Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h
Warning:line 85, column 47
The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SROA.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -fhalf-no-semantic-interposition -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -D PIC -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -D_RET_PROTECTOR -ret-protector -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Scalar/SROA.cpp

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Scalar/SROA.cpp

1//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This transformation implements the well known scalar replacement of
10/// aggregates transformation. It tries to identify promotable elements of an
11/// aggregate alloca, and promote them to registers. It will also try to
12/// convert uses of an element (or set of elements) of an alloca into a vector
13/// or bitfield-style integer scalar if appropriate.
14///
15/// It works to do this with minimal slicing of the alloca so that regions
16/// which are merely transferred in and out of external memory remain unchanged
17/// and are not decomposed to scalar code.
18///
19/// Because this also performs alloca promotion, it can be thought of as also
20/// serving the purpose of SSA formation. The algorithm iterates on the
21/// function until all opportunities for promotion have been realized.
22///
23//===----------------------------------------------------------------------===//
24
25#include "llvm/Transforms/Scalar/SROA.h"
26#include "llvm/ADT/APInt.h"
27#include "llvm/ADT/ArrayRef.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/PointerIntPair.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallBitVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/ADT/StringRef.h"
37#include "llvm/ADT/Twine.h"
38#include "llvm/ADT/iterator.h"
39#include "llvm/ADT/iterator_range.h"
40#include "llvm/Analysis/AssumptionCache.h"
41#include "llvm/Analysis/GlobalsModRef.h"
42#include "llvm/Analysis/Loads.h"
43#include "llvm/Analysis/PtrUseVisitor.h"
44#include "llvm/Config/llvm-config.h"
45#include "llvm/IR/BasicBlock.h"
46#include "llvm/IR/Constant.h"
47#include "llvm/IR/ConstantFolder.h"
48#include "llvm/IR/Constants.h"
49#include "llvm/IR/DIBuilder.h"
50#include "llvm/IR/DataLayout.h"
51#include "llvm/IR/DebugInfoMetadata.h"
52#include "llvm/IR/DerivedTypes.h"
53#include "llvm/IR/Dominators.h"
54#include "llvm/IR/Function.h"
55#include "llvm/IR/GetElementPtrTypeIterator.h"
56#include "llvm/IR/GlobalAlias.h"
57#include "llvm/IR/IRBuilder.h"
58#include "llvm/IR/InstVisitor.h"
59#include "llvm/IR/InstrTypes.h"
60#include "llvm/IR/Instruction.h"
61#include "llvm/IR/Instructions.h"
62#include "llvm/IR/IntrinsicInst.h"
63#include "llvm/IR/Intrinsics.h"
64#include "llvm/IR/LLVMContext.h"
65#include "llvm/IR/Metadata.h"
66#include "llvm/IR/Module.h"
67#include "llvm/IR/Operator.h"
68#include "llvm/IR/PassManager.h"
69#include "llvm/IR/Type.h"
70#include "llvm/IR/Use.h"
71#include "llvm/IR/User.h"
72#include "llvm/IR/Value.h"
73#include "llvm/InitializePasses.h"
74#include "llvm/Pass.h"
75#include "llvm/Support/Casting.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/Compiler.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/MathExtras.h"
81#include "llvm/Support/raw_ostream.h"
82#include "llvm/Transforms/Scalar.h"
83#include "llvm/Transforms/Utils/Local.h"
84#include "llvm/Transforms/Utils/PromoteMemToReg.h"
85#include <algorithm>
86#include <cassert>
87#include <chrono>
88#include <cstddef>
89#include <cstdint>
90#include <cstring>
91#include <iterator>
92#include <string>
93#include <tuple>
94#include <utility>
95#include <vector>
96
97using namespace llvm;
98using namespace llvm::sroa;
99
100#define DEBUG_TYPE"sroa" "sroa"
101
102STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement")static llvm::Statistic NumAllocasAnalyzed = {"sroa", "NumAllocasAnalyzed"
, "Number of allocas analyzed for replacement"}
;
103STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed")static llvm::Statistic NumAllocaPartitions = {"sroa", "NumAllocaPartitions"
, "Number of alloca partitions formed"}
;
104STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca")static llvm::Statistic MaxPartitionsPerAlloca = {"sroa", "MaxPartitionsPerAlloca"
, "Maximum number of partitions per alloca"}
;
105STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten")static llvm::Statistic NumAllocaPartitionUses = {"sroa", "NumAllocaPartitionUses"
, "Number of alloca partition uses rewritten"}
;
106STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition")static llvm::Statistic MaxUsesPerAllocaPartition = {"sroa", "MaxUsesPerAllocaPartition"
, "Maximum number of uses of a partition"}
;
107STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced")static llvm::Statistic NumNewAllocas = {"sroa", "NumNewAllocas"
, "Number of new, smaller allocas introduced"}
;
108STATISTIC(NumPromoted, "Number of allocas promoted to SSA values")static llvm::Statistic NumPromoted = {"sroa", "NumPromoted", "Number of allocas promoted to SSA values"
}
;
109STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion")static llvm::Statistic NumLoadsSpeculated = {"sroa", "NumLoadsSpeculated"
, "Number of loads speculated to allow promotion"}
;
110STATISTIC(NumDeleted, "Number of instructions deleted")static llvm::Statistic NumDeleted = {"sroa", "NumDeleted", "Number of instructions deleted"
}
;
111STATISTIC(NumVectorized, "Number of vectorized aggregates")static llvm::Statistic NumVectorized = {"sroa", "NumVectorized"
, "Number of vectorized aggregates"}
;
112
113/// Hidden option to experiment with completely strict handling of inbounds
114/// GEPs.
115static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
116 cl::Hidden);
117
118namespace {
119
120/// A custom IRBuilder inserter which prefixes all names, but only in
121/// Assert builds.
122class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter {
123 std::string Prefix;
124
125 const Twine getNameWithPrefix(const Twine &Name) const {
126 return Name.isTriviallyEmpty() ? Name : Prefix + Name;
127 }
128
129public:
130 void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
131
132 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
133 BasicBlock::iterator InsertPt) const override {
134 IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
135 InsertPt);
136 }
137};
138
139/// Provide a type for IRBuilder that drops names in release builds.
140using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
141
142/// A used slice of an alloca.
143///
144/// This structure represents a slice of an alloca used by some instruction. It
145/// stores both the begin and end offsets of this use, a pointer to the use
146/// itself, and a flag indicating whether we can classify the use as splittable
147/// or not when forming partitions of the alloca.
148class Slice {
149 /// The beginning offset of the range.
150 uint64_t BeginOffset = 0;
151
152 /// The ending offset, not included in the range.
153 uint64_t EndOffset = 0;
154
155 /// Storage for both the use of this slice and whether it can be
156 /// split.
157 PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
158
159public:
160 Slice() = default;
161
162 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
163 : BeginOffset(BeginOffset), EndOffset(EndOffset),
164 UseAndIsSplittable(U, IsSplittable) {}
165
166 uint64_t beginOffset() const { return BeginOffset; }
167 uint64_t endOffset() const { return EndOffset; }
168
169 bool isSplittable() const { return UseAndIsSplittable.getInt(); }
170 void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
171
172 Use *getUse() const { return UseAndIsSplittable.getPointer(); }
173
174 bool isDead() const { return getUse() == nullptr; }
175 void kill() { UseAndIsSplittable.setPointer(nullptr); }
176
177 /// Support for ordering ranges.
178 ///
179 /// This provides an ordering over ranges such that start offsets are
180 /// always increasing, and within equal start offsets, the end offsets are
181 /// decreasing. Thus the spanning range comes first in a cluster with the
182 /// same start position.
183 bool operator<(const Slice &RHS) const {
184 if (beginOffset() < RHS.beginOffset())
185 return true;
186 if (beginOffset() > RHS.beginOffset())
187 return false;
188 if (isSplittable() != RHS.isSplittable())
189 return !isSplittable();
190 if (endOffset() > RHS.endOffset())
191 return true;
192 return false;
193 }
194
195 /// Support comparison with a single offset to allow binary searches.
196 friend LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__)) bool operator<(const Slice &LHS,
197 uint64_t RHSOffset) {
198 return LHS.beginOffset() < RHSOffset;
199 }
200 friend LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__)) bool operator<(uint64_t LHSOffset,
201 const Slice &RHS) {
202 return LHSOffset < RHS.beginOffset();
203 }
204
205 bool operator==(const Slice &RHS) const {
206 return isSplittable() == RHS.isSplittable() &&
207 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
208 }
209 bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
210};
211
212} // end anonymous namespace
213
214/// Representation of the alloca slices.
215///
216/// This class represents the slices of an alloca which are formed by its
217/// various uses. If a pointer escapes, we can't fully build a representation
218/// for the slices used and we reflect that in this structure. The uses are
219/// stored, sorted by increasing beginning offset and with unsplittable slices
220/// starting at a particular offset before splittable slices.
221class llvm::sroa::AllocaSlices {
222public:
223 /// Construct the slices of a particular alloca.
224 AllocaSlices(const DataLayout &DL, AllocaInst &AI);
225
226 /// Test whether a pointer to the allocation escapes our analysis.
227 ///
228 /// If this is true, the slices are never fully built and should be
229 /// ignored.
230 bool isEscaped() const { return PointerEscapingInstr; }
231
232 /// Support for iterating over the slices.
233 /// @{
234 using iterator = SmallVectorImpl<Slice>::iterator;
235 using range = iterator_range<iterator>;
236
237 iterator begin() { return Slices.begin(); }
238 iterator end() { return Slices.end(); }
239
240 using const_iterator = SmallVectorImpl<Slice>::const_iterator;
241 using const_range = iterator_range<const_iterator>;
242
243 const_iterator begin() const { return Slices.begin(); }
244 const_iterator end() const { return Slices.end(); }
245 /// @}
246
247 /// Erase a range of slices.
248 void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
249
250 /// Insert new slices for this alloca.
251 ///
252 /// This moves the slices into the alloca's slices collection, and re-sorts
253 /// everything so that the usual ordering properties of the alloca's slices
254 /// hold.
255 void insert(ArrayRef<Slice> NewSlices) {
256 int OldSize = Slices.size();
257 Slices.append(NewSlices.begin(), NewSlices.end());
258 auto SliceI = Slices.begin() + OldSize;
259 llvm::sort(SliceI, Slices.end());
260 std::inplace_merge(Slices.begin(), SliceI, Slices.end());
261 }
262
263 // Forward declare the iterator and range accessor for walking the
264 // partitions.
265 class partition_iterator;
266 iterator_range<partition_iterator> partitions();
267
268 /// Access the dead users for this alloca.
269 ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
270
271 /// Access Uses that should be dropped if the alloca is promotable.
272 ArrayRef<Use *> getDeadUsesIfPromotable() const {
273 return DeadUseIfPromotable;
274 }
275
276 /// Access the dead operands referring to this alloca.
277 ///
278 /// These are operands which have cannot actually be used to refer to the
279 /// alloca as they are outside its range and the user doesn't correct for
280 /// that. These mostly consist of PHI node inputs and the like which we just
281 /// need to replace with undef.
282 ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
283
284#if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP)
285 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
286 void printSlice(raw_ostream &OS, const_iterator I,
287 StringRef Indent = " ") const;
288 void printUse(raw_ostream &OS, const_iterator I,
289 StringRef Indent = " ") const;
290 void print(raw_ostream &OS) const;
291 void dump(const_iterator I) const;
292 void dump() const;
293#endif
294
295private:
296 template <typename DerivedT, typename RetT = void> class BuilderBase;
297 class SliceBuilder;
298
299 friend class AllocaSlices::SliceBuilder;
300
301#if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP)
302 /// Handle to alloca instruction to simplify method interfaces.
303 AllocaInst &AI;
304#endif
305
306 /// The instruction responsible for this alloca not having a known set
307 /// of slices.
308 ///
309 /// When an instruction (potentially) escapes the pointer to the alloca, we
310 /// store a pointer to that here and abort trying to form slices of the
311 /// alloca. This will be null if the alloca slices are analyzed successfully.
312 Instruction *PointerEscapingInstr;
313
314 /// The slices of the alloca.
315 ///
316 /// We store a vector of the slices formed by uses of the alloca here. This
317 /// vector is sorted by increasing begin offset, and then the unsplittable
318 /// slices before the splittable ones. See the Slice inner class for more
319 /// details.
320 SmallVector<Slice, 8> Slices;
321
322 /// Instructions which will become dead if we rewrite the alloca.
323 ///
324 /// Note that these are not separated by slice. This is because we expect an
325 /// alloca to be completely rewritten or not rewritten at all. If rewritten,
326 /// all these instructions can simply be removed and replaced with undef as
327 /// they come from outside of the allocated space.
328 SmallVector<Instruction *, 8> DeadUsers;
329
330 /// Uses which will become dead if can promote the alloca.
331 SmallVector<Use *, 8> DeadUseIfPromotable;
332
333 /// Operands which will become dead if we rewrite the alloca.
334 ///
335 /// These are operands that in their particular use can be replaced with
336 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
337 /// to PHI nodes and the like. They aren't entirely dead (there might be
338 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
339 /// want to swap this particular input for undef to simplify the use lists of
340 /// the alloca.
341 SmallVector<Use *, 8> DeadOperands;
342};
343
344/// A partition of the slices.
345///
346/// An ephemeral representation for a range of slices which can be viewed as
347/// a partition of the alloca. This range represents a span of the alloca's
348/// memory which cannot be split, and provides access to all of the slices
349/// overlapping some part of the partition.
350///
351/// Objects of this type are produced by traversing the alloca's slices, but
352/// are only ephemeral and not persistent.
353class llvm::sroa::Partition {
354private:
355 friend class AllocaSlices;
356 friend class AllocaSlices::partition_iterator;
357
358 using iterator = AllocaSlices::iterator;
359
360 /// The beginning and ending offsets of the alloca for this
361 /// partition.
362 uint64_t BeginOffset = 0, EndOffset = 0;
363
364 /// The start and end iterators of this partition.
365 iterator SI, SJ;
366
367 /// A collection of split slice tails overlapping the partition.
368 SmallVector<Slice *, 4> SplitTails;
369
370 /// Raw constructor builds an empty partition starting and ending at
371 /// the given iterator.
372 Partition(iterator SI) : SI(SI), SJ(SI) {}
373
374public:
375 /// The start offset of this partition.
376 ///
377 /// All of the contained slices start at or after this offset.
378 uint64_t beginOffset() const { return BeginOffset; }
379
380 /// The end offset of this partition.
381 ///
382 /// All of the contained slices end at or before this offset.
383 uint64_t endOffset() const { return EndOffset; }
384
385 /// The size of the partition.
386 ///
387 /// Note that this can never be zero.
388 uint64_t size() const {
389 assert(BeginOffset < EndOffset && "Partitions must span some bytes!")((void)0);
390 return EndOffset - BeginOffset;
391 }
392
393 /// Test whether this partition contains no slices, and merely spans
394 /// a region occupied by split slices.
395 bool empty() const { return SI == SJ; }
396
397 /// \name Iterate slices that start within the partition.
398 /// These may be splittable or unsplittable. They have a begin offset >= the
399 /// partition begin offset.
400 /// @{
401 // FIXME: We should probably define a "concat_iterator" helper and use that
402 // to stitch together pointee_iterators over the split tails and the
403 // contiguous iterators of the partition. That would give a much nicer
404 // interface here. We could then additionally expose filtered iterators for
405 // split, unsplit, and unsplittable splices based on the usage patterns.
406 iterator begin() const { return SI; }
407 iterator end() const { return SJ; }
408 /// @}
409
410 /// Get the sequence of split slice tails.
411 ///
412 /// These tails are of slices which start before this partition but are
413 /// split and overlap into the partition. We accumulate these while forming
414 /// partitions.
415 ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
416};
417
418/// An iterator over partitions of the alloca's slices.
419///
420/// This iterator implements the core algorithm for partitioning the alloca's
421/// slices. It is a forward iterator as we don't support backtracking for
422/// efficiency reasons, and re-use a single storage area to maintain the
423/// current set of split slices.
424///
425/// It is templated on the slice iterator type to use so that it can operate
426/// with either const or non-const slice iterators.
427class AllocaSlices::partition_iterator
428 : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
429 Partition> {
430 friend class AllocaSlices;
431
432 /// Most of the state for walking the partitions is held in a class
433 /// with a nice interface for examining them.
434 Partition P;
435
436 /// We need to keep the end of the slices to know when to stop.
437 AllocaSlices::iterator SE;
438
439 /// We also need to keep track of the maximum split end offset seen.
440 /// FIXME: Do we really?
441 uint64_t MaxSplitSliceEndOffset = 0;
442
443 /// Sets the partition to be empty at given iterator, and sets the
444 /// end iterator.
445 partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
446 : P(SI), SE(SE) {
447 // If not already at the end, advance our state to form the initial
448 // partition.
449 if (SI != SE)
450 advance();
451 }
452
453 /// Advance the iterator to the next partition.
454 ///
455 /// Requires that the iterator not be at the end of the slices.
456 void advance() {
457 assert((P.SI != SE || !P.SplitTails.empty()) &&((void)0)
458 "Cannot advance past the end of the slices!")((void)0);
459
460 // Clear out any split uses which have ended.
461 if (!P.SplitTails.empty()) {
462 if (P.EndOffset >= MaxSplitSliceEndOffset) {
463 // If we've finished all splits, this is easy.
464 P.SplitTails.clear();
465 MaxSplitSliceEndOffset = 0;
466 } else {
467 // Remove the uses which have ended in the prior partition. This
468 // cannot change the max split slice end because we just checked that
469 // the prior partition ended prior to that max.
470 llvm::erase_if(P.SplitTails,
471 [&](Slice *S) { return S->endOffset() <= P.EndOffset; });
472 assert(llvm::any_of(P.SplitTails,((void)0)
473 [&](Slice *S) {((void)0)
474 return S->endOffset() == MaxSplitSliceEndOffset;((void)0)
475 }) &&((void)0)
476 "Could not find the current max split slice offset!")((void)0);
477 assert(llvm::all_of(P.SplitTails,((void)0)
478 [&](Slice *S) {((void)0)
479 return S->endOffset() <= MaxSplitSliceEndOffset;((void)0)
480 }) &&((void)0)
481 "Max split slice end offset is not actually the max!")((void)0);
482 }
483 }
484
485 // If P.SI is already at the end, then we've cleared the split tail and
486 // now have an end iterator.
487 if (P.SI == SE) {
488 assert(P.SplitTails.empty() && "Failed to clear the split slices!")((void)0);
489 return;
490 }
491
492 // If we had a non-empty partition previously, set up the state for
493 // subsequent partitions.
494 if (P.SI != P.SJ) {
495 // Accumulate all the splittable slices which started in the old
496 // partition into the split list.
497 for (Slice &S : P)
498 if (S.isSplittable() && S.endOffset() > P.EndOffset) {
499 P.SplitTails.push_back(&S);
500 MaxSplitSliceEndOffset =
501 std::max(S.endOffset(), MaxSplitSliceEndOffset);
502 }
503
504 // Start from the end of the previous partition.
505 P.SI = P.SJ;
506
507 // If P.SI is now at the end, we at most have a tail of split slices.
508 if (P.SI == SE) {
509 P.BeginOffset = P.EndOffset;
510 P.EndOffset = MaxSplitSliceEndOffset;
511 return;
512 }
513
514 // If the we have split slices and the next slice is after a gap and is
515 // not splittable immediately form an empty partition for the split
516 // slices up until the next slice begins.
517 if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
518 !P.SI->isSplittable()) {
519 P.BeginOffset = P.EndOffset;
520 P.EndOffset = P.SI->beginOffset();
521 return;
522 }
523 }
524
525 // OK, we need to consume new slices. Set the end offset based on the
526 // current slice, and step SJ past it. The beginning offset of the
527 // partition is the beginning offset of the next slice unless we have
528 // pre-existing split slices that are continuing, in which case we begin
529 // at the prior end offset.
530 P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
531 P.EndOffset = P.SI->endOffset();
532 ++P.SJ;
533
534 // There are two strategies to form a partition based on whether the
535 // partition starts with an unsplittable slice or a splittable slice.
536 if (!P.SI->isSplittable()) {
537 // When we're forming an unsplittable region, it must always start at
538 // the first slice and will extend through its end.
539 assert(P.BeginOffset == P.SI->beginOffset())((void)0);
540
541 // Form a partition including all of the overlapping slices with this
542 // unsplittable slice.
543 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
544 if (!P.SJ->isSplittable())
545 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
546 ++P.SJ;
547 }
548
549 // We have a partition across a set of overlapping unsplittable
550 // partitions.
551 return;
552 }
553
554 // If we're starting with a splittable slice, then we need to form
555 // a synthetic partition spanning it and any other overlapping splittable
556 // splices.
557 assert(P.SI->isSplittable() && "Forming a splittable partition!")((void)0);
558
559 // Collect all of the overlapping splittable slices.
