Bug Summary

File:src/lib/libcrypto/bn/bn_gcd.c
Warning:line 595, column 7
Although the value stored to 'T' is used in the enclosing expression, the value is never actually read from 'T'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name bn_gcd.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -pic-is-pie -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/lib/libcrypto/obj -resource-dir /usr/local/lib/clang/13.0.0 -D LIBRESSL_INTERNAL -D LIBRESSL_CRYPTO_INTERNAL -D DSO_DLFCN -D HAVE_DLFCN_H -D HAVE_FUNOPEN -D OPENSSL_NO_HW_PADLOCK -I /usr/src/lib/libcrypto -I /usr/src/lib/libcrypto/asn1 -I /usr/src/lib/libcrypto/bio -I /usr/src/lib/libcrypto/bn -I /usr/src/lib/libcrypto/bytestring -I /usr/src/lib/libcrypto/dh -I /usr/src/lib/libcrypto/dsa -I /usr/src/lib/libcrypto/ec -I /usr/src/lib/libcrypto/ecdh -I /usr/src/lib/libcrypto/ecdsa -I /usr/src/lib/libcrypto/evp -I /usr/src/lib/libcrypto/hmac -I /usr/src/lib/libcrypto/modes -I /usr/src/lib/libcrypto/ocsp -I /usr/src/lib/libcrypto/rsa -I /usr/src/lib/libcrypto/x509 -I /usr/src/lib/libcrypto/obj -D AES_ASM -D BSAES_ASM -D VPAES_ASM -D OPENSSL_IA32_SSE2 -D RSA_ASM -D OPENSSL_BN_ASM_MONT -D OPENSSL_BN_ASM_MONT5 -D OPENSSL_BN_ASM_GF2m -D MD5_ASM -D GHASH_ASM -D RC4_MD5_ASM -D SHA1_ASM -D SHA256_ASM -D SHA512_ASM -D WHIRLPOOL_ASM -D OPENSSL_CPUID_OBJ -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -fdebug-compilation-dir=/usr/src/lib/libcrypto/obj -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c /usr/src/lib/libcrypto/bn/bn_gcd.c
1/* $OpenBSD: bn_gcd.c,v 1.16 2021/12/26 15:16:50 tb Exp $ */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112#include <openssl/err.h>
113
114#include "bn_lcl.h"
115
116static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
117static BIGNUM *BN_gcd_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n,
118 BN_CTX *ctx);
119
120int
121BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
122{
123 BIGNUM *a, *b, *t;
124 int ret = 0;
125
126 bn_check_top(in_a);
127 bn_check_top(in_b);
128
129 BN_CTX_start(ctx);
130 if ((a = BN_CTX_get(ctx)) == NULL((void *)0))
131 goto err;
132 if ((b = BN_CTX_get(ctx)) == NULL((void *)0))
133 goto err;
134
135 if (BN_copy(a, in_a) == NULL((void *)0))
136 goto err;
137 if (BN_copy(b, in_b) == NULL((void *)0))
138 goto err;
139 a->neg = 0;
140 b->neg = 0;
141
142 if (BN_cmp(a, b) < 0) {
143 t = a;
144 a = b;
145 b = t;
146 }
147 t = euclid(a, b);
148 if (t == NULL((void *)0))
149 goto err;
150
151 if (BN_copy(r, t) == NULL((void *)0))
152 goto err;
153 ret = 1;
154
155err:
156 BN_CTX_end(ctx);
157 bn_check_top(r);
158 return (ret);
159}
160
161int
162BN_gcd_ct(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
163{
164 if (BN_gcd_no_branch(r, in_a, in_b, ctx) == NULL((void *)0))
165 return 0;
166 return 1;
167}
168
169int
170BN_gcd_nonct(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
171{
172 return BN_gcd(r, in_a, in_b, ctx);
173}
174
175
176static BIGNUM *
177euclid(BIGNUM *a, BIGNUM *b)
178{
179 BIGNUM *t;
180 int shifts = 0;
181
182 bn_check_top(a);
183 bn_check_top(b);
184
185 /* 0 <= b <= a */
