Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h
Warning:line 85, column 47
The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name AtomicExpandPass.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -fhalf-no-semantic-interposition -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -D PIC -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -D_RET_PROTECTOR -ret-protector -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/CodeGen/AtomicExpandPass.cpp

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/CodeGen/AtomicExpandPass.cpp

1//===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a pass (at IR level) to replace atomic instructions with
10// __atomic_* library calls, or target specific instruction which implement the
11// same semantics in a way which better fits the target backend. This can
12// include the use of (intrinsic-based) load-linked/store-conditional loops,
13// AtomicCmpXchg, or type coercions.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/CodeGen/AtomicExpandUtils.h"
21#include "llvm/CodeGen/RuntimeLibcalls.h"
22#include "llvm/CodeGen/TargetLowering.h"
23#include "llvm/CodeGen/TargetPassConfig.h"
24#include "llvm/CodeGen/TargetSubtargetInfo.h"
25#include "llvm/CodeGen/ValueTypes.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/BasicBlock.h"
28#include "llvm/IR/Constant.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/InstIterator.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/Module.h"
38#include "llvm/IR/Type.h"
39#include "llvm/IR/User.h"
40#include "llvm/IR/Value.h"
41#include "llvm/InitializePasses.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/AtomicOrdering.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/Target/TargetMachine.h"
49#include <cassert>
50#include <cstdint>
51#include <iterator>
52
53using namespace llvm;
54
55#define DEBUG_TYPE"atomic-expand" "atomic-expand"
56
57namespace {
58
59 class AtomicExpand: public FunctionPass {
60 const TargetLowering *TLI = nullptr;
61
62 public:
63 static char ID; // Pass identification, replacement for typeid
64
65 AtomicExpand() : FunctionPass(ID) {
66 initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
67 }
68
69 bool runOnFunction(Function &F) override;
70
71 private:
72 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
73 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
74 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
75 bool tryExpandAtomicLoad(LoadInst *LI);
76 bool expandAtomicLoadToLL(LoadInst *LI);
77 bool expandAtomicLoadToCmpXchg(LoadInst *LI);
78 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
79 bool expandAtomicStore(StoreInst *SI);
80 bool tryExpandAtomicRMW(AtomicRMWInst *AI);
81 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI);
82 Value *
83 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
84 Align AddrAlign, AtomicOrdering MemOpOrder,
85 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
86 void expandAtomicOpToLLSC(
87 Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign,
88 AtomicOrdering MemOpOrder,
89 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
90 void expandPartwordAtomicRMW(
91 AtomicRMWInst *I,
92 TargetLoweringBase::AtomicExpansionKind ExpansionKind);
93 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
94 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I);
95 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
96 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
97
98 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
99 static Value *insertRMWCmpXchgLoop(
100 IRBuilder<> &Builder, Type *ResultType, Value *Addr, Align AddrAlign,
101 AtomicOrdering MemOpOrder, SyncScope::ID SSID,
102 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
103 CreateCmpXchgInstFun CreateCmpXchg);
104 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
105
106 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
107 bool isIdempotentRMW(AtomicRMWInst *RMWI);
108 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
109
110 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment,
111 Value *PointerOperand, Value *ValueOperand,
112 Value *CASExpected, AtomicOrdering Ordering,
113 AtomicOrdering Ordering2,
114 ArrayRef<RTLIB::Libcall> Libcalls);
115 void expandAtomicLoadToLibcall(LoadInst *LI);
116 void expandAtomicStoreToLibcall(StoreInst *LI);
117 void expandAtomicRMWToLibcall(AtomicRMWInst *I);
118 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
119
120 friend bool
121 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
122 CreateCmpXchgInstFun CreateCmpXchg);
123 };
124
125} // end anonymous namespace
126
127char AtomicExpand::ID = 0;
128
129char &llvm::AtomicExpandID = AtomicExpand::ID;
130
131INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions",static void *initializeAtomicExpandPassOnce(PassRegistry &
Registry) { PassInfo *PI = new PassInfo( "Expand Atomic instructions"
, "atomic-expand", &AtomicExpand::ID, PassInfo::NormalCtor_t
(callDefaultCtor<AtomicExpand>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeAtomicExpandPassFlag; void llvm::initializeAtomicExpandPass
(PassRegistry &Registry) { llvm::call_once(InitializeAtomicExpandPassFlag
, initializeAtomicExpandPassOnce, std::ref(Registry)); }
132 false, false)static void *initializeAtomicExpandPassOnce(PassRegistry &
Registry) { PassInfo *PI = new PassInfo( "Expand Atomic instructions"
, "atomic-expand", &AtomicExpand::ID, PassInfo::NormalCtor_t
(callDefaultCtor<AtomicExpand>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeAtomicExpandPassFlag; void llvm::initializeAtomicExpandPass
(PassRegistry &Registry) { llvm::call_once(InitializeAtomicExpandPassFlag
, initializeAtomicExpandPassOnce, std::ref(Registry)); }
133
134FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
135
136// Helper functions to retrieve the size of atomic instructions.
137static unsigned getAtomicOpSize(LoadInst *LI) {
138 const DataLayout &DL = LI->getModule()->getDataLayout();
139 return DL.getTypeStoreSize(LI->getType());
140}
141
142static unsigned getAtomicOpSize(StoreInst *SI) {
143 const DataLayout &DL = SI->getModule()->getDataLayout();
144 return DL.getTypeStoreSize(SI->getValueOperand()->getType());
145}
146
147static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
148 const DataLayout &DL = RMWI->getModule()->getDataLayout();
149 return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
150}
151
152static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
153 const DataLayout &DL = CASI->getModule()->getDataLayout();
154 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
155}
156
157// Determine if a particular atomic operation has a supported size,
158// and is of appropriate alignment, to be passed through for target
159// lowering. (Versus turning into a __atomic libcall)
160template <typename Inst>
161static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
162 unsigned Size = getAtomicOpSize(I);
163 Align Alignment = I->getAlign();
164 return Alignment >= Size &&
1
The value 255 is assigned to 'Lhs.ShiftValue'
2
Calling 'operator>='
165 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
166}
167
168bool AtomicExpand::runOnFunction(Function &F) {
169 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
170 if (!TPC)
171 return false;
172
173 auto &TM = TPC->getTM<TargetMachine>();
174 if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
175 return false;
176 TLI = TM.getSubtargetImpl(F)->getTargetLowering();
177
178 SmallVector<Instruction *, 1> AtomicInsts;
179
180 // Changing control-flow while iterating through it is a bad idea, so gather a
181 // list of all atomic instructions before we start.
182 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
183 Instruction *I = &*II;
184 if (I->isAtomic() && !isa<FenceInst>(I))
185 AtomicInsts.push_back(I);
186 }
187
188 bool MadeChange = false;
189 for (auto I : AtomicInsts) {
190 auto LI = dyn_cast<LoadInst>(I);
191 auto SI = dyn_cast<StoreInst>(I);
192 auto RMWI = dyn_cast<AtomicRMWInst>(I);
193 auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
194 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction")((void)0);
195
196 // If the Size/Alignment is not supported, replace with a libcall.
197 if (LI) {
198 if (!atomicSizeSupported(TLI, LI)) {
199 expandAtomicLoadToLibcall(LI);
200 MadeChange = true;
201 continue;
202 }
203 } else if (SI) {
204 if (!atomicSizeSupported(TLI, SI)) {
205 expandAtomicStoreToLibcall(SI);
206 MadeChange = true;
207 continue;
208 }
209 } else if (RMWI) {
210 if (!atomicSizeSupported(TLI, RMWI)) {
211 expandAtomicRMWToLibcall(RMWI);
212 MadeChange = true;
213 continue;
214 }
215 } else if (CASI) {
216 if (!atomicSizeSupported(TLI, CASI)) {
217 expandAtomicCASToLibcall(CASI);
218 MadeChange = true;
219 continue;
220 }
221 }
222
223 if (TLI->shouldInsertFencesForAtomic(I)) {
224 auto FenceOrdering = AtomicOrdering::Monotonic;
225 if (LI && isAcquireOrStronger(LI->getOrdering())) {
226 FenceOrdering = LI->getOrdering();
227 LI->setOrdering(AtomicOrdering::Monotonic);
228 } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
229 FenceOrdering = SI->getOrdering();
230 SI->setOrdering(AtomicOrdering::Monotonic);
231 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
232 isAcquireOrStronger(RMWI->getOrdering()))) {
233 FenceOrdering = RMWI->getOrdering();
234 RMWI->setOrdering(AtomicOrdering::Monotonic);
235 } else if (CASI &&
236 TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
237 TargetLoweringBase::AtomicExpansionKind::None &&
238 (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
239 isAcquireOrStronger(CASI->getSuccessOrdering()) ||
240 isAcquireOrStronger(CASI->getFailureOrdering()))) {
241 // If a compare and swap is lowered to LL/SC, we can do smarter fence
242 // insertion, with a stronger one on the success path than on the
243 // failure path. As a result, fence insertion is directly done by
244 // expandAtomicCmpXchg in that case.
245 FenceOrdering = CASI->getMergedOrdering();
246 CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
247 CASI->setFailureOrdering(AtomicOrdering::Monotonic);
248 }
249
250 if (FenceOrdering != AtomicOrdering::Monotonic) {
251 MadeChange |= bracketInstWithFences(I, FenceOrdering);
252 }
253 }
254
255 if (LI) {
256 if (LI->getType()->isFloatingPointTy()) {
257 // TODO: add a TLI hook to control this so that each target can
258 // convert to lowering the original type one at a time.
259 LI = convertAtomicLoadToIntegerType(LI);
260 assert(LI->getType()->isIntegerTy() && "invariant broken")((void)0);
261 MadeChange = true;
262 }
263
264 MadeChange |= tryExpandAtomicLoad(LI);
265 } else if (SI) {
266 if (SI->getValueOperand()->getType()->isFloatingPointTy()) {
267 // TODO: add a TLI hook to control this so that each target can
268 // convert to lowering the original type one at a time.
