Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h
Warning:line 85, column 47
The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name X86FastISel.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -fhalf-no-semantic-interposition -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -D PIC -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -D_RET_PROTECTOR -ret-protector -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86/X86FastISel.cpp

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86/X86FastISel.cpp

1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the X86-specific support for the FastISel class. Much
10// of the target-specific code is generated by tablegen in the file
11// X86GenFastISel.inc, which is #included here.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86CallingConv.h"
17#include "X86InstrBuilder.h"
18#include "X86InstrInfo.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86RegisterInfo.h"
21#include "X86Subtarget.h"
22#include "X86TargetMachine.h"
23#include "llvm/Analysis/BranchProbabilityInfo.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/IR/CallingConv.h"
30#include "llvm/IR/DebugInfo.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/GetElementPtrTypeIterator.h"
33#include "llvm/IR/GlobalAlias.h"
34#include "llvm/IR/GlobalVariable.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/IR/IntrinsicsX86.h"
38#include "llvm/IR/Operator.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Target/TargetOptions.h"
43using namespace llvm;
44
45namespace {
46
47class X86FastISel final : public FastISel {
48 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
49 /// make the right decision when generating code for different targets.
50 const X86Subtarget *Subtarget;
51
52 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
53 /// floating point ops.
54 /// When SSE is available, use it for f32 operations.
55 /// When SSE2 is available, use it for f64 operations.
56 bool X86ScalarSSEf64;
57 bool X86ScalarSSEf32;
58
59public:
60 explicit X86FastISel(FunctionLoweringInfo &funcInfo,
61 const TargetLibraryInfo *libInfo)
62 : FastISel(funcInfo, libInfo) {
63 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
64 X86ScalarSSEf64 = Subtarget->hasSSE2();
65 X86ScalarSSEf32 = Subtarget->hasSSE1();
66 }
67
68 bool fastSelectInstruction(const Instruction *I) override;
69
70 /// The specified machine instr operand is a vreg, and that
71 /// vreg is being provided by the specified load instruction. If possible,
72 /// try to fold the load as an operand to the instruction, returning true if
73 /// possible.
74 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
75 const LoadInst *LI) override;
76
77 bool fastLowerArguments() override;
78 bool fastLowerCall(CallLoweringInfo &CLI) override;
79 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
80
81#include "X86GenFastISel.inc"
82
83private:
84 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
85 const DebugLoc &DL);
86
87 bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
88 unsigned &ResultReg, unsigned Alignment = 1);
89
90 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
91 MachineMemOperand *MMO = nullptr, bool Aligned = false);
92 bool X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
93 MachineMemOperand *MMO = nullptr, bool Aligned = false);
94
95 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
96 unsigned &ResultReg);
97
98 bool X86SelectAddress(const Value *V, X86AddressMode &AM);
99 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
100
101 bool X86SelectLoad(const Instruction *I);
102
103 bool X86SelectStore(const Instruction *I);
104
105 bool X86SelectRet(const Instruction *I);
106
107 bool X86SelectCmp(const Instruction *I);
108
109 bool X86SelectZExt(const Instruction *I);
110
111 bool X86SelectSExt(const Instruction *I);
112
113 bool X86SelectBranch(const Instruction *I);
114
115 bool X86SelectShift(const Instruction *I);
116
117 bool X86SelectDivRem(const Instruction *I);
118
119 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
120
121 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
122
123 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
124
125 bool X86SelectSelect(const Instruction *I);
126
127 bool X86SelectTrunc(const Instruction *I);
128
129 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
130 const TargetRegisterClass *RC);
131
132 bool X86SelectFPExt(const Instruction *I);
133 bool X86SelectFPTrunc(const Instruction *I);
134 bool X86SelectSIToFP(const Instruction *I);
135 bool X86SelectUIToFP(const Instruction *I);
136 bool X86SelectIntToFP(const Instruction *I, bool IsSigned);
137
138 const X86InstrInfo *getInstrInfo() const {
139 return Subtarget->getInstrInfo();
140 }
141 const X86TargetMachine *getTargetMachine() const {
142 return static_cast<const X86TargetMachine *>(&TM);
143 }
144
145 bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
146
147 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
148 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
149 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
150 unsigned fastMaterializeConstant(const Constant *C) override;
151
152 unsigned fastMaterializeAlloca(const AllocaInst *C) override;
153
154 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
155
156 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
157 /// computed in an SSE register, not on the X87 floating point stack.
158 bool isScalarFPTypeInSSEReg(EVT VT) const {
159 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
160 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
161 }
162
163 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
164
165 bool IsMemcpySmall(uint64_t Len);
166
167 bool TryEmitSmallMemcpy(X86AddressMode DestAM,
168 X86AddressMode SrcAM, uint64_t Len);
169
170 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
171 const Value *Cond);
172
173 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
174 X86AddressMode &AM);
175
176 unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
177 const TargetRegisterClass *RC, unsigned Op0,
178 unsigned Op1, unsigned Op2, unsigned Op3);
179};
180
181} // end anonymous namespace.
182
183static std::pair<unsigned, bool>
184getX86SSEConditionCode(CmpInst::Predicate Predicate) {
185 unsigned CC;
186 bool NeedSwap = false;
187
188 // SSE Condition code mapping:
189 // 0 - EQ
190 // 1 - LT
191 // 2 - LE
192 // 3 - UNORD
193 // 4 - NEQ
194 // 5 - NLT
195 // 6 - NLE
196 // 7 - ORD
197 switch (Predicate) {
198 default: llvm_unreachable("Unexpected predicate")__builtin_unreachable();
199 case CmpInst::FCMP_OEQ: CC = 0; break;
200 case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH[[gnu::fallthrough]];
201 case CmpInst::FCMP_OLT: CC = 1; break;
202 case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH[[gnu::fallthrough]];
203 case CmpInst::FCMP_OLE: CC = 2; break;
204 case CmpInst::FCMP_UNO: CC = 3; break;
205 case CmpInst::FCMP_UNE: CC = 4; break;
206 case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH[[gnu::fallthrough]];
207 case CmpInst::FCMP_UGE: CC = 5; break;
208 case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH[[gnu::fallthrough]];
209 case CmpInst::FCMP_UGT: CC = 6; break;
210 case CmpInst::FCMP_ORD: CC = 7; break;
211 case CmpInst::FCMP_UEQ: CC = 8; break;
212 case CmpInst::FCMP_ONE: CC = 12; break;
213 }
214
215 return std::make_pair(CC, NeedSwap);
216}
217
218/// Adds a complex addressing mode to the given machine instr builder.
219/// Note, this will constrain the index register. If its not possible to
220/// constrain the given index register, then a new one will be created. The
221/// IndexReg field of the addressing mode will be updated to match in this case.
222const MachineInstrBuilder &
223X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
224 X86AddressMode &AM) {
225 // First constrain the index register. It needs to be a GR64_NOSP.
226 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
227 MIB->getNumOperands() +
228 X86::AddrIndexReg);
229 return ::addFullAddress(MIB, AM);
230}
231
232/// Check if it is possible to fold the condition from the XALU intrinsic
233/// into the user. The condition code will only be updated on success.
234bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
235 const Value *Cond) {
236 if (!isa<ExtractValueInst>(Cond))
237 return false;
238
239 const auto *EV = cast<ExtractValueInst>(Cond);
240 if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
241 return false;
242
243 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
244 MVT RetVT;
245 const Function *Callee = II->getCalledFunction();
246 Type *RetTy =
247 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
248 if (!isTypeLegal(RetTy, RetVT))
249 return false;
250
251 if (RetVT != MVT::i32 && RetVT != MVT::i64)
252 return false;
253
254 X86::CondCode TmpCC;
255 switch (II->getIntrinsicID()) {
256 default: return false;
257 case Intrinsic::sadd_with_overflow:
258 case Intrinsic::ssub_with_overflow:
259 case Intrinsic::smul_with_overflow:
260 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
261 case Intrinsic::uadd_with_overflow:
262 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
263 }
264
265 // Check if both instructions are in the same basic block.
266 if (II->getParent() != I->getParent())
267 return false;
268
269 // Make sure nothing is in the way
270 BasicBlock::const_iterator Start(I);
271 BasicBlock::const_iterator End(II);
272 for (auto Itr = std::prev(Start); Itr != End; --Itr) {
273 // We only expect extractvalue instructions between the intrinsic and the
274 // instruction to be selected.
275 if (!isa<ExtractValueInst>(Itr))
276 return false;
277
278 // Check that the extractvalue operand comes from the intrinsic.
279 const auto *EVI = cast<ExtractValueInst>(Itr);
280 if (EVI->getAggregateOperand() != II)
281 return false;
282 }
283
284 // Make sure no potentially eflags clobbering phi moves can be inserted in
285 // between.
286 auto HasPhis = [](const BasicBlock *Succ) {
287 return !llvm::empty(Succ->phis());
288 };
289 if (I->isTerminator() && llvm::any_of(successors(I), HasPhis))
290 return false;
291
292 CC = TmpCC;
293 return true;
294}
295
296bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
297 EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true);
298 if (evt == MVT::Other || !evt.isSimple())
299 // Unhandled type. Halt "fast" selection and bail.
300 return false;
301
302 VT = evt.getSimpleVT();
303 // For now, require SSE/SSE2 for performing floating-point operations,
304 // since x87 requires additional work.
305 if (VT == MVT::f64 && !X86ScalarSSEf64)
306 return false;
307 if (VT == MVT::f32 && !X86ScalarSSEf32)
308 return false;
309 // Similarly, no f80 support yet.
310 if (VT == MVT::f80)
311 return false;
312 // We only handle legal types. For example, on x86-32 the instruction
313 // selector contains all of the 64-bit instructions from x86-64,
314 // under the assumption that i64 won't be used if the target doesn't
315 // support it.
316 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
317}
318
319/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
320/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
321/// Return true and the result register by reference if it is possible.
322bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM,
323 MachineMemOperand *MMO, unsigned &ResultReg,
324 unsigned Alignment) {
325 bool HasSSE41 = Subtarget->hasSSE41();
326 bool HasAVX = Subtarget->hasAVX();
327 bool HasAVX2 = Subtarget->hasAVX2();
328 bool HasAVX512 = Subtarget->hasAVX512();
329 bool HasVLX = Subtarget->hasVLX();
330 bool IsNonTemporal = MMO && MMO->isNonTemporal();
331
332 // Treat i1 loads the same as i8 loads. Masking will be done when storing.
333 if (VT == MVT::i1)
334 VT = MVT::i8;
335
336 // Get opcode and regclass of the output for the given load instruction.
337 unsigned Opc = 0;
338 switch (VT.SimpleTy) {
339 default: return false;
340 case MVT::i8:
341 Opc = X86::MOV8rm;
342 break;
343 case MVT::i16:
344 Opc = X86::MOV16rm;
345 break;
346 case MVT::i32:
347 Opc = X86::MOV32rm;
348 break;
349 case MVT::i64:
350 // Must be in x86-64 mode.
351 Opc = X86::MOV64rm;
352 break;
353 case MVT::f32:
354 if (X86ScalarSSEf32)
355 Opc = HasAVX512 ? X86::VMOVSSZrm_alt :
356 HasAVX ? X86::VMOVSSrm_alt :
357 X86::MOVSSrm_alt;
358 else
359 Opc = X86::LD_Fp32m;
360 break;
361 case MVT::f64:
362 if (X86ScalarSSEf64)
363 Opc = HasAVX512 ? X86::VMOVSDZrm_alt :
364 HasAVX ? X86::VMOVSDrm_alt :
365 X86::MOVSDrm_alt;
366 else
367 Opc = X86::LD_Fp64m;
368 break;
369 case MVT::f80:
370 // No f80 support yet.
371 return false;
372 case MVT::v4f32:
373 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
374 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
375 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
376 else if (Alignment >= 16)
377 Opc = HasVLX ? X86::VMOVAPSZ128rm :
378 HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
379 else
380 Opc = HasVLX ? X86::VMOVUPSZ128rm :
381 HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
382 break;
383 case MVT::v2f64:
384 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
385 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
386 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
387 else if (Alignment >= 16)
388 Opc = HasVLX ? X86::VMOVAPDZ128rm :
389 HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
390 else
391 Opc = HasVLX ? X86::VMOVUPDZ128rm :
392 HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
393 break;
394 case MVT::v4i32:
395 case MVT::v2i64:
396 case MVT::v8i16:
397 case MVT::v16i8:
398 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
399 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
400 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
401 else if (Alignment >= 16)
402 Opc = HasVLX ? X86::VMOVDQA64Z128rm :
403 HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
404 else
405 Opc = HasVLX ? X86::VMOVDQU64Z128rm :
406 HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
407 break;
408 case MVT::v8f32:
409 assert(HasAVX)((void)0);
410 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
411 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
412 else if (IsNonTemporal && Alignment >= 16)
413 return false; // Force split for X86::VMOVNTDQArm
414 else if (Alignment >= 32)
415 Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
416 else
417 Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
418 break;
419 case MVT::v4f64:
420 assert(HasAVX)((void)0);
421 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
422 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
423 else if (IsNonTemporal && Alignment >= 16)
424 return false; // Force split for X86::VMOVNTDQArm
425 else if (Alignment >= 32)
426 Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
427 else
428 Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
429 break;
430 case MVT::v8i32:
431 case MVT::v4i64:
432 case MVT::v16i16:
433 case MVT::v32i8:
434 assert(HasAVX)((void)0);
435 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
436 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
437 else if (IsNonTemporal && Alignment >= 16)
438 return false; // Force split for X86::VMOVNTDQArm
439 else if (Alignment >= 32)
440 Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
441 else
442 Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
443 break;
444 case MVT::v16f32:
445 assert(HasAVX512)((void)0);
446 if (IsNonTemporal && Alignment >= 64)
447 Opc = X86::VMOVNTDQAZrm;
448 else
449 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
450 break;
451 case MVT::v8f64:
452 assert(HasAVX512)((void)0);
453 if (IsNonTemporal && Alignment >= 64)
454 Opc = X86::VMOVNTDQAZrm;
455 else
456 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
457 break;
458 case MVT::v8i64:
459 case MVT::v16i32:
460 case MVT::v32i16:
461 case MVT::v64i8:
462 assert(HasAVX512)((void)0);
463 // Note: There are a lot more choices based on type with AVX-512, but
464 // there's really no advantage when the load isn't masked.
465 if (IsNonTemporal && Alignment >= 64)
466 Opc = X86::VMOVNTDQAZrm;
467 else
468 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
469 break;
470 }
471
472 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
473
474 ResultReg = createResultReg(RC);
475 MachineInstrBuilder MIB =
476 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
477 addFullAddress(MIB, AM);
478 if (MMO)
479 MIB->addMemOperand(*FuncInfo.MF, MMO);
480 return true;
481}
482
483/// X86FastEmitStore - Emit a machine instruction to store a value Val of
484/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
485/// and a displacement offset, or a GlobalAddress,
486/// i.e. V. Return true if it is possible.
487bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
488 MachineMemOperand *MMO, bool Aligned) {
489 bool HasSSE1 = Subtarget->hasSSE1();
490 bool HasSSE2 = Subtarget->hasSSE2();
491 bool HasSSE4A = Subtarget->hasSSE4A();
492 bool HasAVX = Subtarget->hasAVX();
493 bool HasAVX512 = Subtarget->hasAVX512();
494 bool HasVLX = Subtarget->hasVLX();
495 bool IsNonTemporal = MMO && MMO->isNonTemporal();
496
497 // Get opcode and regclass of the output for the given store instruction.
498 unsigned Opc = 0;
499 switch (VT.getSimpleVT().SimpleTy) {
500 case MVT::f80: // No f80 support yet.
501 default: return false;
502 case MVT::i1: {
503 // Mask out all but lowest bit.
504 Register AndResult = createResultReg(&X86::GR8RegClass);
505 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
506 TII.get(X86::AND8ri), AndResult)
507 .addReg(ValReg).addImm(1);
508 ValReg = AndResult;
509 LLVM_FALLTHROUGH[[gnu::fallthrough]]; // handle i1 as i8.
510 }
511 case MVT::i8: Opc = X86::MOV8mr; break;
512 case MVT::i16: Opc = X86::MOV16mr; break;
513 case MVT::i32:
514 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
515 break;
516 case MVT::i64:
517 // Must be in x86-64 mode.
518 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
519 break;
520 case MVT::f32:
521 if (X86ScalarSSEf32) {
522 if (IsNonTemporal && HasSSE4A)
523 Opc = X86::MOVNTSS;
524 else
525 Opc = HasAVX512 ? X86::VMOVSSZmr :
526 HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
527 } else
528 Opc = X86::ST_Fp32m;
529 break;
530 case MVT::f64:
531 if (X86ScalarSSEf32) {
532 if (IsNonTemporal && HasSSE4A)
533 Opc = X86::MOVNTSD;
534 else
535 Opc = HasAVX512 ? X86::VMOVSDZmr :
536 HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
537 } else
538 Opc = X86::ST_Fp64m;
539 break;
540 case MVT::x86mmx:
541 Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
542 break;
543 case MVT::v4f32:
544 if (Aligned) {
545 if (IsNonTemporal)
546 Opc = HasVLX ? X86::VMOVNTPSZ128mr :
547 HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
548 else
549 Opc = HasVLX ? X86::VMOVAPSZ128mr :
550 HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
551 } else
552 Opc = HasVLX ? X86::VMOVUPSZ128mr :
553 HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
554 break;
555 case MVT::v2f64:
556 if (Aligned) {
557 if (IsNonTemporal)
558 Opc = HasVLX ? X86::VMOVNTPDZ128mr :
559 HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
560 else
561 Opc = HasVLX ? X86::VMOVAPDZ128mr :
562 HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
563 } else
564 Opc = HasVLX ? X86::VMOVUPDZ128mr :
565 HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
566 break;
567 case MVT::v4i32:
568 case MVT::v2i64:
569 case MVT::v8i16:
570 case MVT::v16i8:
571 if (Aligned) {
572 if (IsNonTemporal)
573 Opc = HasVLX ? X86::VMOVNTDQZ128mr :
574 HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
575 else
576 Opc = HasVLX ? X86::VMOVDQA64Z128mr :
577 HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
578 } else
579 Opc = HasVLX ? X86::VMOVDQU64Z128mr :
580 HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
581 break;
582 case MVT::v8f32:
583 assert(HasAVX)((void)0);
584 if (Aligned) {
585 if (IsNonTemporal)
586 Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
587 else
588 Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
589 } else
590 Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
591 break;
592 case MVT::v4f64:
593 assert(HasAVX)((void)0);
594 if (Aligned) {
595 if (IsNonTemporal)
596 Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
597 else
598 Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
599 } else
600 Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
601 break;
602 case MVT::v8i32:
603 case MVT::v4i64:
604 case MVT::v16i16:
605 case MVT::v32i8:
606 assert(HasAVX)((void)0);
607 if (Aligned) {
608 if (IsNonTemporal)
609 Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
610 else
611 Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
612 } else
613 Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
614 break;
615 case MVT::v16f32:
616 assert(HasAVX512)((void)0);
617 if (Aligned)
618 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
619 else
620 Opc = X86::VMOVUPSZmr;
621 break;
622 case MVT::v8f64:
623 assert(HasAVX512)((void)0);
624 if (Aligned) {
625 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
626 } else
627 Opc = X86::VMOVUPDZmr;
628 break;
629 case MVT::v8i64:
630 case MVT::v16i32:
631 case MVT::v32i16:
632 case MVT::v64i8:
633 assert(HasAVX512)((void)0);
634 // Note: There are a lot more choices based on type with AVX-512, but
635 // there's really no advantage when the store isn't masked.
636 if (Aligned)
637 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
638 else
639 Opc = X86::VMOVDQU64Zmr;
640 break;
641 }
642
643 const MCInstrDesc &Desc = TII.get(Opc);
644 // Some of the instructions in the previous switch use FR128 instead
645 // of FR32 for ValReg. Make sure the register we feed the instruction
646 // matches its register class constraints.
647 // Note: This is fine to do a copy from FR32 to FR128, this is the
648 // same registers behind the scene and actually why it did not trigger
649 // any bugs before.
650 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
651 MachineInstrBuilder MIB =
652 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
653 addFullAddress(MIB, AM).addReg(ValReg);
654 if (MMO)
655 MIB->addMemOperand(*FuncInfo.MF, MMO);
656
657 return true;
658}
659
660bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
661 X86AddressMode &AM,
662 MachineMemOperand *MMO, bool Aligned) {
663 // Handle 'null' like i32/i64 0.
664 if (isa<ConstantPointerNull>(Val))
665 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
666
667 // If this is a store of a simple constant, fold the constant into the store.
668 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
669 unsigned Opc = 0;
670 bool Signed = true;
671 switch (VT.getSimpleVT().SimpleTy) {
672 default: break;
673 case MVT::i1:
674 Signed = false;
675 LLVM_FALLTHROUGH[[gnu::fallthrough]]; // Handle as i8.
676 case MVT::i8: Opc = X86::MOV8mi; break;
677 case MVT::i16: Opc = X86::MOV16mi; break;
678 case MVT::i32: Opc = X86::MOV32mi; break;
679 case MVT::i64:
680 // Must be a 32-bit sign extended value.
681 if (isInt<32>(CI->getSExtValue()))
682 Opc = X86::MOV64mi32;
683 break;
684 }
685
686 if (Opc) {
687 MachineInstrBuilder MIB =
688 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
689 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
690 : CI->getZExtValue());
691 if (MMO)
692 MIB->addMemOperand(*FuncInfo.MF, MMO);
693 return true;
694 }
695 }
696
697 Register ValReg = getRegForValue(Val);
698 if (ValReg == 0)
699 return false;
700
701 return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned);
702}
703
704/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
705/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
706/// ISD::SIGN_EXTEND).
707bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
708 unsigned Src, EVT SrcVT,
709 unsigned &ResultReg) {
710 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
711 if (RR == 0)
712 return false;
713
714 ResultReg = RR;
715 return true;
716}
717
718bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
719 // Handle constant address.
720 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
721 // Can't handle alternate code models yet.
722 if (TM.getCodeModel() != CodeModel::Small)
723 return false;
724
725 // Can't handle TLS yet.
726 if (GV->isThreadLocal())
727 return false;
728
729 // Can't handle !absolute_symbol references yet.
730 if (GV->isAbsoluteSymbolRef())
731 return false;
732
733 // RIP-relative addresses can't have additional register operands, so if
734 // we've already folded stuff into the addressing mode, just force the
735 // global value into its own register, which we can use as the basereg.
736 if (!Subtarget->isPICStyleRIPRel() ||
737 (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
738 // Okay, we've committed to selecting this global. Set up the address.
739 AM.GV = GV;
740
741 // Allow the subtarget to classify the global.
742 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
743
744 // If this reference is relative to the pic base, set it now.
745 if (isGlobalRelativeToPICBase(GVFlags)) {
746 // FIXME: How do we know Base.Reg is free??
747 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
748 }
749
750 // Unless the ABI requires an extra load, return a direct reference to
751 // the global.
752 if (!isGlobalStubReference(GVFlags)) {
753 if (Subtarget->isPICStyleRIPRel()) {
754 // Use rip-relative addressing if we can. Above we verified that the
755 // base and index registers are unused.
756 assert(AM.Base.Reg == 0 && AM.IndexReg == 0)((void)0);
757 AM.Base.Reg = X86::RIP;
758 }
759 AM.GVOpFlags = GVFlags;
760 return true;
761 }
762
763 // Ok, we need to do a load from a stub. If we've already loaded from
764 // this stub, reuse the loaded pointer, otherwise emit the load now.
765 DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V);
766 Register LoadReg;
767 if (I != LocalValueMap.end() && I->second) {
768 LoadReg = I->second;
769 } else {
770 // Issue load from stub.
771 unsigned Opc = 0;
772 const TargetRegisterClass *RC = nullptr;
773 X86AddressMode StubAM;
774 StubAM.Base.Reg = AM.Base.Reg;
775 StubAM.GV = GV;
776 StubAM.GVOpFlags = GVFlags;
777
778 // Prepare for inserting code in the local-value area.
779 SavePoint SaveInsertPt = enterLocalValueArea();
780
781 if (TLI.getPointerTy(DL) == MVT::i64) {
782 Opc = X86::MOV64rm;
783 RC = &X86::GR64RegClass;
784 } else {
785 Opc = X86::MOV32rm;
786 RC = &X86::GR32RegClass;
787 }
788
789 if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL)
790 StubAM.Base.Reg = X86::RIP;
791
792 LoadReg = createResultReg(RC);
793 MachineInstrBuilder LoadMI =
794 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
795 addFullAddress(LoadMI, StubAM);
796
797 // Ok, back to normal mode.
798 leaveLocalValueArea(SaveInsertPt);
799
800 // Prevent loading GV stub multiple times in same MBB.
801 LocalValueMap[V] = LoadReg;
802 }
803
804 // Now construct the final address. Note that the Disp, Scale,
805 // and Index values may already be set here.
806 AM.Base.Reg = LoadReg;
807 AM.GV = nullptr;
808 return true;
809 }
810 }
811
812 // If all else fails, try to materialize the value in a register.
813 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
814 if (AM.Base.Reg == 0) {
815 AM.Base.Reg = getRegForValue(V);
816 return AM.Base.Reg != 0;
817 }
818 if (AM.IndexReg == 0) {
819 assert(AM.Scale == 1 && "Scale with no index!")((void)0);
820 AM.IndexReg = getRegForValue(V);
821 return AM.IndexReg != 0;
822 }
823 }
824
825 return false;
826}
827
828/// X86SelectAddress - Attempt to fill in an address from the given value.
829///
830bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
831 SmallVector<const Value *, 32> GEPs;
832redo_gep:
833 const User *U = nullptr;
834 unsigned Opcode = Instruction::UserOp1;
835 if (const Instruction *I = dyn_cast<Instruction>(V)) {
836 // Don't walk into other basic blocks; it's possible we haven't
837 // visited them yet, so the instructions may not yet be assigned
838 // virtual registers.
839 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
840 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
841 Opcode = I->getOpcode();
842 U = I;
843 }
844 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
845 Opcode = C->getOpcode();
846 U = C;
847 }
848
849 if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
850 if (Ty->getAddressSpace() > 255)
851 // Fast instruction selection doesn't support the special
852 // address spaces.
853 return false;
854
855 switch (Opcode) {
856 default: break;
857 case Instruction::BitCast:
858 // Look past bitcasts.
859 return X86SelectAddress(U->getOperand(0), AM);
860
861 case Instruction::IntToPtr:
862 // Look past no-op inttoptrs.
863 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
864 TLI.getPointerTy(DL))
865 return X86SelectAddress(U->getOperand(0), AM);
866 break;
867
868 case Instruction::PtrToInt:
869 // Look past no-op ptrtoints.
870 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
871 return X86SelectAddress(U->getOperand(0), AM);
872 break;
873
874 case Instruction::Alloca: {
875 // Do static allocas.
876 const AllocaInst *A = cast<AllocaInst>(V);
877 DenseMap<const AllocaInst *, int>::iterator SI =
878 FuncInfo.StaticAllocaMap.find(A);
879 if (SI != FuncInfo.StaticAllocaMap.end()) {
880 AM.BaseType = X86AddressMode::FrameIndexBase;
881 AM.Base.FrameIndex = SI->second;
882 return true;
883 }
884 break;
885 }
886
887 case Instruction::Add: {
888 // Adds of constants are common and easy enough.
889 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
890 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
891 // They have to fit in the 32-bit signed displacement field though.
892 if (isInt<32>(Disp)) {
893 AM.Disp = (uint32_t)Disp;
894 return X86SelectAddress(U->getOperand(0), AM);
895 }
896 }
897 break;
898 }
899
900 case Instruction::GetElementPtr: {
901 X86AddressMode SavedAM = AM;
902
903 // Pattern-match simple GEPs.
904 uint64_t Disp = (int32_t)AM.Disp;
905 unsigned IndexReg = AM.IndexReg;
906 unsigned Scale = AM.Scale;
907 gep_type_iterator GTI = gep_type_begin(U);
908 // Iterate through the indices, folding what we can. Constants can be
909 // folded, and one dynamic index can be handled, if the scale is supported.
910 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
911 i != e; ++i, ++GTI) {
912 const Value *Op = *i;
913 if (StructType *STy = GTI.getStructTypeOrNull()) {
914 const StructLayout *SL = DL.getStructLayout(STy);
915 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
916 continue;
917 }
918
919 // A array/variable index is always of the form i*S where S is the
920 // constant scale size. See if we can push the scale into immediates.
921 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
922 for (;;) {
923 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
924 // Constant-offset addressing.
925 Disp += CI->getSExtValue() * S;
926 break;
927 }
928 if (canFoldAddIntoGEP(U, Op)) {
929 // A compatible add with a constant operand. Fold the constant.
930 ConstantInt *CI =
931 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
932 Disp += CI->getSExtValue() * S;
933 // Iterate on the other operand.
934 Op = cast<AddOperator>(Op)->getOperand(0);
935 continue;
936 }
937 if (IndexReg == 0 &&
938 (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
939 (S == 1 || S == 2 || S == 4 || S == 8)) {
940 // Scaled-index addressing.
941 Scale = S;
942 IndexReg = getRegForGEPIndex(Op);
943 if (IndexReg == 0)
944 return false;
945 break;
946 }
947 // Unsupported.
948 goto unsupported_gep;
949 }
950 }
951
952 // Check for displacement overflow.
953 if (!isInt<32>(Disp))
954 break;
955
956 AM.IndexReg = IndexReg;
957 AM.Scale = Scale;
958 AM.Disp = (uint32_t)Disp;
959 GEPs.push_back(V);
960
961 if (const GetElementPtrInst *GEP =
962 dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
963 // Ok, the GEP indices were covered by constant-offset and scaled-index
964 // addressing. Update the address state and move on to examining the base.
965 V = GEP;
966 goto redo_gep;
967 } else if (X86SelectAddress(U->getOperand(0), AM)) {
968 return true;
969 }
970
971 // If we couldn't merge the gep value into this addr mode, revert back to
972 // our address and just match the value instead of completely failing.
973 AM = SavedAM;
974
975 for (const Value *I : reverse(GEPs))
976 if (handleConstantAddresses(I, AM))
977 return true;
978
979 return false;
980 unsupported_gep:
981 // Ok, the GEP indices weren't all covered.
982 break;
983 }
984 }
985
986 return handleConstantAddresses(V, AM);
987}
988
989/// X86SelectCallAddress - Attempt to fill in an address from the given value.
990///
991bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
992 const User *U = nullptr;
993 unsigned Opcode = Instruction::UserOp1;
994 const Instruction *I = dyn_cast<Instruction>(V);
995 // Record if the value is defined in the same basic block.
996 //
997 // This information is crucial to know whether or not folding an
998 // operand is valid.
999 // Indeed, FastISel generates or reuses a virtual register for all
1000 // operands of all instructions it selects. Obviously, the definition and
1001 // its uses must use the same virtual register otherwise the produced
1002 // code is incorrect.
1003 // Before instruction selection, FunctionLoweringInfo::set sets the virtual
1004 // registers for values that are alive across basic blocks. This ensures
1005 // that the values are consistently set between across basic block, even
1006 // if different instruction selection mechanisms are used (e.g., a mix of
1007 // SDISel and FastISel).
1008 // For values local to a basic block, the instruction selection process
1009 // generates these virtual registers with whatever method is appropriate
1010 // for its needs. In particular, FastISel and SDISel do not share the way
1011 // local virtual registers are set.
1012 // Therefore, this is impossible (or at least unsafe) to share values
1013 // between basic blocks unless they use the same instruction selection
1014 // method, which is not guarantee for X86.
1015 // Moreover, things like hasOneUse could not be used accurately, if we
1016 // allow to reference values across basic blocks whereas they are not
1017 // alive across basic blocks initially.
1018 bool InMBB = true;
1019 if (I) {
1020 Opcode = I->getOpcode();
1021 U = I;
1022 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1023 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1024 Opcode = C->getOpcode();
1025 U = C;
1026 }
1027
1028 switch (Opcode) {
1029 default: break;
1030 case Instruction::BitCast:
1031 // Look past bitcasts if its operand is in the same BB.
1032 if (InMBB)
1033 return X86SelectCallAddress(U->getOperand(0), AM);
1034 break;
1035
1036 case Instruction::IntToPtr:
1037 // Look past no-op inttoptrs if its operand is in the same BB.
1038 if (InMBB &&
1039 TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1040 TLI.getPointerTy(DL))
1041 return X86SelectCallAddress(U->getOperand(0), AM);
1042 break;
1043
1044 case Instruction::PtrToInt:
1045 // Look past no-op ptrtoints if its operand is in the same BB.
1046 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
1047 return X86SelectCallAddress(U->getOperand(0), AM);
1048 break;
1049 }
1050
1051 // Handle constant address.
1052 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1053 // Can't handle alternate code models yet.
1054 if (TM.getCodeModel() != CodeModel::Small)
1055 return false;
1056
1057 // RIP-relative addresses can't have additional register operands.
1058 if (Subtarget->isPICStyleRIPRel() &&
1059 (AM.Base.Reg != 0 || AM.IndexReg != 0))
1060 return false;
1061
1062 // Can't handle TLS.
1063 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1064 if (GVar->isThreadLocal())
1065 return false;
1066
1067 // Okay, we've committed to selecting this global. Set up the basic address.
1068 AM.GV = GV;
1069
1070 // Return a direct reference to the global. Fastisel can handle calls to
1071 // functions that require loads, such as dllimport and nonlazybind
1072 // functions.
1073 if (Subtarget->isPICStyleRIPRel()) {
1074 // Use rip-relative addressing if we can. Above we verified that the
1075 // base and index registers are unused.
1076 assert(AM.Base.Reg == 0 && AM.IndexReg == 0)((void)0);
1077 AM.Base.Reg = X86::RIP;
1078 } else {
1079 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
1080 }
1081
1082 return true;
1083 }
1084
1085 // If all else fails, try to materialize the value in a register.
1086 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1087 auto GetCallRegForValue = [this](const Value *V) {
1088 Register Reg = getRegForValue(V);
1089
1090 // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits.
1091 if (Reg && Subtarget->isTarget64BitILP32()) {
1092 Register CopyReg = createResultReg(&X86::GR32RegClass);
1093 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32rr),
1094 CopyReg)
1095 .addReg(Reg);
1096
1097 Register ExtReg = createResultReg(&X86::GR64RegClass);
1098 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1099 TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg)
1100 .addImm(0)
1101 .addReg(CopyReg)
1102 .addImm(X86::sub_32bit);
1103 Reg = ExtReg;
1104 }
1105
1106 return Reg;
1107 };
1108
1109 if (AM.Base.Reg == 0) {
1110 AM.Base.Reg = GetCallRegForValue(V);
1111 return AM.Base.Reg != 0;
1112 }
1113 if (AM.IndexReg == 0) {
1114 assert(AM.Scale == 1 && "Scale with no index!")((void)0);
1115 AM.IndexReg = GetCallRegForValue(V);
1116 return AM.IndexReg != 0;
1117 }
1118 }
1119
1120 return false;
1121}
1122
1123
1124/// X86SelectStore - Select and emit code to implement store instructions.
1125bool X86FastISel::X86SelectStore(const Instruction *I) {
1126 // Atomic stores need special handling.
1127 const StoreInst *S = cast<StoreInst>(I);
1128
1129 if (S->isAtomic())
1130 return false;
1131
1132 const Value *PtrV = I->getOperand(1);
1133 if (TLI.supportSwiftError()) {
1134 // Swifterror values can come from either a function parameter with
1135 // swifterror attribute or an alloca with swifterror attribute.
1136 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1137 if (Arg->hasSwiftErrorAttr())
1138 return false;
1139 }
1140
1141 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1142 if (Alloca->isSwiftError())
1143 return false;
1144 }
1145 }
1146
1147 const Value *Val = S->getValueOperand();
1148 const Value *Ptr = S->getPointerOperand();
1149
1150 MVT VT;
1151 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1152 return false;
1153
1154 Align Alignment = S->getAlign();
1155 Align ABIAlignment = DL.getABITypeAlign(Val->getType());
1156 bool Aligned = Alignment >= ABIAlignment;
1157
1158 X86AddressMode AM;
1159 if (!X86SelectAddress(Ptr, AM))
1160 return false;
1161
1162 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1163}
1164
1165/// X86SelectRet - Select and emit code to implement ret instructions.
1166bool X86FastISel::X86SelectRet(const Instruction *I) {
1167 const ReturnInst *Ret = cast<ReturnInst>(I);
1168 const Function &F = *I->getParent()->getParent();
1169 const X86MachineFunctionInfo *X86MFInfo =
1170 FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1171
1172 if (!FuncInfo.CanLowerReturn)
1173 return false;
1174
1175 if (TLI.supportSwiftError() &&
1176 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1177 return false;
1178
1179 if (TLI.supportSplitCSR(FuncInfo.MF))
1180 return false;
1181
1182 CallingConv::ID CC = F.getCallingConv();
1183 if (CC != CallingConv::C &&
1184 CC != CallingConv::Fast &&
1185 CC != CallingConv::Tail &&
1186 CC != CallingConv::SwiftTail &&
1187 CC != CallingConv::X86_FastCall &&
1188 CC != CallingConv::X86_StdCall &&
1189 CC != CallingConv::X86_ThisCall &&
1190 CC != CallingConv::X86_64_SysV &&
1191 CC != CallingConv::Win64)
1192 return false;
1193
1194 // Don't handle popping bytes if they don't fit the ret's immediate.
1195 if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
1196 return false;
1197
1198 // fastcc with -tailcallopt is intended to provide a guaranteed
1199 // tail call optimization. Fastisel doesn't know how to do that.
1200 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
1201 CC == CallingConv::Tail || CC == CallingConv::SwiftTail)
1202 return false;
1203
1204 // Let SDISel handle vararg functions.
1205 if (F.isVarArg())
1206 return false;
1207
1208 // Build a list of return value registers.
1209 SmallVector<unsigned, 4> RetRegs;
1210
1211 if (Ret->getNumOperands() > 0) {
1212 SmallVector<ISD::OutputArg, 4> Outs;
1213 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1214
1215 // Analyze operands of the call, assigning locations to each operand.
1216 SmallVector<CCValAssign, 16> ValLocs;
1217 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1218 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1219
1220 const Value *RV = Ret->getOperand(0);
1221 Register Reg = getRegForValue(RV);
1222 if (Reg == 0)
1223 return false;
1224
1225 // Only handle a single return value for now.
1226 if (ValLocs.size() != 1)
1227 return false;
1228
1229 CCValAssign &VA = ValLocs[0];
1230
1231 // Don't bother handling odd stuff for now.
1232 if (VA.getLocInfo() != CCValAssign::Full)
1233 return false;
1234 // Only handle register returns for now.
1235 if (!VA.isRegLoc())
1236 return false;
1237
1238 // The calling-convention tables for x87 returns don't tell
1239 // the whole story.
1240 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1241 return false;
1242
1243 unsigned SrcReg = Reg + VA.getValNo();
1244 EVT SrcVT = TLI.getValueType(DL, RV->getType());
1245 EVT DstVT = VA.getValVT();
1246 // Special handling for extended integers.
1247 if (SrcVT != DstVT) {
1248 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1249 return false;
1250
1251 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1252 return false;
1253
1254 assert(DstVT == MVT::i32 && "X86 should always ext to i32")((void)0);
1255
1256 if (SrcVT == MVT::i1) {
1257 if (Outs[0].Flags.isSExt())
1258 return false;
1259 // TODO
1260 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg);
1261 SrcVT = MVT::i8;
1262 }
1263 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1264 ISD::SIGN_EXTEND;
1265 // TODO
1266 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg);
1267 }
1268
1269 // Make the copy.
1270 Register DstReg = VA.getLocReg();
1271 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1272 // Avoid a cross-class copy. This is very unlikely.
1273 if (!SrcRC->contains(DstReg))
1274 return false;
1275 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1276 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1277
1278 // Add register to return instruction.
1279 RetRegs.push_back(VA.getLocReg());
1280 }
1281
1282 // Swift calling convention does not require we copy the sret argument
1283 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1284
1285 // All x86 ABIs require that for returning structs by value we copy
1286 // the sret argument into %rax/%eax (depending on ABI) for the return.
1287 // We saved the argument into a virtual register in the entry block,
1288 // so now we copy the value out and into %rax/%eax.
1289 if (F.hasStructRetAttr() && CC != CallingConv::Swift &&
1290 CC != CallingConv::SwiftTail) {
1291 Register Reg = X86MFInfo->getSRetReturnReg();
1292 assert(Reg &&((void)0)
1293 "SRetReturnReg should have been set in LowerFormalArguments()!")((void)0);
1294 unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
1295 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1296 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1297 RetRegs.push_back(RetReg);
1298 }
1299
1300 // Now emit the RET.
1301 MachineInstrBuilder MIB;
1302 if (X86MFInfo->getBytesToPopOnReturn()) {
1303 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1304 TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL))
1305 .addImm(X86MFInfo->getBytesToPopOnReturn());
1306 } else {
1307 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1308 TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1309 }
1310 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1311 MIB.addReg(RetRegs[i], RegState::Implicit);
1312 return true;
1313}
1314
1315/// X86SelectLoad - Select and emit code to implement load instructions.
1316///
1317bool X86FastISel::X86SelectLoad(const Instruction *I) {
1318 const LoadInst *LI = cast<LoadInst>(I);
3
'I' is a 'LoadInst'
1319
1320 // Atomic loads need special handling.
1321 if (LI->isAtomic())
4
Assuming the condition is false
5
Taking false branch
1322 return false;
1323
1324 const Value *SV = I->getOperand(0);
1325 if (TLI.supportSwiftError()) {
6
Assuming the condition is true
7
Taking true branch
1326 // Swifterror values can come from either a function parameter with
1327 // swifterror attribute or an alloca with swifterror attribute.
1328 if (const Argument *Arg
8.1
'Arg' is null
8.1
'Arg' is null
8.1
'Arg' is null
8.1
'Arg' is null
= dyn_cast<Argument>(SV)) {
8
Assuming 'SV' is not a 'Argument'
9
Taking false branch
1329 if (Arg->hasSwiftErrorAttr())
1330 return false;
1331 }
1332
1333 if (const AllocaInst *Alloca
10.1
'Alloca' is non-null
10.1
'Alloca' is non-null
10.1
'Alloca' is non-null
10.1
'Alloca' is non-null
= dyn_cast<AllocaInst>(SV)) {
10
Assuming 'SV' is a 'AllocaInst'
11
Taking true branch
1334 if (Alloca->isSwiftError())
12
Assuming the condition is false
13
Taking false branch
1335 return false;
1336 }
1337 }
1338
1339 MVT VT;
1340 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
14
Assuming the condition is false
15
Taking false branch
1341 return false;
1342
1343 const Value *Ptr = LI->getPointerOperand();
1344
1345 X86AddressMode AM;
1346 if (!X86SelectAddress(Ptr, AM))
16
Assuming the condition is false
17
Taking false branch
1347 return false;
1348
1349 unsigned ResultReg = 0;
1350 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1351 LI->getAlign().value()))
18
Calling 'LoadInst::getAlign'
25
Returning from 'LoadInst::getAlign'
26
Calling 'Align::value'
1352 return false;
1353
1354 updateValueMap(I, ResultReg);
1355 return true;
1356}
1357
1358static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1359 bool HasAVX512 = Subtarget->hasAVX512();
1360 bool HasAVX = Subtarget->hasAVX();
1361 bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1362 bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1363
1364 switch (VT.getSimpleVT().SimpleTy) {
1365 default: return 0;
1366 case MVT::i8: return X86::CMP8rr;
1367 case MVT::i16: return X86::CMP16rr;
1368 case MVT::i32: return X86::CMP32rr;
1369 case MVT::i64: return X86::CMP64rr;
1370 case MVT::f32:
1371 return X86ScalarSSEf32
1372 ? (HasAVX512 ? X86::VUCOMISSZrr
1373 : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr)
1374 : 0;
1375 case MVT::f64:
1376 return X86ScalarSSEf64
1377 ? (HasAVX512 ? X86::VUCOMISDZrr
1378 : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr)
1379 : 0;
1380 }
1381}
1382
1383/// If we have a comparison with RHS as the RHS of the comparison, return an
1384/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
1385static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1386 int64_t Val = RHSC->getSExtValue();
1387 switch (VT.getSimpleVT().SimpleTy) {
1388 // Otherwise, we can't fold the immediate into this comparison.