186 while (!BN_is_zero(b)) {
187 /* 0 < b <= a */
188
189 if (BN_is_odd(a)) {
190 if (BN_is_odd(b)) {
191 if (!BN_sub(a, a, b))
192 goto err;
193 if (!BN_rshift1(a, a))
194 goto err;
195 if (BN_cmp(a, b) < 0) {
196 t = a;
197 a = b;
198 b = t;
199 }
200 }
201 else /* a odd - b even */
202 {
203 if (!BN_rshift1(b, b))
204 goto err;
205 if (BN_cmp(a, b) < 0) {
206 t = a;
207 a = b;
208 b = t;
209 }
210 }
211 }
212 else /* a is even */
213 {
214 if (BN_is_odd(b)) {
215 if (!BN_rshift1(a, a))
216 goto err;
217 if (BN_cmp(a, b) < 0) {
218 t = a;
219 a = b;
220 b = t;
221 }
222 }
223 else /* a even - b even */
224 {
225 if (!BN_rshift1(a, a))
226 goto err;
227 if (!BN_rshift1(b, b))
228 goto err;
229 shifts++;
230 }
231 }
232 /* 0 <= b <= a */
233 }
234
235 if (shifts) {
236 if (!BN_lshift(a, a, shifts))
237 goto err;
238 }
239 bn_check_top(a);
240 return (a);
241
242err:
243 return (NULL((void *)0));
244}
245
246
247/* solves ax == 1 (mod n) */
248static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, const BIGNUM *a,
249 const BIGNUM *n, BN_CTX *ctx);
250
251static BIGNUM *
252BN_mod_inverse_internal(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
253 int ct)
254{
255 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL((void *)0);
256 BIGNUM *ret = NULL((void *)0);
257 int sign;
258
259 if (ct)
260 return BN_mod_inverse_no_branch(in, a, n, ctx);
261
262 bn_check_top(a);
263 bn_check_top(n);
264
265 BN_CTX_start(ctx);
266 if ((A = BN_CTX_get(ctx)) == NULL((void *)0))
267 goto err;
268 if ((B = BN_CTX_get(ctx)) == NULL((void *)0))
269 goto err;
270 if ((X = BN_CTX_get(ctx)) == NULL((void *)0))
271 goto err;
272 if ((D = BN_CTX_get(ctx)) == NULL((void *)0))
273 goto err;
274 if ((M = BN_CTX_get(ctx)) == NULL((void *)0))
275 goto err;
276 if ((Y = BN_CTX_get(ctx)) == NULL((void *)0))
277 goto err;
278 if ((T = BN_CTX_get(ctx)) == NULL((void *)0))
279 goto err;
280
281 if (in == NULL((void *)0))
282 R = BN_new();
283 else
284 R = in;
285 if (R == NULL((void *)0))
286 goto err;
287
288 BN_one(X)BN_set_word((X), 1);
289 BN_zero(Y)(BN_set_word((Y),0));
290 if (BN_copy(B, a) == NULL((void *)0))
291 goto err;
292 if (BN_copy(A, n) == NULL((void *)0))
293 goto err;
294 A->neg = 0;
295 if (B->neg || (BN_ucmp(B, A) >= 0)) {
296 if (!BN_nnmod(B, B, A, ctx))
297 goto err;
298 }
299 sign = -1;
300 /* From B = a mod |n|, A = |n| it follows that
301 *
302 * 0 <= B < A,
303 * -sign*X*a == B (mod |n|),
304 * sign*Y*a == A (mod |n|).
305 */
306
307 if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS128 <= 32 ? 450 : 2048))) {
308 /* Binary inversion algorithm; requires odd modulus.
309 * This is faster than the general algorithm if the modulus
310 * is sufficiently small (about 400 .. 500 bits on 32-bit
311 * sytems, but much more on 64-bit systems) */
312 int shift;
313
314 while (!BN_is_zero(B)) {
315 /*
316 * 0 < B < |n|,
317 * 0 < A <= |n|,
318 * (1) -sign*X*a == B (mod |n|),
319 * (2) sign*Y*a == A (mod |n|)
320 */
321
322 /* Now divide B by the maximum possible power of two in the integers,
323 * and divide X by the same value mod |n|.