269 SI = convertAtomicStoreToIntegerType(SI);
270 assert(SI->getValueOperand()->getType()->isIntegerTy() &&((void)0)
271 "invariant broken")((void)0);
272 MadeChange = true;
273 }
274
275 if (TLI->shouldExpandAtomicStoreInIR(SI))
276 MadeChange |= expandAtomicStore(SI);
277 } else if (RMWI) {
278 // There are two different ways of expanding RMW instructions:
279 // - into a load if it is idempotent
280 // - into a Cmpxchg/LL-SC loop otherwise
281 // we try them in that order.
282
283 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
284 MadeChange = true;
285 } else {
286 AtomicRMWInst::BinOp Op = RMWI->getOperation();
287 if (Op == AtomicRMWInst::Xchg &&
288 RMWI->getValOperand()->getType()->isFloatingPointTy()) {
289 // TODO: add a TLI hook to control this so that each target can
290 // convert to lowering the original type one at a time.
291 RMWI = convertAtomicXchgToIntegerType(RMWI);
292 assert(RMWI->getValOperand()->getType()->isIntegerTy() &&((void)0)
293 "invariant broken")((void)0);
294 MadeChange = true;
295 }
296 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
297 unsigned ValueSize = getAtomicOpSize(RMWI);
298 if (ValueSize < MinCASSize &&
299 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
300 Op == AtomicRMWInst::And)) {
301 RMWI = widenPartwordAtomicRMW(RMWI);
302 MadeChange = true;
303 }
304
305 MadeChange |= tryExpandAtomicRMW(RMWI);
306 }
307 } else if (CASI) {
308 // TODO: when we're ready to make the change at the IR level, we can
309 // extend convertCmpXchgToInteger for floating point too.
310 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&((void)0)
311 "unimplemented - floating point not legal at IR level")((void)0);
312 if (CASI->getCompareOperand()->getType()->isPointerTy() ) {
313 // TODO: add a TLI hook to control this so that each target can
314 // convert to lowering the original type one at a time.
315 CASI = convertCmpXchgToIntegerType(CASI);
316 assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&((void)0)
317 "invariant broken")((void)0);
318 MadeChange = true;
319 }
320
321 MadeChange |= tryExpandAtomicCmpXchg(CASI);
322 }
323 }
324 return MadeChange;
325}
326
327bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
328 IRBuilder<> Builder(I);
329
330 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
331
332 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
333 // We have a guard here because not every atomic operation generates a
334 // trailing fence.
335 if (TrailingFence)
336 TrailingFence->moveAfter(I);
337
338 return (LeadingFence || TrailingFence);
339}
340
341/// Get the iX type with the same bitwidth as T.
342IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
343 const DataLayout &DL) {
344 EVT VT = TLI->getMemValueType(DL, T);
345 unsigned BitWidth = VT.getStoreSizeInBits();
346 assert(BitWidth == VT.getSizeInBits() && "must be a power of two")((void)0);
347 return IntegerType::get(T->getContext(), BitWidth);
348}
349
350/// Convert an atomic load of a non-integral type to an integer load of the
351/// equivalent bitwidth. See the function comment on
352/// convertAtomicStoreToIntegerType for background.
353LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
354 auto *M = LI->getModule();
355 Type *NewTy = getCorrespondingIntegerType(LI->getType(),
356 M->getDataLayout());
357
358 IRBuilder<> Builder(LI);
359
360 Value *Addr = LI->getPointerOperand();
361 Type *PT = PointerType::get(NewTy,
362 Addr->getType()->getPointerAddressSpace());
363 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
364
365 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
366 NewLI->setAlignment(LI->getAlign());
367 NewLI->setVolatile(LI->isVolatile());
368 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
369 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n")do { } while (false);
370
371 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
372 LI->replaceAllUsesWith(NewVal);
373 LI->eraseFromParent();
374 return NewLI;
375}
376
377AtomicRMWInst *
378AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) {
379 auto *M = RMWI->getModule();
380 Type *NewTy =
381 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout());
382
383 IRBuilder<> Builder(RMWI);
384
385 Value *Addr = RMWI->getPointerOperand();
386 Value *Val = RMWI->getValOperand();
387 Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace());
388 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
389 Value *NewVal = Builder.CreateBitCast(Val, NewTy);
390
391 auto *NewRMWI =
392 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal,
393 RMWI->getAlign(), RMWI->getOrdering());
394 NewRMWI->setVolatile(RMWI->isVolatile());
395 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n")do { } while (false);
396
397 Value *NewRVal = Builder.CreateBitCast(NewRMWI, RMWI->getType());
398 RMWI->replaceAllUsesWith(NewRVal);
399 RMWI->eraseFromParent();
400 return NewRMWI;
401}
402
403bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
404 switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
405 case TargetLoweringBase::AtomicExpansionKind::None:
406 return false;
407 case TargetLoweringBase::AtomicExpansionKind::LLSC:
408 expandAtomicOpToLLSC(
409 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(),
410 LI->getOrdering(),
411 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
412 return true;
413 case TargetLoweringBase::AtomicExpansionKind::LLOnly:
414 return expandAtomicLoadToLL(LI);
415 case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
416 return expandAtomicLoadToCmpXchg(LI);
417 default:
418 llvm_unreachable("Unhandled case in tryExpandAtomicLoad")__builtin_unreachable();
419 }
420}
421
422bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
423 IRBuilder<> Builder(LI);
424
425 // On some architectures, load-linked instructions are atomic for larger
426 // sizes than normal loads. For example, the only 64-bit load guaranteed
427 // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
428 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(),
429 LI->getPointerOperand(), LI->getOrdering());
430 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
431
432 LI->replaceAllUsesWith(Val);
433 LI->eraseFromParent();
434
435 return true;
436}
437
438bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
439 IRBuilder<> Builder(LI);
440 AtomicOrdering Order = LI->getOrdering();
441 if (Order == AtomicOrdering::Unordered)
442 Order = AtomicOrdering::Monotonic;
443
444 Value *Addr = LI->getPointerOperand();
445 Type *Ty = LI->getType();
446 Constant *DummyVal = Constant::getNullValue(Ty);
447
448 Value *Pair = Builder.CreateAtomicCmpXchg(
449 Addr, DummyVal, DummyVal, LI->getAlign(), Order,
450 AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
451 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
452
453 LI->replaceAllUsesWith(Loaded);
454 LI->eraseFromParent();
455
456 return true;
457}
458
459/// Convert an atomic store of a non-integral type to an integer store of the
460/// equivalent bitwidth. We used to not support floating point or vector
461/// atomics in the IR at all. The backends learned to deal with the bitcast
462/// idiom because that was the only way of expressing the notion of a atomic
463/// float or vector store. The long term plan is to teach each backend to
464/// instruction select from the original atomic store, but as a migration
465/// mechanism, we convert back to the old format which the backends understand.
466/// Each backend will need individual work to recognize the new format.
467StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
468 IRBuilder<> Builder(SI);
469 auto *M = SI->getModule();
470 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
471 M->getDataLayout());
472 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
473
474 Value *Addr = SI->getPointerOperand();
475 Type *PT = PointerType::get(NewTy,
476 Addr->getType()->getPointerAddressSpace());
477 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
478
479 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
480 NewSI->setAlignment(SI->getAlign());
481 NewSI->setVolatile(SI->isVolatile());
482 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
483 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n")do { } while (false);
484 SI->eraseFromParent();
485 return NewSI;
486}
487
488bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
489 // This function is only called on atomic stores that are too large to be
490 // atomic if implemented as a native store. So we replace them by an
491 // atomic swap, that can be implemented for example as a ldrex/strex on ARM
492 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
493 // It is the responsibility of the target to only signal expansion via
494 // shouldExpandAtomicRMW in cases where this is required and possible.
495 IRBuilder<> Builder(SI);
496 AtomicRMWInst *AI = Builder.CreateAtomicRMW(
497 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(),
498 SI->getAlign(), SI->getOrdering());
499 SI->eraseFromParent();
500
501 // Now we have an appropriate swap instruction, lower it as usual.
502 return tryExpandAtomicRMW(AI);
503}
504
505static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
506 Value *Loaded, Value *NewVal, Align AddrAlign,
507 AtomicOrdering MemOpOrder, SyncScope::ID SSID,
508 Value *&Success, Value *&NewLoaded) {
509 Type *OrigTy = NewVal->getType();
510
511 // This code can go away when cmpxchg supports FP types.
512 bool NeedBitcast = OrigTy->isFloatingPointTy();
513 if (NeedBitcast) {
514 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
515 unsigned AS = Addr->getType()->getPointerAddressSpace();
516 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
517 NewVal = Builder.CreateBitCast(NewVal, IntTy);
518 Loaded = Builder.CreateBitCast(Loaded, IntTy);
519 }
520
521 Value *Pair = Builder.CreateAtomicCmpXchg(
522 Addr, Loaded, NewVal, AddrAlign, MemOpOrder,
523 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
524 Success = Builder.CreateExtractValue(Pair, 1, "success");
525 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
526
527 if (NeedBitcast)
528 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
529}
530
531/// Emit IR to implement the given atomicrmw operation on values in registers,
532/// returning the new value.