1389 default:
1390 return 0;
1391 case MVT::i8:
1392 return X86::CMP8ri;
1393 case MVT::i16:
1394 if (isInt<8>(Val))
1395 return X86::CMP16ri8;
1396 return X86::CMP16ri;
1397 case MVT::i32:
1398 if (isInt<8>(Val))
1399 return X86::CMP32ri8;
1400 return X86::CMP32ri;
1401 case MVT::i64:
1402 if (isInt<8>(Val))
1403 return X86::CMP64ri8;
1404 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1405 // field.
1406 if (isInt<32>(Val))
1407 return X86::CMP64ri32;
1408 return 0;
1409 }
1410}
1411
1412bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1413 const DebugLoc &CurDbgLoc) {
1414 Register Op0Reg = getRegForValue(Op0);
1415 if (Op0Reg == 0) return false;
1416
1417 // Handle 'null' like i32/i64 0.
1418 if (isa<ConstantPointerNull>(Op1))
1419 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1420
1421 // We have two options: compare with register or immediate. If the RHS of
1422 // the compare is an immediate that we can fold into this compare, use
1423 // CMPri, otherwise use CMPrr.
1424 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1425 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1426 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1427 .addReg(Op0Reg)
1428 .addImm(Op1C->getSExtValue());
1429 return true;
1430 }
1431 }
1432
1433 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1434 if (CompareOpc == 0) return false;
1435
1436 Register Op1Reg = getRegForValue(Op1);
1437 if (Op1Reg == 0) return false;
1438 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1439 .addReg(Op0Reg)
1440 .addReg(Op1Reg);
1441
1442 return true;
1443}
1444
1445bool X86FastISel::X86SelectCmp(const Instruction *I) {
1446 const CmpInst *CI = cast<CmpInst>(I);
1447
1448 MVT VT;
1449 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1450 return false;
1451
1452 // Below code only works for scalars.
1453 if (VT.isVector())
1454 return false;
1455
1456 // Try to optimize or fold the cmp.
1457 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1458 unsigned ResultReg = 0;
1459 switch (Predicate) {
1460 default: break;
1461 case CmpInst::FCMP_FALSE: {
1462 ResultReg = createResultReg(&X86::GR32RegClass);
1463 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1464 ResultReg);
1465 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, X86::sub_8bit);
1466 if (!ResultReg)
1467 return false;
1468 break;
1469 }
1470 case CmpInst::FCMP_TRUE: {
1471 ResultReg = createResultReg(&X86::GR8RegClass);
1472 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1473 ResultReg).addImm(1);
1474 break;
1475 }
1476 }
1477
1478 if (ResultReg) {
1479 updateValueMap(I, ResultReg);
1480 return true;
1481 }
1482
1483 const Value *LHS = CI->getOperand(0);
1484 const Value *RHS = CI->getOperand(1);
1485
1486 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1487 // We don't have to materialize a zero constant for this case and can just use
1488 // %x again on the RHS.
1489 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1490 const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1491 if (RHSC && RHSC->isNullValue())
1492 RHS = LHS;
1493 }
1494
1495 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1496 static const uint16_t SETFOpcTable[2][3] = {
1497 { X86::COND_E, X86::COND_NP, X86::AND8rr },
1498 { X86::COND_NE, X86::COND_P, X86::OR8rr }
1499 };
1500 const uint16_t *SETFOpc = nullptr;
1501 switch (Predicate) {
1502 default: break;
1503 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1504 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1505 }
1506
1507 ResultReg = createResultReg(&X86::GR8RegClass);
1508 if (SETFOpc) {
1509 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1510 return false;
1511
1512 Register FlagReg1 = createResultReg(&X86::GR8RegClass);
1513 Register FlagReg2 = createResultReg(&X86::GR8RegClass);
1514 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1515 FlagReg1).addImm(SETFOpc[0]);
1516 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1517 FlagReg2).addImm(SETFOpc[1]);
1518 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1519 ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1520 updateValueMap(I, ResultReg);
1521 return true;
1522 }
1523
1524 X86::CondCode CC;
1525 bool SwapArgs;
1526 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1527 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.")((void)0);
1528
1529 if (SwapArgs)
1530 std::swap(LHS, RHS);
1531
1532 // Emit a compare of LHS/RHS.
1533 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1534 return false;
1535
1536 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1537 ResultReg).addImm(CC);
1538 updateValueMap(I, ResultReg);
1539 return true;
1540}
1541
1542bool X86FastISel::X86SelectZExt(const Instruction *I) {
1543 EVT DstVT = TLI.getValueType(DL, I->getType());
1544 if (!TLI.isTypeLegal(DstVT))
1545 return false;
1546
1547 Register ResultReg = getRegForValue(I->getOperand(0));
1548 if (ResultReg == 0)
1549 return false;
1550
1551 // Handle zero-extension from i1 to i8, which is common.
1552 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1553 if (SrcVT == MVT::i1) {
1554 // Set the high bits to zero.
1555 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
1556 SrcVT = MVT::i8;
1557
1558 if (ResultReg == 0)
1559 return false;
1560 }
1561
1562 if (DstVT == MVT::i64) {
1563 // Handle extension to 64-bits via sub-register shenanigans.
1564 unsigned MovInst;
1565
1566 switch (SrcVT.SimpleTy) {
1567 case MVT::i8: MovInst = X86::MOVZX32rr8; break;
1568 case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1569 case MVT::i32: MovInst = X86::MOV32rr; break;
1570 default: llvm_unreachable("Unexpected zext to i64 source type")__builtin_unreachable();
1571 }
1572
1573 Register Result32 = createResultReg(&X86::GR32RegClass);
1574 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1575 .addReg(ResultReg);
1576
1577 ResultReg = createResultReg(&X86::GR64RegClass);
1578 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1579 ResultReg)
1580 .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1581 } else if (DstVT == MVT::i16) {
1582 // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
1583 // extend to 32-bits and then extract down to 16-bits.
1584 Register Result32 = createResultReg(&X86::GR32RegClass);
1585 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8),
1586 Result32).addReg(ResultReg);
1587
1588 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
1589 } else if (DstVT != MVT::i8) {
1590 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1591 ResultReg);
1592 if (ResultReg == 0)
1593 return false;
1594 }
1595
1596 updateValueMap(I, ResultReg);
1597 return true;
1598}
1599
1600bool X86FastISel::X86SelectSExt(const Instruction *I) {
1601 EVT DstVT = TLI.getValueType(DL, I->getType());
1602 if (!TLI.isTypeLegal(DstVT))
1603 return false;
1604
1605 Register ResultReg = getRegForValue(I->getOperand(0));
1606 if (ResultReg == 0)
1607 return false;
1608
1609 // Handle sign-extension from i1 to i8.
1610 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1611 if (SrcVT == MVT::i1) {
1612 // Set the high bits to zero.
1613 Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
1614 if (ZExtReg == 0)
1615 return false;
1616
1617 // Negate the result to make an 8-bit sign extended value.
1618 ResultReg = createResultReg(&X86::GR8RegClass);
1619 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r),
1620 ResultReg).addReg(ZExtReg);
1621
1622 SrcVT = MVT::i8;
1623 }
1624
1625 if (DstVT == MVT::i16) {
1626 // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
1627 // extend to 32-bits and then extract down to 16-bits.
1628 Register Result32 = createResultReg(&X86::GR32RegClass);
1629 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8),
1630 Result32).addReg(ResultReg);
1631
1632 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
1633 } else if (DstVT != MVT::i8) {
1634 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
1635 ResultReg);
1636 if (ResultReg == 0)
1637 return false;
1638 }
1639
1640 updateValueMap(I, ResultReg);
1641 return true;
1642}
1643
1644bool X86FastISel::X86SelectBranch(const Instruction *I) {
1645 // Unconditional branches are selected by tablegen-generated code.
1646 // Handle a conditional branch.
1647 const BranchInst *BI = cast<BranchInst>(I);
1648 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1649 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1650
1651 // Fold the common case of a conditional branch with a comparison
1652 // in the same block (values defined on other blocks may not have
1653 // initialized registers).
1654 X86::CondCode CC;
1655 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1656 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1657 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1658
1659 // Try to optimize or fold the cmp.
1660 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1661 switch (Predicate) {
1662 default: break;
1663 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1664 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true;
1665 }
1666
1667 const Value *CmpLHS = CI->getOperand(0);
1668 const Value *CmpRHS = CI->getOperand(1);
1669
1670 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1671 // 0.0.
1672 // We don't have to materialize a zero constant for this case and can just
1673 // use %x again on the RHS.
1674 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1675 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1676 if (CmpRHSC && CmpRHSC->isNullValue())
1677 CmpRHS = CmpLHS;
1678 }
1679
1680 // Try to take advantage of fallthrough opportunities.
1681 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1682 std::swap(TrueMBB, FalseMBB);
1683 Predicate = CmpInst::getInversePredicate(Predicate);
1684 }
1685
1686 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1687 // code check. Instead two branch instructions are required to check all
1688 // the flags. First we change the predicate to a supported condition code,
1689 // which will be the first branch. Later one we will emit the second
1690 // branch.
1691 bool NeedExtraBranch = false;
1692 switch (Predicate) {
1693 default: break;
1694 case CmpInst::FCMP_OEQ:
1695 std::swap(TrueMBB, FalseMBB);
1696 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1697 case CmpInst::FCMP_UNE:
1698 NeedExtraBranch = true;
1699 Predicate = CmpInst::FCMP_ONE;
1700 break;
1701 }
1702
1703 bool SwapArgs;
1704 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1705 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.")((void)0);
1706
1707 if (SwapArgs)
1708 std::swap(CmpLHS, CmpRHS);
1709
1710 // Emit a compare of the LHS and RHS, setting the flags.
1711 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1712 return false;
1713
1714 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1715 .addMBB(TrueMBB).addImm(CC);
1716
1717 // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1718 // to UNE above).
1719 if (NeedExtraBranch) {
1720 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1721 .addMBB(TrueMBB).addImm(X86::COND_P);
1722 }
1723
1724 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1725 return true;
1726 }
1727 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1728 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1729 // typically happen for _Bool and C++ bools.
1730 MVT SourceVT;
1731 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1732 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1733 unsigned TestOpc = 0;
1734 switch (SourceVT.SimpleTy) {
1735 default: break;
1736 case MVT::i8: TestOpc = X86::TEST8ri; break;
1737 case MVT::i16: TestOpc = X86::TEST16ri; break;
1738 case MVT::i32: TestOpc = X86::TEST32ri; break;
1739 case MVT::i64: TestOpc = X86::TEST64ri32; break;
1740 }
1741 if (TestOpc) {
1742 Register OpReg = getRegForValue(TI->getOperand(0));
1743 if (OpReg == 0) return false;
1744
1745 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1746 .addReg(OpReg).addImm(1);
1747
1748 unsigned JmpCond = X86::COND_NE;
1749 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1750 std::swap(TrueMBB, FalseMBB);
1751 JmpCond = X86::COND_E;
1752 }
1753
1754 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1755 .addMBB(TrueMBB).addImm(JmpCond);
1756
1757 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1758 return true;
1759 }
1760 }
1761 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1762 // Fake request the condition, otherwise the intrinsic might be completely
1763 // optimized away.
1764 Register TmpReg = getRegForValue(BI->getCondition());
1765 if (TmpReg == 0)
1766 return false;
1767
1768 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1769 .addMBB(TrueMBB).addImm(CC);
1770 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1771 return true;
1772 }
1773
1774 // Otherwise do a clumsy setcc and re-test it.
1775 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1776 // in an explicit cast, so make sure to handle that correctly.
1777 Register OpReg = getRegForValue(BI->getCondition());
1778 if (OpReg == 0) return false;
1779
1780 // In case OpReg is a K register, COPY to a GPR
1781 if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
1782 unsigned KOpReg = OpReg;
1783 OpReg = createResultReg(&X86::GR32RegClass);
1784 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1785 TII.get(TargetOpcode::COPY), OpReg)
1786 .addReg(KOpReg);
1787 OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, X86::sub_8bit);
1788 }
1789 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1790 .addReg(OpReg)
1791 .addImm(1);
1792 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1793 .addMBB(TrueMBB).addImm(X86::COND_NE);
1794 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1795 return true;
1796}
1797
1798bool X86FastISel::X86SelectShift(const Instruction *I) {
1799 unsigned CReg = 0, OpReg = 0;
1800 const TargetRegisterClass *RC = nullptr;
1801 if (I->getType()->isIntegerTy(8)) {
1802 CReg = X86::CL;
1803 RC = &X86::GR8RegClass;
1804 switch (I->getOpcode()) {
1805 case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1806 case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1807 case Instruction::Shl: OpReg = X86::SHL8rCL; break;
1808 default: return false;
1809 }
1810 } else if (I->getType()->isIntegerTy(16)) {
1811 CReg = X86::CX;
1812 RC = &X86::GR16RegClass;
1813 switch (I->getOpcode()) {
1814 default: llvm_unreachable("Unexpected shift opcode")__builtin_unreachable();
1815 case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1816 case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1817 case Instruction::Shl: OpReg = X86::SHL16rCL; break;
1818 }
1819 } else if (I->getType()->isIntegerTy(32)) {
1820 CReg = X86::ECX;
1821 RC = &X86::GR32RegClass;
1822 switch (I->getOpcode()) {
1823 default: llvm_unreachable("Unexpected shift opcode")__builtin_unreachable();
1824 case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1825 case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1826 case Instruction::Shl: OpReg = X86::SHL32rCL; break;
1827 }
1828 } else if (I->getType()->isIntegerTy(64)) {
1829 CReg = X86::RCX;
1830 RC = &X86::GR64RegClass;
1831 switch (I->getOpcode()) {
1832 default: llvm_unreachable("Unexpected shift opcode")__builtin_unreachable();
1833 case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1834 case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1835 case Instruction::Shl: OpReg = X86::SHL64rCL; break;
1836 }
1837 } else {
1838 return false;
1839 }
1840
1841 MVT VT;
1842 if (!isTypeLegal(I->getType(), VT))
1843 return false;
1844
1845 Register Op0Reg = getRegForValue(I->getOperand(0));
1846 if (Op0Reg == 0) return false;
1847
1848 Register Op1Reg = getRegForValue(I->getOperand(1));
1849 if (Op1Reg == 0) return false;
1850 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1851 CReg).addReg(Op1Reg);
1852
1853 // The shift instruction uses X86::CL. If we defined a super-register
1854 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1855 if (CReg != X86::CL)
1856 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1857 TII.get(TargetOpcode::KILL), X86::CL)
1858 .addReg(CReg, RegState::Kill);
1859
1860 Register ResultReg = createResultReg(RC);
1861 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1862 .addReg(Op0Reg);
1863 updateValueMap(I, ResultReg);
1864 return true;
1865}
1866
1867bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1868 const static unsigned NumTypes = 4; // i8, i16, i32, i64
1869 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
1870 const static bool S = true; // IsSigned
1871 const static bool U = false; // !IsSigned
1872 const static unsigned Copy = TargetOpcode::COPY;
1873 // For the X86 DIV/IDIV instruction, in most cases the dividend
1874 // (numerator) must be in a specific register pair highreg:lowreg,
1875 // producing the quotient in lowreg and the remainder in highreg.
1876 // For most data types, to set up the instruction, the dividend is
1877 // copied into lowreg, and lowreg is sign-extended or zero-extended
1878 // into highreg. The exception is i8, where the dividend is defined
1879 // as a single register rather than a register pair, and we
1880 // therefore directly sign-extend or zero-extend the dividend into
1881 // lowreg, instead of copying, and ignore the highreg.
1882 const static struct DivRemEntry {
1883 // The following portion depends only on the data type.
1884 const TargetRegisterClass *RC;
1885 unsigned LowInReg; // low part of the register pair
1886 unsigned HighInReg; // high part of the register pair
1887 // The following portion depends on both the data type and the operation.
1888 struct DivRemResult {
1889 unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
1890 unsigned OpSignExtend; // Opcode for sign-extending lowreg into
1891 // highreg, or copying a zero into highreg.
1892 unsigned OpCopy; // Opcode for copying dividend into lowreg, or
1893 // zero/sign-extending into lowreg for i8.
1894 unsigned DivRemResultReg; // Register containing the desired result.
1895 bool IsOpSigned; // Whether to use signed or unsigned form.
1896 } ResultTable[NumOps];
1897 } OpTable[NumTypes] = {
1898 { &X86::GR8RegClass, X86::AX, 0, {
1899 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
1900 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
1901 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
1902 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
1903 }
1904 }, // i8
1905 { &X86::GR16RegClass, X86::AX, X86::DX, {
1906 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
1907 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
1908 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv
1909 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem
1910 }
1911 }, // i16
1912 { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1913 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
1914 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
1915 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
1916 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
1917 }
1918 }, // i32
1919 { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1920 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
1921 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
1922 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv
1923 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem
1924 }
1925 }, // i64
1926 };
1927
1928 MVT VT;
1929 if (!isTypeLegal(I->getType(), VT))
1930 return false;
1931
1932 unsigned TypeIndex, OpIndex;
1933 switch (VT.SimpleTy) {
1934 default: return false;
1935 case MVT::i8: TypeIndex = 0; break;
1936 case MVT::i16: TypeIndex = 1; break;
1937 case MVT::i32: TypeIndex = 2; break;
1938 case MVT::i64: TypeIndex = 3;
1939 if (!Subtarget->is64Bit())
1940 return false;
1941 break;
1942 }
1943
1944 switch (I->getOpcode()) {
1945 default: llvm_unreachable("Unexpected div/rem opcode")__builtin_unreachable();
1946 case Instruction::SDiv: OpIndex = 0; break;
1947 case Instruction::SRem: OpIndex = 1; break;
1948 case Instruction::UDiv: OpIndex = 2; break;
1949 case Instruction::URem: OpIndex = 3; break;
1950 }
1951
1952 const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1953 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1954 Register Op0Reg = getRegForValue(I->getOperand(0));
1955 if (Op0Reg == 0)
1956 return false;
1957 Register Op1Reg = getRegForValue(I->getOperand(1));
1958 if (Op1Reg == 0)
1959 return false;
1960
1961 // Move op0 into low-order input register.
1962 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1963 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1964 // Zero-extend or sign-extend into high-order input register.
1965 if (OpEntry.OpSignExtend) {
1966 if (OpEntry.IsOpSigned)
1967 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1968 TII.get(OpEntry.OpSignExtend));
1969 else {
1970 Register Zero32 = createResultReg(&X86::GR32RegClass);
1971 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1972 TII.get(X86::MOV32r0), Zero32);
1973
1974 // Copy the zero into the appropriate sub/super/identical physical
1975 // register. Unfortunately the operations needed are not uniform enough
1976 // to fit neatly into the table above.
1977 if (VT == MVT::i16) {
1978 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1979 TII.get(Copy), TypeEntry.HighInReg)
1980 .addReg(Zero32, 0, X86::sub_16bit);
1981 } else if (VT == MVT::i32) {
1982 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1983 TII.get(Copy), TypeEntry.HighInReg)
1984 .addReg(Zero32);
1985 } else if (VT == MVT::i64) {
1986 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1987 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1988 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1989 }
1990 }
1991 }
1992 // Generate the DIV/IDIV instruction.
1993 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1994 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1995 // For i8 remainder, we can't reference ah directly, as we'll end
1996 // up with bogus copies like %r9b = COPY %ah. Reference ax
1997 // instead to prevent ah references in a rex instruction.
1998 //
1999 // The current assumption of the fast register allocator is that isel
2000 // won't generate explicit references to the GR8_NOREX registers. If
2001 // the allocator and/or the backend get enhanced to be more robust in
2002 // that regard, this can be, and should be, removed.
2003 unsigned ResultReg = 0;
2004 if ((I->getOpcode() == Instruction::SRem ||
2005 I->getOpcode() == Instruction::URem) &&
2006 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
2007 Register SourceSuperReg = createResultReg(&X86::GR16RegClass);
2008 Register ResultSuperReg = createResultReg(&X86::GR16RegClass);
2009 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2010 TII.get(Copy), SourceSuperReg).addReg(X86::AX);
2011
2012 // Shift AX right by 8 bits instead of using AH.
2013 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
2014 ResultSuperReg).addReg(SourceSuperReg).addImm(8);
2015
2016 // Now reference the 8-bit subreg of the result.
2017 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
2018 X86::sub_8bit);
2019 }
2020 // Copy the result out of the physreg if we haven't already.
2021 if (!ResultReg) {
2022 ResultReg = createResultReg(TypeEntry.RC);
2023 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
2024 .addReg(OpEntry.DivRemResultReg);
2025 }
2026 updateValueMap(I, ResultReg);
2027
2028 return true;
2029}
2030
2031/// Emit a conditional move instruction (if the are supported) to lower
2032/// the select.
2033bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
2034 // Check if the subtarget supports these instructions.
2035 if (!Subtarget->hasCMov())
2036 return false;
2037
2038 // FIXME: Add support for i8.
2039 if (RetVT < MVT::i16 || RetVT > MVT::i64)
2040 return false;
2041
2042 const Value *Cond = I->getOperand(0);
2043 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2044 bool NeedTest = true;
2045 X86::CondCode CC = X86::COND_NE;
2046
2047 // Optimize conditions coming from a compare if both instructions are in the
2048 // same basic block (values defined in other basic blocks may not have
2049 // initialized registers).
2050 const auto *CI = dyn_cast<CmpInst>(Cond);
2051 if (CI && (CI->getParent() == I->getParent())) {
2052 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2053
2054 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
2055 static const uint16_t SETFOpcTable[2][3] = {
2056 { X86::COND_NP, X86::COND_E, X86::TEST8rr },
2057 { X86::COND_P, X86::COND_NE, X86::OR8rr }
2058 };
2059 const uint16_t *SETFOpc = nullptr;
2060 switch (Predicate) {
2061 default: break;
2062 case CmpInst::FCMP_OEQ:
2063 SETFOpc = &SETFOpcTable[0][0];
2064 Predicate = CmpInst::ICMP_NE;
2065 break;
2066 case CmpInst::FCMP_UNE:
2067 SETFOpc = &SETFOpcTable[1][0];
2068 Predicate = CmpInst::ICMP_NE;
2069 break;
2070 }
2071
2072 bool NeedSwap;
2073 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
2074 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.")((void)0);
2075
2076 const Value *CmpLHS = CI->getOperand(0);
2077 const Value *CmpRHS = CI->getOperand(1);
2078 if (NeedSwap)
2079 std::swap(CmpLHS, CmpRHS);
2080
2081 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2082 // Emit a compare of the LHS and RHS, setting the flags.
2083 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2084 return false;
2085
2086 if (SETFOpc) {
2087 Register FlagReg1 = createResultReg(&X86::GR8RegClass);
2088 Register FlagReg2 = createResultReg(&X86::GR8RegClass);
2089 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2090 FlagReg1).addImm(SETFOpc[0]);
2091 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2092 FlagReg2).addImm(SETFOpc[1]);
2093 auto const &II = TII.get(SETFOpc[2]);
2094 if (II.getNumDefs()) {
2095 Register TmpReg = createResultReg(&X86::GR8RegClass);
2096 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
2097 .addReg(FlagReg2).addReg(FlagReg1);
2098 } else {
2099 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2100 .addReg(FlagReg2).addReg(FlagReg1);
2101 }
2102 }
2103 NeedTest = false;
2104 } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2105 // Fake request the condition, otherwise the intrinsic might be completely
2106 // optimized away.
2107 Register TmpReg = getRegForValue(Cond);
2108 if (TmpReg == 0)
2109 return false;
2110
2111 NeedTest = false;
2112 }
2113
2114 if (NeedTest) {
2115 // Selects operate on i1, however, CondReg is 8 bits width and may contain
2116 // garbage. Indeed, only the less significant bit is supposed to be
2117 // accurate. If we read more than the lsb, we may see non-zero values
2118 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2119 // the select. This is achieved by performing TEST against 1.
2120 Register CondReg = getRegForValue(Cond);
2121 if (CondReg == 0)
2122 return false;
2123
2124 // In case OpReg is a K register, COPY to a GPR
2125 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2126 unsigned KCondReg = CondReg;
2127 CondReg = createResultReg(&X86::GR32RegClass);
2128 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2129 TII.get(TargetOpcode::COPY), CondReg)
2130 .addReg(KCondReg);
2131 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
2132 }
2133 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2134 .addReg(CondReg)
2135 .addImm(1);
2136 }
2137
2138 const Value *LHS = I->getOperand(1);
2139 const Value *RHS = I->getOperand(2);
2140
2141 Register RHSReg = getRegForValue(RHS);
2142 Register LHSReg = getRegForValue(LHS);
2143 if (!LHSReg || !RHSReg)
2144 return false;
2145
2146 const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
2147 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8);
2148 Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
2149 updateValueMap(I, ResultReg);
2150 return true;
2151}
2152
2153/// Emit SSE or AVX instructions to lower the select.
2154///
2155/// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2156/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
2157/// SSE instructions are available. If AVX is available, try to use a VBLENDV.
2158bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2159 // Optimize conditions coming from a compare if both instructions are in the
2160 // same basic block (values defined in other basic blocks may not have
2161 // initialized registers).
2162 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2163 if (!CI || (CI->getParent() != I->getParent()))
2164 return false;
2165
2166 if (I->getType() != CI->getOperand(0)->getType() ||
2167 !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2168 (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2169 return false;
2170
2171 const Value *CmpLHS = CI->getOperand(0);
2172 const Value *CmpRHS = CI->getOperand(1);
2173 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2174
2175 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2176 // We don't have to materialize a zero constant for this case and can just use
2177 // %x again on the RHS.
2178 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2179 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2180 if (CmpRHSC && CmpRHSC->isNullValue())
2181 CmpRHS = CmpLHS;
2182 }
2183
2184 unsigned CC;
2185 bool NeedSwap;
2186 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2187 if (CC > 7 && !Subtarget->hasAVX())
2188 return false;
2189
2190 if (NeedSwap)
2191 std::swap(CmpLHS, CmpRHS);
2192
2193 const Value *LHS = I->getOperand(1);
2194 const Value *RHS = I->getOperand(2);
2195
2196 Register LHSReg = getRegForValue(LHS);
2197 Register RHSReg = getRegForValue(RHS);
2198 Register CmpLHSReg = getRegForValue(CmpLHS);
2199 Register CmpRHSReg = getRegForValue(CmpRHS);
2200 if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg)
2201 return false;
2202
2203 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2204 unsigned ResultReg;
2205
2206 if (Subtarget->hasAVX512()) {
2207 // If we have AVX512 we can use a mask compare and masked movss/sd.
2208 const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
2209 const TargetRegisterClass *VK1 = &X86::VK1RegClass;
2210
2211 unsigned CmpOpcode =
2212 (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
2213 Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpRHSReg,
2214 CC);
2215
2216 // Need an IMPLICIT_DEF for the input that is used to generate the upper
2217 // bits of the result register since its not based on any of the inputs.
2218 Register ImplicitDefReg = createResultReg(VR128X);
2219 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2220 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2221
2222 // Place RHSReg is the passthru of the masked movss/sd operation and put
2223 // LHS in the input. The mask input comes from the compare.
2224 unsigned MovOpcode =
2225 (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
2226 unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, CmpReg,
2227 ImplicitDefReg, LHSReg);
2228
2229 ResultReg = createResultReg(RC);
2230 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2231 TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
2232
2233 } else if (Subtarget->hasAVX()) {
2234 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2235
2236 // If we have AVX, create 1 blendv instead of 3 logic instructions.
2237 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2238 // uses XMM0 as the selection register. That may need just as many
2239 // instructions as the AND/ANDN/OR sequence due to register moves, so
2240 // don't bother.
2241 unsigned CmpOpcode =
2242 (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2243 unsigned BlendOpcode =
2244 (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2245
2246 Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpRHSReg,
2247 CC);
2248 Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, LHSReg,
2249 CmpReg);
2250 ResultReg = createResultReg(RC);
2251 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2252 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
2253 } else {
2254 // Choose the SSE instruction sequence based on data type (float or double).
2255 static const uint16_t OpcTable[2][4] = {
2256 { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr },
2257 { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr }
2258 };
2259
2260 const uint16_t *Opc = nullptr;
2261 switch (RetVT.SimpleTy) {
2262 default: return false;
2263 case MVT::f32: Opc = &OpcTable[0][0]; break;
2264 case MVT::f64: Opc = &OpcTable[1][0]; break;
2265 }
2266
2267 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2268 Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpRHSReg, CC);
2269 Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, LHSReg);
2270 Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, RHSReg);
2271 Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, AndReg);
2272 ResultReg = createResultReg(RC);
2273 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2274 TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
2275 }
2276 updateValueMap(I, ResultReg);
2277 return true;
2278}
2279
2280bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2281 // These are pseudo CMOV instructions and will be later expanded into control-
2282 // flow.
2283 unsigned Opc;
2284 switch (RetVT.SimpleTy) {
2285 default: return false;
2286 case MVT::i8: Opc = X86::CMOV_GR8; break;
2287 case MVT::i16: Opc = X86::CMOV_GR16; break;
2288 case MVT::i32: Opc = X86::CMOV_GR32; break;
2289 case MVT::f32: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X
2290 : X86::CMOV_FR32; break;
2291 case MVT::f64: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X
2292 : X86::CMOV_FR64; break;
2293 }
2294
2295 const Value *Cond = I->getOperand(0);
2296 X86::CondCode CC = X86::COND_NE;
2297
2298 // Optimize conditions coming from a compare if both instructions are in the
2299 // same basic block (values defined in other basic blocks may not have
2300 // initialized registers).
2301 const auto *CI = dyn_cast<CmpInst>(Cond);
2302 if (CI && (CI->getParent() == I->getParent())) {
2303 bool NeedSwap;
2304 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
2305 if (CC > X86::LAST_VALID_COND)
2306 return false;
2307
2308 const Value *CmpLHS = CI->getOperand(0);
2309 const Value *CmpRHS = CI->getOperand(1);
2310
2311 if (NeedSwap)
2312 std::swap(CmpLHS, CmpRHS);
2313
2314 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2315 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2316 return false;
2317 } else {
2318 Register CondReg = getRegForValue(Cond);
2319 if (CondReg == 0)
2320 return false;
2321
2322 // In case OpReg is a K register, COPY to a GPR
2323 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2324 unsigned KCondReg = CondReg;
2325 CondReg = createResultReg(&X86::GR32RegClass);
2326 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2327 TII.get(TargetOpcode::COPY), CondReg)
2328 .addReg(KCondReg);
2329 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
2330 }
2331 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2332 .addReg(CondReg)
2333 .addImm(1);
2334 }
2335
2336 const Value *LHS = I->getOperand(1);
2337 const Value *RHS = I->getOperand(2);
2338
2339 Register LHSReg = getRegForValue(LHS);
2340 Register RHSReg = getRegForValue(RHS);
2341 if (!LHSReg || !RHSReg)
2342 return false;
2343
2344 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2345
2346 Register ResultReg =
2347 fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
2348 updateValueMap(I, ResultReg);
2349 return true;
2350}
2351
2352bool X86FastISel::X86SelectSelect(const Instruction *I) {
2353 MVT RetVT;
2354 if (!isTypeLegal(I->getType(), RetVT))
2355 return false;
2356
2357 // Check if we can fold the select.
2358 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2359 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2360 const Value *Opnd = nullptr;
2361 switch (Predicate) {
2362 default: break;
2363 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2364 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break;
2365 }
2366 // No need for a select anymore - this is an unconditional move.
2367 if (Opnd) {
2368 Register OpReg = getRegForValue(Opnd);
2369 if (OpReg == 0)
2370 return false;
2371 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2372 Register ResultReg = createResultReg(RC);
2373 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2374 TII.get(TargetOpcode::COPY), ResultReg)
2375 .addReg(OpReg);
2376 updateValueMap(I, ResultReg);
2377 return true;
2378 }
2379 }
2380
2381 // First try to use real conditional move instructions.
2382 if (X86FastEmitCMoveSelect(RetVT, I))
2383 return true;
2384
2385 // Try to use a sequence of SSE instructions to simulate a conditional move.
2386 if (X86FastEmitSSESelect(RetVT, I))
2387 return true;
2388
2389 // Fall-back to pseudo conditional move instructions, which will be later
2390 // converted to control-flow.
2391 if (X86FastEmitPseudoSelect(RetVT, I))
2392 return true;
2393
2394 return false;
2395}
2396
2397// Common code for X86SelectSIToFP and X86SelectUIToFP.
2398bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
2399 // The target-independent selection algorithm in FastISel already knows how
2400 // to select a SINT_TO_FP if the target is SSE but not AVX.
2401 // Early exit if the subtarget doesn't have AVX.
2402 // Unsigned conversion requires avx512.
2403 bool HasAVX512 = Subtarget->hasAVX512();
2404 if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
2405 return false;
2406
2407 // TODO: We could sign extend narrower types.
2408 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
2409 if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
2410 return false;
2411
2412 // Select integer to float/double conversion.
2413 Register OpReg = getRegForValue(I->getOperand(0));
2414 if (OpReg == 0)
2415 return false;
2416
2417 unsigned Opcode;
2418
2419 static const uint16_t SCvtOpc[2][2][2] = {
2420 { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr },
2421 { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } },
2422 { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
2423 { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
2424 };
2425 static const uint16_t UCvtOpc[2][2] = {
2426 { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
2427 { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
2428 };
2429 bool Is64Bit = SrcVT == MVT::i64;
2430
2431 if (I->getType()->isDoubleTy()) {
2432 // s/uitofp int -> double
2433 Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
2434 } else if (I->getType()->isFloatTy()) {
2435 // s/uitofp int -> float
2436 Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
2437 } else
2438 return false;
2439
2440 MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
2441 const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
2442 Register ImplicitDefReg = createResultReg(RC);
2443 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2444 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2445 Register ResultReg = fastEmitInst_rr(Opcode, RC, ImplicitDefReg, OpReg);
2446 updateValueMap(I, ResultReg);
2447 return true;
2448}
2449
2450bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2451 return X86SelectIntToFP(I, /*IsSigned*/true);
2452}
2453
2454bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
2455 return X86SelectIntToFP(I, /*IsSigned*/false);
2456}
2457
2458// Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2459bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2460 unsigned TargetOpc,
2461 const TargetRegisterClass *RC) {
2462 assert((I->getOpcode() == Instruction::FPExt ||((void)0)
2463 I->getOpcode() == Instruction::FPTrunc) &&((void)0)
2464 "Instruction must be an FPExt or FPTrunc!")((void)0);
2465 bool HasAVX = Subtarget->hasAVX();
2466
2467 Register OpReg = getRegForValue(I->getOperand(0));
2468 if (OpReg == 0)
2469 return false;
2470
2471 unsigned ImplicitDefReg;
2472 if (HasAVX) {
2473 ImplicitDefReg = createResultReg(RC);
2474 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2475 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2476
2477 }
2478
2479 Register ResultReg = createResultReg(RC);
2480 MachineInstrBuilder MIB;
2481 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2482 ResultReg);
2483
2484 if (HasAVX)
2485 MIB.addReg(ImplicitDefReg);
2486
2487 MIB.addReg(OpReg);
2488 updateValueMap(I, ResultReg);
2489 return true;
2490}
2491
2492bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2493 if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2494 I->getOperand(0)->getType()->isFloatTy()) {
2495 bool HasAVX512 = Subtarget->hasAVX512();
2496 // fpext from float to double.
2497 unsigned Opc =
2498 HasAVX512 ? X86::VCVTSS2SDZrr
2499 : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2500 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64));
2501 }
2502
2503 return false;
2504}
2505
2506bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2507 if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2508 I->getOperand(0)->getType()->isDoubleTy()) {
2509 bool HasAVX512 = Subtarget->hasAVX512();
2510 // fptrunc from double to float.
2511 unsigned Opc =
2512 HasAVX512 ? X86::VCVTSD2SSZrr
2513 : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2514 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32));
2515 }
2516
2517 return false;
2518}
2519
2520bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2521 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2522 EVT DstVT = TLI.getValueType(DL, I->getType());
2523
2524 // This code only handles truncation to byte.
2525 if (DstVT != MVT::i8 && DstVT != MVT::i1)
2526 return false;
2527 if (!TLI.isTypeLegal(SrcVT))
2528 return false;
2529
2530 Register InputReg = getRegForValue(I->getOperand(0));
2531 if (!InputReg)
2532 // Unhandled operand. Halt "fast" selection and bail.
2533 return false;
2534
2535 if (SrcVT == MVT::i8) {
2536 // Truncate from i8 to i1; no code needed.
2537 updateValueMap(I, InputReg);
2538 return true;
2539 }
2540
2541 // Issue an extract_subreg.
2542 Register ResultReg = fastEmitInst_extractsubreg(MVT::i8, InputReg,
2543 X86::sub_8bit);
2544 if (!ResultReg)
2545 return false;
2546
2547 updateValueMap(I, ResultReg);
2548 return true;
2549}
2550
2551bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2552 return Len <= (Subtarget->is64Bit() ? 32 : 16);
2553}
2554
2555bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2556 X86AddressMode SrcAM, uint64_t Len) {
2557
2558 // Make sure we don't bloat code by inlining very large memcpy's.
2559 if (!IsMemcpySmall(Len))
2560 return false;
2561
2562 bool i64Legal = Subtarget->is64Bit();
2563
2564 // We don't care about alignment here since we just emit integer accesses.
2565 while (Len) {
2566 MVT VT;
2567 if (Len >= 8 && i64Legal)
2568 VT = MVT::i64;
2569 else if (Len >= 4)
2570 VT = MVT::i32;
2571 else if (Len >= 2)
2572 VT = MVT::i16;
2573 else
2574 VT = MVT::i8;
2575
2576 unsigned Reg;
2577 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2578 RV &= X86FastEmitStore(VT, Reg, DestAM);
2579 assert(RV && "Failed to emit load or store??")((void)0);
2580 (void)RV;
2581
2582 unsigned Size = VT.getSizeInBits()/8;
2583 Len -= Size;
2584 DestAM.Disp += Size;
2585 SrcAM.Disp += Size;
2586 }
2587
2588 return true;
2589}
2590
2591bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2592 // FIXME: Handle more intrinsics.
2593 switch (II->getIntrinsicID()) {
2594 default: return false;
2595 case Intrinsic::convert_from_fp16:
2596 case Intrinsic::convert_to_fp16: {
2597 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2598 return false;
2599
2600 const Value *Op = II->getArgOperand(0);
2601 Register InputReg = getRegForValue(Op);
2602 if (InputReg == 0)
2603 return false;
2604
2605 // F16C only allows converting from float to half and from half to float.
2606 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2607 if (IsFloatToHalf) {
2608 if (!Op->getType()->isFloatTy())
2609 return false;
2610 } else {
2611 if (!II->getType()->isFloatTy())
2612 return false;
2613 }
2614
2615 unsigned ResultReg = 0;
2616 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2617 if (IsFloatToHalf) {
2618 // 'InputReg' is implicitly promoted from register class FR32 to
2619 // register class VR128 by method 'constrainOperandRegClass' which is
2620 // directly called by 'fastEmitInst_ri'.
2621 // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2622 // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2623 // It's consistent with the other FP instructions, which are usually
2624 // controlled by MXCSR.
2625 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr
2626 : X86::VCVTPS2PHrr;
2627 InputReg = fastEmitInst_ri(Opc, RC, InputReg, 4);
2628
2629 // Move the lower 32-bits of ResultReg to another register of class GR32.
2630 Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr
2631 : X86::VMOVPDI2DIrr;
2632 ResultReg = createResultReg(&X86::GR32RegClass);
2633 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
2634 .addReg(InputReg, RegState::Kill);
2635
2636 // The result value is in the lower 16-bits of ResultReg.
2637 unsigned RegIdx = X86::sub_16bit;
2638 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, RegIdx);
2639 } else {
2640 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!")((void)0);
2641 // Explicitly zero-extend the input to 32-bit.
2642 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg);
2643
2644 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2645 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2646 InputReg);
2647
2648 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr
2649 : X86::VCVTPH2PSrr;
2650 InputReg = fastEmitInst_r(Opc, RC, InputReg);
2651
2652 // The result value is in the lower 32-bits of ResultReg.
2653 // Emit an explicit copy from register class VR128 to register class FR32.
2654 ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
2655 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2656 TII.get(TargetOpcode::COPY), ResultReg)
2657 .addReg(InputReg, RegState::Kill);
2658 }
2659
2660 updateValueMap(II, ResultReg);
2661 return true;
2662 }
2663 case Intrinsic::frameaddress: {
2664 MachineFunction *MF = FuncInfo.MF;
2665 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2666 return false;
2667
2668 Type *RetTy = II->getCalledFunction()->getReturnType();
2669
2670 MVT VT;
2671 if (!isTypeLegal(RetTy, VT))
2672 return false;
2673
2674 unsigned Opc;
2675 const TargetRegisterClass *RC = nullptr;
2676
2677 switch (VT.SimpleTy) {
2678 default: llvm_unreachable("Invalid result type for frameaddress.")__builtin_unreachable();
2679 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2680 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2681 }
2682
2683 // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2684 // we get the wrong frame register.
2685 MachineFrameInfo &MFI = MF->getFrameInfo();
2686 MFI.setFrameAddressIsTaken(true);
2687
2688 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2689 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2690 assert(((FrameReg == X86::RBP && VT == MVT::i64) ||((void)0)
2691 (FrameReg == X86::EBP && VT == MVT::i32)) &&((void)0)
2692 "Invalid Frame Register!")((void)0);
2693
2694 // Always make a copy of the frame register to a vreg first, so that we
2695 // never directly reference the frame register (the TwoAddressInstruction-
2696 // Pass doesn't like that).
2697 Register SrcReg = createResultReg(RC);
2698 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2699 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2700
2701 // Now recursively load from the frame address.
2702 // movq (%rbp), %rax
2703 // movq (%rax), %rax
2704 // movq (%rax), %rax
2705 // ...
2706 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2707 while (Depth--) {
2708 Register DestReg = createResultReg(RC);
2709 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2710 TII.get(Opc), DestReg), SrcReg);
2711 SrcReg = DestReg;
2712 }
2713
2714 updateValueMap(II, SrcReg);
2715 return true;
2716 }
2717 case Intrinsic::memcpy: {
2718 const MemCpyInst *MCI = cast<MemCpyInst>(II);
2719 // Don't handle volatile or variable length memcpys.
2720 if (MCI->isVolatile())
2721 return false;
2722
2723 if (isa<ConstantInt>(MCI->getLength())) {
2724 // Small memcpy's are common enough that we want to do them
2725 // without a call if possible.
2726 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2727 if (IsMemcpySmall(Len)) {
2728 X86AddressMode DestAM, SrcAM;
2729 if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2730 !X86SelectAddress(MCI->getRawSource(), SrcAM))
2731 return false;
2732 TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2733 return true;
2734 }
2735 }
2736
2737 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2738 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2739 return false;
2740
2741 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2742 return false;
2743
2744 return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1);
2745 }
2746 case Intrinsic::memset: {
2747 const MemSetInst *MSI = cast<MemSetInst>(II);
2748
2749 if (MSI->isVolatile())
2750 return false;
2751
2752 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2753 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2754 return false;
2755
2756 if (MSI->getDestAddressSpace() > 255)
2757 return false;
2758
2759 return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
2760 }
2761 case Intrinsic::stackprotector: {
2762 // Emit code to store the stack guard onto the stack.
