Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86/X86PartialReduction.cpp
Warning:line 238, column 26
Division by zero

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name X86PartialReduction.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86/X86PartialReduction.cpp

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86/X86PartialReduction.cpp

1//===-- X86PartialReduction.cpp -------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass looks for add instructions used by a horizontal reduction to see
10// if we might be able to use pmaddwd or psadbw. Some cases of this require
11// cross basic block knowledge and can't be done in SelectionDAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "llvm/Analysis/ValueTracking.h"
17#include "llvm/CodeGen/TargetPassConfig.h"
18#include "llvm/IR/Constants.h"
19#include "llvm/IR/Instructions.h"
20#include "llvm/IR/IntrinsicsX86.h"
21#include "llvm/IR/IRBuilder.h"
22#include "llvm/IR/Operator.h"
23#include "llvm/Pass.h"
24#include "X86TargetMachine.h"
25
26using namespace llvm;
27
28#define DEBUG_TYPE"x86-partial-reduction" "x86-partial-reduction"
29
30namespace {
31
32class X86PartialReduction : public FunctionPass {
33 const DataLayout *DL;
34 const X86Subtarget *ST;
35
36public:
37 static char ID; // Pass identification, replacement for typeid.
38
39 X86PartialReduction() : FunctionPass(ID) { }
40
41 bool runOnFunction(Function &Fn) override;
42
43 void getAnalysisUsage(AnalysisUsage &AU) const override {
44 AU.setPreservesCFG();
45 }
46
47 StringRef getPassName() const override {
48 return "X86 Partial Reduction";
49 }
50
51private:
52 bool tryMAddReplacement(Instruction *Op);
53 bool trySADReplacement(Instruction *Op);
54};
55}
56
57FunctionPass *llvm::createX86PartialReductionPass() {
58 return new X86PartialReduction();
59}
60
61char X86PartialReduction::ID = 0;
62
63INITIALIZE_PASS(X86PartialReduction, DEBUG_TYPE,static void *initializeX86PartialReductionPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "X86 Partial Reduction"
, "x86-partial-reduction", &X86PartialReduction::ID, PassInfo
::NormalCtor_t(callDefaultCtor<X86PartialReduction>), false
, false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeX86PartialReductionPassFlag; void llvm
::initializeX86PartialReductionPass(PassRegistry &Registry
) { llvm::call_once(InitializeX86PartialReductionPassFlag, initializeX86PartialReductionPassOnce
, std::ref(Registry)); }
64 "X86 Partial Reduction", false, false)static void *initializeX86PartialReductionPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "X86 Partial Reduction"
, "x86-partial-reduction", &X86PartialReduction::ID, PassInfo
::NormalCtor_t(callDefaultCtor<X86PartialReduction>), false
, false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeX86PartialReductionPassFlag; void llvm
::initializeX86PartialReductionPass(PassRegistry &Registry
) { llvm::call_once(InitializeX86PartialReductionPassFlag, initializeX86PartialReductionPassOnce
, std::ref(Registry)); }
65
66bool X86PartialReduction::tryMAddReplacement(Instruction *Op) {
67 if (!ST->hasSSE2())
68 return false;
69
70 // Need at least 8 elements.
71 if (cast<FixedVectorType>(Op->getType())->getNumElements() < 8)
72 return false;
73
74 // Element type should be i32.
75 if (!cast<VectorType>(Op->getType())->getElementType()->isIntegerTy(32))
76 return false;
77
78 auto *Mul = dyn_cast<BinaryOperator>(Op);
79 if (!Mul || Mul->getOpcode() != Instruction::Mul)
80 return false;
81
82 Value *LHS = Mul->getOperand(0);
83 Value *RHS = Mul->getOperand(1);
84
85 // LHS and RHS should be only used once or if they are the same then only
86 // used twice. Only check this when SSE4.1 is enabled and we have zext/sext
87 // instructions, otherwise we use punpck to emulate zero extend in stages. The
88 // trunc/ we need to do likely won't introduce new instructions in that case.
89 if (ST->hasSSE41()) {
90 if (LHS == RHS) {
91 if (!isa<Constant>(LHS) && !LHS->hasNUses(2))
92 return false;
93 } else {
94 if (!isa<Constant>(LHS) && !LHS->hasOneUse())
95 return false;
96 if (!isa<Constant>(RHS) && !RHS->hasOneUse())
97 return false;
98 }
99 }
100
101 auto CanShrinkOp = [&](Value *Op) {
102 auto IsFreeTruncation = [&](Value *Op) {
103 if (auto *Cast = dyn_cast<CastInst>(Op)) {
104 if (Cast->getParent() == Mul->getParent() &&
105 (Cast->getOpcode() == Instruction::SExt ||
106 Cast->getOpcode() == Instruction::ZExt) &&
107 Cast->getOperand(0)->getType()->getScalarSizeInBits() <= 16)
108 return true;
109 }
110
111 return isa<Constant>(Op);
112 };
113
114 // If the operation can be freely truncated and has enough sign bits we
115 // can shrink.
116 if (IsFreeTruncation(Op) &&
117 ComputeNumSignBits(Op, *DL, 0, nullptr, Mul) > 16)
118 return true;
119
120 // SelectionDAG has limited support for truncating through an add or sub if
121 // the inputs are freely truncatable.
122 if (auto *BO = dyn_cast<BinaryOperator>(Op)) {
123 if (BO->getParent() == Mul->getParent() &&
124 IsFreeTruncation(BO->getOperand(0)) &&
125 IsFreeTruncation(BO->getOperand(1)) &&
126 ComputeNumSignBits(Op, *DL, 0, nullptr, Mul) > 16)
127 return true;
128 }
129
130 return false;
131 };
132
133 // Both Ops need to be shrinkable.
134 if (!CanShrinkOp(LHS) && !CanShrinkOp(RHS))
135 return false;
136
137 IRBuilder<> Builder(Mul);
138
139 auto *MulTy = cast<FixedVectorType>(Op->getType());
140 unsigned NumElts = MulTy->getNumElements();
141
142 // Extract even elements and odd elements and add them together. This will
143 // be pattern matched by SelectionDAG to pmaddwd. This instruction will be
144 // half the original width.
145 SmallVector<int, 16> EvenMask(NumElts / 2);
146 SmallVector<int, 16> OddMask(NumElts / 2);
147 for (int i = 0, e = NumElts / 2; i != e; ++i) {
148 EvenMask[i] = i * 2;
149 OddMask[i] = i * 2 + 1;
150 }
151 // Creating a new mul so the replaceAllUsesWith below doesn't replace the
152 // uses in the shuffles we're creating.
153 Value *NewMul = Builder.CreateMul(Mul->getOperand(0), Mul->getOperand(1));
154 Value *EvenElts = Builder.CreateShuffleVector(NewMul, NewMul, EvenMask);
155 Value *OddElts = Builder.CreateShuffleVector(NewMul, NewMul, OddMask);
156 Value *MAdd = Builder.CreateAdd(EvenElts, OddElts);
157
158 // Concatenate zeroes to extend back to the original type.
159 SmallVector<int, 32> ConcatMask(NumElts);
160 std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
161 Value *Zero = Constant::getNullValue(MAdd->getType());
162 Value *Concat = Builder.CreateShuffleVector(MAdd, Zero, ConcatMask);
163
164 Mul->replaceAllUsesWith(Concat);
165 Mul->eraseFromParent();
166
167 return true;
168}
169
170bool X86PartialReduction::trySADReplacement(Instruction *Op) {
171 if (!ST->hasSSE2())
12
Calling 'X86Subtarget::hasSSE2'
14
Returning from 'X86Subtarget::hasSSE2'
15
Taking false branch
172 return false;
173
174 // TODO: There's nothing special about i32, any integer type above i16 should
175 // work just as well.
