocate one and update AnonStructTypes
386 // in-place.
387 ST = new (Context.pImpl->Alloc) StructType(Context);
388 ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
389 ST->setBody(ETypes, isPacked);
390 *Insertion.first = ST;
391 } else {
392 // The struct type was found. Just return it.
393 ST = *Insertion.first;
394 }
395
396 return ST;
397}
398
399bool StructType::containsScalableVectorType() const {
400 for (Type *Ty : elements()) {
401 if (isa<ScalableVectorType>(Ty))
402 return true;
403 if (auto *STy = dyn_cast<StructType>(Ty))
404 if (STy->containsScalableVectorType())
405 return true;
406 }
407
408 return false;
409}
410
411void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
412 assert(isOpaque() && "Struct body already set!")((void)0);
413
414 setSubclassData(getSubclassData() | SCDB_HasBody);
415 if (isPacked)
416 setSubclassData(getSubclassData() | SCDB_Packed);
417
418 NumContainedTys = Elements.size();
419
420 if (Elements.empty()) {
421 ContainedTys = nullptr;
422 return;
423 }
424
425 ContainedTys = Elements.copy(getContext().pImpl->Alloc).data();
426}
427
428void StructType::setName(StringRef Name) {
429 if (Name == getName()) return;
430
431 StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
432
433 using EntryTy = StringMap<StructType *>::MapEntryTy;
434
435 // If this struct already had a name, remove its symbol table entry. Don't
436 // delete the data yet because it may be part of the new name.
437 if (SymbolTableEntry)
438 SymbolTable.remove((EntryTy *)SymbolTableEntry);
439
440 // If this is just removing the name, we're done.
441 if (Name.empty()) {
442 if (SymbolTableEntry) {
443 // Delete the old string data.
444 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
445 SymbolTableEntry = nullptr;
446 }
447 return;
448 }
449
450 // Look up the entry for the name.
451 auto IterBool =
452 getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
453
454 // While we have a name collision, try a random rename.
455 if (!IterBool.second) {
456 SmallString<64> TempStr(Name);
457 TempStr.push_back('.');
458 raw_svector_ostream TmpStream(TempStr);
459 unsigned NameSize = Name.size();
460
461 do {
462 TempStr.resize(NameSize + 1);
463 TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
464
465 IterBool = getContext().pImpl->NamedStructTypes.insert(
466 std::make_pair(TmpStream.str(), this));
467 } while (!IterBool.second);
468 }
469
470 // Delete the old string data.
471 if (SymbolTableEntry)
472 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
473 SymbolTableEntry = &*IterBool.first;
474}
475
476//===----------------------------------------------------------------------===//
477// StructType Helper functions.
478
479StructType *StructType::create(LLVMContext &Context, StringRef Name) {
480 StructType *ST = new (Context.pImpl->Alloc) StructType(Context);
3
Calling 'operator new<llvm::MallocAllocator, 4096UL, 4096UL, 128UL>'
481 if (!Name.empty())
482 ST->setName(Name);
483 return ST;
484}
485
486StructType *StructType::get(LLVMContext &Context, bool isPacked) {
487 return get(Context, None, isPacked);
488}
489
490StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
491 StringRef Name, bool isPacked) {
492 StructType *ST = create(Context, Name);
2
Calling 'StructType::create'
493 ST->setBody(Elements, isPacked);
494 return ST;
495}
496
497StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
498 return create(Context, Elements, StringRef());
499}
500
501StructType *StructType::create(LLVMContext &Context) {
502 return create(Context, StringRef());
503}
504
505StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
506 bool isPacked) {
507 assert(!Elements.empty() &&((void)0)
508 "This method may not be invoked with an empty list")((void)0);
509 return create(Elements[0]->getContext(), Elements, Name, isPacked);
510}
511
512StructType *StructType::create(ArrayRef<Type*> Elements) {
513 assert(!Elements.empty() &&((void)0)
514 "This method may not be invoked with an empty list")((void)0);
515 return create(Elements[0]->getContext(), Elements, StringRef());
1
Calling 'StructType::create'
516}
517
518bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
519 if ((getSubclassData() & SCDB_IsSized) != 0)
520 return true;
521 if (isOpaque())
522 return false;
523
524 if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
525 return false;
526
527 // Okay, our struct is sized if all of the elements are, but if one of the
528 // elements is opaque, the struct isn't sized *yet*, but may become sized in
529 // the future, so just bail out without caching.
530 for (Type *Ty : elements()) {
531 // If the struct contains a scalable vector type, don't consider it sized.
532 // This prevents it from being used in loads/stores/allocas/GEPs.
533 if (isa<ScalableVectorType>(Ty))
534 return false;
535 if (!Ty->isSized(Visited))
536 return false;
537 }
538
539 // Here we cheat a bit and cast away const-ness. The goal is to memoize when
540 // we find a sized type, as types can only move from opaque to sized, not the
541 // other way.
542 const_cast<StructType*>(this)->setSubclassData(
543 getSubclassData() | SCDB_IsSized);
544 return true;
545}
546
547StringRef StructType::getName() const {
548 assert(!isLiteral() && "Literal structs never have names")((void)0);
549 if (!SymbolTableEntry) return StringRef();
550
551 return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
552}
553
554bool StructType::isValidElementType(Type *ElemTy) {
555 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
556 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
557 !ElemTy->isTokenTy();
558}
559
560bool StructType::isLayoutIdentical(StructType *Other) const {
561 if (this == Other) return true;
562
563 if (isPacked() != Other->isPacked())
564 return false;
565
566 return elements() == Other->elements();
567}
568
569Type *StructType::getTypeAtIndex(const Value *V) const {
570 unsigned Idx = (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
571 assert(indexValid(Idx) && "Invalid structure index!")((void)0);
572 return getElementType(Idx);
573}
574
575bool StructType::indexValid(const Value *V) const {
576 // Structure indexes require (vectors of) 32-bit integer constants. In the
577 // vector case all of the indices must be equal.