560 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
561 P.SJ->isSplittable()) {
562 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
563 ++P.SJ;
564 }
565
566 // Back upiP.EndOffset if we ended the span early when encountering an
567 // unsplittable slice. This synthesizes the early end offset of
568 // a partition spanning only splittable slices.
569 if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
570 assert(!P.SJ->isSplittable())((void)0);
571 P.EndOffset = P.SJ->beginOffset();
572 }
573 }
574
575public:
576 bool operator==(const partition_iterator &RHS) const {
577 assert(SE == RHS.SE &&((void)0)
578 "End iterators don't match between compared partition iterators!")((void)0);
579
580 // The observed positions of partitions is marked by the P.SI iterator and
581 // the emptiness of the split slices. The latter is only relevant when
582 // P.SI == SE, as the end iterator will additionally have an empty split
583 // slices list, but the prior may have the same P.SI and a tail of split
584 // slices.
585 if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
586 assert(P.SJ == RHS.P.SJ &&((void)0)
587 "Same set of slices formed two different sized partitions!")((void)0);
588 assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&((void)0)
589 "Same slice position with differently sized non-empty split "((void)0)
590 "slice tails!")((void)0);
591 return true;
592 }
593 return false;
594 }
595
596 partition_iterator &operator++() {
597 advance();
598 return *this;
599 }
600
601 Partition &operator*() { return P; }
602};
603
604/// A forward range over the partitions of the alloca's slices.
605///
606/// This accesses an iterator range over the partitions of the alloca's
607/// slices. It computes these partitions on the fly based on the overlapping
608/// offsets of the slices and the ability to split them. It will visit "empty"
609/// partitions to cover regions of the alloca only accessed via split
610/// slices.
611iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
612 return make_range(partition_iterator(begin(), end()),
613 partition_iterator(end(), end()));
614}
615
616static Value *foldSelectInst(SelectInst &SI) {
617 // If the condition being selected on is a constant or the same value is
618 // being selected between, fold the select. Yes this does (rarely) happen
619 // early on.
620 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
621 return SI.getOperand(1 + CI->isZero());
622 if (SI.getOperand(1) == SI.getOperand(2))
623 return SI.getOperand(1);
624
625 return nullptr;
626}
627
628/// A helper that folds a PHI node or a select.
629static Value *foldPHINodeOrSelectInst(Instruction &I) {
630 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
631 // If PN merges together the same value, return that value.
632 return PN->hasConstantValue();
633 }
634 return foldSelectInst(cast<SelectInst>(I));
635}
636
637/// Builder for the alloca slices.
638///
639/// This class builds a set of alloca slices by recursively visiting the uses
640/// of an alloca and making a slice for each load and store at each offset.
641class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
642 friend class PtrUseVisitor<SliceBuilder>;
643 friend class InstVisitor<SliceBuilder>;
644
645 using Base = PtrUseVisitor<SliceBuilder>;
646
647 const uint64_t AllocSize;
648 AllocaSlices &AS;
649
650 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
651 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
652
653 /// Set to de-duplicate dead instructions found in the use walk.
654 SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
655
656public:
657 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
658 : PtrUseVisitor<SliceBuilder>(DL),
659 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize()),
660 AS(AS) {}
661
662private:
663 void markAsDead(Instruction &I) {
664 if (VisitedDeadInsts.insert(&I).second)
665 AS.DeadUsers.push_back(&I);
666 }
667
668 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
669 bool IsSplittable = false) {
670 // Completely skip uses which have a zero size or start either before or
671 // past the end of the allocation.
672 if (Size == 0 || Offset.uge(AllocSize)) {
673 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"do { } while (false)
674 << Offsetdo { } while (false)
675 << " which has zero size or starts outside of the "do { } while (false)
676 << AllocSize << " byte alloca:\n"do { } while (false)
677 << " alloca: " << AS.AI << "\n"do { } while (false)
678 << " use: " << I << "\n")do { } while (false);
679 return markAsDead(I);
680 }
681
682 uint64_t BeginOffset = Offset.getZExtValue();
683 uint64_t EndOffset = BeginOffset + Size;
684
685 // Clamp the end offset to the end of the allocation. Note that this is
686 // formulated to handle even the case where "BeginOffset + Size" overflows.
687 // This may appear superficially to be something we could ignore entirely,
688 // but that is not so! There may be widened loads or PHI-node uses where
689 // some instructions are dead but not others. We can't completely ignore
690 // them, and so have to record at least the information here.
691 assert(AllocSize >= BeginOffset)((void)0); // Established above.
692 if (Size > AllocSize - BeginOffset) {
693 LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"do { } while (false)
694 << Offset << " to remain within the " << AllocSizedo { } while (false)
695 << " byte alloca:\n"do { } while (false)
696 << " alloca: " << AS.AI << "\n"do { } while (false)
697 << " use: " << I << "\n")do { } while (false);
698 EndOffset = AllocSize;
699 }
700
701 AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
702 }
703
704 void visitBitCastInst(BitCastInst &BC) {
705 if (BC.use_empty())
706 return markAsDead(BC);
707
708 return Base::visitBitCastInst(BC);
709 }
710
711 void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
712 if (ASC.use_empty())
713 return markAsDead(ASC);
714
715 return Base::visitAddrSpaceCastInst(ASC);
716 }
717
718 void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
719 if (GEPI.use_empty())
720 return markAsDead(GEPI);
721
722 if (SROAStrictInbounds && GEPI.isInBounds()) {
723 // FIXME: This is a manually un-factored variant of the basic code inside
724 // of GEPs with checking of the inbounds invariant specified in the
725 // langref in a very strict sense. If we ever want to enable
726 // SROAStrictInbounds, this code should be factored cleanly into
727 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
728 // by writing out the code here where we have the underlying allocation
729 // size readily available.
730 APInt GEPOffset = Offset;
731 const DataLayout &DL = GEPI.getModule()->getDataLayout();
732 for (gep_type_iterator GTI = gep_type_begin(GEPI),
733 GTE = gep_type_end(GEPI);
734 GTI != GTE; ++GTI) {
735 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
736 if (!OpC)
737 break;
738
739 // Handle a struct index, which adds its field offset to the pointer.
740 if (StructType *STy = GTI.getStructTypeOrNull()) {
741 unsigned ElementIdx = OpC->getZExtValue();
742 const StructLayout *SL = DL.getStructLayout(STy);
743 GEPOffset +=
744 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
745 } else {
746 // For array or vector indices, scale the index by the size of the
747 // type.
748 APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
749 GEPOffset +=
750 Index *
751 APInt(Offset.getBitWidth(),
752 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
753 }
754
755 // If this index has computed an intermediate pointer which is not
756 // inbounds, then the result of the GEP is a poison value and we can
757 // delete it and all uses.
758 if (GEPOffset.ugt(AllocSize))
759 return markAsDead(GEPI);
760 }
761 }
762
763 return Base::visitGetElementPtrInst(GEPI);
764 }
765
766 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
767 uint64_t Size, bool IsVolatile) {
768 // We allow splitting of non-volatile loads and stores where the type is an
769 // integer type. These may be used to implement 'memcpy' or other "transfer
770 // of bits" patterns.
771 bool IsSplittable =
772 Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty);
773
774 insertUse(I, Offset, Size, IsSplittable);
775 }
776
777 void visitLoadInst(LoadInst &LI) {
778 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&((void)0)
779 "All simple FCA loads should have been pre-split")((void)0);
780
781 if (!IsOffsetKnown)
782 return PI.setAborted(&LI);
783
784 if (LI.isVolatile() &&
785 LI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
786 return PI.setAborted(&LI);
787
788 if (isa<ScalableVectorType>(LI.getType()))
789 return PI.setAborted(&LI);
790
791 uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedSize();
792 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
793 }
794
795 void visitStoreInst(StoreInst &SI) {
796 Value *ValOp = SI.getValueOperand();
797 if (ValOp == *U)
798 return PI.setEscapedAndAborted(&SI);
799 if (!IsOffsetKnown)
800 return PI.setAborted(&SI);
801
802 if (SI.isVolatile() &&
803 SI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
804 return PI.setAborted(&SI);
805
806 if (isa<ScalableVectorType>(ValOp->getType()))
807 return PI.setAborted(&SI);
808
809 uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedSize();
810
811 // If this memory access can be shown to *statically* extend outside the
812 // bounds of the allocation, it's behavior is undefined, so simply
813 // ignore it. Note that this is more strict than the generic clamping
814 // behavior of insertUse. We also try to handle cases which might run the
815 // risk of overflow.
816 // FIXME: We should instead consider the pointer to have escaped if this
817 // function is being instrumented for addressing bugs or race conditions.
818 if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
819 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"do { } while (false)
820 << Offset << " which extends past the end of the "do { } while (false)
821 << AllocSize << " byte alloca:\n"do { } while (false)
822 << " alloca: " << AS.AI << "\n"do { } while (false)
823 << " use: " << SI << "\n")do { } while (false);
824 return markAsDead(SI);
825 }
826
827 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&((void)0)
828 "All simple FCA stores should have been pre-split")((void)0);
829 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
830 }
831
832 void visitMemSetInst(MemSetInst &II) {
833 assert(II.getRawDest() == *U && "Pointer use is not the destination?")((void)0);
834 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
835 if ((Length && Length->getValue() == 0) ||
836 (IsOffsetKnown && Offset.uge(AllocSize)))
837 // Zero-length mem transfer intrinsics can be ignored entirely.
838 return markAsDead(II);
839
840 if (!IsOffsetKnown)
841 return PI.setAborted(&II);
842
843 // Don't replace this with a store with a different address space. TODO:
844 // Use a store with the casted new alloca?
845 if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace())
846 return PI.setAborted(&II);
847
848 insertUse(II, Offset, Length ? Length->getLimitedValue()
849 : AllocSize - Offset.getLimitedValue(),
850 (bool)Length);
851 }
852
853 void visitMemTransferInst(MemTransferInst &II) {
854 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
855 if (Length && Length->getValue() == 0)
856 // Zero-length mem transfer intrinsics can be ignored entirely.
857 return markAsDead(II);
858
859 // Because we can visit these intrinsics twice, also check to see if the
860 // first time marked this instruction as dead. If so, skip it.
861 if (VisitedDeadInsts.count(&II))
862 return;
863
864 if (!IsOffsetKnown)
865 return PI.setAborted(&II);
866
867 // Don't replace this with a load/store with a different address space.
868 // TODO: Use a store with the casted new alloca?
869 if (II.isVolatile() &&
870 (II.getDestAddressSpace() != DL.getAllocaAddrSpace() ||
871 II.getSourceAddressSpace() != DL.getAllocaAddrSpace()))
872 return PI.setAborted(&II);
873
874 // This side of the transfer is completely out-of-bounds, and so we can
875 // nuke the entire transfer. However, we also need to nuke the other side
876 // if already added to our partitions.
877 // FIXME: Yet another place we really should bypass this when
878 // instrumenting for ASan.
879 if (Offset.uge(AllocSize)) {
880 SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
881 MemTransferSliceMap.find(&II);
882 if (MTPI != MemTransferSliceMap.end())
883 AS.Slices[MTPI->second].kill();
884 return markAsDead(II);
885 }
886
887 uint64_t RawOffset = Offset.getLimitedValue();
888 uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
889
890 // Check for the special case where the same exact value is used for both
891 // source and dest.
892 if (*U == II.getRawDest() && *U == II.getRawSource()) {
893 // For non-volatile transfers this is a no-op.
894 if (!II.isVolatile())
895 return markAsDead(II);
896
897 return insertUse(II, Offset, Size, /*IsSplittable=*/false);
898 }
899
900 // If we have seen both source and destination for a mem transfer, then
901 // they both point to the same alloca.
902 bool Inserted;
903 SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
904 std::tie(MTPI, Inserted) =
905 MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
906 unsigned PrevIdx = MTPI->second;
907 if (!Inserted) {
908 Slice &PrevP = AS.Slices[PrevIdx];
909
910 // Check if the begin offsets match and this is a non-volatile transfer.
911 // In that case, we can completely elide the transfer.
912 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
913 PrevP.kill();
914 return markAsDead(II);
915 }
916
917 // Otherwise we have an offset transfer within the same alloca. We can't
918 // split those.
919 PrevP.makeUnsplittable();
920 }
921
922 // Insert the use now that we've fixed up the splittable nature.
923 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
924
925 // Check that we ended up with a valid index in the map.
926 assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&((void)0)
927 "Map index doesn't point back to a slice with this user.")((void)0);
928 }
929
930 // Disable SRoA for any intrinsics except for lifetime invariants and
931 // invariant group.
932 // FIXME: What about debug intrinsics? This matches old behavior, but
933 // doesn't make sense.
934 void visitIntrinsicInst(IntrinsicInst &II) {
935 if (II.isDroppable()) {
936 AS.DeadUseIfPromotable.push_back(U);
937 return;
938 }
939
940 if (!IsOffsetKnown)
941 return PI.setAborted(&II);
942
943 if (II.isLifetimeStartOrEnd()) {
944 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
945 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
946 Length->getLimitedValue());
947 insertUse(II, Offset, Size, true);
948 return;
949 }
950
951 if (II.isLaunderOrStripInvariantGroup()) {
952 enqueueUsers(II);
953 return;
954 }
955
956 Base::visitIntrinsicInst(II);
957 }
958
959 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
960 // We consider any PHI or select that results in a direct load or store of
961 // the same offset to be a viable use for slicing purposes. These uses
962 // are considered unsplittable and the size is the maximum loaded or stored
963 // size.
964 SmallPtrSet<Instruction *, 4> Visited;
965 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
966 Visited.insert(Root);
967 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
968 const DataLayout &DL = Root->getModule()->getDataLayout();
969 // If there are no loads or stores, the access is dead. We mark that as
970 // a size zero access.
971 Size = 0;
972 do {
973 Instruction *I, *UsedI;
974 std::tie(UsedI, I) = Uses.pop_back_val();
975
976 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
977 Size = std::max(Size,
978 DL.getTypeStoreSize(LI->getType()).getFixedSize());
979 continue;
980 }
981 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
982 Value *Op = SI->getOperand(0);
983 if (Op == UsedI)
984 return SI;
985 Size = std::max(Size,
986 DL.getTypeStoreSize(Op->getType()).getFixedSize());
987 continue;
988 }
989
990 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
991 if (!GEP->hasAllZeroIndices())
992 return GEP;
993 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
994 !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) {
995 return I;
996 }
997
998 for (User *U : I->users())
999 if (Visited.insert(cast<Instruction>(U)).second)
1000 Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
1001 } while (!Uses.empty());
1002
1003 return nullptr;
1004 }
1005
1006 void visitPHINodeOrSelectInst(Instruction &I) {
1007 assert(isa<PHINode>(I) || isa<SelectInst>(I))((void)0);
1008 if (I.use_empty())
1009 return markAsDead(I);
1010
1011 // TODO: We could use SimplifyInstruction here to fold PHINodes and
1012 // SelectInsts. However, doing so requires to change the current
1013 // dead-operand-tracking mechanism. For instance, suppose neither loading
1014 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
1015 // trap either. However, if we simply replace %U with undef using the
1016 // current dead-operand-tracking mechanism, "load (select undef, undef,
1017 // %other)" may trap because the select may return the first operand
1018 // "undef".
1019 if (Value *Result = foldPHINodeOrSelectInst(I)) {
1020 if (Result == *U)
1021 // If the result of the constant fold will be the pointer, recurse
1022 // through the PHI/select as if we had RAUW'ed it.
1023 enqueueUsers(I);
1024 else
1025 // Otherwise the operand to the PHI/select is dead, and we can replace
1026 // it with undef.
1027 AS.DeadOperands.push_back(U);
1028
1029 return;
1030 }
1031
1032 if (!IsOffsetKnown)
1033 return PI.setAborted(&I);
1034
1035 // See if we already have computed info on this node.
1036 uint64_t &Size = PHIOrSelectSizes[&I];
1037 if (!Size) {
1038 // This is a new PHI/Select, check for an unsafe use of it.
1039 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
1040 return PI.setAborted(UnsafeI);
1041 }
1042
1043 // For PHI and select operands outside the alloca, we can't nuke the entire
1044 // phi or select -- the other side might still be relevant, so we special
1045 // case them here and use a separate structure to track the operands
1046 // themselves which should be replaced with undef.
1047 // FIXME: This should instead be escaped in the event we're instrumenting
1048 // for address sanitization.
1049 if (Offset.uge(AllocSize)) {
1050 AS.DeadOperands.push_back(U);
1051 return;
1052 }
1053
1054 insertUse(I, Offset, Size);
1055 }
1056
1057 void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
1058
1059 void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
1060
1061 /// Disable SROA entirely if there are unhandled users of the alloca.
1062 void visitInstruction(Instruction &I) { PI.setAborted(&I); }
1063};
1064
1065AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
1066 :
1067#if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP)
1068 AI(AI),
1069#endif
1070 PointerEscapingInstr(nullptr) {
1071 SliceBuilder PB(DL, AI, *this);
1072 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1073 if (PtrI.isEscaped() || PtrI.isAborted()) {
1074 // FIXME: We should sink the escape vs. abort info into the caller nicely,
1075 // possibly by just storing the PtrInfo in the AllocaSlices.
1076 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1077 : PtrI.getAbortingInst();
1078 assert(PointerEscapingInstr && "Did not track a bad instruction")((void)0);
1079 return;
1080 }
1081
1082 llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); });
1083
1084 // Sort the uses. This arranges for the offsets to be in ascending order,
1085 // and the sizes to be in descending order.
1086 llvm::stable_sort(Slices);
1087}
1088
1089#if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP)
1090
1091void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1092 StringRef Indent) const {
1093 printSlice(OS, I, Indent);
1094 OS << "\n";
1095 printUse(OS, I, Indent);
1096}
1097
1098void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1099 StringRef Indent) const {
1100 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1101 << " slice #" << (I - begin())
1102 << (I->isSplittable() ? " (splittable)" : "");
1103}
1104
1105void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1106 StringRef Indent) const {
1107 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n";
1108}
1109
1110void AllocaSlices::print(raw_ostream &OS) const {
1111 if (PointerEscapingInstr) {
1112 OS << "Can't analyze slices for alloca: " << AI << "\n"
1113 << " A pointer to this alloca escaped by:\n"
1114 << " " << *PointerEscapingInstr << "\n";
1115 return;
1116 }
1117
1118 OS << "Slices of alloca: " << AI << "\n";
1119 for (const_iterator I = begin(), E = end(); I != E; ++I)
1120 print(OS, I);
1121}
1122
1123LLVM_DUMP_METHOD__attribute__((noinline)) void AllocaSlices::dump(const_iterator I) const {
1124 print(dbgs(), I);
1125}
1126LLVM_DUMP_METHOD__attribute__((noinline)) void AllocaSlices::dump() const { print(dbgs()); }
1127
1128#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1129
1130/// Walk the range of a partitioning looking for a common type to cover this
1131/// sequence of slices.
1132static std::pair<Type *, IntegerType *>
1133findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E,
1134 uint64_t EndOffset) {
1135 Type *Ty = nullptr;
1136 bool TyIsCommon = true;
1137 IntegerType *ITy = nullptr;
1138
1139 // Note that we need to look at *every* alloca slice's Use to ensure we
1140 // always get consistent results regardless of the order of slices.
1141 for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1142 Use *U = I->getUse();
1143 if (isa<IntrinsicInst>(*U->getUser()))
1144 continue;
1145 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1146 continue;
1147
1148 Type *UserTy = nullptr;
1149 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1150 UserTy = LI->getType();
1151 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1152 UserTy = SI->getValueOperand()->getType();
1153 }
1154
1155 if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1156 // If the type is larger than the partition, skip it. We only encounter
1157 // this for split integer operations where we want to use the type of the
1158 // entity causing the split. Also skip if the type is not a byte width
1159 // multiple.
1160 if (UserITy->getBitWidth() % 8 != 0 ||
1161 UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1162 continue;
1163
1164 // Track the largest bitwidth integer type used in this way in case there
1165 // is no common type.
1166 if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1167 ITy = UserITy;
1168 }
1169
1170 // To avoid depending on the order of slices, Ty and TyIsCommon must not
1171 // depend on types skipped above.
1172 if (!UserTy || (Ty && Ty != UserTy))
1173 TyIsCommon = false; // Give up on anything but an iN type.
1174 else
1175 Ty = UserTy;
1176 }
1177
1178 return {TyIsCommon ? Ty : nullptr, ITy};
1179}
1180
1181/// PHI instructions that use an alloca and are subsequently loaded can be
1182/// rewritten to load both input pointers in the pred blocks and then PHI the
1183/// results, allowing the load of the alloca to be promoted.
1184/// From this:
1185/// %P2 = phi [i32* %Alloca, i32* %Other]
1186/// %V = load i32* %P2
1187/// to:
1188/// %V1 = load i32* %Alloca -> will be mem2reg'd
1189/// ...
1190/// %V2 = load i32* %Other
1191/// ...
1192/// %V = phi [i32 %V1, i32 %V2]
1193///
1194/// We can do this to a select if its only uses are loads and if the operands
1195/// to the select can be loaded unconditionally.