176 if (!cast<VectorType>(Op->getType())->getElementType()->isIntegerTy(32))
16
The object is a 'VectorType'
17
Assuming the condition is false
18
Taking false branch
177 return false;
178
179 // Operand should be a select.
180 auto *SI = dyn_cast<SelectInst>(Op);
19
Assuming 'Op' is a 'SelectInst'
181 if (!SI
19.1
'SI' is non-null
19.1
'SI' is non-null
)
20
Taking false branch
182 return false;
183
184 // Select needs to implement absolute value.
185 Value *LHS, *RHS;
186 auto SPR = matchSelectPattern(SI, LHS, RHS);
187 if (SPR.Flavor != SPF_ABS)
21
Assuming field 'Flavor' is equal to SPF_ABS
22
Taking false branch
188 return false;
189
190 // Need a subtract of two values.
191 auto *Sub = dyn_cast<BinaryOperator>(LHS);
23
Assuming 'LHS' is a 'BinaryOperator'
192 if (!Sub
23.1
'Sub' is non-null
23.1
'Sub' is non-null
|| Sub->getOpcode() != Instruction::Sub)
24
Assuming the condition is false
25
Taking false branch
193 return false;
194
195 // Look for zero extend from i8.
196 auto getZeroExtendedVal = [](Value *Op) -> Value * {
197 if (auto *ZExt = dyn_cast<ZExtInst>(Op))
27
Assuming 'ZExt' is non-null
28
Taking true branch
35
Assuming 'ZExt' is non-null
36
Taking true branch
198 if (cast<VectorType>(ZExt->getOperand(0)->getType())
29
The object is a 'VectorType'
30
Assuming the condition is true
31
Taking true branch
37
The object is a 'VectorType'
38
Assuming the condition is true
39
Taking true branch
199 ->getElementType()
200 ->isIntegerTy(8))
201 return ZExt->getOperand(0);
32
Returning pointer, which participates in a condition later
40
Returning pointer, which participates in a condition later
202
203 return nullptr;
204 };
205
206 // Both operands of the subtract should be extends from vXi8.
207 Value *Op0 = getZeroExtendedVal(Sub->getOperand(0));
26
Calling 'operator()'
33
Returning from 'operator()'
208 Value *Op1 = getZeroExtendedVal(Sub->getOperand(1));
34
Calling 'operator()'
41
Returning from 'operator()'
209 if (!Op0
41.1
'Op0' is non-null
41.1
'Op0' is non-null
|| !Op1
41.2
'Op1' is non-null
41.2
'Op1' is non-null
)
42
Taking false branch
210 return false;
211
212 IRBuilder<> Builder(SI);
213
214 auto *OpTy = cast<FixedVectorType>(Op->getType());
43
The object is a 'FixedVectorType'
215 unsigned NumElts = OpTy->getNumElements();
44
'NumElts' initialized here
216
217 unsigned IntrinsicNumElts;
218 Intrinsic::ID IID;
219 if (ST->hasBWI() && NumElts >= 64) {
45
Assuming the condition is false
220 IID = Intrinsic::x86_avx512_psad_bw_512;
221 IntrinsicNumElts = 64;
222 } else if (ST->hasAVX2() && NumElts >= 32) {
223 IID = Intrinsic::x86_avx2_psad_bw;
224 IntrinsicNumElts = 32;
225 } else {
226 IID = Intrinsic::x86_sse2_psad_bw;
227 IntrinsicNumElts = 16;
228 }
229
230 Function *PSADBWFn = Intrinsic::getDeclaration(SI->getModule(), IID);
231
232 if (NumElts < 16) {
46
Assuming 'NumElts' is < 16
47
Taking true branch
233 // Pad input with zeroes.
234 SmallVector<int, 32> ConcatMask(16);
235 for (unsigned i = 0; i != NumElts; ++i)
48
Assuming 'i' is equal to 'NumElts'
49
Loop condition is false. Execution continues on line 237
236 ConcatMask[i] = i;
237 for (unsigned i = NumElts; i != 16; ++i)
50
Loop condition is true. Entering loop body
238 ConcatMask[i] = (i % NumElts) + NumElts;
51
Division by zero
239
240 Value *Zero = Constant::getNullValue(Op0->getType());
241 Op0 = Builder.CreateShuffleVector(Op0, Zero, ConcatMask);
242 Op1 = Builder.CreateShuffleVector(Op1, Zero, ConcatMask);
243 NumElts = 16;
244 }
245
246 // Intrinsics produce vXi64 and need to be casted to vXi32.
247 auto *I32Ty =
248 FixedVectorType::get(Builder.getInt32Ty(), IntrinsicNumElts / 4);
249
250 assert(NumElts % IntrinsicNumElts == 0 && "Unexpected number of elements!")((void)0);
251 unsigned NumSplits = NumElts / IntrinsicNumElts;
252
253 // First collect the pieces we need.
254 SmallVector<Value *, 4> Ops(NumSplits);
255 for (unsigned i = 0; i != NumSplits; ++i) {
256 SmallVector<int, 64> ExtractMask(IntrinsicNumElts);
257 std::iota(ExtractMask.begin(), ExtractMask.end(), i * IntrinsicNumElts);
258 Value *ExtractOp0 = Builder.CreateShuffleVector(Op0, Op0, ExtractMask);
259 Value *ExtractOp1 = Builder.CreateShuffleVector(Op1, Op0, ExtractMask);
260 Ops[i] = Builder.CreateCall(PSADBWFn, {ExtractOp0, ExtractOp1});
261 Ops[i] = Builder.CreateBitCast(Ops[i], I32Ty);
262 }
263
264 assert(isPowerOf2_32(NumSplits) && "Expected power of 2 splits")((void)0);
265 unsigned Stages = Log2_32(NumSplits);
266 for (unsigned s = Stages; s > 0; --s) {
267 unsigned NumConcatElts =
268 cast<FixedVectorType>(Ops[0]->getType())->getNumElements() * 2;
269 for (unsigned i = 0; i != 1U << (s - 1); ++i) {
270 SmallVector<int, 64> ConcatMask(NumConcatElts);
271 std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
272 Ops[i] = Builder.CreateShuffleVector(Ops[i*2], Ops[i*2+1], ConcatMask);
273 }
274 }
275
276 // At this point the final value should be in Ops[0]. Now we need to adjust
277 // it to the final original type.
278 NumElts = cast<FixedVectorType>(OpTy)->getNumElements();
279 if (NumElts == 2) {
280 // Extract down to 2 elements.
281 Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{0, 1});
282 } else if (NumElts >= 8) {
283 SmallVector<int, 32> ConcatMask(NumElts);
284 unsigned SubElts =
285 cast<FixedVectorType>(Ops[0]->getType())->getNumElements();
286 for (unsigned i = 0; i != SubElts; ++i)
287 ConcatMask[i] = i;
288 for (unsigned i = SubElts; i != NumElts; ++i)
289 ConcatMask[i] = (i % SubElts) + SubElts;
290
291 Value *Zero = Constant::getNullValue(Ops[0]->getType());
292 Ops[0] = Builder.CreateShuffleVector(Ops[0], Zero, ConcatMask);
293 }
294
295 SI->replaceAllUsesWith(Ops[0]);
296 SI->eraseFromParent();
297
298 return true;
299}
300
301// Walk backwards from the ExtractElementInst and determine if it is the end of
302// a horizontal reduction. Return the input to the reduction if we find one.