578 if (!V->getType()->isIntOrIntVectorTy(32))
579 return false;
580 if (isa<ScalableVectorType>(V->getType()))
581 return false;
582 const Constant *C = dyn_cast<Constant>(V);
583 if (C && V->getType()->isVectorTy())
584 C = C->getSplatValue();
585 const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
586 return CU && CU->getZExtValue() < getNumElements();
587}
588
589StructType *StructType::getTypeByName(LLVMContext &C, StringRef Name) {
590 return C.pImpl->NamedStructTypes.lookup(Name);
591}
592
593//===----------------------------------------------------------------------===//
594// ArrayType Implementation
595//===----------------------------------------------------------------------===//
596
597ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
598 : Type(ElType->getContext(), ArrayTyID), ContainedType(ElType),
599 NumElements(NumEl) {
600 ContainedTys = &ContainedType;
601 NumContainedTys = 1;
602}
603
604ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
605 assert(isValidElementType(ElementType) && "Invalid type for array element!")((void)0);
606
607 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
608 ArrayType *&Entry =
609 pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
610
611 if (!Entry)
612 Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements);
613 return Entry;
614}
615
616bool ArrayType::isValidElementType(Type *ElemTy) {
617 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
618 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
619 !ElemTy->isTokenTy() && !ElemTy->isX86_AMXTy() &&
620 !isa<ScalableVectorType>(ElemTy);
621}
622
623//===----------------------------------------------------------------------===//
624// VectorType Implementation
625//===----------------------------------------------------------------------===//
626
627VectorType::VectorType(Type *ElType, unsigned EQ, Type::TypeID TID)
628 : Type(ElType->getContext(), TID), ContainedType(ElType),
629 ElementQuantity(EQ) {
630 ContainedTys = &ContainedType;
631 NumContainedTys = 1;
632}
633
634VectorType *VectorType::get(Type *ElementType, ElementCount EC) {
635 if (EC.isScalable())
636 return ScalableVectorType::get(ElementType, EC.getKnownMinValue());
637 else
638 return FixedVectorType::get(ElementType, EC.getKnownMinValue());
639}
640
641bool VectorType::isValidElementType(Type *ElemTy) {
642 return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
643 ElemTy->isPointerTy();
644}
645
646//===----------------------------------------------------------------------===//
647// FixedVectorType Implementation
648//===----------------------------------------------------------------------===//
649
650FixedVectorType *FixedVectorType::get(Type *ElementType, unsigned NumElts) {
651 assert(NumElts > 0 && "#Elements of a VectorType must be greater than 0")((void)0);
652 assert(isValidElementType(ElementType) && "Element type of a VectorType must "((void)0)
653 "be an integer, floating point, or "((void)0)
654 "pointer type.")((void)0);
655
656 auto EC = ElementCount::getFixed(NumElts);
657
658 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
659 VectorType *&Entry = ElementType->getContext()
660 .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
661
662 if (!Entry)
663 Entry = new (pImpl->Alloc) FixedVectorType(ElementType, NumElts);
664 return cast<FixedVectorType>(Entry);
665}
666
667//===----------------------------------------------------------------------===//
668// ScalableVectorType Implementation
669//===----------------------------------------------------------------------===//
670
671ScalableVectorType *ScalableVectorType::get(Type *ElementType,
672 unsigned MinNumElts) {
673 assert(MinNumElts > 0 && "#Elements of a VectorType must be greater than 0")((void)0);
674 assert(isValidElementType(ElementType) && "Element type of a VectorType must "((void)0)
675 "be an integer, floating point, or "((void)0)
676 "pointer type.")((void)0);
677
678 auto EC = ElementCount::getScalable(MinNumElts);
679
680 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
681 VectorType *&Entry = ElementType->getContext()
682 .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
683
684 if (!Entry)
685 Entry = new (pImpl->Alloc) ScalableVectorType(ElementType, MinNumElts);
686 return cast<ScalableVectorType>(Entry);
687}
688
689//===----------------------------------------------------------------------===//
690// PointerType Implementation
691//===----------------------------------------------------------------------===//
692
693PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
694 assert(EltTy && "Can't get a pointer to <null> type!")((void)0);
695 assert(isValidElementType(EltTy) && "Invalid type for pointer element!")((void)0);
696
697 LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
698
699 // Create opaque pointer for pointer to opaque pointer.
700 if (CImpl->ForceOpaquePointers || EltTy->isOpaquePointerTy())
701 return get(EltTy->getContext(), AddressSpace);
702
703 // Since AddressSpace #0 is the common case, we special case it.
704 PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
705 : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
706
707 if (!Entry)
708 Entry = new (CImpl->Alloc) PointerType(EltTy, AddressSpace);
709 return Entry;
710}
711
712PointerType *PointerType::get(LLVMContext &C, unsigned AddressSpace) {
713 LLVMContextImpl *CImpl = C.pImpl;
714
715 // Since AddressSpace #0 is the common case, we special case it.