533static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
534 Value *Loaded, Value *Inc) {
535 Value *NewVal;
536 switch (Op) {
537 case AtomicRMWInst::Xchg:
538 return Inc;
539 case AtomicRMWInst::Add:
540 return Builder.CreateAdd(Loaded, Inc, "new");
541 case AtomicRMWInst::Sub:
542 return Builder.CreateSub(Loaded, Inc, "new");
543 case AtomicRMWInst::And:
544 return Builder.CreateAnd(Loaded, Inc, "new");
545 case AtomicRMWInst::Nand:
546 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
547 case AtomicRMWInst::Or:
548 return Builder.CreateOr(Loaded, Inc, "new");
549 case AtomicRMWInst::Xor:
550 return Builder.CreateXor(Loaded, Inc, "new");
551 case AtomicRMWInst::Max:
552 NewVal = Builder.CreateICmpSGT(Loaded, Inc);
553 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
554 case AtomicRMWInst::Min:
555 NewVal = Builder.CreateICmpSLE(Loaded, Inc);
556 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
557 case AtomicRMWInst::UMax:
558 NewVal = Builder.CreateICmpUGT(Loaded, Inc);
559 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
560 case AtomicRMWInst::UMin:
561 NewVal = Builder.CreateICmpULE(Loaded, Inc);
562 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
563 case AtomicRMWInst::FAdd:
564 return Builder.CreateFAdd(Loaded, Inc, "new");
565 case AtomicRMWInst::FSub:
566 return Builder.CreateFSub(Loaded, Inc, "new");
567 default:
568 llvm_unreachable("Unknown atomic op")__builtin_unreachable();
569 }
570}
571
572bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
573 switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
574 case TargetLoweringBase::AtomicExpansionKind::None:
575 return false;
576 case TargetLoweringBase::AtomicExpansionKind::LLSC: {
577 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
578 unsigned ValueSize = getAtomicOpSize(AI);
579 if (ValueSize < MinCASSize) {
580 expandPartwordAtomicRMW(AI,
581 TargetLoweringBase::AtomicExpansionKind::LLSC);
582 } else {
583 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
584 return performAtomicOp(AI->getOperation(), Builder, Loaded,
585 AI->getValOperand());
586 };
587 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
588 AI->getAlign(), AI->getOrdering(), PerformOp);
589 }
590 return true;
591 }
592 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
593 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
594 unsigned ValueSize = getAtomicOpSize(AI);
595 if (ValueSize < MinCASSize) {
596 // TODO: Handle atomicrmw fadd/fsub
597 if (AI->getType()->isFloatingPointTy())
598 return false;
599
600 expandPartwordAtomicRMW(AI,
601 TargetLoweringBase::AtomicExpansionKind::CmpXChg);
602 } else {
603 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
604 }
605 return true;
606 }
607 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
608 expandAtomicRMWToMaskedIntrinsic(AI);
609 return true;
610 }
611 default:
612 llvm_unreachable("Unhandled case in tryExpandAtomicRMW")__builtin_unreachable();
613 }
614}
615
616namespace {
617
618struct PartwordMaskValues {
619 // These three fields are guaranteed to be set by createMaskInstrs.
620 Type *WordType = nullptr;
621 Type *ValueType = nullptr;
622 Value *AlignedAddr = nullptr;
623 Align AlignedAddrAlignment;
624 // The remaining fields can be null.
625 Value *ShiftAmt = nullptr;
626 Value *Mask = nullptr;
627 Value *Inv_Mask = nullptr;
628};
629
630LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__))
631raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) {
632 auto PrintObj = [&O](auto *V) {
633 if (V)
634 O << *V;
635 else
636 O << "nullptr";
637 O << '\n';
638 };
639 O << "PartwordMaskValues {\n";
640 O << " WordType: ";
641 PrintObj(PMV.WordType);
642 O << " ValueType: ";
643 PrintObj(PMV.ValueType);
644 O << " AlignedAddr: ";
645 PrintObj(PMV.AlignedAddr);
646 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n';
647 O << " ShiftAmt: ";
648 PrintObj(PMV.ShiftAmt);
649 O << " Mask: ";
650 PrintObj(PMV.Mask);
651 O << " Inv_Mask: ";
652 PrintObj(PMV.Inv_Mask);
653 O << "}\n";
654 return O;
655}
656
657} // end anonymous namespace
658
659/// This is a helper function which builds instructions to provide
660/// values necessary for partword atomic operations. It takes an
661/// incoming address, Addr, and ValueType, and constructs the address,
662/// shift-amounts and masks needed to work with a larger value of size
663/// WordSize.
664///
665/// AlignedAddr: Addr rounded down to a multiple of WordSize
666///
667/// ShiftAmt: Number of bits to right-shift a WordSize value loaded
668/// from AlignAddr for it to have the same value as if
669/// ValueType was loaded from Addr.
670///
671/// Mask: Value to mask with the value loaded from AlignAddr to
672/// include only the part that would've been loaded from Addr.
673///
674/// Inv_Mask: The inverse of Mask.
675static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
676 Type *ValueType, Value *Addr,
677 Align AddrAlign,
678 unsigned MinWordSize) {
679 PartwordMaskValues PMV;
680
681 Module *M = I->getModule();
682 LLVMContext &Ctx = M->getContext();
683 const DataLayout &DL = M->getDataLayout();
684 unsigned ValueSize = DL.getTypeStoreSize(ValueType);
685
686 PMV.ValueType = ValueType;
687 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8)
688 : ValueType;
689 if (PMV.ValueType == PMV.WordType) {
690 PMV.AlignedAddr = Addr;
691 PMV.AlignedAddrAlignment = AddrAlign;
692 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0);
693 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0);
694 return PMV;
695 }
696
697 assert(ValueSize < MinWordSize)((void)0);
698
699 Type *WordPtrType =
700 PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
701
702 // TODO: we could skip some of this if AddrAlign >= MinWordSize.
703 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
704 PMV.AlignedAddr = Builder.CreateIntToPtr(
705 Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType,
706 "AlignedAddr");
707 PMV.AlignedAddrAlignment = Align(MinWordSize);
708
709 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB");
710 if (DL.isLittleEndian()) {
711 // turn bytes into bits
712 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
713 } else {
714 // turn bytes into bits, and count from the other side.
715 PMV.ShiftAmt = Builder.CreateShl(
716 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3);
717 }
718
719 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt");
720 PMV.Mask = Builder.CreateShl(
721 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt,
722 "Mask");
723 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask");
724 return PMV;
725}
726
727static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord,
728 const PartwordMaskValues &PMV) {
729 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch")((void)0);
730 if (PMV.WordType == PMV.ValueType)
731 return WideWord;
732
733 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted");
734 Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted");
735 return Trunc;
736}
737
738static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord,
739 Value *Updated, const PartwordMaskValues &PMV) {
740 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch")((void)0);
741 assert(Updated->getType() == PMV.ValueType && "Value type mismatch")((void)0);
742 if (PMV.WordType == PMV.ValueType)
743 return Updated;
744
745 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended");
746 Value *Shift =
747 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true);
748 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked");
749 Value *Or = Builder.CreateOr(And, Shift, "inserted");
750 return Or;
751}
752
753/// Emit IR to implement a masked version of a given atomicrmw
754/// operation. (That is, only the bits under the Mask should be
755/// affected by the operation)
756static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
757 IRBuilder<> &Builder, Value *Loaded,
758 Value *Shifted_Inc, Value *Inc,
759 const PartwordMaskValues &PMV) {
760 // TODO: update to use
761 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
762 // to merge bits from two values without requiring PMV.Inv_Mask.
763 switch (Op) {
764 case AtomicRMWInst::Xchg: {
765 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
766 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
767 return FinalVal;
768 }
769 case AtomicRMWInst::Or:
770 case AtomicRMWInst::Xor:
771 case AtomicRMWInst::And:
772 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW")__builtin_unreachable();
773 case AtomicRMWInst::Add:
774 case AtomicRMWInst::Sub:
775 case AtomicRMWInst::Nand: {
776 // The other arithmetic ops need to be masked into place.
777 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
778 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
779 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
780 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
781 return FinalVal;
782 }
783 case AtomicRMWInst::Max:
784 case AtomicRMWInst::Min:
785 case AtomicRMWInst::UMax:
786 case AtomicRMWInst::UMin: {
787 // Finally, comparison ops will operate on the full value, so
788 // truncate down to the original size, and expand out again after
789 // doing the operation.
790 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV);
791 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Extract, Inc);
792 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV);
793 return FinalVal;
794 }
795 default:
796 llvm_unreachable("Unknown atomic op")__builtin_unreachable();
797 }
798}
799
800/// Expand a sub-word atomicrmw operation into an appropriate
801/// word-sized operation.
802///
803/// It will create an LL/SC or cmpxchg loop, as appropriate, the same
804/// way as a typical atomicrmw expansion. The only difference here is
805/// that the operation inside of the loop may operate upon only a
806/// part of the value.
807void AtomicExpand::expandPartwordAtomicRMW(
808 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
809 AtomicOrdering MemOpOrder = AI->getOrdering();
810 SyncScope::ID SSID = AI->getSyncScopeID();
811
812 IRBuilder<> Builder(AI);
813
814 PartwordMaskValues PMV =
815 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
816 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
817
818 Value *ValOperand_Shifted =
819 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
820 PMV.ShiftAmt, "ValOperand_Shifted");
821
822 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
823 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
824 ValOperand_Shifted, AI->getValOperand(), PMV);
825 };
826
827 Value *OldResult;
828 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) {
829 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr,
830 PMV.AlignedAddrAlignment, MemOpOrder,
831 SSID, PerformPartwordOp,
832 createCmpXchgInstFun);
833 } else {
834 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC)((void)0);
835 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr,
836 PMV.AlignedAddrAlignment, MemOpOrder,
837 PerformPartwordOp);
838 }
839
840 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
841 AI->replaceAllUsesWith(FinalOldResult);
842 AI->eraseFromParent();
843}
844
845// Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
846AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
847 IRBuilder<> Builder(AI);
848 AtomicRMWInst::BinOp Op = AI->getOperation();
849
850 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||((void)0)
851 Op == AtomicRMWInst::And) &&((void)0)
852 "Unable to widen operation")((void)0);
853
854 PartwordMaskValues PMV =
855 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
856 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
857
858 Value *ValOperand_Shifted =
859 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
860 PMV.ShiftAmt, "ValOperand_Shifted");
861
862 Value *NewOperand;
863
864 if (Op == AtomicRMWInst::And)
865 NewOperand =
866 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
867 else
868 NewOperand = ValOperand_Shifted;
869
870 AtomicRMWInst *NewAI =
871 Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand,
872 PMV.AlignedAddrAlignment, AI->getOrdering());
873
874 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV);
875 AI->replaceAllUsesWith(FinalOldResult);
876 AI->eraseFromParent();
877 return NewAI;
878}
879
880bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
881 // The basic idea here is that we're expanding a cmpxchg of a
882 // smaller memory size up to a word-sized cmpxchg. To do this, we
883 // need to add a retry-loop for strong cmpxchg, so that
884 // modifications to other parts of the word don't cause a spurious
885 // failure.