1196///
1197/// FIXME: This should be hoisted into a generic utility, likely in
1198/// Transforms/Util/Local.h
1199static bool isSafePHIToSpeculate(PHINode &PN) {
1200 const DataLayout &DL = PN.getModule()->getDataLayout();
1201
1202 // For now, we can only do this promotion if the load is in the same block
1203 // as the PHI, and if there are no stores between the phi and load.
1204 // TODO: Allow recursive phi users.
1205 // TODO: Allow stores.
1206 BasicBlock *BB = PN.getParent();
1207 Align MaxAlign;
1208 uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType());
1209 APInt MaxSize(APWidth, 0);
1210 bool HaveLoad = false;
1211 for (User *U : PN.users()) {
1212 LoadInst *LI = dyn_cast<LoadInst>(U);
1213 if (!LI || !LI->isSimple())
1214 return false;
1215
1216 // For now we only allow loads in the same block as the PHI. This is
1217 // a common case that happens when instcombine merges two loads through
1218 // a PHI.
1219 if (LI->getParent() != BB)
1220 return false;
1221
1222 // Ensure that there are no instructions between the PHI and the load that
1223 // could store.
1224 for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1225 if (BBI->mayWriteToMemory())
1226 return false;
1227
1228 uint64_t Size = DL.getTypeStoreSize(LI->getType()).getFixedSize();
1229 MaxAlign = std::max(MaxAlign, LI->getAlign());
1230 MaxSize = MaxSize.ult(Size) ? APInt(APWidth, Size) : MaxSize;
1231 HaveLoad = true;
1232 }
1233
1234 if (!HaveLoad)
1235 return false;
1236
1237 // We can only transform this if it is safe to push the loads into the
1238 // predecessor blocks. The only thing to watch out for is that we can't put
1239 // a possibly trapping load in the predecessor if it is a critical edge.
1240 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1241 Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator();
1242 Value *InVal = PN.getIncomingValue(Idx);
1243
1244 // If the value is produced by the terminator of the predecessor (an
1245 // invoke) or it has side-effects, there is no valid place to put a load
1246 // in the predecessor.
1247 if (TI == InVal || TI->mayHaveSideEffects())
1248 return false;
1249
1250 // If the predecessor has a single successor, then the edge isn't
1251 // critical.
1252 if (TI->getNumSuccessors() == 1)
1253 continue;
1254
1255 // If this pointer is always safe to load, or if we can prove that there
1256 // is already a load in the block, then we can move the load to the pred
1257 // block.
1258 if (isSafeToLoadUnconditionally(InVal, MaxAlign, MaxSize, DL, TI))
1259 continue;
1260
1261 return false;
1262 }
1263
1264 return true;
1265}
1266
1267static void speculatePHINodeLoads(PHINode &PN) {
1268 LLVM_DEBUG(dbgs() << " original: " << PN << "\n")do { } while (false);
1269
1270 LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1271 Type *LoadTy = SomeLoad->getType();
1272 IRBuilderTy PHIBuilder(&PN);
1273 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1274 PN.getName() + ".sroa.speculated");
1275
1276 // Get the AA tags and alignment to use from one of the loads. It does not
1277 // matter which one we get and if any differ.
1278 AAMDNodes AATags;
1279 SomeLoad->getAAMetadata(AATags);
1280 Align Alignment = SomeLoad->getAlign();
1281
1282 // Rewrite all loads of the PN to use the new PHI.
1283 while (!PN.use_empty()) {
1284 LoadInst *LI = cast<LoadInst>(PN.user_back());
1285 LI->replaceAllUsesWith(NewPN);
1286 LI->eraseFromParent();
1287 }
1288
1289 // Inject loads into all of the pred blocks.
1290 DenseMap<BasicBlock*, Value*> InjectedLoads;
1291 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1292 BasicBlock *Pred = PN.getIncomingBlock(Idx);
1293 Value *InVal = PN.getIncomingValue(Idx);
1294
1295 // A PHI node is allowed to have multiple (duplicated) entries for the same
1296 // basic block, as long as the value is the same. So if we already injected
1297 // a load in the predecessor, then we should reuse the same load for all
1298 // duplicated entries.
1299 if (Value* V = InjectedLoads.lookup(Pred)) {
1300 NewPN->addIncoming(V, Pred);
1301 continue;
1302 }
1303
1304 Instruction *TI = Pred->getTerminator();
1305 IRBuilderTy PredBuilder(TI);
1306
1307 LoadInst *Load = PredBuilder.CreateAlignedLoad(
1308 LoadTy, InVal, Alignment,
1309 (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1310 ++NumLoadsSpeculated;
1311 if (AATags)
1312 Load->setAAMetadata(AATags);
1313 NewPN->addIncoming(Load, Pred);
1314 InjectedLoads[Pred] = Load;
1315 }
1316
1317 LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n")do { } while (false);
1318 PN.eraseFromParent();
1319}
1320
1321/// Select instructions that use an alloca and are subsequently loaded can be
1322/// rewritten to load both input pointers and then select between the result,
1323/// allowing the load of the alloca to be promoted.
1324/// From this:
1325/// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1326/// %V = load i32* %P2
1327/// to:
1328/// %V1 = load i32* %Alloca -> will be mem2reg'd
1329/// %V2 = load i32* %Other
1330/// %V = select i1 %cond, i32 %V1, i32 %V2
1331///
1332/// We can do this to a select if its only uses are loads and if the operand
1333/// to the select can be loaded unconditionally.
1334static bool isSafeSelectToSpeculate(SelectInst &SI) {
1335 Value *TValue = SI.getTrueValue();
1336 Value *FValue = SI.getFalseValue();
1337 const DataLayout &DL = SI.getModule()->getDataLayout();
1338
1339 for (User *U : SI.users()) {
1340 LoadInst *LI = dyn_cast<LoadInst>(U);
1341 if (!LI || !LI->isSimple())
1342 return false;
1343
1344 // Both operands to the select need to be dereferenceable, either
1345 // absolutely (e.g. allocas) or at this point because we can see other
1346 // accesses to it.
1347 if (!isSafeToLoadUnconditionally(TValue, LI->getType(),
1348 LI->getAlign(), DL, LI))
1349 return false;
1350 if (!isSafeToLoadUnconditionally(FValue, LI->getType(),
1351 LI->getAlign(), DL, LI))
1352 return false;
1353 }
1354
1355 return true;
1356}
1357
1358static void speculateSelectInstLoads(SelectInst &SI) {
1359 LLVM_DEBUG(dbgs() << " original: " << SI << "\n")do { } while (false);
1360
1361 IRBuilderTy IRB(&SI);
1362 Value *TV = SI.getTrueValue();
1363 Value *FV = SI.getFalseValue();
1364 // Replace the loads of the select with a select of two loads.
1365 while (!SI.use_empty()) {
1366 LoadInst *LI = cast<LoadInst>(SI.user_back());
1367 assert(LI->isSimple() && "We only speculate simple loads")((void)0);
1368
1369 IRB.SetInsertPoint(LI);
1370 LoadInst *TL = IRB.CreateLoad(LI->getType(), TV,
1371 LI->getName() + ".sroa.speculate.load.true");
1372 LoadInst *FL = IRB.CreateLoad(LI->getType(), FV,
1373 LI->getName() + ".sroa.speculate.load.false");
1374 NumLoadsSpeculated += 2;
1375
1376 // Transfer alignment and AA info if present.
1377 TL->setAlignment(LI->getAlign());
1378 FL->setAlignment(LI->getAlign());
1379
1380 AAMDNodes Tags;
1381 LI->getAAMetadata(Tags);
1382 if (Tags) {
1383 TL->setAAMetadata(Tags);
1384 FL->setAAMetadata(Tags);
1385 }
1386
1387 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1388 LI->getName() + ".sroa.speculated");
1389
1390 LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n")do { } while (false);
1391 LI->replaceAllUsesWith(V);
1392 LI->eraseFromParent();
1393 }
1394 SI.eraseFromParent();
1395}
1396
1397/// Build a GEP out of a base pointer and indices.
1398///
1399/// This will return the BasePtr if that is valid, or build a new GEP
1400/// instruction using the IRBuilder if GEP-ing is needed.
1401static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1402 SmallVectorImpl<Value *> &Indices,
1403 const Twine &NamePrefix) {
1404 if (Indices.empty())
1405 return BasePtr;
1406
1407 // A single zero index is a no-op, so check for this and avoid building a GEP
1408 // in that case.
1409 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1410 return BasePtr;
1411
1412 return IRB.CreateInBoundsGEP(BasePtr->getType()->getPointerElementType(),
1413 BasePtr, Indices, NamePrefix + "sroa_idx");
1414}
1415
1416/// Get a natural GEP off of the BasePtr walking through Ty toward
1417/// TargetTy without changing the offset of the pointer.
1418///
1419/// This routine assumes we've already established a properly offset GEP with
1420/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1421/// zero-indices down through type layers until we find one the same as
1422/// TargetTy. If we can't find one with the same type, we at least try to use
1423/// one with the same size. If none of that works, we just produce the GEP as
1424/// indicated by Indices to have the correct offset.
1425static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1426 Value *BasePtr, Type *Ty, Type *TargetTy,
1427 SmallVectorImpl<Value *> &Indices,
1428 const Twine &NamePrefix) {
1429 if (Ty == TargetTy)
1430 return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1431
1432 // Offset size to use for the indices.
1433 unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType());
1434
1435 // See if we can descend into a struct and locate a field with the correct
1436 // type.
1437 unsigned NumLayers = 0;
1438 Type *ElementTy = Ty;
1439 do {
1440 if (ElementTy->isPointerTy())
1441 break;
1442
1443 if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1444 ElementTy = ArrayTy->getElementType();
1445 Indices.push_back(IRB.getIntN(OffsetSize, 0));
1446 } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1447 ElementTy = VectorTy->getElementType();
1448 Indices.push_back(IRB.getInt32(0));
1449 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1450 if (STy->element_begin() == STy->element_end())
1451 break; // Nothing left to descend into.
1452 ElementTy = *STy->element_begin();
1453 Indices.push_back(IRB.getInt32(0));
1454 } else {
1455 break;
1456 }
1457 ++NumLayers;
1458 } while (ElementTy != TargetTy);
1459 if (ElementTy != TargetTy)
1460 Indices.erase(Indices.end() - NumLayers, Indices.end());
1461
1462 return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1463}
1464
1465/// Recursively compute indices for a natural GEP.
1466///
1467/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1468/// element types adding appropriate indices for the GEP.
1469static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1470 Value *Ptr, Type *Ty, APInt &Offset,
1471 Type *TargetTy,
1472 SmallVectorImpl<Value *> &Indices,
1473 const Twine &NamePrefix) {
1474 if (Offset == 0)
1475 return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices,
1476 NamePrefix);
1477
1478 // We can't recurse through pointer types.
1479 if (Ty->isPointerTy())
1480 return nullptr;
1481
1482 // We try to analyze GEPs over vectors here, but note that these GEPs are
1483 // extremely poorly defined currently. The long-term goal is to remove GEPing
1484 // over a vector from the IR completely.
1485 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1486 unsigned ElementSizeInBits =
1487 DL.getTypeSizeInBits(VecTy->getScalarType()).getFixedSize();
1488 if (ElementSizeInBits % 8 != 0) {
1489 // GEPs over non-multiple of 8 size vector elements are invalid.
1490 return nullptr;
1491 }
1492 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1493 APInt NumSkippedElements = Offset.sdiv(ElementSize);
1494 if (NumSkippedElements.ugt(cast<FixedVectorType>(VecTy)->getNumElements()))
1495 return nullptr;
1496 Offset -= NumSkippedElements * ElementSize;
1497 Indices.push_back(IRB.getInt(NumSkippedElements));
1498 return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1499 Offset, TargetTy, Indices, NamePrefix);
1500 }
1501
1502 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1503 Type *ElementTy = ArrTy->getElementType();
1504 APInt ElementSize(Offset.getBitWidth(),
1505 DL.getTypeAllocSize(ElementTy).getFixedSize());
1506 APInt NumSkippedElements = Offset.sdiv(ElementSize);
1507 if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1508 return nullptr;
1509
1510 Offset -= NumSkippedElements * ElementSize;
1511 Indices.push_back(IRB.getInt(NumSkippedElements));
1512 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1513 Indices, NamePrefix);
1514 }
1515
1516 StructType *STy = dyn_cast<StructType>(Ty);
1517 if (!STy)
1518 return nullptr;
1519
1520 const StructLayout *SL = DL.getStructLayout(STy);
1521 uint64_t StructOffset = Offset.getZExtValue();
1522 if (StructOffset >= SL->getSizeInBytes())
1523 return nullptr;
1524 unsigned Index = SL->getElementContainingOffset(StructOffset);
1525 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1526 Type *ElementTy = STy->getElementType(Index);
1527 if (Offset.uge(DL.getTypeAllocSize(ElementTy).getFixedSize()))
1528 return nullptr; // The offset points into alignment padding.
1529
1530 Indices.push_back(IRB.getInt32(Index));
1531 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1532 Indices, NamePrefix);
1533}
1534
1535/// Get a natural GEP from a base pointer to a particular offset and
1536/// resulting in a particular type.
1537///
1538/// The goal is to produce a "natural" looking GEP that works with the existing
1539/// composite types to arrive at the appropriate offset and element type for
1540/// a pointer. TargetTy is the element type the returned GEP should point-to if
1541/// possible. We recurse by decreasing Offset, adding the appropriate index to
1542/// Indices, and setting Ty to the result subtype.
1543///
1544/// If no natural GEP can be constructed, this function returns null.
1545static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1546 Value *Ptr, APInt Offset, Type *TargetTy,
1547 SmallVectorImpl<Value *> &Indices,
1548 const Twine &NamePrefix) {
1549 PointerType *Ty = cast<PointerType>(Ptr->getType());
1550
1551 // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1552 // an i8.
1553 if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1554 return nullptr;
1555
1556 Type *ElementTy = Ty->getElementType();
1557 if (!ElementTy->isSized())
1558 return nullptr; // We can't GEP through an unsized element.
1559 if (isa<ScalableVectorType>(ElementTy))
1560 return nullptr;
1561 APInt ElementSize(Offset.getBitWidth(),
1562 DL.getTypeAllocSize(ElementTy).getFixedSize());
1563 if (ElementSize == 0)
1564 return nullptr; // Zero-length arrays can't help us build a natural GEP.
1565 APInt NumSkippedElements = Offset.sdiv(ElementSize);
1566
1567 Offset -= NumSkippedElements * ElementSize;
1568 Indices.push_back(IRB.getInt(NumSkippedElements));
1569 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1570 Indices, NamePrefix);
1571}
1572
1573/// Compute an adjusted pointer from Ptr by Offset bytes where the
1574/// resulting pointer has PointerTy.
1575///
1576/// This tries very hard to compute a "natural" GEP which arrives at the offset
1577/// and produces the pointer type desired. Where it cannot, it will try to use
1578/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1579/// fails, it will try to use an existing i8* and GEP to the byte offset and
1580/// bitcast to the type.
1581///
1582/// The strategy for finding the more natural GEPs is to peel off layers of the
1583/// pointer, walking back through bit casts and GEPs, searching for a base
1584/// pointer from which we can compute a natural GEP with the desired
1585/// properties. The algorithm tries to fold as many constant indices into
1586/// a single GEP as possible, thus making each GEP more independent of the
1587/// surrounding code.
1588static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1589 APInt Offset, Type *PointerTy,
1590 const Twine &NamePrefix) {
1591 // Even though we don't look through PHI nodes, we could be called on an
1592 // instruction in an unreachable block, which may be on a cycle.
1593 SmallPtrSet<Value *, 4> Visited;
1594 Visited.insert(Ptr);
1595 SmallVector<Value *, 4> Indices;
1596
1597 // We may end up computing an offset pointer that has the wrong type. If we
1598 // never are able to compute one directly that has the correct type, we'll
1599 // fall back to it, so keep it and the base it was computed from around here.
1600 Value *OffsetPtr = nullptr;
1601 Value *OffsetBasePtr;
1602
1603 // Remember any i8 pointer we come across to re-use if we need to do a raw
1604 // byte offset.
1605 Value *Int8Ptr = nullptr;
1606 APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1607
1608 PointerType *TargetPtrTy = cast<PointerType>(PointerTy);
1609 Type *TargetTy = TargetPtrTy->getElementType();
1610
1611 // As `addrspacecast` is , `Ptr` (the storage pointer) may have different
1612 // address space from the expected `PointerTy` (the pointer to be used).
1613 // Adjust the pointer type based the original storage pointer.
1614 auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace();
1615 PointerTy = TargetTy->getPointerTo(AS);
1616
1617 do {
1618 // First fold any existing GEPs into the offset.
1619 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1620 APInt GEPOffset(Offset.getBitWidth(), 0);
1621 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1622 break;
1623 Offset += GEPOffset;
1624 Ptr = GEP->getPointerOperand();
1625 if (!Visited.insert(Ptr).second)
1626 break;
1627 }
1628
1629 // See if we can perform a natural GEP here.
1630 Indices.clear();
1631 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1632 Indices, NamePrefix)) {
1633 // If we have a new natural pointer at the offset, clear out any old
1634 // offset pointer we computed. Unless it is the base pointer or
1635 // a non-instruction, we built a GEP we don't need. Zap it.
1636 if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1637 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1638 assert(I->use_empty() && "Built a GEP with uses some how!")((void)0);
1639 I->eraseFromParent();
1640 }
1641 OffsetPtr = P;
1642 OffsetBasePtr = Ptr;
1643 // If we also found a pointer of the right type, we're done.
1644 if (P->getType() == PointerTy)
1645 break;
1646 }
1647
1648 // Stash this pointer if we've found an i8*.
1649 if (Ptr->getType()->isIntegerTy(8)) {
1650 Int8Ptr = Ptr;
1651 Int8PtrOffset = Offset;
1652 }
1653
1654 // Peel off a layer of the pointer and update the offset appropriately.
1655 if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1656 Ptr = cast<Operator>(Ptr)->getOperand(0);
1657 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1658 if (GA->isInterposable())
1659 break;
1660 Ptr = GA->getAliasee();
1661 } else {
1662 break;
1663 }
1664 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!")((void)0);
1665 } while (Visited.insert(Ptr).second);
1666
1667 if (!OffsetPtr) {
1668 if (!Int8Ptr) {
1669 Int8Ptr = IRB.CreateBitCast(
1670 Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1671 NamePrefix + "sroa_raw_cast");
1672 Int8PtrOffset = Offset;
1673 }
1674
1675 OffsetPtr = Int8PtrOffset == 0
1676 ? Int8Ptr
1677 : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
1678 IRB.getInt(Int8PtrOffset),
1679 NamePrefix + "sroa_raw_idx");
1680 }
1681 Ptr = OffsetPtr;
1682
1683 // On the off chance we were targeting i8*, guard the bitcast here.
1684 if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) {
1685 Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr,
1686 TargetPtrTy,
1687 NamePrefix + "sroa_cast");
1688 }
1689
1690 return Ptr;
1691}
1692
1693/// Compute the adjusted alignment for a load or store from an offset.
1694static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) {
1695 return commonAlignment(getLoadStoreAlignment(I), Offset);
1696}
1697
1698/// Test whether we can convert a value from the old to the new type.
1699///
1700/// This predicate should be used to guard calls to convertValue in order to
1701/// ensure that we only try to convert viable values. The strategy is that we
1702/// will peel off single element struct and array wrappings to get to an
1703/// underlying value, and convert that value.
1704static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1705 if (OldTy == NewTy)
1706 return true;
1707
1708 // For integer types, we can't handle any bit-width differences. This would
1709 // break both vector conversions with extension and introduce endianness
1710 // issues when in conjunction with loads and stores.
1711 if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1712 assert(cast<IntegerType>(OldTy)->getBitWidth() !=((void)0)
1713 cast<IntegerType>(NewTy)->getBitWidth() &&((void)0)
1714 "We can't have the same bitwidth for different int types")((void)0);
1715 return false;
1716 }
1717
1718 if (DL.getTypeSizeInBits(NewTy).getFixedSize() !=
1719 DL.getTypeSizeInBits(OldTy).getFixedSize())
1720 return false;
1721 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1722 return false;
1723
1724 // We can convert pointers to integers and vice-versa. Same for vectors
1725 // of pointers and integers.
1726 OldTy = OldTy->getScalarType();
1727 NewTy = NewTy->getScalarType();
1728 if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1729 if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
1730 unsigned OldAS = OldTy->getPointerAddressSpace();
1731 unsigned NewAS = NewTy->getPointerAddressSpace();
1732 // Convert pointers if they are pointers from the same address space or
1733 // different integral (not non-integral) address spaces with the same
1734 // pointer size.
1735 return OldAS == NewAS ||
1736 (!DL.isNonIntegralAddressSpace(OldAS) &&
1737 !DL.isNonIntegralAddressSpace(NewAS) &&
1738 DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
1739 }
1740
1741 // We can convert integers to integral pointers, but not to non-integral
1742 // pointers.