324 * When we're done, (1) still holds. */
325 shift = 0;
326 while (!BN_is_bit_set(B, shift)) /* note that 0 < B */
327 {
328 shift++;
329
330 if (BN_is_odd(X)) {
331 if (!BN_uadd(X, X, n))
332 goto err;
333 }
334 /* now X is even, so we can easily divide it by two */
335 if (!BN_rshift1(X, X))
336 goto err;
337 }
338 if (shift > 0) {
339 if (!BN_rshift(B, B, shift))
340 goto err;
341 }
342
343
344 /* Same for A and Y. Afterwards, (2) still holds. */
345 shift = 0;
346 while (!BN_is_bit_set(A, shift)) /* note that 0 < A */
347 {
348 shift++;
349
350 if (BN_is_odd(Y)) {
351 if (!BN_uadd(Y, Y, n))
352 goto err;
353 }
354 /* now Y is even */
355 if (!BN_rshift1(Y, Y))
356 goto err;
357 }
358 if (shift > 0) {
359 if (!BN_rshift(A, A, shift))
360 goto err;
361 }
362
363
364 /* We still have (1) and (2).
365 * Both A and B are odd.
366 * The following computations ensure that
367 *
368 * 0 <= B < |n|,
369 * 0 < A < |n|,
370 * (1) -sign*X*a == B (mod |n|),
371 * (2) sign*Y*a == A (mod |n|),
372 *
373 * and that either A or B is even in the next iteration.
374 */
375 if (BN_ucmp(B, A) >= 0) {
376 /* -sign*(X + Y)*a == B - A (mod |n|) */
377 if (!BN_uadd(X, X, Y))
378 goto err;
379 /* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
380 * actually makes the algorithm slower */
381 if (!BN_usub(B, B, A))
382 goto err;
383 } else {
384 /* sign*(X + Y)*a == A - B (mod |n|) */
385 if (!BN_uadd(Y, Y, X))
386 goto err;
387 /* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
388 if (!BN_usub(A, A, B))
389 goto err;
390 }
391 }
392 } else {
393 /* general inversion algorithm */
394
395 while (!BN_is_zero(B)) {
396 BIGNUM *tmp;
397
398 /*
399 * 0 < B < A,
400 * (*) -sign*X*a == B (mod |n|),
401 * sign*Y*a == A (mod |n|)
402 */
403
404 /* (D, M) := (A/B, A%B) ... */
405 if (BN_num_bits(A) == BN_num_bits(B)) {
406 if (!BN_one(D)BN_set_word((D), 1))
407 goto err;
408 if (!BN_sub(M, A, B))
409 goto err;
410 } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
411 /* A/B is 1, 2, or 3 */
412 if (!BN_lshift1(T, B))
413 goto err;
414 if (BN_ucmp(A, T) < 0) {
415 /* A < 2*B, so D=1 */
416 if (!BN_one(D)BN_set_word((D), 1))
417 goto err;
418 if (!BN_sub(M, A, B))
419 goto err;
420 } else {
421 /* A >= 2*B, so D=2 or D=3 */
422 if (!BN_sub(M, A, T))
423 goto err;
424 if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */
425 if (BN_ucmp(A, D) < 0) {
426 /* A < 3*B, so D=2 */
427 if (!BN_set_word(D, 2))
428 goto err;
429 /* M (= A - 2*B) already has the correct value */
430 } else {
431 /* only D=3 remains */
432 if (!BN_set_word(D, 3))
433 goto err;
434 /* currently M = A - 2*B, but we need M = A - 3*B */
435 if (!BN_sub(M, M, B))
436 goto err;
437 }
438 }
439 } else {
440 if (!BN_div_nonct(D, M, A, B, ctx))
441 goto err;
442 }
443
444 /* Now
445 * A = D*B + M;
446 * thus we have
447 * (**) sign*Y*a == D*B + M (mod |n|).
448 */
449 tmp = A; /* keep the BIGNUM object, the value does not matter */
450
451 /* (A, B) := (B, A mod B) ... */
452 A = B;
453 B = M;
454 /* ... so we have 0 <= B < A again */
455
456 /* Since the former M is now B and the former B is now A,
457 * (**) translates into
458 * sign*Y*a == D*A + B (mod |n|),
459 * i.e.
460 * sign*Y*a - D*A == B (mod |n|).
461 * Similarly, (*) translates into
462 * -sign*X*a == A (mod |n|).
463 *
464 * Thus,
465 * sign*Y*a + D*sign*X*a == B (mod |n|),
466 * i.e.
467 * sign*(Y + D*X)*a == B (mod |n|).
468 *
469 * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
470 * -sign*X*a == B (mod |n|),
471 * sign*Y*a == A (mod |n|).
472 * Note that X and Y stay non-negative all the time.