303static Value *matchAddReduction(const ExtractElementInst &EE) {
304 // Make sure we're extracting index 0.
305 auto *Index = dyn_cast<ConstantInt>(EE.getIndexOperand());
306 if (!Index || !Index->isNullValue())
307 return nullptr;
308
309 const auto *BO = dyn_cast<BinaryOperator>(EE.getVectorOperand());
310 if (!BO || BO->getOpcode() != Instruction::Add || !BO->hasOneUse())
311 return nullptr;
312
313 unsigned NumElems = cast<FixedVectorType>(BO->getType())->getNumElements();
314 // Ensure the reduction size is a power of 2.
315 if (!isPowerOf2_32(NumElems))
316 return nullptr;
317
318 const Value *Op = BO;
319 unsigned Stages = Log2_32(NumElems);
320 for (unsigned i = 0; i != Stages; ++i) {
321 const auto *BO = dyn_cast<BinaryOperator>(Op);
322 if (!BO || BO->getOpcode() != Instruction::Add)
323 return nullptr;
324
325 // If this isn't the first add, then it should only have 2 users, the
326 // shuffle and another add which we checked in the previous iteration.
327 if (i != 0 && !BO->hasNUses(2))
328 return nullptr;
329
330 Value *LHS = BO->getOperand(0);
331 Value *RHS = BO->getOperand(1);
332
333 auto *Shuffle = dyn_cast<ShuffleVectorInst>(LHS);
334 if (Shuffle) {
335 Op = RHS;
336 } else {
337 Shuffle = dyn_cast<ShuffleVectorInst>(RHS);
338 Op = LHS;
339 }
340
341 // The first operand of the shuffle should be the same as the other operand
342 // of the bin op.
343 if (!Shuffle || Shuffle->getOperand(0) != Op)
344 return nullptr;
345
346 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
347 unsigned MaskEnd = 1 << i;
348 for (unsigned Index = 0; Index < MaskEnd; ++Index)
349 if (Shuffle->getMaskValue(Index) != (int)(MaskEnd + Index))
350 return nullptr;
351 }
352
353 return const_cast<Value *>(Op);
354}
355
356// See if this BO is reachable from this Phi by walking forward through single
357// use BinaryOperators with the same opcode. If we get back then we know we've
358// found a loop and it is safe to step through this Add to find more leaves.
359static bool isReachableFromPHI(PHINode *Phi, BinaryOperator *BO) {
360 // The PHI itself should only have one use.
361 if (!Phi->hasOneUse())
362 return false;
363
364 Instruction *U = cast<Instruction>(*Phi->user_begin());
365 if (U == BO)
366 return true;
367
368 while (U->hasOneUse() && U->getOpcode() == BO->getOpcode())
369 U = cast<Instruction>(*U->user_begin());
370
371 return U == BO;
372}
373
374// Collect all the leaves of the tree of adds that feeds into the horizontal
375// reduction. Root is the Value that is used by the horizontal reduction.
376// We look through single use phis, single use adds, or adds that are used by
377// a phi that forms a loop with the add.
378static void collectLeaves(Value *Root, SmallVectorImpl<Instruction *> &Leaves) {
379 SmallPtrSet<Value *, 8> Visited;
380 SmallVector<Value *, 8> Worklist;
381 Worklist.push_back(Root);
382
383 while (!Worklist.empty()) {
384 Value *V = Worklist.pop_back_val();
385 if (!Visited.insert(V).second)
386 continue;
387
388 if (auto *PN = dyn_cast<PHINode>(V)) {
389 // PHI node should have single use unless it is the root node, then it
390 // has 2 uses.
391 if (!PN->hasNUses(PN == Root ? 2 : 1))
392 break;
393
394 // Push incoming values to the worklist.
395 append_range(Worklist, PN->incoming_values());
396
397 continue;
398 }
399
400 if (auto *BO = dyn_cast<BinaryOperator>(V)) {
401 if (BO->getOpcode() == Instruction::Add) {
402 // Simple case. Single use, just push its operands to the worklist.
403 if (BO->hasNUses(BO == Root ? 2 : 1)) {
404 append_range(Worklist, BO->operands());
405 continue;
406 }
407
408 // If there is additional use, make sure it is an unvisited phi that
409 // gets us back to this node.
410 if (BO->hasNUses(BO == Root ? 3 : 2)) {
411 PHINode *PN = nullptr;
412 for (auto *U : Root->users())
413 if (auto *P = dyn_cast<PHINode>(U))
414 if (!Visited.count(P))
415 PN = P;
416
417 // If we didn't find a 2-input PHI then this isn't a case we can
418 // handle.
419 if (!PN || PN->getNumIncomingValues() != 2)
420 continue;
421
422 // Walk forward from this phi to see if it reaches back to this add.
423 if (!isReachableFromPHI(PN, BO))
424 continue;
425
426 // The phi forms a loop with this Add, push its operands.
427 append_range(Worklist, BO->operands());
428 }
429 }
430 }
431
432 // Not an add or phi, make it a leaf.
433 if (auto *I = dyn_cast<Instruction>(V)) {
434 if (!V->hasNUses(I == Root ? 2 : 1))
435 continue;
436
437 // Add this as a leaf.
438 Leaves.push_back(I);
439 }
440 }
441}
442
443bool X86PartialReduction::runOnFunction(Function &F) {
444 if (skipFunction(F))
1
Assuming the condition is false
2
Taking false branch
445 return false;
446
447 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
448 if (!TPC)
3
Assuming 'TPC' is non-null
4
Taking false branch
449 return false;
450
451 auto &TM = TPC->getTM<X86TargetMachine>();
452 ST = TM.getSubtargetImpl(F);
453
454 DL = &F.getParent()->getDataLayout();
455
456 bool MadeChange = false;
457 for (auto &BB : F) {
458 for (auto &I : BB) {
459 auto *EE = dyn_cast<ExtractElementInst>(&I);
5
Assuming the object is a 'ExtractElementInst'
460 if (!EE
5.1
'EE' is non-null
5.1
'EE' is non-null
)
6
Taking false branch
461 continue;
462
463 // First find a reduction tree.
464 // FIXME: Do we need to handle other opcodes than Add?
465 Value *Root = matchAddReduction(*EE);
466 if (!Root
6.1
'Root' is non-null
6.1
'Root' is non-null
)
7
Taking false branch
467 continue;
468
469 SmallVector<Instruction *, 8> Leaves;
470 collectLeaves(Root, Leaves);
471
472 for (Instruction *I : Leaves) {
8
Assuming '__begin3' is not equal to '__end3'
473 if (tryMAddReplacement(I)) {
9
Taking false branch
474 MadeChange = true;
475 continue;
476 }
477
478 // Don't do SAD matching on the root node. SelectionDAG already
479 // has support for that and currently generates better code.
480 if (I != Root && trySADReplacement(I))
10
Assuming 'I' is not equal to 'Root'
11
Calling 'X86PartialReduction::trySADReplacement'
481 MadeChange = true;
482 }
483 }
484 }
485
486 return MadeChange;
487}

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86/X86Subtarget.h

1//===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the X86 specific subclass of TargetSubtargetInfo.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H
14#define LLVM_LIB_TARGET_X86_X86SUBTARGET_H
15
16#include "X86FrameLowering.h"
17#include "X86ISelLowering.h"
18#include "X86InstrInfo.h"
19#include "X86SelectionDAGInfo.h"
20#include "llvm/ADT/Triple.h"
21#include "llvm/CodeGen/TargetSubtargetInfo.h"
22#include "llvm/IR/CallingConv.h"
23#include <climits>
24#include <memory>
25
26#define GET_SUBTARGETINFO_HEADER
27#include "X86GenSubtargetInfo.inc"
28
29namespace llvm {
30
31class CallLowering;
32class GlobalValue;
33class InstructionSelector;
34class LegalizerInfo;
35class RegisterBankInfo;
36class StringRef;
37class TargetMachine;
38
39/// The X86 backend supports a number of different styles of PIC.