1743 if (OldTy->isIntegerTy())
1744 return !DL.isNonIntegralPointerType(NewTy);
1745
1746 // We can convert integral pointers to integers, but non-integral pointers
1747 // need to remain pointers.
1748 if (!DL.isNonIntegralPointerType(OldTy))
1749 return NewTy->isIntegerTy();
1750
1751 return false;
1752 }
1753
1754 return true;
1755}
1756
1757/// Generic routine to convert an SSA value to a value of a different
1758/// type.
1759///
1760/// This will try various different casting techniques, such as bitcasts,
1761/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1762/// two types for viability with this routine.
1763static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1764 Type *NewTy) {
1765 Type *OldTy = V->getType();
1766 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type")((void)0);
1767
1768 if (OldTy == NewTy)
1769 return V;
1770
1771 assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&((void)0)
1772 "Integer types must be the exact same to convert.")((void)0);
1773
1774 // See if we need inttoptr for this type pair. May require additional bitcast.
1775 if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1776 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1777 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1778 // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*>
1779 // Directly handle i64 to i8*
1780 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1781 NewTy);
1782 }
1783
1784 // See if we need ptrtoint for this type pair. May require additional bitcast.
1785 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
1786 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1787 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1788 // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32>
1789 // Expand i8* to i64 --> i8* to i64 to i64
1790 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1791 NewTy);
1792 }
1793
1794 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1795 unsigned OldAS = OldTy->getPointerAddressSpace();
1796 unsigned NewAS = NewTy->getPointerAddressSpace();
1797 // To convert pointers with different address spaces (they are already
1798 // checked convertible, i.e. they have the same pointer size), so far we
1799 // cannot use `bitcast` (which has restrict on the same address space) or
1800 // `addrspacecast` (which is not always no-op casting). Instead, use a pair
1801 // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit
1802 // size.
1803 if (OldAS != NewAS) {
1804 assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS))((void)0);
1805 return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1806 NewTy);
1807 }
1808 }
1809
1810 return IRB.CreateBitCast(V, NewTy);
1811}
1812
1813/// Test whether the given slice use can be promoted to a vector.
1814///
1815/// This function is called to test each entry in a partition which is slated
1816/// for a single slice.
1817static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
1818 VectorType *Ty,
1819 uint64_t ElementSize,
1820 const DataLayout &DL) {
1821 // First validate the slice offsets.
1822 uint64_t BeginOffset =
1823 std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
1824 uint64_t BeginIndex = BeginOffset / ElementSize;
1825 if (BeginIndex * ElementSize != BeginOffset ||
1826 BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements())
1827 return false;
1828 uint64_t EndOffset =
1829 std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
1830 uint64_t EndIndex = EndOffset / ElementSize;
1831 if (EndIndex * ElementSize != EndOffset ||
1832 EndIndex > cast<FixedVectorType>(Ty)->getNumElements())
1833 return false;
1834
1835 assert(EndIndex > BeginIndex && "Empty vector!")((void)0);
1836 uint64_t NumElements = EndIndex - BeginIndex;
1837 Type *SliceTy = (NumElements == 1)
1838 ? Ty->getElementType()
1839 : FixedVectorType::get(Ty->getElementType(), NumElements);
1840
1841 Type *SplitIntTy =
1842 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1843
1844 Use *U = S.getUse();
1845
1846 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1847 if (MI->isVolatile())
1848 return false;
1849 if (!S.isSplittable())
1850 return false; // Skip any unsplittable intrinsics.
1851 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1852 if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
1853 return false;
1854 } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1855 // Disable vector promotion when there are loads or stores of an FCA.
1856 return false;
1857 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1858 if (LI->isVolatile())
1859 return false;
1860 Type *LTy = LI->getType();
1861 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1862 assert(LTy->isIntegerTy())((void)0);
1863 LTy = SplitIntTy;
1864 }
1865 if (!canConvertValue(DL, SliceTy, LTy))
1866 return false;
1867 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1868 if (SI->isVolatile())
1869 return false;
1870 Type *STy = SI->getValueOperand()->getType();
1871 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1872 assert(STy->isIntegerTy())((void)0);
1873 STy = SplitIntTy;
1874 }
1875 if (!canConvertValue(DL, STy, SliceTy))
1876 return false;
1877 } else {
1878 return false;
1879 }
1880
1881 return true;
1882}
1883
1884/// Test whether the given alloca partitioning and range of slices can be
1885/// promoted to a vector.
1886///
1887/// This is a quick test to check whether we can rewrite a particular alloca
1888/// partition (and its newly formed alloca) into a vector alloca with only
1889/// whole-vector loads and stores such that it could be promoted to a vector
1890/// SSA value. We only can ensure this for a limited set of operations, and we
1891/// don't want to do the rewrites unless we are confident that the result will
1892/// be promotable, so we have an early test here.
1893static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
1894 // Collect the candidate types for vector-based promotion. Also track whether
1895 // we have different element types.
1896 SmallVector<VectorType *, 4> CandidateTys;
1897 Type *CommonEltTy = nullptr;
1898 bool HaveCommonEltTy = true;
1899 auto CheckCandidateType = [&](Type *Ty) {
1900 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1901 // Return if bitcast to vectors is different for total size in bits.
1902 if (!CandidateTys.empty()) {
1903 VectorType *V = CandidateTys[0];
1904 if (DL.getTypeSizeInBits(VTy).getFixedSize() !=
1905 DL.getTypeSizeInBits(V).getFixedSize()) {
1906 CandidateTys.clear();
1907 return;
1908 }
1909 }
1910 CandidateTys.push_back(VTy);
1911 if (!CommonEltTy)
1912 CommonEltTy = VTy->getElementType();
1913 else if (CommonEltTy != VTy->getElementType())
1914 HaveCommonEltTy = false;
1915 }
1916 };
1917 // Consider any loads or stores that are the exact size of the slice.
1918 for (const Slice &S : P)
1919 if (S.beginOffset() == P.beginOffset() &&
1920 S.endOffset() == P.endOffset()) {
1921 if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
1922 CheckCandidateType(LI->getType());
1923 else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
1924 CheckCandidateType(SI->getValueOperand()->getType());
1925 }
1926
1927 // If we didn't find a vector type, nothing to do here.
1928 if (CandidateTys.empty())
1929 return nullptr;
1930
1931 // Remove non-integer vector types if we had multiple common element types.
1932 // FIXME: It'd be nice to replace them with integer vector types, but we can't
1933 // do that until all the backends are known to produce good code for all
1934 // integer vector types.
1935 if (!HaveCommonEltTy) {
1936 llvm::erase_if(CandidateTys, [](VectorType *VTy) {
1937 return !VTy->getElementType()->isIntegerTy();
1938 });
1939
1940 // If there were no integer vector types, give up.
1941 if (CandidateTys.empty())
1942 return nullptr;
1943
1944 // Rank the remaining candidate vector types. This is easy because we know
1945 // they're all integer vectors. We sort by ascending number of elements.
1946 auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
1947 (void)DL;
1948 assert(DL.getTypeSizeInBits(RHSTy).getFixedSize() ==((void)0)
1949 DL.getTypeSizeInBits(LHSTy).getFixedSize() &&((void)0)
1950 "Cannot have vector types of different sizes!")((void)0);
1951 assert(RHSTy->getElementType()->isIntegerTy() &&((void)0)
1952 "All non-integer types eliminated!")((void)0);
1953 assert(LHSTy->getElementType()->isIntegerTy() &&((void)0)
1954 "All non-integer types eliminated!")((void)0);
1955 return cast<FixedVectorType>(RHSTy)->getNumElements() <
1956 cast<FixedVectorType>(LHSTy)->getNumElements();
1957 };
1958 llvm::sort(CandidateTys, RankVectorTypes);
1959 CandidateTys.erase(
1960 std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
1961 CandidateTys.end());
1962 } else {
1963// The only way to have the same element type in every vector type is to
1964// have the same vector type. Check that and remove all but one.
1965#ifndef NDEBUG1
1966 for (VectorType *VTy : CandidateTys) {
1967 assert(VTy->getElementType() == CommonEltTy &&((void)0)
1968 "Unaccounted for element type!")((void)0);
1969 assert(VTy == CandidateTys[0] &&((void)0)
1970 "Different vector types with the same element type!")((void)0);
1971 }
1972#endif
1973 CandidateTys.resize(1);
1974 }
1975
1976 // Try each vector type, and return the one which works.
1977 auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
1978 uint64_t ElementSize =
1979 DL.getTypeSizeInBits(VTy->getElementType()).getFixedSize();
1980
1981 // While the definition of LLVM vectors is bitpacked, we don't support sizes
1982 // that aren't byte sized.
1983 if (ElementSize % 8)
1984 return false;
1985 assert((DL.getTypeSizeInBits(VTy).getFixedSize() % 8) == 0 &&((void)0)
1986 "vector size not a multiple of element size?")((void)0);
1987 ElementSize /= 8;
1988
1989 for (const Slice &S : P)
1990 if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
1991 return false;
1992
1993 for (const Slice *S : P.splitSliceTails())
1994 if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
1995 return false;
1996
1997 return true;
1998 };
1999 for (VectorType *VTy : CandidateTys)
2000 if (CheckVectorTypeForPromotion(VTy))
2001 return VTy;
2002
2003 return nullptr;
2004}
2005
2006/// Test whether a slice of an alloca is valid for integer widening.
2007///
2008/// This implements the necessary checking for the \c isIntegerWideningViable
2009/// test below on a single slice of the alloca.
2010static bool isIntegerWideningViableForSlice(const Slice &S,
2011 uint64_t AllocBeginOffset,
2012 Type *AllocaTy,
2013 const DataLayout &DL,
2014 bool &WholeAllocaOp) {
2015 uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedSize();
2016
2017 uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
2018 uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
2019
2020 // We can't reasonably handle cases where the load or store extends past
2021 // the end of the alloca's type and into its padding.
2022 if (RelEnd > Size)
2023 return false;
2024
2025 Use *U = S.getUse();
2026
2027 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2028 if (LI->isVolatile())
2029 return false;
2030 // We can't handle loads that extend past the allocated memory.
2031 if (DL.getTypeStoreSize(LI->getType()).getFixedSize() > Size)
2032 return false;
2033 // So far, AllocaSliceRewriter does not support widening split slice tails
2034 // in rewriteIntegerLoad.
2035 if (S.beginOffset() < AllocBeginOffset)
2036 return false;
2037 // Note that we don't count vector loads or stores as whole-alloca
2038 // operations which enable integer widening because we would prefer to use
2039 // vector widening instead.
2040 if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
2041 WholeAllocaOp = true;
2042 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2043 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize())
2044 return false;
2045 } else if (RelBegin != 0 || RelEnd != Size ||
2046 !canConvertValue(DL, AllocaTy, LI->getType())) {
2047 // Non-integer loads need to be convertible from the alloca type so that
2048 // they are promotable.
2049 return false;
2050 }
2051 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2052 Type *ValueTy = SI->getValueOperand()->getType();
2053 if (SI->isVolatile())
2054 return false;
2055 // We can't handle stores that extend past the allocated memory.
2056 if (DL.getTypeStoreSize(ValueTy).getFixedSize() > Size)
2057 return false;
2058 // So far, AllocaSliceRewriter does not support widening split slice tails
2059 // in rewriteIntegerStore.
2060 if (S.beginOffset() < AllocBeginOffset)
2061 return false;
2062 // Note that we don't count vector loads or stores as whole-alloca
2063 // operations which enable integer widening because we would prefer to use
2064 // vector widening instead.
2065 if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2066 WholeAllocaOp = true;
2067 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2068 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize())
2069 return false;
2070 } else if (RelBegin != 0 || RelEnd != Size ||
2071 !canConvertValue(DL, ValueTy, AllocaTy)) {
2072 // Non-integer stores need to be convertible to the alloca type so that
2073 // they are promotable.
2074 return false;
2075 }
2076 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2077 if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2078 return false;
2079 if (!S.isSplittable())
2080 return false; // Skip any unsplittable intrinsics.
2081 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2082 if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
2083 return false;
2084 } else {
2085 return false;
2086 }
2087
2088 return true;
2089}
2090
2091/// Test whether the given alloca partition's integer operations can be
2092/// widened to promotable ones.
2093///
2094/// This is a quick test to check whether we can rewrite the integer loads and
2095/// stores to a particular alloca into wider loads and stores and be able to
2096/// promote the resulting alloca.
2097static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
2098 const DataLayout &DL) {
2099 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedSize();
2100 // Don't create integer types larger than the maximum bitwidth.
2101 if (SizeInBits > IntegerType::MAX_INT_BITS)
2102 return false;
2103
2104 // Don't try to handle allocas with bit-padding.
2105 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedSize())
2106 return false;
2107
2108 // We need to ensure that an integer type with the appropriate bitwidth can
2109 // be converted to the alloca type, whatever that is. We don't want to force
2110 // the alloca itself to have an integer type if there is a more suitable one.
2111 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2112 if (!canConvertValue(DL, AllocaTy, IntTy) ||
2113 !canConvertValue(DL, IntTy, AllocaTy))
2114 return false;
2115
2116 // While examining uses, we ensure that the alloca has a covering load or
2117 // store. We don't want to widen the integer operations only to fail to
2118 // promote due to some other unsplittable entry (which we may make splittable
2119 // later). However, if there are only splittable uses, go ahead and assume
2120 // that we cover the alloca.
2121 // FIXME: We shouldn't consider split slices that happen to start in the
2122 // partition here...
2123 bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits);
2124
2125 for (const Slice &S : P)
2126 if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2127 WholeAllocaOp))
2128 return false;
2129
2130 for (const Slice *S : P.splitSliceTails())
2131 if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2132 WholeAllocaOp))
2133 return false;
2134
2135 return WholeAllocaOp;
2136}
2137
2138static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2139 IntegerType *Ty, uint64_t Offset,
2140 const Twine &Name) {
2141 LLVM_DEBUG(dbgs() << " start: " << *V << "\n")do { } while (false);
2142 IntegerType *IntTy = cast<IntegerType>(V->getType());
2143 assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <=((void)0)
2144 DL.getTypeStoreSize(IntTy).getFixedSize() &&((void)0)
2145 "Element extends past full value")((void)0);
2146 uint64_t ShAmt = 8 * Offset;
2147 if (DL.isBigEndian())
2148 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() -
2149 DL.getTypeStoreSize(Ty).getFixedSize() - Offset);
2150 if (ShAmt) {
2151 V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2152 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n")do { } while (false);
2153 }
2154 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&((void)0)
2155 "Cannot extract to a larger integer!")((void)0);
2156 if (Ty != IntTy) {
2157 V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2158 LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n")do { } while (false);
2159 }
2160 return V;
2161}
2162
2163static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2164 Value *V, uint64_t Offset, const Twine &Name) {
2165 IntegerType *IntTy = cast<IntegerType>(Old->getType());
2166 IntegerType *Ty = cast<IntegerType>(V->getType());
2167 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&((void)0)
2168 "Cannot insert a larger integer!")((void)0);
2169 LLVM_DEBUG(dbgs() << " start: " << *V << "\n")do { } while (false);
2170 if (Ty != IntTy) {
2171 V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2172 LLVM_DEBUG(dbgs() << " extended: " << *V << "\n")do { } while (false);
2173 }
2174 assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <=((void)0)
2175 DL.getTypeStoreSize(IntTy).getFixedSize() &&((void)0)
2176 "Element store outside of alloca store")((void)0);
2177 uint64_t ShAmt = 8 * Offset;
2178 if (DL.isBigEndian())
2179 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() -
2180 DL.getTypeStoreSize(Ty).getFixedSize() - Offset);
2181 if (ShAmt) {
2182 V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2183 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n")do { } while (false);
2184 }
2185
2186 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2187 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2188 Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2189 LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n")do { } while (false);
2190 V = IRB.CreateOr(Old, V, Name + ".insert");
2191 LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n")do { } while (false);
2192 }
2193 return V;
2194}
2195
2196static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2197 unsigned EndIndex, const Twine &Name) {
2198 auto *VecTy = cast<FixedVectorType>(V->getType());
2199 unsigned NumElements = EndIndex - BeginIndex;
2200 assert(NumElements <= VecTy->getNumElements() && "Too many elements!")((void)0);
2201
2202 if (NumElements == VecTy->getNumElements())
2203 return V;
2204
2205 if (NumElements == 1) {
2206 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2207 Name + ".extract");
2208 LLVM_DEBUG(dbgs() << " extract: " << *V << "\n")do { } while (false);
2209 return V;
2210 }
2211
2212 SmallVector<int, 8> Mask;
2213 Mask.reserve(NumElements);
2214 for (unsigned i = BeginIndex; i != EndIndex; ++i)
2215 Mask.push_back(i);
2216 V = IRB.CreateShuffleVector(V, Mask, Name + ".extract");
2217 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n")do { } while (false);
2218 return V;
2219}
2220
2221static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2222 unsigned BeginIndex, const Twine &Name) {
2223 VectorType *VecTy = cast<VectorType>(Old->getType());
2224 assert(VecTy && "Can only insert a vector into a vector")((void)0);
2225
2226 VectorType *Ty = dyn_cast<VectorType>(V->getType());
2227 if (!Ty) {
2228 // Single element to insert.
2229 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2230 Name + ".insert");
2231 LLVM_DEBUG(dbgs() << " insert: " << *V << "\n")do { } while (false);
2232 return V;
2233 }
2234
2235 assert(cast<FixedVectorType>(Ty)->getNumElements() <=((void)0)
2236 cast<FixedVectorType>(VecTy)->getNumElements() &&((void)0)
2237 "Too many elements!")((void)0);
2238 if (cast<FixedVectorType>(Ty)->getNumElements() ==
2239 cast<FixedVectorType>(VecTy)->getNumElements()) {
2240 assert(V->getType() == VecTy && "Vector type mismatch")((void)0);
2241 return V;
2242 }
2243 unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements();
2244
2245 // When inserting a smaller vector into the larger to store, we first
2246 // use a shuffle vector to widen it with undef elements, and then
2247 // a second shuffle vector to select between the loaded vector and the
2248 // incoming vector.
2249 SmallVector<int, 8> Mask;
2250 Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2251 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2252 if (i >= BeginIndex && i < EndIndex)
2253 Mask.push_back(i - BeginIndex);
2254 else
2255 Mask.push_back(-1);
2256 V = IRB.CreateShuffleVector(V, Mask, Name + ".expand");
2257 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n")do { } while (false);
2258
2259 SmallVector<Constant *, 8> Mask2;
2260 Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2261 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2262 Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2263
2264 V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend");
2265
2266 LLVM_DEBUG(dbgs() << " blend: " << *V << "\n")do { } while (false);
2267 return V;
2268}
2269
2270/// Visitor to rewrite instructions using p particular slice of an alloca
2271/// to use a new alloca.
2272///
2273/// Also implements the rewriting to vector-based accesses when the partition
2274/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2275/// lives here.
2276class llvm::sroa::AllocaSliceRewriter
2277 : public InstVisitor<AllocaSliceRewriter, bool> {
2278 // Befriend the base class so it can delegate to private visit methods.
2279 friend class InstVisitor<AllocaSliceRewriter, bool>;
2280
2281 using Base = InstVisitor<AllocaSliceRewriter, bool>;
2282
2283 const DataLayout &DL;
2284 AllocaSlices &AS;
2285 SROA &Pass;
2286 AllocaInst &OldAI, &NewAI;
2287 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2288 Type *NewAllocaTy;
2289
2290 // This is a convenience and flag variable that will be null unless the new
2291 // alloca's integer operations should be widened to this integer type due to
2292 // passing isIntegerWideningViable above. If it is non-null, the desired
2293 // integer type will be stored here for easy access during rewriting.
2294 IntegerType *IntTy;
2295
2296 // If we are rewriting an alloca partition which can be written as pure
2297 // vector operations, we stash extra information here. When VecTy is
2298 // non-null, we have some strict guarantees about the rewritten alloca:
2299 // - The new alloca is exactly the size of the vector type here.
2300 // - The accesses all either map to the entire vector or to a single
2301 // element.
2302 // - The set of accessing instructions is only one of those handled above
2303 // in isVectorPromotionViable. Generally these are the same access kinds
2304 // which are promotable via mem2reg.
2305 VectorType *VecTy;
2306 Type *ElementTy;
2307 uint64_t ElementSize;
2308
2309 // The original offset of the slice currently being rewritten relative to
2310 // the original alloca.
2311 uint64_t BeginOffset = 0;
2312 uint64_t EndOffset = 0;
2313
2314 // The new offsets of the slice currently being rewritten relative to the
2315 // original alloca.
2316 uint64_t NewBeginOffset = 0, NewEndOffset = 0;
2317
2318 uint64_t SliceSize = 0;
2319 bool IsSplittable = false;
2320 bool IsSplit = false;
2321 Use *OldUse = nullptr;
2322 Instruction *OldPtr = nullptr;
2323
2324 // Track post-rewrite users which are PHI nodes and Selects.