716 PointerType *&Entry =
717 AddressSpace == 0
718 ? CImpl->PointerTypes[nullptr]
719 : CImpl->ASPointerTypes[std::make_pair(nullptr, AddressSpace)];
720
721 if (!Entry)
722 Entry = new (CImpl->Alloc) PointerType(C, AddressSpace);
723 return Entry;
724}
725
726PointerType::PointerType(Type *E, unsigned AddrSpace)
727 : Type(E->getContext(), PointerTyID), PointeeTy(E) {
728 ContainedTys = &PointeeTy;
729 NumContainedTys = 1;
730 setSubclassData(AddrSpace);
731}
732
733PointerType::PointerType(LLVMContext &C, unsigned AddrSpace)
734 : Type(C, PointerTyID), PointeeTy(nullptr) {
735 setSubclassData(AddrSpace);
736}
737
738PointerType *Type::getPointerTo(unsigned AddrSpace) const {
739 return PointerType::get(const_cast<Type*>(this), AddrSpace);
740}
741
742bool PointerType::isValidElementType(Type *ElemTy) {
743 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
744 !ElemTy->isMetadataTy() && !ElemTy->isTokenTy() &&
745 !ElemTy->isX86_AMXTy();
746}
747
748bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
749 return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
750}

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Allocator.h

1//===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This file defines the BumpPtrAllocator interface. BumpPtrAllocator conforms
11/// to the LLVM "Allocator" concept and is similar to MallocAllocator, but
12/// objects cannot be deallocated. Their lifetime is tied to the lifetime of the
13/// allocator.
14///
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_SUPPORT_ALLOCATOR_H
18#define LLVM_SUPPORT_ALLOCATOR_H
19
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/Support/Alignment.h"
23#include "llvm/Support/AllocatorBase.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Support/MemAlloc.h"
28#include <algorithm>
29#include <cassert>
30#include <cstddef>
31#include <cstdint>
32#include <cstdlib>
33#include <iterator>
34#include <type_traits>
35#include <utility>
36
37namespace llvm {
38
39namespace detail {
40
41// We call out to an external function to actually print the message as the
42// printing code uses Allocator.h in its implementation.
43void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
44 size_t TotalMemory);
45
46} // end namespace detail
47
48/// Allocate memory in an ever growing pool, as if by bump-pointer.
49///
50/// This isn't strictly a bump-pointer allocator as it uses backing slabs of
51/// memory rather than relying on a boundless contiguous heap. However, it has
52/// bump-pointer semantics in that it is a monotonically growing pool of memory
53/// where every allocation is found by merely allocating the next N bytes in
54/// the slab, or the next N bytes in the next slab.
55///
56/// Note that this also has a threshold for forcing allocations above a certain
57/// size into their own slab.
58///
59/// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
60/// object, which wraps malloc, to allocate memory, but it can be changed to
61/// use a custom allocator.
62///
63/// The GrowthDelay specifies after how many allocated slabs the allocator
64/// increases the size of the slabs.
65template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
66 size_t SizeThreshold = SlabSize, size_t GrowthDelay = 128>
67class BumpPtrAllocatorImpl
68 : public AllocatorBase<BumpPtrAllocatorImpl<AllocatorT, SlabSize,
69 SizeThreshold, GrowthDelay>>,
70 private AllocatorT {
71public:
72 static_assert(SizeThreshold <= SlabSize,
73 "The SizeThreshold must be at most the SlabSize to ensure "
74 "that objects larger than a slab go into their own memory "
75 "allocation.");
76 static_assert(GrowthDelay > 0,
77 "GrowthDelay must be at least 1 which already increases the"
78 "slab size after each allocated slab.");
79
80 BumpPtrAllocatorImpl() = default;
81
82 template <typename T>
83 BumpPtrAllocatorImpl(T &&Allocator)
84 : AllocatorT(std::forward<T &&>(Allocator)) {}
85
86 // Manually implement a move constructor as we must clear the old allocator's
87 // slabs as a matter of correctness.
88 BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
89 : AllocatorT(static_cast<AllocatorT &&>(Old)), CurPtr(Old.CurPtr),
90 End(Old.End), Slabs(std::move(Old.Slabs)),
91 CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
92 BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize) {
93 Old.CurPtr = Old.End = nullptr;
94 Old.BytesAllocated = 0;
95 Old.Slabs.clear();
96 Old.CustomSizedSlabs.clear();
97 }
98
99 ~BumpPtrAllocatorImpl() {
100 DeallocateSlabs(Slabs.begin(), Slabs.end());
101 DeallocateCustomSizedSlabs();
102 }
103
104 BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
105 DeallocateSlabs(Slabs.begin(), Slabs.end());
106 DeallocateCustomSizedSlabs();
107
108 CurPtr = RHS.CurPtr;
109 End = RHS.End;
110 BytesAllocated = RHS.BytesAllocated;
111 RedZoneSize = RHS.RedZoneSize;
112 Slabs = std::move(RHS.Slabs);
113 CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
114 AllocatorT::operator=(static_cast<AllocatorT &&>(RHS));
115
116 RHS.CurPtr = RHS.End = nullptr;
117 RHS.BytesAllocated = 0;
118 RHS.Slabs.clear();
119 RHS.CustomSizedSlabs.clear();
120 return *this;
121 }
122
123 /// Deallocate all but the current slab and reset the current pointer
124 /// to the beginning of it, freeing all memory allocated so far.
125 void Reset() {
126 // Deallocate all but the first slab, and deallocate all custom-sized slabs.