40///
41namespace PICStyles {
42
43enum class Style {
44 StubPIC, // Used on i386-darwin in pic mode.
45 GOT, // Used on 32 bit elf on when in pic mode.
46 RIPRel, // Used on X86-64 when in pic mode.
47 None // Set when not in pic mode.
48};
49
50} // end namespace PICStyles
51
52class X86Subtarget final : public X86GenSubtargetInfo {
53 // NOTE: Do not add anything new to this list. Coarse, CPU name based flags
54 // are not a good idea. We should be migrating away from these.
55 enum X86ProcFamilyEnum {
56 Others,
57 IntelAtom,
58 IntelSLM
59 };
60
61 enum X86SSEEnum {
62 NoSSE, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F
63 };
64
65 enum X863DNowEnum {
66 NoThreeDNow, MMX, ThreeDNow, ThreeDNowA
67 };
68
69 /// X86 processor family: Intel Atom, and others
70 X86ProcFamilyEnum X86ProcFamily = Others;
71
72 /// Which PIC style to use
73 PICStyles::Style PICStyle;
74
75 const TargetMachine &TM;
76
77 /// SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported.
78 X86SSEEnum X86SSELevel = NoSSE;
79
80 /// MMX, 3DNow, 3DNow Athlon, or none supported.
81 X863DNowEnum X863DNowLevel = NoThreeDNow;
82
83 /// True if the processor supports X87 instructions.
84 bool HasX87 = false;
85
86 /// True if the processor supports CMPXCHG8B.
87 bool HasCmpxchg8b = false;
88
89 /// True if this processor has NOPL instruction
90 /// (generally pentium pro+).
91 bool HasNOPL = false;
92
93 /// True if this processor has conditional move instructions
94 /// (generally pentium pro+).
95 bool HasCMov = false;
96
97 /// True if the processor supports X86-64 instructions.
98 bool HasX86_64 = false;
99
100 /// True if the processor supports POPCNT.
101 bool HasPOPCNT = false;
102
103 /// True if the processor supports SSE4A instructions.
104 bool HasSSE4A = false;
105
106 /// Target has AES instructions
107 bool HasAES = false;
108 bool HasVAES = false;
109
110 /// Target has FXSAVE/FXRESTOR instructions
111 bool HasFXSR = false;
112
113 /// Target has XSAVE instructions
114 bool HasXSAVE = false;
115
116 /// Target has XSAVEOPT instructions
117 bool HasXSAVEOPT = false;
118
119 /// Target has XSAVEC instructions
120 bool HasXSAVEC = false;
121
122 /// Target has XSAVES instructions
123 bool HasXSAVES = false;
124
125 /// Target has carry-less multiplication
126 bool HasPCLMUL = false;
127 bool HasVPCLMULQDQ = false;
128
129 /// Target has Galois Field Arithmetic instructions
130 bool HasGFNI = false;
131
132 /// Target has 3-operand fused multiply-add
133 bool HasFMA = false;
134
135 /// Target has 4-operand fused multiply-add
136 bool HasFMA4 = false;
137
138 /// Target has XOP instructions
139 bool HasXOP = false;
140
141 /// Target has TBM instructions.
142 bool HasTBM = false;
143
144 /// Target has LWP instructions
145 bool HasLWP = false;
146
147 /// True if the processor has the MOVBE instruction.
148 bool HasMOVBE = false;
149
150 /// True if the processor has the RDRAND instruction.
151 bool HasRDRAND = false;
152
153 /// Processor has 16-bit floating point conversion instructions.
154 bool HasF16C = false;
155
156 /// Processor has FS/GS base insturctions.
157 bool HasFSGSBase = false;
158
159 /// Processor has LZCNT instruction.
160 bool HasLZCNT = false;
161
162 /// Processor has BMI1 instructions.
163 bool HasBMI = false;
164
165 /// Processor has BMI2 instructions.
166 bool HasBMI2 = false;
167
168 /// Processor has VBMI instructions.
169 bool HasVBMI = false;
170
171 /// Processor has VBMI2 instructions.
172 bool HasVBMI2 = false;
173
174 /// Processor has Integer Fused Multiply Add
175 bool HasIFMA = false;
176
177 /// Processor has RTM instructions.
178 bool HasRTM = false;
179
180 /// Processor has ADX instructions.
181 bool HasADX = false;
182
183 /// Processor has SHA instructions.
184 bool HasSHA = false;
185
186 /// Processor has PRFCHW instructions.
187 bool HasPRFCHW = false;
188
189 /// Processor has RDSEED instructions.
190 bool HasRDSEED = false;
191
192 /// Processor has LAHF/SAHF instructions in 64-bit mode.
193 bool HasLAHFSAHF64 = false;
194
195 /// Processor has MONITORX/MWAITX instructions.
196 bool HasMWAITX = false;
197
198 /// Processor has Cache Line Zero instruction
199 bool HasCLZERO = false;
200
201 /// Processor has Cache Line Demote instruction
202 bool HasCLDEMOTE = false;
203
204 /// Processor has MOVDIRI instruction (direct store integer).
205 bool HasMOVDIRI = false;
206
207 /// Processor has MOVDIR64B instruction (direct store 64 bytes).
208 bool HasMOVDIR64B = false;
209
210 /// Processor has ptwrite instruction.
211 bool HasPTWRITE = false;
212
213 /// Processor has Prefetch with intent to Write instruction
214 bool HasPREFETCHWT1 = false;
215
216 /// True if SHLD instructions are slow.
217 bool IsSHLDSlow = false;
218
219 /// True if the PMULLD instruction is slow compared to PMULLW/PMULHW and
220 // PMULUDQ.
221 bool IsPMULLDSlow = false;
222
223 /// True if the PMADDWD instruction is slow compared to PMULLD.
224 bool IsPMADDWDSlow = false;
225
226 /// True if unaligned memory accesses of 16-bytes are slow.
227 bool IsUAMem16Slow = false;
228
229 /// True if unaligned memory accesses of 32-bytes are slow.
230 bool IsUAMem32Slow = false;
231
232 /// True if SSE operations can have unaligned memory operands.
233 /// This may require setting a configuration bit in the processor.
234 bool HasSSEUnalignedMem = false;
235
236 /// True if this processor has the CMPXCHG16B instruction;
237 /// this is true for most x86-64 chips, but not the first AMD chips.
238 bool HasCmpxchg16b = false;
239
240 /// True if the LEA instruction should be used for adjusting
241 /// the stack pointer. This is an optimization for Intel Atom processors.
242 bool UseLeaForSP = false;
243
244 /// True if POPCNT instruction has a false dependency on the destination register.
245 bool HasPOPCNTFalseDeps = false;
246
247 /// True if LZCNT/TZCNT instructions have a false dependency on the destination register.
248 bool HasLZCNTFalseDeps = false;
249
250 /// True if its preferable to combine to a single cross-lane shuffle
251 /// using a variable mask over multiple fixed shuffles.
252 bool HasFastVariableCrossLaneShuffle = false;
253
254 /// True if its preferable to combine to a single per-lane shuffle
255 /// using a variable mask over multiple fixed shuffles.