2325 SmallSetVector<PHINode *, 8> &PHIUsers;
2326 SmallSetVector<SelectInst *, 8> &SelectUsers;
2327
2328 // Utility IR builder, whose name prefix is setup for each visited use, and
2329 // the insertion point is set to point to the user.
2330 IRBuilderTy IRB;
2331
2332public:
2333 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
2334 AllocaInst &OldAI, AllocaInst &NewAI,
2335 uint64_t NewAllocaBeginOffset,
2336 uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2337 VectorType *PromotableVecTy,
2338 SmallSetVector<PHINode *, 8> &PHIUsers,
2339 SmallSetVector<SelectInst *, 8> &SelectUsers)
2340 : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2341 NewAllocaBeginOffset(NewAllocaBeginOffset),
2342 NewAllocaEndOffset(NewAllocaEndOffset),
2343 NewAllocaTy(NewAI.getAllocatedType()),
2344 IntTy(
2345 IsIntegerPromotable
2346 ? Type::getIntNTy(NewAI.getContext(),
2347 DL.getTypeSizeInBits(NewAI.getAllocatedType())
2348 .getFixedSize())
2349 : nullptr),
2350 VecTy(PromotableVecTy),
2351 ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2352 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8
2353 : 0),
2354 PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2355 IRB(NewAI.getContext(), ConstantFolder()) {
2356 if (VecTy) {
2357 assert((DL.getTypeSizeInBits(ElementTy).getFixedSize() % 8) == 0 &&((void)0)
2358 "Only multiple-of-8 sized vector elements are viable")((void)0);
2359 ++NumVectorized;
2360 }
2361 assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy))((void)0);
2362 }
2363
2364 bool visit(AllocaSlices::const_iterator I) {
2365 bool CanSROA = true;
2366 BeginOffset = I->beginOffset();
2367 EndOffset = I->endOffset();
2368 IsSplittable = I->isSplittable();
2369 IsSplit =
2370 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2371 LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : ""))do { } while (false);
2372 LLVM_DEBUG(AS.printSlice(dbgs(), I, ""))do { } while (false);
2373 LLVM_DEBUG(dbgs() << "\n")do { } while (false);
2374
2375 // Compute the intersecting offset range.
2376 assert(BeginOffset < NewAllocaEndOffset)((void)0);
2377 assert(EndOffset > NewAllocaBeginOffset)((void)0);
2378 NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2379 NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2380
2381 SliceSize = NewEndOffset - NewBeginOffset;
2382
2383 OldUse = I->getUse();
2384 OldPtr = cast<Instruction>(OldUse->get());
2385
2386 Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2387 IRB.SetInsertPoint(OldUserI);
2388 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2389 IRB.getInserter().SetNamePrefix(
2390 Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2391
2392 CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2393 if (VecTy || IntTy)
2394 assert(CanSROA)((void)0);
2395 return CanSROA;
2396 }
2397
2398private:
2399 // Make sure the other visit overloads are visible.
2400 using Base::visit;
2401
2402 // Every instruction which can end up as a user must have a rewrite rule.
2403 bool visitInstruction(Instruction &I) {
2404 LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n")do { } while (false);
2405 llvm_unreachable("No rewrite rule for this instruction!")__builtin_unreachable();
2406 }
2407
2408 Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2409 // Note that the offset computation can use BeginOffset or NewBeginOffset
2410 // interchangeably for unsplit slices.
2411 assert(IsSplit || BeginOffset == NewBeginOffset)((void)0);
2412 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2413
2414#ifndef NDEBUG1
2415 StringRef OldName = OldPtr->getName();
2416 // Skip through the last '.sroa.' component of the name.
2417 size_t LastSROAPrefix = OldName.rfind(".sroa.");
2418 if (LastSROAPrefix != StringRef::npos) {
2419 OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2420 // Look for an SROA slice index.
2421 size_t IndexEnd = OldName.find_first_not_of("0123456789");
2422 if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2423 // Strip the index and look for the offset.
2424 OldName = OldName.substr(IndexEnd + 1);
2425 size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2426 if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2427 // Strip the offset.
2428 OldName = OldName.substr(OffsetEnd + 1);
2429 }
2430 }
2431 // Strip any SROA suffixes as well.
2432 OldName = OldName.substr(0, OldName.find(".sroa_"));
2433#endif
2434
2435 return getAdjustedPtr(IRB, DL, &NewAI,
2436 APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset),
2437 PointerTy,
2438#ifndef NDEBUG1
2439 Twine(OldName) + "."
2440#else
2441 Twine()
2442#endif
2443 );
2444 }
2445
2446 /// Compute suitable alignment to access this slice of the *new*
2447 /// alloca.
2448 ///
2449 /// You can optionally pass a type to this routine and if that type's ABI
2450 /// alignment is itself suitable, this will return zero.
2451 Align getSliceAlign() {
2452 return commonAlignment(NewAI.getAlign(),
3
Calling 'AllocaInst::getAlign'
10
Returning from 'AllocaInst::getAlign'
11
Calling 'commonAlignment'
2453 NewBeginOffset - NewAllocaBeginOffset);
2454 }
2455
2456 unsigned getIndex(uint64_t Offset) {
2457 assert(VecTy && "Can only call getIndex when rewriting a vector")((void)0);
2458 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2459 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds")((void)0);
2460 uint32_t Index = RelOffset / ElementSize;
2461 assert(Index * ElementSize == RelOffset)((void)0);
2462 return Index;
2463 }
2464
2465 void deleteIfTriviallyDead(Value *V) {
2466 Instruction *I = cast<Instruction>(V);
2467 if (isInstructionTriviallyDead(I))
2468 Pass.DeadInsts.push_back(I);
2469 }
2470
2471 Value *rewriteVectorizedLoadInst(LoadInst &LI) {
2472 unsigned BeginIndex = getIndex(NewBeginOffset);
2473 unsigned EndIndex = getIndex(NewEndOffset);
2474 assert(EndIndex > BeginIndex && "Empty vector!")((void)0);
2475
2476 LoadInst *Load = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2477 NewAI.getAlign(), "load");
2478
2479 Load->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
2480 LLVMContext::MD_access_group});
2481 return extractVector(IRB, Load, BeginIndex, EndIndex, "vec");
2482 }
2483
2484 Value *rewriteIntegerLoad(LoadInst &LI) {
2485 assert(IntTy && "We cannot insert an integer to the alloca")((void)0);
2486 assert(!LI.isVolatile())((void)0);
2487 Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2488 NewAI.getAlign(), "load");
2489 V = convertValue(DL, IRB, V, IntTy);
2490 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset")((void)0);
2491 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2492 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2493 IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2494 V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2495 }
2496 // It is possible that the extracted type is not the load type. This
2497 // happens if there is a load past the end of the alloca, and as
2498 // a consequence the slice is narrower but still a candidate for integer
2499 // lowering. To handle this case, we just zero extend the extracted
2500 // integer.
2501 assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&((void)0)
2502 "Can only handle an extract for an overly wide load")((void)0);
2503 if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2504 V = IRB.CreateZExt(V, LI.getType());
2505 return V;
2506 }
2507
2508 bool visitLoadInst(LoadInst &LI) {
2509 LLVM_DEBUG(dbgs() << " original: " << LI << "\n")do { } while (false);
2510 Value *OldOp = LI.getOperand(0);
2511 assert(OldOp == OldPtr)((void)0);
2512
2513 AAMDNodes AATags;
2514 LI.getAAMetadata(AATags);
2515
2516 unsigned AS = LI.getPointerAddressSpace();
2517
2518 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2519 : LI.getType();
2520 const bool IsLoadPastEnd =
2521 DL.getTypeStoreSize(TargetTy).getFixedSize() > SliceSize;
2522 bool IsPtrAdjusted = false;
2523 Value *V;
2524 if (VecTy) {
2525 V = rewriteVectorizedLoadInst(LI);
2526 } else if (IntTy && LI.getType()->isIntegerTy()) {
2527 V = rewriteIntegerLoad(LI);
2528 } else if (NewBeginOffset == NewAllocaBeginOffset &&
2529 NewEndOffset == NewAllocaEndOffset &&
2530 (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2531 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2532 TargetTy->isIntegerTy()))) {
2533 LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2534 NewAI.getAlign(), LI.isVolatile(),
2535 LI.getName());
2536 if (AATags)
2537 NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2538 if (LI.isVolatile())
2539 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2540 if (NewLI->isAtomic())
2541 NewLI->setAlignment(LI.getAlign());
2542
2543 // Any !nonnull metadata or !range metadata on the old load is also valid
2544 // on the new load. This is even true in some cases even when the loads
2545 // are different types, for example by mapping !nonnull metadata to
2546 // !range metadata by modeling the null pointer constant converted to the
2547 // integer type.
2548 // FIXME: Add support for range metadata here. Currently the utilities
2549 // for this don't propagate range metadata in trivial cases from one
2550 // integer load to another, don't handle non-addrspace-0 null pointers
2551 // correctly, and don't have any support for mapping ranges as the
2552 // integer type becomes winder or narrower.
2553 if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull))
2554 copyNonnullMetadata(LI, N, *NewLI);
2555
2556 // Try to preserve nonnull metadata
2557 V = NewLI;
2558
2559 // If this is an integer load past the end of the slice (which means the
2560 // bytes outside the slice are undef or this load is dead) just forcibly
2561 // fix the integer size with correct handling of endianness.
2562 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2563 if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2564 if (AITy->getBitWidth() < TITy->getBitWidth()) {
2565 V = IRB.CreateZExt(V, TITy, "load.ext");
2566 if (DL.isBigEndian())
2567 V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2568 "endian_shift");
2569 }
2570 } else {
2571 Type *LTy = TargetTy->getPointerTo(AS);
2572 LoadInst *NewLI =
2573 IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy),
2574 getSliceAlign(), LI.isVolatile(), LI.getName());
2575 if (AATags)
2576 NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2577 if (LI.isVolatile())
2578 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2579 NewLI->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
2580 LLVMContext::MD_access_group});
2581
2582 V = NewLI;
2583 IsPtrAdjusted = true;
2584 }
2585 V = convertValue(DL, IRB, V, TargetTy);
2586
2587 if (IsSplit) {
2588 assert(!LI.isVolatile())((void)0);
2589 assert(LI.getType()->isIntegerTy() &&((void)0)
2590 "Only integer type loads and stores are split")((void)0);
2591 assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedSize() &&((void)0)
2592 "Split load isn't smaller than original load")((void)0);
2593 assert(DL.typeSizeEqualsStoreSize(LI.getType()) &&((void)0)
2594 "Non-byte-multiple bit width")((void)0);
2595 // Move the insertion point just past the load so that we can refer to it.
2596 IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2597 // Create a placeholder value with the same type as LI to use as the
2598 // basis for the new value. This allows us to replace the uses of LI with
2599 // the computed value, and then replace the placeholder with LI, leaving
2600 // LI only used for this computation.
2601 Value *Placeholder = new LoadInst(
2602 LI.getType(), UndefValue::get(LI.getType()->getPointerTo(AS)), "",
2603 false, Align(1));
2604 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2605 "insert");
2606 LI.replaceAllUsesWith(V);
2607 Placeholder->replaceAllUsesWith(&LI);
2608 Placeholder->deleteValue();
2609 } else {
2610 LI.replaceAllUsesWith(V);
2611 }
2612
2613 Pass.DeadInsts.push_back(&LI);
2614 deleteIfTriviallyDead(OldOp);
2615 LLVM_DEBUG(dbgs() << " to: " << *V << "\n")do { } while (false);
2616 return !LI.isVolatile() && !IsPtrAdjusted;
2617 }
2618
2619 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2620 AAMDNodes AATags) {
2621 if (V->getType() != VecTy) {
2622 unsigned BeginIndex = getIndex(NewBeginOffset);
2623 unsigned EndIndex = getIndex(NewEndOffset);
2624 assert(EndIndex > BeginIndex && "Empty vector!")((void)0);
2625 unsigned NumElements = EndIndex - BeginIndex;
2626 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&((void)0)
2627 "Too many elements!")((void)0);
2628 Type *SliceTy = (NumElements == 1)
2629 ? ElementTy
2630 : FixedVectorType::get(ElementTy, NumElements);
2631 if (V->getType() != SliceTy)
2632 V = convertValue(DL, IRB, V, SliceTy);
2633
2634 // Mix in the existing elements.
2635 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2636 NewAI.getAlign(), "load");
2637 V = insertVector(IRB, Old, V, BeginIndex, "vec");
2638 }
2639 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2640 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2641 LLVMContext::MD_access_group});
2642 if (AATags)
2643 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2644 Pass.DeadInsts.push_back(&SI);
2645
2646 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n")do { } while (false);
2647 return true;
2648 }
2649
2650 bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
2651 assert(IntTy && "We cannot extract an integer from the alloca")((void)0);
2652 assert(!SI.isVolatile())((void)0);
2653 if (DL.getTypeSizeInBits(V->getType()).getFixedSize() !=
2654 IntTy->getBitWidth()) {
2655 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2656 NewAI.getAlign(), "oldload");
2657 Old = convertValue(DL, IRB, Old, IntTy);
2658 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset")((void)0);
2659 uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2660 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2661 }
2662 V = convertValue(DL, IRB, V, NewAllocaTy);
2663 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2664 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2665 LLVMContext::MD_access_group});
2666 if (AATags)
2667 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2668 Pass.DeadInsts.push_back(&SI);
2669 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n")do { } while (false);
2670 return true;
2671 }
2672
2673 bool visitStoreInst(StoreInst &SI) {
2674 LLVM_DEBUG(dbgs() << " original: " << SI << "\n")do { } while (false);
2675 Value *OldOp = SI.getOperand(1);
2676 assert(OldOp == OldPtr)((void)0);
2677
2678 AAMDNodes AATags;
2679 SI.getAAMetadata(AATags);
2680
2681 Value *V = SI.getValueOperand();
2682
2683 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2684 // alloca that should be re-examined after promoting this alloca.
2685 if (V->getType()->isPointerTy())
2686 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2687 Pass.PostPromotionWorklist.insert(AI);
2688
2689 if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedSize()) {
2690 assert(!SI.isVolatile())((void)0);
2691 assert(V->getType()->isIntegerTy() &&((void)0)
2692 "Only integer type loads and stores are split")((void)0);
2693 assert(DL.typeSizeEqualsStoreSize(V->getType()) &&((void)0)
2694 "Non-byte-multiple bit width")((void)0);
2695 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2696 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2697 "extract");
2698 }
2699
2700 if (VecTy)
2701 return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
2702 if (IntTy && V->getType()->isIntegerTy())
2703 return rewriteIntegerStore(V, SI, AATags);
2704
2705 const bool IsStorePastEnd =
2706 DL.getTypeStoreSize(V->getType()).getFixedSize() > SliceSize;
2707 StoreInst *NewSI;
2708 if (NewBeginOffset == NewAllocaBeginOffset &&
2709 NewEndOffset == NewAllocaEndOffset &&
2710 (canConvertValue(DL, V->getType(), NewAllocaTy) ||
2711 (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
2712 V->getType()->isIntegerTy()))) {
2713 // If this is an integer store past the end of slice (and thus the bytes
2714 // past that point are irrelevant or this is unreachable), truncate the
2715 // value prior to storing.
2716 if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
2717 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2718 if (VITy->getBitWidth() > AITy->getBitWidth()) {
2719 if (DL.isBigEndian())
2720 V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
2721 "endian_shift");
2722 V = IRB.CreateTrunc(V, AITy, "load.trunc");
2723 }
2724
2725 V = convertValue(DL, IRB, V, NewAllocaTy);
2726 NewSI =
2727 IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), SI.isVolatile());
2728 } else {
2729 unsigned AS = SI.getPointerAddressSpace();
2730 Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS));
2731 NewSI =
2732 IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile());
2733 }
2734 NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2735 LLVMContext::MD_access_group});
2736 if (AATags)
2737 NewSI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2738 if (SI.isVolatile())
2739 NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
2740 if (NewSI->isAtomic())
2741 NewSI->setAlignment(SI.getAlign());
2742 Pass.DeadInsts.push_back(&SI);
2743 deleteIfTriviallyDead(OldOp);
2744
2745 LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n")do { } while (false);
2746 return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2747 }
2748
2749 /// Compute an integer value from splatting an i8 across the given
2750 /// number of bytes.
2751 ///
2752 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2753 /// call this routine.
2754 /// FIXME: Heed the advice above.
2755 ///
2756 /// \param V The i8 value to splat.
2757 /// \param Size The number of bytes in the output (assuming i8 is one byte)
2758 Value *getIntegerSplat(Value *V, unsigned Size) {
2759 assert(Size > 0 && "Expected a positive number of bytes.")((void)0);
2760 IntegerType *VTy = cast<IntegerType>(V->getType());
2761 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte")((void)0);
2762 if (Size == 1)
2763 return V;
2764
2765 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
2766 V = IRB.CreateMul(
2767 IRB.CreateZExt(V, SplatIntTy, "zext"),
2768 ConstantExpr::getUDiv(
2769 Constant::getAllOnesValue(SplatIntTy),
2770 ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()),
2771 SplatIntTy)),
2772 "isplat");
2773 return V;
2774 }
2775
2776 /// Compute a vector splat for a given element value.
2777 Value *getVectorSplat(Value *V, unsigned NumElements) {
2778 V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2779 LLVM_DEBUG(dbgs() << " splat: " << *V << "\n")do { } while (false);
2780 return V;
2781 }
2782
2783 bool visitMemSetInst(MemSetInst &II) {
2784 LLVM_DEBUG(dbgs() << " original: " << II << "\n")do { } while (false);
2785 assert(II.getRawDest() == OldPtr)((void)0);
2786
2787 AAMDNodes AATags;
2788 II.getAAMetadata(AATags);
2789
2790 // If the memset has a variable size, it cannot be split, just adjust the
2791 // pointer to the new alloca.
2792 if (!isa<ConstantInt>(II.getLength())) {
2793 assert(!IsSplit)((void)0);
2794 assert(NewBeginOffset == BeginOffset)((void)0);
2795 II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
2796 II.setDestAlignment(getSliceAlign());
2797
2798 deleteIfTriviallyDead(OldPtr);
2799 return false;
2800 }
2801
2802 // Record this instruction for deletion.
2803 Pass.DeadInsts.push_back(&II);
2804
2805 Type *AllocaTy = NewAI.getAllocatedType();
2806 Type *ScalarTy = AllocaTy->getScalarType();
2807
2808 const bool CanContinue = [&]() {
2809 if (VecTy || IntTy)
2810 return true;
2811 if (BeginOffset > NewAllocaBeginOffset ||
2812 EndOffset < NewAllocaEndOffset)
2813 return false;
2814 // Length must be in range for FixedVectorType.
2815 auto *C = cast<ConstantInt>(II.getLength());
2816 const uint64_t Len = C->getLimitedValue();
2817 if (Len > std::numeric_limits<unsigned>::max())
2818 return false;
2819 auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext());
2820 auto *SrcTy = FixedVectorType::get(Int8Ty, Len);
2821 return canConvertValue(DL, SrcTy, AllocaTy) &&
2822 DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedSize());
2823 }();
2824
2825 // If this doesn't map cleanly onto the alloca type, and that type isn't
2826 // a single value type, just emit a memset.
2827 if (!CanContinue) {
2828 Type *SizeTy = II.getLength()->getType();
2829 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2830 CallInst *New = IRB.CreateMemSet(
2831 getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
2832 MaybeAlign(getSliceAlign()), II.isVolatile());
2833 if (AATags)
2834 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2835 LLVM_DEBUG(dbgs() << " to: " << *New << "\n")do { } while (false);
2836 return false;
2837 }
2838
2839 // If we can represent this as a simple value, we have to build the actual
2840 // value to store, which requires expanding the byte present in memset to
2841 // a sensible representation for the alloca type. This is essentially
2842 // splatting the byte to a sufficiently wide integer, splatting it across
2843 // any desired vector width, and bitcasting to the final type.
2844 Value *V;
2845
2846 if (VecTy) {
2847 // If this is a memset of a vectorized alloca, insert it.
2848 assert(ElementTy == ScalarTy)((void)0);
2849
2850 unsigned BeginIndex = getIndex(NewBeginOffset);
2851 unsigned EndIndex = getIndex(NewEndOffset);
2852 assert(EndIndex > BeginIndex && "Empty vector!")((void)0);
2853 unsigned NumElements = EndIndex - BeginIndex;
2854 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&((void)0)
2855 "Too many elements!")((void)0);
2856
2857 Value *Splat = getIntegerSplat(
2858 II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8);
2859 Splat = convertValue(DL, IRB, Splat, ElementTy);
2860 if (NumElements > 1)
2861 Splat = getVectorSplat(Splat, NumElements);
2862
2863 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2864 NewAI.getAlign(), "oldload");
2865 V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2866 } else if (IntTy) {
2867 // If this is a memset on an alloca where we can widen stores, insert the
2868 // set integer.