2763 EVT PtrTy = TLI.getPointerTy(DL);
2764
2765 const Value *Op1 = II->getArgOperand(0); // The guard's value.
2766 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2767
2768 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2769
2770 // Grab the frame index.
2771 X86AddressMode AM;
2772 if (!X86SelectAddress(Slot, AM)) return false;
2773 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2774 return true;
2775 }
2776 case Intrinsic::dbg_declare: {
2777 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2778 X86AddressMode AM;
2779 assert(DI->getAddress() && "Null address should be checked earlier!")((void)0);
2780 if (!X86SelectAddress(DI->getAddress(), AM))
2781 return false;
2782 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2783 // FIXME may need to add RegState::Debug to any registers produced,
2784 // although ESP/EBP should be the only ones at the moment.
2785 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&((void)0)
2786 "Expected inlined-at fields to agree")((void)0);
2787 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2788 .addImm(0)
2789 .addMetadata(DI->getVariable())
2790 .addMetadata(DI->getExpression());
2791 return true;
2792 }
2793 case Intrinsic::trap: {
2794 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2795 return true;
2796 }
2797 case Intrinsic::sqrt: {
2798 if (!Subtarget->hasSSE1())
2799 return false;
2800
2801 Type *RetTy = II->getCalledFunction()->getReturnType();
2802
2803 MVT VT;
2804 if (!isTypeLegal(RetTy, VT))
2805 return false;
2806
2807 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2808 // is not generated by FastISel yet.
2809 // FIXME: Update this code once tablegen can handle it.
2810 static const uint16_t SqrtOpc[3][2] = {
2811 { X86::SQRTSSr, X86::SQRTSDr },
2812 { X86::VSQRTSSr, X86::VSQRTSDr },
2813 { X86::VSQRTSSZr, X86::VSQRTSDZr },
2814 };
2815 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2816 Subtarget->hasAVX() ? 1 :
2817 0;
2818 unsigned Opc;
2819 switch (VT.SimpleTy) {
2820 default: return false;
2821 case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
2822 case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
2823 }
2824
2825 const Value *SrcVal = II->getArgOperand(0);
2826 Register SrcReg = getRegForValue(SrcVal);
2827
2828 if (SrcReg == 0)
2829 return false;
2830
2831 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2832 unsigned ImplicitDefReg = 0;
2833 if (AVXLevel > 0) {
2834 ImplicitDefReg = createResultReg(RC);
2835 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2836 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2837 }
2838
2839 Register ResultReg = createResultReg(RC);
2840 MachineInstrBuilder MIB;
2841 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2842 ResultReg);
2843
2844 if (ImplicitDefReg)
2845 MIB.addReg(ImplicitDefReg);
2846
2847 MIB.addReg(SrcReg);
2848
2849 updateValueMap(II, ResultReg);
2850 return true;
2851 }
2852 case Intrinsic::sadd_with_overflow:
2853 case Intrinsic::uadd_with_overflow:
2854 case Intrinsic::ssub_with_overflow:
2855 case Intrinsic::usub_with_overflow:
2856 case Intrinsic::smul_with_overflow:
2857 case Intrinsic::umul_with_overflow: {
2858 // This implements the basic lowering of the xalu with overflow intrinsics
2859 // into add/sub/mul followed by either seto or setb.
2860 const Function *Callee = II->getCalledFunction();
2861 auto *Ty = cast<StructType>(Callee->getReturnType());
2862 Type *RetTy = Ty->getTypeAtIndex(0U);
2863 assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&((void)0)
2864 Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&((void)0)
2865 "Overflow value expected to be an i1")((void)0);
2866
2867 MVT VT;
2868 if (!isTypeLegal(RetTy, VT))
2869 return false;
2870
2871 if (VT < MVT::i8 || VT > MVT::i64)
2872 return false;
2873
2874 const Value *LHS = II->getArgOperand(0);
2875 const Value *RHS = II->getArgOperand(1);
2876
2877 // Canonicalize immediate to the RHS.
2878 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && II->isCommutative())
2879 std::swap(LHS, RHS);
2880
2881 unsigned BaseOpc, CondCode;
2882 switch (II->getIntrinsicID()) {
2883 default: llvm_unreachable("Unexpected intrinsic!")__builtin_unreachable();
2884 case Intrinsic::sadd_with_overflow:
2885 BaseOpc = ISD::ADD; CondCode = X86::COND_O; break;
2886 case Intrinsic::uadd_with_overflow:
2887 BaseOpc = ISD::ADD; CondCode = X86::COND_B; break;
2888 case Intrinsic::ssub_with_overflow:
2889 BaseOpc = ISD::SUB; CondCode = X86::COND_O; break;
2890 case Intrinsic::usub_with_overflow:
2891 BaseOpc = ISD::SUB; CondCode = X86::COND_B; break;
2892 case Intrinsic::smul_with_overflow:
2893 BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break;
2894 case Intrinsic::umul_with_overflow:
2895 BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break;
2896 }
2897
2898 Register LHSReg = getRegForValue(LHS);
2899 if (LHSReg == 0)
2900 return false;
2901
2902 unsigned ResultReg = 0;
2903 // Check if we have an immediate version.
2904 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2905 static const uint16_t Opc[2][4] = {
2906 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2907 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2908 };
2909
2910 if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) &&
2911 CondCode == X86::COND_O) {
2912 // We can use INC/DEC.
2913 ResultReg = createResultReg(TLI.getRegClassFor(VT));
2914 bool IsDec = BaseOpc == ISD::SUB;
2915 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2916 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2917 .addReg(LHSReg);
2918 } else
2919 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, CI->getZExtValue());
2920 }
2921
2922 unsigned RHSReg;
2923 if (!ResultReg) {
2924 RHSReg = getRegForValue(RHS);
2925 if (RHSReg == 0)
2926 return false;
2927 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, RHSReg);
2928 }
2929
2930 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2931 // it manually.
2932 if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2933 static const uint16_t MULOpc[] =
2934 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2935 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2936 // First copy the first operand into RAX, which is an implicit input to
2937 // the X86::MUL*r instruction.
2938 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2939 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2940 .addReg(LHSReg);
2941 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2942 TLI.getRegClassFor(VT), RHSReg);
2943 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2944 static const uint16_t MULOpc[] =
2945 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2946 if (VT == MVT::i8) {
2947 // Copy the first operand into AL, which is an implicit input to the
2948 // X86::IMUL8r instruction.
2949 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2950 TII.get(TargetOpcode::COPY), X86::AL)
2951 .addReg(LHSReg);
2952 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg);
2953 } else
2954 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2955 TLI.getRegClassFor(VT), LHSReg, RHSReg);
2956 }
2957
2958 if (!ResultReg)
2959 return false;
2960
2961 // Assign to a GPR since the overflow return value is lowered to a SETcc.
2962 Register ResultReg2 = createResultReg(&X86::GR8RegClass);
2963 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.")((void)0);
2964 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2965 ResultReg2).addImm(CondCode);
2966
2967 updateValueMap(II, ResultReg, 2);
2968 return true;
2969 }
2970 case Intrinsic::x86_sse_cvttss2si:
2971 case Intrinsic::x86_sse_cvttss2si64:
2972 case Intrinsic::x86_sse2_cvttsd2si:
2973 case Intrinsic::x86_sse2_cvttsd2si64: {
2974 bool IsInputDouble;
2975 switch (II->getIntrinsicID()) {
2976 default: llvm_unreachable("Unexpected intrinsic.")__builtin_unreachable();
2977 case Intrinsic::x86_sse_cvttss2si:
2978 case Intrinsic::x86_sse_cvttss2si64:
2979 if (!Subtarget->hasSSE1())
2980 return false;
2981 IsInputDouble = false;
2982 break;
2983 case Intrinsic::x86_sse2_cvttsd2si:
2984 case Intrinsic::x86_sse2_cvttsd2si64:
2985 if (!Subtarget->hasSSE2())
2986 return false;
2987 IsInputDouble = true;
2988 break;
2989 }
2990
2991 Type *RetTy = II->getCalledFunction()->getReturnType();
2992 MVT VT;
2993 if (!isTypeLegal(RetTy, VT))
2994 return false;
2995
2996 static const uint16_t CvtOpc[3][2][2] = {
2997 { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr },
2998 { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } },
2999 { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr },
3000 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } },
3001 { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
3002 { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
3003 };
3004 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
3005 Subtarget->hasAVX() ? 1 :
3006 0;
3007 unsigned Opc;
3008 switch (VT.SimpleTy) {
3009 default: llvm_unreachable("Unexpected result type.")__builtin_unreachable();
3010 case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
3011 case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
3012 }
3013
3014 // Check if we can fold insertelement instructions into the convert.
3015 const Value *Op = II->getArgOperand(0);
3016 while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
3017 const Value *Index = IE->getOperand(2);
3018 if (!isa<ConstantInt>(Index))
3019 break;
3020 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
3021
3022 if (Idx == 0) {
3023 Op = IE->getOperand(1);
3024 break;
3025 }
3026 Op = IE->getOperand(0);
3027 }
3028
3029 Register Reg = getRegForValue(Op);
3030 if (Reg == 0)
3031 return false;
3032
3033 Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3034 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
3035 .addReg(Reg);
3036
3037 updateValueMap(II, ResultReg);
3038 return true;
3039 }
3040 }
3041}
3042
3043bool X86FastISel::fastLowerArguments() {
3044 if (!FuncInfo.CanLowerReturn)
3045 return false;
3046
3047 const Function *F = FuncInfo.Fn;
3048 if (F->isVarArg())
3049 return false;
3050
3051 CallingConv::ID CC = F->getCallingConv();
3052 if (CC != CallingConv::C)
3053 return false;
3054
3055 if (Subtarget->isCallingConvWin64(CC))
3056 return false;
3057
3058 if (!Subtarget->is64Bit())
3059 return false;
3060
3061 if (Subtarget->useSoftFloat())
3062 return false;
3063
3064 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
3065 unsigned GPRCnt = 0;
3066 unsigned FPRCnt = 0;
3067 for (auto const &Arg : F->args()) {
3068 if (Arg.hasAttribute(Attribute::ByVal) ||
3069 Arg.hasAttribute(Attribute::InReg) ||
3070 Arg.hasAttribute(Attribute::StructRet) ||
3071 Arg.hasAttribute(Attribute::SwiftSelf) ||
3072 Arg.hasAttribute(Attribute::SwiftAsync) ||
3073 Arg.hasAttribute(Attribute::SwiftError) ||
3074 Arg.hasAttribute(Attribute::Nest))
3075 return false;
3076
3077 Type *ArgTy = Arg.getType();
3078 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3079 return false;
3080
3081 EVT ArgVT = TLI.getValueType(DL, ArgTy);
3082 if (!ArgVT.isSimple()) return false;
3083 switch (ArgVT.getSimpleVT().SimpleTy) {
3084 default: return false;
3085 case MVT::i32:
3086 case MVT::i64:
3087 ++GPRCnt;
3088 break;
3089 case MVT::f32:
3090 case MVT::f64:
3091 if (!Subtarget->hasSSE1())
3092 return false;
3093 ++FPRCnt;
3094 break;
3095 }
3096
3097 if (GPRCnt > 6)
3098 return false;
3099
3100 if (FPRCnt > 8)
3101 return false;
3102 }
3103
3104 static const MCPhysReg GPR32ArgRegs[] = {
3105 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
3106 };
3107 static const MCPhysReg GPR64ArgRegs[] = {
3108 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
3109 };
3110 static const MCPhysReg XMMArgRegs[] = {
3111 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3112 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3113 };
3114
3115 unsigned GPRIdx = 0;
3116 unsigned FPRIdx = 0;
3117 for (auto const &Arg : F->args()) {
3118 MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
3119 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
3120 unsigned SrcReg;
3121 switch (VT.SimpleTy) {
3122 default: llvm_unreachable("Unexpected value type.")__builtin_unreachable();
3123 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
3124 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
3125 case MVT::f32: LLVM_FALLTHROUGH[[gnu::fallthrough]];
3126 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
3127 }
3128 Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3129 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3130 // Without this, EmitLiveInCopies may eliminate the livein if its only
3131 // use is a bitcast (which isn't turned into an instruction).
3132 Register ResultReg = createResultReg(RC);
3133 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3134 TII.get(TargetOpcode::COPY), ResultReg)
3135 .addReg(DstReg, getKillRegState(true));
3136 updateValueMap(&Arg, ResultReg);
3137 }
3138 return true;
3139}
3140
3141static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3142 CallingConv::ID CC,
3143 const CallBase *CB) {
3144 if (Subtarget->is64Bit())
3145 return 0;
3146 if (Subtarget->getTargetTriple().isOSMSVCRT())
3147 return 0;
3148 if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3149 CC == CallingConv::HiPE || CC == CallingConv::Tail ||
3150 CC == CallingConv::SwiftTail)
3151 return 0;
3152
3153 if (CB)
3154 if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) ||
3155 CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
3156 return 0;
3157
3158 return 4;
3159}
3160
3161bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3162 auto &OutVals = CLI.OutVals;
3163 auto &OutFlags = CLI.OutFlags;
3164 auto &OutRegs = CLI.OutRegs;
3165 auto &Ins = CLI.Ins;
3166 auto &InRegs = CLI.InRegs;
3167 CallingConv::ID CC = CLI.CallConv;
3168 bool &IsTailCall = CLI.IsTailCall;
3169 bool IsVarArg = CLI.IsVarArg;
3170 const Value *Callee = CLI.Callee;
3171 MCSymbol *Symbol = CLI.Symbol;
3172 const auto *CB = CLI.CB;
3173
3174 bool Is64Bit = Subtarget->is64Bit();
3175 bool IsWin64 = Subtarget->isCallingConvWin64(CC);
3176
3177 // Call / invoke instructions with NoCfCheck attribute require special
3178 // handling.
3179 if (CB && CB->doesNoCfCheck())
3180 return false;
3181
3182 // Functions with no_caller_saved_registers that need special handling.
3183 if ((CB && isa<CallInst>(CB) && CB->hasFnAttr("no_caller_saved_registers")))
3184 return false;
3185
3186 // Functions with no_callee_saved_registers that need special handling.
3187 if ((CB && CB->hasFnAttr("no_callee_saved_registers")))
3188 return false;
3189
3190 // Functions using thunks for indirect calls need to use SDISel.
3191 if (Subtarget->useIndirectThunkCalls())
3192 return false;
3193
3194 // Handle only C, fastcc, and webkit_js calling conventions for now.
3195 switch (CC) {
3196 default: return false;
3197 case CallingConv::C:
3198 case CallingConv::Fast:
3199 case CallingConv::Tail:
3200 case CallingConv::WebKit_JS:
3201 case CallingConv::Swift:
3202 case CallingConv::SwiftTail:
3203 case CallingConv::X86_FastCall:
3204 case CallingConv::X86_StdCall:
3205 case CallingConv::X86_ThisCall:
3206 case CallingConv::Win64:
3207 case CallingConv::X86_64_SysV:
3208 case CallingConv::CFGuard_Check:
3209 break;
3210 }
3211
3212 // Allow SelectionDAG isel to handle tail calls.
3213 if (IsTailCall)
3214 return false;
3215
3216 // fastcc with -tailcallopt is intended to provide a guaranteed
3217 // tail call optimization. Fastisel doesn't know how to do that.
3218 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
3219 CC == CallingConv::Tail || CC == CallingConv::SwiftTail)
3220 return false;
3221
3222 // Don't know how to handle Win64 varargs yet. Nothing special needed for
3223 // x86-32. Special handling for x86-64 is implemented.
3224 if (IsVarArg && IsWin64)
3225 return false;
3226
3227 // Don't know about inalloca yet.
3228 if (CLI.CB && CLI.CB->hasInAllocaArgument())
3229 return false;
3230
3231 for (auto Flag : CLI.OutFlags)
3232 if (Flag.isSwiftError() || Flag.isPreallocated())
3233 return false;
3234
3235 SmallVector<MVT, 16> OutVTs;
3236 SmallVector<unsigned, 16> ArgRegs;
3237
3238 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3239 // instruction. This is safe because it is common to all FastISel supported
3240 // calling conventions on x86.
3241 for (int i = 0, e = OutVals.size(); i != e; ++i) {
3242 Value *&Val = OutVals[i];
3243 ISD::ArgFlagsTy Flags = OutFlags[i];
3244 if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3245 if (CI->getBitWidth() < 32) {
3246 if (Flags.isSExt())
3247 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
3248 else
3249 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
3250 }
3251 }
3252
3253 // Passing bools around ends up doing a trunc to i1 and passing it.
3254 // Codegen this as an argument + "and 1".
3255 MVT VT;
3256 auto *TI = dyn_cast<TruncInst>(Val);
3257 unsigned ResultReg;
3258 if (TI && TI->getType()->isIntegerTy(1) && CLI.CB &&
3259 (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) {
3260 Value *PrevVal = TI->getOperand(0);
3261 ResultReg = getRegForValue(PrevVal);
3262
3263 if (!ResultReg)
3264 return false;
3265
3266 if (!isTypeLegal(PrevVal->getType(), VT))
3267 return false;
3268
3269 ResultReg = fastEmit_ri(VT, VT, ISD::AND, ResultReg, 1);
3270 } else {
3271 if (!isTypeLegal(Val->getType(), VT) ||
3272 (VT.isVector() && VT.getVectorElementType() == MVT::i1))
3273 return false;
3274 ResultReg = getRegForValue(Val);
3275 }
3276
3277 if (!ResultReg)
3278 return false;
3279
3280 ArgRegs.push_back(ResultReg);
3281 OutVTs.push_back(VT);
3282 }
3283
3284 // Analyze operands of the call, assigning locations to each operand.
3285 SmallVector<CCValAssign, 16> ArgLocs;
3286 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3287
3288 // Allocate shadow area for Win64
3289 if (IsWin64)
3290 CCInfo.AllocateStack(32, Align(8));
3291
3292 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3293
3294 // Get a count of how many bytes are to be pushed on the stack.
3295 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3296
3297 // Issue CALLSEQ_START
3298 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3299 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
3300 .addImm(NumBytes).addImm(0).addImm(0);
3301
3302 // Walk the register/memloc assignments, inserting copies/loads.
3303 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3304 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3305 CCValAssign const &VA = ArgLocs[i];
3306 const Value *ArgVal = OutVals[VA.getValNo()];
3307 MVT ArgVT = OutVTs[VA.getValNo()];
3308
3309 if (ArgVT == MVT::x86mmx)
3310 return false;
3311
3312 unsigned ArgReg = ArgRegs[VA.getValNo()];
3313
3314 // Promote the value if needed.
3315 switch (VA.getLocInfo()) {
3316 case CCValAssign::Full: break;
3317 case CCValAssign::SExt: {
3318 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&((void)0)
3319 "Unexpected extend")((void)0);
3320
3321 if (ArgVT == MVT::i1)
3322 return false;
3323
3324 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3325 ArgVT, ArgReg);
3326 assert(Emitted && "Failed to emit a sext!")((void)0); (void)Emitted;
3327 ArgVT = VA.getLocVT();
3328 break;
3329 }
3330 case CCValAssign::ZExt: {
3331 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&((void)0)
3332 "Unexpected extend")((void)0);
3333
3334 // Handle zero-extension from i1 to i8, which is common.
3335 if (ArgVT == MVT::i1) {
3336 // Set the high bits to zero.
3337 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg);
3338 ArgVT = MVT::i8;
3339
3340 if (ArgReg == 0)
3341 return false;
3342 }
3343
3344 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3345 ArgVT, ArgReg);
3346 assert(Emitted && "Failed to emit a zext!")((void)0); (void)Emitted;
3347 ArgVT = VA.getLocVT();
3348 break;
3349 }
3350 case CCValAssign::AExt: {
3351 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&((void)0)
3352 "Unexpected extend")((void)0);
3353 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3354 ArgVT, ArgReg);
3355 if (!Emitted)
3356 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3357 ArgVT, ArgReg);
3358 if (!Emitted)
3359 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3360 ArgVT, ArgReg);
3361
3362 assert(Emitted && "Failed to emit a aext!")((void)0); (void)Emitted;
3363 ArgVT = VA.getLocVT();
3364 break;
3365 }
3366 case CCValAssign::BCvt: {
3367 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg);
3368 assert(ArgReg && "Failed to emit a bitcast!")((void)0);
3369 ArgVT = VA.getLocVT();
3370 break;
3371 }
3372 case CCValAssign::VExt:
3373 // VExt has not been implemented, so this should be impossible to reach
3374 // for now. However, fallback to Selection DAG isel once implemented.
3375 return false;
3376 case CCValAssign::AExtUpper:
3377 case CCValAssign::SExtUpper:
3378 case CCValAssign::ZExtUpper:
3379 case CCValAssign::FPExt:
3380 case CCValAssign::Trunc:
3381 llvm_unreachable("Unexpected loc info!")__builtin_unreachable();
3382 case CCValAssign::Indirect:
3383 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3384 // support this.
3385 return false;
3386 }
3387
3388 if (VA.isRegLoc()) {
3389 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3390 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3391 OutRegs.push_back(VA.getLocReg());
3392 } else {
3393 assert(VA.isMemLoc() && "Unknown value location!")((void)0);
3394
3395 // Don't emit stores for undef values.
3396 if (isa<UndefValue>(ArgVal))
3397 continue;
3398
3399 unsigned LocMemOffset = VA.getLocMemOffset();
3400 X86AddressMode AM;
3401 AM.Base.Reg = RegInfo->getStackRegister();
3402 AM.Disp = LocMemOffset;
3403 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3404 Align Alignment = DL.getABITypeAlign(ArgVal->getType());
3405 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3406 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3407 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3408 if (Flags.isByVal()) {
3409 X86AddressMode SrcAM;
3410 SrcAM.Base.Reg = ArgReg;
3411 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3412 return false;
3413 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3414 // If this is a really simple value, emit this with the Value* version
3415 // of X86FastEmitStore. If it isn't simple, we don't want to do this,
3416 // as it can cause us to reevaluate the argument.
3417 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3418 return false;
3419 } else {
3420 if (!X86FastEmitStore(ArgVT, ArgReg, AM, MMO))
3421 return false;
3422 }
3423 }
3424 }
3425
3426 // ELF / PIC requires GOT in the EBX register before function calls via PLT
3427 // GOT pointer.
3428 if (Subtarget->isPICStyleGOT()) {
3429 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3430 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3431 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3432 }
3433
3434 if (Is64Bit && IsVarArg && !IsWin64) {
3435 // From AMD64 ABI document:
3436 // For calls that may call functions that use varargs or stdargs
3437 // (prototype-less calls or calls to functions containing ellipsis (...) in
3438 // the declaration) %al is used as hidden argument to specify the number
3439 // of SSE registers used. The contents of %al do not need to match exactly
3440 // the number of registers, but must be an ubound on the number of SSE
3441 // registers used and is in the range 0 - 8 inclusive.
3442
3443 // Count the number of XMM registers allocated.
3444 static const MCPhysReg XMMArgRegs[] = {
3445 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3446 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3447 };
3448 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3449 assert((Subtarget->hasSSE1() || !NumXMMRegs)((void)0)
3450 && "SSE registers cannot be used when SSE is disabled")((void)0);
3451 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3452 X86::AL).addImm(NumXMMRegs);
3453 }
3454
3455 // Materialize callee address in a register. FIXME: GV address can be
3456 // handled with a CALLpcrel32 instead.
3457 X86AddressMode CalleeAM;
3458 if (!X86SelectCallAddress(Callee, CalleeAM))
3459 return false;
3460
3461 unsigned CalleeOp = 0;
3462 const GlobalValue *GV = nullptr;
3463 if (CalleeAM.GV != nullptr) {
3464 GV = CalleeAM.GV;
3465 } else if (CalleeAM.Base.Reg != 0) {
3466 CalleeOp = CalleeAM.Base.Reg;
3467 } else
3468 return false;
3469
3470 // Issue the call.
3471 MachineInstrBuilder MIB;
3472 if (CalleeOp) {
3473 // Register-indirect call.
3474 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3475 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3476 .addReg(CalleeOp);
3477 } else {
3478 // Direct call.
3479 assert(GV && "Not a direct call")((void)0);
3480 // See if we need any target-specific flags on the GV operand.
3481 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
3482
3483 // This will be a direct call, or an indirect call through memory for
3484 // NonLazyBind calls or dllimport calls.
3485 bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT ||
3486 OpFlags == X86II::MO_GOTPCREL ||
3487 OpFlags == X86II::MO_COFFSTUB;
3488 unsigned CallOpc = NeedLoad
3489 ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
3490 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
3491
3492 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
3493 if (NeedLoad)
3494 MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
3495 if (Symbol)
3496 MIB.addSym(Symbol, OpFlags);
3497 else
3498 MIB.addGlobalAddress(GV, 0, OpFlags);
3499 if (NeedLoad)
3500 MIB.addReg(0);
3501 }
3502
3503 // Add a register mask operand representing the call-preserved registers.
3504 // Proper defs for return values will be added by setPhysRegsDeadExcept().
3505 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3506
3507 // Add an implicit use GOT pointer in EBX.
3508 if (Subtarget->isPICStyleGOT())
3509 MIB.addReg(X86::EBX, RegState::Implicit);
3510
3511 if (Is64Bit && IsVarArg && !IsWin64)
3512 MIB.addReg(X86::AL, RegState::Implicit);
3513
3514 // Add implicit physical register uses to the call.
3515 for (auto Reg : OutRegs)
3516 MIB.addReg(Reg, RegState::Implicit);
3517
3518 // Issue CALLSEQ_END
3519 unsigned NumBytesForCalleeToPop =
3520 X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3521 TM.Options.GuaranteedTailCallOpt)
3522 ? NumBytes // Callee pops everything.
3523 : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB);
3524 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3525 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3526 .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3527
3528 // Now handle call return values.
3529 SmallVector<CCValAssign, 16> RVLocs;
3530 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3531 CLI.RetTy->getContext());
3532 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3533
3534 // Copy all of the result registers out of their specified physreg.
3535 Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3536 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3537 CCValAssign &VA = RVLocs[i];
3538 EVT CopyVT = VA.getValVT();
3539 unsigned CopyReg = ResultReg + i;
3540 Register SrcReg = VA.getLocReg();
3541
3542 // If this is x86-64, and we disabled SSE, we can't return FP values
3543 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3544 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3545 report_fatal_error("SSE register return with SSE disabled");
3546 }
3547
3548 // If we prefer to use the value in xmm registers, copy it out as f80 and
3549 // use a truncate to move it from fp stack reg to xmm reg.
3550 if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
3551 isScalarFPTypeInSSEReg(VA.getValVT())) {
3552 CopyVT = MVT::f80;
3553 CopyReg = createResultReg(&X86::RFP80RegClass);
3554 }
3555
3556 // Copy out the result.
3557 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3558 TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
3559 InRegs.push_back(VA.getLocReg());
3560
3561 // Round the f80 to the right size, which also moves it to the appropriate
3562 // xmm register. This is accomplished by storing the f80 value in memory
3563 // and then loading it back.
3564 if (CopyVT != VA.getValVT()) {
3565 EVT ResVT = VA.getValVT();
3566 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3567 unsigned MemSize = ResVT.getSizeInBits()/8;
3568 int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false);
3569 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3570 TII.get(Opc)), FI)
3571 .addReg(CopyReg);
3572 Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt;
3573 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3574 TII.get(Opc), ResultReg + i), FI);
3575 }
3576 }
3577
3578 CLI.ResultReg = ResultReg;
3579 CLI.NumResultRegs = RVLocs.size();
3580 CLI.Call = MIB;
3581
3582 return true;
3583}
3584
3585bool
3586X86FastISel::fastSelectInstruction(const Instruction *I) {
3587 switch (I->getOpcode()) {
1
Control jumps to 'case Load:' at line 3589
3588 default: break;
3589 case Instruction::Load:
3590 return X86SelectLoad(I);
2
Calling 'X86FastISel::X86SelectLoad'
3591 case Instruction::Store:
3592 return X86SelectStore(I);
3593 case Instruction::Ret:
3594 return X86SelectRet(I);
3595 case Instruction::ICmp:
3596 case Instruction::FCmp:
3597 return X86SelectCmp(I);
3598 case Instruction::ZExt:
3599 return X86SelectZExt(I);
3600 case Instruction::SExt:
3601 return X86SelectSExt(I);
3602 case Instruction::Br:
3603 return X86SelectBranch(I);
3604 case Instruction::LShr:
3605 case Instruction::AShr:
3606 case Instruction::Shl:
3607 return X86SelectShift(I);
3608 case Instruction::SDiv:
3609 case Instruction::UDiv:
3610 case Instruction::SRem:
3611 case Instruction::URem:
3612 return X86SelectDivRem(I);
3613 case Instruction::Select:
3614 return X86SelectSelect(I);
3615 case Instruction::Trunc:
3616 return X86SelectTrunc(I);
3617 case Instruction::FPExt:
3618 return X86SelectFPExt(I);
3619 case Instruction::FPTrunc:
3620 return X86SelectFPTrunc(I);
3621 case Instruction::SIToFP:
3622 return X86SelectSIToFP(I);
3623 case Instruction::UIToFP:
3624 return X86SelectUIToFP(I);
3625 case Instruction::IntToPtr: // Deliberate fall-through.
3626 case Instruction::PtrToInt: {
3627 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3628 EVT DstVT = TLI.getValueType(DL, I->getType());
3629 if (DstVT.bitsGT(SrcVT))
3630 return X86SelectZExt(I);
3631 if (DstVT.bitsLT(SrcVT))
3632 return X86SelectTrunc(I);
3633 Register Reg = getRegForValue(I->getOperand(0));
3634 if (Reg == 0) return false;
3635 updateValueMap(I, Reg);
3636 return true;
3637 }
3638 case Instruction::BitCast: {
3639 // Select SSE2/AVX bitcasts between 128/256/512 bit vector types.
3640 if (!Subtarget->hasSSE2())
3641 return false;
3642
3643 MVT SrcVT, DstVT;
3644 if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) ||
3645 !isTypeLegal(I->getType(), DstVT))
3646 return false;
3647
3648 // Only allow vectors that use xmm/ymm/zmm.
3649 if (!SrcVT.isVector() || !DstVT.isVector() ||
3650 SrcVT.getVectorElementType() == MVT::i1 ||
3651 DstVT.getVectorElementType() == MVT::i1)
3652 return false;
3653
3654 Register Reg = getRegForValue(I->getOperand(0));
3655 if (!Reg)
3656 return false;
3657
3658 // Emit a reg-reg copy so we don't propagate cached known bits information
3659 // with the wrong VT if we fall out of fast isel after selecting this.
3660 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
3661 Register ResultReg = createResultReg(DstClass);
3662 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3663 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
3664
3665 updateValueMap(I, ResultReg);
3666 return true;
3667 }
3668 }
3669
3670 return false;
3671}
3672
3673unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3674 if (VT > MVT::i64)
3675 return 0;
3676
3677 uint64_t Imm = CI->getZExtValue();
3678 if (Imm == 0) {
3679 Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3680 switch (VT.SimpleTy) {
3681 default: llvm_unreachable("Unexpected value type")__builtin_unreachable();
3682 case MVT::i1:
3683 case MVT::i8:
3684 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, X86::sub_8bit);
3685 case MVT::i16:
3686 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, X86::sub_16bit);
3687 case MVT::i32:
3688 return SrcReg;
3689 case MVT::i64: {
3690 Register ResultReg = createResultReg(&X86::GR64RegClass);
3691 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3692 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3693 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3694 return ResultReg;
3695 }
3696 }
3697 }
3698
3699 unsigned Opc = 0;
3700 switch (VT.SimpleTy) {
3701 default: llvm_unreachable("Unexpected value type")__builtin_unreachable();
3702 case MVT::i1:
3703 VT = MVT::i8;
3704 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3705 case MVT::i8: Opc = X86::MOV8ri; break;
3706 case MVT::i16: Opc = X86::MOV16ri; break;
3707 case MVT::i32: Opc = X86::MOV32ri; break;
3708 case MVT::i64: {
3709 if (isUInt<32>(Imm))
3710 Opc = X86::MOV32ri64;
3711 else if (isInt<32>(Imm))
3712 Opc = X86::MOV64ri32;
3713 else
3714 Opc = X86::MOV64ri;
3715 break;
3716 }
3717 }
3718 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3719}
3720
3721unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3722 if (CFP->isNullValue())
3723 return fastMaterializeFloatZero(CFP);
3724
3725 // Can't handle alternate code models yet.
3726 CodeModel::Model CM = TM.getCodeModel();
3727 if (CM != CodeModel::Small && CM != CodeModel::Large)
3728 return 0;
3729
3730 // Get opcode and regclass of the output for the given load instruction.
3731 unsigned Opc = 0;
3732 bool HasAVX = Subtarget->hasAVX();
3733 bool HasAVX512 = Subtarget->hasAVX512();
3734 switch (VT.SimpleTy) {
3735 default: return 0;
3736 case MVT::f32:
3737 if (X86ScalarSSEf32)
3738 Opc = HasAVX512 ? X86::VMOVSSZrm_alt :
3739 HasAVX ? X86::VMOVSSrm_alt :
3740 X86::MOVSSrm_alt;
3741 else
3742 Opc = X86::LD_Fp32m;
3743 break;
3744 case MVT::f64:
3745 if (X86ScalarSSEf64)
3746 Opc = HasAVX512 ? X86::VMOVSDZrm_alt :
3747 HasAVX ? X86::VMOVSDrm_alt :
3748 X86::MOVSDrm_alt;
3749 else
3750 Opc = X86::LD_Fp64m;
3751 break;
3752 case MVT::f80:
3753 // No f80 support yet.
3754 return 0;
3755 }
3756
3757 // MachineConstantPool wants an explicit alignment.
3758 Align Alignment = DL.getPrefTypeAlign(CFP->getType());
3759
3760 // x86-32 PIC requires a PIC base register for constant pools.
3761 unsigned PICBase = 0;
3762 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3763 if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
3764 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3765 else if (OpFlag == X86II::MO_GOTOFF)
3766 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3767 else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
3768 PICBase = X86::RIP;
3769
3770 // Create the load from the constant pool.
3771 unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment);
3772 Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
3773
3774 // Large code model only applies to 64-bit mode.
3775 if (Subtarget->is64Bit() && CM == CodeModel::Large) {
3776 Register AddrReg = createResultReg(&X86::GR64RegClass);
3777 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3778 AddrReg)
3779 .addConstantPoolIndex(CPI, 0, OpFlag);
3780 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3781 TII.get(Opc), ResultReg);
3782 addRegReg(MIB, AddrReg, false, PICBase, false);
3783 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3784 MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3785 MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment);
3786 MIB->addMemOperand(*FuncInfo.MF, MMO);
3787 return ResultReg;
3788 }
3789
3790 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3791 TII.get(Opc), ResultReg),
3792 CPI, PICBase, OpFlag);
3793 return ResultReg;
3794}
3795
3796unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3797 // Can't handle alternate code models yet.
3798 if (TM.getCodeModel() != CodeModel::Small)
3799 return 0;
3800
3801 // Materialize addresses with LEA/MOV instructions.
3802 X86AddressMode AM;
3803 if (X86SelectAddress(GV, AM)) {
3804 // If the expression is just a basereg, then we're done, otherwise we need
3805 // to emit an LEA.
3806 if (AM.BaseType == X86AddressMode::RegBase &&
3807 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3808 return AM.Base.Reg;
3809
3810 Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3811 if (TM.getRelocationModel() == Reloc::Static &&
3812 TLI.getPointerTy(DL) == MVT::i64) {
3813 // The displacement code could be more than 32 bits away so we need to use
3814 // an instruction with a 64 bit immediate
3815 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3816 ResultReg)
3817 .addGlobalAddress(GV);
3818 } else {
3819 unsigned Opc =
3820 TLI.getPointerTy(DL) == MVT::i32
3821 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3822 : X86::LEA64r;
3823 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3824 TII.get(Opc), ResultReg), AM);
3825 }
3826 return ResultReg;
3827 }
3828 return 0;
3829}
3830
3831unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3832 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3833
3834 // Only handle simple types.
3835 if (!CEVT.isSimple())
3836 return 0;
3837 MVT VT = CEVT.getSimpleVT();
3838
3839 if (const auto *CI = dyn_cast<ConstantInt>(C))
3840 return X86MaterializeInt(CI, VT);
3841 else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3842 return X86MaterializeFP(CFP, VT);
3843 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3844 return X86MaterializeGV(GV, VT);
3845 else if (isa<UndefValue>(C)) {
3846 unsigned Opc = 0;
3847 switch (VT.SimpleTy) {
3848 default:
3849 break;
3850 case MVT::f32:
3851 if (!X86ScalarSSEf32)
3852 Opc = X86::LD_Fp032;
3853 break;
3854 case MVT::f64:
3855 if (!X86ScalarSSEf64)
3856 Opc = X86::LD_Fp064;
3857 break;
3858 case MVT::f80:
3859 Opc = X86::LD_Fp080;
3860 break;
3861 }
3862
3863 if (Opc) {
3864 Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3865 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
3866 ResultReg);
3867 return ResultReg;
3868 }
3869 }
3870
3871 return 0;
3872}
3873
3874unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3875 // Fail on dynamic allocas. At this point, getRegForValue has already
3876 // checked its CSE maps, so if we're here trying to handle a dynamic
3877 // alloca, we're not going to succeed. X86SelectAddress has a
3878 // check for dynamic allocas, because it's called directly from
3879 // various places, but targetMaterializeAlloca also needs a check
3880 // in order to avoid recursion between getRegForValue,
3881 // X86SelectAddrss, and targetMaterializeAlloca.
3882 if (!FuncInfo.StaticAllocaMap.count(C))
3883 return 0;
3884 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?")((void)0);
3885
3886 X86AddressMode AM;
3887 if (!X86SelectAddress(C, AM))
3888 return 0;
3889 unsigned Opc =
3890 TLI.getPointerTy(DL) == MVT::i32
3891 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3892 : X86::LEA64r;
3893 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3894 Register ResultReg = createResultReg(RC);
3895 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3896 TII.get(Opc), ResultReg), AM);
3897 return ResultReg;
3898}
3899
3900unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3901 MVT VT;
3902 if (!isTypeLegal(CF->getType(), VT))
3903 return 0;
3904
3905 // Get opcode and regclass for the given zero.
3906 bool HasAVX512 = Subtarget->hasAVX512();
3907 unsigned Opc = 0;
3908 switch (VT.SimpleTy) {
3909 default: return 0;
3910 case MVT::f32:
3911 if (X86ScalarSSEf32)
3912 Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS;
3913 else
3914 Opc = X86::LD_Fp032;
3915 break;
3916 case MVT::f64:
3917 if (X86ScalarSSEf64)
3918 Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD;
3919 else
3920 Opc = X86::LD_Fp064;
3921 break;
3922 case MVT::f80:
3923 // No f80 support yet.
3924 return 0;
3925 }
3926
3927 Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3928 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3929 return ResultReg;
3930}
3931
3932
3933bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3934 const LoadInst *LI) {
3935 const Value *Ptr = LI->getPointerOperand();
3936 X86AddressMode AM;
3937 if (!X86SelectAddress(Ptr, AM))
3938 return false;
3939
3940 const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3941
3942 unsigned Size = DL.getTypeAllocSize(LI->getType());
3943
3944 SmallVector<MachineOperand, 8> AddrOps;
3945 AM.getFullAddress(AddrOps);
3946
3947 MachineInstr *Result = XII.foldMemoryOperandImpl(
3948 *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(),
3949 /*AllowCommute=*/true);
3950 if (!Result)
3951 return false;
3952
3953 // The index register could be in the wrong register class. Unfortunately,
3954 // foldMemoryOperandImpl could have commuted the instruction so its not enough
3955 // to just look at OpNo + the offset to the index reg. We actually need to
3956 // scan the instruction to find the index reg and see if its the correct reg
3957 // class.
3958 unsigned OperandNo = 0;
3959 for (MachineInstr::mop_iterator I = Result->operands_begin(),
3960 E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3961 MachineOperand &MO = *I;
3962 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
3963 continue;
3964 // Found the index reg, now try to rewrite it.
3965 Register IndexReg = constrainOperandRegClass(Result->getDesc(),
3966 MO.getReg(), OperandNo);
3967 if (IndexReg == MO.getReg())
3968 continue;
3969 MO.setReg(IndexReg);
3970 }
3971
3972 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
3973 Result->cloneInstrSymbols(*FuncInfo.MF, *MI);
3974 MachineBasicBlock::iterator I(MI);
3975 removeDeadCode(I, std::next(I));
3976 return true;
3977}
3978
3979unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
3980 const TargetRegisterClass *RC,
3981 unsigned Op0, unsigned Op1,
3982 unsigned Op2, unsigned Op3) {
3983 const MCInstrDesc &II = TII.get(MachineInstOpcode);
3984
3985 Register ResultReg = createResultReg(RC);
3986 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
3987 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
3988 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
3989 Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
3990
3991 if (II.getNumDefs() >= 1)
3992 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
3993 .addReg(Op0)
3994 .addReg(Op1)
3995 .addReg(Op2)
3996 .addReg(Op3);
3997 else {
3998 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
3999 .addReg(Op0)
4000 .addReg(Op1)
4001 .addReg(Op2)
4002 .addReg(Op3);
4003 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4004 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
4005 }
4006 return ResultReg;
4007}
4008
4009
4010namespace llvm {
4011 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
4012 const TargetLibraryInfo *libInfo) {
4013 return new X86FastISel(funcInfo, libInfo);
4014 }
4015}

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/None.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringRef.h"
25#include "llvm/ADT/Twine.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/IR/Attributes.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/CFG.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/InstrTypes.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/OperandTraits.h"
38#include "llvm/IR/Type.h"
39#include "llvm/IR/Use.h"
40#include "llvm/IR/User.h"
41#include "llvm/IR/Value.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include <cassert>
46#include <cstddef>
47#include <cstdint>
48#include <iterator>
49
50namespace llvm {
51
52class APInt;
53class ConstantInt;
54class DataLayout;
55class LLVMContext;
56
57//===----------------------------------------------------------------------===//
58// AllocaInst Class
59//===----------------------------------------------------------------------===//
60
61/// an instruction to allocate memory on the stack
62class AllocaInst : public UnaryInstruction {
63 Type *AllocatedType;
64
65 using AlignmentField = AlignmentBitfieldElementT<0>;
66 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
67 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
68 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
69 SwiftErrorField>(),
70 "Bitfields must be contiguous");
71
72protected:
73 // Note: Instruction needs to be a friend here to call cloneImpl.
74 friend class Instruction;
75
76 AllocaInst *cloneImpl() const;
77
78public:
79 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
80 const Twine &Name, Instruction *InsertBefore);
81 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
82 const Twine &Name, BasicBlock *InsertAtEnd);
83
84 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
85 Instruction *InsertBefore);
86 AllocaInst(Type *Ty, unsigned AddrSpace,
87 const Twine &Name, BasicBlock *InsertAtEnd);
88
89 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
90 const Twine &Name = "", Instruction *InsertBefore = nullptr);
91 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
92 const Twine &Name, BasicBlock *InsertAtEnd);
93
94 /// Return true if there is an allocation size parameter to the allocation
95 /// instruction that is not 1.
96 bool isArrayAllocation() const;
97
98 /// Get the number of elements allocated. For a simple allocation of a single
99 /// element, this will return a constant 1 value.
100 const Value *getArraySize() const { return getOperand(0); }
101 Value *getArraySize() { return getOperand(0); }
102
103 /// Overload to return most specific pointer type.