256 bool HasFastVariablePerLaneShuffle = false;
257
258 /// True if vzeroupper instructions should be inserted after code that uses
259 /// ymm or zmm registers.
260 bool InsertVZEROUPPER = false;
261
262 /// True if there is no performance penalty for writing NOPs with up to
263 /// 7 bytes.
264 bool HasFast7ByteNOP = false;
265
266 /// True if there is no performance penalty for writing NOPs with up to
267 /// 11 bytes.
268 bool HasFast11ByteNOP = false;
269
270 /// True if there is no performance penalty for writing NOPs with up to
271 /// 15 bytes.
272 bool HasFast15ByteNOP = false;
273
274 /// True if gather is reasonably fast. This is true for Skylake client and
275 /// all AVX-512 CPUs.
276 bool HasFastGather = false;
277
278 /// True if hardware SQRTSS instruction is at least as fast (latency) as
279 /// RSQRTSS followed by a Newton-Raphson iteration.
280 bool HasFastScalarFSQRT = false;
281
282 /// True if hardware SQRTPS/VSQRTPS instructions are at least as fast
283 /// (throughput) as RSQRTPS/VRSQRTPS followed by a Newton-Raphson iteration.
284 bool HasFastVectorFSQRT = false;
285
286 /// True if 8-bit divisions are significantly faster than
287 /// 32-bit divisions and should be used when possible.
288 bool HasSlowDivide32 = false;
289
290 /// True if 32-bit divides are significantly faster than
291 /// 64-bit divisions and should be used when possible.
292 bool HasSlowDivide64 = false;
293
294 /// True if LZCNT instruction is fast.
295 bool HasFastLZCNT = false;
296
297 /// True if SHLD based rotate is fast.
298 bool HasFastSHLDRotate = false;
299
300 /// True if the processor supports macrofusion.
301 bool HasMacroFusion = false;
302
303 /// True if the processor supports branch fusion.
304 bool HasBranchFusion = false;
305
306 /// True if the processor has enhanced REP MOVSB/STOSB.
307 bool HasERMSB = false;
308
309 /// True if the processor has fast short REP MOV.
310 bool HasFSRM = false;
311
312 /// True if the short functions should be padded to prevent
313 /// a stall when returning too early.
314 bool PadShortFunctions = false;
315
316 /// True if two memory operand instructions should use a temporary register
317 /// instead.
318 bool SlowTwoMemOps = false;
319
320 /// True if the LEA instruction inputs have to be ready at address generation
321 /// (AG) time.
322 bool LEAUsesAG = false;
323
324 /// True if the LEA instruction with certain arguments is slow
325 bool SlowLEA = false;
326
327 /// True if the LEA instruction has all three source operands: base, index,
328 /// and offset or if the LEA instruction uses base and index registers where
329 /// the base is EBP, RBP,or R13
330 bool Slow3OpsLEA = false;
331
332 /// True if INC and DEC instructions are slow when writing to flags
333 bool SlowIncDec = false;
334
335 /// Processor has AVX-512 PreFetch Instructions
336 bool HasPFI = false;
337
338 /// Processor has AVX-512 Exponential and Reciprocal Instructions
339 bool HasERI = false;
340
341 /// Processor has AVX-512 Conflict Detection Instructions
342 bool HasCDI = false;
343
344 /// Processor has AVX-512 population count Instructions
345 bool HasVPOPCNTDQ = false;
346
347 /// Processor has AVX-512 Doubleword and Quadword instructions
348 bool HasDQI = false;
349
350 /// Processor has AVX-512 Byte and Word instructions
351 bool HasBWI = false;
352
353 /// Processor has AVX-512 Vector Length eXtenstions
354 bool HasVLX = false;
355
356 /// Processor has PKU extenstions
357 bool HasPKU = false;
358
359 /// Processor has AVX-512 Vector Neural Network Instructions
360 bool HasVNNI = false;
361
362 /// Processor has AVX Vector Neural Network Instructions
363 bool HasAVXVNNI = false;
364
365 /// Processor has AVX-512 bfloat16 floating-point extensions
366 bool HasBF16 = false;
367
368 /// Processor supports ENQCMD instructions
369 bool HasENQCMD = false;
370
371 /// Processor has AVX-512 Bit Algorithms instructions
372 bool HasBITALG = false;
373
374 /// Processor has AVX-512 vp2intersect instructions
375 bool HasVP2INTERSECT = false;
376
377 /// Processor supports CET SHSTK - Control-Flow Enforcement Technology
378 /// using Shadow Stack
379 bool HasSHSTK = false;
380
381 /// Processor supports Invalidate Process-Context Identifier
382 bool HasINVPCID = false;
383
384 /// Processor has Software Guard Extensions
385 bool HasSGX = false;
386
387 /// Processor supports Flush Cache Line instruction
388 bool HasCLFLUSHOPT = false;
389
390 /// Processor supports Cache Line Write Back instruction
391 bool HasCLWB = false;
392
393 /// Processor supports Write Back No Invalidate instruction
394 bool HasWBNOINVD = false;
395
396 /// Processor support RDPID instruction
397 bool HasRDPID = false;
398
399 /// Processor supports WaitPKG instructions
400 bool HasWAITPKG = false;
401
402 /// Processor supports PCONFIG instruction
403 bool HasPCONFIG = false;
404
405 /// Processor support key locker instructions
406 bool HasKL = false;
407
408 /// Processor support key locker wide instructions
409 bool HasWIDEKL = false;
410
411 /// Processor supports HRESET instruction
412 bool HasHRESET = false;
413
414 /// Processor supports SERIALIZE instruction
415 bool HasSERIALIZE = false;
416
417 /// Processor supports TSXLDTRK instruction
418 bool HasTSXLDTRK = false;
419
420 /// Processor has AMX support
421 bool HasAMXTILE = false;
422 bool HasAMXBF16 = false;
423 bool HasAMXINT8 = false;
424
425 /// Processor supports User Level Interrupt instructions
426 bool HasUINTR = false;
427
428 /// Processor has a single uop BEXTR implementation.
429 bool HasFastBEXTR = false;
430
431 /// Try harder to combine to horizontal vector ops if they are fast.
432 bool HasFastHorizontalOps = false;
433
434 /// Prefer a left/right scalar logical shifts pair over a shift+and pair.
435 bool HasFastScalarShiftMasks = false;
436
437 /// Prefer a left/right vector logical shifts pair over a shift+and pair.
438 bool HasFastVectorShiftMasks = false;
439
440 /// Prefer a movbe over a single-use load + bswap / single-use bswap + store.
441 bool HasFastMOVBE = false;
442
443 /// Use a retpoline thunk rather than indirect calls to block speculative
444 /// execution.
445 bool UseRetpolineIndirectCalls = false;
446
447 /// Use a retpoline thunk or remove any indirect branch to block speculative
448 /// execution.
449 bool UseRetpolineIndirectBranches = false;
450
451 /// Deprecated flag, query `UseRetpolineIndirectCalls` and
452 /// `UseRetpolineIndirectBranches` instead.
453 bool DeprecatedUseRetpoline = false;
454
455 /// When using a retpoline thunk, call an externally provided thunk rather
456 /// than emitting one inside the compiler.
457 bool UseRetpolineExternalThunk = false;
458
459 /// Prevent generation of indirect call/branch instructions from memory,
460 /// and force all indirect call/branch instructions from a register to be
461 /// preceded by an LFENCE. Also decompose RET instructions into a
462 /// POP+LFENCE+JMP sequence.
463 bool UseLVIControlFlowIntegrity = false;
464
465 /// Enable Speculative Execution Side Effect Suppression
466 bool UseSpeculativeExecutionSideEffectSuppression = false;
467
468 /// Insert LFENCE instructions to prevent data speculatively injected into
469 /// loads from being used maliciously.