2869 assert(!II.isVolatile())((void)0);
2870
2871 uint64_t Size = NewEndOffset - NewBeginOffset;
2872 V = getIntegerSplat(II.getValue(), Size);
2873
2874 if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2875 EndOffset != NewAllocaBeginOffset)) {
2876 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2877 NewAI.getAlign(), "oldload");
2878 Old = convertValue(DL, IRB, Old, IntTy);
2879 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2880 V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2881 } else {
2882 assert(V->getType() == IntTy &&((void)0)
2883 "Wrong type for an alloca wide integer!")((void)0);
2884 }
2885 V = convertValue(DL, IRB, V, AllocaTy);
2886 } else {
2887 // Established these invariants above.
2888 assert(NewBeginOffset == NewAllocaBeginOffset)((void)0);
2889 assert(NewEndOffset == NewAllocaEndOffset)((void)0);
2890
2891 V = getIntegerSplat(II.getValue(),
2892 DL.getTypeSizeInBits(ScalarTy).getFixedSize() / 8);
2893 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2894 V = getVectorSplat(
2895 V, cast<FixedVectorType>(AllocaVecTy)->getNumElements());
2896
2897 V = convertValue(DL, IRB, V, AllocaTy);
2898 }
2899
2900 StoreInst *New =
2901 IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), II.isVolatile());
2902 New->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
2903 LLVMContext::MD_access_group});
2904 if (AATags)
2905 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2906 LLVM_DEBUG(dbgs() << " to: " << *New << "\n")do { } while (false);
2907 return !II.isVolatile();
2908 }
2909
2910 bool visitMemTransferInst(MemTransferInst &II) {
2911 // Rewriting of memory transfer instructions can be a bit tricky. We break
2912 // them into two categories: split intrinsics and unsplit intrinsics.
2913
2914 LLVM_DEBUG(dbgs() << " original: " << II << "\n")do { } while (false);
1
Loop condition is false. Exiting loop
2915
2916 AAMDNodes AATags;
2917 II.getAAMetadata(AATags);
2918
2919 bool IsDest = &II.getRawDestUse() == OldUse;
2920 assert((IsDest && II.getRawDest() == OldPtr) ||((void)0)
2921 (!IsDest && II.getRawSource() == OldPtr))((void)0);
2922
2923 MaybeAlign SliceAlign = getSliceAlign();
2
Calling 'AllocaSliceRewriter::getSliceAlign'
2924
2925 // For unsplit intrinsics, we simply modify the source and destination
2926 // pointers in place. This isn't just an optimization, it is a matter of
2927 // correctness. With unsplit intrinsics we may be dealing with transfers
2928 // within a single alloca before SROA ran, or with transfers that have
2929 // a variable length. We may also be dealing with memmove instead of
2930 // memcpy, and so simply updating the pointers is the necessary for us to
2931 // update both source and dest of a single call.
2932 if (!IsSplittable) {
2933 Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2934 if (IsDest) {
2935 II.setDest(AdjustedPtr);
2936 II.setDestAlignment(SliceAlign);
2937 }
2938 else {
2939 II.setSource(AdjustedPtr);
2940 II.setSourceAlignment(SliceAlign);
2941 }
2942
2943 LLVM_DEBUG(dbgs() << " to: " << II << "\n")do { } while (false);
2944 deleteIfTriviallyDead(OldPtr);
2945 return false;
2946 }
2947 // For split transfer intrinsics we have an incredibly useful assurance:
2948 // the source and destination do not reside within the same alloca, and at
2949 // least one of them does not escape. This means that we can replace
2950 // memmove with memcpy, and we don't need to worry about all manner of
2951 // downsides to splitting and transforming the operations.
2952
2953 // If this doesn't map cleanly onto the alloca type, and that type isn't
2954 // a single value type, just emit a memcpy.
2955 bool EmitMemCpy =
2956 !VecTy && !IntTy &&
2957 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2958 SliceSize !=
2959 DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedSize() ||
2960 !NewAI.getAllocatedType()->isSingleValueType());
2961
2962 // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2963 // size hasn't been shrunk based on analysis of the viable range, this is
2964 // a no-op.
2965 if (EmitMemCpy && &OldAI == &NewAI) {
2966 // Ensure the start lines up.
2967 assert(NewBeginOffset == BeginOffset)((void)0);
2968
2969 // Rewrite the size as needed.
2970 if (NewEndOffset != EndOffset)
2971 II.setLength(ConstantInt::get(II.getLength()->getType(),
2972 NewEndOffset - NewBeginOffset));
2973 return false;
2974 }
2975 // Record this instruction for deletion.
2976 Pass.DeadInsts.push_back(&II);
2977
2978 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2979 // alloca that should be re-examined after rewriting this instruction.
2980 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2981 if (AllocaInst *AI =
2982 dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
2983 assert(AI != &OldAI && AI != &NewAI &&((void)0)
2984 "Splittable transfers cannot reach the same alloca on both ends.")((void)0);
2985 Pass.Worklist.insert(AI);
2986 }
2987
2988 Type *OtherPtrTy = OtherPtr->getType();
2989 unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
2990
2991 // Compute the relative offset for the other pointer within the transfer.
2992 unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS);
2993 APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset);
2994 Align OtherAlign =
2995 (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne();
2996 OtherAlign =
2997 commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue());
2998
2999 if (EmitMemCpy) {
3000 // Compute the other pointer, folding as much as possible to produce
3001 // a single, simple GEP in most cases.
3002 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3003 OtherPtr->getName() + ".");
3004
3005 Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3006 Type *SizeTy = II.getLength()->getType();
3007 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
3008
3009 Value *DestPtr, *SrcPtr;
3010 MaybeAlign DestAlign, SrcAlign;
3011 // Note: IsDest is true iff we're copying into the new alloca slice
3012 if (IsDest) {
3013 DestPtr = OurPtr;
3014 DestAlign = SliceAlign;
3015 SrcPtr = OtherPtr;
3016 SrcAlign = OtherAlign;
3017 } else {
3018 DestPtr = OtherPtr;
3019 DestAlign = OtherAlign;
3020 SrcPtr = OurPtr;
3021 SrcAlign = SliceAlign;
3022 }
3023 CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
3024 Size, II.isVolatile());
3025 if (AATags)
3026 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3027 LLVM_DEBUG(dbgs() << " to: " << *New << "\n")do { } while (false);
3028 return false;
3029 }
3030
3031 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
3032 NewEndOffset == NewAllocaEndOffset;
3033 uint64_t Size = NewEndOffset - NewBeginOffset;
3034 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
3035 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
3036 unsigned NumElements = EndIndex - BeginIndex;
3037 IntegerType *SubIntTy =
3038 IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
3039
3040 // Reset the other pointer type to match the register type we're going to
3041 // use, but using the address space of the original other pointer.
3042 Type *OtherTy;
3043 if (VecTy && !IsWholeAlloca) {
3044 if (NumElements == 1)
3045 OtherTy = VecTy->getElementType();
3046 else
3047 OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements);
3048 } else if (IntTy && !IsWholeAlloca) {
3049 OtherTy = SubIntTy;
3050 } else {
3051 OtherTy = NewAllocaTy;
3052 }
3053 OtherPtrTy = OtherTy->getPointerTo(OtherAS);
3054
3055 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3056 OtherPtr->getName() + ".");
3057 MaybeAlign SrcAlign = OtherAlign;
3058 Value *DstPtr = &NewAI;
3059 MaybeAlign DstAlign = SliceAlign;
3060 if (!IsDest) {
3061 std::swap(SrcPtr, DstPtr);
3062 std::swap(SrcAlign, DstAlign);
3063 }
3064
3065 Value *Src;
3066 if (VecTy && !IsWholeAlloca && !IsDest) {
3067 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3068 NewAI.getAlign(), "load");
3069 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
3070 } else if (IntTy && !IsWholeAlloca && !IsDest) {
3071 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3072 NewAI.getAlign(), "load");
3073 Src = convertValue(DL, IRB, Src, IntTy);
3074 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3075 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
3076 } else {
3077 LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign,
3078 II.isVolatile(), "copyload");
3079 Load->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3080 LLVMContext::MD_access_group});
3081 if (AATags)
3082 Load->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3083 Src = Load;
3084 }
3085
3086 if (VecTy && !IsWholeAlloca && IsDest) {
3087 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3088 NewAI.getAlign(), "oldload");
3089 Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
3090 } else if (IntTy && !IsWholeAlloca && IsDest) {
3091 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3092 NewAI.getAlign(), "oldload");
3093 Old = convertValue(DL, IRB, Old, IntTy);
3094 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3095 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3096 Src = convertValue(DL, IRB, Src, NewAllocaTy);
3097 }
3098
3099 StoreInst *Store = cast<StoreInst>(
3100 IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3101 Store->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3102 LLVMContext::MD_access_group});
3103 if (AATags)
3104 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3105 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n")do { } while (false);
3106 return !II.isVolatile();
3107 }
3108
3109 bool visitIntrinsicInst(IntrinsicInst &II) {
3110 assert((II.isLifetimeStartOrEnd() || II.isDroppable()) &&((void)0)
3111 "Unexpected intrinsic!")((void)0);
3112 LLVM_DEBUG(dbgs() << " original: " << II << "\n")do { } while (false);
3113
3114 // Record this instruction for deletion.
3115 Pass.DeadInsts.push_back(&II);
3116
3117 if (II.isDroppable()) {
3118 assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume")((void)0);
3119 // TODO For now we forget assumed information, this can be improved.
3120 OldPtr->dropDroppableUsesIn(II);
3121 return true;
3122 }
3123
3124 assert(II.getArgOperand(1) == OldPtr)((void)0);
3125 // Lifetime intrinsics are only promotable if they cover the whole alloca.
3126 // Therefore, we drop lifetime intrinsics which don't cover the whole
3127 // alloca.
3128 // (In theory, intrinsics which partially cover an alloca could be
3129 // promoted, but PromoteMemToReg doesn't handle that case.)
3130 // FIXME: Check whether the alloca is promotable before dropping the
3131 // lifetime intrinsics?
3132 if (NewBeginOffset != NewAllocaBeginOffset ||
3133 NewEndOffset != NewAllocaEndOffset)
3134 return true;
3135
3136 ConstantInt *Size =
3137 ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3138 NewEndOffset - NewBeginOffset);
3139 // Lifetime intrinsics always expect an i8* so directly get such a pointer
3140 // for the new alloca slice.
3141 Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace());
3142 Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy);
3143 Value *New;
3144 if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3145 New = IRB.CreateLifetimeStart(Ptr, Size);
3146 else
3147 New = IRB.CreateLifetimeEnd(Ptr, Size);
3148
3149 (void)New;
3150 LLVM_DEBUG(dbgs() << " to: " << *New << "\n")do { } while (false);
3151
3152 return true;
3153 }
3154
3155 void fixLoadStoreAlign(Instruction &Root) {
3156 // This algorithm implements the same visitor loop as
3157 // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3158 // or store found.
3159 SmallPtrSet<Instruction *, 4> Visited;
3160 SmallVector<Instruction *, 4> Uses;
3161 Visited.insert(&Root);
3162 Uses.push_back(&Root);
3163 do {
3164 Instruction *I = Uses.pop_back_val();
3165
3166 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3167 LI->setAlignment(std::min(LI->getAlign(), getSliceAlign()));
3168 continue;
3169 }
3170 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3171 SI->setAlignment(std::min(SI->getAlign(), getSliceAlign()));
3172 continue;
3173 }
3174
3175 assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) ||((void)0)
3176 isa<PHINode>(I) || isa<SelectInst>(I) ||((void)0)
3177 isa<GetElementPtrInst>(I))((void)0);
3178 for (User *U : I->users())
3179 if (Visited.insert(cast<Instruction>(U)).second)
3180 Uses.push_back(cast<Instruction>(U));
3181 } while (!Uses.empty());
3182 }
3183
3184 bool visitPHINode(PHINode &PN) {
3185 LLVM_DEBUG(dbgs() << " original: " << PN << "\n")do { } while (false);
3186 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable")((void)0);
3187 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable")((void)0);
3188
3189 // We would like to compute a new pointer in only one place, but have it be
3190 // as local as possible to the PHI. To do that, we re-use the location of
3191 // the old pointer, which necessarily must be in the right position to
3192 // dominate the PHI.
3193 IRBuilderBase::InsertPointGuard Guard(IRB);
3194 if (isa<PHINode>(OldPtr))
3195 IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
3196 else
3197 IRB.SetInsertPoint(OldPtr);
3198 IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3199
3200 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3201 // Replace the operands which were using the old pointer.
3202 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3203
3204 LLVM_DEBUG(dbgs() << " to: " << PN << "\n")do { } while (false);
3205 deleteIfTriviallyDead(OldPtr);
3206
3207 // Fix the alignment of any loads or stores using this PHI node.
3208 fixLoadStoreAlign(PN);
3209
3210 // PHIs can't be promoted on their own, but often can be speculated. We
3211 // check the speculation outside of the rewriter so that we see the
3212 // fully-rewritten alloca.
3213 PHIUsers.insert(&PN);
3214 return true;
3215 }
3216
3217 bool visitSelectInst(SelectInst &SI) {
3218 LLVM_DEBUG(dbgs() << " original: " << SI << "\n")do { } while (false);
3219 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&((void)0)
3220 "Pointer isn't an operand!")((void)0);
3221 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable")((void)0);
3222 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable")((void)0);
3223
3224 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3225 // Replace the operands which were using the old pointer.
3226 if (SI.getOperand(1) == OldPtr)
3227 SI.setOperand(1, NewPtr);
3228 if (SI.getOperand(2) == OldPtr)
3229 SI.setOperand(2, NewPtr);
3230
3231 LLVM_DEBUG(dbgs() << " to: " << SI << "\n")do { } while (false);
3232 deleteIfTriviallyDead(OldPtr);
3233
3234 // Fix the alignment of any loads or stores using this select.
3235 fixLoadStoreAlign(SI);
3236
3237 // Selects can't be promoted on their own, but often can be speculated. We
3238 // check the speculation outside of the rewriter so that we see the
3239 // fully-rewritten alloca.
3240 SelectUsers.insert(&SI);
3241 return true;
3242 }
3243};
3244
3245namespace {
3246
3247/// Visitor to rewrite aggregate loads and stores as scalar.
3248///
3249/// This pass aggressively rewrites all aggregate loads and stores on
3250/// a particular pointer (or any pointer derived from it which we can identify)
3251/// with scalar loads and stores.
3252class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3253 // Befriend the base class so it can delegate to private visit methods.
3254 friend class InstVisitor<AggLoadStoreRewriter, bool>;
3255
3256 /// Queue of pointer uses to analyze and potentially rewrite.
3257 SmallVector<Use *, 8> Queue;
3258
3259 /// Set to prevent us from cycling with phi nodes and loops.
3260 SmallPtrSet<User *, 8> Visited;
3261
3262 /// The current pointer use being rewritten. This is used to dig up the used
3263 /// value (as opposed to the user).
3264 Use *U = nullptr;
3265
3266 /// Used to calculate offsets, and hence alignment, of subobjects.
3267 const DataLayout &DL;
3268
3269public:
3270 AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
3271
3272 /// Rewrite loads and stores through a pointer and all pointers derived from
3273 /// it.
3274 bool rewrite(Instruction &I) {
3275 LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n")do { } while (false);
3276 enqueueUsers(I);
3277 bool Changed = false;
3278 while (!Queue.empty()) {
3279 U = Queue.pop_back_val();
3280 Changed |= visit(cast<Instruction>(U->getUser()));
3281 }
3282 return Changed;
3283 }
3284
3285private:
3286 /// Enqueue all the users of the given instruction for further processing.
3287 /// This uses a set to de-duplicate users.
3288 void enqueueUsers(Instruction &I) {
3289 for (Use &U : I.uses())
3290 if (Visited.insert(U.getUser()).second)
3291 Queue.push_back(&U);
3292 }
3293
3294 // Conservative default is to not rewrite anything.
3295 bool visitInstruction(Instruction &I) { return false; }
3296
3297 /// Generic recursive split emission class.
3298 template <typename Derived> class OpSplitter {
3299 protected:
3300 /// The builder used to form new instructions.
3301 IRBuilderTy IRB;
3302
3303 /// The indices which to be used with insert- or extractvalue to select the
3304 /// appropriate value within the aggregate.
3305 SmallVector<unsigned, 4> Indices;
3306
3307 /// The indices to a GEP instruction which will move Ptr to the correct slot
3308 /// within the aggregate.
3309 SmallVector<Value *, 4> GEPIndices;
3310
3311 /// The base pointer of the original op, used as a base for GEPing the
3312 /// split operations.
3313 Value *Ptr;
3314
3315 /// The base pointee type being GEPed into.
3316 Type *BaseTy;
3317
3318 /// Known alignment of the base pointer.
3319 Align BaseAlign;
3320
3321 /// To calculate offset of each component so we can correctly deduce
3322 /// alignments.
3323 const DataLayout &DL;
3324
3325 /// Initialize the splitter with an insertion point, Ptr and start with a
3326 /// single zero GEP index.
3327 OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3328 Align BaseAlign, const DataLayout &DL)
3329 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr),
3330 BaseTy(BaseTy), BaseAlign(BaseAlign), DL(DL) {}
3331
3332 public:
3333 /// Generic recursive split emission routine.
3334 ///
3335 /// This method recursively splits an aggregate op (load or store) into
3336 /// scalar or vector ops. It splits recursively until it hits a single value
3337 /// and emits that single value operation via the template argument.
3338 ///
3339 /// The logic of this routine relies on GEPs and insertvalue and
3340 /// extractvalue all operating with the same fundamental index list, merely
3341 /// formatted differently (GEPs need actual values).
3342 ///
3343 /// \param Ty The type being split recursively into smaller ops.
3344 /// \param Agg The aggregate value being built up or stored, depending on
3345 /// whether this is splitting a load or a store respectively.
3346 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3347 if (Ty->isSingleValueType()) {
3348 unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices);
3349 return static_cast<Derived *>(this)->emitFunc(
3350 Ty, Agg, commonAlignment(BaseAlign, Offset), Name);
3351 }
3352
3353 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3354 unsigned OldSize = Indices.size();
3355 (void)OldSize;
3356 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3357 ++Idx) {
3358 assert(Indices.size() == OldSize && "Did not return to the old size")((void)0);
3359 Indices.push_back(Idx);
3360 GEPIndices.push_back(IRB.getInt32(Idx));
3361 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3362 GEPIndices.pop_back();
3363 Indices.pop_back();
3364 }
3365 return;
3366 }
3367
3368 if (StructType *STy = dyn_cast<StructType>(Ty)) {
3369 unsigned OldSize = Indices.size();
3370 (void)OldSize;
3371 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3372 ++Idx) {
3373 assert(Indices.size() == OldSize && "Did not return to the old size")((void)0);
3374 Indices.push_back(Idx);
3375 GEPIndices.push_back(IRB.getInt32(Idx));
3376 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3377 GEPIndices.pop_back();
3378 Indices.pop_back();
3379 }
3380 return;
3381 }
3382
3383 llvm_unreachable("Only arrays and structs are aggregate loadable types")__builtin_unreachable();
3384 }
3385 };
3386
3387 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3388 AAMDNodes AATags;
3389
3390 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3391 AAMDNodes AATags, Align BaseAlign, const DataLayout &DL)
3392 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3393 DL),
3394 AATags(AATags) {}
3395
3396 /// Emit a leaf load of a single value. This is called at the leaves of the
3397 /// recursive emission to actually load values.
3398 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3399 assert(Ty->isSingleValueType())((void)0);
3400 // Load the single value and insert it using the indices.
3401 Value *GEP =
3402 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3403 LoadInst *Load =
3404 IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load");
3405
3406 APInt Offset(
3407 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3408 if (AATags &&
3409 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3410 Load->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3411
3412 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3413 LLVM_DEBUG(dbgs() << " to: " << *Load << "\n")do { } while (false);
3414 }
3415 };
3416
3417 bool visitLoadInst(LoadInst &LI) {
3418 assert(LI.getPointerOperand() == *U)((void)0);
3419 if (!LI.isSimple() || LI.getType()->isSingleValueType())
3420 return false;
3421
3422 // We have an aggregate being loaded, split it apart.
3423 LLVM_DEBUG(dbgs() << " original: " << LI << "\n")do { } while (false);
3424 AAMDNodes AATags;
3425 LI.getAAMetadata(AATags);
3426 LoadOpSplitter Splitter(&LI, *U, LI.getType(), AATags,
3427 getAdjustedAlignment(&LI, 0), DL);
3428 Value *V = UndefValue::get(LI.getType());
3429 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3430 Visited.erase(&LI);
3431 LI.replaceAllUsesWith(V);
3432 LI.eraseFromParent();
3433 return true;
3434 }
3435
3436 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3437 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3438 AAMDNodes AATags, Align BaseAlign, const DataLayout &DL)
3439 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3440 DL),
3441 AATags(AATags) {}
3442 AAMDNodes AATags;
3443 /// Emit a leaf store of a single value. This is called at the leaves of the
3444 /// recursive emission to actually produce stores.