104 PointerType *getType() const {
105 return cast<PointerType>(Instruction::getType());
106 }
107
108 /// Get allocation size in bits. Returns None if size can't be determined,
109 /// e.g. in case of a VLA.
110 Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
111
112 /// Return the type that is being allocated by the instruction.
113 Type *getAllocatedType() const { return AllocatedType; }
114 /// for use only in special circumstances that need to generically
115 /// transform a whole instruction (eg: IR linking and vectorization).
116 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
117
118 /// Return the alignment of the memory that is being allocated by the
119 /// instruction.
120 Align getAlign() const {
121 return Align(1ULL << getSubclassData<AlignmentField>());
122 }
123
124 void setAlignment(Align Align) {
125 setSubclassData<AlignmentField>(Log2(Align));
126 }
127
128 // FIXME: Remove this one transition to Align is over.
129 unsigned getAlignment() const { return getAlign().value(); }
130
131 /// Return true if this alloca is in the entry block of the function and is a
132 /// constant size. If so, the code generator will fold it into the
133 /// prolog/epilog code, so it is basically free.
134 bool isStaticAlloca() const;
135
136 /// Return true if this alloca is used as an inalloca argument to a call. Such
137 /// allocas are never considered static even if they are in the entry block.
138 bool isUsedWithInAlloca() const {
139 return getSubclassData<UsedWithInAllocaField>();
140 }
141
142 /// Specify whether this alloca is used to represent the arguments to a call.
143 void setUsedWithInAlloca(bool V) {
144 setSubclassData<UsedWithInAllocaField>(V);
145 }
146
147 /// Return true if this alloca is used as a swifterror argument to a call.
148 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
149 /// Specify whether this alloca is used to represent a swifterror.
150 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
151
152 // Methods for support type inquiry through isa, cast, and dyn_cast:
153 static bool classof(const Instruction *I) {
154 return (I->getOpcode() == Instruction::Alloca);
155 }
156 static bool classof(const Value *V) {
157 return isa<Instruction>(V) && classof(cast<Instruction>(V));
158 }
159
160private:
161 // Shadow Instruction::setInstructionSubclassData with a private forwarding
162 // method so that subclasses cannot accidentally use it.
163 template <typename Bitfield>
164 void setSubclassData(typename Bitfield::Type Value) {
165 Instruction::setSubclassData<Bitfield>(Value);
166 }
167};
168
169//===----------------------------------------------------------------------===//
170// LoadInst Class
171//===----------------------------------------------------------------------===//
172
173/// An instruction for reading from memory. This uses the SubclassData field in
174/// Value to store whether or not the load is volatile.
175class LoadInst : public UnaryInstruction {
176 using VolatileField = BoolBitfieldElementT<0>;
177 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
178 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
179 static_assert(
180 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
181 "Bitfields must be contiguous");
182
183 void AssertOK();
184
185protected:
186 // Note: Instruction needs to be a friend here to call cloneImpl.
187 friend class Instruction;
188
189 LoadInst *cloneImpl() const;
190
191public:
192 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
193 Instruction *InsertBefore);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
195 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
196 Instruction *InsertBefore);
197 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
198 BasicBlock *InsertAtEnd);
199 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
200 Align Align, Instruction *InsertBefore = nullptr);
201 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
202 Align Align, BasicBlock *InsertAtEnd);
203 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
204 Align Align, AtomicOrdering Order,
205 SyncScope::ID SSID = SyncScope::System,
206 Instruction *InsertBefore = nullptr);
207 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
208 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
209 BasicBlock *InsertAtEnd);
210
211 /// Return true if this is a load from a volatile memory location.
212 bool isVolatile() const { return getSubclassData<VolatileField>(); }
213
214 /// Specify whether this is a volatile load or not.
215 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
216
217 /// Return the alignment of the access that is being performed.
218 /// FIXME: Remove this function once transition to Align is over.
219 /// Use getAlign() instead.
220 unsigned getAlignment() const { return getAlign().value(); }
221
222 /// Return the alignment of the access that is being performed.
223 Align getAlign() const {
224 return Align(1ULL << (getSubclassData<AlignmentField>()));
19
Calling constructor for 'Align'
24
Returning from constructor for 'Align'
225 }
226
227 void setAlignment(Align Align) {
228 setSubclassData<AlignmentField>(Log2(Align));
229 }
230
231 /// Returns the ordering constraint of this load instruction.
232 AtomicOrdering getOrdering() const {
233 return getSubclassData<OrderingField>();
234 }
235 /// Sets the ordering constraint of this load instruction. May not be Release
236 /// or AcquireRelease.
237 void setOrdering(AtomicOrdering Ordering) {
238 setSubclassData<OrderingField>(Ordering);
239 }
240
241 /// Returns the synchronization scope ID of this load instruction.
242 SyncScope::ID getSyncScopeID() const {
243 return SSID;
244 }
245
246 /// Sets the synchronization scope ID of this load instruction.
247 void setSyncScopeID(SyncScope::ID SSID) {
248 this->SSID = SSID;
249 }
250
251 /// Sets the ordering constraint and the synchronization scope ID of this load
252 /// instruction.
253 void setAtomic(AtomicOrdering Ordering,
254 SyncScope::ID SSID = SyncScope::System) {
255 setOrdering(Ordering);
256 setSyncScopeID(SSID);
257 }
258
259 bool isSimple() const { return !isAtomic() && !isVolatile(); }
260
261 bool isUnordered() const {
262 return (getOrdering() == AtomicOrdering::NotAtomic ||
263 getOrdering() == AtomicOrdering::Unordered) &&
264 !isVolatile();
265 }
266
267 Value *getPointerOperand() { return getOperand(0); }
268 const Value *getPointerOperand() const { return getOperand(0); }
269 static unsigned getPointerOperandIndex() { return 0U; }
270 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
271
272 /// Returns the address space of the pointer operand.
273 unsigned getPointerAddressSpace() const {
274 return getPointerOperandType()->getPointerAddressSpace();
275 }
276
277 // Methods for support type inquiry through isa, cast, and dyn_cast:
278 static bool classof(const Instruction *I) {
279 return I->getOpcode() == Instruction::Load;
280 }
281 static bool classof(const Value *V) {
282 return isa<Instruction>(V) && classof(cast<Instruction>(V));
283 }
284
285private:
286 // Shadow Instruction::setInstructionSubclassData with a private forwarding
287 // method so that subclasses cannot accidentally use it.
288 template <typename Bitfield>
289 void setSubclassData(typename Bitfield::Type Value) {
290 Instruction::setSubclassData<Bitfield>(Value);
291 }
292
293 /// The synchronization scope ID of this load instruction. Not quite enough
294 /// room in SubClassData for everything, so synchronization scope ID gets its
295 /// own field.
296 SyncScope::ID SSID;
297};
298
299//===----------------------------------------------------------------------===//
300// StoreInst Class
301//===----------------------------------------------------------------------===//
302
303/// An instruction for storing to memory.
304class StoreInst : public Instruction {
305 using VolatileField = BoolBitfieldElementT<0>;
306 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
307 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
308 static_assert(
309 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
310 "Bitfields must be contiguous");
311
312 void AssertOK();
313
314protected:
315 // Note: Instruction needs to be a friend here to call cloneImpl.
316 friend class Instruction;
317
318 StoreInst *cloneImpl() const;
319
320public:
321 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
322 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
323 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
325 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
326 Instruction *InsertBefore = nullptr);
327 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
328 BasicBlock *InsertAtEnd);
329 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
330 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
331 Instruction *InsertBefore = nullptr);
332 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
333 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
334
335 // allocate space for exactly two operands
336 void *operator new(size_t S) { return User::operator new(S, 2); }
337 void operator delete(void *Ptr) { User::operator delete(Ptr); }
338
339 /// Return true if this is a store to a volatile memory location.
340 bool isVolatile() const { return getSubclassData<VolatileField>(); }
341
342 /// Specify whether this is a volatile store or not.
343 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344
345 /// Transparently provide more efficient getOperand methods.
346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
347
348 /// Return the alignment of the access that is being performed
349 /// FIXME: Remove this function once transition to Align is over.
350 /// Use getAlign() instead.
351 unsigned getAlignment() const { return getAlign().value(); }
352
353 Align getAlign() const {
354 return Align(1ULL << (getSubclassData<AlignmentField>()));
355 }
356
357 void setAlignment(Align Align) {
358 setSubclassData<AlignmentField>(Log2(Align));
359 }
360
361 /// Returns the ordering constraint of this store instruction.
362 AtomicOrdering getOrdering() const {
363 return getSubclassData<OrderingField>();
364 }
365
366 /// Sets the ordering constraint of this store instruction. May not be
367 /// Acquire or AcquireRelease.
368 void setOrdering(AtomicOrdering Ordering) {
369 setSubclassData<OrderingField>(Ordering);
370 }
371
372 /// Returns the synchronization scope ID of this store instruction.
373 SyncScope::ID getSyncScopeID() const {
374 return SSID;
375 }
376
377 /// Sets the synchronization scope ID of this store instruction.
378 void setSyncScopeID(SyncScope::ID SSID) {
379 this->SSID = SSID;
380 }
381
382 /// Sets the ordering constraint and the synchronization scope ID of this
383 /// store instruction.
384 void setAtomic(AtomicOrdering Ordering,
385 SyncScope::ID SSID = SyncScope::System) {
386 setOrdering(Ordering);
387 setSyncScopeID(SSID);
388 }
389
390 bool isSimple() const { return !isAtomic() && !isVolatile(); }
391
392 bool isUnordered() const {
393 return (getOrdering() == AtomicOrdering::NotAtomic ||
394 getOrdering() == AtomicOrdering::Unordered) &&
395 !isVolatile();
396 }
397
398 Value *getValueOperand() { return getOperand(0); }
399 const Value *getValueOperand() const { return getOperand(0); }
400
401 Value *getPointerOperand() { return getOperand(1); }
402 const Value *getPointerOperand() const { return getOperand(1); }
403 static unsigned getPointerOperandIndex() { return 1U; }
404 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405
406 /// Returns the address space of the pointer operand.
407 unsigned getPointerAddressSpace() const {
408 return getPointerOperandType()->getPointerAddressSpace();
409 }
410
411 // Methods for support type inquiry through isa, cast, and dyn_cast:
412 static bool classof(const Instruction *I) {
413 return I->getOpcode() == Instruction::Store;
414 }
415 static bool classof(const Value *V) {
416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
417 }
418
419private:
420 // Shadow Instruction::setInstructionSubclassData with a private forwarding
421 // method so that subclasses cannot accidentally use it.
422 template <typename Bitfield>
423 void setSubclassData(typename Bitfield::Type Value) {
424 Instruction::setSubclassData<Bitfield>(Value);
425 }
426
427 /// The synchronization scope ID of this store instruction. Not quite enough
428 /// room in SubClassData for everything, so synchronization scope ID gets its
429 /// own field.
430 SyncScope::ID SSID;
431};
432
433template <>
434struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435};
436
437DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<StoreInst>::op_begin(const_cast
<StoreInst*>(this))[i_nocapture].get()); } void StoreInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<StoreInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned StoreInst::getNumOperands() const
{ return OperandTraits<StoreInst>::operands(this); } template
<int Idx_nocapture> Use &StoreInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &StoreInst::Op() const { return this->OpFrom
<Idx_nocapture>(this); }
438
439//===----------------------------------------------------------------------===//
440// FenceInst Class
441//===----------------------------------------------------------------------===//
442
443/// An instruction for ordering other memory operations.
444class FenceInst : public Instruction {
445 using OrderingField = AtomicOrderingBitfieldElementT<0>;
446
447 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448
449protected:
450 // Note: Instruction needs to be a friend here to call cloneImpl.
451 friend class Instruction;
452
453 FenceInst *cloneImpl() const;
454
455public:
456 // Ordering may only be Acquire, Release, AcquireRelease, or
457 // SequentiallyConsistent.
458 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459 SyncScope::ID SSID = SyncScope::System,
460 Instruction *InsertBefore = nullptr);
461 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462 BasicBlock *InsertAtEnd);
463
464 // allocate space for exactly zero operands
465 void *operator new(size_t S) { return User::operator new(S, 0); }
466 void operator delete(void *Ptr) { User::operator delete(Ptr); }
467
468 /// Returns the ordering constraint of this fence instruction.
469 AtomicOrdering getOrdering() const {
470 return getSubclassData<OrderingField>();
471 }
472
473 /// Sets the ordering constraint of this fence instruction. May only be
474 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
475 void setOrdering(AtomicOrdering Ordering) {
476 setSubclassData<OrderingField>(Ordering);
477 }
478
479 /// Returns the synchronization scope ID of this fence instruction.
480 SyncScope::ID getSyncScopeID() const {
481 return SSID;
482 }
483
484 /// Sets the synchronization scope ID of this fence instruction.
485 void setSyncScopeID(SyncScope::ID SSID) {
486 this->SSID = SSID;
487 }
488
489 // Methods for support type inquiry through isa, cast, and dyn_cast:
490 static bool classof(const Instruction *I) {
491 return I->getOpcode() == Instruction::Fence;
492 }
493 static bool classof(const Value *V) {
494 return isa<Instruction>(V) && classof(cast<Instruction>(V));
495 }
496
497private:
498 // Shadow Instruction::setInstructionSubclassData with a private forwarding
499 // method so that subclasses cannot accidentally use it.
500 template <typename Bitfield>
501 void setSubclassData(typename Bitfield::Type Value) {
502 Instruction::setSubclassData<Bitfield>(Value);
503 }
504
505 /// The synchronization scope ID of this fence instruction. Not quite enough
506 /// room in SubClassData for everything, so synchronization scope ID gets its
507 /// own field.
508 SyncScope::ID SSID;
509};
510
511//===----------------------------------------------------------------------===//
512// AtomicCmpXchgInst Class
513//===----------------------------------------------------------------------===//
514
515/// An instruction that atomically checks whether a
516/// specified value is in a memory location, and, if it is, stores a new value
517/// there. The value returned by this instruction is a pair containing the
518/// original value as first element, and an i1 indicating success (true) or
519/// failure (false) as second element.
520///
521class AtomicCmpXchgInst : public Instruction {
522 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
523 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
524 SyncScope::ID SSID);
525
526 template <unsigned Offset>
527 using AtomicOrderingBitfieldElement =
528 typename Bitfield::Element<AtomicOrdering, Offset, 3,
529 AtomicOrdering::LAST>;
530
531protected:
532 // Note: Instruction needs to be a friend here to call cloneImpl.
533 friend class Instruction;
534
535 AtomicCmpXchgInst *cloneImpl() const;
536
537public:
538 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
539 AtomicOrdering SuccessOrdering,
540 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
541 Instruction *InsertBefore = nullptr);
542 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
543 AtomicOrdering SuccessOrdering,
544 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
545 BasicBlock *InsertAtEnd);
546
547 // allocate space for exactly three operands
548 void *operator new(size_t S) { return User::operator new(S, 3); }
549 void operator delete(void *Ptr) { User::operator delete(Ptr); }
550
551 using VolatileField = BoolBitfieldElementT<0>;
552 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
553 using SuccessOrderingField =
554 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
555 using FailureOrderingField =
556 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
557 using AlignmentField =
558 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
559 static_assert(
560 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
561 FailureOrderingField, AlignmentField>(),
562 "Bitfields must be contiguous");
563
564 /// Return the alignment of the memory that is being allocated by the
565 /// instruction.
566 Align getAlign() const {
567 return Align(1ULL << getSubclassData<AlignmentField>());
568 }
569
570 void setAlignment(Align Align) {
571 setSubclassData<AlignmentField>(Log2(Align));
572 }
573
574 /// Return true if this is a cmpxchg from a volatile memory
575 /// location.
576 ///
577 bool isVolatile() const { return getSubclassData<VolatileField>(); }
578
579 /// Specify whether this is a volatile cmpxchg.
580 ///
581 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
582
583 /// Return true if this cmpxchg may spuriously fail.
584 bool isWeak() const { return getSubclassData<WeakField>(); }
585
586 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
587
588 /// Transparently provide more efficient getOperand methods.
589 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
590
591 static bool isValidSuccessOrdering(AtomicOrdering Ordering) {
592 return Ordering != AtomicOrdering::NotAtomic &&
593 Ordering != AtomicOrdering::Unordered;
594 }
595
596 static bool isValidFailureOrdering(AtomicOrdering Ordering) {
597 return Ordering != AtomicOrdering::NotAtomic &&
598 Ordering != AtomicOrdering::Unordered &&
599 Ordering != AtomicOrdering::AcquireRelease &&
600 Ordering != AtomicOrdering::Release;
601 }
602
603 /// Returns the success ordering constraint of this cmpxchg instruction.
604 AtomicOrdering getSuccessOrdering() const {
605 return getSubclassData<SuccessOrderingField>();
606 }
607
608 /// Sets the success ordering constraint of this cmpxchg instruction.
609 void setSuccessOrdering(AtomicOrdering Ordering) {
610 assert(isValidSuccessOrdering(Ordering) &&((void)0)
611 "invalid CmpXchg success ordering")((void)0);
612 setSubclassData<SuccessOrderingField>(Ordering);
613 }
614
615 /// Returns the failure ordering constraint of this cmpxchg instruction.
616 AtomicOrdering getFailureOrdering() const {
617 return getSubclassData<FailureOrderingField>();
618 }
619
620 /// Sets the failure ordering constraint of this cmpxchg instruction.
621 void setFailureOrdering(AtomicOrdering Ordering) {
622 assert(isValidFailureOrdering(Ordering) &&((void)0)
623 "invalid CmpXchg failure ordering")((void)0);
624 setSubclassData<FailureOrderingField>(Ordering);
625 }
626
627 /// Returns a single ordering which is at least as strong as both the
628 /// success and failure orderings for this cmpxchg.
629 AtomicOrdering getMergedOrdering() const {
630 if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent)
631 return AtomicOrdering::SequentiallyConsistent;
632 if (getFailureOrdering() == AtomicOrdering::Acquire) {
633 if (getSuccessOrdering() == AtomicOrdering::Monotonic)
634 return AtomicOrdering::Acquire;
635 if (getSuccessOrdering() == AtomicOrdering::Release)
636 return AtomicOrdering::AcquireRelease;
637 }
638 return getSuccessOrdering();
639 }
640
641 /// Returns the synchronization scope ID of this cmpxchg instruction.
642 SyncScope::ID getSyncScopeID() const {
643 return SSID;
644 }
645
646 /// Sets the synchronization scope ID of this cmpxchg instruction.
647 void setSyncScopeID(SyncScope::ID SSID) {
648 this->SSID = SSID;
649 }
650
651 Value *getPointerOperand() { return getOperand(0); }
652 const Value *getPointerOperand() const { return getOperand(0); }
653 static unsigned getPointerOperandIndex() { return 0U; }
654
655 Value *getCompareOperand() { return getOperand(1); }
656 const Value *getCompareOperand() const { return getOperand(1); }
657
658 Value *getNewValOperand() { return getOperand(2); }
659 const Value *getNewValOperand() const { return getOperand(2); }
660
661 /// Returns the address space of the pointer operand.
662 unsigned getPointerAddressSpace() const {
663 return getPointerOperand()->getType()->getPointerAddressSpace();
664 }
665
666 /// Returns the strongest permitted ordering on failure, given the
667 /// desired ordering on success.
668 ///
669 /// If the comparison in a cmpxchg operation fails, there is no atomic store
670 /// so release semantics cannot be provided. So this function drops explicit
671 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
672 /// operation would remain SequentiallyConsistent.
673 static AtomicOrdering
674 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
675 switch (SuccessOrdering) {
676 default:
677 llvm_unreachable("invalid cmpxchg success ordering")__builtin_unreachable();
678 case AtomicOrdering::Release:
679 case AtomicOrdering::Monotonic:
680 return AtomicOrdering::Monotonic;
681 case AtomicOrdering::AcquireRelease:
682 case AtomicOrdering::Acquire:
683 return AtomicOrdering::Acquire;
684 case AtomicOrdering::SequentiallyConsistent:
685 return AtomicOrdering::SequentiallyConsistent;
686 }
687 }
688
689 // Methods for support type inquiry through isa, cast, and dyn_cast:
690 static bool classof(const Instruction *I) {
691 return I->getOpcode() == Instruction::AtomicCmpXchg;
692 }
693 static bool classof(const Value *V) {
694 return isa<Instruction>(V) && classof(cast<Instruction>(V));
695 }
696
697private:
698 // Shadow Instruction::setInstructionSubclassData with a private forwarding
699 // method so that subclasses cannot accidentally use it.
700 template <typename Bitfield>
701 void setSubclassData(typename Bitfield::Type Value) {
702 Instruction::setSubclassData<Bitfield>(Value);
703 }
704
705 /// The synchronization scope ID of this cmpxchg instruction. Not quite
706 /// enough room in SubClassData for everything, so synchronization scope ID
707 /// gets its own field.
708 SyncScope::ID SSID;
709};
710
711template <>
712struct OperandTraits<AtomicCmpXchgInst> :
713 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
714};
715
716DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast
<AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void
AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<AtomicCmpXchgInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned AtomicCmpXchgInst
::getNumOperands() const { return OperandTraits<AtomicCmpXchgInst
>::operands(this); } template <int Idx_nocapture> Use
&AtomicCmpXchgInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
AtomicCmpXchgInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
717
718//===----------------------------------------------------------------------===//
719// AtomicRMWInst Class
720//===----------------------------------------------------------------------===//
721
722/// an instruction that atomically reads a memory location,
723/// combines it with another value, and then stores the result back. Returns
724/// the old value.
725///
726class AtomicRMWInst : public Instruction {
727protected:
728 // Note: Instruction needs to be a friend here to call cloneImpl.
729 friend class Instruction;
730
731 AtomicRMWInst *cloneImpl() const;
732
733public:
734 /// This enumeration lists the possible modifications atomicrmw can make. In
735 /// the descriptions, 'p' is the pointer to the instruction's memory location,
736 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
737 /// instruction. These instructions always return 'old'.
738 enum BinOp : unsigned {
739 /// *p = v
740 Xchg,
741 /// *p = old + v
742 Add,
743 /// *p = old - v
744 Sub,
745 /// *p = old & v
746 And,
747 /// *p = ~(old & v)
748 Nand,
749 /// *p = old | v
750 Or,
751 /// *p = old ^ v
752 Xor,
753 /// *p = old >signed v ? old : v
754 Max,
755 /// *p = old <signed v ? old : v
756 Min,
757 /// *p = old >unsigned v ? old : v
758 UMax,
759 /// *p = old <unsigned v ? old : v
760 UMin,
761
762 /// *p = old + v
763 FAdd,
764
765 /// *p = old - v
766 FSub,
767
768 FIRST_BINOP = Xchg,
769 LAST_BINOP = FSub,
770 BAD_BINOP
771 };
772
773private:
774 template <unsigned Offset>
775 using AtomicOrderingBitfieldElement =
776 typename Bitfield::Element<AtomicOrdering, Offset, 3,
777 AtomicOrdering::LAST>;
778
779 template <unsigned Offset>
780 using BinOpBitfieldElement =
781 typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
782
783public:
784 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
785 AtomicOrdering Ordering, SyncScope::ID SSID,
786 Instruction *InsertBefore = nullptr);
787 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
788 AtomicOrdering Ordering, SyncScope::ID SSID,
789 BasicBlock *InsertAtEnd);
790
791 // allocate space for exactly two operands
792 void *operator new(size_t S) { return User::operator new(S, 2); }
793 void operator delete(void *Ptr) { User::operator delete(Ptr); }
794
795 using VolatileField = BoolBitfieldElementT<0>;
796 using AtomicOrderingField =
797 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
798 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
799 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
800 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
801 OperationField, AlignmentField>(),
802 "Bitfields must be contiguous");
803
804 BinOp getOperation() const { return getSubclassData<OperationField>(); }
805
806 static StringRef getOperationName(BinOp Op);
807
808 static bool isFPOperation(BinOp Op) {
809 switch (Op) {
810 case AtomicRMWInst::FAdd:
811 case AtomicRMWInst::FSub:
812 return true;
813 default:
814 return false;
815 }
816 }
817
818 void setOperation(BinOp Operation) {
819 setSubclassData<OperationField>(Operation);
820 }
821
822 /// Return the alignment of the memory that is being allocated by the
823 /// instruction.
824 Align getAlign() const {
825 return Align(1ULL << getSubclassData<AlignmentField>());
826 }
827
828 void setAlignment(Align Align) {
829 setSubclassData<AlignmentField>(Log2(Align));
830 }
831
832 /// Return true if this is a RMW on a volatile memory location.
833 ///
834 bool isVolatile() const { return getSubclassData<VolatileField>(); }
835
836 /// Specify whether this is a volatile RMW or not.
837 ///
838 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
839
840 /// Transparently provide more efficient getOperand methods.
841 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
842
843 /// Returns the ordering constraint of this rmw instruction.
844 AtomicOrdering getOrdering() const {
845 return getSubclassData<AtomicOrderingField>();
846 }
847
848 /// Sets the ordering constraint of this rmw instruction.
849 void setOrdering(AtomicOrdering Ordering) {
850 assert(Ordering != AtomicOrdering::NotAtomic &&((void)0)
851 "atomicrmw instructions can only be atomic.")((void)0);
852 setSubclassData<AtomicOrderingField>(Ordering);
853 }
854
855 /// Returns the synchronization scope ID of this rmw instruction.
856 SyncScope::ID getSyncScopeID() const {
857 return SSID;
858 }
859
860 /// Sets the synchronization scope ID of this rmw instruction.
861 void setSyncScopeID(SyncScope::ID SSID) {
862 this->SSID = SSID;
863 }
864
865 Value *getPointerOperand() { return getOperand(0); }
866 const Value *getPointerOperand() const { return getOperand(0); }
867 static unsigned getPointerOperandIndex() { return 0U; }
868
869 Value *getValOperand() { return getOperand(1); }
870 const Value *getValOperand() const { return getOperand(1); }
871
872 /// Returns the address space of the pointer operand.
873 unsigned getPointerAddressSpace() const {
874 return getPointerOperand()->getType()->getPointerAddressSpace();
875 }
876
877 bool isFloatingPointOperation() const {
878 return isFPOperation(getOperation());
879 }
880
881 // Methods for support type inquiry through isa, cast, and dyn_cast:
882 static bool classof(const Instruction *I) {
883 return I->getOpcode() == Instruction::AtomicRMW;
884 }
885 static bool classof(const Value *V) {
886 return isa<Instruction>(V) && classof(cast<Instruction>(V));
887 }
888
889private:
890 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
891 AtomicOrdering Ordering, SyncScope::ID SSID);
892
893 // Shadow Instruction::setInstructionSubclassData with a private forwarding
894 // method so that subclasses cannot accidentally use it.
895 template <typename Bitfield>
896 void setSubclassData(typename Bitfield::Type Value) {
897 Instruction::setSubclassData<Bitfield>(Value);
898 }
899
900 /// The synchronization scope ID of this rmw instruction. Not quite enough
901 /// room in SubClassData for everything, so synchronization scope ID gets its
902 /// own field.
903 SyncScope::ID SSID;
904};
905
906template <>
907struct OperandTraits<AtomicRMWInst>
908 : public FixedNumOperandTraits<AtomicRMWInst,2> {
909};
910
911DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast
<AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<AtomicRMWInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned AtomicRMWInst::getNumOperands()
const { return OperandTraits<AtomicRMWInst>::operands(
this); } template <int Idx_nocapture> Use &AtomicRMWInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &AtomicRMWInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
912
913//===----------------------------------------------------------------------===//
914// GetElementPtrInst Class
915//===----------------------------------------------------------------------===//
916
917// checkGEPType - Simple wrapper function to give a better assertion failure
918// message on bad indexes for a gep instruction.
919//
920inline Type *checkGEPType(Type *Ty) {
921 assert(Ty && "Invalid GetElementPtrInst indices for type!")((void)0);
922 return Ty;
923}
924
925/// an instruction for type-safe pointer arithmetic to
926/// access elements of arrays and structs
927///
928class GetElementPtrInst : public Instruction {
929 Type *SourceElementType;
930 Type *ResultElementType;
931
932 GetElementPtrInst(const GetElementPtrInst &GEPI);
933
934 /// Constructors - Create a getelementptr instruction with a base pointer an
935 /// list of indices. The first ctor can optionally insert before an existing
936 /// instruction, the second appends the new instruction to the specified
937 /// BasicBlock.
938 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
939 ArrayRef<Value *> IdxList, unsigned Values,
940 const Twine &NameStr, Instruction *InsertBefore);
941 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
942 ArrayRef<Value *> IdxList, unsigned Values,
943 const Twine &NameStr, BasicBlock *InsertAtEnd);
944
945 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
946
947protected:
948 // Note: Instruction needs to be a friend here to call cloneImpl.
949 friend class Instruction;
950
951 GetElementPtrInst *cloneImpl() const;
952
953public:
954 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
955 ArrayRef<Value *> IdxList,
956 const Twine &NameStr = "",
957 Instruction *InsertBefore = nullptr) {
958 unsigned Values = 1 + unsigned(IdxList.size());
959 assert(PointeeType && "Must specify element type")((void)0);
960 assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0)
961 ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0);
962 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
963 NameStr, InsertBefore);
964 }
965
966 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
967 ArrayRef<Value *> IdxList,
968 const Twine &NameStr,
969 BasicBlock *InsertAtEnd) {
970 unsigned Values = 1 + unsigned(IdxList.size());
971 assert(PointeeType && "Must specify element type")((void)0);
972 assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0)
973 ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0);
974 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
975 NameStr, InsertAtEnd);
976 }
977
978 LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
979 Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
980 Instruction *InsertBefore = nullptr),[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
981 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
{
982 return CreateInBounds(
983 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
984 NameStr, InsertBefore);
985 }
986
987 /// Create an "inbounds" getelementptr. See the documentation for the
988 /// "inbounds" flag in LangRef.html for details.
989 static GetElementPtrInst *
990 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
991 const Twine &NameStr = "",
992 Instruction *InsertBefore = nullptr) {
993 GetElementPtrInst *GEP =
994 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
995 GEP->setIsInBounds(true);
996 return GEP;
997 }
998
999 LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1000 Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1001 BasicBlock *InsertAtEnd),[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1002 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
{
1003 return CreateInBounds(
1004 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
1005 NameStr, InsertAtEnd);
1006 }
1007
1008 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
1009 ArrayRef<Value *> IdxList,
1010 const Twine &NameStr,
1011 BasicBlock *InsertAtEnd) {
1012 GetElementPtrInst *GEP =
1013 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
1014 GEP->setIsInBounds(true);
1015 return GEP;
1016 }
1017
1018 /// Transparently provide more efficient getOperand methods.
1019 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1020
1021 Type *getSourceElementType() const { return SourceElementType; }
1022
1023 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1024 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1025
1026 Type *getResultElementType() const {
1027 assert(cast<PointerType>(getType()->getScalarType())((void)0)
1028 ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0);
1029 return ResultElementType;
1030 }
1031
1032 /// Returns the address space of this instruction's pointer type.
1033 unsigned getAddressSpace() const {
1034 // Note that this is always the same as the pointer operand's address space
1035 // and that is cheaper to compute, so cheat here.
1036 return getPointerAddressSpace();
1037 }
1038
1039 /// Returns the result type of a getelementptr with the given source
1040 /// element type and indexes.
1041 ///
1042 /// Null is returned if the indices are invalid for the specified
1043 /// source element type.
1044 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1045 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1046 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1047
1048 /// Return the type of the element at the given index of an indexable
1049 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1050 ///
1051 /// Returns null if the type can't be indexed, or the given index is not
1052 /// legal for the given type.
1053 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1054 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1055
1056 inline op_iterator idx_begin() { return op_begin()+1; }
1057 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1058 inline op_iterator idx_end() { return op_end(); }
1059 inline const_op_iterator idx_end() const { return op_end(); }
1060
1061 inline iterator_range<op_iterator> indices() {
1062 return make_range(idx_begin(), idx_end());
1063 }
1064
1065 inline iterator_range<const_op_iterator> indices() const {
1066 return make_range(idx_begin(), idx_end());
1067 }
1068
1069 Value *getPointerOperand() {
1070 return getOperand(0);
1071 }
1072 const Value *getPointerOperand() const {
1073 return getOperand(0);
1074 }
1075 static unsigned getPointerOperandIndex() {
1076 return 0U; // get index for modifying correct operand.
1077 }
1078
1079 /// Method to return the pointer operand as a
1080 /// PointerType.
1081 Type *getPointerOperandType() const {
1082 return getPointerOperand()->getType();
1083 }
1084
1085 /// Returns the address space of the pointer operand.
1086 unsigned getPointerAddressSpace() const {
1087 return getPointerOperandType()->getPointerAddressSpace();
1088 }
1089
1090 /// Returns the pointer type returned by the GEP
1091 /// instruction, which may be a vector of pointers.
1092 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1093 ArrayRef<Value *> IdxList) {
1094 PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1095 unsigned AddrSpace = OrigPtrTy->getAddressSpace();
1096 Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList));
1097 Type *PtrTy = OrigPtrTy->isOpaque()
1098 ? PointerType::get(OrigPtrTy->getContext(), AddrSpace)
1099 : PointerType::get(ResultElemTy, AddrSpace);
1100 // Vector GEP
1101 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1102 ElementCount EltCount = PtrVTy->getElementCount();
1103 return VectorType::get(PtrTy, EltCount);
1104 }
1105 for (Value *Index : IdxList)
1106 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1107 ElementCount EltCount = IndexVTy->getElementCount();
1108 return VectorType::get(PtrTy, EltCount);
1109 }
1110 // Scalar GEP
1111 return PtrTy;
1112 }
1113
1114 unsigned getNumIndices() const { // Note: always non-negative
1115 return getNumOperands() - 1;
1116 }
1117
1118 bool hasIndices() const {
1119 return getNumOperands() > 1;
1120 }
1121
1122 /// Return true if all of the indices of this GEP are
1123 /// zeros. If so, the result pointer and the first operand have the same
1124 /// value, just potentially different types.
1125 bool hasAllZeroIndices() const;
1126
1127 /// Return true if all of the indices of this GEP are
1128 /// constant integers. If so, the result pointer and the first operand have
1129 /// a constant offset between them.
1130 bool hasAllConstantIndices() const;
1131
1132 /// Set or clear the inbounds flag on this GEP instruction.
1133 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1134 void setIsInBounds(bool b = true);
1135
1136 /// Determine whether the GEP has the inbounds flag.
1137 bool isInBounds() const;
1138
1139 /// Accumulate the constant address offset of this GEP if possible.
1140 ///
1141 /// This routine accepts an APInt into which it will accumulate the constant
1142 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1143 /// all-constant, it returns false and the value of the offset APInt is
1144 /// undefined (it is *not* preserved!). The APInt passed into this routine
1145 /// must be at least as wide as the IntPtr type for the address space of
1146 /// the base GEP pointer.
1147 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1148 bool collectOffset(const DataLayout &DL, unsigned BitWidth,
1149 MapVector<Value *, APInt> &VariableOffsets,
1150 APInt &ConstantOffset) const;
1151 // Methods for support type inquiry through isa, cast, and dyn_cast:
1152 static bool classof(const Instruction *I) {
1153 return (I->getOpcode() == Instruction::GetElementPtr);
1154 }
1155 static bool classof(const Value *V) {
1156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1157 }
1158};
1159
1160template <>
1161struct OperandTraits<GetElementPtrInst> :
1162 public VariadicOperandTraits<GetElementPtrInst, 1> {
1163};
1164
1165GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1166 ArrayRef<Value *> IdxList, unsigned Values,
1167 const Twine &NameStr,
1168 Instruction *InsertBefore)
1169 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1170 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1171 Values, InsertBefore),
1172 SourceElementType(PointeeType),
1173 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1174 assert(cast<PointerType>(getType()->getScalarType())((void)0)
1175 ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0);
1176 init(Ptr, IdxList, NameStr);
1177}
1178
1179GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1180 ArrayRef<Value *> IdxList, unsigned Values,
1181 const Twine &NameStr,
1182 BasicBlock *InsertAtEnd)
1183 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1184 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1185 Values, InsertAtEnd),
1186 SourceElementType(PointeeType),
1187 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1188 assert(cast<PointerType>(getType()->getScalarType())((void)0)
1189 ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0);
1190 init(Ptr, IdxList, NameStr);
1191}
1192
1193DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<GetElementPtrInst>::op_begin(const_cast
<GetElementPtrInst*>(this))[i_nocapture].get()); } void
GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<GetElementPtrInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned GetElementPtrInst
::getNumOperands() const { return OperandTraits<GetElementPtrInst
>::operands(this); } template <int Idx_nocapture> Use
&GetElementPtrInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
GetElementPtrInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1194
1195//===----------------------------------------------------------------------===//
1196// ICmpInst Class
1197//===----------------------------------------------------------------------===//
1198
1199/// This instruction compares its operands according to the predicate given
1200/// to the constructor. It only operates on integers or pointers. The operands
1201/// must be identical types.
1202/// Represent an integer comparison operator.
1203class ICmpInst: public CmpInst {
1204 void AssertOK() {
1205 assert(isIntPredicate() &&((void)0)
1206 "Invalid ICmp predicate value")((void)0);
1207 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0)
1208 "Both operands to ICmp instruction are not of the same type!")((void)0);
1209 // Check that the operands are the right type
1210 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||((void)0)
1211 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&((void)0)
1212 "Invalid operand types for ICmp instruction")((void)0);
1213 }
1214
1215protected:
1216 // Note: Instruction needs to be a friend here to call cloneImpl.
1217 friend class Instruction;
1218
1219 /// Clone an identical ICmpInst
1220 ICmpInst *cloneImpl() const;
1221
1222public:
1223 /// Constructor with insert-before-instruction semantics.
1224 ICmpInst(
1225 Instruction *InsertBefore, ///< Where to insert
1226 Predicate pred, ///< The predicate to use for the comparison
1227 Value *LHS, ///< The left-hand-side of the expression
1228 Value *RHS, ///< The right-hand-side of the expression
1229 const Twine &NameStr = "" ///< Name of the instruction
1230 ) : CmpInst(makeCmpResultType(LHS->getType()),
1231 Instruction::ICmp, pred, LHS, RHS, NameStr,
1232 InsertBefore) {
1233#ifndef NDEBUG1
1234 AssertOK();
1235#endif
1236 }
1237
1238 /// Constructor with insert-at-end semantics.
1239 ICmpInst(
1240 BasicBlock &InsertAtEnd, ///< Block to insert into.
1241 Predicate pred, ///< The predicate to use for the comparison
1242 Value *LHS, ///< The left-hand-side of the expression
1243 Value *RHS, ///< The right-hand-side of the expression
1244 const Twine &NameStr = "" ///< Name of the instruction
1245 ) : CmpInst(makeCmpResultType(LHS->getType()),
1246 Instruction::ICmp, pred, LHS, RHS, NameStr,
1247 &InsertAtEnd) {
1248#ifndef NDEBUG1
1249 AssertOK();
1250#endif
1251 }
1252
1253 /// Constructor with no-insertion semantics
1254 ICmpInst(
1255 Predicate pred, ///< The predicate to use for the comparison
1256 Value *LHS, ///< The left-hand-side of the expression
1257 Value *RHS, ///< The right-hand-side of the expression
1258 const Twine &NameStr = "" ///< Name of the instruction
1259 ) : CmpInst(makeCmpResultType(LHS->getType()),
1260 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1261#ifndef NDEBUG1
1262 AssertOK();
1263#endif
1264 }
1265
1266 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1267 /// @returns the predicate that would be the result if the operand were
1268 /// regarded as signed.
1269 /// Return the signed version of the predicate
1270 Predicate getSignedPredicate() const {
1271 return getSignedPredicate(getPredicate());
1272 }
1273
1274 /// This is a static version that you can use without an instruction.
1275 /// Return the signed version of the predicate.
1276 static Predicate getSignedPredicate(Predicate pred);
1277
1278 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1279 /// @returns the predicate that would be the result if the operand were
1280 /// regarded as unsigned.
1281 /// Return the unsigned version of the predicate
1282 Predicate getUnsignedPredicate() const {
1283 return getUnsignedPredicate(getPredicate());
1284 }
1285
1286 /// This is a static version that you can use without an instruction.
1287 /// Return the unsigned version of the predicate.
1288 static Predicate getUnsignedPredicate(Predicate pred);
1289
1290 /// Return true if this predicate is either EQ or NE. This also
1291 /// tests for commutativity.
1292 static bool isEquality(Predicate P) {
1293 return P == ICMP_EQ || P == ICMP_NE;
1294 }
1295
1296 /// Return true if this predicate is either EQ or NE. This also
1297 /// tests for commutativity.
1298 bool isEquality() const {
1299 return isEquality(getPredicate());
1300 }
1301
1302 /// @returns true if the predicate of this ICmpInst is commutative
1303 /// Determine if this relation is commutative.
1304 bool isCommutative() const { return isEquality(); }
1305
1306 /// Return true if the predicate is relational (not EQ or NE).
1307 ///
1308 bool isRelational() const {
1309 return !isEquality();
1310 }
1311
1312 /// Return true if the predicate is relational (not EQ or NE).
1313 ///
1314 static bool isRelational(Predicate P) {
1315 return !isEquality(P);
1316 }
1317
1318 /// Return true if the predicate is SGT or UGT.
1319 ///
1320 static bool isGT(Predicate P) {
1321 return P == ICMP_SGT || P == ICMP_UGT;
1322 }
1323
1324 /// Return true if the predicate is SLT or ULT.
1325 ///
1326 static bool isLT(Predicate P) {
1327 return P == ICMP_SLT || P == ICMP_ULT;
1328 }
1329
1330 /// Return true if the predicate is SGE or UGE.
1331 ///
1332 static bool isGE(Predicate P) {
1333 return P == ICMP_SGE || P == ICMP_UGE;
1334 }
1335
1336 /// Return true if the predicate is SLE or ULE.
1337 ///
1338 static bool isLE(Predicate P) {
1339 return P == ICMP_SLE || P == ICMP_ULE;
1340 }
1341
1342 /// Exchange the two operands to this instruction in such a way that it does
1343 /// not modify the semantics of the instruction. The predicate value may be
1344 /// changed to retain the same result if the predicate is order dependent
1345 /// (e.g. ult).
1346 /// Swap operands and adjust predicate.
1347 void swapOperands() {
1348 setPredicate(getSwappedPredicate());
1349 Op<0>().swap(Op<1>());
1350 }
1351
1352 // Methods for support type inquiry through isa, cast, and dyn_cast:
1353 static bool classof(const Instruction *I) {
1354 return I->getOpcode() == Instruction::ICmp;
1355 }
1356 static bool classof(const Value *V) {
1357 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1358 }
1359};
1360
1361//===----------------------------------------------------------------------===//
1362// FCmpInst Class
1363//===----------------------------------------------------------------------===//
1364
1365/// This instruction compares its operands according to the predicate given
1366/// to the constructor. It only operates on floating point values or packed
1367/// vectors of floating point values. The operands must be identical types.
1368/// Represents a floating point comparison operator.
1369class FCmpInst: public CmpInst {
1370 void AssertOK() {
1371 assert(isFPPredicate() && "Invalid FCmp predicate value")((void)0);
1372 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0)
1373 "Both operands to FCmp instruction are not of the same type!")((void)0);
1374 // Check that the operands are the right type
1375 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((void)0)
1376 "Invalid operand types for FCmp instruction")((void)0);
1377 }
1378
1379protected:
1380 // Note: Instruction needs to be a friend here to call cloneImpl.