470 bool UseLVILoadHardening = false;
471
472 /// Use software floating point for code generation.
473 bool UseSoftFloat = false;
474
475 /// Use alias analysis during code generation.
476 bool UseAA = false;
477
478 /// The minimum alignment known to hold of the stack frame on
479 /// entry to the function and which must be maintained by every function.
480 Align stackAlignment = Align(4);
481
482 Align TileConfigAlignment = Align(4);
483
484 /// Whether function prologues should save register arguments on the stack.
485 bool SaveArgs = false;
486
487 /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
488 ///
489 // FIXME: this is a known good value for Yonah. How about others?
490 unsigned MaxInlineSizeThreshold = 128;
491
492 /// Indicates target prefers 128 bit instructions.
493 bool Prefer128Bit = false;
494
495 /// Indicates target prefers 256 bit instructions.
496 bool Prefer256Bit = false;
497
498 /// Indicates target prefers AVX512 mask registers.
499 bool PreferMaskRegisters = false;
500
501 /// Use Goldmont specific floating point div/sqrt costs.
502 bool UseGLMDivSqrtCosts = false;
503
504 /// What processor and OS we're targeting.
505 Triple TargetTriple;
506
507 /// GlobalISel related APIs.
508 std::unique_ptr<CallLowering> CallLoweringInfo;
509 std::unique_ptr<LegalizerInfo> Legalizer;
510 std::unique_ptr<RegisterBankInfo> RegBankInfo;
511 std::unique_ptr<InstructionSelector> InstSelector;
512
513private:
514 /// Override the stack alignment.
515 MaybeAlign StackAlignOverride;
516
517 /// Preferred vector width from function attribute.
518 unsigned PreferVectorWidthOverride;
519
520 /// Resolved preferred vector width from function attribute and subtarget
521 /// features.
522 unsigned PreferVectorWidth = UINT32_MAX0xffffffffU;
523
524 /// Required vector width from function attribute.
525 unsigned RequiredVectorWidth;
526
527 /// True if compiling for 64-bit, false for 16-bit or 32-bit.
528 bool In64BitMode = false;
529
530 /// True if compiling for 32-bit, false for 16-bit or 64-bit.
531 bool In32BitMode = false;
532
533 /// True if compiling for 16-bit, false for 32-bit or 64-bit.
534 bool In16BitMode = false;
535
536 X86SelectionDAGInfo TSInfo;
537 // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
538 // X86TargetLowering needs.
539 X86InstrInfo InstrInfo;
540 X86TargetLowering TLInfo;
541 X86FrameLowering FrameLowering;
542
543public:
544 /// This constructor initializes the data members to match that
545 /// of the specified triple.
546 ///
547 X86Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS,
548 const X86TargetMachine &TM, MaybeAlign StackAlignOverride,
549 unsigned PreferVectorWidthOverride,
550 unsigned RequiredVectorWidth);
551
552 const X86TargetLowering *getTargetLowering() const override {
553 return &TLInfo;
554 }
555
556 const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; }
557
558 const X86FrameLowering *getFrameLowering() const override {
559 return &FrameLowering;
560 }
561
562 const X86SelectionDAGInfo *getSelectionDAGInfo() const override {
563 return &TSInfo;
564 }
565
566 const X86RegisterInfo *getRegisterInfo() const override {
567 return &getInstrInfo()->getRegisterInfo();
568 }
569
570 bool getSaveArgs() const { return SaveArgs; }
571
572 unsigned getTileConfigSize() const { return 64; }
573 Align getTileConfigAlignment() const { return TileConfigAlignment; }
574
575 /// Returns the minimum alignment known to hold of the
576 /// stack frame on entry to the function and which must be maintained by every
577 /// function for this subtarget.
578 Align getStackAlignment() const { return stackAlignment; }
579
580 /// Returns the maximum memset / memcpy size
581 /// that still makes it profitable to inline the call.
582 unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; }
583
584 /// ParseSubtargetFeatures - Parses features string setting specified
585 /// subtarget options. Definition of function is auto generated by tblgen.
586 void ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS);
587
588 /// Methods used by Global ISel
589 const CallLowering *getCallLowering() const override;
590 InstructionSelector *getInstructionSelector() const override;
591 const LegalizerInfo *getLegalizerInfo() const override;
592 const RegisterBankInfo *getRegBankInfo() const override;
593
594private:
595 /// Initialize the full set of dependencies so we can use an initializer
596 /// list for X86Subtarget.
597 X86Subtarget &initializeSubtargetDependencies(StringRef CPU,
598 StringRef TuneCPU,
599 StringRef FS);
600 void initSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS);
601
602public:
603 /// Is this x86_64? (disregarding specific ABI / programming model)
604 bool is64Bit() const {
605 return In64BitMode;
606 }
607
608 bool is32Bit() const {
609 return In32BitMode;
610 }
611
612 bool is16Bit() const {
613 return In16BitMode;
614 }
615
616 /// Is this x86_64 with the ILP32 programming model (x32 ABI)?
617 bool isTarget64BitILP32() const {
618 return In64BitMode && (TargetTriple.isX32() || TargetTriple.isOSNaCl());
619 }
620
621 /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
622 bool isTarget64BitLP64() const {
623 return In64BitMode && (!TargetTriple.isX32() && !TargetTriple.isOSNaCl());
624 }
625
626 PICStyles::Style getPICStyle() const { return PICStyle; }
627 void setPICStyle(PICStyles::Style Style) { PICStyle = Style; }
628
629 bool hasX87() const { return HasX87; }
630 bool hasCmpxchg8b() const { return HasCmpxchg8b; }
631 bool hasNOPL() const { return HasNOPL; }
632 // SSE codegen depends on cmovs, and all SSE1+ processors support them.
633 // All 64-bit processors support cmov.
634 bool hasCMov() const { return HasCMov || X86SSELevel >= SSE1 || is64Bit(); }
635 bool hasSSE1() const { return X86SSELevel >= SSE1; }
636 bool hasSSE2() const { return X86SSELevel
12.1
Field 'X86SSELevel' is >= SSE2
12.1
Field 'X86SSELevel' is >= SSE2
>= SSE2
; }
13
Returning the value 1, which participates in a condition later
637 bool hasSSE3() const { return X86SSELevel >= SSE3; }
638 bool hasSSSE3() const { return X86SSELevel >= SSSE3; }
639 bool hasSSE41() const { return X86SSELevel >= SSE41; }
640 bool hasSSE42() const { return X86SSELevel >= SSE42; }
641 bool hasAVX() const { return X86SSELevel >= AVX; }
642 bool hasAVX2() const { return X86SSELevel >= AVX2; }
643 bool hasAVX512() const { return X86SSELevel >= AVX512F; }
644 bool hasInt256() const { return hasAVX2(); }
645 bool hasSSE4A() const { return HasSSE4A; }
646 bool hasMMX() const { return X863DNowLevel >= MMX; }
647 bool has3DNow() const { return X863DNowLevel >= ThreeDNow; }
648 bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; }
649 bool hasPOPCNT() const { return HasPOPCNT; }
650 bool hasAES() const { return HasAES; }
651 bool hasVAES() const { return HasVAES; }
652 bool hasFXSR() const { return HasFXSR; }
653 bool hasXSAVE() const { return HasXSAVE; }
654 bool hasXSAVEOPT() const { return HasXSAVEOPT; }
655 bool hasXSAVEC() const { return HasXSAVEC; }
656 bool hasXSAVES() const { return HasXSAVES; }
657 bool hasPCLMUL() const { return HasPCLMUL; }
658 bool hasVPCLMULQDQ() const { return HasVPCLMULQDQ; }
659 bool hasGFNI() const { return HasGFNI; }
660 // Prefer FMA4 to FMA - its better for commutation/memory folding and
661 // has equal or better performance on all supported targets.