886
887 // This generates code like the following:
888 // [[Setup mask values PMV.*]]
889 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
890 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
891 // %InitLoaded = load i32* %addr
892 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
893 // br partword.cmpxchg.loop
894 // partword.cmpxchg.loop:
895 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
896 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
897 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
898 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
899 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
900 // i32 %FullWord_NewVal success_ordering failure_ordering
901 // %OldVal = extractvalue { i32, i1 } %NewCI, 0
902 // %Success = extractvalue { i32, i1 } %NewCI, 1
903 // br i1 %Success, label %partword.cmpxchg.end,
904 // label %partword.cmpxchg.failure
905 // partword.cmpxchg.failure:
906 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
907 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
908 // br i1 %ShouldContinue, label %partword.cmpxchg.loop,
909 // label %partword.cmpxchg.end
910 // partword.cmpxchg.end:
911 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
912 // %FinalOldVal = trunc i32 %tmp1 to i8
913 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
914 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
915
916 Value *Addr = CI->getPointerOperand();
917 Value *Cmp = CI->getCompareOperand();
918 Value *NewVal = CI->getNewValOperand();
919
920 BasicBlock *BB = CI->getParent();
921 Function *F = BB->getParent();
922 IRBuilder<> Builder(CI);
923 LLVMContext &Ctx = Builder.getContext();
924
925 BasicBlock *EndBB =
926 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
927 auto FailureBB =
928 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
929 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
930
931 // The split call above "helpfully" added a branch at the end of BB
932 // (to the wrong place).
933 std::prev(BB->end())->eraseFromParent();
934 Builder.SetInsertPoint(BB);
935
936 PartwordMaskValues PMV =
937 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
938 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
939
940 // Shift the incoming values over, into the right location in the word.
941 Value *NewVal_Shifted =
942 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
943 Value *Cmp_Shifted =
944 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
945
946 // Load the entire current word, and mask into place the expected and new
947 // values
948 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
949 InitLoaded->setVolatile(CI->isVolatile());
950 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
951 Builder.CreateBr(LoopBB);
952
953 // partword.cmpxchg.loop:
954 Builder.SetInsertPoint(LoopBB);
955 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
956 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
957
958 // Mask/Or the expected and new values into place in the loaded word.
959 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
960 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
961 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
962 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment,
963 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID());
964 NewCI->setVolatile(CI->isVolatile());
965 // When we're building a strong cmpxchg, we need a loop, so you
966 // might think we could use a weak cmpxchg inside. But, using strong
967 // allows the below comparison for ShouldContinue, and we're
968 // expecting the underlying cmpxchg to be a machine instruction,
969 // which is strong anyways.
970 NewCI->setWeak(CI->isWeak());
971
972 Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
973 Value *Success = Builder.CreateExtractValue(NewCI, 1);
974
975 if (CI->isWeak())
976 Builder.CreateBr(EndBB);
977 else
978 Builder.CreateCondBr(Success, EndBB, FailureBB);
979
980 // partword.cmpxchg.failure:
981 Builder.SetInsertPoint(FailureBB);
982 // Upon failure, verify that the masked-out part of the loaded value
983 // has been modified. If it didn't, abort the cmpxchg, since the
984 // masked-in part must've.
985 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
986 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
987 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
988
989 // Add the second value to the phi from above
990 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
991
992 // partword.cmpxchg.end:
993 Builder.SetInsertPoint(CI);
994
995 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
996 Value *Res = UndefValue::get(CI->getType());
997 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
998 Res = Builder.CreateInsertValue(Res, Success, 1);
999
1000 CI->replaceAllUsesWith(Res);
1001 CI->eraseFromParent();
1002 return true;
1003}
1004
1005void AtomicExpand::expandAtomicOpToLLSC(
1006 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign,
1007 AtomicOrdering MemOpOrder,
1008 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1009 IRBuilder<> Builder(I);
1010 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign,
1011 MemOpOrder, PerformOp);
1012
1013 I->replaceAllUsesWith(Loaded);
1014 I->eraseFromParent();
1015}
1016
1017void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
1018 IRBuilder<> Builder(AI);
1019
1020 PartwordMaskValues PMV =
1021 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
1022 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1023
1024 // The value operand must be sign-extended for signed min/max so that the
1025 // target's signed comparison instructions can be used. Otherwise, just
1026 // zero-ext.
1027 Instruction::CastOps CastOp = Instruction::ZExt;
1028 AtomicRMWInst::BinOp RMWOp = AI->getOperation();
1029 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
1030 CastOp = Instruction::SExt;
1031
1032 Value *ValOperand_Shifted = Builder.CreateShl(
1033 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
1034 PMV.ShiftAmt, "ValOperand_Shifted");
1035 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
1036 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
1037 AI->getOrdering());
1038 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
1039 AI->replaceAllUsesWith(FinalOldResult);
1040 AI->eraseFromParent();
1041}
1042
1043void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
1044 IRBuilder<> Builder(CI);
1045
1046 PartwordMaskValues PMV = createMaskInstrs(
1047 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
1048 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1049
1050 Value *CmpVal_Shifted = Builder.CreateShl(
1051 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
1052 "CmpVal_Shifted");
1053 Value *NewVal_Shifted = Builder.CreateShl(
1054 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
1055 "NewVal_Shifted");
1056 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
1057 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
1058 CI->getMergedOrdering());
1059 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1060 Value *Res = UndefValue::get(CI->getType());
1061 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1062 Value *Success = Builder.CreateICmpEQ(
1063 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
1064 Res = Builder.CreateInsertValue(Res, Success, 1);
1065
1066 CI->replaceAllUsesWith(Res);
1067 CI->eraseFromParent();
1068}
1069
1070Value *AtomicExpand::insertRMWLLSCLoop(
1071 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1072 AtomicOrdering MemOpOrder,
1073 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1074 LLVMContext &Ctx = Builder.getContext();
1075 BasicBlock *BB = Builder.GetInsertBlock();
1076 Function *F = BB->getParent();
1077
1078 assert(AddrAlign >=((void)0)
1079 F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) &&((void)0)
1080 "Expected at least natural alignment at this point.")((void)0);
1081
1082 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1083 //
1084 // The standard expansion we produce is:
1085 // [...]
1086 // atomicrmw.start:
1087 // %loaded = @load.linked(%addr)
1088 // %new = some_op iN %loaded, %incr
1089 // %stored = @store_conditional(%new, %addr)
1090 // %try_again = icmp i32 ne %stored, 0
1091 // br i1 %try_again, label %loop, label %atomicrmw.end
1092 // atomicrmw.end:
1093 // [...]
1094 BasicBlock *ExitBB =
1095 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1096 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1097
1098 // The split call above "helpfully" added a branch at the end of BB (to the
1099 // wrong place).
1100 std::prev(BB->end())->eraseFromParent();
1101 Builder.SetInsertPoint(BB);
1102 Builder.CreateBr(LoopBB);
1103
1104 // Start the main loop block now that we've taken care of the preliminaries.
1105 Builder.SetInsertPoint(LoopBB);
1106 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder);
1107
1108 Value *NewVal = PerformOp(Builder, Loaded);
1109
1110 Value *StoreSuccess =
1111 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1112 Value *TryAgain = Builder.CreateICmpNE(
1113 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1114 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1115
1116 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1117 return Loaded;
1118}
1119
1120/// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1121/// the equivalent bitwidth. We used to not support pointer cmpxchg in the
1122/// IR. As a migration step, we convert back to what use to be the standard
1123/// way to represent a pointer cmpxchg so that we can update backends one by
1124/// one.
1125AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1126 auto *M = CI->getModule();
1127 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1128 M->getDataLayout());
1129
1130 IRBuilder<> Builder(CI);
1131
1132 Value *Addr = CI->getPointerOperand();
1133 Type *PT = PointerType::get(NewTy,
1134 Addr->getType()->getPointerAddressSpace());
1135 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
1136
1137 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1138 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1139
1140 auto *NewCI = Builder.CreateAtomicCmpXchg(
1141 NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(),
1142 CI->getFailureOrdering(), CI->getSyncScopeID());
1143 NewCI->setVolatile(CI->isVolatile());
1144 NewCI->setWeak(CI->isWeak());
1145 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n")do { } while (false);
1146
1147 Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1148 Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1149
1150 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1151
1152 Value *Res = UndefValue::get(CI->getType());
1153 Res = Builder.CreateInsertValue(Res, OldVal, 0);
1154 Res = Builder.CreateInsertValue(Res, Succ, 1);
1155
1156 CI->replaceAllUsesWith(Res);
1157 CI->eraseFromParent();
1158 return NewCI;
1159}
1160
1161bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1162 AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1163 AtomicOrdering FailureOrder = CI->getFailureOrdering();
1164 Value *Addr = CI->getPointerOperand();
1165 BasicBlock *BB = CI->getParent();
1166 Function *F = BB->getParent();
1167 LLVMContext &Ctx = F->getContext();
1168 // If shouldInsertFencesForAtomic() returns true, then the target does not
1169 // want to deal with memory orders, and emitLeading/TrailingFence should take
1170 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1171 // should preserve the ordering.