1381 friend class Instruction;
1382
1383 /// Clone an identical FCmpInst
1384 FCmpInst *cloneImpl() const;
1385
1386public:
1387 /// Constructor with insert-before-instruction semantics.
1388 FCmpInst(
1389 Instruction *InsertBefore, ///< Where to insert
1390 Predicate pred, ///< The predicate to use for the comparison
1391 Value *LHS, ///< The left-hand-side of the expression
1392 Value *RHS, ///< The right-hand-side of the expression
1393 const Twine &NameStr = "" ///< Name of the instruction
1394 ) : CmpInst(makeCmpResultType(LHS->getType()),
1395 Instruction::FCmp, pred, LHS, RHS, NameStr,
1396 InsertBefore) {
1397 AssertOK();
1398 }
1399
1400 /// Constructor with insert-at-end semantics.
1401 FCmpInst(
1402 BasicBlock &InsertAtEnd, ///< Block to insert into.
1403 Predicate pred, ///< The predicate to use for the comparison
1404 Value *LHS, ///< The left-hand-side of the expression
1405 Value *RHS, ///< The right-hand-side of the expression
1406 const Twine &NameStr = "" ///< Name of the instruction
1407 ) : CmpInst(makeCmpResultType(LHS->getType()),
1408 Instruction::FCmp, pred, LHS, RHS, NameStr,
1409 &InsertAtEnd) {
1410 AssertOK();
1411 }
1412
1413 /// Constructor with no-insertion semantics
1414 FCmpInst(
1415 Predicate Pred, ///< The predicate to use for the comparison
1416 Value *LHS, ///< The left-hand-side of the expression
1417 Value *RHS, ///< The right-hand-side of the expression
1418 const Twine &NameStr = "", ///< Name of the instruction
1419 Instruction *FlagsSource = nullptr
1420 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1421 RHS, NameStr, nullptr, FlagsSource) {
1422 AssertOK();
1423 }
1424
1425 /// @returns true if the predicate of this instruction is EQ or NE.
1426 /// Determine if this is an equality predicate.
1427 static bool isEquality(Predicate Pred) {
1428 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1429 Pred == FCMP_UNE;
1430 }
1431
1432 /// @returns true if the predicate of this instruction is EQ or NE.
1433 /// Determine if this is an equality predicate.
1434 bool isEquality() const { return isEquality(getPredicate()); }
1435
1436 /// @returns true if the predicate of this instruction is commutative.
1437 /// Determine if this is a commutative predicate.
1438 bool isCommutative() const {
1439 return isEquality() ||
1440 getPredicate() == FCMP_FALSE ||
1441 getPredicate() == FCMP_TRUE ||
1442 getPredicate() == FCMP_ORD ||
1443 getPredicate() == FCMP_UNO;
1444 }
1445
1446 /// @returns true if the predicate is relational (not EQ or NE).
1447 /// Determine if this a relational predicate.
1448 bool isRelational() const { return !isEquality(); }
1449
1450 /// Exchange the two operands to this instruction in such a way that it does
1451 /// not modify the semantics of the instruction. The predicate value may be
1452 /// changed to retain the same result if the predicate is order dependent
1453 /// (e.g. ult).
1454 /// Swap operands and adjust predicate.
1455 void swapOperands() {
1456 setPredicate(getSwappedPredicate());
1457 Op<0>().swap(Op<1>());
1458 }
1459
1460 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1461 static bool classof(const Instruction *I) {
1462 return I->getOpcode() == Instruction::FCmp;
1463 }
1464 static bool classof(const Value *V) {
1465 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1466 }
1467};
1468
1469//===----------------------------------------------------------------------===//
1470/// This class represents a function call, abstracting a target
1471/// machine's calling convention. This class uses low bit of the SubClassData
1472/// field to indicate whether or not this is a tail call. The rest of the bits
1473/// hold the calling convention of the call.
1474///
1475class CallInst : public CallBase {
1476 CallInst(const CallInst &CI);
1477
1478 /// Construct a CallInst given a range of arguments.
1479 /// Construct a CallInst from a range of arguments
1480 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1481 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1482 Instruction *InsertBefore);
1483
1484 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1485 const Twine &NameStr, Instruction *InsertBefore)
1486 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1487
1488 /// Construct a CallInst given a range of arguments.
1489 /// Construct a CallInst from a range of arguments
1490 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1491 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1492 BasicBlock *InsertAtEnd);
1493
1494 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1495 Instruction *InsertBefore);
1496
1497 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1498 BasicBlock *InsertAtEnd);
1499
1500 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1501 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1502 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1503
1504 /// Compute the number of operands to allocate.
1505 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1506 // We need one operand for the called function, plus the input operand
1507 // counts provided.
1508 return 1 + NumArgs + NumBundleInputs;
1509 }
1510
1511protected:
1512 // Note: Instruction needs to be a friend here to call cloneImpl.
1513 friend class Instruction;
1514
1515 CallInst *cloneImpl() const;
1516
1517public:
1518 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1519 Instruction *InsertBefore = nullptr) {
1520 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1521 }
1522
1523 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1524 const Twine &NameStr,
1525 Instruction *InsertBefore = nullptr) {
1526 return new (ComputeNumOperands(Args.size()))
1527 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1528 }
1529
1530 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1531 ArrayRef<OperandBundleDef> Bundles = None,
1532 const Twine &NameStr = "",
1533 Instruction *InsertBefore = nullptr) {
1534 const int NumOperands =
1535 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1536 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1537
1538 return new (NumOperands, DescriptorBytes)
1539 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1540 }
1541
1542 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1543 BasicBlock *InsertAtEnd) {
1544 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1545 }
1546
1547 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1548 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1549 return new (ComputeNumOperands(Args.size()))
1550 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1551 }
1552
1553 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1554 ArrayRef<OperandBundleDef> Bundles,
1555 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1556 const int NumOperands =
1557 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1558 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1559
1560 return new (NumOperands, DescriptorBytes)
1561 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1562 }
1563
1564 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1565 Instruction *InsertBefore = nullptr) {
1566 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1567 InsertBefore);
1568 }
1569
1570 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1571 ArrayRef<OperandBundleDef> Bundles = None,
1572 const Twine &NameStr = "",
1573 Instruction *InsertBefore = nullptr) {
1574 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1575 NameStr, InsertBefore);
1576 }
1577
1578 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1579 const Twine &NameStr,
1580 Instruction *InsertBefore = nullptr) {
1581 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1582 InsertBefore);
1583 }
1584
1585 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1586 BasicBlock *InsertAtEnd) {
1587 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1588 InsertAtEnd);
1589 }
1590
1591 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1592 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1593 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1594 InsertAtEnd);
1595 }
1596
1597 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1598 ArrayRef<OperandBundleDef> Bundles,
1599 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1600 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1601 NameStr, InsertAtEnd);
1602 }
1603
1604 /// Create a clone of \p CI with a different set of operand bundles and
1605 /// insert it before \p InsertPt.
1606 ///
1607 /// The returned call instruction is identical \p CI in every way except that
1608 /// the operand bundles for the new instruction are set to the operand bundles
1609 /// in \p Bundles.
1610 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1611 Instruction *InsertPt = nullptr);
1612
1613 /// Generate the IR for a call to malloc:
1614 /// 1. Compute the malloc call's argument as the specified type's size,
1615 /// possibly multiplied by the array size if the array size is not
1616 /// constant 1.
1617 /// 2. Call malloc with that argument.
1618 /// 3. Bitcast the result of the malloc call to the specified type.
1619 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1620 Type *AllocTy, Value *AllocSize,
1621 Value *ArraySize = nullptr,
1622 Function *MallocF = nullptr,
1623 const Twine &Name = "");
1624 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1625 Type *AllocTy, Value *AllocSize,
1626 Value *ArraySize = nullptr,
1627 Function *MallocF = nullptr,
1628 const Twine &Name = "");
1629 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1630 Type *AllocTy, Value *AllocSize,
1631 Value *ArraySize = nullptr,
1632 ArrayRef<OperandBundleDef> Bundles = None,
1633 Function *MallocF = nullptr,
1634 const Twine &Name = "");
1635 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1636 Type *AllocTy, Value *AllocSize,
1637 Value *ArraySize = nullptr,
1638 ArrayRef<OperandBundleDef> Bundles = None,
1639 Function *MallocF = nullptr,
1640 const Twine &Name = "");
1641 /// Generate the IR for a call to the builtin free function.
1642 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1643 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1644 static Instruction *CreateFree(Value *Source,
1645 ArrayRef<OperandBundleDef> Bundles,
1646 Instruction *InsertBefore);
1647 static Instruction *CreateFree(Value *Source,
1648 ArrayRef<OperandBundleDef> Bundles,
1649 BasicBlock *InsertAtEnd);
1650
1651 // Note that 'musttail' implies 'tail'.
1652 enum TailCallKind : unsigned {
1653 TCK_None = 0,
1654 TCK_Tail = 1,
1655 TCK_MustTail = 2,
1656 TCK_NoTail = 3,
1657 TCK_LAST = TCK_NoTail
1658 };
1659
1660 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1661 static_assert(
1662 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1663 "Bitfields must be contiguous");
1664
1665 TailCallKind getTailCallKind() const {
1666 return getSubclassData<TailCallKindField>();
1667 }
1668
1669 bool isTailCall() const {
1670 TailCallKind Kind = getTailCallKind();
1671 return Kind == TCK_Tail || Kind == TCK_MustTail;
1672 }
1673
1674 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1675
1676 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1677
1678 void setTailCallKind(TailCallKind TCK) {
1679 setSubclassData<TailCallKindField>(TCK);
1680 }
1681
1682 void setTailCall(bool IsTc = true) {
1683 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1684 }
1685
1686 /// Return true if the call can return twice
1687 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1688 void setCanReturnTwice() {
1689 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1690 }
1691
1692 // Methods for support type inquiry through isa, cast, and dyn_cast:
1693 static bool classof(const Instruction *I) {
1694 return I->getOpcode() == Instruction::Call;
1695 }
1696 static bool classof(const Value *V) {
1697 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1698 }
1699
1700 /// Updates profile metadata by scaling it by \p S / \p T.
1701 void updateProfWeight(uint64_t S, uint64_t T);
1702
1703private:
1704 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1705 // method so that subclasses cannot accidentally use it.
1706 template <typename Bitfield>
1707 void setSubclassData(typename Bitfield::Type Value) {
1708 Instruction::setSubclassData<Bitfield>(Value);
1709 }
1710};
1711
1712CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1713 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1714 BasicBlock *InsertAtEnd)
1715 : CallBase(Ty->getReturnType(), Instruction::Call,
1716 OperandTraits<CallBase>::op_end(this) -
1717 (Args.size() + CountBundleInputs(Bundles) + 1),
1718 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1719 InsertAtEnd) {
1720 init(Ty, Func, Args, Bundles, NameStr);
1721}
1722
1723CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1724 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1725 Instruction *InsertBefore)
1726 : CallBase(Ty->getReturnType(), Instruction::Call,
1727 OperandTraits<CallBase>::op_end(this) -
1728 (Args.size() + CountBundleInputs(Bundles) + 1),
1729 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1730 InsertBefore) {
1731 init(Ty, Func, Args, Bundles, NameStr);
1732}
1733
1734//===----------------------------------------------------------------------===//
1735// SelectInst Class
1736//===----------------------------------------------------------------------===//
1737
1738/// This class represents the LLVM 'select' instruction.
1739///
1740class SelectInst : public Instruction {
1741 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1742 Instruction *InsertBefore)
1743 : Instruction(S1->getType(), Instruction::Select,
1744 &Op<0>(), 3, InsertBefore) {
1745 init(C, S1, S2);
1746 setName(NameStr);
1747 }
1748
1749 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1750 BasicBlock *InsertAtEnd)
1751 : Instruction(S1->getType(), Instruction::Select,
1752 &Op<0>(), 3, InsertAtEnd) {
1753 init(C, S1, S2);
1754 setName(NameStr);
1755 }
1756
1757 void init(Value *C, Value *S1, Value *S2) {
1758 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((void)0);
1759 Op<0>() = C;
1760 Op<1>() = S1;
1761 Op<2>() = S2;
1762 }
1763
1764protected:
1765 // Note: Instruction needs to be a friend here to call cloneImpl.
1766 friend class Instruction;
1767
1768 SelectInst *cloneImpl() const;
1769
1770public:
1771 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1772 const Twine &NameStr = "",
1773 Instruction *InsertBefore = nullptr,
1774 Instruction *MDFrom = nullptr) {
1775 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1776 if (MDFrom)
1777 Sel->copyMetadata(*MDFrom);
1778 return Sel;
1779 }
1780
1781 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1782 const Twine &NameStr,
1783 BasicBlock *InsertAtEnd) {
1784 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1785 }
1786
1787 const Value *getCondition() const { return Op<0>(); }
1788 const Value *getTrueValue() const { return Op<1>(); }
1789 const Value *getFalseValue() const { return Op<2>(); }
1790 Value *getCondition() { return Op<0>(); }
1791 Value *getTrueValue() { return Op<1>(); }
1792 Value *getFalseValue() { return Op<2>(); }
1793
1794 void setCondition(Value *V) { Op<0>() = V; }
1795 void setTrueValue(Value *V) { Op<1>() = V; }
1796 void setFalseValue(Value *V) { Op<2>() = V; }
1797
1798 /// Swap the true and false values of the select instruction.
1799 /// This doesn't swap prof metadata.
1800 void swapValues() { Op<1>().swap(Op<2>()); }
1801
1802 /// Return a string if the specified operands are invalid
1803 /// for a select operation, otherwise return null.
1804 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1805
1806 /// Transparently provide more efficient getOperand methods.
1807 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1808
1809 OtherOps getOpcode() const {
1810 return static_cast<OtherOps>(Instruction::getOpcode());
1811 }
1812
1813 // Methods for support type inquiry through isa, cast, and dyn_cast:
1814 static bool classof(const Instruction *I) {
1815 return I->getOpcode() == Instruction::Select;
1816 }
1817 static bool classof(const Value *V) {
1818 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1819 }
1820};
1821
1822template <>
1823struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1824};
1825
1826DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<SelectInst>::op_begin(const_cast
<SelectInst*>(this))[i_nocapture].get()); } void SelectInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<SelectInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned SelectInst::getNumOperands() const
{ return OperandTraits<SelectInst>::operands(this); } template
<int Idx_nocapture> Use &SelectInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &SelectInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
1827
1828//===----------------------------------------------------------------------===//
1829// VAArgInst Class
1830//===----------------------------------------------------------------------===//
1831
1832/// This class represents the va_arg llvm instruction, which returns
1833/// an argument of the specified type given a va_list and increments that list
1834///
1835class VAArgInst : public UnaryInstruction {
1836protected:
1837 // Note: Instruction needs to be a friend here to call cloneImpl.
1838 friend class Instruction;
1839
1840 VAArgInst *cloneImpl() const;
1841
1842public:
1843 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1844 Instruction *InsertBefore = nullptr)
1845 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1846 setName(NameStr);
1847 }
1848
1849 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1850 BasicBlock *InsertAtEnd)
1851 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1852 setName(NameStr);
1853 }
1854
1855 Value *getPointerOperand() { return getOperand(0); }
1856 const Value *getPointerOperand() const { return getOperand(0); }
1857 static unsigned getPointerOperandIndex() { return 0U; }
1858
1859 // Methods for support type inquiry through isa, cast, and dyn_cast:
1860 static bool classof(const Instruction *I) {
1861 return I->getOpcode() == VAArg;
1862 }
1863 static bool classof(const Value *V) {
1864 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1865 }
1866};
1867
1868//===----------------------------------------------------------------------===//
1869// ExtractElementInst Class
1870//===----------------------------------------------------------------------===//
1871
1872/// This instruction extracts a single (scalar)
1873/// element from a VectorType value
1874///
1875class ExtractElementInst : public Instruction {
1876 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1877 Instruction *InsertBefore = nullptr);
1878 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1879 BasicBlock *InsertAtEnd);
1880
1881protected:
1882 // Note: Instruction needs to be a friend here to call cloneImpl.
1883 friend class Instruction;
1884
1885 ExtractElementInst *cloneImpl() const;
1886
1887public:
1888 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1889 const Twine &NameStr = "",
1890 Instruction *InsertBefore = nullptr) {
1891 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1892 }
1893
1894 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1895 const Twine &NameStr,
1896 BasicBlock *InsertAtEnd) {
1897 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1898 }
1899
1900 /// Return true if an extractelement instruction can be
1901 /// formed with the specified operands.
1902 static bool isValidOperands(const Value *Vec, const Value *Idx);
1903
1904 Value *getVectorOperand() { return Op<0>(); }
1905 Value *getIndexOperand() { return Op<1>(); }
1906 const Value *getVectorOperand() const { return Op<0>(); }
1907 const Value *getIndexOperand() const { return Op<1>(); }
1908
1909 VectorType *getVectorOperandType() const {
1910 return cast<VectorType>(getVectorOperand()->getType());
1911 }
1912
1913 /// Transparently provide more efficient getOperand methods.
1914 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1915
1916 // Methods for support type inquiry through isa, cast, and dyn_cast:
1917 static bool classof(const Instruction *I) {
1918 return I->getOpcode() == Instruction::ExtractElement;
1919 }
1920 static bool classof(const Value *V) {
1921 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1922 }
1923};
1924
1925template <>
1926struct OperandTraits<ExtractElementInst> :
1927 public FixedNumOperandTraits<ExtractElementInst, 2> {
1928};
1929
1930DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
((void)0); return cast_or_null<Value>( OperandTraits<
ExtractElementInst>::op_begin(const_cast<ExtractElementInst
*>(this))[i_nocapture].get()); } void ExtractElementInst::
setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void
)0); OperandTraits<ExtractElementInst>::op_begin(this)[
i_nocapture] = Val_nocapture; } unsigned ExtractElementInst::
getNumOperands() const { return OperandTraits<ExtractElementInst
>::operands(this); } template <int Idx_nocapture> Use
&ExtractElementInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ExtractElementInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1931
1932//===----------------------------------------------------------------------===//
1933// InsertElementInst Class
1934//===----------------------------------------------------------------------===//
1935
1936/// This instruction inserts a single (scalar)
1937/// element into a VectorType value
1938///
1939class InsertElementInst : public Instruction {
1940 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1941 const Twine &NameStr = "",
1942 Instruction *InsertBefore = nullptr);
1943 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1944 BasicBlock *InsertAtEnd);
1945
1946protected:
1947 // Note: Instruction needs to be a friend here to call cloneImpl.
1948 friend class Instruction;
1949
1950 InsertElementInst *cloneImpl() const;
1951
1952public:
1953 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1954 const Twine &NameStr = "",
1955 Instruction *InsertBefore = nullptr) {
1956 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1957 }
1958
1959 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1960 const Twine &NameStr,
1961 BasicBlock *InsertAtEnd) {
1962 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1963 }
1964
1965 /// Return true if an insertelement instruction can be
1966 /// formed with the specified operands.
1967 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1968 const Value *Idx);
1969
1970 /// Overload to return most specific vector type.
1971 ///
1972 VectorType *getType() const {
1973 return cast<VectorType>(Instruction::getType());
1974 }
1975
1976 /// Transparently provide more efficient getOperand methods.
1977 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1978
1979 // Methods for support type inquiry through isa, cast, and dyn_cast:
1980 static bool classof(const Instruction *I) {
1981 return I->getOpcode() == Instruction::InsertElement;
1982 }
1983 static bool classof(const Value *V) {
1984 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1985 }
1986};
1987
1988template <>
1989struct OperandTraits<InsertElementInst> :
1990 public FixedNumOperandTraits<InsertElementInst, 3> {
1991};
1992
1993DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<InsertElementInst>::op_begin(const_cast
<InsertElementInst*>(this))[i_nocapture].get()); } void
InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<InsertElementInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned InsertElementInst
::getNumOperands() const { return OperandTraits<InsertElementInst
>::operands(this); } template <int Idx_nocapture> Use
&InsertElementInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
InsertElementInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1994
1995//===----------------------------------------------------------------------===//
1996// ShuffleVectorInst Class
1997//===----------------------------------------------------------------------===//
1998
1999constexpr int UndefMaskElem = -1;
2000
2001/// This instruction constructs a fixed permutation of two
2002/// input vectors.
2003///
2004/// For each element of the result vector, the shuffle mask selects an element
2005/// from one of the input vectors to copy to the result. Non-negative elements
2006/// in the mask represent an index into the concatenated pair of input vectors.
2007/// UndefMaskElem (-1) specifies that the result element is undefined.
2008///
2009/// For scalable vectors, all the elements of the mask must be 0 or -1. This
2010/// requirement may be relaxed in the future.
2011class ShuffleVectorInst : public Instruction {
2012 SmallVector<int, 4> ShuffleMask;
2013 Constant *ShuffleMaskForBitcode;
2014
2015protected:
2016 // Note: Instruction needs to be a friend here to call cloneImpl.
2017 friend class Instruction;
2018
2019 ShuffleVectorInst *cloneImpl() const;
2020
2021public:
2022 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2023 const Twine &NameStr = "",
2024 Instruction *InsertBefor = nullptr);
2025 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2026 const Twine &NameStr, BasicBlock *InsertAtEnd);
2027 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2028 const Twine &NameStr = "",
2029 Instruction *InsertBefor = nullptr);
2030 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2031 const Twine &NameStr, BasicBlock *InsertAtEnd);
2032
2033 void *operator new(size_t S) { return User::operator new(S, 2); }
2034 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
2035
2036 /// Swap the operands and adjust the mask to preserve the semantics
2037 /// of the instruction.
2038 void commute();
2039
2040 /// Return true if a shufflevector instruction can be
2041 /// formed with the specified operands.
2042 static bool isValidOperands(const Value *V1, const Value *V2,
2043 const Value *Mask);
2044 static bool isValidOperands(const Value *V1, const Value *V2,
2045 ArrayRef<int> Mask);
2046
2047 /// Overload to return most specific vector type.
2048 ///
2049 VectorType *getType() const {
2050 return cast<VectorType>(Instruction::getType());
2051 }
2052
2053 /// Transparently provide more efficient getOperand methods.
2054 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2055
2056 /// Return the shuffle mask value of this instruction for the given element
2057 /// index. Return UndefMaskElem if the element is undef.
2058 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2059
2060 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2061 /// elements of the mask are returned as UndefMaskElem.
2062 static void getShuffleMask(const Constant *Mask,
2063 SmallVectorImpl<int> &Result);
2064
2065 /// Return the mask for this instruction as a vector of integers. Undefined
2066 /// elements of the mask are returned as UndefMaskElem.
2067 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2068 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2069 }
2070
2071 /// Return the mask for this instruction, for use in bitcode.
2072 ///
2073 /// TODO: This is temporary until we decide a new bitcode encoding for
2074 /// shufflevector.
2075 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2076
2077 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2078 Type *ResultTy);
2079
2080 void setShuffleMask(ArrayRef<int> Mask);
2081
2082 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2083
2084 /// Return true if this shuffle returns a vector with a different number of
2085 /// elements than its source vectors.
2086 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2087 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2088 bool changesLength() const {
2089 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2090 ->getElementCount()
2091 .getKnownMinValue();
2092 unsigned NumMaskElts = ShuffleMask.size();
2093 return NumSourceElts != NumMaskElts;
2094 }
2095
2096 /// Return true if this shuffle returns a vector with a greater number of
2097 /// elements than its source vectors.
2098 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2099 bool increasesLength() const {
2100 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2101 ->getElementCount()
2102 .getKnownMinValue();
2103 unsigned NumMaskElts = ShuffleMask.size();
2104 return NumSourceElts < NumMaskElts;
2105 }
2106
2107 /// Return true if this shuffle mask chooses elements from exactly one source
2108 /// vector.
2109 /// Example: <7,5,undef,7>
2110 /// This assumes that vector operands are the same length as the mask.
2111 static bool isSingleSourceMask(ArrayRef<int> Mask);
2112 static bool isSingleSourceMask(const Constant *Mask) {
2113 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2114 SmallVector<int, 16> MaskAsInts;
2115 getShuffleMask(Mask, MaskAsInts);
2116 return isSingleSourceMask(MaskAsInts);
2117 }
2118
2119 /// Return true if this shuffle chooses elements from exactly one source
2120 /// vector without changing the length of that vector.
2121 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2122 /// TODO: Optionally allow length-changing shuffles.
2123 bool isSingleSource() const {
2124 return !changesLength() && isSingleSourceMask(ShuffleMask);
2125 }
2126
2127 /// Return true if this shuffle mask chooses elements from exactly one source
2128 /// vector without lane crossings. A shuffle using this mask is not
2129 /// necessarily a no-op because it may change the number of elements from its
2130 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2131 /// Example: <undef,undef,2,3>
2132 static bool isIdentityMask(ArrayRef<int> Mask);
2133 static bool isIdentityMask(const Constant *Mask) {
2134 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2135 SmallVector<int, 16> MaskAsInts;
2136 getShuffleMask(Mask, MaskAsInts);
2137 return isIdentityMask(MaskAsInts);
2138 }
2139
2140 /// Return true if this shuffle chooses elements from exactly one source
2141 /// vector without lane crossings and does not change the number of elements
2142 /// from its input vectors.
2143 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2144 bool isIdentity() const {
2145 return !changesLength() && isIdentityMask(ShuffleMask);
2146 }
2147
2148 /// Return true if this shuffle lengthens exactly one source vector with
2149 /// undefs in the high elements.
2150 bool isIdentityWithPadding() const;
2151
2152 /// Return true if this shuffle extracts the first N elements of exactly one
2153 /// source vector.
2154 bool isIdentityWithExtract() const;
2155
2156 /// Return true if this shuffle concatenates its 2 source vectors. This
2157 /// returns false if either input is undefined. In that case, the shuffle is
2158 /// is better classified as an identity with padding operation.
2159 bool isConcat() const;
2160
2161 /// Return true if this shuffle mask chooses elements from its source vectors
2162 /// without lane crossings. A shuffle using this mask would be
2163 /// equivalent to a vector select with a constant condition operand.
2164 /// Example: <4,1,6,undef>
2165 /// This returns false if the mask does not choose from both input vectors.
2166 /// In that case, the shuffle is better classified as an identity shuffle.
2167 /// This assumes that vector operands are the same length as the mask
2168 /// (a length-changing shuffle can never be equivalent to a vector select).
2169 static bool isSelectMask(ArrayRef<int> Mask);
2170 static bool isSelectMask(const Constant *Mask) {
2171 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2172 SmallVector<int, 16> MaskAsInts;
2173 getShuffleMask(Mask, MaskAsInts);
2174 return isSelectMask(MaskAsInts);
2175 }
2176
2177 /// Return true if this shuffle chooses elements from its source vectors
2178 /// without lane crossings and all operands have the same number of elements.
2179 /// In other words, this shuffle is equivalent to a vector select with a
2180 /// constant condition operand.
2181 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2182 /// This returns false if the mask does not choose from both input vectors.
2183 /// In that case, the shuffle is better classified as an identity shuffle.
2184 /// TODO: Optionally allow length-changing shuffles.
2185 bool isSelect() const {
2186 return !changesLength() && isSelectMask(ShuffleMask);
2187 }
2188
2189 /// Return true if this shuffle mask swaps the order of elements from exactly
2190 /// one source vector.
2191 /// Example: <7,6,undef,4>
2192 /// This assumes that vector operands are the same length as the mask.
2193 static bool isReverseMask(ArrayRef<int> Mask);
2194 static bool isReverseMask(const Constant *Mask) {
2195 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2196 SmallVector<int, 16> MaskAsInts;
2197 getShuffleMask(Mask, MaskAsInts);
2198 return isReverseMask(MaskAsInts);
2199 }
2200
2201 /// Return true if this shuffle swaps the order of elements from exactly
2202 /// one source vector.
2203 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2204 /// TODO: Optionally allow length-changing shuffles.
2205 bool isReverse() const {
2206 return !changesLength() && isReverseMask(ShuffleMask);
2207 }
2208
2209 /// Return true if this shuffle mask chooses all elements with the same value
2210 /// as the first element of exactly one source vector.
2211 /// Example: <4,undef,undef,4>
2212 /// This assumes that vector operands are the same length as the mask.
2213 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2214 static bool isZeroEltSplatMask(const Constant *Mask) {
2215 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2216 SmallVector<int, 16> MaskAsInts;
2217 getShuffleMask(Mask, MaskAsInts);
2218 return isZeroEltSplatMask(MaskAsInts);
2219 }
2220
2221 /// Return true if all elements of this shuffle are the same value as the
2222 /// first element of exactly one source vector without changing the length
2223 /// of that vector.
2224 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2225 /// TODO: Optionally allow length-changing shuffles.
2226 /// TODO: Optionally allow splats from other elements.
2227 bool isZeroEltSplat() const {
2228 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2229 }
2230
2231 /// Return true if this shuffle mask is a transpose mask.
2232 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2233 /// even- or odd-numbered vector elements from two n-dimensional source
2234 /// vectors and write each result into consecutive elements of an
2235 /// n-dimensional destination vector. Two shuffles are necessary to complete
2236 /// the transpose, one for the even elements and another for the odd elements.
2237 /// This description closely follows how the TRN1 and TRN2 AArch64
2238 /// instructions operate.
2239 ///
2240 /// For example, a simple 2x2 matrix can be transposed with:
2241 ///
2242 /// ; Original matrix
2243 /// m0 = < a, b >
2244 /// m1 = < c, d >
2245 ///
2246 /// ; Transposed matrix
2247 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2248 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2249 ///
2250 /// For matrices having greater than n columns, the resulting nx2 transposed
2251 /// matrix is stored in two result vectors such that one vector contains
2252 /// interleaved elements from all the even-numbered rows and the other vector
2253 /// contains interleaved elements from all the odd-numbered rows. For example,
2254 /// a 2x4 matrix can be transposed with:
2255 ///
2256 /// ; Original matrix
2257 /// m0 = < a, b, c, d >
2258 /// m1 = < e, f, g, h >
2259 ///
2260 /// ; Transposed matrix
2261 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2262 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2263 static bool isTransposeMask(ArrayRef<int> Mask);
2264 static bool isTransposeMask(const Constant *Mask) {
2265 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2266 SmallVector<int, 16> MaskAsInts;
2267 getShuffleMask(Mask, MaskAsInts);
2268 return isTransposeMask(MaskAsInts);
2269 }
2270
2271 /// Return true if this shuffle transposes the elements of its inputs without
2272 /// changing the length of the vectors. This operation may also be known as a
2273 /// merge or interleave. See the description for isTransposeMask() for the
2274 /// exact specification.
2275 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2276 bool isTranspose() const {
2277 return !changesLength() && isTransposeMask(ShuffleMask);
2278 }
2279
2280 /// Return true if this shuffle mask is an extract subvector mask.
2281 /// A valid extract subvector mask returns a smaller vector from a single
2282 /// source operand. The base extraction index is returned as well.
2283 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2284 int &Index);
2285 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2286 int &Index) {
2287 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2288 // Not possible to express a shuffle mask for a scalable vector for this
2289 // case.
2290 if (isa<ScalableVectorType>(Mask->getType()))
2291 return false;
2292 SmallVector<int, 16> MaskAsInts;
2293 getShuffleMask(Mask, MaskAsInts);
2294 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2295 }
2296
2297 /// Return true if this shuffle mask is an extract subvector mask.
2298 bool isExtractSubvectorMask(int &Index) const {
2299 // Not possible to express a shuffle mask for a scalable vector for this
2300 // case.
2301 if (isa<ScalableVectorType>(getType()))
2302 return false;
2303
2304 int NumSrcElts =
2305 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2306 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2307 }
2308
2309 /// Change values in a shuffle permute mask assuming the two vector operands
2310 /// of length InVecNumElts have swapped position.
2311 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2312 unsigned InVecNumElts) {
2313 for (int &Idx : Mask) {
2314 if (Idx == -1)
2315 continue;
2316 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2317 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((void)0)
2318 "shufflevector mask index out of range")((void)0);
2319 }
2320 }
2321
2322 // Methods for support type inquiry through isa, cast, and dyn_cast:
2323 static bool classof(const Instruction *I) {
2324 return I->getOpcode() == Instruction::ShuffleVector;
2325 }
2326 static bool classof(const Value *V) {
2327 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2328 }
2329};
2330
2331template <>
2332struct OperandTraits<ShuffleVectorInst>
2333 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2334
2335DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<ShuffleVectorInst>::op_begin(const_cast
<ShuffleVectorInst*>(this))[i_nocapture].get()); } void
ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<ShuffleVectorInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned ShuffleVectorInst
::getNumOperands() const { return OperandTraits<ShuffleVectorInst
>::operands(this); } template <int Idx_nocapture> Use
&ShuffleVectorInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ShuffleVectorInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2336
2337//===----------------------------------------------------------------------===//
2338// ExtractValueInst Class
2339//===----------------------------------------------------------------------===//
2340
2341/// This instruction extracts a struct member or array
2342/// element value from an aggregate value.
2343///
2344class ExtractValueInst : public UnaryInstruction {
2345 SmallVector<unsigned, 4> Indices;
2346
2347 ExtractValueInst(const ExtractValueInst &EVI);
2348
2349 /// Constructors - Create a extractvalue instruction with a base aggregate
2350 /// value and a list of indices. The first ctor can optionally insert before
2351 /// an existing instruction, the second appends the new instruction to the
2352 /// specified BasicBlock.
2353 inline ExtractValueInst(Value *Agg,
2354 ArrayRef<unsigned> Idxs,
2355 const Twine &NameStr,
2356 Instruction *InsertBefore);
2357 inline ExtractValueInst(Value *Agg,
2358 ArrayRef<unsigned> Idxs,
2359 const Twine &NameStr, BasicBlock *InsertAtEnd);
2360
2361 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2362
2363protected:
2364 // Note: Instruction needs to be a friend here to call cloneImpl.
2365 friend class Instruction;
2366
2367 ExtractValueInst *cloneImpl() const;
2368
2369public:
2370 static ExtractValueInst *Create(Value *Agg,
2371 ArrayRef<unsigned> Idxs,
2372 const Twine &NameStr = "",
2373 Instruction *InsertBefore = nullptr) {
2374 return new
2375 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2376 }
2377
2378 static ExtractValueInst *Create(Value *Agg,
2379 ArrayRef<unsigned> Idxs,
2380 const Twine &NameStr,
2381 BasicBlock *InsertAtEnd) {
2382 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2383 }
2384
2385 /// Returns the type of the element that would be extracted
2386 /// with an extractvalue instruction with the specified parameters.
2387 ///
2388 /// Null is returned if the indices are invalid for the specified type.
2389 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2390
2391 using idx_iterator = const unsigned*;
2392
2393 inline idx_iterator idx_begin() const { return Indices.begin(); }
2394 inline idx_iterator idx_end() const { return Indices.end(); }
2395 inline iterator_range<idx_iterator> indices() const {
2396 return make_range(idx_begin(), idx_end());
2397 }
2398
2399 Value *getAggregateOperand() {
2400 return getOperand(0);
2401 }
2402 const Value *getAggregateOperand() const {
2403 return getOperand(0);
2404 }
2405 static unsigned getAggregateOperandIndex() {
2406 return 0U; // get index for modifying correct operand
2407 }
2408
2409 ArrayRef<unsigned> getIndices() const {
2410 return Indices;
2411 }
2412
2413 unsigned getNumIndices() const {
2414 return (unsigned)Indices.size();
2415 }
2416
2417 bool hasIndices() const {
2418 return true;
2419 }
2420
2421 // Methods for support type inquiry through isa, cast, and dyn_cast:
2422 static bool classof(const Instruction *I) {
2423 return I->getOpcode() == Instruction::ExtractValue;
2424 }
2425 static bool classof(const Value *V) {
2426 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2427 }
2428};
2429
2430ExtractValueInst::ExtractValueInst(Value *Agg,
2431 ArrayRef<unsigned> Idxs,
2432 const Twine &NameStr,
2433 Instruction *InsertBefore)
2434 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2435 ExtractValue, Agg, InsertBefore) {
2436 init(Idxs, NameStr);
2437}
2438
2439ExtractValueInst::ExtractValueInst(Value *Agg,
2440 ArrayRef<unsigned> Idxs,
2441 const Twine &NameStr,
2442 BasicBlock *InsertAtEnd)
2443 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2444 ExtractValue, Agg, InsertAtEnd) {
2445 init(Idxs, NameStr);
2446}
2447
2448//===----------------------------------------------------------------------===//
2449// InsertValueInst Class
2450//===----------------------------------------------------------------------===//
2451
2452/// This instruction inserts a struct field of array element
2453/// value into an aggregate value.
2454///
2455class InsertValueInst : public Instruction {
2456 SmallVector<unsigned, 4> Indices;
2457
2458 InsertValueInst(const InsertValueInst &IVI);
2459
2460 /// Constructors - Create a insertvalue instruction with a base aggregate
2461 /// value, a value to insert, and a list of indices. The first ctor can
2462 /// optionally insert before an existing instruction, the second appends
2463 /// the new instruction to the specified BasicBlock.
2464 inline InsertValueInst(Value *Agg, Value *Val,
2465 ArrayRef<unsigned> Idxs,
2466 const Twine &NameStr,
2467 Instruction *InsertBefore);
2468 inline InsertValueInst(Value *Agg, Value *Val,
2469 ArrayRef<unsigned> Idxs,
2470 const Twine &NameStr, BasicBlock *InsertAtEnd);
2471
2472 /// Constructors - These two constructors are convenience methods because one
2473 /// and two index insertvalue instructions are so common.
2474 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2475 const Twine &NameStr = "",
2476 Instruction *InsertBefore = nullptr);
2477 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2478 BasicBlock *InsertAtEnd);
2479
2480 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2481 const Twine &NameStr);
2482
2483protected:
2484 // Note: Instruction needs to be a friend here to call cloneImpl.
2485 friend class Instruction;
2486
2487 InsertValueInst *cloneImpl() const;
2488
2489public:
2490 // allocate space for exactly two operands
2491 void *operator new(size_t S) { return User::operator new(S, 2); }
2492 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2493
2494 static InsertValueInst *Create(Value *Agg, Value *Val,
2495 ArrayRef<unsigned> Idxs,
2496 const Twine &NameStr = "",
2497 Instruction *InsertBefore = nullptr) {
2498 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2499 }
2500
2501 static InsertValueInst *Create(Value *Agg, Value *Val,
2502 ArrayRef<unsigned> Idxs,
2503 const Twine &NameStr,
2504 BasicBlock *InsertAtEnd) {
2505 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2506 }
2507
2508 /// Transparently provide more efficient getOperand methods.
2509 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2510
2511 using idx_iterator = const unsigned*;
2512
2513 inline idx_iterator idx_begin() const { return Indices.begin(); }
2514 inline idx_iterator idx_end() const { return Indices.end(); }
2515 inline iterator_range<idx_iterator> indices() const {
2516 return make_range(idx_begin(), idx_end());
2517 }
2518
2519 Value *getAggregateOperand() {
2520 return getOperand(0);
2521 }
2522 const Value *getAggregateOperand() const {
2523 return getOperand(0);
2524 }
2525 static unsigned getAggregateOperandIndex() {
2526 return 0U; // get index for modifying correct operand
2527 }
2528
2529 Value *getInsertedValueOperand() {
2530 return getOperand(1);
2531 }
2532 const Value *getInsertedValueOperand() const {
2533 return getOperand(1);
2534 }
2535 static unsigned getInsertedValueOperandIndex() {
2536 return 1U; // get index for modifying correct operand
2537 }
2538
2539 ArrayRef<unsigned> getIndices() const {
2540 return Indices;
2541 }
2542
2543 unsigned getNumIndices() const {
2544 return (unsigned)Indices.size();
2545 }
2546
2547 bool hasIndices() const {
2548 return true;
2549 }
2550
2551 // Methods for support type inquiry through isa, cast, and dyn_cast:
2552 static bool classof(const Instruction *I) {
2553 return I->getOpcode() == Instruction::InsertValue;
2554 }
2555 static bool classof(const Value *V) {
2556 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2557 }
2558};
2559
2560template <>
2561struct OperandTraits<InsertValueInst> :
2562 public FixedNumOperandTraits<InsertValueInst, 2> {
2563};
2564
2565InsertValueInst::InsertValueInst(Value *Agg,
2566 Value *Val,
2567 ArrayRef<unsigned> Idxs,
2568 const Twine &NameStr,
2569 Instruction *InsertBefore)
2570 : Instruction(Agg->getType(), InsertValue,
2571 OperandTraits<InsertValueInst>::op_begin(this),
2572 2, InsertBefore) {
2573 init(Agg, Val, Idxs, NameStr);
2574}
2575
2576InsertValueInst::InsertValueInst(Value *Agg,
2577 Value *Val,
2578 ArrayRef<unsigned> Idxs,
2579 const Twine &NameStr,
2580 BasicBlock *InsertAtEnd)
2581 : Instruction(Agg->getType(), InsertValue,
2582 OperandTraits<InsertValueInst>::op_begin(this),
2583 2, InsertAtEnd) {
2584 init(Agg, Val, Idxs, NameStr);
2585}
2586
2587DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<InsertValueInst>::op_begin
(const_cast<InsertValueInst*>(this))[i_nocapture].get()
); } void InsertValueInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<InsertValueInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertValueInst::getNumOperands() const { return OperandTraits
<InsertValueInst>::operands(this); } template <int Idx_nocapture
> Use &InsertValueInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &InsertValueInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2588
2589//===----------------------------------------------------------------------===//
2590// PHINode Class
2591//===----------------------------------------------------------------------===//
2592
2593// PHINode - The PHINode class is used to represent the magical mystical PHI
2594// node, that can not exist in nature, but can be synthesized in a computer
2595// scientist's overactive imagination.
2596//
2597class PHINode : public Instruction {
2598 /// The number of operands actually allocated. NumOperands is
2599 /// the number actually in use.
2600 unsigned ReservedSpace;
2601
2602 PHINode(const PHINode &PN);
2603
2604 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2605 const Twine &NameStr = "",
2606 Instruction *InsertBefore = nullptr)
2607 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2608 ReservedSpace(NumReservedValues) {
2609 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0);
2610 setName(NameStr);
2611 allocHungoffUses(ReservedSpace);
2612 }
2613
2614 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2615 BasicBlock *InsertAtEnd)
2616 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2617 ReservedSpace(NumReservedValues) {
2618 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0);
2619 setName(NameStr);
2620 allocHungoffUses(ReservedSpace);
2621 }
2622
2623protected:
2624 // Note: Instruction needs to be a friend here to call cloneImpl.
2625 friend class Instruction;
2626
2627 PHINode *cloneImpl() const;
2628
2629 // allocHungoffUses - this is more complicated than the generic
2630 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2631 // values and pointers to the incoming blocks, all in one allocation.
2632 void allocHungoffUses(unsigned N) {
2633 User::allocHungoffUses(N, /* IsPhi */ true);
2634 }
2635
2636public:
2637 /// Constructors - NumReservedValues is a hint for the number of incoming
2638 /// edges that this phi node will have (use 0 if you really have no idea).
2639 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2640 const Twine &NameStr = "",
2641 Instruction *InsertBefore = nullptr) {
2642 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2643 }
2644
2645 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2646 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2647 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2648 }
2649
2650 /// Provide fast operand accessors
2651 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2652
2653 // Block iterator interface. This provides access to the list of incoming
2654 // basic blocks, which parallels the list of incoming values.