662 bool hasFMA() const { return HasFMA; }
663 bool hasFMA4() const { return HasFMA4; }
664 bool hasAnyFMA() const { return hasFMA() || hasFMA4(); }
665 bool hasXOP() const { return HasXOP; }
666 bool hasTBM() const { return HasTBM; }
667 bool hasLWP() const { return HasLWP; }
668 bool hasMOVBE() const { return HasMOVBE; }
669 bool hasRDRAND() const { return HasRDRAND; }
670 bool hasF16C() const { return HasF16C; }
671 bool hasFSGSBase() const { return HasFSGSBase; }
672 bool hasLZCNT() const { return HasLZCNT; }
673 bool hasBMI() const { return HasBMI; }
674 bool hasBMI2() const { return HasBMI2; }
675 bool hasVBMI() const { return HasVBMI; }
676 bool hasVBMI2() const { return HasVBMI2; }
677 bool hasIFMA() const { return HasIFMA; }
678 bool hasRTM() const { return HasRTM; }
679 bool hasADX() const { return HasADX; }
680 bool hasSHA() const { return HasSHA; }
681 bool hasPRFCHW() const { return HasPRFCHW; }
682 bool hasPREFETCHWT1() const { return HasPREFETCHWT1; }
683 bool hasPrefetchW() const {
684 // The PREFETCHW instruction was added with 3DNow but later CPUs gave it
685 // its own CPUID bit as part of deprecating 3DNow. Intel eventually added
686 // it and KNL has another that prefetches to L2 cache. We assume the
687 // L1 version exists if the L2 version does.
688 return has3DNow() || hasPRFCHW() || hasPREFETCHWT1();
689 }
690 bool hasSSEPrefetch() const {
691 // We implicitly enable these when we have a write prefix supporting cache
692 // level OR if we have prfchw, but don't already have a read prefetch from
693 // 3dnow.
694 return hasSSE1() || (hasPRFCHW() && !has3DNow()) || hasPREFETCHWT1();
695 }
696 bool hasRDSEED() const { return HasRDSEED; }
697 bool hasLAHFSAHF() const { return HasLAHFSAHF64 || !is64Bit(); }
698 bool hasMWAITX() const { return HasMWAITX; }
699 bool hasCLZERO() const { return HasCLZERO; }
700 bool hasCLDEMOTE() const { return HasCLDEMOTE; }
701 bool hasMOVDIRI() const { return HasMOVDIRI; }
702 bool hasMOVDIR64B() const { return HasMOVDIR64B; }
703 bool hasPTWRITE() const { return HasPTWRITE; }
704 bool isSHLDSlow() const { return IsSHLDSlow; }
705 bool isPMULLDSlow() const { return IsPMULLDSlow; }
706 bool isPMADDWDSlow() const { return IsPMADDWDSlow; }
707 bool isUnalignedMem16Slow() const { return IsUAMem16Slow; }
708 bool isUnalignedMem32Slow() const { return IsUAMem32Slow; }
709 bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem; }
710 bool hasCmpxchg16b() const { return HasCmpxchg16b && is64Bit(); }
711 bool useLeaForSP() const { return UseLeaForSP; }
712 bool hasPOPCNTFalseDeps() const { return HasPOPCNTFalseDeps; }
713 bool hasLZCNTFalseDeps() const { return HasLZCNTFalseDeps; }
714 bool hasFastVariableCrossLaneShuffle() const {
715 return HasFastVariableCrossLaneShuffle;
716 }
717 bool hasFastVariablePerLaneShuffle() const {
718 return HasFastVariablePerLaneShuffle;
719 }
720 bool insertVZEROUPPER() const { return InsertVZEROUPPER; }
721 bool hasFastGather() const { return HasFastGather; }
722 bool hasFastScalarFSQRT() const { return HasFastScalarFSQRT; }
723 bool hasFastVectorFSQRT() const { return HasFastVectorFSQRT; }
724 bool hasFastLZCNT() const { return HasFastLZCNT; }
725 bool hasFastSHLDRotate() const { return HasFastSHLDRotate; }
726 bool hasFastBEXTR() const { return HasFastBEXTR; }
727 bool hasFastHorizontalOps() const { return HasFastHorizontalOps; }
728 bool hasFastScalarShiftMasks() const { return HasFastScalarShiftMasks; }
729 bool hasFastVectorShiftMasks() const { return HasFastVectorShiftMasks; }
730 bool hasFastMOVBE() const { return HasFastMOVBE; }
731 bool hasMacroFusion() const { return HasMacroFusion; }
732 bool hasBranchFusion() const { return HasBranchFusion; }
733 bool hasERMSB() const { return HasERMSB; }
734 bool hasFSRM() const { return HasFSRM; }
735 bool hasSlowDivide32() const { return HasSlowDivide32; }
736 bool hasSlowDivide64() const { return HasSlowDivide64; }
737 bool padShortFunctions() const { return PadShortFunctions; }
738 bool slowTwoMemOps() const { return SlowTwoMemOps; }
739 bool LEAusesAG() const { return LEAUsesAG; }
740 bool slowLEA() const { return SlowLEA; }
741 bool slow3OpsLEA() const { return Slow3OpsLEA; }
742 bool slowIncDec() const { return SlowIncDec; }
743 bool hasCDI() const { return HasCDI; }
744 bool hasVPOPCNTDQ() const { return HasVPOPCNTDQ; }
745 bool hasPFI() const { return HasPFI; }
746 bool hasERI() const { return HasERI; }
747 bool hasDQI() const { return HasDQI; }
748 bool hasBWI() const { return HasBWI; }
749 bool hasVLX() const { return HasVLX; }
750 bool hasPKU() const { return HasPKU; }
751 bool hasVNNI() const { return HasVNNI; }
752 bool hasBF16() const { return HasBF16; }
753 bool hasVP2INTERSECT() const { return HasVP2INTERSECT; }
754 bool hasBITALG() const { return HasBITALG; }
755 bool hasSHSTK() const { return HasSHSTK; }
756 bool hasCLFLUSHOPT() const { return HasCLFLUSHOPT; }
757 bool hasCLWB() const { return HasCLWB; }
758 bool hasWBNOINVD() const { return HasWBNOINVD; }
759 bool hasRDPID() const { return HasRDPID; }
760 bool hasWAITPKG() const { return HasWAITPKG; }
761 bool hasPCONFIG() const { return HasPCONFIG; }
762 bool hasSGX() const { return HasSGX; }
763 bool hasINVPCID() const { return HasINVPCID; }
764 bool hasENQCMD() const { return HasENQCMD; }
765 bool hasKL() const { return HasKL; }
766 bool hasWIDEKL() const { return HasWIDEKL; }
767 bool hasHRESET() const { return HasHRESET; }
768 bool hasSERIALIZE() const { return HasSERIALIZE; }
769 bool hasTSXLDTRK() const { return HasTSXLDTRK; }
770 bool hasUINTR() const { return HasUINTR; }
771 bool useRetpolineIndirectCalls() const { return UseRetpolineIndirectCalls; }
772 bool useRetpolineIndirectBranches() const {
773 return UseRetpolineIndirectBranches;
774 }
775 bool hasAVXVNNI() const { return HasAVXVNNI; }
776 bool hasAMXTILE() const { return HasAMXTILE; }
777 bool hasAMXBF16() const { return HasAMXBF16; }
778 bool hasAMXINT8() const { return HasAMXINT8; }
779 bool useRetpolineExternalThunk() const { return UseRetpolineExternalThunk; }
780
781 // These are generic getters that OR together all of the thunk types
782 // supported by the subtarget. Therefore useIndirectThunk*() will return true
783 // if any respective thunk feature is enabled.