473 */
474
475 /* most of the time D is very small, so we can optimize tmp := D*X+Y */
476 if (BN_is_one(D)) {
477 if (!BN_add(tmp, X, Y))
478 goto err;
479 } else {
480 if (BN_is_word(D, 2)) {
481 if (!BN_lshift1(tmp, X))
482 goto err;
483 } else if (BN_is_word(D, 4)) {
484 if (!BN_lshift(tmp, X, 2))
485 goto err;
486 } else if (D->top == 1) {
487 if (!BN_copy(tmp, X))
488 goto err;
489 if (!BN_mul_word(tmp, D->d[0]))
490 goto err;
491 } else {
492 if (!BN_mul(tmp, D,X, ctx))
493 goto err;
494 }
495 if (!BN_add(tmp, tmp, Y))
496 goto err;
497 }
498
499 M = Y; /* keep the BIGNUM object, the value does not matter */
500 Y = X;
501 X = tmp;
502 sign = -sign;
503 }
504 }
505
506 /*
507 * The while loop (Euclid's algorithm) ends when
508 * A == gcd(a,n);
509 * we have
510 * sign*Y*a == A (mod |n|),
511 * where Y is non-negative.
512 */
513
514 if (sign < 0) {
515 if (!BN_sub(Y, n, Y))
516 goto err;
517 }
518 /* Now Y*a == A (mod |n|). */
519
520 if (BN_is_one(A)) {
521 /* Y*a == 1 (mod |n|) */
522 if (!Y->neg && BN_ucmp(Y, n) < 0) {
523 if (!BN_copy(R, Y))
524 goto err;
525 } else {
526 if (!BN_nnmod(R, Y,n, ctx))
527 goto err;
528 }
529 } else {
530 BNerror(BN_R_NO_INVERSE)ERR_put_error(3,(0xfff),(108),"/usr/src/lib/libcrypto/bn/bn_gcd.c"
,530)
;
531 goto err;
532 }
533 ret = R;
534
535err:
536 if ((ret == NULL((void *)0)) && (in == NULL((void *)0)))
537 BN_free(R);
538 BN_CTX_end(ctx);
539 bn_check_top(ret);
540 return (ret);
541}
542
543BIGNUM *
544BN_mod_inverse(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
545{
546 int ct = ((BN_get_flags(a, BN_FLG_CONSTTIME0x04) != 0) ||
547 (BN_get_flags(n, BN_FLG_CONSTTIME0x04) != 0));
548 return BN_mod_inverse_internal(in, a, n, ctx, ct);
549}
550
551BIGNUM *
552BN_mod_inverse_nonct(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
553{
554 return BN_mod_inverse_internal(in, a, n, ctx, 0);
555}
556
557BIGNUM *
558BN_mod_inverse_ct(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
559{
560 return BN_mod_inverse_internal(in, a, n, ctx, 1);
561}
562
563/* BN_mod_inverse_no_branch is a special version of BN_mod_inverse.
564 * It does not contain branches that may leak sensitive information.
565 */
566static BIGNUM *
567BN_mod_inverse_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n,
568 BN_CTX *ctx)
569{
570 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL((void *)0);
571 BIGNUM local_A, local_B;
572 BIGNUM *pA, *pB;
573 BIGNUM *ret = NULL((void *)0);
574 int sign;
575
576 bn_check_top(a);
577 bn_check_top(n);
578
579 BN_init(&local_A);
580 BN_init(&local_B);
581
582 BN_CTX_start(ctx);
583 if ((A = BN_CTX_get(ctx)) == NULL((void *)0))
584 goto err;
585 if ((B = BN_CTX_get(ctx)) == NULL((void *)0))
586 goto err;
587 if ((X = BN_CTX_get(ctx)) == NULL((void *)0))
588 goto err;
589 if ((D = BN_CTX_get(ctx)) == NULL((void *)0))
590 goto err;
591 if ((M = BN_CTX_get(ctx)) == NULL((void *)0))
592 goto err;
593 if ((Y = BN_CTX_get(ctx)) == NULL((void *)0))
594 goto err;
595 if ((T = BN_CTX_get(ctx)) == NULL((void *)0))
Although the value stored to 'T' is used in the enclosing expression, the value is never actually read from 'T'
596 goto err;
597
598 if (in == NULL((void *)0))
599 R = BN_new();
600 else
601 R = in;
602 if (R == NULL((void *)0))
603 goto err;
604
605 BN_one(X)BN_set_word((X), 1);
606 BN_zero(Y)(BN_set_word((Y),0));
607 if (BN_copy(B, a) == NULL((void *)0))
608 goto err;
609 if (BN_copy(A, n) == NULL((void *)0))
610 goto err;
611 A->neg = 0;
612
613 if (B->neg || (BN_ucmp(B, A) >= 0)) {
614 /*
615 * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
616 * BN_div_no_branch will be called eventually.