2655
2656 using block_iterator = BasicBlock **;
2657 using const_block_iterator = BasicBlock * const *;
2658
2659 block_iterator block_begin() {
2660 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2661 }
2662
2663 const_block_iterator block_begin() const {
2664 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2665 }
2666
2667 block_iterator block_end() {
2668 return block_begin() + getNumOperands();
2669 }
2670
2671 const_block_iterator block_end() const {
2672 return block_begin() + getNumOperands();
2673 }
2674
2675 iterator_range<block_iterator> blocks() {
2676 return make_range(block_begin(), block_end());
2677 }
2678
2679 iterator_range<const_block_iterator> blocks() const {
2680 return make_range(block_begin(), block_end());
2681 }
2682
2683 op_range incoming_values() { return operands(); }
2684
2685 const_op_range incoming_values() const { return operands(); }
2686
2687 /// Return the number of incoming edges
2688 ///
2689 unsigned getNumIncomingValues() const { return getNumOperands(); }
2690
2691 /// Return incoming value number x
2692 ///
2693 Value *getIncomingValue(unsigned i) const {
2694 return getOperand(i);
2695 }
2696 void setIncomingValue(unsigned i, Value *V) {
2697 assert(V && "PHI node got a null value!")((void)0);
2698 assert(getType() == V->getType() &&((void)0)
2699 "All operands to PHI node must be the same type as the PHI node!")((void)0);
2700 setOperand(i, V);
2701 }
2702
2703 static unsigned getOperandNumForIncomingValue(unsigned i) {
2704 return i;
2705 }
2706
2707 static unsigned getIncomingValueNumForOperand(unsigned i) {
2708 return i;
2709 }
2710
2711 /// Return incoming basic block number @p i.
2712 ///
2713 BasicBlock *getIncomingBlock(unsigned i) const {
2714 return block_begin()[i];
2715 }
2716
2717 /// Return incoming basic block corresponding
2718 /// to an operand of the PHI.
2719 ///
2720 BasicBlock *getIncomingBlock(const Use &U) const {
2721 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((void)0);
2722 return getIncomingBlock(unsigned(&U - op_begin()));
2723 }
2724
2725 /// Return incoming basic block corresponding
2726 /// to value use iterator.
2727 ///
2728 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2729 return getIncomingBlock(I.getUse());
2730 }
2731
2732 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2733 assert(BB && "PHI node got a null basic block!")((void)0);
2734 block_begin()[i] = BB;
2735 }
2736
2737 /// Replace every incoming basic block \p Old to basic block \p New.
2738 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2739 assert(New && Old && "PHI node got a null basic block!")((void)0);
2740 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2741 if (getIncomingBlock(Op) == Old)
2742 setIncomingBlock(Op, New);
2743 }
2744
2745 /// Add an incoming value to the end of the PHI list
2746 ///
2747 void addIncoming(Value *V, BasicBlock *BB) {
2748 if (getNumOperands() == ReservedSpace)
2749 growOperands(); // Get more space!
2750 // Initialize some new operands.
2751 setNumHungOffUseOperands(getNumOperands() + 1);
2752 setIncomingValue(getNumOperands() - 1, V);
2753 setIncomingBlock(getNumOperands() - 1, BB);
2754 }
2755
2756 /// Remove an incoming value. This is useful if a
2757 /// predecessor basic block is deleted. The value removed is returned.
2758 ///
2759 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2760 /// is true), the PHI node is destroyed and any uses of it are replaced with
2761 /// dummy values. The only time there should be zero incoming values to a PHI
2762 /// node is when the block is dead, so this strategy is sound.
2763 ///
2764 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2765
2766 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2767 int Idx = getBasicBlockIndex(BB);
2768 assert(Idx >= 0 && "Invalid basic block argument to remove!")((void)0);
2769 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2770 }
2771
2772 /// Return the first index of the specified basic
2773 /// block in the value list for this PHI. Returns -1 if no instance.
2774 ///
2775 int getBasicBlockIndex(const BasicBlock *BB) const {
2776 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2777 if (block_begin()[i] == BB)
2778 return i;
2779 return -1;
2780 }
2781
2782 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2783 int Idx = getBasicBlockIndex(BB);
2784 assert(Idx >= 0 && "Invalid basic block argument!")((void)0);
2785 return getIncomingValue(Idx);
2786 }
2787
2788 /// Set every incoming value(s) for block \p BB to \p V.
2789 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2790 assert(BB && "PHI node got a null basic block!")((void)0);
2791 bool Found = false;
2792 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2793 if (getIncomingBlock(Op) == BB) {
2794 Found = true;
2795 setIncomingValue(Op, V);
2796 }
2797 (void)Found;
2798 assert(Found && "Invalid basic block argument to set!")((void)0);
2799 }
2800
2801 /// If the specified PHI node always merges together the
2802 /// same value, return the value, otherwise return null.
2803 Value *hasConstantValue() const;
2804
2805 /// Whether the specified PHI node always merges
2806 /// together the same value, assuming undefs are equal to a unique
2807 /// non-undef value.
2808 bool hasConstantOrUndefValue() const;
2809
2810 /// If the PHI node is complete which means all of its parent's predecessors
2811 /// have incoming value in this PHI, return true, otherwise return false.
2812 bool isComplete() const {
2813 return llvm::all_of(predecessors(getParent()),
2814 [this](const BasicBlock *Pred) {
2815 return getBasicBlockIndex(Pred) >= 0;
2816 });
2817 }
2818
2819 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2820 static bool classof(const Instruction *I) {
2821 return I->getOpcode() == Instruction::PHI;
2822 }
2823 static bool classof(const Value *V) {
2824 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2825 }
2826
2827private:
2828 void growOperands();
2829};
2830
2831template <>
2832struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2833};
2834
2835DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { ((void)0); return cast_or_null<Value>( OperandTraits
<PHINode>::op_begin(const_cast<PHINode*>(this))[i_nocapture
].get()); } void PHINode::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<PHINode>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned PHINode::getNumOperands
() const { return OperandTraits<PHINode>::operands(this
); } template <int Idx_nocapture> Use &PHINode::Op(
) { return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &PHINode::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
2836
2837//===----------------------------------------------------------------------===//
2838// LandingPadInst Class
2839//===----------------------------------------------------------------------===//
2840
2841//===---------------------------------------------------------------------------
2842/// The landingpad instruction holds all of the information
2843/// necessary to generate correct exception handling. The landingpad instruction
2844/// cannot be moved from the top of a landing pad block, which itself is
2845/// accessible only from the 'unwind' edge of an invoke. This uses the
2846/// SubclassData field in Value to store whether or not the landingpad is a
2847/// cleanup.
2848///
2849class LandingPadInst : public Instruction {
2850 using CleanupField = BoolBitfieldElementT<0>;
2851
2852 /// The number of operands actually allocated. NumOperands is
2853 /// the number actually in use.
2854 unsigned ReservedSpace;
2855
2856 LandingPadInst(const LandingPadInst &LP);
2857
2858public:
2859 enum ClauseType { Catch, Filter };
2860
2861private:
2862 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2863 const Twine &NameStr, Instruction *InsertBefore);
2864 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2865 const Twine &NameStr, BasicBlock *InsertAtEnd);
2866
2867 // Allocate space for exactly zero operands.
2868 void *operator new(size_t S) { return User::operator new(S); }
2869
2870 void growOperands(unsigned Size);
2871 void init(unsigned NumReservedValues, const Twine &NameStr);
2872
2873protected:
2874 // Note: Instruction needs to be a friend here to call cloneImpl.
2875 friend class Instruction;
2876
2877 LandingPadInst *cloneImpl() const;
2878
2879public:
2880 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2881
2882 /// Constructors - NumReservedClauses is a hint for the number of incoming
2883 /// clauses that this landingpad will have (use 0 if you really have no idea).
2884 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2885 const Twine &NameStr = "",
2886 Instruction *InsertBefore = nullptr);
2887 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2888 const Twine &NameStr, BasicBlock *InsertAtEnd);
2889
2890 /// Provide fast operand accessors
2891 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2892
2893 /// Return 'true' if this landingpad instruction is a
2894 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2895 /// doesn't catch the exception.
2896 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2897
2898 /// Indicate that this landingpad instruction is a cleanup.
2899 void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2900
2901 /// Add a catch or filter clause to the landing pad.
2902 void addClause(Constant *ClauseVal);
2903
2904 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2905 /// determine what type of clause this is.
2906 Constant *getClause(unsigned Idx) const {
2907 return cast<Constant>(getOperandList()[Idx]);
2908 }
2909
2910 /// Return 'true' if the clause and index Idx is a catch clause.
2911 bool isCatch(unsigned Idx) const {
2912 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2913 }
2914
2915 /// Return 'true' if the clause and index Idx is a filter clause.
2916 bool isFilter(unsigned Idx) const {
2917 return isa<ArrayType>(getOperandList()[Idx]->getType());
2918 }
2919
2920 /// Get the number of clauses for this landing pad.
2921 unsigned getNumClauses() const { return getNumOperands(); }
2922
2923 /// Grow the size of the operand list to accommodate the new
2924 /// number of clauses.
2925 void reserveClauses(unsigned Size) { growOperands(Size); }
2926
2927 // Methods for support type inquiry through isa, cast, and dyn_cast:
2928 static bool classof(const Instruction *I) {
2929 return I->getOpcode() == Instruction::LandingPad;
2930 }
2931 static bool classof(const Value *V) {
2932 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2933 }
2934};
2935
2936template <>
2937struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2938};
2939
2940DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<LandingPadInst>::op_begin(
const_cast<LandingPadInst*>(this))[i_nocapture].get());
} void LandingPadInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<LandingPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2941
2942//===----------------------------------------------------------------------===//
2943// ReturnInst Class
2944//===----------------------------------------------------------------------===//
2945
2946//===---------------------------------------------------------------------------
2947/// Return a value (possibly void), from a function. Execution
2948/// does not continue in this function any longer.
2949///
2950class ReturnInst : public Instruction {
2951 ReturnInst(const ReturnInst &RI);
2952
2953private:
2954 // ReturnInst constructors:
2955 // ReturnInst() - 'ret void' instruction
2956 // ReturnInst( null) - 'ret void' instruction
2957 // ReturnInst(Value* X) - 'ret X' instruction
2958 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2959 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2960 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2961 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2962 //
2963 // NOTE: If the Value* passed is of type void then the constructor behaves as
2964 // if it was passed NULL.
2965 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2966 Instruction *InsertBefore = nullptr);
2967 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2968 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2969
2970protected:
2971 // Note: Instruction needs to be a friend here to call cloneImpl.
2972 friend class Instruction;
2973
2974 ReturnInst *cloneImpl() const;
2975
2976public:
2977 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2978 Instruction *InsertBefore = nullptr) {
2979 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2980 }
2981
2982 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2983 BasicBlock *InsertAtEnd) {
2984 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2985 }
2986
2987 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2988 return new(0) ReturnInst(C, InsertAtEnd);
2989 }
2990
2991 /// Provide fast operand accessors
2992 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2993
2994 /// Convenience accessor. Returns null if there is no return value.
2995 Value *getReturnValue() const {
2996 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2997 }
2998
2999 unsigned getNumSuccessors() const { return 0; }
3000
3001 // Methods for support type inquiry through isa, cast, and dyn_cast:
3002 static bool classof(const Instruction *I) {
3003 return (I->getOpcode() == Instruction::Ret);
3004 }
3005 static bool classof(const Value *V) {
3006 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3007 }
3008
3009private:
3010 BasicBlock *getSuccessor(unsigned idx) const {
3011 llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable();
3012 }
3013
3014 void setSuccessor(unsigned idx, BasicBlock *B) {
3015 llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable();
3016 }
3017};
3018
3019template <>
3020struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
3021};
3022
3023DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<ReturnInst>::op_begin(const_cast
<ReturnInst*>(this))[i_nocapture].get()); } void ReturnInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<ReturnInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ReturnInst::getNumOperands() const
{ return OperandTraits<ReturnInst>::operands(this); } template
<int Idx_nocapture> Use &ReturnInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ReturnInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3024
3025//===----------------------------------------------------------------------===//
3026// BranchInst Class
3027//===----------------------------------------------------------------------===//
3028
3029//===---------------------------------------------------------------------------
3030/// Conditional or Unconditional Branch instruction.
3031///
3032class BranchInst : public Instruction {
3033 /// Ops list - Branches are strange. The operands are ordered:
3034 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3035 /// they don't have to check for cond/uncond branchness. These are mostly
3036 /// accessed relative from op_end().
3037 BranchInst(const BranchInst &BI);
3038 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3039 // BranchInst(BB *B) - 'br B'
3040 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3041 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3042 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3043 // BranchInst(BB* B, BB *I) - 'br B' insert at end
3044 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3045 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3046 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3047 Instruction *InsertBefore = nullptr);
3048 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3049 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3050 BasicBlock *InsertAtEnd);
3051
3052 void AssertOK();
3053
3054protected:
3055 // Note: Instruction needs to be a friend here to call cloneImpl.
3056 friend class Instruction;
3057
3058 BranchInst *cloneImpl() const;
3059
3060public:
3061 /// Iterator type that casts an operand to a basic block.
3062 ///
3063 /// This only makes sense because the successors are stored as adjacent
3064 /// operands for branch instructions.
3065 struct succ_op_iterator
3066 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3067 std::random_access_iterator_tag, BasicBlock *,
3068 ptrdiff_t, BasicBlock *, BasicBlock *> {
3069 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3070
3071 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3072 BasicBlock *operator->() const { return operator*(); }
3073 };
3074
3075 /// The const version of `succ_op_iterator`.
3076 struct const_succ_op_iterator
3077 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3078 std::random_access_iterator_tag,
3079 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3080 const BasicBlock *> {
3081 explicit const_succ_op_iterator(const_value_op_iterator I)
3082 : iterator_adaptor_base(I) {}
3083
3084 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3085 const BasicBlock *operator->() const { return operator*(); }
3086 };
3087
3088 static BranchInst *Create(BasicBlock *IfTrue,
3089 Instruction *InsertBefore = nullptr) {
3090 return new(1) BranchInst(IfTrue, InsertBefore);
3091 }
3092
3093 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3094 Value *Cond, Instruction *InsertBefore = nullptr) {
3095 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3096 }
3097
3098 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3099 return new(1) BranchInst(IfTrue, InsertAtEnd);
3100 }
3101
3102 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3103 Value *Cond, BasicBlock *InsertAtEnd) {
3104 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3105 }
3106
3107 /// Transparently provide more efficient getOperand methods.
3108 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3109
3110 bool isUnconditional() const { return getNumOperands() == 1; }
3111 bool isConditional() const { return getNumOperands() == 3; }
3112
3113 Value *getCondition() const {
3114 assert(isConditional() && "Cannot get condition of an uncond branch!")((void)0);
3115 return Op<-3>();
3116 }
3117
3118 void setCondition(Value *V) {
3119 assert(isConditional() && "Cannot set condition of unconditional branch!")((void)0);
3120 Op<-3>() = V;
3121 }
3122
3123 unsigned getNumSuccessors() const { return 1+isConditional(); }
3124
3125 BasicBlock *getSuccessor(unsigned i) const {
3126 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((void)0);
3127 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3128 }
3129
3130 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3131 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((void)0);
3132 *(&Op<-1>() - idx) = NewSucc;
3133 }
3134
3135 /// Swap the successors of this branch instruction.
3136 ///
3137 /// Swaps the successors of the branch instruction. This also swaps any
3138 /// branch weight metadata associated with the instruction so that it
3139 /// continues to map correctly to each operand.
3140 void swapSuccessors();
3141
3142 iterator_range<succ_op_iterator> successors() {
3143 return make_range(
3144 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3145 succ_op_iterator(value_op_end()));
3146 }
3147
3148 iterator_range<const_succ_op_iterator> successors() const {
3149 return make_range(const_succ_op_iterator(
3150 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3151 const_succ_op_iterator(value_op_end()));
3152 }
3153
3154 // Methods for support type inquiry through isa, cast, and dyn_cast:
3155 static bool classof(const Instruction *I) {
3156 return (I->getOpcode() == Instruction::Br);
3157 }
3158 static bool classof(const Value *V) {
3159 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3160 }
3161};
3162
3163template <>
3164struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3165};
3166
3167DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<BranchInst>::op_begin(const_cast
<BranchInst*>(this))[i_nocapture].get()); } void BranchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<BranchInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned BranchInst::getNumOperands() const
{ return OperandTraits<BranchInst>::operands(this); } template
<int Idx_nocapture> Use &BranchInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &BranchInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3168
3169//===----------------------------------------------------------------------===//
3170// SwitchInst Class
3171//===----------------------------------------------------------------------===//
3172
3173//===---------------------------------------------------------------------------
3174/// Multiway switch
3175///
3176class SwitchInst : public Instruction {
3177 unsigned ReservedSpace;
3178
3179 // Operand[0] = Value to switch on
3180 // Operand[1] = Default basic block destination
3181 // Operand[2n ] = Value to match
3182 // Operand[2n+1] = BasicBlock to go to on match
3183 SwitchInst(const SwitchInst &SI);
3184
3185 /// Create a new switch instruction, specifying a value to switch on and a
3186 /// default destination. The number of additional cases can be specified here
3187 /// to make memory allocation more efficient. This constructor can also
3188 /// auto-insert before another instruction.
3189 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3190 Instruction *InsertBefore);
3191
3192 /// Create a new switch instruction, specifying a value to switch on and a
3193 /// default destination. The number of additional cases can be specified here
3194 /// to make memory allocation more efficient. This constructor also
3195 /// auto-inserts at the end of the specified BasicBlock.
3196 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3197 BasicBlock *InsertAtEnd);
3198
3199 // allocate space for exactly zero operands
3200 void *operator new(size_t S) { return User::operator new(S); }
3201
3202 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3203 void growOperands();
3204
3205protected:
3206 // Note: Instruction needs to be a friend here to call cloneImpl.
3207 friend class Instruction;
3208
3209 SwitchInst *cloneImpl() const;
3210
3211public:
3212 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3213
3214 // -2
3215 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3216
3217 template <typename CaseHandleT> class CaseIteratorImpl;
3218
3219 /// A handle to a particular switch case. It exposes a convenient interface
3220 /// to both the case value and the successor block.
3221 ///
3222 /// We define this as a template and instantiate it to form both a const and
3223 /// non-const handle.
3224 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3225 class CaseHandleImpl {
3226 // Directly befriend both const and non-const iterators.
3227 friend class SwitchInst::CaseIteratorImpl<
3228 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3229
3230 protected:
3231 // Expose the switch type we're parameterized with to the iterator.
3232 using SwitchInstType = SwitchInstT;
3233
3234 SwitchInstT *SI;
3235 ptrdiff_t Index;
3236
3237 CaseHandleImpl() = default;
3238 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3239
3240 public:
3241 /// Resolves case value for current case.
3242 ConstantIntT *getCaseValue() const {
3243 assert((unsigned)Index < SI->getNumCases() &&((void)0)
3244 "Index out the number of cases.")((void)0);
3245 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3246 }
3247
3248 /// Resolves successor for current case.
3249 BasicBlockT *getCaseSuccessor() const {
3250 assert(((unsigned)Index < SI->getNumCases() ||((void)0)
3251 (unsigned)Index == DefaultPseudoIndex) &&((void)0)
3252 "Index out the number of cases.")((void)0);
3253 return SI->getSuccessor(getSuccessorIndex());
3254 }
3255
3256 /// Returns number of current case.
3257 unsigned getCaseIndex() const { return Index; }
3258
3259 /// Returns successor index for current case successor.
3260 unsigned getSuccessorIndex() const {
3261 assert(((unsigned)Index == DefaultPseudoIndex ||((void)0)
3262 (unsigned)Index < SI->getNumCases()) &&((void)0)
3263 "Index out the number of cases.")((void)0);
3264 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3265 }
3266
3267 bool operator==(const CaseHandleImpl &RHS) const {
3268 assert(SI == RHS.SI && "Incompatible operators.")((void)0);
3269 return Index == RHS.Index;
3270 }
3271 };
3272
3273 using ConstCaseHandle =
3274 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3275
3276 class CaseHandle
3277 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3278 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3279
3280 public:
3281 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3282
3283 /// Sets the new value for current case.
3284 void setValue(ConstantInt *V) {
3285 assert((unsigned)Index < SI->getNumCases() &&((void)0)
3286 "Index out the number of cases.")((void)0);
3287 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3288 }
3289
3290 /// Sets the new successor for current case.
3291 void setSuccessor(BasicBlock *S) {
3292 SI->setSuccessor(getSuccessorIndex(), S);
3293 }
3294 };
3295
3296 template <typename CaseHandleT>
3297 class CaseIteratorImpl
3298 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3299 std::random_access_iterator_tag,
3300 CaseHandleT> {
3301 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3302
3303 CaseHandleT Case;
3304
3305 public:
3306 /// Default constructed iterator is in an invalid state until assigned to
3307 /// a case for a particular switch.
3308 CaseIteratorImpl() = default;
3309
3310 /// Initializes case iterator for given SwitchInst and for given
3311 /// case number.
3312 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3313
3314 /// Initializes case iterator for given SwitchInst and for given
3315 /// successor index.
3316 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3317 unsigned SuccessorIndex) {
3318 assert(SuccessorIndex < SI->getNumSuccessors() &&((void)0)
3319 "Successor index # out of range!")((void)0);
3320 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3321 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3322 }
3323
3324 /// Support converting to the const variant. This will be a no-op for const
3325 /// variant.
3326 operator CaseIteratorImpl<ConstCaseHandle>() const {
3327 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3328 }
3329
3330 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3331 // Check index correctness after addition.
3332 // Note: Index == getNumCases() means end().
3333 assert(Case.Index + N >= 0 &&((void)0)
3334 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((void)0)
3335 "Case.Index out the number of cases.")((void)0);
3336 Case.Index += N;
3337 return *this;
3338 }
3339 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3340 // Check index correctness after subtraction.
3341 // Note: Case.Index == getNumCases() means end().
3342 assert(Case.Index - N >= 0 &&((void)0)
3343 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((void)0)
3344 "Case.Index out the number of cases.")((void)0);
3345 Case.Index -= N;
3346 return *this;
3347 }
3348 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3349 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0);
3350 return Case.Index - RHS.Case.Index;
3351 }
3352 bool operator==(const CaseIteratorImpl &RHS) const {
3353 return Case == RHS.Case;
3354 }
3355 bool operator<(const CaseIteratorImpl &RHS) const {
3356 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0);
3357 return Case.Index < RHS.Case.Index;
3358 }
3359 CaseHandleT &operator*() { return Case; }
3360 const CaseHandleT &operator*() const { return Case; }
3361 };
3362
3363 using CaseIt = CaseIteratorImpl<CaseHandle>;
3364 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3365
3366 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3367 unsigned NumCases,
3368 Instruction *InsertBefore = nullptr) {
3369 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3370 }
3371
3372 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3373 unsigned NumCases, BasicBlock *InsertAtEnd) {
3374 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3375 }
3376
3377 /// Provide fast operand accessors
3378 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3379
3380 // Accessor Methods for Switch stmt
3381 Value *getCondition() const { return getOperand(0); }
3382 void setCondition(Value *V) { setOperand(0, V); }
3383
3384 BasicBlock *getDefaultDest() const {
3385 return cast<BasicBlock>(getOperand(1));
3386 }
3387
3388 void setDefaultDest(BasicBlock *DefaultCase) {
3389 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3390 }
3391
3392 /// Return the number of 'cases' in this switch instruction, excluding the
3393 /// default case.
3394 unsigned getNumCases() const {
3395 return getNumOperands()/2 - 1;
3396 }
3397
3398 /// Returns a read/write iterator that points to the first case in the
3399 /// SwitchInst.
3400 CaseIt case_begin() {
3401 return CaseIt(this, 0);
3402 }
3403
3404 /// Returns a read-only iterator that points to the first case in the
3405 /// SwitchInst.
3406 ConstCaseIt case_begin() const {
3407 return ConstCaseIt(this, 0);
3408 }
3409
3410 /// Returns a read/write iterator that points one past the last in the
3411 /// SwitchInst.
3412 CaseIt case_end() {
3413 return CaseIt(this, getNumCases());
3414 }
3415
3416 /// Returns a read-only iterator that points one past the last in the
3417 /// SwitchInst.
3418 ConstCaseIt case_end() const {
3419 return ConstCaseIt(this, getNumCases());
3420 }
3421
3422 /// Iteration adapter for range-for loops.
3423 iterator_range<CaseIt> cases() {
3424 return make_range(case_begin(), case_end());
3425 }
3426
3427 /// Constant iteration adapter for range-for loops.
3428 iterator_range<ConstCaseIt> cases() const {
3429 return make_range(case_begin(), case_end());
3430 }
3431
3432 /// Returns an iterator that points to the default case.
3433 /// Note: this iterator allows to resolve successor only. Attempt
3434 /// to resolve case value causes an assertion.
3435 /// Also note, that increment and decrement also causes an assertion and
3436 /// makes iterator invalid.
3437 CaseIt case_default() {
3438 return CaseIt(this, DefaultPseudoIndex);
3439 }
3440 ConstCaseIt case_default() const {
3441 return ConstCaseIt(this, DefaultPseudoIndex);
3442 }
3443
3444 /// Search all of the case values for the specified constant. If it is
3445 /// explicitly handled, return the case iterator of it, otherwise return
3446 /// default case iterator to indicate that it is handled by the default
3447 /// handler.
3448 CaseIt findCaseValue(const ConstantInt *C) {
3449 CaseIt I = llvm::find_if(
3450 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3451 if (I != case_end())
3452 return I;
3453
3454 return case_default();
3455 }
3456 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3457 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3458 return Case.getCaseValue() == C;
3459 });
3460 if (I != case_end())
3461 return I;
3462
3463 return case_default();
3464 }
3465
3466 /// Finds the unique case value for a given successor. Returns null if the
3467 /// successor is not found, not unique, or is the default case.
3468 ConstantInt *findCaseDest(BasicBlock *BB) {
3469 if (BB == getDefaultDest())
3470 return nullptr;
3471
3472 ConstantInt *CI = nullptr;
3473 for (auto Case : cases()) {
3474 if (Case.getCaseSuccessor() != BB)
3475 continue;
3476
3477 if (CI)
3478 return nullptr; // Multiple cases lead to BB.
3479
3480 CI = Case.getCaseValue();
3481 }
3482
3483 return CI;
3484 }
3485
3486 /// Add an entry to the switch instruction.
3487 /// Note:
3488 /// This action invalidates case_end(). Old case_end() iterator will
3489 /// point to the added case.
3490 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3491
3492 /// This method removes the specified case and its successor from the switch
3493 /// instruction. Note that this operation may reorder the remaining cases at
3494 /// index idx and above.
3495 /// Note:
3496 /// This action invalidates iterators for all cases following the one removed,
3497 /// including the case_end() iterator. It returns an iterator for the next
3498 /// case.
3499 CaseIt removeCase(CaseIt I);
3500
3501 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3502 BasicBlock *getSuccessor(unsigned idx) const {
3503 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((void)0);
3504 return cast<BasicBlock>(getOperand(idx*2+1));
3505 }
3506 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3507 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((void)0);
3508 setOperand(idx * 2 + 1, NewSucc);
3509 }
3510
3511 // Methods for support type inquiry through isa, cast, and dyn_cast:
3512 static bool classof(const Instruction *I) {
3513 return I->getOpcode() == Instruction::Switch;
3514 }
3515 static bool classof(const Value *V) {
3516 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3517 }
3518};
3519
3520/// A wrapper class to simplify modification of SwitchInst cases along with
3521/// their prof branch_weights metadata.
3522class SwitchInstProfUpdateWrapper {
3523 SwitchInst &SI;
3524 Optional<SmallVector<uint32_t, 8> > Weights = None;
3525 bool Changed = false;
3526
3527protected:
3528 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3529
3530 MDNode *buildProfBranchWeightsMD();
3531
3532 void init();
3533
3534public:
3535 using CaseWeightOpt = Optional<uint32_t>;
3536 SwitchInst *operator->() { return &SI; }
3537 SwitchInst &operator*() { return SI; }
3538 operator SwitchInst *() { return &SI; }
3539
3540 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3541
3542 ~SwitchInstProfUpdateWrapper() {
3543 if (Changed)
3544 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3545 }
3546
3547 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3548 /// correspondent branch weight.
3549 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3550
3551 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3552 /// specified branch weight for the added case.
3553 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3554
3555 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3556 /// this object to not touch the underlying SwitchInst in destructor.
3557 SymbolTableList<Instruction>::iterator eraseFromParent();
3558
3559 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3560 CaseWeightOpt getSuccessorWeight(unsigned idx);
3561
3562 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3563};
3564
3565template <>
3566struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3567};
3568
3569DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<SwitchInst>::op_begin(const_cast
<SwitchInst*>(this))[i_nocapture].get()); } void SwitchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<SwitchInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned SwitchInst::getNumOperands() const
{ return OperandTraits<SwitchInst>::operands(this); } template
<int Idx_nocapture> Use &SwitchInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &SwitchInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3570
3571//===----------------------------------------------------------------------===//
3572// IndirectBrInst Class
3573//===----------------------------------------------------------------------===//
3574
3575//===---------------------------------------------------------------------------
3576/// Indirect Branch Instruction.
3577///
3578class IndirectBrInst : public Instruction {
3579 unsigned ReservedSpace;
3580
3581 // Operand[0] = Address to jump to
3582 // Operand[n+1] = n-th destination
3583 IndirectBrInst(const IndirectBrInst &IBI);
3584
3585 /// Create a new indirectbr instruction, specifying an
3586 /// Address to jump to. The number of expected destinations can be specified
3587 /// here to make memory allocation more efficient. This constructor can also
3588 /// autoinsert before another instruction.
3589 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3590
3591 /// Create a new indirectbr instruction, specifying an
3592 /// Address to jump to. The number of expected destinations can be specified
3593 /// here to make memory allocation more efficient. This constructor also
3594 /// autoinserts at the end of the specified BasicBlock.
3595 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3596
3597 // allocate space for exactly zero operands
3598 void *operator new(size_t S) { return User::operator new(S); }
3599
3600 void init(Value *Address, unsigned NumDests);
3601 void growOperands();
3602
3603protected:
3604 // Note: Instruction needs to be a friend here to call cloneImpl.
3605 friend class Instruction;
3606
3607 IndirectBrInst *cloneImpl() const;
3608
3609public:
3610 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3611
3612 /// Iterator type that casts an operand to a basic block.
3613 ///
3614 /// This only makes sense because the successors are stored as adjacent
3615 /// operands for indirectbr instructions.
3616 struct succ_op_iterator
3617 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3618 std::random_access_iterator_tag, BasicBlock *,
3619 ptrdiff_t, BasicBlock *, BasicBlock *> {
3620 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3621
3622 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3623 BasicBlock *operator->() const { return operator*(); }
3624 };
3625
3626 /// The const version of `succ_op_iterator`.
3627 struct const_succ_op_iterator
3628 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3629 std::random_access_iterator_tag,
3630 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3631 const BasicBlock *> {
3632 explicit const_succ_op_iterator(const_value_op_iterator I)
3633 : iterator_adaptor_base(I) {}
3634
3635 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3636 const BasicBlock *operator->() const { return operator*(); }
3637 };
3638
3639 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3640 Instruction *InsertBefore = nullptr) {
3641 return new IndirectBrInst(Address, NumDests, InsertBefore);
3642 }
3643
3644 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3645 BasicBlock *InsertAtEnd) {
3646 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3647 }
3648
3649 /// Provide fast operand accessors.
3650 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3651
3652 // Accessor Methods for IndirectBrInst instruction.
3653 Value *getAddress() { return getOperand(0); }
3654 const Value *getAddress() const { return getOperand(0); }
3655 void setAddress(Value *V) { setOperand(0, V); }
3656
3657 /// return the number of possible destinations in this
3658 /// indirectbr instruction.
3659 unsigned getNumDestinations() const { return getNumOperands()-1; }
3660
3661 /// Return the specified destination.
3662 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3663 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3664
3665 /// Add a destination.
3666 ///
3667 void addDestination(BasicBlock *Dest);
3668
3669 /// This method removes the specified successor from the
3670 /// indirectbr instruction.
3671 void removeDestination(unsigned i);
3672
3673 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3674 BasicBlock *getSuccessor(unsigned i) const {
3675 return cast<BasicBlock>(getOperand(i+1));
3676 }
3677 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3678 setOperand(i + 1, NewSucc);
3679 }
3680
3681 iterator_range<succ_op_iterator> successors() {
3682 return make_range(succ_op_iterator(std::next(value_op_begin())),
3683 succ_op_iterator(value_op_end()));
3684 }
3685
3686 iterator_range<const_succ_op_iterator> successors() const {
3687 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3688 const_succ_op_iterator(value_op_end()));
3689 }
3690
3691 // Methods for support type inquiry through isa, cast, and dyn_cast:
3692 static bool classof(const Instruction *I) {
3693 return I->getOpcode() == Instruction::IndirectBr;
3694 }
3695 static bool classof(const Value *V) {
3696 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3697 }
3698};
3699
3700template <>
3701struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3702};
3703
3704DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<IndirectBrInst>::op_begin(
const_cast<IndirectBrInst*>(this))[i_nocapture].get());
} void IndirectBrInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<IndirectBrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
IndirectBrInst::getNumOperands() const { return OperandTraits
<IndirectBrInst>::operands(this); } template <int Idx_nocapture
> Use &IndirectBrInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &IndirectBrInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
3705
3706//===----------------------------------------------------------------------===//
3707// InvokeInst Class
3708//===----------------------------------------------------------------------===//
3709
3710/// Invoke instruction. The SubclassData field is used to hold the
3711/// calling convention of the call.
3712///
3713class InvokeInst : public CallBase {
3714 /// The number of operands for this call beyond the called function,
3715 /// arguments, and operand bundles.
3716 static constexpr int NumExtraOperands = 2;
3717
3718 /// The index from the end of the operand array to the normal destination.
3719 static constexpr int NormalDestOpEndIdx = -3;
3720
3721 /// The index from the end of the operand array to the unwind destination.
3722 static constexpr int UnwindDestOpEndIdx = -2;
3723
3724 InvokeInst(const InvokeInst &BI);
3725
3726 /// Construct an InvokeInst given a range of arguments.
3727 ///
3728 /// Construct an InvokeInst from a range of arguments
3729 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3730 BasicBlock *IfException, ArrayRef<Value *> Args,
3731 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3732 const Twine &NameStr, Instruction *InsertBefore);
3733
3734 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3735 BasicBlock *IfException, ArrayRef<Value *> Args,
3736 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3737 const Twine &NameStr, BasicBlock *InsertAtEnd);
3738
3739 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3740 BasicBlock *IfException, ArrayRef<Value *> Args,
3741 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3742
3743 /// Compute the number of operands to allocate.
3744 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3745 // We need one operand for the called function, plus our extra operands and
3746 // the input operand counts provided.
3747 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3748 }
3749
3750protected:
3751 // Note: Instruction needs to be a friend here to call cloneImpl.
3752 friend class Instruction;
3753
3754 InvokeInst *cloneImpl() const;
3755
3756public:
3757 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3758 BasicBlock *IfException, ArrayRef<Value *> Args,
3759 const Twine &NameStr,
3760 Instruction *InsertBefore = nullptr) {
3761 int NumOperands = ComputeNumOperands(Args.size());
3762 return new (NumOperands)
3763 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3764 NameStr, InsertBefore);
3765 }
3766
3767 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3768 BasicBlock *IfException, ArrayRef<Value *> Args,
3769 ArrayRef<OperandBundleDef> Bundles = None,
3770 const Twine &NameStr = "",
3771 Instruction *InsertBefore = nullptr) {
3772 int NumOperands =
3773 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3774 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3775
3776 return new (NumOperands, DescriptorBytes)
3777 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3778 NameStr, InsertBefore);
3779 }
3780
3781 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3782 BasicBlock *IfException, ArrayRef<Value *> Args,
3783 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3784 int NumOperands = ComputeNumOperands(Args.size());
3785 return new (NumOperands)
3786 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3787 NameStr, InsertAtEnd);
3788 }
3789
3790 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3791 BasicBlock *IfException, ArrayRef<Value *> Args,
3792 ArrayRef<OperandBundleDef> Bundles,
3793 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3794 int NumOperands =
3795 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3796 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3797
3798 return new (NumOperands, DescriptorBytes)
3799 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3800 NameStr, InsertAtEnd);
3801 }
3802
3803 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3804 BasicBlock *IfException, ArrayRef<Value *> Args,
3805 const Twine &NameStr,
3806 Instruction *InsertBefore = nullptr) {
3807 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3808 IfException, Args, None, NameStr, InsertBefore);
3809 }
3810
3811 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3812 BasicBlock *IfException, ArrayRef<Value *> Args,
3813 ArrayRef<OperandBundleDef> Bundles = None,
3814 const Twine &NameStr = "",
3815 Instruction *InsertBefore = nullptr) {
3816 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3817 IfException, Args, Bundles, NameStr, InsertBefore);
3818 }
3819
3820 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3821 BasicBlock *IfException, ArrayRef<Value *> Args,
3822 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3823 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3824 IfException, Args, NameStr, InsertAtEnd);
3825 }
3826
3827 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3828 BasicBlock *IfException, ArrayRef<Value *> Args,
3829 ArrayRef<OperandBundleDef> Bundles,
3830 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3831 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3832 IfException, Args, Bundles, NameStr, InsertAtEnd);
3833 }
3834
3835 /// Create a clone of \p II with a different set of operand bundles and
3836 /// insert it before \p InsertPt.
3837 ///
3838 /// The returned invoke instruction is identical to \p II in every way except
3839 /// that the operand bundles for the new instruction are set to the operand
3840 /// bundles in \p Bundles.
3841 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3842 Instruction *InsertPt = nullptr);
3843
3844 // get*Dest - Return the destination basic blocks...
3845 BasicBlock *getNormalDest() const {
3846 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3847 }
3848 BasicBlock *getUnwindDest() const {
3849 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3850 }
3851 void setNormalDest(BasicBlock *B) {
3852 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3853 }
3854 void setUnwindDest(BasicBlock *B) {
3855 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3856 }
3857
3858 /// Get the landingpad instruction from the landing pad
3859 /// block (the unwind destination).
3860 LandingPadInst *getLandingPadInst() const;
3861
3862 BasicBlock *getSuccessor(unsigned i) const {
3863 assert(i < 2 && "Successor # out of range for invoke!")((void)0);
3864 return i == 0 ? getNormalDest() : getUnwindDest();
3865 }
3866
3867 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3868 assert(i < 2 && "Successor # out of range for invoke!")((void)0);
3869 if (i == 0)
3870 setNormalDest(NewSucc);
3871 else
3872 setUnwindDest(NewSucc);
3873 }
3874
3875 unsigned getNumSuccessors() const { return 2; }
3876
3877 // Methods for support type inquiry through isa, cast, and dyn_cast:
3878 static bool classof(const Instruction *I) {
3879 return (I->getOpcode() == Instruction::Invoke);
3880 }
3881 static bool classof(const Value *V) {
3882 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3883 }
3884
3885private:
3886 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3887 // method so that subclasses cannot accidentally use it.
3888 template <typename Bitfield>
3889 void setSubclassData(typename Bitfield::Type Value) {
3890 Instruction::setSubclassData<Bitfield>(Value);
3891 }
3892};
3893
3894InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3895 BasicBlock *IfException, ArrayRef<Value *> Args,
3896 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3897 const Twine &NameStr, Instruction *InsertBefore)
3898 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3899 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3900 InsertBefore) {
3901 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3902}
3903
3904InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3905 BasicBlock *IfException, ArrayRef<Value *> Args,
3906 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3907 const Twine &NameStr, BasicBlock *InsertAtEnd)
3908 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3909 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3910 InsertAtEnd) {
3911 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3912}
3913
3914//===----------------------------------------------------------------------===//
3915// CallBrInst Class
3916//===----------------------------------------------------------------------===//
3917
3918/// CallBr instruction, tracking function calls that may not return control but
3919/// instead transfer it to a third location. The SubclassData field is used to
3920/// hold the calling convention of the call.
3921///
3922class CallBrInst : public CallBase {
3923
3924 unsigned NumIndirectDests;
3925
3926 CallBrInst(const CallBrInst &BI);
3927
3928 /// Construct a CallBrInst given a range of arguments.
3929 ///
3930 /// Construct a CallBrInst from a range of arguments
3931 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3932 ArrayRef<BasicBlock *> IndirectDests,
3933 ArrayRef<Value *> Args,
3934 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3935 const Twine &NameStr, Instruction *InsertBefore);
3936
3937 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3938 ArrayRef<BasicBlock *> IndirectDests,
3939 ArrayRef<Value *> Args,
3940 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3941 const Twine &NameStr, BasicBlock *InsertAtEnd);
3942
3943 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3944 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3945 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3946
3947 /// Should the Indirect Destinations change, scan + update the Arg list.
3948 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3949
3950 /// Compute the number of operands to allocate.
3951 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3952 int NumBundleInputs = 0) {
3953 // We need one operand for the called function, plus our extra operands and
3954 // the input operand counts provided.
3955 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3956 }
3957
3958protected:
3959 // Note: Instruction needs to be a friend here to call cloneImpl.
3960 friend class Instruction;
3961
3962 CallBrInst *cloneImpl() const;
3963
3964public:
3965 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3966 BasicBlock *DefaultDest,
3967 ArrayRef<BasicBlock *> IndirectDests,
3968 ArrayRef<Value *> Args, const Twine &NameStr,
3969 Instruction *InsertBefore = nullptr) {
3970 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3971 return new (NumOperands)
3972 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3973 NumOperands, NameStr, InsertBefore);
3974 }
3975
3976 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3977 BasicBlock *DefaultDest,
3978 ArrayRef<BasicBlock *> IndirectDests,
3979 ArrayRef<Value *> Args,
3980 ArrayRef<OperandBundleDef> Bundles = None,
3981 const Twine &NameStr = "",
3982 Instruction *InsertBefore = nullptr) {
3983 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3984 CountBundleInputs(Bundles));
3985 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3986
3987 return new (NumOperands, DescriptorBytes)
3988 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3989 NumOperands, NameStr, InsertBefore);
3990 }
3991
3992 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3993 BasicBlock *DefaultDest,
3994 ArrayRef<BasicBlock *> IndirectDests,
3995 ArrayRef<Value *> Args, const Twine &NameStr,
3996 BasicBlock *InsertAtEnd) {
3997 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3998 return new (NumOperands)
3999 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4000 NumOperands, NameStr, InsertAtEnd);
4001 }
4002
4003 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4004 BasicBlock *DefaultDest,
4005 ArrayRef<BasicBlock *> IndirectDests,
4006 ArrayRef<Value *> Args,
4007 ArrayRef<OperandBundleDef> Bundles,
4008 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4009 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4010 CountBundleInputs(Bundles));
4011 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4012
4013 return new (NumOperands, DescriptorBytes)
4014 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4015 NumOperands, NameStr, InsertAtEnd);
4016 }
4017
4018 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4019 ArrayRef<BasicBlock *> IndirectDests,
4020 ArrayRef<Value *> Args, const Twine &NameStr,
4021 Instruction *InsertBefore = nullptr) {
4022 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4023 IndirectDests, Args, NameStr, InsertBefore);
4024 }
4025
4026 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4027 ArrayRef<BasicBlock *> IndirectDests,
4028 ArrayRef<Value *> Args,
4029 ArrayRef<OperandBundleDef> Bundles = None,
4030 const Twine &NameStr = "",
4031 Instruction *InsertBefore = nullptr) {
4032 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4033 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4034 }
4035
4036 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4037 ArrayRef<BasicBlock *> IndirectDests,
4038 ArrayRef<Value *> Args, const Twine &NameStr,
4039 BasicBlock *InsertAtEnd) {
4040 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4041 IndirectDests, Args, NameStr, InsertAtEnd);
4042 }
4043
4044 static CallBrInst *Create(FunctionCallee Func,
4045 BasicBlock *DefaultDest,
4046 ArrayRef<BasicBlock *> IndirectDests,
4047 ArrayRef<Value *> Args,
4048 ArrayRef<OperandBundleDef> Bundles,
4049 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4050 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4051 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4052 }
4053
4054 /// Create a clone of \p CBI with a different set of operand bundles and
4055 /// insert it before \p InsertPt.