784 bool useIndirectThunkCalls() const {
785 return useRetpolineIndirectCalls() || useLVIControlFlowIntegrity();
786 }
787 bool useIndirectThunkBranches() const {
788 return useRetpolineIndirectBranches() || useLVIControlFlowIntegrity();
789 }
790
791 bool preferMaskRegisters() const { return PreferMaskRegisters; }
792 bool useGLMDivSqrtCosts() const { return UseGLMDivSqrtCosts; }
793 bool useLVIControlFlowIntegrity() const { return UseLVIControlFlowIntegrity; }
794 bool useLVILoadHardening() const { return UseLVILoadHardening; }
795 bool useSpeculativeExecutionSideEffectSuppression() const {
796 return UseSpeculativeExecutionSideEffectSuppression;
797 }
798
799 unsigned getPreferVectorWidth() const { return PreferVectorWidth; }
800 unsigned getRequiredVectorWidth() const { return RequiredVectorWidth; }
801
802 // Helper functions to determine when we should allow widening to 512-bit
803 // during codegen.
804 // TODO: Currently we're always allowing widening on CPUs without VLX,
805 // because for many cases we don't have a better option.
806 bool canExtendTo512DQ() const {
807 return hasAVX512() && (!hasVLX() || getPreferVectorWidth() >= 512);
808 }
809 bool canExtendTo512BW() const {
810 return hasBWI() && canExtendTo512DQ();
811 }
812
813 // If there are no 512-bit vectors and we prefer not to use 512-bit registers,
814 // disable them in the legalizer.
815 bool useAVX512Regs() const {
816 return hasAVX512() && (canExtendTo512DQ() || RequiredVectorWidth > 256);
817 }
818
819 bool useBWIRegs() const {
820 return hasBWI() && useAVX512Regs();
821 }
822
823 bool isXRaySupported() const override { return is64Bit(); }
824
825 /// TODO: to be removed later and replaced with suitable properties
826 bool isAtom() const { return X86ProcFamily == IntelAtom; }
827 bool isSLM() const { return X86ProcFamily == IntelSLM; }
828 bool useSoftFloat() const { return UseSoftFloat; }
829 bool useAA() const override { return UseAA; }
830
831 /// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
832 /// no-sse2). There isn't any reason to disable it if the target processor
833 /// supports it.
834 bool hasMFence() const { return hasSSE2() || is64Bit(); }
835
836 const Triple &getTargetTriple() const { return TargetTriple; }
837
838 bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
839 bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); }
840 bool isTargetOpenBSD() const { return TargetTriple.isOSOpenBSD(); }
841 bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); }
842 bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); }
843 bool isTargetPS4() const { return TargetTriple.isPS4CPU(); }
844
845 bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
846 bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
847 bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
848
849 bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
850 bool isTargetKFreeBSD() const { return TargetTriple.isOSKFreeBSD(); }
851 bool isTargetGlibc() const { return TargetTriple.isOSGlibc(); }
852 bool isTargetAndroid() const { return TargetTriple.isAndroid(); }
853 bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
854 bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
855 bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
856 bool isTargetMCU() const { return TargetTriple.isOSIAMCU(); }
857 bool isTargetFuchsia() const { return TargetTriple.isOSFuchsia(); }
858
859 bool isTargetWindowsMSVC() const {
860 return TargetTriple.isWindowsMSVCEnvironment();
861 }
862
863 bool isTargetWindowsCoreCLR() const {
864 return TargetTriple.isWindowsCoreCLREnvironment();
865 }
866
867 bool isTargetWindowsCygwin() const {
868 return TargetTriple.isWindowsCygwinEnvironment();
869 }
870
871 bool isTargetWindowsGNU() const {
872 return TargetTriple.isWindowsGNUEnvironment();
873 }
874
875 bool isTargetWindowsItanium() const {
876 return TargetTriple.isWindowsItaniumEnvironment();
877 }
878
879 bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); }
880
881 bool isOSWindows() const { return TargetTriple.isOSWindows(); }
882
883 bool isTargetWin64() const { return In64BitMode && isOSWindows(); }
884
885 bool isTargetWin32() const { return !In64BitMode && isOSWindows(); }
886
887 bool isPICStyleGOT() const { return PICStyle == PICStyles::Style::GOT; }
888 bool isPICStyleRIPRel() const { return PICStyle == PICStyles::Style::RIPRel; }
889
890 bool isPICStyleStubPIC() const {
891 return PICStyle == PICStyles::Style::StubPIC;
892 }
893
894 bool isPositionIndependent() const;
895
896 bool isCallingConvWin64(CallingConv::ID CC) const {
897 switch (CC) {
898 // On Win64, all these conventions just use the default convention.
899 case CallingConv::C:
900 case CallingConv::Fast:
901 case CallingConv::Tail:
902 case CallingConv::Swift:
903 case CallingConv::SwiftTail:
904 case CallingConv::X86_FastCall:
905 case CallingConv::X86_StdCall:
906 case CallingConv::X86_ThisCall:
907 case CallingConv::X86_VectorCall:
908 case CallingConv::Intel_OCL_BI:
909 return isTargetWin64();
910 // This convention allows using the Win64 convention on other targets.
911 case CallingConv::Win64:
912 return true;
913 // This convention allows using the SysV convention on Windows targets.
914 case CallingConv::X86_64_SysV:
915 return false;
916 // Otherwise, who knows what this is.
917 default:
918 return false;
919 }
920 }
921
922 /// Classify a global variable reference for the current subtarget according
923 /// to how we should reference it in a non-pcrel context.
924 unsigned char classifyLocalReference(const GlobalValue *GV) const;
925
926 unsigned char classifyGlobalReference(const GlobalValue *GV,
927 const Module &M) const;
928 unsigned char classifyGlobalReference(const GlobalValue *GV) const;
929
930 /// Classify a global function reference for the current subtarget.
931 unsigned char classifyGlobalFunctionReference(const GlobalValue *GV,
932 const Module &M) const;
933 unsigned char classifyGlobalFunctionReference(const GlobalValue *GV) const;
934
935 /// Classify a blockaddress reference for the current subtarget according to
936 /// how we should reference it in a non-pcrel context.
937 unsigned char classifyBlockAddressReference() const;
938
939 /// Return true if the subtarget allows calls to immediate address.
940 bool isLegalToCallImmediateAddr() const;
941
942 /// If we are using indirect thunks, we need to expand indirectbr to avoid it
943 /// lowering to an actual indirect jump.
944 bool enableIndirectBrExpand() const override {
945 return useIndirectThunkBranches();
946 }
947
948 /// Enable the MachineScheduler pass for all X86 subtargets.
949 bool enableMachineScheduler() const override { return true; }
950
951 bool enableEarlyIfConversion() const override;
952
953 void getPostRAMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>>
954 &Mutations) const override;
955
956 AntiDepBreakMode getAntiDepBreakMode() const override {
957 return TargetSubtargetInfo::ANTIDEP_CRITICAL;
958 }
959
960 bool enableAdvancedRASplitCost() const override { return false; }
961};
962
963} // end namespace llvm
964
965#endif // LLVM_LIB_TARGET_X86_X86SUBTARGET_H