3445 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3446 assert(Ty->isSingleValueType())((void)0);
3447 // Extract the single value and store it using the indices.
3448 //
3449 // The gep and extractvalue values are factored out of the CreateStore
3450 // call to make the output independent of the argument evaluation order.
3451 Value *ExtractValue =
3452 IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
3453 Value *InBoundsGEP =
3454 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3455 StoreInst *Store =
3456 IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment);
3457
3458 APInt Offset(
3459 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3460 if (AATags &&
3461 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3462 Store->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3463
3464 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n")do { } while (false);
3465 }
3466 };
3467
3468 bool visitStoreInst(StoreInst &SI) {
3469 if (!SI.isSimple() || SI.getPointerOperand() != *U)
3470 return false;
3471 Value *V = SI.getValueOperand();
3472 if (V->getType()->isSingleValueType())
3473 return false;
3474
3475 // We have an aggregate being stored, split it apart.
3476 LLVM_DEBUG(dbgs() << " original: " << SI << "\n")do { } while (false);
3477 AAMDNodes AATags;
3478 SI.getAAMetadata(AATags);
3479 StoreOpSplitter Splitter(&SI, *U, V->getType(), AATags,
3480 getAdjustedAlignment(&SI, 0), DL);
3481 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3482 Visited.erase(&SI);
3483 SI.eraseFromParent();
3484 return true;
3485 }
3486
3487 bool visitBitCastInst(BitCastInst &BC) {
3488 enqueueUsers(BC);
3489 return false;
3490 }
3491
3492 bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
3493 enqueueUsers(ASC);
3494 return false;
3495 }
3496
3497 // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2)
3498 bool foldGEPSelect(GetElementPtrInst &GEPI) {
3499 if (!GEPI.hasAllConstantIndices())
3500 return false;
3501
3502 SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand());
3503
3504 LLVM_DEBUG(dbgs() << " Rewriting gep(select) -> select(gep):"do { } while (false)
3505 << "\n original: " << *Seldo { } while (false)
3506 << "\n " << GEPI)do { } while (false);
3507
3508 IRBuilderTy Builder(&GEPI);
3509 SmallVector<Value *, 4> Index(GEPI.indices());
3510 bool IsInBounds = GEPI.isInBounds();
3511
3512 Type *Ty = GEPI.getSourceElementType();
3513 Value *True = Sel->getTrueValue();
3514 Value *NTrue =
3515 IsInBounds
3516 ? Builder.CreateInBoundsGEP(Ty, True, Index,
3517 True->getName() + ".sroa.gep")
3518 : Builder.CreateGEP(Ty, True, Index, True->getName() + ".sroa.gep");
3519
3520 Value *False = Sel->getFalseValue();
3521
3522 Value *NFalse =
3523 IsInBounds
3524 ? Builder.CreateInBoundsGEP(Ty, False, Index,
3525 False->getName() + ".sroa.gep")
3526 : Builder.CreateGEP(Ty, False, Index,
3527 False->getName() + ".sroa.gep");
3528
3529 Value *NSel = Builder.CreateSelect(Sel->getCondition(), NTrue, NFalse,
3530 Sel->getName() + ".sroa.sel");
3531 Visited.erase(&GEPI);
3532 GEPI.replaceAllUsesWith(NSel);
3533 GEPI.eraseFromParent();
3534 Instruction *NSelI = cast<Instruction>(NSel);
3535 Visited.insert(NSelI);
3536 enqueueUsers(*NSelI);
3537
3538 LLVM_DEBUG(dbgs() << "\n to: " << *NTruedo { } while (false)
3539 << "\n " << *NFalsedo { } while (false)
3540 << "\n " << *NSel << '\n')do { } while (false);
3541
3542 return true;
3543 }
3544
3545 // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2)
3546 bool foldGEPPhi(GetElementPtrInst &GEPI) {
3547 if (!GEPI.hasAllConstantIndices())
3548 return false;
3549
3550 PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand());
3551 if (GEPI.getParent() != PHI->getParent() ||
3552 llvm::any_of(PHI->incoming_values(), [](Value *In)
3553 { Instruction *I = dyn_cast<Instruction>(In);
3554 return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) ||
3555 succ_empty(I->getParent()) ||
3556 !I->getParent()->isLegalToHoistInto();
3557 }))
3558 return false;
3559
3560 LLVM_DEBUG(dbgs() << " Rewriting gep(phi) -> phi(gep):"do { } while (false)
3561 << "\n original: " << *PHIdo { } while (false)
3562 << "\n " << GEPIdo { } while (false)
3563 << "\n to: ")do { } while (false);
3564
3565 SmallVector<Value *, 4> Index(GEPI.indices());
3566 bool IsInBounds = GEPI.isInBounds();
3567 IRBuilderTy PHIBuilder(GEPI.getParent()->getFirstNonPHI());
3568 PHINode *NewPN = PHIBuilder.CreatePHI(GEPI.getType(),
3569 PHI->getNumIncomingValues(),
3570 PHI->getName() + ".sroa.phi");
3571 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) {
3572 BasicBlock *B = PHI->getIncomingBlock(I);
3573 Value *NewVal = nullptr;
3574 int Idx = NewPN->getBasicBlockIndex(B);
3575 if (Idx >= 0) {
3576 NewVal = NewPN->getIncomingValue(Idx);
3577 } else {
3578 Instruction *In = cast<Instruction>(PHI->getIncomingValue(I));
3579
3580 IRBuilderTy B(In->getParent(), std::next(In->getIterator()));
3581 Type *Ty = GEPI.getSourceElementType();
3582 NewVal = IsInBounds
3583 ? B.CreateInBoundsGEP(Ty, In, Index, In->getName() + ".sroa.gep")
3584 : B.CreateGEP(Ty, In, Index, In->getName() + ".sroa.gep");
3585 }
3586 NewPN->addIncoming(NewVal, B);
3587 }
3588
3589 Visited.erase(&GEPI);
3590 GEPI.replaceAllUsesWith(NewPN);
3591 GEPI.eraseFromParent();
3592 Visited.insert(NewPN);
3593 enqueueUsers(*NewPN);
3594
3595 LLVM_DEBUG(for (Value *In : NewPN->incoming_values())do { } while (false)
3596 dbgs() << "\n " << *In;do { } while (false)
3597 dbgs() << "\n " << *NewPN << '\n')do { } while (false);
3598
3599 return true;
3600 }
3601
3602 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3603 if (isa<SelectInst>(GEPI.getPointerOperand()) &&
3604 foldGEPSelect(GEPI))
3605 return true;
3606
3607 if (isa<PHINode>(GEPI.getPointerOperand()) &&
3608 foldGEPPhi(GEPI))
3609 return true;
3610
3611 enqueueUsers(GEPI);
3612 return false;
3613 }
3614
3615 bool visitPHINode(PHINode &PN) {
3616 enqueueUsers(PN);
3617 return false;
3618 }
3619
3620 bool visitSelectInst(SelectInst &SI) {
3621 enqueueUsers(SI);
3622 return false;
3623 }
3624};
3625
3626} // end anonymous namespace
3627
3628/// Strip aggregate type wrapping.
3629///
3630/// This removes no-op aggregate types wrapping an underlying type. It will
3631/// strip as many layers of types as it can without changing either the type
3632/// size or the allocated size.
3633static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3634 if (Ty->isSingleValueType())
3635 return Ty;
3636
3637 uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedSize();
3638 uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedSize();
3639
3640 Type *InnerTy;
3641 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3642 InnerTy = ArrTy->getElementType();
3643 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3644 const StructLayout *SL = DL.getStructLayout(STy);
3645 unsigned Index = SL->getElementContainingOffset(0);
3646 InnerTy = STy->getElementType(Index);
3647 } else {
3648 return Ty;
3649 }
3650
3651 if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedSize() ||
3652 TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedSize())
3653 return Ty;
3654
3655 return stripAggregateTypeWrapping(DL, InnerTy);
3656}
3657
3658/// Try to find a partition of the aggregate type passed in for a given
3659/// offset and size.
3660///
3661/// This recurses through the aggregate type and tries to compute a subtype
3662/// based on the offset and size. When the offset and size span a sub-section
3663/// of an array, it will even compute a new array type for that sub-section,
3664/// and the same for structs.
3665///
3666/// Note that this routine is very strict and tries to find a partition of the
3667/// type which produces the *exact* right offset and size. It is not forgiving
3668/// when the size or offset cause either end of type-based partition to be off.
3669/// Also, this is a best-effort routine. It is reasonable to give up and not
3670/// return a type if necessary.
3671static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3672 uint64_t Size) {
3673 if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedSize() == Size)
3674 return stripAggregateTypeWrapping(DL, Ty);
3675 if (Offset > DL.getTypeAllocSize(Ty).getFixedSize() ||
3676 (DL.getTypeAllocSize(Ty).getFixedSize() - Offset) < Size)
3677 return nullptr;
3678
3679 if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
3680 Type *ElementTy;
3681 uint64_t TyNumElements;
3682 if (auto *AT = dyn_cast<ArrayType>(Ty)) {
3683 ElementTy = AT->getElementType();
3684 TyNumElements = AT->getNumElements();
3685 } else {
3686 // FIXME: This isn't right for vectors with non-byte-sized or
3687 // non-power-of-two sized elements.
3688 auto *VT = cast<FixedVectorType>(Ty);
3689 ElementTy = VT->getElementType();
3690 TyNumElements = VT->getNumElements();
3691 }
3692 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize();
3693 uint64_t NumSkippedElements = Offset / ElementSize;
3694 if (NumSkippedElements >= TyNumElements)
3695 return nullptr;
3696 Offset -= NumSkippedElements * ElementSize;
3697
3698 // First check if we need to recurse.
3699 if (Offset > 0 || Size < ElementSize) {
3700 // Bail if the partition ends in a different array element.
3701 if ((Offset + Size) > ElementSize)
3702 return nullptr;
3703 // Recurse through the element type trying to peel off offset bytes.
3704 return getTypePartition(DL, ElementTy, Offset, Size);
3705 }
3706 assert(Offset == 0)((void)0);
3707
3708 if (Size == ElementSize)
3709 return stripAggregateTypeWrapping(DL, ElementTy);
3710 assert(Size > ElementSize)((void)0);
3711 uint64_t NumElements = Size / ElementSize;
3712 if (NumElements * ElementSize != Size)
3713 return nullptr;
3714 return ArrayType::get(ElementTy, NumElements);
3715 }
3716
3717 StructType *STy = dyn_cast<StructType>(Ty);
3718 if (!STy)
3719 return nullptr;
3720
3721 const StructLayout *SL = DL.getStructLayout(STy);
3722 if (Offset >= SL->getSizeInBytes())
3723 return nullptr;
3724 uint64_t EndOffset = Offset + Size;
3725 if (EndOffset > SL->getSizeInBytes())
3726 return nullptr;
3727
3728 unsigned Index = SL->getElementContainingOffset(Offset);
3729 Offset -= SL->getElementOffset(Index);
3730
3731 Type *ElementTy = STy->getElementType(Index);
3732 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize();
3733 if (Offset >= ElementSize)
3734 return nullptr; // The offset points into alignment padding.
3735
3736 // See if any partition must be contained by the element.
3737 if (Offset > 0 || Size < ElementSize) {
3738 if ((Offset + Size) > ElementSize)
3739 return nullptr;
3740 return getTypePartition(DL, ElementTy, Offset, Size);
3741 }
3742 assert(Offset == 0)((void)0);
3743
3744 if (Size == ElementSize)
3745 return stripAggregateTypeWrapping(DL, ElementTy);
3746
3747 StructType::element_iterator EI = STy->element_begin() + Index,
3748 EE = STy->element_end();
3749 if (EndOffset < SL->getSizeInBytes()) {
3750 unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3751 if (Index == EndIndex)
3752 return nullptr; // Within a single element and its padding.
3753
3754 // Don't try to form "natural" types if the elements don't line up with the
3755 // expected size.
3756 // FIXME: We could potentially recurse down through the last element in the
3757 // sub-struct to find a natural end point.
3758 if (SL->getElementOffset(EndIndex) != EndOffset)
3759 return nullptr;
3760
3761 assert(Index < EndIndex)((void)0);
3762 EE = STy->element_begin() + EndIndex;
3763 }
3764
3765 // Try to build up a sub-structure.
3766 StructType *SubTy =
3767 StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
3768 const StructLayout *SubSL = DL.getStructLayout(SubTy);
3769 if (Size != SubSL->getSizeInBytes())
3770 return nullptr; // The sub-struct doesn't have quite the size needed.
3771
3772 return SubTy;
3773}
3774
3775/// Pre-split loads and stores to simplify rewriting.
3776///
3777/// We want to break up the splittable load+store pairs as much as
3778/// possible. This is important to do as a preprocessing step, as once we
3779/// start rewriting the accesses to partitions of the alloca we lose the
3780/// necessary information to correctly split apart paired loads and stores
3781/// which both point into this alloca. The case to consider is something like
3782/// the following:
3783///
3784/// %a = alloca [12 x i8]
3785/// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
3786/// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
3787/// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
3788/// %iptr1 = bitcast i8* %gep1 to i64*
3789/// %iptr2 = bitcast i8* %gep2 to i64*
3790/// %fptr1 = bitcast i8* %gep1 to float*
3791/// %fptr2 = bitcast i8* %gep2 to float*
3792/// %fptr3 = bitcast i8* %gep3 to float*
3793/// store float 0.0, float* %fptr1
3794/// store float 1.0, float* %fptr2
3795/// %v = load i64* %iptr1
3796/// store i64 %v, i64* %iptr2
3797/// %f1 = load float* %fptr2
3798/// %f2 = load float* %fptr3
3799///
3800/// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
3801/// promote everything so we recover the 2 SSA values that should have been
3802/// there all along.
3803///
3804/// \returns true if any changes are made.
3805bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
3806 LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n")do { } while (false);
3807
3808 // Track the loads and stores which are candidates for pre-splitting here, in
3809 // the order they first appear during the partition scan. These give stable
3810 // iteration order and a basis for tracking which loads and stores we
3811 // actually split.
3812 SmallVector<LoadInst *, 4> Loads;
3813 SmallVector<StoreInst *, 4> Stores;
3814
3815 // We need to accumulate the splits required of each load or store where we
3816 // can find them via a direct lookup. This is important to cross-check loads
3817 // and stores against each other. We also track the slice so that we can kill
3818 // all the slices that end up split.
3819 struct SplitOffsets {
3820 Slice *S;
3821 std::vector<uint64_t> Splits;
3822 };
3823 SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
3824
3825 // Track loads out of this alloca which cannot, for any reason, be pre-split.
3826 // This is important as we also cannot pre-split stores of those loads!
3827 // FIXME: This is all pretty gross. It means that we can be more aggressive
3828 // in pre-splitting when the load feeding the store happens to come from
3829 // a separate alloca. Put another way, the effectiveness of SROA would be
3830 // decreased by a frontend which just concatenated all of its local allocas
3831 // into one big flat alloca. But defeating such patterns is exactly the job
3832 // SROA is tasked with! Sadly, to not have this discrepancy we would have
3833 // change store pre-splitting to actually force pre-splitting of the load
3834 // that feeds it *and all stores*. That makes pre-splitting much harder, but
3835 // maybe it would make it more principled?
3836 SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
3837
3838 LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n")do { } while (false);
3839 for (auto &P : AS.partitions()) {
3840 for (Slice &S : P) {
3841 Instruction *I = cast<Instruction>(S.getUse()->getUser());
3842 if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
3843 // If this is a load we have to track that it can't participate in any
3844 // pre-splitting. If this is a store of a load we have to track that
3845 // that load also can't participate in any pre-splitting.
3846 if (auto *LI = dyn_cast<LoadInst>(I))
3847 UnsplittableLoads.insert(LI);
3848 else if (auto *SI = dyn_cast<StoreInst>(I))
3849 if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
3850 UnsplittableLoads.insert(LI);
3851 continue;
3852 }
3853 assert(P.endOffset() > S.beginOffset() &&((void)0)
3854 "Empty or backwards partition!")((void)0);
3855
3856 // Determine if this is a pre-splittable slice.
3857 if (auto *LI = dyn_cast<LoadInst>(I)) {
3858 assert(!LI->isVolatile() && "Cannot split volatile loads!")((void)0);
3859
3860 // The load must be used exclusively to store into other pointers for
3861 // us to be able to arbitrarily pre-split it. The stores must also be
3862 // simple to avoid changing semantics.
3863 auto IsLoadSimplyStored = [](LoadInst *LI) {
3864 for (User *LU : LI->users()) {
3865 auto *SI = dyn_cast<StoreInst>(LU);
3866 if (!SI || !SI->isSimple())
3867 return false;
3868 }
3869 return true;
3870 };
3871 if (!IsLoadSimplyStored(LI)) {
3872 UnsplittableLoads.insert(LI);
3873 continue;
3874 }
3875
3876 Loads.push_back(LI);
3877 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3878 if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
3879 // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
3880 continue;
3881 auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
3882 if (!StoredLoad || !StoredLoad->isSimple())
3883 continue;
3884 assert(!SI->isVolatile() && "Cannot split volatile stores!")((void)0);
3885
3886 Stores.push_back(SI);
3887 } else {
3888 // Other uses cannot be pre-split.
3889 continue;
3890 }
3891
3892 // Record the initial split.
3893 LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n")do { } while (false);
3894 auto &Offsets = SplitOffsetsMap[I];
3895 assert(Offsets.Splits.empty() &&((void)0)
3896 "Should not have splits the first time we see an instruction!")((void)0);
3897 Offsets.S = &S;
3898 Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
3899 }
3900
3901 // Now scan the already split slices, and add a split for any of them which
3902 // we're going to pre-split.
3903 for (Slice *S : P.splitSliceTails()) {
3904 auto SplitOffsetsMapI =
3905 SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
3906 if (SplitOffsetsMapI == SplitOffsetsMap.end())
3907 continue;
3908 auto &Offsets = SplitOffsetsMapI->second;
3909
3910 assert(Offsets.S == S && "Found a mismatched slice!")((void)0);
3911 assert(!Offsets.Splits.empty() &&((void)0)
3912 "Cannot have an empty set of splits on the second partition!")((void)0);
3913 assert(Offsets.Splits.back() ==((void)0)
3914 P.beginOffset() - Offsets.S->beginOffset() &&((void)0)
3915 "Previous split does not end where this one begins!")((void)0);
3916
3917 // Record each split. The last partition's end isn't needed as the size
3918 // of the slice dictates that.
3919 if (S->endOffset() > P.endOffset())
3920 Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
3921 }
3922 }
3923
3924 // We may have split loads where some of their stores are split stores. For
3925 // such loads and stores, we can only pre-split them if their splits exactly
3926 // match relative to their starting offset. We have to verify this prior to
3927 // any rewriting.
3928 llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
3929 // Lookup the load we are storing in our map of split
3930 // offsets.
3931 auto *LI = cast<LoadInst>(SI->getValueOperand());
3932 // If it was completely unsplittable, then we're done,
3933 // and this store can't be pre-split.
3934 if (UnsplittableLoads.count(LI))
3935 return true;
3936
3937 auto LoadOffsetsI = SplitOffsetsMap.find(LI);
3938 if (LoadOffsetsI == SplitOffsetsMap.end())
3939 return false; // Unrelated loads are definitely safe.
3940 auto &LoadOffsets = LoadOffsetsI->second;
3941
3942 // Now lookup the store's offsets.
3943 auto &StoreOffsets = SplitOffsetsMap[SI];
3944
3945 // If the relative offsets of each split in the load and
3946 // store match exactly, then we can split them and we
3947 // don't need to remove them here.
3948 if (LoadOffsets.Splits == StoreOffsets.Splits)
3949 return false;
3950
3951 LLVM_DEBUG(dbgs() << " Mismatched splits for load and store:\n"do { } while (false)
3952 << " " << *LI << "\n"do { } while (false)
3953 << " " << *SI << "\n")do { } while (false);
3954
3955 // We've found a store and load that we need to split
3956 // with mismatched relative splits. Just give up on them
3957 // and remove both instructions from our list of
3958 // candidates.
3959 UnsplittableLoads.insert(LI);
3960 return true;
3961 });
3962 // Now we have to go *back* through all the stores, because a later store may
3963 // have caused an earlier store's load to become unsplittable and if it is
3964 // unsplittable for the later store, then we can't rely on it being split in
3965 // the earlier store either.
3966 llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) {
3967 auto *LI = cast<LoadInst>(SI->getValueOperand());
3968 return UnsplittableLoads.count(LI);
3969 });
3970 // Once we've established all the loads that can't be split for some reason,
3971 // filter any that made it into our list out.
3972 llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) {
3973 return UnsplittableLoads.count(LI);
3974 });
3975
3976 // If no loads or stores are left, there is no pre-splitting to be done for
3977 // this alloca.
3978 if (Loads.empty() && Stores.empty())
3979 return false;
3980
3981 // From here on, we can't fail and will be building new accesses, so rig up
3982 // an IR builder.
3983 IRBuilderTy IRB(&AI);
3984
3985 // Collect the new slices which we will merge into the alloca slices.