127 DeallocateCustomSizedSlabs();
128 CustomSizedSlabs.clear();
129
130 if (Slabs.empty())
131 return;
132
133 // Reset the state.
134 BytesAllocated = 0;
135 CurPtr = (char *)Slabs.front();
136 End = CurPtr + SlabSize;
137
138 __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0));
139 DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
140 Slabs.erase(std::next(Slabs.begin()), Slabs.end());
141 }
142
143 /// Allocate space at the specified alignment.
144 LLVM_ATTRIBUTE_RETURNS_NONNULL__attribute__((returns_nonnull)) LLVM_ATTRIBUTE_RETURNS_NOALIAS__attribute__((__malloc__)) void *
145 Allocate(size_t Size, Align Alignment) {
146 // Keep track of how many bytes we've allocated.
147 BytesAllocated += Size;
148
149 size_t Adjustment = offsetToAlignedAddr(CurPtr, Alignment);
6
Calling 'offsetToAlignedAddr'
150 assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow")((void)0);
151
152 size_t SizeToAllocate = Size;
153#if LLVM_ADDRESS_SANITIZER_BUILD0
154 // Add trailing bytes as a "red zone" under ASan.
155 SizeToAllocate += RedZoneSize;
156#endif
157
158 // Check if we have enough space.
159 if (Adjustment + SizeToAllocate <= size_t(End - CurPtr)) {
160 char *AlignedPtr = CurPtr + Adjustment;
161 CurPtr = AlignedPtr + SizeToAllocate;
162 // Update the allocation point of this memory block in MemorySanitizer.
163 // Without this, MemorySanitizer messages for values originated from here
164 // will point to the allocation of the entire slab.
165 __msan_allocated_memory(AlignedPtr, Size);
166 // Similarly, tell ASan about this space.
167 __asan_unpoison_memory_region(AlignedPtr, Size);
168 return AlignedPtr;
169 }
170
171 // If Size is really big, allocate a separate slab for it.
172 size_t PaddedSize = SizeToAllocate + Alignment.value() - 1;
173 if (PaddedSize > SizeThreshold) {
174 void *NewSlab =
175 AllocatorT::Allocate(PaddedSize, alignof(std::max_align_t));
176 // We own the new slab and don't want anyone reading anyting other than
177 // pieces returned from this method. So poison the whole slab.
178 __asan_poison_memory_region(NewSlab, PaddedSize);
179 CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
180
181 uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
182 assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize)((void)0);
183 char *AlignedPtr = (char*)AlignedAddr;
184 __msan_allocated_memory(AlignedPtr, Size);
185 __asan_unpoison_memory_region(AlignedPtr, Size);
186 return AlignedPtr;
187 }
188
189 // Otherwise, start a new slab and try again.
190 StartNewSlab();
191 uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
192 assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End &&((void)0)
193 "Unable to allocate memory!")((void)0);
194 char *AlignedPtr = (char*)AlignedAddr;
195 CurPtr = AlignedPtr + SizeToAllocate;
196 __msan_allocated_memory(AlignedPtr, Size);
197 __asan_unpoison_memory_region(AlignedPtr, Size);
198 return AlignedPtr;
199 }
200
201 inline LLVM_ATTRIBUTE_RETURNS_NONNULL__attribute__((returns_nonnull)) LLVM_ATTRIBUTE_RETURNS_NOALIAS__attribute__((__malloc__)) void *
202 Allocate(size_t Size, size_t Alignment) {
203 assert(Alignment > 0 && "0-byte alignment is not allowed. Use 1 instead.")((void)0);
204 return Allocate(Size, Align(Alignment));
5
Calling 'BumpPtrAllocatorImpl::Allocate'
205 }
206
207 // Pull in base class overloads.
208 using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
209
210 // Bump pointer allocators are expected to never free their storage; and
211 // clients expect pointers to remain valid for non-dereferencing uses even
212 // after deallocation.
213 void Deallocate(const void *Ptr, size_t Size, size_t /*Alignment*/) {
214 __asan_poison_memory_region(Ptr, Size);
215 }
216
217 // Pull in base class overloads.
218 using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
219
220 size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
221
222 /// \return An index uniquely and reproducibly identifying
223 /// an input pointer \p Ptr in the given allocator.
224 /// The returned value is negative iff the object is inside a custom-size
225 /// slab.
226 /// Returns an empty optional if the pointer is not found in the allocator.
227 llvm::Optional<int64_t> identifyObject(const void *Ptr) {
228 const char *P = static_cast<const char *>(Ptr);
229 int64_t InSlabIdx = 0;
230 for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) {
231 const char *S = static_cast<const char *>(Slabs[Idx]);
232 if (P >= S && P < S + computeSlabSize(Idx))
233 return InSlabIdx + static_cast<int64_t>(P - S);
234 InSlabIdx += static_cast<int64_t>(computeSlabSize(Idx));
235 }
236
237 // Use negative index to denote custom sized slabs.
238 int64_t InCustomSizedSlabIdx = -1;
239 for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) {
240 const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first);
241 size_t Size = CustomSizedSlabs[Idx].second;
242 if (P >= S && P < S + Size)
243 return InCustomSizedSlabIdx - static_cast<int64_t>(P - S);
244 InCustomSizedSlabIdx -= static_cast<int64_t>(Size);
245 }
246 return None;
247 }
248
249 /// A wrapper around identifyObject that additionally asserts that
250 /// the object is indeed within the allocator.