1172 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1173 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic
1174 ? AtomicOrdering::Monotonic
1175 : CI->getMergedOrdering();
1176
1177 // In implementations which use a barrier to achieve release semantics, we can
1178 // delay emitting this barrier until we know a store is actually going to be
1179 // attempted. The cost of this delay is that we need 2 copies of the block
1180 // emitting the load-linked, affecting code size.
1181 //
1182 // Ideally, this logic would be unconditional except for the minsize check
1183 // since in other cases the extra blocks naturally collapse down to the
1184 // minimal loop. Unfortunately, this puts too much stress on later
1185 // optimisations so we avoid emitting the extra logic in those cases too.
1186 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1187 SuccessOrder != AtomicOrdering::Monotonic &&
1188 SuccessOrder != AtomicOrdering::Acquire &&
1189 !F->hasMinSize();
1190
1191 // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1192 // do it even on minsize.
1193 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1194
1195 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1196 //
1197 // The full expansion we produce is:
1198 // [...]
1199 // %aligned.addr = ...
1200 // cmpxchg.start:
1201 // %unreleasedload = @load.linked(%aligned.addr)
1202 // %unreleasedload.extract = extract value from %unreleasedload
1203 // %should_store = icmp eq %unreleasedload.extract, %desired
1204 // br i1 %should_store, label %cmpxchg.releasingstore,
1205 // label %cmpxchg.nostore
1206 // cmpxchg.releasingstore:
1207 // fence?
1208 // br label cmpxchg.trystore
1209 // cmpxchg.trystore:
1210 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore],
1211 // [%releasedload, %cmpxchg.releasedload]
1212 // %updated.new = insert %new into %loaded.trystore
1213 // %stored = @store_conditional(%updated.new, %aligned.addr)
1214 // %success = icmp eq i32 %stored, 0
1215 // br i1 %success, label %cmpxchg.success,
1216 // label %cmpxchg.releasedload/%cmpxchg.failure
1217 // cmpxchg.releasedload:
1218 // %releasedload = @load.linked(%aligned.addr)
1219 // %releasedload.extract = extract value from %releasedload
1220 // %should_store = icmp eq %releasedload.extract, %desired
1221 // br i1 %should_store, label %cmpxchg.trystore,
1222 // label %cmpxchg.failure
1223 // cmpxchg.success:
1224 // fence?
1225 // br label %cmpxchg.end
1226 // cmpxchg.nostore:
1227 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1228 // [%releasedload,
1229 // %cmpxchg.releasedload/%cmpxchg.trystore]
1230 // @load_linked_fail_balance()?
1231 // br label %cmpxchg.failure
1232 // cmpxchg.failure:
1233 // fence?
1234 // br label %cmpxchg.end
1235 // cmpxchg.end:
1236 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure],
1237 // [%loaded.trystore, %cmpxchg.trystore]
1238 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1239 // %loaded = extract value from %loaded.exit
1240 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1241 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1242 // [...]
1243 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1244 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1245 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1246 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1247 auto ReleasedLoadBB =
1248 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1249 auto TryStoreBB =
1250 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1251 auto ReleasingStoreBB =
1252 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1253 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1254
1255 // This grabs the DebugLoc from CI
1256 IRBuilder<> Builder(CI);
1257
1258 // The split call above "helpfully" added a branch at the end of BB (to the
1259 // wrong place), but we might want a fence too. It's easiest to just remove
1260 // the branch entirely.
1261 std::prev(BB->end())->eraseFromParent();
1262 Builder.SetInsertPoint(BB);
1263 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1264 TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1265
1266 PartwordMaskValues PMV =
1267 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1268 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1269 Builder.CreateBr(StartBB);
1270
1271 // Start the main loop block now that we've taken care of the preliminaries.
1272 Builder.SetInsertPoint(StartBB);
1273 Value *UnreleasedLoad =
1274 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1275 Value *UnreleasedLoadExtract =
1276 extractMaskedValue(Builder, UnreleasedLoad, PMV);
1277 Value *ShouldStore = Builder.CreateICmpEQ(
1278 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store");
1279
1280 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1281 // jump straight past that fence instruction (if it exists).
1282 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1283
1284 Builder.SetInsertPoint(ReleasingStoreBB);
1285 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1286 TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1287 Builder.CreateBr(TryStoreBB);
1288
1289 Builder.SetInsertPoint(TryStoreBB);
1290 PHINode *LoadedTryStore =
1291 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore");
1292 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1293 Value *NewValueInsert =
1294 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV);
1295 Value *StoreSuccess =
1296 TLI->emitStoreConditional(Builder, NewValueInsert, PMV.AlignedAddr,
1297 MemOpOrder);
1298 StoreSuccess = Builder.CreateICmpEQ(
1299 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1300 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1301 Builder.CreateCondBr(StoreSuccess, SuccessBB,
1302 CI->isWeak() ? FailureBB : RetryBB);
1303
1304 Builder.SetInsertPoint(ReleasedLoadBB);
1305 Value *SecondLoad;
1306 if (HasReleasedLoadBB) {
1307 SecondLoad =
1308 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1309 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV);
1310 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract,
1311 CI->getCompareOperand(), "should_store");
1312
1313 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1314 // jump straight past that fence instruction (if it exists).
1315 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1316 // Update PHI node in TryStoreBB.
1317 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB);
1318 } else
1319 Builder.CreateUnreachable();
1320
1321 // Make sure later instructions don't get reordered with a fence if
1322 // necessary.
1323 Builder.SetInsertPoint(SuccessBB);
1324 if (ShouldInsertFencesForAtomic)
1325 TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1326 Builder.CreateBr(ExitBB);
1327
1328 Builder.SetInsertPoint(NoStoreBB);
1329 PHINode *LoadedNoStore =
1330 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore");
1331 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB);
1332 if (HasReleasedLoadBB)
1333 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB);
1334
1335 // In the failing case, where we don't execute the store-conditional, the
1336 // target might want to balance out the load-linked with a dedicated
1337 // instruction (e.g., on ARM, clearing the exclusive monitor).
1338 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1339 Builder.CreateBr(FailureBB);
1340
1341 Builder.SetInsertPoint(FailureBB);
1342 PHINode *LoadedFailure =
1343 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure");
1344 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB);
1345 if (CI->isWeak())
1346 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB);
1347 if (ShouldInsertFencesForAtomic)
1348 TLI->emitTrailingFence(Builder, CI, FailureOrder);
1349 Builder.CreateBr(ExitBB);
1350
1351 // Finally, we have control-flow based knowledge of whether the cmpxchg
1352 // succeeded or not. We expose this to later passes by converting any
1353 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1354 // PHI.
1355 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1356 PHINode *LoadedExit =
1357 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit");
1358 LoadedExit->addIncoming(LoadedTryStore, SuccessBB);
1359 LoadedExit->addIncoming(LoadedFailure, FailureBB);
1360 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success");
1361 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1362 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1363
1364 // This is the "exit value" from the cmpxchg expansion. It may be of
1365 // a type wider than the one in the cmpxchg instruction.
1366 Value *LoadedFull = LoadedExit;
1367
1368 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator()));
1369 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV);
1370
1371 // Look for any users of the cmpxchg that are just comparing the loaded value
1372 // against the desired one, and replace them with the CFG-derived version.
1373 SmallVector<ExtractValueInst *, 2> PrunedInsts;
1374 for (auto User : CI->users()) {
1375 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1376 if (!EV)
1377 continue;
1378
1379 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&((void)0)
1380 "weird extraction from { iN, i1 }")((void)0);
1381
1382 if (EV->getIndices()[0] == 0)
1383 EV->replaceAllUsesWith(Loaded);
1384 else
1385 EV->replaceAllUsesWith(Success);
1386
1387 PrunedInsts.push_back(EV);
1388 }
1389
1390 // We can remove the instructions now we're no longer iterating through them.
1391 for (auto EV : PrunedInsts)
1392 EV->eraseFromParent();
1393
1394 if (!CI->use_empty()) {
1395 // Some use of the full struct return that we don't understand has happened,
1396 // so we've got to reconstruct it properly.
1397 Value *Res;
1398 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
1399 Res = Builder.CreateInsertValue(Res, Success, 1);
1400
1401 CI->replaceAllUsesWith(Res);
1402 }
1403
1404 CI->eraseFromParent();
1405 return true;
1406}
1407
1408bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
1409 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1410 if(!C)
1411 return false;
1412
1413 AtomicRMWInst::BinOp Op = RMWI->getOperation();
1414 switch(Op) {
1415 case AtomicRMWInst::Add:
1416 case AtomicRMWInst::Sub:
1417 case AtomicRMWInst::Or:
1418 case AtomicRMWInst::Xor:
1419 return C->isZero();
1420 case AtomicRMWInst::And:
1421 return C->isMinusOne();
1422 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1423 default:
1424 return false;
1425 }
1426}
1427
1428bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
1429 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1430 tryExpandAtomicLoad(ResultingLoad);
1431 return true;
1432 }
1433 return false;
1434}
1435
1436Value *AtomicExpand::insertRMWCmpXchgLoop(
1437 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1438 AtomicOrdering MemOpOrder, SyncScope::ID SSID,
1439 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
1440 CreateCmpXchgInstFun CreateCmpXchg) {
1441 LLVMContext &Ctx = Builder.getContext();
1442 BasicBlock *BB = Builder.GetInsertBlock();
1443 Function *F = BB->getParent();
1444
1445 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1446 //
1447 // The standard expansion we produce is:
1448 // [...]