4056 ///
4057 /// The returned callbr instruction is identical to \p CBI in every way
4058 /// except that the operand bundles for the new instruction are set to the
4059 /// operand bundles in \p Bundles.
4060 static CallBrInst *Create(CallBrInst *CBI,
4061 ArrayRef<OperandBundleDef> Bundles,
4062 Instruction *InsertPt = nullptr);
4063
4064 /// Return the number of callbr indirect dest labels.
4065 ///
4066 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4067
4068 /// getIndirectDestLabel - Return the i-th indirect dest label.
4069 ///
4070 Value *getIndirectDestLabel(unsigned i) const {
4071 assert(i < getNumIndirectDests() && "Out of bounds!")((void)0);
4072 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4073 1);
4074 }
4075
4076 Value *getIndirectDestLabelUse(unsigned i) const {
4077 assert(i < getNumIndirectDests() && "Out of bounds!")((void)0);
4078 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4079 1);
4080 }
4081
4082 // Return the destination basic blocks...
4083 BasicBlock *getDefaultDest() const {
4084 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4085 }
4086 BasicBlock *getIndirectDest(unsigned i) const {
4087 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4088 }
4089 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4090 SmallVector<BasicBlock *, 16> IndirectDests;
4091 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4092 IndirectDests.push_back(getIndirectDest(i));
4093 return IndirectDests;
4094 }
4095 void setDefaultDest(BasicBlock *B) {
4096 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4097 }
4098 void setIndirectDest(unsigned i, BasicBlock *B) {
4099 updateArgBlockAddresses(i, B);
4100 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4101 }
4102
4103 BasicBlock *getSuccessor(unsigned i) const {
4104 assert(i < getNumSuccessors() + 1 &&((void)0)
4105 "Successor # out of range for callbr!")((void)0);
4106 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4107 }
4108
4109 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4110 assert(i < getNumIndirectDests() + 1 &&((void)0)
4111 "Successor # out of range for callbr!")((void)0);
4112 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4113 }
4114
4115 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4116
4117 // Methods for support type inquiry through isa, cast, and dyn_cast:
4118 static bool classof(const Instruction *I) {
4119 return (I->getOpcode() == Instruction::CallBr);
4120 }
4121 static bool classof(const Value *V) {
4122 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4123 }
4124
4125private:
4126 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4127 // method so that subclasses cannot accidentally use it.
4128 template <typename Bitfield>
4129 void setSubclassData(typename Bitfield::Type Value) {
4130 Instruction::setSubclassData<Bitfield>(Value);
4131 }
4132};
4133
4134CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4135 ArrayRef<BasicBlock *> IndirectDests,
4136 ArrayRef<Value *> Args,
4137 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4138 const Twine &NameStr, Instruction *InsertBefore)
4139 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4140 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4141 InsertBefore) {
4142 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4143}
4144
4145CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4146 ArrayRef<BasicBlock *> IndirectDests,
4147 ArrayRef<Value *> Args,
4148 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4149 const Twine &NameStr, BasicBlock *InsertAtEnd)
4150 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4151 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4152 InsertAtEnd) {
4153 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4154}
4155
4156//===----------------------------------------------------------------------===//
4157// ResumeInst Class
4158//===----------------------------------------------------------------------===//
4159
4160//===---------------------------------------------------------------------------
4161/// Resume the propagation of an exception.
4162///
4163class ResumeInst : public Instruction {
4164 ResumeInst(const ResumeInst &RI);
4165
4166 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4167 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4168
4169protected:
4170 // Note: Instruction needs to be a friend here to call cloneImpl.
4171 friend class Instruction;
4172
4173 ResumeInst *cloneImpl() const;
4174
4175public:
4176 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4177 return new(1) ResumeInst(Exn, InsertBefore);
4178 }
4179
4180 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4181 return new(1) ResumeInst(Exn, InsertAtEnd);
4182 }
4183
4184 /// Provide fast operand accessors
4185 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4186
4187 /// Convenience accessor.
4188 Value *getValue() const { return Op<0>(); }
4189
4190 unsigned getNumSuccessors() const { return 0; }
4191
4192 // Methods for support type inquiry through isa, cast, and dyn_cast:
4193 static bool classof(const Instruction *I) {
4194 return I->getOpcode() == Instruction::Resume;
4195 }
4196 static bool classof(const Value *V) {
4197 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4198 }
4199
4200private:
4201 BasicBlock *getSuccessor(unsigned idx) const {
4202 llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable();
4203 }
4204
4205 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4206 llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable();
4207 }
4208};
4209
4210template <>
4211struct OperandTraits<ResumeInst> :
4212 public FixedNumOperandTraits<ResumeInst, 1> {
4213};
4214
4215DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<ResumeInst>::op_begin(const_cast
<ResumeInst*>(this))[i_nocapture].get()); } void ResumeInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<ResumeInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ResumeInst::getNumOperands() const
{ return OperandTraits<ResumeInst>::operands(this); } template
<int Idx_nocapture> Use &ResumeInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ResumeInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
4216
4217//===----------------------------------------------------------------------===//
4218// CatchSwitchInst Class
4219//===----------------------------------------------------------------------===//
4220class CatchSwitchInst : public Instruction {
4221 using UnwindDestField = BoolBitfieldElementT<0>;
4222
4223 /// The number of operands actually allocated. NumOperands is
4224 /// the number actually in use.
4225 unsigned ReservedSpace;
4226
4227 // Operand[0] = Outer scope
4228 // Operand[1] = Unwind block destination
4229 // Operand[n] = BasicBlock to go to on match
4230 CatchSwitchInst(const CatchSwitchInst &CSI);
4231
4232 /// Create a new switch instruction, specifying a
4233 /// default destination. The number of additional handlers can be specified
4234 /// here to make memory allocation more efficient.
4235 /// This constructor can also autoinsert before another instruction.
4236 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4237 unsigned NumHandlers, const Twine &NameStr,
4238 Instruction *InsertBefore);
4239
4240 /// Create a new switch instruction, specifying a
4241 /// default destination. The number of additional handlers can be specified
4242 /// here to make memory allocation more efficient.
4243 /// This constructor also autoinserts at the end of the specified BasicBlock.
4244 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4245 unsigned NumHandlers, const Twine &NameStr,
4246 BasicBlock *InsertAtEnd);
4247
4248 // allocate space for exactly zero operands
4249 void *operator new(size_t S) { return User::operator new(S); }
4250
4251 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4252 void growOperands(unsigned Size);
4253
4254protected:
4255 // Note: Instruction needs to be a friend here to call cloneImpl.
4256 friend class Instruction;
4257
4258 CatchSwitchInst *cloneImpl() const;
4259
4260public:
4261 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
4262
4263 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4264 unsigned NumHandlers,
4265 const Twine &NameStr = "",
4266 Instruction *InsertBefore = nullptr) {
4267 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4268 InsertBefore);
4269 }
4270
4271 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4272 unsigned NumHandlers, const Twine &NameStr,
4273 BasicBlock *InsertAtEnd) {
4274 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4275 InsertAtEnd);
4276 }
4277
4278 /// Provide fast operand accessors
4279 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4280
4281 // Accessor Methods for CatchSwitch stmt
4282 Value *getParentPad() const { return getOperand(0); }
4283 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4284
4285 // Accessor Methods for CatchSwitch stmt
4286 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4287 bool unwindsToCaller() const { return !hasUnwindDest(); }
4288 BasicBlock *getUnwindDest() const {
4289 if (hasUnwindDest())
4290 return cast<BasicBlock>(getOperand(1));
4291 return nullptr;
4292 }
4293 void setUnwindDest(BasicBlock *UnwindDest) {
4294 assert(UnwindDest)((void)0);
4295 assert(hasUnwindDest())((void)0);
4296 setOperand(1, UnwindDest);
4297 }
4298
4299 /// return the number of 'handlers' in this catchswitch
4300 /// instruction, except the default handler
4301 unsigned getNumHandlers() const {
4302 if (hasUnwindDest())
4303 return getNumOperands() - 2;
4304 return getNumOperands() - 1;
4305 }
4306
4307private:
4308 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4309 static const BasicBlock *handler_helper(const Value *V) {
4310 return cast<BasicBlock>(V);
4311 }
4312
4313public:
4314 using DerefFnTy = BasicBlock *(*)(Value *);
4315 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4316 using handler_range = iterator_range<handler_iterator>;
4317 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4318 using const_handler_iterator =
4319 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4320 using const_handler_range = iterator_range<const_handler_iterator>;
4321
4322 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4323 handler_iterator handler_begin() {
4324 op_iterator It = op_begin() + 1;
4325 if (hasUnwindDest())
4326 ++It;
4327 return handler_iterator(It, DerefFnTy(handler_helper));
4328 }
4329
4330 /// Returns an iterator that points to the first handler in the
4331 /// CatchSwitchInst.
4332 const_handler_iterator handler_begin() const {
4333 const_op_iterator It = op_begin() + 1;
4334 if (hasUnwindDest())
4335 ++It;
4336 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4337 }
4338
4339 /// Returns a read-only iterator that points one past the last
4340 /// handler in the CatchSwitchInst.
4341 handler_iterator handler_end() {
4342 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4343 }
4344
4345 /// Returns an iterator that points one past the last handler in the
4346 /// CatchSwitchInst.
4347 const_handler_iterator handler_end() const {
4348 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4349 }
4350
4351 /// iteration adapter for range-for loops.
4352 handler_range handlers() {
4353 return make_range(handler_begin(), handler_end());
4354 }
4355
4356 /// iteration adapter for range-for loops.
4357 const_handler_range handlers() const {
4358 return make_range(handler_begin(), handler_end());
4359 }
4360
4361 /// Add an entry to the switch instruction...
4362 /// Note:
4363 /// This action invalidates handler_end(). Old handler_end() iterator will
4364 /// point to the added handler.
4365 void addHandler(BasicBlock *Dest);
4366
4367 void removeHandler(handler_iterator HI);
4368
4369 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4370 BasicBlock *getSuccessor(unsigned Idx) const {
4371 assert(Idx < getNumSuccessors() &&((void)0)
4372 "Successor # out of range for catchswitch!")((void)0);
4373 return cast<BasicBlock>(getOperand(Idx + 1));
4374 }
4375 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4376 assert(Idx < getNumSuccessors() &&((void)0)
4377 "Successor # out of range for catchswitch!")((void)0);
4378 setOperand(Idx + 1, NewSucc);
4379 }
4380
4381 // Methods for support type inquiry through isa, cast, and dyn_cast:
4382 static bool classof(const Instruction *I) {
4383 return I->getOpcode() == Instruction::CatchSwitch;
4384 }
4385 static bool classof(const Value *V) {
4386 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4387 }
4388};
4389
4390template <>
4391struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4392
4393DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return
OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst
::const_op_iterator CatchSwitchInst::op_begin() const { return
OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst
::op_end() { return OperandTraits<CatchSwitchInst>::op_end
(this); } CatchSwitchInst::const_op_iterator CatchSwitchInst::
op_end() const { return OperandTraits<CatchSwitchInst>::
op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<CatchSwitchInst>::op_begin
(const_cast<CatchSwitchInst*>(this))[i_nocapture].get()
); } void CatchSwitchInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<CatchSwitchInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchSwitchInst::getNumOperands() const { return OperandTraits
<CatchSwitchInst>::operands(this); } template <int Idx_nocapture
> Use &CatchSwitchInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchSwitchInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4394
4395//===----------------------------------------------------------------------===//
4396// CleanupPadInst Class
4397//===----------------------------------------------------------------------===//
4398class CleanupPadInst : public FuncletPadInst {
4399private:
4400 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4401 unsigned Values, const Twine &NameStr,
4402 Instruction *InsertBefore)
4403 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4404 NameStr, InsertBefore) {}
4405 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4406 unsigned Values, const Twine &NameStr,
4407 BasicBlock *InsertAtEnd)
4408 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4409 NameStr, InsertAtEnd) {}
4410
4411public:
4412 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4413 const Twine &NameStr = "",
4414 Instruction *InsertBefore = nullptr) {
4415 unsigned Values = 1 + Args.size();
4416 return new (Values)
4417 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4418 }
4419
4420 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4421 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4422 unsigned Values = 1 + Args.size();
4423 return new (Values)
4424 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4425 }
4426
4427 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4428 static bool classof(const Instruction *I) {
4429 return I->getOpcode() == Instruction::CleanupPad;
4430 }
4431 static bool classof(const Value *V) {
4432 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4433 }
4434};
4435
4436//===----------------------------------------------------------------------===//
4437// CatchPadInst Class
4438//===----------------------------------------------------------------------===//
4439class CatchPadInst : public FuncletPadInst {
4440private:
4441 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4442 unsigned Values, const Twine &NameStr,
4443 Instruction *InsertBefore)
4444 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4445 NameStr, InsertBefore) {}
4446 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4447 unsigned Values, const Twine &NameStr,
4448 BasicBlock *InsertAtEnd)
4449 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4450 NameStr, InsertAtEnd) {}
4451
4452public:
4453 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4454 const Twine &NameStr = "",
4455 Instruction *InsertBefore = nullptr) {
4456 unsigned Values = 1 + Args.size();
4457 return new (Values)
4458 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4459 }
4460
4461 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4462 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4463 unsigned Values = 1 + Args.size();
4464 return new (Values)
4465 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4466 }
4467
4468 /// Convenience accessors
4469 CatchSwitchInst *getCatchSwitch() const {
4470 return cast<CatchSwitchInst>(Op<-1>());
4471 }
4472 void setCatchSwitch(Value *CatchSwitch) {
4473 assert(CatchSwitch)((void)0);
4474 Op<-1>() = CatchSwitch;
4475 }
4476
4477 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4478 static bool classof(const Instruction *I) {
4479 return I->getOpcode() == Instruction::CatchPad;
4480 }
4481 static bool classof(const Value *V) {
4482 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4483 }
4484};
4485
4486//===----------------------------------------------------------------------===//
4487// CatchReturnInst Class
4488//===----------------------------------------------------------------------===//
4489
4490class CatchReturnInst : public Instruction {
4491 CatchReturnInst(const CatchReturnInst &RI);
4492 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4493 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4494
4495 void init(Value *CatchPad, BasicBlock *BB);
4496
4497protected:
4498 // Note: Instruction needs to be a friend here to call cloneImpl.
4499 friend class Instruction;
4500
4501 CatchReturnInst *cloneImpl() const;
4502
4503public:
4504 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4505 Instruction *InsertBefore = nullptr) {
4506 assert(CatchPad)((void)0);
4507 assert(BB)((void)0);
4508 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4509 }
4510
4511 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4512 BasicBlock *InsertAtEnd) {
4513 assert(CatchPad)((void)0);
4514 assert(BB)((void)0);
4515 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4516 }
4517
4518 /// Provide fast operand accessors
4519 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4520
4521 /// Convenience accessors.
4522 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4523 void setCatchPad(CatchPadInst *CatchPad) {
4524 assert(CatchPad)((void)0);
4525 Op<0>() = CatchPad;
4526 }
4527
4528 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4529 void setSuccessor(BasicBlock *NewSucc) {
4530 assert(NewSucc)((void)0);
4531 Op<1>() = NewSucc;
4532 }
4533 unsigned getNumSuccessors() const { return 1; }
4534
4535 /// Get the parentPad of this catchret's catchpad's catchswitch.
4536 /// The successor block is implicitly a member of this funclet.
4537 Value *getCatchSwitchParentPad() const {
4538 return getCatchPad()->getCatchSwitch()->getParentPad();
4539 }
4540
4541 // Methods for support type inquiry through isa, cast, and dyn_cast:
4542 static bool classof(const Instruction *I) {
4543 return (I->getOpcode() == Instruction::CatchRet);
4544 }
4545 static bool classof(const Value *V) {
4546 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4547 }
4548
4549private:
4550 BasicBlock *getSuccessor(unsigned Idx) const {
4551 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0);
4552 return getSuccessor();
4553 }
4554
4555 void setSuccessor(unsigned Idx, BasicBlock *B) {
4556 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0);
4557 setSuccessor(B);
4558 }
4559};
4560
4561template <>
4562struct OperandTraits<CatchReturnInst>
4563 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4564
4565DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return
OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst
::const_op_iterator CatchReturnInst::op_begin() const { return
OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst
::op_end() { return OperandTraits<CatchReturnInst>::op_end
(this); } CatchReturnInst::const_op_iterator CatchReturnInst::
op_end() const { return OperandTraits<CatchReturnInst>::
op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<CatchReturnInst>::op_begin
(const_cast<CatchReturnInst*>(this))[i_nocapture].get()
); } void CatchReturnInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<CatchReturnInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchReturnInst::getNumOperands() const { return OperandTraits
<CatchReturnInst>::operands(this); } template <int Idx_nocapture
> Use &CatchReturnInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchReturnInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4566
4567//===----------------------------------------------------------------------===//
4568// CleanupReturnInst Class
4569//===----------------------------------------------------------------------===//
4570
4571class CleanupReturnInst : public Instruction {
4572 using UnwindDestField = BoolBitfieldElementT<0>;
4573
4574private:
4575 CleanupReturnInst(const CleanupReturnInst &RI);
4576 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4577 Instruction *InsertBefore = nullptr);
4578 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4579 BasicBlock *InsertAtEnd);
4580
4581 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4582
4583protected:
4584 // Note: Instruction needs to be a friend here to call cloneImpl.
4585 friend class Instruction;
4586
4587 CleanupReturnInst *cloneImpl() const;
4588
4589public:
4590 static CleanupReturnInst *Create(Value *CleanupPad,
4591 BasicBlock *UnwindBB = nullptr,
4592 Instruction *InsertBefore = nullptr) {
4593 assert(CleanupPad)((void)0);
4594 unsigned Values = 1;
4595 if (UnwindBB)
4596 ++Values;
4597 return new (Values)
4598 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4599 }
4600
4601 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4602 BasicBlock *InsertAtEnd) {
4603 assert(CleanupPad)((void)0);
4604 unsigned Values = 1;
4605 if (UnwindBB)
4606 ++Values;
4607 return new (Values)
4608 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4609 }
4610
4611 /// Provide fast operand accessors
4612 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4613
4614 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4615 bool unwindsToCaller() const { return !hasUnwindDest(); }
4616
4617 /// Convenience accessor.
4618 CleanupPadInst *getCleanupPad() const {
4619 return cast<CleanupPadInst>(Op<0>());
4620 }
4621 void setCleanupPad(CleanupPadInst *CleanupPad) {
4622 assert(CleanupPad)((void)0);
4623 Op<0>() = CleanupPad;
4624 }
4625
4626 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4627
4628 BasicBlock *getUnwindDest() const {
4629 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4630 }
4631 void setUnwindDest(BasicBlock *NewDest) {
4632 assert(NewDest)((void)0);
4633 assert(hasUnwindDest())((void)0);
4634 Op<1>() = NewDest;
4635 }
4636
4637 // Methods for support type inquiry through isa, cast, and dyn_cast:
4638 static bool classof(const Instruction *I) {
4639 return (I->getOpcode() == Instruction::CleanupRet);
4640 }
4641 static bool classof(const Value *V) {
4642 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4643 }
4644
4645private:
4646 BasicBlock *getSuccessor(unsigned Idx) const {
4647 assert(Idx == 0)((void)0);
4648 return getUnwindDest();
4649 }
4650
4651 void setSuccessor(unsigned Idx, BasicBlock *B) {
4652 assert(Idx == 0)((void)0);
4653 setUnwindDest(B);
4654 }
4655
4656 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4657 // method so that subclasses cannot accidentally use it.
4658 template <typename Bitfield>
4659 void setSubclassData(typename Bitfield::Type Value) {
4660 Instruction::setSubclassData<Bitfield>(Value);
4661 }
4662};
4663
4664template <>
4665struct OperandTraits<CleanupReturnInst>
4666 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4667
4668DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() {
return OperandTraits<CleanupReturnInst>::op_begin(this
); } CleanupReturnInst::const_op_iterator CleanupReturnInst::
op_begin() const { return OperandTraits<CleanupReturnInst>
::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst
::op_iterator CleanupReturnInst::op_end() { return OperandTraits
<CleanupReturnInst>::op_end(this); } CleanupReturnInst::
const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits
<CleanupReturnInst>::op_end(const_cast<CleanupReturnInst
*>(this)); } Value *CleanupReturnInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<CleanupReturnInst>::op_begin(const_cast
<CleanupReturnInst*>(this))[i_nocapture].get()); } void
CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<CleanupReturnInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned CleanupReturnInst
::getNumOperands() const { return OperandTraits<CleanupReturnInst
>::operands(this); } template <int Idx_nocapture> Use
&CleanupReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
CleanupReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
4669
4670//===----------------------------------------------------------------------===//
4671// UnreachableInst Class
4672//===----------------------------------------------------------------------===//
4673
4674//===---------------------------------------------------------------------------
4675/// This function has undefined behavior. In particular, the
4676/// presence of this instruction indicates some higher level knowledge that the
4677/// end of the block cannot be reached.
4678///
4679class UnreachableInst : public Instruction {
4680protected:
4681 // Note: Instruction needs to be a friend here to call cloneImpl.
4682 friend class Instruction;
4683
4684 UnreachableInst *cloneImpl() const;
4685
4686public:
4687 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4688 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4689
4690 // allocate space for exactly zero operands
4691 void *operator new(size_t S) { return User::operator new(S, 0); }
4692 void operator delete(void *Ptr) { User::operator delete(Ptr); }
4693
4694 unsigned getNumSuccessors() const { return 0; }
4695
4696 // Methods for support type inquiry through isa, cast, and dyn_cast:
4697 static bool classof(const Instruction *I) {
4698 return I->getOpcode() == Instruction::Unreachable;
4699 }
4700 static bool classof(const Value *V) {
4701 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4702 }
4703
4704private:
4705 BasicBlock *getSuccessor(unsigned idx) const {
4706 llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable();
4707 }
4708
4709 void setSuccessor(unsigned idx, BasicBlock *B) {
4710 llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable();
4711 }
4712};
4713
4714//===----------------------------------------------------------------------===//
4715// TruncInst Class
4716//===----------------------------------------------------------------------===//
4717
4718/// This class represents a truncation of integer types.
4719class TruncInst : public CastInst {
4720protected:
4721 // Note: Instruction needs to be a friend here to call cloneImpl.
4722 friend class Instruction;
4723
4724 /// Clone an identical TruncInst
4725 TruncInst *cloneImpl() const;
4726
4727public:
4728 /// Constructor with insert-before-instruction semantics
4729 TruncInst(
4730 Value *S, ///< The value to be truncated
4731 Type *Ty, ///< The (smaller) type to truncate to
4732 const Twine &NameStr = "", ///< A name for the new instruction
4733 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4734 );
4735
4736 /// Constructor with insert-at-end-of-block semantics
4737 TruncInst(
4738 Value *S, ///< The value to be truncated
4739 Type *Ty, ///< The (smaller) type to truncate to
4740 const Twine &NameStr, ///< A name for the new instruction
4741 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4742 );
4743
4744 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4745 static bool classof(const Instruction *I) {
4746 return I->getOpcode() == Trunc;
4747 }
4748 static bool classof(const Value *V) {
4749 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4750 }
4751};
4752
4753//===----------------------------------------------------------------------===//
4754// ZExtInst Class
4755//===----------------------------------------------------------------------===//
4756
4757/// This class represents zero extension of integer types.
4758class ZExtInst : public CastInst {
4759protected:
4760 // Note: Instruction needs to be a friend here to call cloneImpl.
4761 friend class Instruction;
4762
4763 /// Clone an identical ZExtInst
4764 ZExtInst *cloneImpl() const;
4765
4766public:
4767 /// Constructor with insert-before-instruction semantics
4768 ZExtInst(
4769 Value *S, ///< The value to be zero extended
4770 Type *Ty, ///< The type to zero extend to
4771 const Twine &NameStr = "", ///< A name for the new instruction
4772 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4773 );
4774
4775 /// Constructor with insert-at-end semantics.
4776 ZExtInst(
4777 Value *S, ///< The value to be zero extended
4778 Type *Ty, ///< The type to zero extend to
4779 const Twine &NameStr, ///< A name for the new instruction
4780 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4781 );
4782
4783 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4784 static bool classof(const Instruction *I) {
4785 return I->getOpcode() == ZExt;
4786 }
4787 static bool classof(const Value *V) {
4788 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4789 }
4790};
4791
4792//===----------------------------------------------------------------------===//
4793// SExtInst Class
4794//===----------------------------------------------------------------------===//
4795
4796/// This class represents a sign extension of integer types.
4797class SExtInst : public CastInst {
4798protected:
4799 // Note: Instruction needs to be a friend here to call cloneImpl.
4800 friend class Instruction;
4801
4802 /// Clone an identical SExtInst
4803 SExtInst *cloneImpl() const;
4804
4805public:
4806 /// Constructor with insert-before-instruction semantics
4807 SExtInst(
4808 Value *S, ///< The value to be sign extended
4809 Type *Ty, ///< The type to sign extend to
4810 const Twine &NameStr = "", ///< A name for the new instruction
4811 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4812 );
4813
4814 /// Constructor with insert-at-end-of-block semantics
4815 SExtInst(
4816 Value *S, ///< The value to be sign extended
4817 Type *Ty, ///< The type to sign extend to
4818 const Twine &NameStr, ///< A name for the new instruction
4819 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4820 );
4821
4822 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4823 static bool classof(const Instruction *I) {
4824 return I->getOpcode() == SExt;
4825 }
4826 static bool classof(const Value *V) {
4827 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4828 }
4829};
4830
4831//===----------------------------------------------------------------------===//
4832// FPTruncInst Class
4833//===----------------------------------------------------------------------===//
4834
4835/// This class represents a truncation of floating point types.
4836class FPTruncInst : public CastInst {
4837protected:
4838 // Note: Instruction needs to be a friend here to call cloneImpl.
4839 friend class Instruction;
4840
4841 /// Clone an identical FPTruncInst
4842 FPTruncInst *cloneImpl() const;
4843
4844public:
4845 /// Constructor with insert-before-instruction semantics
4846 FPTruncInst(
4847 Value *S, ///< The value to be truncated
4848 Type *Ty, ///< The type to truncate to
4849 const Twine &NameStr = "", ///< A name for the new instruction
4850 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4851 );
4852
4853 /// Constructor with insert-before-instruction semantics
4854 FPTruncInst(
4855 Value *S, ///< The value to be truncated
4856 Type *Ty, ///< The type to truncate to
4857 const Twine &NameStr, ///< A name for the new instruction
4858 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4859 );
4860
4861 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4862 static bool classof(const Instruction *I) {
4863 return I->getOpcode() == FPTrunc;
4864 }
4865 static bool classof(const Value *V) {
4866 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4867 }
4868};
4869
4870//===----------------------------------------------------------------------===//
4871// FPExtInst Class
4872//===----------------------------------------------------------------------===//
4873
4874/// This class represents an extension of floating point types.
4875class FPExtInst : public CastInst {
4876protected:
4877 // Note: Instruction needs to be a friend here to call cloneImpl.
4878 friend class Instruction;
4879
4880 /// Clone an identical FPExtInst
4881 FPExtInst *cloneImpl() const;
4882
4883public:
4884 /// Constructor with insert-before-instruction semantics
4885 FPExtInst(
4886 Value *S, ///< The value to be extended
4887 Type *Ty, ///< The type to extend to
4888 const Twine &NameStr = "", ///< A name for the new instruction
4889 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4890 );
4891
4892 /// Constructor with insert-at-end-of-block semantics
4893 FPExtInst(
4894 Value *S, ///< The value to be extended
4895 Type *Ty, ///< The type to extend to
4896 const Twine &NameStr, ///< A name for the new instruction
4897 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4898 );
4899
4900 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4901 static bool classof(const Instruction *I) {
4902 return I->getOpcode() == FPExt;
4903 }
4904 static bool classof(const Value *V) {
4905 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4906 }
4907};
4908
4909//===----------------------------------------------------------------------===//
4910// UIToFPInst Class
4911//===----------------------------------------------------------------------===//
4912
4913/// This class represents a cast unsigned integer to floating point.
4914class UIToFPInst : public CastInst {
4915protected:
4916 // Note: Instruction needs to be a friend here to call cloneImpl.
4917 friend class Instruction;
4918
4919 /// Clone an identical UIToFPInst
4920 UIToFPInst *cloneImpl() const;
4921
4922public:
4923 /// Constructor with insert-before-instruction semantics
4924 UIToFPInst(
4925 Value *S, ///< The value to be converted
4926 Type *Ty, ///< The type to convert to
4927 const Twine &NameStr = "", ///< A name for the new instruction
4928 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4929 );
4930
4931 /// Constructor with insert-at-end-of-block semantics
4932 UIToFPInst(
4933 Value *S, ///< The value to be converted
4934 Type *Ty, ///< The type to convert to
4935 const Twine &NameStr, ///< A name for the new instruction
4936 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4937 );
4938
4939 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4940 static bool classof(const Instruction *I) {
4941 return I->getOpcode() == UIToFP;
4942 }
4943 static bool classof(const Value *V) {
4944 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4945 }
4946};
4947
4948//===----------------------------------------------------------------------===//
4949// SIToFPInst Class
4950//===----------------------------------------------------------------------===//
4951
4952/// This class represents a cast from signed integer to floating point.
4953class SIToFPInst : public CastInst {
4954protected:
4955 // Note: Instruction needs to be a friend here to call cloneImpl.
4956 friend class Instruction;
4957
4958 /// Clone an identical SIToFPInst
4959 SIToFPInst *cloneImpl() const;
4960
4961public:
4962 /// Constructor with insert-before-instruction semantics
4963 SIToFPInst(
4964 Value *S, ///< The value to be converted
4965 Type *Ty, ///< The type to convert to
4966 const Twine &NameStr = "", ///< A name for the new instruction
4967 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4968 );
4969
4970 /// Constructor with insert-at-end-of-block semantics
4971 SIToFPInst(
4972 Value *S, ///< The value to be converted
4973 Type *Ty, ///< The type to convert to
4974 const Twine &NameStr, ///< A name for the new instruction
4975 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4976 );
4977
4978 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4979 static bool classof(const Instruction *I) {
4980 return I->getOpcode() == SIToFP;
4981 }
4982 static bool classof(const Value *V) {
4983 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4984 }
4985};
4986
4987//===----------------------------------------------------------------------===//
4988// FPToUIInst Class
4989//===----------------------------------------------------------------------===//
4990
4991/// This class represents a cast from floating point to unsigned integer
4992class FPToUIInst : public CastInst {
4993protected:
4994 // Note: Instruction needs to be a friend here to call cloneImpl.
4995 friend class Instruction;
4996
4997 /// Clone an identical FPToUIInst
4998 FPToUIInst *cloneImpl() const;
4999
5000public:
5001 /// Constructor with insert-before-instruction semantics
5002 FPToUIInst(
5003 Value *S, ///< The value to be converted
5004 Type *Ty, ///< The type to convert to
5005 const Twine &NameStr = "", ///< A name for the new instruction
5006 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5007 );
5008
5009 /// Constructor with insert-at-end-of-block semantics
5010 FPToUIInst(
5011 Value *S, ///< The value to be converted
5012 Type *Ty, ///< The type to convert to
5013 const Twine &NameStr, ///< A name for the new instruction
5014 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
5015 );
5016
5017 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5018 static bool classof(const Instruction *I) {
5019 return I->getOpcode() == FPToUI;
5020 }
5021 static bool classof(const Value *V) {
5022 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5023 }
5024};
5025
5026//===----------------------------------------------------------------------===//
5027// FPToSIInst Class
5028//===----------------------------------------------------------------------===//
5029
5030/// This class represents a cast from floating point to signed integer.
5031class FPToSIInst : public CastInst {
5032protected:
5033 // Note: Instruction needs to be a friend here to call cloneImpl.
5034 friend class Instruction;
5035
5036 /// Clone an identical FPToSIInst
5037 FPToSIInst *cloneImpl() const;
5038
5039public:
5040 /// Constructor with insert-before-instruction semantics
5041 FPToSIInst(
5042 Value *S, ///< The value to be converted
5043 Type *Ty, ///< The type to convert to
5044 const Twine &NameStr = "", ///< A name for the new instruction
5045 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5046 );
5047
5048 /// Constructor with insert-at-end-of-block semantics
5049 FPToSIInst(
5050 Value *S, ///< The value to be converted
5051 Type *Ty, ///< The type to convert to
5052 const Twine &NameStr, ///< A name for the new instruction
5053 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5054 );
5055
5056 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5057 static bool classof(const Instruction *I) {
5058 return I->getOpcode() == FPToSI;
5059 }
5060 static bool classof(const Value *V) {
5061 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5062 }
5063};
5064
5065//===----------------------------------------------------------------------===//
5066// IntToPtrInst Class
5067//===----------------------------------------------------------------------===//
5068
5069/// This class represents a cast from an integer to a pointer.
5070class IntToPtrInst : public CastInst {
5071public:
5072 // Note: Instruction needs to be a friend here to call cloneImpl.
5073 friend class Instruction;
5074
5075 /// Constructor with insert-before-instruction semantics
5076 IntToPtrInst(
5077 Value *S, ///< The value to be converted
5078 Type *Ty, ///< The type to convert to
5079 const Twine &NameStr = "", ///< A name for the new instruction
5080 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5081 );
5082
5083 /// Constructor with insert-at-end-of-block semantics
5084 IntToPtrInst(
5085 Value *S, ///< The value to be converted
5086 Type *Ty, ///< The type to convert to
5087 const Twine &NameStr, ///< A name for the new instruction
5088 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5089 );
5090
5091 /// Clone an identical IntToPtrInst.
5092 IntToPtrInst *cloneImpl() const;
5093
5094 /// Returns the address space of this instruction's pointer type.
5095 unsigned getAddressSpace() const {
5096 return getType()->getPointerAddressSpace();
5097 }
5098
5099 // Methods for support type inquiry through isa, cast, and dyn_cast:
5100 static bool classof(const Instruction *I) {
5101 return I->getOpcode() == IntToPtr;
5102 }
5103 static bool classof(const Value *V) {
5104 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5105 }
5106};
5107
5108//===----------------------------------------------------------------------===//
5109// PtrToIntInst Class
5110//===----------------------------------------------------------------------===//
5111
5112/// This class represents a cast from a pointer to an integer.
5113class PtrToIntInst : public CastInst {
5114protected:
5115 // Note: Instruction needs to be a friend here to call cloneImpl.
5116 friend class Instruction;
5117
5118 /// Clone an identical PtrToIntInst.
5119 PtrToIntInst *cloneImpl() const;
5120
5121public:
5122 /// Constructor with insert-before-instruction semantics
5123 PtrToIntInst(
5124 Value *S, ///< The value to be converted
5125 Type *Ty, ///< The type to convert to
5126 const Twine &NameStr = "", ///< A name for the new instruction
5127 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5128 );
5129
5130 /// Constructor with insert-at-end-of-block semantics
5131 PtrToIntInst(
5132 Value *S, ///< The value to be converted
5133 Type *Ty, ///< The type to convert to
5134 const Twine &NameStr, ///< A name for the new instruction
5135 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5136 );
5137
5138 /// Gets the pointer operand.
5139 Value *getPointerOperand() { return getOperand(0); }
5140 /// Gets the pointer operand.
5141 const Value *getPointerOperand() const { return getOperand(0); }
5142 /// Gets the operand index of the pointer operand.
5143 static unsigned getPointerOperandIndex() { return 0U; }
5144
5145 /// Returns the address space of the pointer operand.
5146 unsigned getPointerAddressSpace() const {
5147 return getPointerOperand()->getType()->getPointerAddressSpace();
5148 }
5149
5150 // Methods for support type inquiry through isa, cast, and dyn_cast:
5151 static bool classof(const Instruction *I) {
5152 return I->getOpcode() == PtrToInt;
5153 }
5154 static bool classof(const Value *V) {
5155 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5156 }
5157};
5158
5159//===----------------------------------------------------------------------===//
5160// BitCastInst Class
5161//===----------------------------------------------------------------------===//
5162
5163/// This class represents a no-op cast from one type to another.
5164class BitCastInst : public CastInst {
5165protected:
5166 // Note: Instruction needs to be a friend here to call cloneImpl.
5167 friend class Instruction;
5168
5169 /// Clone an identical BitCastInst.
5170 BitCastInst *cloneImpl() const;
5171
5172public:
5173 /// Constructor with insert-before-instruction semantics
5174 BitCastInst(
5175 Value *S, ///< The value to be casted
5176 Type *Ty, ///< The type to casted to
5177 const Twine &NameStr = "", ///< A name for the new instruction
5178 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5179 );
5180
5181 /// Constructor with insert-at-end-of-block semantics
5182 BitCastInst(
5183 Value *S, ///< The value to be casted
5184 Type *Ty, ///< The type to casted to
5185 const Twine &NameStr, ///< A name for the new instruction
5186 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5187 );
5188
5189 // Methods for support type inquiry through isa, cast, and dyn_cast:
5190 static bool classof(const Instruction *I) {
5191 return I->getOpcode() == BitCast;
5192 }
5193 static bool classof(const Value *V) {
5194 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5195 }
5196};
5197
5198//===----------------------------------------------------------------------===//
5199// AddrSpaceCastInst Class
5200//===----------------------------------------------------------------------===//
5201
5202/// This class represents a conversion between pointers from one address space
5203/// to another.
5204class AddrSpaceCastInst : public CastInst {
5205protected:
5206 // Note: Instruction needs to be a friend here to call cloneImpl.
5207 friend class Instruction;
5208
5209 /// Clone an identical AddrSpaceCastInst.
5210 AddrSpaceCastInst *cloneImpl() const;
5211
5212public:
5213 /// Constructor with insert-before-instruction semantics
5214 AddrSpaceCastInst(
5215 Value *S, ///< The value to be casted
5216 Type *Ty, ///< The type to casted to
5217 const Twine &NameStr = "", ///< A name for the new instruction
5218 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5219 );
5220
5221 /// Constructor with insert-at-end-of-block semantics
5222 AddrSpaceCastInst(
5223 Value *S, ///< The value to be casted
5224 Type *Ty, ///< The type to casted to
5225 const Twine &NameStr, ///< A name for the new instruction
5226 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5227 );
5228
5229 // Methods for support type inquiry through isa, cast, and dyn_cast:
5230 static bool classof(const Instruction *I) {
5231 return I->getOpcode() == AddrSpaceCast;
5232 }
5233 static bool classof(const Value *V) {
5234 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5235 }
5236
5237 /// Gets the pointer operand.
5238 Value *getPointerOperand() {
5239 return getOperand(0);
5240 }
5241
5242 /// Gets the pointer operand.
5243 const Value *getPointerOperand() const {
5244 return getOperand(0);
5245 }
5246
5247 /// Gets the operand index of the pointer operand.
5248 static unsigned getPointerOperandIndex() {
5249 return 0U;
5250 }
5251
5252 /// Returns the address space of the pointer operand.
5253 unsigned getSrcAddressSpace() const {
5254 return getPointerOperand()->getType()->getPointerAddressSpace();
5255 }
5256
5257 /// Returns the address space of the result.
5258 unsigned getDestAddressSpace() const {
5259 return getType()->getPointerAddressSpace();
5260 }
5261};
5262
5263/// A helper function that returns the pointer operand of a load or store
5264/// instruction. Returns nullptr if not load or store.
5265inline const Value *getLoadStorePointerOperand(const Value *V) {
5266 if (auto *Load = dyn_cast<LoadInst>(V))
5267 return Load->getPointerOperand();
5268 if (auto *Store = dyn_cast<StoreInst>(V))
5269 return Store->getPointerOperand();
5270 return nullptr;
5271}
5272inline Value *getLoadStorePointerOperand(Value *V) {
5273 return const_cast<Value *>(
5274 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5275}
5276
5277/// A helper function that returns the pointer operand of a load, store
5278/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5279inline const Value *getPointerOperand(const Value *V) {
5280 if (auto *Ptr = getLoadStorePointerOperand(V))
5281 return Ptr;
5282 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5283 return Gep->getPointerOperand();
5284 return nullptr;
5285}
5286inline Value *getPointerOperand(Value *V) {
5287 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5288}
5289
5290/// A helper function that returns the alignment of load or store instruction.
5291inline Align getLoadStoreAlignment(Value *I) {
5292 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0)
5293 "Expected Load or Store instruction")((void)0);
5294 if (auto *LI = dyn_cast<LoadInst>(I))
5295 return LI->getAlign();
5296 return cast<StoreInst>(I)->getAlign();
5297}
5298
5299/// A helper function that returns the address space of the pointer operand of
5300/// load or store instruction.
5301inline unsigned getLoadStoreAddressSpace(Value *I) {
5302 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0)
5303 "Expected Load or Store instruction")((void)0);
5304 if (auto *LI = dyn_cast<LoadInst>(I))
5305 return LI->getPointerAddressSpace();
5306 return cast<StoreInst>(I)->getPointerAddressSpace();
5307}
5308
5309/// A helper function that returns the type of a load or store instruction.
5310inline Type *getLoadStoreType(Value *I) {
5311 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0)
5312 "Expected Load or Store instruction")((void)0);
5313 if (auto *LI = dyn_cast<LoadInst>(I))
5314 return LI->getType();
5315 return cast<StoreInst>(I)->getValueOperand()->getType();
5316}
5317
5318//===----------------------------------------------------------------------===//
5319// FreezeInst Class
5320//===----------------------------------------------------------------------===//
5321
5322/// This class represents a freeze function that returns random concrete
5323/// value if an operand is either a poison value or an undef value
5324class FreezeInst : public UnaryInstruction {
5325protected:
5326 // Note: Instruction needs to be a friend here to call cloneImpl.
5327 friend class Instruction;
5328
5329 /// Clone an identical FreezeInst
5330 FreezeInst *cloneImpl() const;
5331
5332public:
5333 explicit FreezeInst(Value *S,
5334 const Twine &NameStr = "",
5335 Instruction *InsertBefore = nullptr);
5336 FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5337
5338 // Methods for support type inquiry through isa, cast, and dyn_cast:
5339 static inline bool classof(const Instruction *I) {
5340 return I->getOpcode() == Freeze;
5341 }
5342 static inline bool classof(const Value *V) {
5343 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5344 }
5345};
5346
5347} // end namespace llvm
5348
5349#endif // LLVM_IR_INSTRUCTIONS_H

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h

1//===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains types to represent alignments.
10// They are instrumented to guarantee some invariants are preserved and prevent
11// invalid manipulations.
12//
13// - Align represents an alignment in bytes, it is always set and always a valid
14// power of two, its minimum value is 1 which means no alignment requirements.
15//
16// - MaybeAlign is an optional type, it may be undefined or set. When it's set
17// you can get the underlying Align type by using the getValue() method.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_SUPPORT_ALIGNMENT_H_
22#define LLVM_SUPPORT_ALIGNMENT_H_
23
24#include "llvm/ADT/Optional.h"
25#include "llvm/Support/MathExtras.h"
26#include <cassert>
27#ifndef NDEBUG1
28#include <string>
29#endif // NDEBUG
30
31namespace llvm {
32
33#define ALIGN_CHECK_ISPOSITIVE(decl) \
34 assert(decl > 0 && (#decl " should be defined"))((void)0)
35
36/// This struct is a compact representation of a valid (non-zero power of two)
37/// alignment.
38/// It is suitable for use as static global constants.
39struct Align {
40private:
41 uint8_t ShiftValue = 0; /// The log2 of the required alignment.