251 /// \return An index uniquely and reproducibly identifying
252 /// an input pointer \p Ptr in the given allocator.
253 int64_t identifyKnownObject(const void *Ptr) {
254 Optional<int64_t> Out = identifyObject(Ptr);
255 assert(Out && "Wrong allocator used")((void)0);
256 return *Out;
257 }
258
259 /// A wrapper around identifyKnownObject. Accepts type information
260 /// about the object and produces a smaller identifier by relying on
261 /// the alignment information. Note that sub-classes may have different
262 /// alignment, so the most base class should be passed as template parameter
263 /// in order to obtain correct results. For that reason automatic template
264 /// parameter deduction is disabled.
265 /// \return An index uniquely and reproducibly identifying
266 /// an input pointer \p Ptr in the given allocator. This identifier is
267 /// different from the ones produced by identifyObject and
268 /// identifyAlignedObject.
269 template <typename T>
270 int64_t identifyKnownAlignedObject(const void *Ptr) {
271 int64_t Out = identifyKnownObject(Ptr);
272 assert(Out % alignof(T) == 0 && "Wrong alignment information")((void)0);
273 return Out / alignof(T);
274 }
275
276 size_t getTotalMemory() const {
277 size_t TotalMemory = 0;
278 for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
279 TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
280 for (auto &PtrAndSize : CustomSizedSlabs)
281 TotalMemory += PtrAndSize.second;
282 return TotalMemory;
283 }
284
285 size_t getBytesAllocated() const { return BytesAllocated; }
286
287 void setRedZoneSize(size_t NewSize) {
288 RedZoneSize = NewSize;
289 }
290
291 void PrintStats() const {
292 detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
293 getTotalMemory());
294 }
295
296private:
297 /// The current pointer into the current slab.
298 ///
299 /// This points to the next free byte in the slab.
300 char *CurPtr = nullptr;
301
302 /// The end of the current slab.
303 char *End = nullptr;
304
305 /// The slabs allocated so far.
306 SmallVector<void *, 4> Slabs;
307
308 /// Custom-sized slabs allocated for too-large allocation requests.
309 SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
310
311 /// How many bytes we've allocated.
312 ///
313 /// Used so that we can compute how much space was wasted.
314 size_t BytesAllocated = 0;
315
316 /// The number of bytes to put between allocations when running under
317 /// a sanitizer.
318 size_t RedZoneSize = 1;
319
320 static size_t computeSlabSize(unsigned SlabIdx) {
321 // Scale the actual allocated slab size based on the number of slabs
322 // allocated. Every GrowthDelay slabs allocated, we double
323 // the allocated size to reduce allocation frequency, but saturate at
324 // multiplying the slab size by 2^30.
325 return SlabSize *
326 ((size_t)1 << std::min<size_t>(30, SlabIdx / GrowthDelay));
327 }
328
329 /// Allocate a new slab and move the bump pointers over into the new
330 /// slab, modifying CurPtr and End.
331 void StartNewSlab() {
332 size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
333
334 void *NewSlab =
335 AllocatorT::Allocate(AllocatedSlabSize, alignof(std::max_align_t));
336 // We own the new slab and don't want anyone reading anything other than
337 // pieces returned from this method. So poison the whole slab.
338 __asan_poison_memory_region(NewSlab, AllocatedSlabSize);
339
340 Slabs.push_back(NewSlab);
341 CurPtr = (char *)(NewSlab);
342 End = ((char *)NewSlab) + AllocatedSlabSize;
343 }
344
345 /// Deallocate a sequence of slabs.
346 void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
347 SmallVectorImpl<void *>::iterator E) {
348 for (; I != E; ++I) {
349 size_t AllocatedSlabSize =
350 computeSlabSize(std::distance(Slabs.begin(), I));
351 AllocatorT::Deallocate(*I, AllocatedSlabSize, alignof(std::max_align_t));
352 }
353 }
354
355 /// Deallocate all memory for custom sized slabs.
356 void DeallocateCustomSizedSlabs() {
357 for (auto &PtrAndSize : CustomSizedSlabs) {
358 void *Ptr = PtrAndSize.first;
359 size_t Size = PtrAndSize.second;
360 AllocatorT::Deallocate(Ptr, Size, alignof(std::max_align_t));
361 }
362 }
363
364 template <typename T> friend class SpecificBumpPtrAllocator;
365};
366
367/// The standard BumpPtrAllocator which just uses the default template
368/// parameters.
369typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
370
371/// A BumpPtrAllocator that allows only elements of a specific type to be
372/// allocated.
373///
374/// This allows calling the destructor in DestroyAll() and when the allocator is
375/// destroyed.
376template <typename T> class SpecificBumpPtrAllocator {
377 BumpPtrAllocator Allocator;
378
379public:
380 SpecificBumpPtrAllocator() {
381 // Because SpecificBumpPtrAllocator walks the memory to call destructors,
382 // it can't have red zones between allocations.
383 Allocator.setRedZoneSize(0);
384 }
385 SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
386 : Allocator(std::move(Old.Allocator)) {}
387 ~SpecificBumpPtrAllocator() { DestroyAll(); }
388
389 SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
390 Allocator = std::move(RHS.Allocator);
391 return *this;
392 }
393
394 /// Call the destructor of each allocated object and deallocate all but the
395 /// current slab and reset the current pointer to the beginning of it, freeing
396 /// all memory allocated so far.