1449 // %init_loaded = load atomic iN* %addr
1450 // br label %loop
1451 // loop:
1452 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1453 // %new = some_op iN %loaded, %incr
1454 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1455 // %new_loaded = extractvalue { iN, i1 } %pair, 0
1456 // %success = extractvalue { iN, i1 } %pair, 1
1457 // br i1 %success, label %atomicrmw.end, label %loop
1458 // atomicrmw.end:
1459 // [...]
1460 BasicBlock *ExitBB =
1461 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1462 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1463
1464 // The split call above "helpfully" added a branch at the end of BB (to the
1465 // wrong place), but we want a load. It's easiest to just remove
1466 // the branch entirely.
1467 std::prev(BB->end())->eraseFromParent();
1468 Builder.SetInsertPoint(BB);
1469 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign);
1470 Builder.CreateBr(LoopBB);
1471
1472 // Start the main loop block now that we've taken care of the preliminaries.
1473 Builder.SetInsertPoint(LoopBB);
1474 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1475 Loaded->addIncoming(InitLoaded, BB);
1476
1477 Value *NewVal = PerformOp(Builder, Loaded);
1478
1479 Value *NewLoaded = nullptr;
1480 Value *Success = nullptr;
1481
1482 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign,
1483 MemOpOrder == AtomicOrdering::Unordered
1484 ? AtomicOrdering::Monotonic
1485 : MemOpOrder,
1486 SSID, Success, NewLoaded);
1487 assert(Success && NewLoaded)((void)0);
1488
1489 Loaded->addIncoming(NewLoaded, LoopBB);
1490
1491 Builder.CreateCondBr(Success, ExitBB, LoopBB);
1492
1493 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1494 return NewLoaded;
1495}
1496
1497bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1498 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1499 unsigned ValueSize = getAtomicOpSize(CI);
1500
1501 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1502 default:
1503 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg")__builtin_unreachable();
1504 case TargetLoweringBase::AtomicExpansionKind::None:
1505 if (ValueSize < MinCASSize)
1506 return expandPartwordCmpXchg(CI);
1507 return false;
1508 case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1509 return expandAtomicCmpXchg(CI);
1510 }
1511 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1512 expandAtomicCmpXchgToMaskedIntrinsic(CI);
1513 return true;
1514 }
1515}
1516
1517// Note: This function is exposed externally by AtomicExpandUtils.h
1518bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1519 CreateCmpXchgInstFun CreateCmpXchg) {
1520 IRBuilder<> Builder(AI);
1521 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1522 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(),
1523 AI->getOrdering(), AI->getSyncScopeID(),
1524 [&](IRBuilder<> &Builder, Value *Loaded) {
1525 return performAtomicOp(AI->getOperation(), Builder, Loaded,
1526 AI->getValOperand());
1527 },
1528 CreateCmpXchg);
1529
1530 AI->replaceAllUsesWith(Loaded);
1531 AI->eraseFromParent();
1532 return true;
1533}
1534
1535// In order to use one of the sized library calls such as
1536// __atomic_fetch_add_4, the alignment must be sufficient, the size
1537// must be one of the potentially-specialized sizes, and the value
1538// type must actually exist in C on the target (otherwise, the
1539// function wouldn't actually be defined.)
1540static bool canUseSizedAtomicCall(unsigned Size, Align Alignment,
1541 const DataLayout &DL) {
1542 // TODO: "LargestSize" is an approximation for "largest type that
1543 // you can express in C". It seems to be the case that int128 is
1544 // supported on all 64-bit platforms, otherwise only up to 64-bit
1545 // integers are supported. If we get this wrong, then we'll try to
1546 // call a sized libcall that doesn't actually exist. There should
1547 // really be some more reliable way in LLVM of determining integer
1548 // sizes which are valid in the target's C ABI...
1549 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1550 return Alignment >= Size &&
1551 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1552 Size <= LargestSize;
1553}
1554
1555void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1556 static const RTLIB::Libcall Libcalls[6] = {
1557 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1558 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1559 unsigned Size = getAtomicOpSize(I);
1560
1561 bool expanded = expandAtomicOpToLibcall(
1562 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr,
1563 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1564 if (!expanded)
1565 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load");
1566}
1567
1568void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1569 static const RTLIB::Libcall Libcalls[6] = {
1570 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1571 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1572 unsigned Size = getAtomicOpSize(I);
1573
1574 bool expanded = expandAtomicOpToLibcall(
1575 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(),
1576 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1577 if (!expanded)
1578 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store");
1579}
1580
1581void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1582 static const RTLIB::Libcall Libcalls[6] = {
1583 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1584 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1585 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1586 unsigned Size = getAtomicOpSize(I);
1587
1588 bool expanded = expandAtomicOpToLibcall(
1589 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(),
1590 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1591 Libcalls);
1592 if (!expanded)
1593 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS");
1594}
1595
1596static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1597 static const RTLIB::Libcall LibcallsXchg[6] = {
1598 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1,
1599 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1600 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1601 static const RTLIB::Libcall LibcallsAdd[6] = {
1602 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1,
1603 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1604 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1605 static const RTLIB::Libcall LibcallsSub[6] = {
1606 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1,
1607 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1608 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1609 static const RTLIB::Libcall LibcallsAnd[6] = {
1610 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1,
1611 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1612 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1613 static const RTLIB::Libcall LibcallsOr[6] = {
1614 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1,
1615 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1616 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1617 static const RTLIB::Libcall LibcallsXor[6] = {
1618 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1,
1619 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1620 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1621 static const RTLIB::Libcall LibcallsNand[6] = {
1622 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1,
1623 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1624 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1625
1626 switch (Op) {
1627 case AtomicRMWInst::BAD_BINOP:
1628 llvm_unreachable("Should not have BAD_BINOP.")__builtin_unreachable();
1629 case AtomicRMWInst::Xchg:
1630 return makeArrayRef(LibcallsXchg);
1631 case AtomicRMWInst::Add:
1632 return makeArrayRef(LibcallsAdd);
1633 case AtomicRMWInst::Sub:
1634 return makeArrayRef(LibcallsSub);
1635 case AtomicRMWInst::And:
1636 return makeArrayRef(LibcallsAnd);
1637 case AtomicRMWInst::Or:
1638 return makeArrayRef(LibcallsOr);
1639 case AtomicRMWInst::Xor:
1640 return makeArrayRef(LibcallsXor);
1641 case AtomicRMWInst::Nand:
1642 return makeArrayRef(LibcallsNand);
1643 case AtomicRMWInst::Max:
1644 case AtomicRMWInst::Min:
1645 case AtomicRMWInst::UMax:
1646 case AtomicRMWInst::UMin:
1647 case AtomicRMWInst::FAdd:
1648 case AtomicRMWInst::FSub:
1649 // No atomic libcalls are available for max/min/umax/umin.
1650 return {};
1651 }
1652 llvm_unreachable("Unexpected AtomicRMW operation.")__builtin_unreachable();
1653}
1654
1655void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1656 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1657
1658 unsigned Size = getAtomicOpSize(I);
1659
1660 bool Success = false;
1661 if (!Libcalls.empty())
1662 Success = expandAtomicOpToLibcall(
1663 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(),
1664 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1665
1666 // The expansion failed: either there were no libcalls at all for
1667 // the operation (min/max), or there were only size-specialized
1668 // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1669 // CAS libcall, via a CAS loop, instead.
1670 if (!Success) {
1671 expandAtomicRMWToCmpXchg(
1672 I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded,
1673 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder,
1674 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) {
1675 // Create the CAS instruction normally...
1676 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1677 Addr, Loaded, NewVal, Alignment, MemOpOrder,
1678 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
1679 Success = Builder.CreateExtractValue(Pair, 1, "success");
1680 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1681
1682 // ...and then expand the CAS into a libcall.
1683 expandAtomicCASToLibcall(Pair);
1684 });
1685 }
1686}
1687
1688// A helper routine for the above expandAtomic*ToLibcall functions.
1689//
1690// 'Libcalls' contains an array of enum values for the particular
1691// ATOMIC libcalls to be emitted. All of the other arguments besides
1692// 'I' are extracted from the Instruction subclass by the
1693// caller. Depending on the particular call, some will be null.
1694bool AtomicExpand::expandAtomicOpToLibcall(
1695 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand,
1696 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1697 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1698 assert(Libcalls.size() == 6)((void)0);
1699
1700 LLVMContext &Ctx = I->getContext();
1701 Module *M = I->getModule();
1702 const DataLayout &DL = M->getDataLayout();
1703 IRBuilder<> Builder(I);
1704 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1705
1706 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL);
1707 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1708
1709 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy);
1710
1711 // TODO: the "order" argument type is "int", not int32. So
1712 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1713 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1714 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO")((void)0);
1715 Constant *OrderingVal =
1716 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1717 Constant *Ordering2Val = nullptr;
1718 if (CASExpected) {
1719 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO")((void)0);
1720 Ordering2Val =
1721 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1722 }
1723 bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1724
1725 RTLIB::Libcall RTLibType;
1726 if (UseSizedLibcall) {
1727 switch (Size) {
1728 case 1: RTLibType = Libcalls[1]; break;
1729 case 2: RTLibType = Libcalls[2]; break;
1730 case 4: RTLibType = Libcalls[3]; break;
1731 case 8: RTLibType = Libcalls[4]; break;
1732 case 16: RTLibType = Libcalls[5]; break;
1733 }
1734 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1735 RTLibType = Libcalls[0];
1736 } else {
1737 // Can't use sized function, and there's no generic for this
1738 // operation, so give up.
1739 return false;
1740 }
1741
1742 if (!TLI->getLibcallName(RTLibType)) {
1743 // This target does not implement the requested atomic libcall so give up.