42 /// ShiftValue is less than 64 by construction.
43
44 friend struct MaybeAlign;
45 friend unsigned Log2(Align);
46 friend bool operator==(Align Lhs, Align Rhs);
47 friend bool operator!=(Align Lhs, Align Rhs);
48 friend bool operator<=(Align Lhs, Align Rhs);
49 friend bool operator>=(Align Lhs, Align Rhs);
50 friend bool operator<(Align Lhs, Align Rhs);
51 friend bool operator>(Align Lhs, Align Rhs);
52 friend unsigned encode(struct MaybeAlign A);
53 friend struct MaybeAlign decodeMaybeAlign(unsigned Value);
54
55 /// A trivial type to allow construction of constexpr Align.
56 /// This is currently needed to workaround a bug in GCC 5.3 which prevents
57 /// definition of constexpr assign operators.
58 /// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic
59 /// FIXME: Remove this, make all assign operators constexpr and introduce user
60 /// defined literals when we don't have to support GCC 5.3 anymore.
61 /// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain
62 struct LogValue {
63 uint8_t Log;
64 };
65
66public:
67 /// Default is byte-aligned.
68 constexpr Align() = default;
69 /// Do not perform checks in case of copy/move construct/assign, because the
70 /// checks have been performed when building `Other`.
71 constexpr Align(const Align &Other) = default;
72 constexpr Align(Align &&Other) = default;
73 Align &operator=(const Align &Other) = default;
74 Align &operator=(Align &&Other) = default;
75
76 explicit Align(uint64_t Value) {
77 assert(Value > 0 && "Value must not be 0")((void)0);
78 assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2")((void)0);
79 ShiftValue = Log2_64(Value);
20
Calling 'Log2_64'
22
Returning from 'Log2_64'
23
The value 255 is assigned to field 'ShiftValue'
80 assert(ShiftValue < 64 && "Broken invariant")((void)0);
81 }
82
83 /// This is a hole in the type system and should not be abused.
84 /// Needed to interact with C for instance.
85 uint64_t value() const { return uint64_t(1) << ShiftValue; }
27
The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t'
86
87 /// Allow constructions of constexpr Align.
88 template <size_t kValue> constexpr static LogValue Constant() {
89 return LogValue{static_cast<uint8_t>(CTLog2<kValue>())};
90 }
91
92 /// Allow constructions of constexpr Align from types.
93 /// Compile time equivalent to Align(alignof(T)).
94 template <typename T> constexpr static LogValue Of() {
95 return Constant<std::alignment_of<T>::value>();
96 }
97
98 /// Constexpr constructor from LogValue type.
99 constexpr Align(LogValue CA) : ShiftValue(CA.Log) {}
100};
101
102/// Treats the value 0 as a 1, so Align is always at least 1.
103inline Align assumeAligned(uint64_t Value) {
104 return Value ? Align(Value) : Align();
105}
106
107/// This struct is a compact representation of a valid (power of two) or
108/// undefined (0) alignment.
109struct MaybeAlign : public llvm::Optional<Align> {
110private:
111 using UP = llvm::Optional<Align>;
112
113public:
114 /// Default is undefined.
115 MaybeAlign() = default;
116 /// Do not perform checks in case of copy/move construct/assign, because the
117 /// checks have been performed when building `Other`.
118 MaybeAlign(const MaybeAlign &Other) = default;
119 MaybeAlign &operator=(const MaybeAlign &Other) = default;
120 MaybeAlign(MaybeAlign &&Other) = default;
121 MaybeAlign &operator=(MaybeAlign &&Other) = default;
122
123 /// Use llvm::Optional<Align> constructor.
124 using UP::UP;
125
126 explicit MaybeAlign(uint64_t Value) {
127 assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&((void)0)
128 "Alignment is neither 0 nor a power of 2")((void)0);
129 if (Value)
130 emplace(Value);
131 }
132
133 /// For convenience, returns a valid alignment or 1 if undefined.
134 Align valueOrOne() const { return hasValue() ? getValue() : Align(); }
135};
136
137/// Checks that SizeInBytes is a multiple of the alignment.
138inline bool isAligned(Align Lhs, uint64_t SizeInBytes) {
139 return SizeInBytes % Lhs.value() == 0;
140}
141
142/// Checks that Addr is a multiple of the alignment.
143inline bool isAddrAligned(Align Lhs, const void *Addr) {
144 return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr));
145}
146
147/// Returns a multiple of A needed to store `Size` bytes.
148inline uint64_t alignTo(uint64_t Size, Align A) {
149 const uint64_t Value = A.value();
150 // The following line is equivalent to `(Size + Value - 1) / Value * Value`.
151
152 // The division followed by a multiplication can be thought of as a right
153 // shift followed by a left shift which zeros out the extra bits produced in
154 // the bump; `~(Value - 1)` is a mask where all those bits being zeroed out
155 // are just zero.
156
157 // Most compilers can generate this code but the pattern may be missed when
158 // multiple functions gets inlined.
159 return (Size + Value - 1) & ~(Value - 1U);
160}
161
162/// If non-zero \p Skew is specified, the return value will be a minimal integer
163/// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for
164/// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p
165/// Skew mod \p A'.
166///
167/// Examples:
168/// \code
169/// alignTo(5, Align(8), 7) = 7
170/// alignTo(17, Align(8), 1) = 17
171/// alignTo(~0LL, Align(8), 3) = 3
172/// \endcode
173inline uint64_t alignTo(uint64_t Size, Align A, uint64_t Skew) {
174 const uint64_t Value = A.value();
175 Skew %= Value;
176 return ((Size + Value - 1 - Skew) & ~(Value - 1U)) + Skew;
177}
178
179/// Returns a multiple of A needed to store `Size` bytes.
180/// Returns `Size` if current alignment is undefined.
181inline uint64_t alignTo(uint64_t Size, MaybeAlign A) {
182 return A ? alignTo(Size, A.getValue()) : Size;
183}
184
185/// Aligns `Addr` to `Alignment` bytes, rounding up.
186inline uintptr_t alignAddr(const void *Addr, Align Alignment) {
187 uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr);
188 assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=((void)0)
189 ArithAddr &&((void)0)
190 "Overflow")((void)0);
191 return alignTo(ArithAddr, Alignment);
192}
193
194/// Returns the offset to the next integer (mod 2**64) that is greater than
195/// or equal to \p Value and is a multiple of \p Align.
196inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) {
197 return alignTo(Value, Alignment) - Value;
198}
199
200/// Returns the necessary adjustment for aligning `Addr` to `Alignment`
201/// bytes, rounding up.
202inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) {
203 return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment);
204}
205
206/// Returns the log2 of the alignment.
207inline unsigned Log2(Align A) { return A.ShiftValue; }
208
209/// Returns the alignment that satisfies both alignments.
210/// Same semantic as MinAlign.
211inline Align commonAlignment(Align A, Align B) { return std::min(A, B); }
212
213/// Returns the alignment that satisfies both alignments.
214/// Same semantic as MinAlign.
215inline Align commonAlignment(Align A, uint64_t Offset) {
216 return Align(MinAlign(A.value(), Offset));
217}
218
219/// Returns the alignment that satisfies both alignments.
220/// Same semantic as MinAlign.
221inline MaybeAlign commonAlignment(MaybeAlign A, MaybeAlign B) {
222 return A && B ? commonAlignment(*A, *B) : A ? A : B;
223}
224
225/// Returns the alignment that satisfies both alignments.
226/// Same semantic as MinAlign.
227inline MaybeAlign commonAlignment(MaybeAlign A, uint64_t Offset) {
228 return MaybeAlign(MinAlign((*A).value(), Offset));
229}
230
231/// Returns a representation of the alignment that encodes undefined as 0.
232inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; }
233
234/// Dual operation of the encode function above.
235inline MaybeAlign decodeMaybeAlign(unsigned Value) {
236 if (Value == 0)
237 return MaybeAlign();
238 Align Out;
239 Out.ShiftValue = Value - 1;
240 return Out;
241}
242
243/// Returns a representation of the alignment, the encoded value is positive by
244/// definition.
245inline unsigned encode(Align A) { return encode(MaybeAlign(A)); }
246
247/// Comparisons between Align and scalars. Rhs must be positive.
248inline bool operator==(Align Lhs, uint64_t Rhs) {
249 ALIGN_CHECK_ISPOSITIVE(Rhs);
250 return Lhs.value() == Rhs;
251}
252inline bool operator!=(Align Lhs, uint64_t Rhs) {
253 ALIGN_CHECK_ISPOSITIVE(Rhs);
254 return Lhs.value() != Rhs;
255}
256inline bool operator<=(Align Lhs, uint64_t Rhs) {
257 ALIGN_CHECK_ISPOSITIVE(Rhs);
258 return Lhs.value() <= Rhs;
259}
260inline bool operator>=(Align Lhs, uint64_t Rhs) {
261 ALIGN_CHECK_ISPOSITIVE(Rhs);
262 return Lhs.value() >= Rhs;
263}
264inline bool operator<(Align Lhs, uint64_t Rhs) {
265 ALIGN_CHECK_ISPOSITIVE(Rhs);
266 return Lhs.value() < Rhs;
267}
268inline bool operator>(Align Lhs, uint64_t Rhs) {
269 ALIGN_CHECK_ISPOSITIVE(Rhs);
270 return Lhs.value() > Rhs;
271}
272
273/// Comparisons between MaybeAlign and scalars.
274inline bool operator==(MaybeAlign Lhs, uint64_t Rhs) {
275 return Lhs ? (*Lhs).value() == Rhs : Rhs == 0;
276}
277inline bool operator!=(MaybeAlign Lhs, uint64_t Rhs) {
278 return Lhs ? (*Lhs).value() != Rhs : Rhs != 0;
279}
280
281/// Comparisons operators between Align.
282inline bool operator==(Align Lhs, Align Rhs) {
283 return Lhs.ShiftValue == Rhs.ShiftValue;
284}
285inline bool operator!=(Align Lhs, Align Rhs) {
286 return Lhs.ShiftValue != Rhs.ShiftValue;
287}
288inline bool operator<=(Align Lhs, Align Rhs) {
289 return Lhs.ShiftValue <= Rhs.ShiftValue;
290}
291inline bool operator>=(Align Lhs, Align Rhs) {
292 return Lhs.ShiftValue >= Rhs.ShiftValue;
293}
294inline bool operator<(Align Lhs, Align Rhs) {
295 return Lhs.ShiftValue < Rhs.ShiftValue;
296}
297inline bool operator>(Align Lhs, Align Rhs) {
298 return Lhs.ShiftValue > Rhs.ShiftValue;
299}
300
301// Don't allow relational comparisons with MaybeAlign.
302bool operator<=(Align Lhs, MaybeAlign Rhs) = delete;
303bool operator>=(Align Lhs, MaybeAlign Rhs) = delete;
304bool operator<(Align Lhs, MaybeAlign Rhs) = delete;
305bool operator>(Align Lhs, MaybeAlign Rhs) = delete;
306
307bool operator<=(MaybeAlign Lhs, Align Rhs) = delete;
308bool operator>=(MaybeAlign Lhs, Align Rhs) = delete;
309bool operator<(MaybeAlign Lhs, Align Rhs) = delete;
310bool operator>(MaybeAlign Lhs, Align Rhs) = delete;
311
312bool operator<=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
313bool operator>=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
314bool operator<(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
315bool operator>(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
316
317inline Align operator*(Align Lhs, uint64_t Rhs) {
318 assert(Rhs > 0 && "Rhs must be positive")((void)0);
319 return Align(Lhs.value() * Rhs);
320}
321
322inline MaybeAlign operator*(MaybeAlign Lhs, uint64_t Rhs) {
323 assert(Rhs > 0 && "Rhs must be positive")((void)0);
324 return Lhs ? Lhs.getValue() * Rhs : MaybeAlign();
325}
326
327inline Align operator/(Align Lhs, uint64_t Divisor) {
328 assert(llvm::isPowerOf2_64(Divisor) &&((void)0)
329 "Divisor must be positive and a power of 2")((void)0);
330 assert(Lhs != 1 && "Can't halve byte alignment")((void)0);
331 return Align(Lhs.value() / Divisor);
332}
333
334inline MaybeAlign operator/(MaybeAlign Lhs, uint64_t Divisor) {
335 assert(llvm::isPowerOf2_64(Divisor) &&((void)0)
336 "Divisor must be positive and a power of 2")((void)0);
337 return Lhs ? Lhs.getValue() / Divisor : MaybeAlign();
338}
339
340inline Align max(MaybeAlign Lhs, Align Rhs) {
341 return Lhs && *Lhs > Rhs ? *Lhs : Rhs;
342}
343
344inline Align max(Align Lhs, MaybeAlign Rhs) {
345 return Rhs && *Rhs > Lhs ? *Rhs : Lhs;
346}
347
348#ifndef NDEBUG1
349// For usage in LLVM_DEBUG macros.
350inline std::string DebugStr(const Align &A) {
351 return std::to_string(A.value());
352}
353// For usage in LLVM_DEBUG macros.
354inline std::string DebugStr(const MaybeAlign &MA) {
355 if (MA)
356 return std::to_string(MA->value());
357 return "None";
358}
359#endif // NDEBUG
360
361#undef ALIGN_CHECK_ISPOSITIVE
362
363} // namespace llvm
364
365#endif // LLVM_SUPPORT_ALIGNMENT_H_

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/MathExtras.h

1//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains some functions that are useful for math stuff.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_MATHEXTRAS_H
14#define LLVM_SUPPORT_MATHEXTRAS_H
15
16#include "llvm/Support/Compiler.h"
17#include <cassert>
18#include <climits>
19#include <cmath>
20#include <cstdint>
21#include <cstring>
22#include <limits>
23#include <type_traits>
24
25#ifdef __ANDROID_NDK__
26#include <android/api-level.h>
27#endif
28
29#ifdef _MSC_VER
30// Declare these intrinsics manually rather including intrin.h. It's very
31// expensive, and MathExtras.h is popular.
32// #include <intrin.h>
33extern "C" {
34unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
35unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
36unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
37unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
38}
39#endif
40
41namespace llvm {
42
43/// The behavior an operation has on an input of 0.
44enum ZeroBehavior {
45 /// The returned value is undefined.
46 ZB_Undefined,
47 /// The returned value is numeric_limits<T>::max()
48 ZB_Max,
49 /// The returned value is numeric_limits<T>::digits
50 ZB_Width
51};
52
53/// Mathematical constants.
54namespace numbers {
55// TODO: Track C++20 std::numbers.
56// TODO: Favor using the hexadecimal FP constants (requires C++17).
57constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113
58 egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620
59 ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162
60 ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392
61 log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0)
62 log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2)
63 pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796
64 inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541
65 sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161
66 inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197
67 sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219
68 inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1)
69 sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194
70 inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1)
71 phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622
72constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113
73 egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620
74 ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162
75 ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392
76 log2ef = 1.44269504F, // (0x1.715476P+0)
77 log10ef = .434294482F, // (0x1.bcb7b2P-2)
78 pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796
79 inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541
80 sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161
81 inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197
82 sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193
83 inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1)
84 sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194
85 inv_sqrt3f = .577350269F, // (0x1.279a74P-1)
86 phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622
87} // namespace numbers
88
89namespace detail {
90template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
91 static unsigned count(T Val, ZeroBehavior) {
92 if (!Val)
93 return std::numeric_limits<T>::digits;
94 if (Val & 0x1)
95 return 0;
96
97 // Bisection method.
98 unsigned ZeroBits = 0;
99 T Shift = std::numeric_limits<T>::digits >> 1;
100 T Mask = std::numeric_limits<T>::max() >> Shift;
101 while (Shift) {
102 if ((Val & Mask) == 0) {
103 Val >>= Shift;
104 ZeroBits |= Shift;
105 }
106 Shift >>= 1;
107 Mask >>= Shift;
108 }
109 return ZeroBits;
110 }
111};
112
113#if defined(__GNUC__4) || defined(_MSC_VER)
114template <typename T> struct TrailingZerosCounter<T, 4> {
115 static unsigned count(T Val, ZeroBehavior ZB) {
116 if (ZB != ZB_Undefined && Val == 0)
117 return 32;
118
119#if __has_builtin(__builtin_ctz)1 || defined(__GNUC__4)
120 return __builtin_ctz(Val);
121#elif defined(_MSC_VER)
122 unsigned long Index;
123 _BitScanForward(&Index, Val);
124 return Index;
125#endif
126 }
127};
128
129#if !defined(_MSC_VER) || defined(_M_X64)
130template <typename T> struct TrailingZerosCounter<T, 8> {
131 static unsigned count(T Val, ZeroBehavior ZB) {
132 if (ZB != ZB_Undefined && Val == 0)
133 return 64;
134
135#if __has_builtin(__builtin_ctzll)1 || defined(__GNUC__4)
136 return __builtin_ctzll(Val);
137#elif defined(_MSC_VER)
138 unsigned long Index;
139 _BitScanForward64(&Index, Val);
140 return Index;
141#endif
142 }
143};
144#endif
145#endif
146} // namespace detail
147
148/// Count number of 0's from the least significant bit to the most
149/// stopping at the first 1.
150///
151/// Only unsigned integral types are allowed.
152///
153/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
154/// valid arguments.
155template <typename T>
156unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
157 static_assert(std::numeric_limits<T>::is_integer &&
158 !std::numeric_limits<T>::is_signed,
159 "Only unsigned integral types are allowed.");
160 return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
161}
162
163namespace detail {
164template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
165 static unsigned count(T Val, ZeroBehavior) {
166 if (!Val)
167 return std::numeric_limits<T>::digits;
168
169 // Bisection method.
170 unsigned ZeroBits = 0;
171 for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
172 T Tmp = Val >> Shift;
173 if (Tmp)
174 Val = Tmp;
175 else
176 ZeroBits |= Shift;
177 }
178 return ZeroBits;
179 }
180};
181
182#if defined(__GNUC__4) || defined(_MSC_VER)
183template <typename T> struct LeadingZerosCounter<T, 4> {
184 static unsigned count(T Val, ZeroBehavior ZB) {
185 if (ZB != ZB_Undefined && Val == 0)
186 return 32;
187
188#if __has_builtin(__builtin_clz)1 || defined(__GNUC__4)
189 return __builtin_clz(Val);
190#elif defined(_MSC_VER)
191 unsigned long Index;
192 _BitScanReverse(&Index, Val);
193 return Index ^ 31;
194#endif
195 }
196};
197
198#if !defined(_MSC_VER) || defined(_M_X64)
199template <typename T> struct LeadingZerosCounter<T, 8> {
200 static unsigned count(T Val, ZeroBehavior ZB) {
201 if (ZB != ZB_Undefined && Val == 0)
202 return 64;
203
204#if __has_builtin(__builtin_clzll)1 || defined(__GNUC__4)
205 return __builtin_clzll(Val);
206#elif defined(_MSC_VER)
207 unsigned long Index;
208 _BitScanReverse64(&Index, Val);
209 return Index ^ 63;
210#endif
211 }
212};
213#endif
214#endif
215} // namespace detail
216
217/// Count number of 0's from the most significant bit to the least
218/// stopping at the first 1.
219///
220/// Only unsigned integral types are allowed.
221///
222/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
223/// valid arguments.
224template <typename T>
225unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
226 static_assert(std::numeric_limits<T>::is_integer &&
227 !std::numeric_limits<T>::is_signed,
228 "Only unsigned integral types are allowed.");
229 return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
230}
231
232/// Get the index of the first set bit starting from the least
233/// significant bit.
234///
235/// Only unsigned integral types are allowed.
236///
237/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
238/// valid arguments.
239template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
240 if (ZB == ZB_Max && Val == 0)
241 return std::numeric_limits<T>::max();
242
243 return countTrailingZeros(Val, ZB_Undefined);
244}
245
246/// Create a bitmask with the N right-most bits set to 1, and all other
247/// bits set to 0. Only unsigned types are allowed.
248template <typename T> T maskTrailingOnes(unsigned N) {
249 static_assert(std::is_unsigned<T>::value, "Invalid type!");
250 const unsigned Bits = CHAR_BIT8 * sizeof(T);
251 assert(N <= Bits && "Invalid bit index")((void)0);
252 return N == 0 ? 0 : (T(-1) >> (Bits - N));
253}
254
255/// Create a bitmask with the N left-most bits set to 1, and all other
256/// bits set to 0. Only unsigned types are allowed.
257template <typename T> T maskLeadingOnes(unsigned N) {
258 return ~maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
259}
260
261/// Create a bitmask with the N right-most bits set to 0, and all other
262/// bits set to 1. Only unsigned types are allowed.
263template <typename T> T maskTrailingZeros(unsigned N) {
264 return maskLeadingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
265}
266
267/// Create a bitmask with the N left-most bits set to 0, and all other
268/// bits set to 1. Only unsigned types are allowed.
269template <typename T> T maskLeadingZeros(unsigned N) {
270 return maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
271}
272
273/// Get the index of the last set bit starting from the least
274/// significant bit.
275///
276/// Only unsigned integral types are allowed.
277///
278/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
279/// valid arguments.
280template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
281 if (ZB == ZB_Max && Val == 0)
282 return std::numeric_limits<T>::max();
283
284 // Use ^ instead of - because both gcc and llvm can remove the associated ^
285 // in the __builtin_clz intrinsic on x86.
286 return countLeadingZeros(Val, ZB_Undefined) ^
287 (std::numeric_limits<T>::digits - 1);
288}
289
290/// Macro compressed bit reversal table for 256 bits.
291///
292/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
293static const unsigned char BitReverseTable256[256] = {
294#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
295#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
296#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
297 R6(0), R6(2), R6(1), R6(3)
298#undef R2
299#undef R4
300#undef R6
301};
302
303/// Reverse the bits in \p Val.
304template <typename T>
305T reverseBits(T Val) {
306 unsigned char in[sizeof(Val)];
307 unsigned char out[sizeof(Val)];
308 std::memcpy(in, &Val, sizeof(Val));
309 for (unsigned i = 0; i < sizeof(Val); ++i)
310 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
311 std::memcpy(&Val, out, sizeof(Val));
312 return Val;
313}
314
315#if __has_builtin(__builtin_bitreverse8)1
316template<>
317inline uint8_t reverseBits<uint8_t>(uint8_t Val) {
318 return __builtin_bitreverse8(Val);
319}
320#endif
321
322#if __has_builtin(__builtin_bitreverse16)1
323template<>
324inline uint16_t reverseBits<uint16_t>(uint16_t Val) {
325 return __builtin_bitreverse16(Val);
326}
327#endif
328
329#if __has_builtin(__builtin_bitreverse32)1
330template<>
331inline uint32_t reverseBits<uint32_t>(uint32_t Val) {
332 return __builtin_bitreverse32(Val);
333}
334#endif
335
336#if __has_builtin(__builtin_bitreverse64)1
337template<>
338inline uint64_t reverseBits<uint64_t>(uint64_t Val) {
339 return __builtin_bitreverse64(Val);
340}
341#endif
342
343// NOTE: The following support functions use the _32/_64 extensions instead of
344// type overloading so that signed and unsigned integers can be used without
345// ambiguity.
346
347/// Return the high 32 bits of a 64 bit value.
348constexpr inline uint32_t Hi_32(uint64_t Value) {
349 return static_cast<uint32_t>(Value >> 32);
350}
351
352/// Return the low 32 bits of a 64 bit value.
353constexpr inline uint32_t Lo_32(uint64_t Value) {
354 return static_cast<uint32_t>(Value);
355}
356
357/// Make a 64-bit integer from a high / low pair of 32-bit integers.
358constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
359 return ((uint64_t)High << 32) | (uint64_t)Low;
360}
361
362/// Checks if an integer fits into the given bit width.
363template <unsigned N> constexpr inline bool isInt(int64_t x) {
364 return N >= 64 || (-(INT64_C(1)1LL<<(N-1)) <= x && x < (INT64_C(1)1LL<<(N-1)));
365}
366// Template specializations to get better code for common cases.
367template <> constexpr inline bool isInt<8>(int64_t x) {
368 return static_cast<int8_t>(x) == x;
369}
370template <> constexpr inline bool isInt<16>(int64_t x) {
371 return static_cast<int16_t>(x) == x;
372}
373template <> constexpr inline bool isInt<32>(int64_t x) {
374 return static_cast<int32_t>(x) == x;
375}
376
377/// Checks if a signed integer is an N bit number shifted left by S.
378template <unsigned N, unsigned S>
379constexpr inline bool isShiftedInt(int64_t x) {
380 static_assert(
381 N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
382 static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
383 return isInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0);
384}
385
386/// Checks if an unsigned integer fits into the given bit width.
387///
388/// This is written as two functions rather than as simply
389///
390/// return N >= 64 || X < (UINT64_C(1) << N);
391///
392/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
393/// left too many places.
394template <unsigned N>
395constexpr inline std::enable_if_t<(N < 64), bool> isUInt(uint64_t X) {
396 static_assert(N > 0, "isUInt<0> doesn't make sense");
397 return X < (UINT64_C(1)1ULL << (N));
398}
399template <unsigned N>
400constexpr inline std::enable_if_t<N >= 64, bool> isUInt(uint64_t) {
401 return true;
402}
403
404// Template specializations to get better code for common cases.
405template <> constexpr inline bool isUInt<8>(uint64_t x) {
406 return static_cast<uint8_t>(x) == x;
407}
408template <> constexpr inline bool isUInt<16>(uint64_t x) {
409 return static_cast<uint16_t>(x) == x;
410}
411template <> constexpr inline bool isUInt<32>(uint64_t x) {
412 return static_cast<uint32_t>(x) == x;
413}
414
415/// Checks if a unsigned integer is an N bit number shifted left by S.
416template <unsigned N, unsigned S>
417constexpr inline bool isShiftedUInt(uint64_t x) {
418 static_assert(
419 N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
420 static_assert(N + S <= 64,
421 "isShiftedUInt<N, S> with N + S > 64 is too wide.");
422 // Per the two static_asserts above, S must be strictly less than 64. So
423 // 1 << S is not undefined behavior.
424 return isUInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0);
425}
426
427/// Gets the maximum value for a N-bit unsigned integer.
428inline uint64_t maxUIntN(uint64_t N) {
429 assert(N > 0 && N <= 64 && "integer width out of range")((void)0);
430
431 // uint64_t(1) << 64 is undefined behavior, so we can't do
432 // (uint64_t(1) << N) - 1
433 // without checking first that N != 64. But this works and doesn't have a
434 // branch.
435 return UINT64_MAX0xffffffffffffffffULL >> (64 - N);
436}
437
438/// Gets the minimum value for a N-bit signed integer.
439inline int64_t minIntN(int64_t N) {
440 assert(N > 0 && N <= 64 && "integer width out of range")((void)0);
441
442 return UINT64_C(1)1ULL + ~(UINT64_C(1)1ULL << (N - 1));
443}
444
445/// Gets the maximum value for a N-bit signed integer.
446inline int64_t maxIntN(int64_t N) {
447 assert(N > 0 && N <= 64 && "integer width out of range")((void)0);
448
449 // This relies on two's complement wraparound when N == 64, so we convert to
450 // int64_t only at the very end to avoid UB.
451 return (UINT64_C(1)1ULL << (N - 1)) - 1;
452}
453
454/// Checks if an unsigned integer fits into the given (dynamic) bit width.
455inline bool isUIntN(unsigned N, uint64_t x) {
456 return N >= 64 || x <= maxUIntN(N);
457}
458
459/// Checks if an signed integer fits into the given (dynamic) bit width.
460inline bool isIntN(unsigned N, int64_t x) {
461 return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
462}
463
464/// Return true if the argument is a non-empty sequence of ones starting at the
465/// least significant bit with the remainder zero (32 bit version).
466/// Ex. isMask_32(0x0000FFFFU) == true.
467constexpr inline bool isMask_32(uint32_t Value) {
468 return Value && ((Value + 1) & Value) == 0;
469}
470
471/// Return true if the argument is a non-empty sequence of ones starting at the
472/// least significant bit with the remainder zero (64 bit version).
473constexpr inline bool isMask_64(uint64_t Value) {
474 return Value && ((Value + 1) & Value) == 0;
475}
476
477/// Return true if the argument contains a non-empty sequence of ones with the
478/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
479constexpr inline bool isShiftedMask_32(uint32_t Value) {
480 return Value && isMask_32((Value - 1) | Value);
481}
482
483/// Return true if the argument contains a non-empty sequence of ones with the
484/// remainder zero (64 bit version.)
485constexpr inline bool isShiftedMask_64(uint64_t Value) {
486 return Value && isMask_64((Value - 1) | Value);
487}
488
489/// Return true if the argument is a power of two > 0.
490/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
491constexpr inline bool isPowerOf2_32(uint32_t Value) {
492 return Value && !(Value & (Value - 1));
493}
494
495/// Return true if the argument is a power of two > 0 (64 bit edition.)
496constexpr inline bool isPowerOf2_64(uint64_t Value) {
497 return Value && !(Value & (Value - 1));
498}
499
500/// Count the number of ones from the most significant bit to the first
501/// zero bit.
502///
503/// Ex. countLeadingOnes(0xFF0FFF00) == 8.
504/// Only unsigned integral types are allowed.
505///
506/// \param ZB the behavior on an input of all ones. Only ZB_Width and
507/// ZB_Undefined are valid arguments.
508template <typename T>
509unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
510 static_assert(std::numeric_limits<T>::is_integer &&
511 !std::numeric_limits<T>::is_signed,
512 "Only unsigned integral types are allowed.");
513 return countLeadingZeros<T>(~Value, ZB);
514}
515
516/// Count the number of ones from the least significant bit to the first
517/// zero bit.
518///
519/// Ex. countTrailingOnes(0x00FF00FF) == 8.
520/// Only unsigned integral types are allowed.
521///
522/// \param ZB the behavior on an input of all ones. Only ZB_Width and
523/// ZB_Undefined are valid arguments.
524template <typename T>
525unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
526 static_assert(std::numeric_limits<T>::is_integer &&
527 !std::numeric_limits<T>::is_signed,
528 "Only unsigned integral types are allowed.");
529 return countTrailingZeros<T>(~Value, ZB);
530}
531
532namespace detail {
533template <typename T, std::size_t SizeOfT> struct PopulationCounter {
534 static unsigned count(T Value) {
535 // Generic version, forward to 32 bits.
536 static_assert(SizeOfT <= 4, "Not implemented!");
537#if defined(__GNUC__4)
538 return __builtin_popcount(Value);
539#else
540 uint32_t v = Value;
541 v = v - ((v >> 1) & 0x55555555);
542 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
543 return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
544#endif
545 }
546};
547
548template <typename T> struct PopulationCounter<T, 8> {
549 static unsigned count(T Value) {
550#if defined(__GNUC__4)
551 return __builtin_popcountll(Value);
552#else
553 uint64_t v = Value;
554 v = v - ((v >> 1) & 0x5555555555555555ULL);
555 v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
556 v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
557 return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
558#endif
559 }
560};
561} // namespace detail
562
563/// Count the number of set bits in a value.
564/// Ex. countPopulation(0xF000F000) = 8
565/// Returns 0 if the word is zero.
566template <typename T>
567inline unsigned countPopulation(T Value) {
568 static_assert(std::numeric_limits<T>::is_integer &&
569 !std::numeric_limits<T>::is_signed,
570 "Only unsigned integral types are allowed.");
571 return detail::PopulationCounter<T, sizeof(T)>::count(Value);
572}
573
574/// Compile time Log2.
575/// Valid only for positive powers of two.
576template <size_t kValue> constexpr inline size_t CTLog2() {
577 static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue),
578 "Value is not a valid power of 2");
579 return 1 + CTLog2<kValue / 2>();
580}
581
582template <> constexpr inline size_t CTLog2<1>() { return 0; }
583
584/// Return the log base 2 of the specified value.
585inline double Log2(double Value) {
586#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
587 return __builtin_log(Value) / __builtin_log(2.0);
588#else
589 return log2(Value);
590#endif
591}
592
593/// Return the floor log base 2 of the specified value, -1 if the value is zero.
594/// (32 bit edition.)
595/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
596inline unsigned Log2_32(uint32_t Value) {
597 return 31 - countLeadingZeros(Value);
598}
599
600/// Return the floor log base 2 of the specified value, -1 if the value is zero.
601/// (64 bit edition.)
602inline unsigned Log2_64(uint64_t Value) {
603 return 63 - countLeadingZeros(Value);
21
Returning the value 4294967295
604}
605
606/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
607/// (32 bit edition).
608/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
609inline unsigned Log2_32_Ceil(uint32_t Value) {
610 return 32 - countLeadingZeros(Value - 1);
611}
612
613/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
614/// (64 bit edition.)
615inline unsigned Log2_64_Ceil(uint64_t Value) {
616 return 64 - countLeadingZeros(Value - 1);
617}
618
619/// Return the greatest common divisor of the values using Euclid's algorithm.
620template <typename T>
621inline T greatestCommonDivisor(T A, T B) {
622 while (B) {
623 T Tmp = B;
624 B = A % B;
625 A = Tmp;
626 }
627 return A;
628}
629
630inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
631 return greatestCommonDivisor<uint64_t>(A, B);
632}
633
634/// This function takes a 64-bit integer and returns the bit equivalent double.
635inline double BitsToDouble(uint64_t Bits) {
636 double D;
637 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
638 memcpy(&D, &Bits, sizeof(Bits));
639 return D;
640}
641
642/// This function takes a 32-bit integer and returns the bit equivalent float.
643inline float BitsToFloat(uint32_t Bits) {
644 float F;
645 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
646 memcpy(&F, &Bits, sizeof(Bits));
647 return F;
648}
649
650/// This function takes a double and returns the bit equivalent 64-bit integer.
651/// Note that copying doubles around changes the bits of NaNs on some hosts,
652/// notably x86, so this routine cannot be used if these bits are needed.
653inline uint64_t DoubleToBits(double Double) {
654 uint64_t Bits;
655 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
656 memcpy(&Bits, &Double, sizeof(Double));
657 return Bits;
658}
659
660/// This function takes a float and returns the bit equivalent 32-bit integer.
661/// Note that copying floats around changes the bits of NaNs on some hosts,
662/// notably x86, so this routine cannot be used if these bits are needed.
663inline uint32_t FloatToBits(float Float) {
664 uint32_t Bits;
665 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
666 memcpy(&Bits, &Float, sizeof(Float));
667 return Bits;
668}
669
670/// A and B are either alignments or offsets. Return the minimum alignment that
671/// may be assumed after adding the two together.
672constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
673 // The largest power of 2 that divides both A and B.
674 //
675 // Replace "-Value" by "1+~Value" in the following commented code to avoid
676 // MSVC warning C4146
677 // return (A | B) & -(A | B);
678 return (A | B) & (1 + ~(A | B));
679}
680
681/// Returns the next power of two (in 64-bits) that is strictly greater than A.
682/// Returns zero on overflow.
683inline uint64_t NextPowerOf2(uint64_t A) {
684 A |= (A >> 1);
685 A |= (A >> 2);
686 A |= (A >> 4);
687 A |= (A >> 8);
688 A |= (A >> 16);
689 A |= (A >> 32);
690 return A + 1;
691}
692
693/// Returns the power of two which is less than or equal to the given value.
694/// Essentially, it is a floor operation across the domain of powers of two.
695inline uint64_t PowerOf2Floor(uint64_t A) {
696 if (!A) return 0;
697 return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
698}
699
700/// Returns the power of two which is greater than or equal to the given value.
701/// Essentially, it is a ceil operation across the domain of powers of two.
702inline uint64_t PowerOf2Ceil(uint64_t A) {
703 if (!A)
704 return 0;
705 return NextPowerOf2(A - 1);
706}
707
708/// Returns the next integer (mod 2**64) that is greater than or equal to
709/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
710///
711/// If non-zero \p Skew is specified, the return value will be a minimal
712/// integer that is greater than or equal to \p Value and equal to
713/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
714/// \p Align, its value is adjusted to '\p Skew mod \p Align'.
715///
716/// Examples:
717/// \code
718/// alignTo(5, 8) = 8
719/// alignTo(17, 8) = 24
720/// alignTo(~0LL, 8) = 0
721/// alignTo(321, 255) = 510
722///
723/// alignTo(5, 8, 7) = 7
724/// alignTo(17, 8, 1) = 17
725/// alignTo(~0LL, 8, 3) = 3
726/// alignTo(321, 255, 42) = 552
727/// \endcode
728inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
729 assert(Align != 0u && "Align can't be 0.")((void)0);
730 Skew %= Align;
731 return (Value + Align - 1 - Skew) / Align * Align + Skew;
732}
733
734/// Returns the next integer (mod 2**64) that is greater than or equal to
735/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
736template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
737 static_assert(Align != 0u, "Align must be non-zero");
738 return (Value + Align - 1) / Align * Align;
739}
740
741/// Returns the integer ceil(Numerator / Denominator).
742inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
743 return alignTo(Numerator, Denominator) / Denominator;
744}
745
746/// Returns the integer nearest(Numerator / Denominator).
747inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) {
748 return (Numerator + (Denominator / 2)) / Denominator;
749}
750
751/// Returns the largest uint64_t less than or equal to \p Value and is
752/// \p Skew mod \p Align. \p Align must be non-zero
753inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
754 assert(Align != 0u && "Align can't be 0.")((void)0);
755 Skew %= Align;
756 return (Value - Skew) / Align * Align + Skew;
757}
758
759/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
760/// Requires 0 < B <= 32.
761template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
762 static_assert(B > 0, "Bit width can't be 0.");
763 static_assert(B <= 32, "Bit width out of range.");
764 return int32_t(X << (32 - B)) >> (32 - B);
765}
766
767/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
768/// Requires 0 < B <= 32.
769inline int32_t SignExtend32(uint32_t X, unsigned B) {
770 assert(B > 0 && "Bit width can't be 0.")((void)0);
771 assert(B <= 32 && "Bit width out of range.")((void)0);
772 return int32_t(X << (32 - B)) >> (32 - B);
773}
774
775/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
776/// Requires 0 < B <= 64.
777template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
778 static_assert(B > 0, "Bit width can't be 0.");
779 static_assert(B <= 64, "Bit width out of range.");
780 return int64_t(x << (64 - B)) >> (64 - B);
781}
782
783/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
784/// Requires 0 < B <= 64.
785inline int64_t SignExtend64(uint64_t X, unsigned B) {
786 assert(B > 0 && "Bit width can't be 0.")((void)0);
787 assert(B <= 64 && "Bit width out of range.")((void)0);
788 return int64_t(X << (64 - B)) >> (64 - B);
789}
790
791/// Subtract two unsigned integers, X and Y, of type T and return the absolute
792/// value of the result.
793template <typename T>
794std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) {
795 return X > Y ? (X - Y) : (Y - X);
796}
797
798/// Add two unsigned integers, X and Y, of type T. Clamp the result to the
799/// maximum representable value of T on overflow. ResultOverflowed indicates if
800/// the result is larger than the maximum representable value of type T.
801template <typename T>
802std::enable_if_t<std::is_unsigned<T>::value, T>
803SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
804 bool Dummy;
805 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
806 // Hacker's Delight, p. 29
807 T Z = X + Y;
808 Overflowed = (Z < X || Z < Y);
809 if (Overflowed)
810 return std::numeric_limits<T>::max();
811 else
812 return Z;
813}
814
815/// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
816/// maximum representable value of T on overflow. ResultOverflowed indicates if
817/// the result is larger than the maximum representable value of type T.
818template <typename T>
819std::enable_if_t<std::is_unsigned<T>::value, T>
820SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
821 bool Dummy;
822 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
823
824 // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
825 // because it fails for uint16_t (where multiplication can have undefined
826 // behavior due to promotion to int), and requires a division in addition
827 // to the multiplication.
828
829 Overflowed = false;
830
831 // Log2(Z) would be either Log2Z or Log2Z + 1.
832 // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
833 // will necessarily be less than Log2Max as desired.
834 int Log2Z = Log2_64(X) + Log2_64(Y);
835 const T Max = std::numeric_limits<T>::max();
836 int Log2Max = Log2_64(Max);
837 if (Log2Z < Log2Max) {
838 return X * Y;
839 }
840 if (Log2Z > Log2Max) {
841 Overflowed = true;
842 return Max;
843 }
844
845 // We're going to use the top bit, and maybe overflow one
846 // bit past it. Multiply all but the bottom bit then add
847 // that on at the end.
848 T Z = (X >> 1) * Y;
849 if (Z & ~(Max >> 1)) {
850 Overflowed = true;
851 return Max;
852 }
853 Z <<= 1;
854 if (X & 1)
855 return SaturatingAdd(Z, Y, ResultOverflowed);
856
857 return Z;
858}
859
860/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
861/// the product. Clamp the result to the maximum representable value of T on
862/// overflow. ResultOverflowed indicates if the result is larger than the
863/// maximum representable value of type T.
864template <typename T>
865std::enable_if_t<std::is_unsigned<T>::value, T>
866SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
867 bool Dummy;
868 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
869
870 T Product = SaturatingMultiply(X, Y, &Overflowed);
871 if (Overflowed)
872 return Product;
873
874 return SaturatingAdd(A, Product, &Overflowed);
875}
876
877/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
878extern const float huge_valf;
879
880
881/// Add two signed integers, computing the two's complement truncated result,
882/// returning true if overflow occured.
883template <typename T>
884std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) {
885#if __has_builtin(__builtin_add_overflow)1
886 return __builtin_add_overflow(X, Y, &Result);
887#else
888 // Perform the unsigned addition.
889 using U = std::make_unsigned_t<T>;
890 const U UX = static_cast<U>(X);
891 const U UY = static_cast<U>(Y);
892 const U UResult = UX + UY;
893
894 // Convert to signed.
895 Result = static_cast<T>(UResult);
896
897 // Adding two positive numbers should result in a positive number.
898 if (X > 0 && Y > 0)
899 return Result <= 0;
900 // Adding two negatives should result in a negative number.
901 if (X < 0 && Y < 0)
902 return Result >= 0;
903 return false;
904#endif
905}
906
907/// Subtract two signed integers, computing the two's complement truncated
908/// result, returning true if an overflow ocurred.
909template <typename T>
910std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) {
911#if __has_builtin(__builtin_sub_overflow)1
912 return __builtin_sub_overflow(X, Y, &Result);
913#else
914 // Perform the unsigned addition.
915 using U = std::make_unsigned_t<T>;
916 const U UX = static_cast<U>(X);
917 const U UY = static_cast<U>(Y);
918 const U UResult = UX - UY;
919
920 // Convert to signed.
921 Result = static_cast<T>(UResult);
922
923 // Subtracting a positive number from a negative results in a negative number.
924 if (X <= 0 && Y > 0)
925 return Result >= 0;
926 // Subtracting a negative number from a positive results in a positive number.
927 if (X >= 0 && Y < 0)
928 return Result <= 0;
929 return false;
930#endif
931}
932
933/// Multiply two signed integers, computing the two's complement truncated
934/// result, returning true if an overflow ocurred.
935template <typename T>
936std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) {
937 // Perform the unsigned multiplication on absolute values.
938 using U = std::make_unsigned_t<T>;
939 const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
940 const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
941 const U UResult = UX * UY;
942
943 // Convert to signed.
944 const bool IsNegative = (X < 0) ^ (Y < 0);
945 Result = IsNegative ? (0 - UResult) : UResult;
946
947 // If any of the args was 0, result is 0 and no overflow occurs.
948 if (UX == 0 || UY == 0)
949 return false;
950
951 // UX and UY are in [1, 2^n], where n is the number of digits.
952 // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
953 // positive) divided by an argument compares to the other.
954 if (IsNegative)
955 return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY;
956 else
957 return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY;
958}
959
960} // End llvm namespace
961
962#endif