397 void DestroyAll() {
398 auto DestroyElements = [](char *Begin, char *End) {
399 assert(Begin == (char *)alignAddr(Begin, Align::Of<T>()))((void)0);
400 for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
401 reinterpret_cast<T *>(Ptr)->~T();
402 };
403
404 for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
405 ++I) {
406 size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
407 std::distance(Allocator.Slabs.begin(), I));
408 char *Begin = (char *)alignAddr(*I, Align::Of<T>());
409 char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
410 : (char *)*I + AllocatedSlabSize;
411
412 DestroyElements(Begin, End);
413 }
414
415 for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
416 void *Ptr = PtrAndSize.first;
417 size_t Size = PtrAndSize.second;
418 DestroyElements((char *)alignAddr(Ptr, Align::Of<T>()),
419 (char *)Ptr + Size);
420 }
421
422 Allocator.Reset();
423 }
424
425 /// Allocate space for an array of objects without constructing them.
426 T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
427};
428
429} // end namespace llvm
430
431template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
432 size_t GrowthDelay>
433void *
434operator new(size_t Size,
435 llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold,
436 GrowthDelay> &Allocator) {
437 return Allocator.Allocate(Size, std::min((size_t)llvm::NextPowerOf2(Size),
4
Calling 'BumpPtrAllocatorImpl::Allocate'
438 alignof(std::max_align_t)));
439}
440
441template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
442 size_t GrowthDelay>
443void operator delete(void *,
444 llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
445 SizeThreshold, GrowthDelay> &) {
446}
447
448#endif // LLVM_SUPPORT_ALLOCATOR_H

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h

1//===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains types to represent alignments.
10// They are instrumented to guarantee some invariants are preserved and prevent
11// invalid manipulations.
12//
13// - Align represents an alignment in bytes, it is always set and always a valid
14// power of two, its minimum value is 1 which means no alignment requirements.
15//
16// - MaybeAlign is an optional type, it may be undefined or set. When it's set
17// you can get the underlying Align type by using the getValue() method.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_SUPPORT_ALIGNMENT_H_
22#define LLVM_SUPPORT_ALIGNMENT_H_
23
24#include "llvm/ADT/Optional.h"
25#include "llvm/Support/MathExtras.h"
26#include <cassert>
27#ifndef NDEBUG1
28#include <string>
29#endif // NDEBUG
30
31namespace llvm {
32
33#define ALIGN_CHECK_ISPOSITIVE(decl) \
34 assert(decl > 0 && (#decl " should be defined"))((void)0)
35
36/// This struct is a compact representation of a valid (non-zero power of two)
37/// alignment.
38/// It is suitable for use as static global constants.
39struct Align {
40private:
41 uint8_t ShiftValue = 0; /// The log2 of the required alignment.
42 /// ShiftValue is less than 64 by construction.
43
44 friend struct MaybeAlign;
45 friend unsigned Log2(Align);
46 friend bool operator==(Align Lhs, Align Rhs);
47 friend bool operator!=(Align Lhs, Align Rhs);
48 friend bool operator<=(Align Lhs, Align Rhs);
49 friend bool operator>=(Align Lhs, Align Rhs);
50 friend bool operator<(Align Lhs, Align Rhs);
51 friend bool operator>(Align Lhs, Align Rhs);
52 friend unsigned encode(struct MaybeAlign A);
53 friend struct MaybeAlign decodeMaybeAlign(unsigned Value);
54
55 /// A trivial type to allow construction of constexpr Align.
56 /// This is currently needed to workaround a bug in GCC 5.3 which prevents
57 /// definition of constexpr assign operators.
58 /// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic
59 /// FIXME: Remove this, make all assign operators constexpr and introduce user
60 /// defined literals when we don't have to support GCC 5.3 anymore.
61 /// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain
62 struct LogValue {
63 uint8_t Log;
64 };
65
66public:
67 /// Default is byte-aligned.
68 constexpr Align() = default;
69 /// Do not perform checks in case of copy/move construct/assign, because the
70 /// checks have been performed when building `Other`.
71 constexpr Align(const Align &Other) = default;
72 constexpr Align(Align &&Other) = default;
73 Align &operator=(const Align &Other) = default;
74 Align &operator=(Align &&Other) = default;
75
76 explicit Align(uint64_t Value) {
77 assert(Value > 0 && "Value must not be 0")((void)0);
78 assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2")((void)0);
79 ShiftValue = Log2_64(Value);
80 assert(ShiftValue < 64 && "Broken invariant")((void)0);
81 }
82
83 /// This is a hole in the type system and should not be abused.
84 /// Needed to interact with C for instance.
85 uint64_t value() const { return uint64_t(1) << ShiftValue; }
11
The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t'
86
87 /// Allow constructions of constexpr Align.
88 template <size_t kValue> constexpr static LogValue Constant() {
89 return LogValue{static_cast<uint8_t>(CTLog2<kValue>())};
90 }
91
92 /// Allow constructions of constexpr Align from types.
93 /// Compile time equivalent to Align(alignof(T)).
94 template <typename T> constexpr static LogValue Of() {
95 return Constant<std::alignment_of<T>::value>();
96 }
97
98 /// Constexpr constructor from LogValue type.
99 constexpr Align(LogValue CA) : ShiftValue(CA.Log) {}
100};
101
102/// Treats the value 0 as a 1, so Align is always at least 1.
103inline Align assumeAligned(uint64_t Value) {
104 return Value ? Align(Value) : Align();
105}
106
107/// This struct is a compact representation of a valid (power of two) or
108/// undefined (0) alignment.