617 */
618 pB = &local_B;
619 /* BN_init() done at the top of the function. */
620 BN_with_flags(pB, B, BN_FLG_CONSTTIME0x04);
621 if (!BN_nnmod(B, pB, A, ctx))
622 goto err;
623 }
624 sign = -1;
625 /* From B = a mod |n|, A = |n| it follows that
626 *
627 * 0 <= B < A,
628 * -sign*X*a == B (mod |n|),
629 * sign*Y*a == A (mod |n|).
630 */
631
632 while (!BN_is_zero(B)) {
633 BIGNUM *tmp;
634
635 /*
636 * 0 < B < A,
637 * (*) -sign*X*a == B (mod |n|),
638 * sign*Y*a == A (mod |n|)
639 */
640
641 /*
642 * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
643 * BN_div_no_branch will be called eventually.
644 */
645 pA = &local_A;
646 /* BN_init() done at the top of the function. */
647 BN_with_flags(pA, A, BN_FLG_CONSTTIME0x04);
648
649 /* (D, M) := (A/B, A%B) ... */
650 if (!BN_div_ct(D, M, pA, B, ctx))
651 goto err;
652
653 /* Now
654 * A = D*B + M;
655 * thus we have
656 * (**) sign*Y*a == D*B + M (mod |n|).
657 */
658 tmp = A; /* keep the BIGNUM object, the value does not matter */
659
660 /* (A, B) := (B, A mod B) ... */
661 A = B;
662 B = M;
663 /* ... so we have 0 <= B < A again */
664
665 /* Since the former M is now B and the former B is now A,
666 * (**) translates into
667 * sign*Y*a == D*A + B (mod |n|),
668 * i.e.
669 * sign*Y*a - D*A == B (mod |n|).
670 * Similarly, (*) translates into
671 * -sign*X*a == A (mod |n|).
672 *
673 * Thus,
674 * sign*Y*a + D*sign*X*a == B (mod |n|),
675 * i.e.
676 * sign*(Y + D*X)*a == B (mod |n|).
677 *
678 * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
679 * -sign*X*a == B (mod |n|),
680 * sign*Y*a == A (mod |n|).
681 * Note that X and Y stay non-negative all the time.
682 */
683
684 if (!BN_mul(tmp, D, X, ctx))
685 goto err;
686 if (!BN_add(tmp, tmp, Y))
687 goto err;
688
689 M = Y; /* keep the BIGNUM object, the value does not matter */
690 Y = X;
691 X = tmp;
692 sign = -sign;
693 }
694
695 /*
696 * The while loop (Euclid's algorithm) ends when
697 * A == gcd(a,n);
698 * we have
699 * sign*Y*a == A (mod |n|),
700 * where Y is non-negative.
701 */
702
703 if (sign < 0) {
704 if (!BN_sub(Y, n, Y))
705 goto err;
706 }
707 /* Now Y*a == A (mod |n|). */
708
709 if (BN_is_one(A)) {
710 /* Y*a == 1 (mod |n|) */
711 if (!Y->neg && BN_ucmp(Y, n) < 0) {
712 if (!BN_copy(R, Y))
713 goto err;
714 } else {
715 if (!BN_nnmod(R, Y, n, ctx))
716 goto err;
717 }
718 } else {
719 BNerror(BN_R_NO_INVERSE)ERR_put_error(3,(0xfff),(108),"/usr/src/lib/libcrypto/bn/bn_gcd.c"
,719)
;
720 goto err;
721 }
722 ret = R;
723
724err:
725 if ((ret == NULL((void *)0)) && (in == NULL((void *)0)))
726 BN_free(R);
727 BN_CTX_end(ctx);
728 bn_check_top(ret);
729 return (ret);
730}
731
732/*
733 * BN_gcd_no_branch is a special version of BN_mod_inverse_no_branch.
734 * that returns the GCD.