1744 return false;
1745 }
1746
1747 // Build up the function call. There's two kinds. First, the sized
1748 // variants. These calls are going to be one of the following (with
1749 // N=1,2,4,8,16):
1750 // iN __atomic_load_N(iN *ptr, int ordering)
1751 // void __atomic_store_N(iN *ptr, iN val, int ordering)
1752 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1753 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1754 // int success_order, int failure_order)
1755 //
1756 // Note that these functions can be used for non-integer atomic
1757 // operations, the values just need to be bitcast to integers on the
1758 // way in and out.
1759 //
1760 // And, then, the generic variants. They look like the following:
1761 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1762 // void __atomic_store(size_t size, void *ptr, void *val, int ordering)
1763 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1764 // int ordering)
1765 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1766 // void *desired, int success_order,
1767 // int failure_order)
1768 //
1769 // The different signatures are built up depending on the
1770 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1771 // variables.
1772
1773 AllocaInst *AllocaCASExpected = nullptr;
1774 Value *AllocaCASExpected_i8 = nullptr;
1775 AllocaInst *AllocaValue = nullptr;
1776 Value *AllocaValue_i8 = nullptr;
1777 AllocaInst *AllocaResult = nullptr;
1778 Value *AllocaResult_i8 = nullptr;
1779
1780 Type *ResultTy;
1781 SmallVector<Value *, 6> Args;
1782 AttributeList Attr;
1783
1784 // 'size' argument.
1785 if (!UseSizedLibcall) {
1786 // Note, getIntPtrType is assumed equivalent to size_t.
1787 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1788 }
1789
1790 // 'ptr' argument.
1791 // note: This assumes all address spaces share a common libfunc
1792 // implementation and that addresses are convertable. For systems without
1793 // that property, we'd need to extend this mechanism to support AS-specific
1794 // families of atomic intrinsics.
1795 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
1796 Value *PtrVal = Builder.CreateBitCast(PointerOperand,
1797 Type::getInt8PtrTy(Ctx, PtrTypeAS));
1798 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
1799 Args.push_back(PtrVal);
1800
1801 // 'expected' argument, if present.
1802 if (CASExpected) {
1803 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1804 AllocaCASExpected->setAlignment(AllocaAlignment);
1805 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace();
1806
1807 AllocaCASExpected_i8 =
1808 Builder.CreateBitCast(AllocaCASExpected,
1809 Type::getInt8PtrTy(Ctx, AllocaAS));
1810 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
1811 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1812 Args.push_back(AllocaCASExpected_i8);
1813 }
1814
1815 // 'val' argument ('desired' for cas), if present.
1816 if (ValueOperand) {
1817 if (UseSizedLibcall) {
1818 Value *IntValue =
1819 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1820 Args.push_back(IntValue);
1821 } else {
1822 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1823 AllocaValue->setAlignment(AllocaAlignment);
1824 AllocaValue_i8 =
1825 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
1826 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
1827 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1828 Args.push_back(AllocaValue_i8);
1829 }
1830 }
1831
1832 // 'ret' argument.
1833 if (!CASExpected && HasResult && !UseSizedLibcall) {
1834 AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1835 AllocaResult->setAlignment(AllocaAlignment);
1836 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace();
1837 AllocaResult_i8 =
1838 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS));
1839 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
1840 Args.push_back(AllocaResult_i8);
1841 }
1842
1843 // 'ordering' ('success_order' for cas) argument.
1844 Args.push_back(OrderingVal);
1845
1846 // 'failure_order' argument, if present.
1847 if (Ordering2Val)
1848 Args.push_back(Ordering2Val);
1849
1850 // Now, the return type.
1851 if (CASExpected) {
1852 ResultTy = Type::getInt1Ty(Ctx);
1853 Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt);
1854 } else if (HasResult && UseSizedLibcall)
1855 ResultTy = SizedIntTy;
1856 else
1857 ResultTy = Type::getVoidTy(Ctx);
1858
1859 // Done with setting up arguments and return types, create the call:
1860 SmallVector<Type *, 6> ArgTys;
1861 for (Value *Arg : Args)
1862 ArgTys.push_back(Arg->getType());
1863 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1864 FunctionCallee LibcallFn =
1865 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1866 CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1867 Call->setAttributes(Attr);
1868 Value *Result = Call;
1869
1870 // And then, extract the results...
1871 if (ValueOperand && !UseSizedLibcall)
1872 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
1873
1874 if (CASExpected) {
1875 // The final result from the CAS is {load of 'expected' alloca, bool result
1876 // from call}
1877 Type *FinalResultTy = I->getType();
1878 Value *V = UndefValue::get(FinalResultTy);
1879 Value *ExpectedOut = Builder.CreateAlignedLoad(
1880 CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
1881 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
1882 V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1883 V = Builder.CreateInsertValue(V, Result, 1);
1884 I->replaceAllUsesWith(V);
1885 } else if (HasResult) {
1886 Value *V;
1887 if (UseSizedLibcall)
1888 V = Builder.CreateBitOrPointerCast(Result, I->getType());
1889 else {
1890 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
1891 AllocaAlignment);
1892 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
1893 }
1894 I->replaceAllUsesWith(V);
1895 }
1896 I->eraseFromParent();
1897 return true;
1898}

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h

1//===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains types to represent alignments.
10// They are instrumented to guarantee some invariants are preserved and prevent
11// invalid manipulations.
12//
13// - Align represents an alignment in bytes, it is always set and always a valid
14// power of two, its minimum value is 1 which means no alignment requirements.
15//
16// - MaybeAlign is an optional type, it may be undefined or set. When it's set
17// you can get the underlying Align type by using the getValue() method.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_SUPPORT_ALIGNMENT_H_
22#define LLVM_SUPPORT_ALIGNMENT_H_
23
24#include "llvm/ADT/Optional.h"
25#include "llvm/Support/MathExtras.h"
26#include <cassert>
27#ifndef NDEBUG1
28#include <string>
29#endif // NDEBUG
30
31namespace llvm {
32
33#define ALIGN_CHECK_ISPOSITIVE(decl) \
34 assert(decl > 0 && (#decl " should be defined"))((void)0)
35
36/// This struct is a compact representation of a valid (non-zero power of two)
37/// alignment.
38/// It is suitable for use as static global constants.
39struct Align {
40private:
41 uint8_t ShiftValue = 0; /// The log2 of the required alignment.
42 /// ShiftValue is less than 64 by construction.
43
44 friend struct MaybeAlign;
45 friend unsigned Log2(Align);
46 friend bool operator==(Align Lhs, Align Rhs);
47 friend bool operator!=(Align Lhs, Align Rhs);
48 friend bool operator<=(Align Lhs, Align Rhs);
49 friend bool operator>=(Align Lhs, Align Rhs);
50 friend bool operator<(Align Lhs, Align Rhs);
51 friend bool operator>(Align Lhs, Align Rhs);
52 friend unsigned encode(struct MaybeAlign A);
53 friend struct MaybeAlign decodeMaybeAlign(unsigned Value);
54
55 /// A trivial type to allow construction of constexpr Align.
56 /// This is currently needed to workaround a bug in GCC 5.3 which prevents
57 /// definition of constexpr assign operators.
58 /// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic
59 /// FIXME: Remove this, make all assign operators constexpr and introduce user
60 /// defined literals when we don't have to support GCC 5.3 anymore.
61 /// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain
62 struct LogValue {
63 uint8_t Log;
64 };
65
66public:
67 /// Default is byte-aligned.
68 constexpr Align() = default;
69 /// Do not perform checks in case of copy/move construct/assign, because the
70 /// checks have been performed when building `Other`.
71 constexpr Align(const Align &Other) = default;
72 constexpr Align(Align &&Other) = default;
73 Align &operator=(const Align &Other) = default;
74 Align &operator=(Align &&Other) = default;
75
76 explicit Align(uint64_t Value) {
77 assert(Value > 0 && "Value must not be 0")((void)0);
78 assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2")((void)0);
79 ShiftValue = Log2_64(Value);
80 assert(ShiftValue < 64 && "Broken invariant")((void)0);
81 }
82
83 /// This is a hole in the type system and should not be abused.
84 /// Needed to interact with C for instance.
85 uint64_t value() const { return uint64_t(1) << ShiftValue; }
4
The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t'
86
87 /// Allow constructions of constexpr Align.
88 template <size_t kValue> constexpr static LogValue Constant() {
89 return LogValue{static_cast<uint8_t>(CTLog2<kValue>())};
90 }
91
92 /// Allow constructions of constexpr Align from types.
93 /// Compile time equivalent to Align(alignof(T)).
94 template <typename T> constexpr static LogValue Of() {
95 return Constant<std::alignment_of<T>::value>();
96 }
97
98 /// Constexpr constructor from LogValue type.
99 constexpr Align(LogValue CA) : ShiftValue(CA.Log) {}
100};
101
102/// Treats the value 0 as a 1, so Align is always at least 1.
103inline Align assumeAligned(uint64_t Value) {
104 return Value ? Align(Value) : Align();
105}
106
107/// This struct is a compact representation of a valid (power of two) or
108/// undefined (0) alignment.
109struct MaybeAlign : public llvm::Optional<Align> {
110private:
111 using UP = llvm::Optional<Align>;
112
113public:
114 /// Default is undefined.
115 MaybeAlign() = default;
116 /// Do not perform checks in case of copy/move construct/assign, because the
117 /// checks have been performed when building `Other`.
118 MaybeAlign(const MaybeAlign &Other) = default;
119 MaybeAlign &operator=(const MaybeAlign &Other) = default;
120 MaybeAlign(MaybeAlign &&Other) = default;
121 MaybeAlign &operator=(MaybeAlign &&Other) = default;
122
123 /// Use llvm::Optional<Align> constructor.