109struct MaybeAlign : public llvm::Optional<Align> {
110private:
111 using UP = llvm::Optional<Align>;
112
113public:
114 /// Default is undefined.
115 MaybeAlign() = default;
116 /// Do not perform checks in case of copy/move construct/assign, because the
117 /// checks have been performed when building `Other`.
118 MaybeAlign(const MaybeAlign &Other) = default;
119 MaybeAlign &operator=(const MaybeAlign &Other) = default;
120 MaybeAlign(MaybeAlign &&Other) = default;
121 MaybeAlign &operator=(MaybeAlign &&Other) = default;
122
123 /// Use llvm::Optional<Align> constructor.
124 using UP::UP;
125
126 explicit MaybeAlign(uint64_t Value) {
127 assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&((void)0)
128 "Alignment is neither 0 nor a power of 2")((void)0);
129 if (Value)
130 emplace(Value);
131 }
132
133 /// For convenience, returns a valid alignment or 1 if undefined.
134 Align valueOrOne() const { return hasValue() ? getValue() : Align(); }
135};
136
137/// Checks that SizeInBytes is a multiple of the alignment.
138inline bool isAligned(Align Lhs, uint64_t SizeInBytes) {
139 return SizeInBytes % Lhs.value() == 0;
140}
141
142/// Checks that Addr is a multiple of the alignment.
143inline bool isAddrAligned(Align Lhs, const void *Addr) {
144 return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr));
145}
146
147/// Returns a multiple of A needed to store `Size` bytes.
148inline uint64_t alignTo(uint64_t Size, Align A) {
149 const uint64_t Value = A.value();
10
Calling 'Align::value'
150 // The following line is equivalent to `(Size + Value - 1) / Value * Value`.
151
152 // The division followed by a multiplication can be thought of as a right
153 // shift followed by a left shift which zeros out the extra bits produced in
154 // the bump; `~(Value - 1)` is a mask where all those bits being zeroed out
155 // are just zero.
156
157 // Most compilers can generate this code but the pattern may be missed when
158 // multiple functions gets inlined.
159 return (Size + Value - 1) & ~(Value - 1U);
160}
161
162/// If non-zero \p Skew is specified, the return value will be a minimal integer
163/// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for
164/// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p
165/// Skew mod \p A'.
166///
167/// Examples:
168/// \code
169/// alignTo(5, Align(8), 7) = 7
170/// alignTo(17, Align(8), 1) = 17
171/// alignTo(~0LL, Align(8), 3) = 3
172/// \endcode
173inline uint64_t alignTo(uint64_t Size, Align A, uint64_t Skew) {
174 const uint64_t Value = A.value();
175 Skew %= Value;
176 return ((Size + Value - 1 - Skew) & ~(Value - 1U)) + Skew;
177}
178
179/// Returns a multiple of A needed to store `Size` bytes.
180/// Returns `Size` if current alignment is undefined.
181inline uint64_t alignTo(uint64_t Size, MaybeAlign A) {
182 return A ? alignTo(Size, A.getValue()) : Size;
183}
184
185/// Aligns `Addr` to `Alignment` bytes, rounding up.
186inline uintptr_t alignAddr(const void *Addr, Align Alignment) {
187 uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr);
188 assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=((void)0)
189 ArithAddr &&((void)0)
190 "Overflow")((void)0);
191 return alignTo(ArithAddr, Alignment);
192}
193
194/// Returns the offset to the next integer (mod 2**64) that is greater than
195/// or equal to \p Value and is a multiple of \p Align.
196inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) {
197 return alignTo(Value, Alignment) - Value;
8
The value 255 is assigned to 'A.ShiftValue'
9
Calling 'alignTo'
198}
199
200/// Returns the necessary adjustment for aligning `Addr` to `Alignment`
201/// bytes, rounding up.
202inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) {
203 return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment);
7
Calling 'offsetToAlignment'
204}
205
206/// Returns the log2 of the alignment.
207inline unsigned Log2(Align A) { return A.ShiftValue; }
208
209/// Returns the alignment that satisfies both alignments.
210/// Same semantic as MinAlign.
211inline Align commonAlignment(Align A, Align B) { return std::min(A, B); }
212
213/// Returns the alignment that satisfies both alignments.
214/// Same semantic as MinAlign.
215inline Align commonAlignment(Align A, uint64_t Offset) {
216 return Align(MinAlign(A.value(), Offset));
217}
218
219/// Returns the alignment that satisfies both alignments.
220/// Same semantic as MinAlign.
221inline MaybeAlign commonAlignment(MaybeAlign A, MaybeAlign B) {
222 return A && B ? commonAlignment(*A, *B) : A ? A : B;
223}
224
225/// Returns the alignment that satisfies both alignments.
226/// Same semantic as MinAlign.
227inline MaybeAlign commonAlignment(MaybeAlign A, uint64_t Offset) {
228 return MaybeAlign(MinAlign((*A).value(), Offset));
229}
230
231/// Returns a representation of the alignment that encodes undefined as 0.
232inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; }
233
234/// Dual operation of the encode function above.
235inline MaybeAlign decodeMaybeAlign(unsigned Value) {
236 if (Value == 0)
237 return MaybeAlign();
238 Align Out;
239 Out.ShiftValue = Value - 1;
240 return Out;
241}
242
243/// Returns a representation of the alignment, the encoded value is positive by
244/// definition.