735 */
736static BIGNUM *
737BN_gcd_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n,
738 BN_CTX *ctx)
739{
740 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL((void *)0);
741 BIGNUM local_A, local_B;
742 BIGNUM *pA, *pB;
743 BIGNUM *ret = NULL((void *)0);
744 int sign;
745
746 if (in == NULL((void *)0))
747 goto err;
748 R = in;
749
750 BN_init(&local_A);
751 BN_init(&local_B);
752
753 bn_check_top(a);
754 bn_check_top(n);
755
756 BN_CTX_start(ctx);
757 if ((A = BN_CTX_get(ctx)) == NULL((void *)0))
758 goto err;
759 if ((B = BN_CTX_get(ctx)) == NULL((void *)0))
760 goto err;
761 if ((X = BN_CTX_get(ctx)) == NULL((void *)0))
762 goto err;
763 if ((D = BN_CTX_get(ctx)) == NULL((void *)0))
764 goto err;
765 if ((M = BN_CTX_get(ctx)) == NULL((void *)0))
766 goto err;
767 if ((Y = BN_CTX_get(ctx)) == NULL((void *)0))
768 goto err;
769 if ((T = BN_CTX_get(ctx)) == NULL((void *)0))
770 goto err;
771
772 BN_one(X)BN_set_word((X), 1);
773 BN_zero(Y)(BN_set_word((Y),0));
774 if (BN_copy(B, a) == NULL((void *)0))
775 goto err;
776 if (BN_copy(A, n) == NULL((void *)0))
777 goto err;
778 A->neg = 0;
779
780 if (B->neg || (BN_ucmp(B, A) >= 0)) {
781 /*
782 * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
783 * BN_div_no_branch will be called eventually.
784 */
785 pB = &local_B;
786 /* BN_init() done at the top of the function. */
787 BN_with_flags(pB, B, BN_FLG_CONSTTIME0x04);
788 if (!BN_nnmod(B, pB, A, ctx))
789 goto err;
790 }
791 sign = -1;
792 /* From B = a mod |n|, A = |n| it follows that
793 *
794 * 0 <= B < A,
795 * -sign*X*a == B (mod |n|),
796 * sign*Y*a == A (mod |n|).
797 */
798
799 while (!BN_is_zero(B)) {
800 BIGNUM *tmp;
801
802 /*
803 * 0 < B < A,
804 * (*) -sign*X*a == B (mod |n|),
805 * sign*Y*a == A (mod |n|)
806 */
807
808 /*
809 * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
810 * BN_div_no_branch will be called eventually.
811 */
812 pA = &local_A;
813 /* BN_init() done at the top of the function. */
814 BN_with_flags(pA, A, BN_FLG_CONSTTIME0x04);
815
816 /* (D, M) := (A/B, A%B) ... */
817 if (!BN_div_ct(D, M, pA, B, ctx))
818 goto err;
819
820 /* Now
821 * A = D*B + M;
822 * thus we have
823 * (**) sign*Y*a == D*B + M (mod |n|).
824 */
825 tmp = A; /* keep the BIGNUM object, the value does not matter */
826
827 /* (A, B) := (B, A mod B) ... */
828 A = B;
829 B = M;
830 /* ... so we have 0 <= B < A again */
831
832 /* Since the former M is now B and the former B is now A,
833 * (**) translates into
834 * sign*Y*a == D*A + B (mod |n|),
835 * i.e.
836 * sign*Y*a - D*A == B (mod |n|).
837 * Similarly, (*) translates into
838 * -sign*X*a == A (mod |n|).
839 *
840 * Thus,
841 * sign*Y*a + D*sign*X*a == B (mod |n|),
842 * i.e.
843 * sign*(Y + D*X)*a == B (mod |n|).
844 *
845 * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
846 * -sign*X*a == B (mod |n|),
847 * sign*Y*a == A (mod |n|).
848 * Note that X and Y stay non-negative all the time.
849 */
850
851 if (!BN_mul(tmp, D, X, ctx))
852 goto err;
853 if (!BN_add(tmp, tmp, Y))
854 goto err;
855
856 M = Y; /* keep the BIGNUM object, the value does not matter */
857 Y = X;
858 X = tmp;
859 sign = -sign;
860 }
861
862 /*
863 * The while loop (Euclid's algorithm) ends when
864 * A == gcd(a,n);
865 */
866
867 if (!BN_copy(R, A))
868 goto err;
869 ret = R;
870err:
871 if ((ret == NULL((void *)0)) && (in == NULL((void *)0)))
872 BN_free(R);
873 BN_CTX_end(ctx);
874 bn_check_top(ret);
875 return (ret);
876}