124 using UP::UP;
125
126 explicit MaybeAlign(uint64_t Value) {
127 assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&((void)0)
128 "Alignment is neither 0 nor a power of 2")((void)0);
129 if (Value)
130 emplace(Value);
131 }
132
133 /// For convenience, returns a valid alignment or 1 if undefined.
134 Align valueOrOne() const { return hasValue() ? getValue() : Align(); }
135};
136
137/// Checks that SizeInBytes is a multiple of the alignment.
138inline bool isAligned(Align Lhs, uint64_t SizeInBytes) {
139 return SizeInBytes % Lhs.value() == 0;
140}
141
142/// Checks that Addr is a multiple of the alignment.
143inline bool isAddrAligned(Align Lhs, const void *Addr) {
144 return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr));
145}
146
147/// Returns a multiple of A needed to store `Size` bytes.
148inline uint64_t alignTo(uint64_t Size, Align A) {
149 const uint64_t Value = A.value();
150 // The following line is equivalent to `(Size + Value - 1) / Value * Value`.
151
152 // The division followed by a multiplication can be thought of as a right
153 // shift followed by a left shift which zeros out the extra bits produced in
154 // the bump; `~(Value - 1)` is a mask where all those bits being zeroed out
155 // are just zero.
156
157 // Most compilers can generate this code but the pattern may be missed when
158 // multiple functions gets inlined.
159 return (Size + Value - 1) & ~(Value - 1U);
160}
161
162/// If non-zero \p Skew is specified, the return value will be a minimal integer
163/// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for
164/// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p
165/// Skew mod \p A'.
166///
167/// Examples:
168/// \code
169/// alignTo(5, Align(8), 7) = 7
170/// alignTo(17, Align(8), 1) = 17
171/// alignTo(~0LL, Align(8), 3) = 3
172/// \endcode
173inline uint64_t alignTo(uint64_t Size, Align A, uint64_t Skew) {
174 const uint64_t Value = A.value();
175 Skew %= Value;
176 return ((Size + Value - 1 - Skew) & ~(Value - 1U)) + Skew;
177}
178
179/// Returns a multiple of A needed to store `Size` bytes.
180/// Returns `Size` if current alignment is undefined.
181inline uint64_t alignTo(uint64_t Size, MaybeAlign A) {
182 return A ? alignTo(Size, A.getValue()) : Size;
183}
184
185/// Aligns `Addr` to `Alignment` bytes, rounding up.
186inline uintptr_t alignAddr(const void *Addr, Align Alignment) {
187 uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr);
188 assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=((void)0)
189 ArithAddr &&((void)0)
190 "Overflow")((void)0);
191 return alignTo(ArithAddr, Alignment);
192}
193
194/// Returns the offset to the next integer (mod 2**64) that is greater than
195/// or equal to \p Value and is a multiple of \p Align.
196inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) {
197 return alignTo(Value, Alignment) - Value;
198}
199
200/// Returns the necessary adjustment for aligning `Addr` to `Alignment`
201/// bytes, rounding up.
202inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) {
203 return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment);
204}
205
206/// Returns the log2 of the alignment.
207inline unsigned Log2(Align A) { return A.ShiftValue; }
208
209/// Returns the alignment that satisfies both alignments.
210/// Same semantic as MinAlign.
211inline Align commonAlignment(Align A, Align B) { return std::min(A, B); }
212
213/// Returns the alignment that satisfies both alignments.
214/// Same semantic as MinAlign.
215inline Align commonAlignment(Align A, uint64_t Offset) {
216 return Align(MinAlign(A.value(), Offset));
217}
218
219/// Returns the alignment that satisfies both alignments.
220/// Same semantic as MinAlign.
221inline MaybeAlign commonAlignment(MaybeAlign A, MaybeAlign B) {
222 return A && B ? commonAlignment(*A, *B) : A ? A : B;
223}
224
225/// Returns the alignment that satisfies both alignments.
226/// Same semantic as MinAlign.
227inline MaybeAlign commonAlignment(MaybeAlign A, uint64_t Offset) {
228 return MaybeAlign(MinAlign((*A).value(), Offset));
229}
230
231/// Returns a representation of the alignment that encodes undefined as 0.
232inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; }
233
234/// Dual operation of the encode function above.
235inline MaybeAlign decodeMaybeAlign(unsigned Value) {
236 if (Value == 0)
237 return MaybeAlign();
238 Align Out;
239 Out.ShiftValue = Value - 1;
240 return Out;
241}
242
243/// Returns a representation of the alignment, the encoded value is positive by
244/// definition.
245inline unsigned encode(Align A) { return encode(MaybeAlign(A)); }
246
247/// Comparisons between Align and scalars. Rhs must be positive.
248inline bool operator==(Align Lhs, uint64_t Rhs) {
249 ALIGN_CHECK_ISPOSITIVE(Rhs);
250 return Lhs.value() == Rhs;
251}
252inline bool operator!=(Align Lhs, uint64_t Rhs) {
253 ALIGN_CHECK_ISPOSITIVE(Rhs);
254 return Lhs.value() != Rhs;
255}
256inline bool operator<=(Align Lhs, uint64_t Rhs) {
257 ALIGN_CHECK_ISPOSITIVE(Rhs);
258 return Lhs.value() <= Rhs;
259}
260inline bool operator>=(Align Lhs, uint64_t Rhs) {
261 ALIGN_CHECK_ISPOSITIVE(Rhs);
262 return Lhs.value() >= Rhs;
3
Calling 'Align::value'
263}
264inline bool operator<(Align Lhs, uint64_t Rhs) {
265 ALIGN_CHECK_ISPOSITIVE(Rhs);
266 return Lhs.value() < Rhs;
267}
268inline bool operator>(Align Lhs, uint64_t Rhs) {
269 ALIGN_CHECK_ISPOSITIVE(Rhs);
270 return Lhs.value() > Rhs;
271}
272
273/// Comparisons between MaybeAlign and scalars.
274inline bool operator==(MaybeAlign Lhs, uint64_t Rhs) {
275 return Lhs ? (*Lhs).value() == Rhs : Rhs == 0;
276}
277inline bool operator!=(MaybeAlign Lhs, uint64_t Rhs) {
278 return Lhs ? (*Lhs).value() != Rhs : Rhs != 0;
279}
280
281/// Comparisons operators between Align.
282inline bool operator==(Align Lhs, Align Rhs) {
283 return Lhs.ShiftValue == Rhs.ShiftValue;
284}
285inline bool operator!=(Align Lhs, Align Rhs) {
286 return Lhs.ShiftValue != Rhs.ShiftValue;
287}
288inline bool operator<=(Align Lhs, Align Rhs) {
289 return Lhs.ShiftValue <= Rhs.ShiftValue;
290}
291inline bool operator>=(Align Lhs, Align Rhs) {
292 return Lhs.ShiftValue >= Rhs.ShiftValue;
293}
294inline bool operator<(Align Lhs, Align Rhs) {
295 return Lhs.ShiftValue < Rhs.ShiftValue;
296}
297inline bool operator>(Align Lhs, Align Rhs) {
298 return Lhs.ShiftValue > Rhs.ShiftValue;
299}
300
301// Don't allow relational comparisons with MaybeAlign.
302bool operator<=(Align Lhs, MaybeAlign Rhs) = delete;
303bool operator>=(Align Lhs, MaybeAlign Rhs) = delete;
304bool operator<(Align Lhs, MaybeAlign Rhs) = delete;
305bool operator>(Align Lhs, MaybeAlign Rhs) = delete;
306
307bool operator<=(MaybeAlign Lhs, Align Rhs) = delete;
308bool operator>=(MaybeAlign Lhs, Align Rhs) = delete;
309bool operator<(MaybeAlign Lhs, Align Rhs) = delete;
310bool operator>(MaybeAlign Lhs, Align Rhs) = delete;
311
312bool operator<=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
313bool operator>=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
314bool operator<(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
315bool operator>(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
316
317inline Align operator*(Align Lhs, uint64_t Rhs) {
318 assert(Rhs > 0 && "Rhs must be positive")((void)0);
319 return Align(Lhs.value() * Rhs);
320}
321
322inline MaybeAlign operator*(MaybeAlign Lhs, uint64_t Rhs) {
323 assert(Rhs > 0 && "Rhs must be positive")((void)0);
324 return Lhs ? Lhs.getValue() * Rhs : MaybeAlign();
325}
326
327inline Align operator/(Align Lhs, uint64_t Divisor) {
328 assert(llvm::isPowerOf2_64(Divisor) &&((void)0)
329 "Divisor must be positive and a power of 2")((void)0);
330 assert(Lhs != 1 && "Can't halve byte alignment")((void)0);
331 return Align(Lhs.value() / Divisor);
332}
333
334inline MaybeAlign operator/(MaybeAlign Lhs, uint64_t Divisor) {
335 assert(llvm::isPowerOf2_64(Divisor) &&((void)0)
336 "Divisor must be positive and a power of 2")((void)0);
337 return Lhs ? Lhs.getValue() / Divisor : MaybeAlign();
338}
339
340inline Align max(MaybeAlign Lhs, Align Rhs) {
341 return Lhs && *Lhs > Rhs ? *Lhs : Rhs;
342}
343
344inline Align max(Align Lhs, MaybeAlign Rhs) {
345 return Rhs && *Rhs > Lhs ? *Rhs : Lhs;
346}
347
348#ifndef NDEBUG1
349// For usage in LLVM_DEBUG macros.
350inline std::string DebugStr(const Align &A) {
351 return std::to_string(A.value());
352}
353// For usage in LLVM_DEBUG macros.
354inline std::string DebugStr(const MaybeAlign &MA) {
355 if (MA)
356 return std::to_string(MA->value());
357 return "None";
358}
359#endif // NDEBUG
360
361#undef ALIGN_CHECK_ISPOSITIVE
362
363} // namespace llvm
364
365#endif // LLVM_SUPPORT_ALIGNMENT_H_