245inline unsigned encode(Align A) { return encode(MaybeAlign(A)); }
246
247/// Comparisons between Align and scalars. Rhs must be positive.
248inline bool operator==(Align Lhs, uint64_t Rhs) {
249 ALIGN_CHECK_ISPOSITIVE(Rhs);
250 return Lhs.value() == Rhs;
251}
252inline bool operator!=(Align Lhs, uint64_t Rhs) {
253 ALIGN_CHECK_ISPOSITIVE(Rhs);
254 return Lhs.value() != Rhs;
255}
256inline bool operator<=(Align Lhs, uint64_t Rhs) {
257 ALIGN_CHECK_ISPOSITIVE(Rhs);
258 return Lhs.value() <= Rhs;
259}
260inline bool operator>=(Align Lhs, uint64_t Rhs) {
261 ALIGN_CHECK_ISPOSITIVE(Rhs);
262 return Lhs.value() >= Rhs;
263}
264inline bool operator<(Align Lhs, uint64_t Rhs) {
265 ALIGN_CHECK_ISPOSITIVE(Rhs);
266 return Lhs.value() < Rhs;
267}
268inline bool operator>(Align Lhs, uint64_t Rhs) {
269 ALIGN_CHECK_ISPOSITIVE(Rhs);
270 return Lhs.value() > Rhs;
271}
272
273/// Comparisons between MaybeAlign and scalars.
274inline bool operator==(MaybeAlign Lhs, uint64_t Rhs) {
275 return Lhs ? (*Lhs).value() == Rhs : Rhs == 0;
276}
277inline bool operator!=(MaybeAlign Lhs, uint64_t Rhs) {
278 return Lhs ? (*Lhs).value() != Rhs : Rhs != 0;
279}
280
281/// Comparisons operators between Align.
282inline bool operator==(Align Lhs, Align Rhs) {
283 return Lhs.ShiftValue == Rhs.ShiftValue;
284}
285inline bool operator!=(Align Lhs, Align Rhs) {
286 return Lhs.ShiftValue != Rhs.ShiftValue;
287}
288inline bool operator<=(Align Lhs, Align Rhs) {
289 return Lhs.ShiftValue <= Rhs.ShiftValue;
290}
291inline bool operator>=(Align Lhs, Align Rhs) {
292 return Lhs.ShiftValue >= Rhs.ShiftValue;
293}
294inline bool operator<(Align Lhs, Align Rhs) {
295 return Lhs.ShiftValue < Rhs.ShiftValue;
296}
297inline bool operator>(Align Lhs, Align Rhs) {
298 return Lhs.ShiftValue > Rhs.ShiftValue;
299}
300
301// Don't allow relational comparisons with MaybeAlign.
302bool operator<=(Align Lhs, MaybeAlign Rhs) = delete;
303bool operator>=(Align Lhs, MaybeAlign Rhs) = delete;
304bool operator<(Align Lhs, MaybeAlign Rhs) = delete;
305bool operator>(Align Lhs, MaybeAlign Rhs) = delete;
306
307bool operator<=(MaybeAlign Lhs, Align Rhs) = delete;
308bool operator>=(MaybeAlign Lhs, Align Rhs) = delete;
309bool operator<(MaybeAlign Lhs, Align Rhs) = delete;
310bool operator>(MaybeAlign Lhs, Align Rhs) = delete;
311
312bool operator<=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
313bool operator>=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
314bool operator<(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
315bool operator>(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
316
317inline Align operator*(Align Lhs, uint64_t Rhs) {
318 assert(Rhs > 0 && "Rhs must be positive")((void)0);
319 return Align(Lhs.value() * Rhs);
320}
321
322inline MaybeAlign operator*(MaybeAlign Lhs, uint64_t Rhs) {
323 assert(Rhs > 0 && "Rhs must be positive")((void)0);
324 return Lhs ? Lhs.getValue() * Rhs : MaybeAlign();
325}
326
327inline Align operator/(Align Lhs, uint64_t Divisor) {
328 assert(llvm::isPowerOf2_64(Divisor) &&((void)0)
329 "Divisor must be positive and a power of 2")((void)0);
330 assert(Lhs != 1 && "Can't halve byte alignment")((void)0);
331 return Align(Lhs.value() / Divisor);
332}
333
334inline MaybeAlign operator/(MaybeAlign Lhs, uint64_t Divisor) {
335 assert(llvm::isPowerOf2_64(Divisor) &&((void)0)
336 "Divisor must be positive and a power of 2")((void)0);
337 return Lhs ? Lhs.getValue() / Divisor : MaybeAlign();
338}
339
340inline Align max(MaybeAlign Lhs, Align Rhs) {
341 return Lhs && *Lhs > Rhs ? *Lhs : Rhs;
342}
343
344inline Align max(Align Lhs, MaybeAlign Rhs) {
345 return Rhs && *Rhs > Lhs ? *Rhs : Lhs;
346}
347
348#ifndef NDEBUG1
349// For usage in LLVM_DEBUG macros.
350inline std::string DebugStr(const Align &A) {
351 return std::to_string(A.value());
352}
353// For usage in LLVM_DEBUG macros.
354inline std::string DebugStr(const MaybeAlign &MA) {
355 if (MA)
356 return std::to_string(MA->value());
357 return "None";
358}
359#endif // NDEBUG
360
361#undef ALIGN_CHECK_ISPOSITIVE
362
363} // namespace llvm
364
365#endif // LLVM_SUPPORT_ALIGNMENT_H_