3986 SmallVector<Slice, 4> NewSlices;
3987
3988 // Track any allocas we end up splitting loads and stores for so we iterate
3989 // on them.
3990 SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
3991
3992 // At this point, we have collected all of the loads and stores we can
3993 // pre-split, and the specific splits needed for them. We actually do the
3994 // splitting in a specific order in order to handle when one of the loads in
3995 // the value operand to one of the stores.
3996 //
3997 // First, we rewrite all of the split loads, and just accumulate each split
3998 // load in a parallel structure. We also build the slices for them and append
3999 // them to the alloca slices.
4000 SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
4001 std::vector<LoadInst *> SplitLoads;
4002 const DataLayout &DL = AI.getModule()->getDataLayout();
4003 for (LoadInst *LI : Loads) {
4004 SplitLoads.clear();
4005
4006 IntegerType *Ty = cast<IntegerType>(LI->getType());
4007 assert(Ty->getBitWidth() % 8 == 0)((void)0);
4008 uint64_t LoadSize = Ty->getBitWidth() / 8;
4009 assert(LoadSize > 0 && "Cannot have a zero-sized integer load!")((void)0);
4010
4011 auto &Offsets = SplitOffsetsMap[LI];
4012 assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&((void)0)
4013 "Slice size should always match load size exactly!")((void)0);
4014 uint64_t BaseOffset = Offsets.S->beginOffset();
4015 assert(BaseOffset + LoadSize > BaseOffset &&((void)0)
4016 "Cannot represent alloca access size using 64-bit integers!")((void)0);
4017
4018 Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
4019 IRB.SetInsertPoint(LI);
4020
4021 LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n")do { } while (false);
4022
4023 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4024 int Idx = 0, Size = Offsets.Splits.size();
4025 for (;;) {
4026 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
4027 auto AS = LI->getPointerAddressSpace();
4028 auto *PartPtrTy = PartTy->getPointerTo(AS);
4029 LoadInst *PLoad = IRB.CreateAlignedLoad(
4030 PartTy,
4031 getAdjustedPtr(IRB, DL, BasePtr,
4032 APInt(DL.getIndexSizeInBits(AS), PartOffset),
4033 PartPtrTy, BasePtr->getName() + "."),
4034 getAdjustedAlignment(LI, PartOffset),
4035 /*IsVolatile*/ false, LI->getName());
4036 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4037 LLVMContext::MD_access_group});
4038
4039 // Append this load onto the list of split loads so we can find it later
4040 // to rewrite the stores.
4041 SplitLoads.push_back(PLoad);
4042
4043 // Now build a new slice for the alloca.
4044 NewSlices.push_back(
4045 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4046 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
4047 /*IsSplittable*/ false));
4048 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset()do { } while (false)
4049 << ", " << NewSlices.back().endOffset()do { } while (false)
4050 << "): " << *PLoad << "\n")do { } while (false);
4051
4052 // See if we've handled all the splits.
4053 if (Idx >= Size)
4054 break;
4055
4056 // Setup the next partition.
4057 PartOffset = Offsets.Splits[Idx];
4058 ++Idx;
4059 PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset;
4060 }
4061
4062 // Now that we have the split loads, do the slow walk over all uses of the
4063 // load and rewrite them as split stores, or save the split loads to use
4064 // below if the store is going to be split there anyways.
4065 bool DeferredStores = false;
4066 for (User *LU : LI->users()) {
4067 StoreInst *SI = cast<StoreInst>(LU);
4068 if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
4069 DeferredStores = true;
4070 LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SIdo { } while (false)
4071 << "\n")do { } while (false);
4072 continue;
4073 }
4074
4075 Value *StoreBasePtr = SI->getPointerOperand();
4076 IRB.SetInsertPoint(SI);
4077
4078 LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n")do { } while (false);
4079
4080 for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
4081 LoadInst *PLoad = SplitLoads[Idx];
4082 uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
4083 auto *PartPtrTy =
4084 PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
4085
4086 auto AS = SI->getPointerAddressSpace();
4087 StoreInst *PStore = IRB.CreateAlignedStore(
4088 PLoad,
4089 getAdjustedPtr(IRB, DL, StoreBasePtr,
4090 APInt(DL.getIndexSizeInBits(AS), PartOffset),
4091 PartPtrTy, StoreBasePtr->getName() + "."),
4092 getAdjustedAlignment(SI, PartOffset),
4093 /*IsVolatile*/ false);
4094 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
4095 LLVMContext::MD_access_group});
4096 LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n")do { } while (false);
4097 }
4098
4099 // We want to immediately iterate on any allocas impacted by splitting
4100 // this store, and we have to track any promotable alloca (indicated by
4101 // a direct store) as needing to be resplit because it is no longer
4102 // promotable.
4103 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
4104 ResplitPromotableAllocas.insert(OtherAI);
4105 Worklist.insert(OtherAI);
4106 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4107 StoreBasePtr->stripInBoundsOffsets())) {
4108 Worklist.insert(OtherAI);
4109 }
4110
4111 // Mark the original store as dead.
4112 DeadInsts.push_back(SI);
4113 }
4114
4115 // Save the split loads if there are deferred stores among the users.
4116 if (DeferredStores)
4117 SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
4118
4119 // Mark the original load as dead and kill the original slice.
4120 DeadInsts.push_back(LI);
4121 Offsets.S->kill();
4122 }
4123
4124 // Second, we rewrite all of the split stores. At this point, we know that
4125 // all loads from this alloca have been split already. For stores of such
4126 // loads, we can simply look up the pre-existing split loads. For stores of
4127 // other loads, we split those loads first and then write split stores of
4128 // them.
4129 for (StoreInst *SI : Stores) {
4130 auto *LI = cast<LoadInst>(SI->getValueOperand());
4131 IntegerType *Ty = cast<IntegerType>(LI->getType());
4132 assert(Ty->getBitWidth() % 8 == 0)((void)0);
4133 uint64_t StoreSize = Ty->getBitWidth() / 8;
4134 assert(StoreSize > 0 && "Cannot have a zero-sized integer store!")((void)0);
4135
4136 auto &Offsets = SplitOffsetsMap[SI];
4137 assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&((void)0)
4138 "Slice size should always match load size exactly!")((void)0);
4139 uint64_t BaseOffset = Offsets.S->beginOffset();
4140 assert(BaseOffset + StoreSize > BaseOffset &&((void)0)
4141 "Cannot represent alloca access size using 64-bit integers!")((void)0);
4142
4143 Value *LoadBasePtr = LI->getPointerOperand();
4144 Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
4145
4146 LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n")do { } while (false);
4147
4148 // Check whether we have an already split load.
4149 auto SplitLoadsMapI = SplitLoadsMap.find(LI);
4150 std::vector<LoadInst *> *SplitLoads = nullptr;
4151 if (SplitLoadsMapI != SplitLoadsMap.end()) {
4152 SplitLoads = &SplitLoadsMapI->second;
4153 assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&((void)0)
4154 "Too few split loads for the number of splits in the store!")((void)0);
4155 } else {
4156 LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n")do { } while (false);
4157 }
4158
4159 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4160 int Idx = 0, Size = Offsets.Splits.size();
4161 for (;;) {
4162 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
4163 auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
4164 auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
4165
4166 // Either lookup a split load or create one.
4167 LoadInst *PLoad;
4168 if (SplitLoads) {
4169 PLoad = (*SplitLoads)[Idx];
4170 } else {
4171 IRB.SetInsertPoint(LI);
4172 auto AS = LI->getPointerAddressSpace();
4173 PLoad = IRB.CreateAlignedLoad(
4174 PartTy,
4175 getAdjustedPtr(IRB, DL, LoadBasePtr,
4176 APInt(DL.getIndexSizeInBits(AS), PartOffset),
4177 LoadPartPtrTy, LoadBasePtr->getName() + "."),
4178 getAdjustedAlignment(LI, PartOffset),
4179 /*IsVolatile*/ false, LI->getName());
4180 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4181 LLVMContext::MD_access_group});
4182 }
4183
4184 // And store this partition.
4185 IRB.SetInsertPoint(SI);
4186 auto AS = SI->getPointerAddressSpace();
4187 StoreInst *PStore = IRB.CreateAlignedStore(
4188 PLoad,
4189 getAdjustedPtr(IRB, DL, StoreBasePtr,
4190 APInt(DL.getIndexSizeInBits(AS), PartOffset),
4191 StorePartPtrTy, StoreBasePtr->getName() + "."),
4192 getAdjustedAlignment(SI, PartOffset),
4193 /*IsVolatile*/ false);
4194 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
4195 LLVMContext::MD_access_group});
4196
4197 // Now build a new slice for the alloca.
4198 NewSlices.push_back(
4199 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4200 &PStore->getOperandUse(PStore->getPointerOperandIndex()),
4201 /*IsSplittable*/ false));
4202 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset()do { } while (false)
4203 << ", " << NewSlices.back().endOffset()do { } while (false)
4204 << "): " << *PStore << "\n")do { } while (false);
4205 if (!SplitLoads) {
4206 LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n")do { } while (false);
4207 }
4208
4209 // See if we've finished all the splits.
4210 if (Idx >= Size)
4211 break;
4212
4213 // Setup the next partition.
4214 PartOffset = Offsets.Splits[Idx];
4215 ++Idx;
4216 PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
4217 }
4218
4219 // We want to immediately iterate on any allocas impacted by splitting
4220 // this load, which is only relevant if it isn't a load of this alloca and
4221 // thus we didn't already split the loads above. We also have to keep track
4222 // of any promotable allocas we split loads on as they can no longer be
4223 // promoted.
4224 if (!SplitLoads) {
4225 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
4226 assert(OtherAI != &AI && "We can't re-split our own alloca!")((void)0);
4227 ResplitPromotableAllocas.insert(OtherAI);
4228 Worklist.insert(OtherAI);
4229 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4230 LoadBasePtr->stripInBoundsOffsets())) {
4231 assert(OtherAI != &AI && "We can't re-split our own alloca!")((void)0);
4232 Worklist.insert(OtherAI);
4233 }
4234 }
4235
4236 // Mark the original store as dead now that we've split it up and kill its
4237 // slice. Note that we leave the original load in place unless this store
4238 // was its only use. It may in turn be split up if it is an alloca load
4239 // for some other alloca, but it may be a normal load. This may introduce
4240 // redundant loads, but where those can be merged the rest of the optimizer
4241 // should handle the merging, and this uncovers SSA splits which is more
4242 // important. In practice, the original loads will almost always be fully
4243 // split and removed eventually, and the splits will be merged by any
4244 // trivial CSE, including instcombine.
4245 if (LI->hasOneUse()) {
4246 assert(*LI->user_begin() == SI && "Single use isn't this store!")((void)0);
4247 DeadInsts.push_back(LI);
4248 }
4249 DeadInsts.push_back(SI);
4250 Offsets.S->kill();
4251 }
4252
4253 // Remove the killed slices that have ben pre-split.
4254 llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); });
4255
4256 // Insert our new slices. This will sort and merge them into the sorted
4257 // sequence.
4258 AS.insert(NewSlices);
4259
4260 LLVM_DEBUG(dbgs() << " Pre-split slices:\n")do { } while (false);
4261#ifndef NDEBUG1
4262 for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
4263 LLVM_DEBUG(AS.print(dbgs(), I, " "))do { } while (false);
4264#endif
4265
4266 // Finally, don't try to promote any allocas that new require re-splitting.
4267 // They have already been added to the worklist above.
4268 llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) {
4269 return ResplitPromotableAllocas.count(AI);
4270 });
4271
4272 return true;
4273}
4274
4275/// Rewrite an alloca partition's users.
4276///
4277/// This routine drives both of the rewriting goals of the SROA pass. It tries
4278/// to rewrite uses of an alloca partition to be conducive for SSA value
4279/// promotion. If the partition needs a new, more refined alloca, this will
4280/// build that new alloca, preserving as much type information as possible, and
4281/// rewrite the uses of the old alloca to point at the new one and have the
4282/// appropriate new offsets. It also evaluates how successful the rewrite was
4283/// at enabling promotion and if it was successful queues the alloca to be
4284/// promoted.
4285AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
4286 Partition &P) {
4287 // Try to compute a friendly type for this partition of the alloca. This
4288 // won't always succeed, in which case we fall back to a legal integer type
4289 // or an i8 array of an appropriate size.
4290 Type *SliceTy = nullptr;
4291 const DataLayout &DL = AI.getModule()->getDataLayout();
4292 std::pair<Type *, IntegerType *> CommonUseTy =
4293 findCommonType(P.begin(), P.end(), P.endOffset());
4294 // Do all uses operate on the same type?
4295 if (CommonUseTy.first)
4296 if (DL.getTypeAllocSize(CommonUseTy.first).getFixedSize() >= P.size())
4297 SliceTy = CommonUseTy.first;
4298 // If not, can we find an appropriate subtype in the original allocated type?
4299 if (!SliceTy)
4300 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4301 P.beginOffset(), P.size()))
4302 SliceTy = TypePartitionTy;
4303 // If still not, can we use the largest bitwidth integer type used?
4304 if (!SliceTy && CommonUseTy.second)
4305 if (DL.getTypeAllocSize(CommonUseTy.second).getFixedSize() >= P.size())
4306 SliceTy = CommonUseTy.second;
4307 if ((!SliceTy || (SliceTy->isArrayTy() &&
4308 SliceTy->getArrayElementType()->isIntegerTy())) &&
4309 DL.isLegalInteger(P.size() * 8))
4310 SliceTy = Type::getIntNTy(*C, P.size() * 8);
4311 if (!SliceTy)
4312 SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
4313 assert(DL.getTypeAllocSize(SliceTy).getFixedSize() >= P.size())((void)0);
4314
4315 bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
4316
4317 VectorType *VecTy =
4318 IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
4319 if (VecTy)
4320 SliceTy = VecTy;
4321
4322 // Check for the case where we're going to rewrite to a new alloca of the
4323 // exact same type as the original, and with the same access offsets. In that
4324 // case, re-use the existing alloca, but still run through the rewriter to
4325 // perform phi and select speculation.
4326 // P.beginOffset() can be non-zero even with the same type in a case with
4327 // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4328 AllocaInst *NewAI;
4329 if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
4330 NewAI = &AI;
4331 // FIXME: We should be able to bail at this point with "nothing changed".
4332 // FIXME: We might want to defer PHI speculation until after here.
4333 // FIXME: return nullptr;
4334 } else {
4335 // Make sure the alignment is compatible with P.beginOffset().
4336 const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset());
4337 // If we will get at least this much alignment from the type alone, leave
4338 // the alloca's alignment unconstrained.
4339 const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy);
4340 NewAI = new AllocaInst(
4341 SliceTy, AI.getType()->getAddressSpace(), nullptr,
4342 IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment,
4343 AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
4344 // Copy the old AI debug location over to the new one.
4345 NewAI->setDebugLoc(AI.getDebugLoc());
4346 ++NumNewAllocas;
4347 }
4348
4349 LLVM_DEBUG(dbgs() << "Rewriting alloca partition "do { } while (false)
4350 << "[" << P.beginOffset() << "," << P.endOffset()do { } while (false)
4351 << ") to: " << *NewAI << "\n")do { } while (false);
4352
4353 // Track the high watermark on the worklist as it is only relevant for
4354 // promoted allocas. We will reset it to this point if the alloca is not in
4355 // fact scheduled for promotion.
4356 unsigned PPWOldSize = PostPromotionWorklist.size();
4357 unsigned NumUses = 0;
4358 SmallSetVector<PHINode *, 8> PHIUsers;
4359 SmallSetVector<SelectInst *, 8> SelectUsers;
4360
4361 AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
4362 P.endOffset(), IsIntegerPromotable, VecTy,
4363 PHIUsers, SelectUsers);
4364 bool Promotable = true;
4365 for (Slice *S : P.splitSliceTails()) {
4366 Promotable &= Rewriter.visit(S);
4367 ++NumUses;
4368 }
4369 for (Slice &S : P) {
4370 Promotable &= Rewriter.visit(&S);
4371 ++NumUses;
4372 }
4373
4374 NumAllocaPartitionUses += NumUses;
4375 MaxUsesPerAllocaPartition.updateMax(NumUses);
4376
4377 // Now that we've processed all the slices in the new partition, check if any
4378 // PHIs or Selects would block promotion.
4379 for (PHINode *PHI : PHIUsers)
4380 if (!isSafePHIToSpeculate(*PHI)) {
4381 Promotable = false;
4382 PHIUsers.clear();
4383 SelectUsers.clear();
4384 break;
4385 }
4386
4387 for (SelectInst *Sel : SelectUsers)
4388 if (!isSafeSelectToSpeculate(*Sel)) {
4389 Promotable = false;
4390 PHIUsers.clear();
4391 SelectUsers.clear();
4392 break;
4393 }
4394
4395 if (Promotable) {
4396 for (Use *U : AS.getDeadUsesIfPromotable()) {
4397 auto *OldInst = dyn_cast<Instruction>(U->get());
4398 Value::dropDroppableUse(*U);
4399 if (OldInst)
4400 if (isInstructionTriviallyDead(OldInst))
4401 DeadInsts.push_back(OldInst);
4402 }
4403 if (PHIUsers.empty() && SelectUsers.empty()) {
4404 // Promote the alloca.
4405 PromotableAllocas.push_back(NewAI);
4406 } else {
4407 // If we have either PHIs or Selects to speculate, add them to those
4408 // worklists and re-queue the new alloca so that we promote in on the
4409 // next iteration.
4410 for (PHINode *PHIUser : PHIUsers)
4411 SpeculatablePHIs.insert(PHIUser);
4412 for (SelectInst *SelectUser : SelectUsers)
4413 SpeculatableSelects.insert(SelectUser);
4414 Worklist.insert(NewAI);
4415 }
4416 } else {
4417 // Drop any post-promotion work items if promotion didn't happen.
4418 while (PostPromotionWorklist.size() > PPWOldSize)
4419 PostPromotionWorklist.pop_back();
4420
4421 // We couldn't promote and we didn't create a new partition, nothing
4422 // happened.
4423 if (NewAI == &AI)
4424 return nullptr;
4425
4426 // If we can't promote the alloca, iterate on it to check for new
4427 // refinements exposed by splitting the current alloca. Don't iterate on an
4428 // alloca which didn't actually change and didn't get promoted.
4429 Worklist.insert(NewAI);
4430 }
4431
4432 return NewAI;
4433}
4434
4435/// Walks the slices of an alloca and form partitions based on them,
4436/// rewriting each of their uses.
4437bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
4438 if (AS.begin() == AS.end())
4439 return false;
4440
4441 unsigned NumPartitions = 0;
4442 bool Changed = false;
4443 const DataLayout &DL = AI.getModule()->getDataLayout();
4444
4445 // First try to pre-split loads and stores.
4446 Changed |= presplitLoadsAndStores(AI, AS);
4447
4448 // Now that we have identified any pre-splitting opportunities,
4449 // mark loads and stores unsplittable except for the following case.
4450 // We leave a slice splittable if all other slices are disjoint or fully
4451 // included in the slice, such as whole-alloca loads and stores.
4452 // If we fail to split these during pre-splitting, we want to force them
4453 // to be rewritten into a partition.
4454 bool IsSorted = true;
4455
4456 uint64_t AllocaSize =
4457 DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize();
4458 const uint64_t MaxBitVectorSize = 1024;
4459 if (AllocaSize <= MaxBitVectorSize) {
4460 // If a byte boundary is included in any load or store, a slice starting or
4461 // ending at the boundary is not splittable.
4462 SmallBitVector SplittableOffset(AllocaSize + 1, true);
4463 for (Slice &S : AS)
4464 for (unsigned O = S.beginOffset() + 1;
4465 O < S.endOffset() && O < AllocaSize; O++)
4466 SplittableOffset.reset(O);
4467
4468 for (Slice &S : AS) {
4469 if (!S.isSplittable())
4470 continue;
4471
4472 if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
4473 (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
4474 continue;
4475
4476 if (isa<LoadInst>(S.getUse()->getUser()) ||
4477 isa<StoreInst>(S.getUse()->getUser())) {
4478 S.makeUnsplittable();
4479 IsSorted = false;
4480 }
4481 }
4482 }
4483 else {
4484 // We only allow whole-alloca splittable loads and stores
4485 // for a large alloca to avoid creating too large BitVector.
4486 for (Slice &S : AS) {
4487 if (!S.isSplittable())
4488 continue;
4489
4490 if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
4491 continue;
4492
4493 if (isa<LoadInst>(S.getUse()->getUser()) ||
4494 isa<StoreInst>(S.getUse()->getUser())) {
4495 S.makeUnsplittable();
4496 IsSorted = false;
4497 }
4498 }
4499 }
4500
4501 if (!IsSorted)
4502 llvm::sort(AS);
4503
4504 /// Describes the allocas introduced by rewritePartition in order to migrate
4505 /// the debug info.
4506 struct Fragment {
4507 AllocaInst *Alloca;
4508 uint64_t Offset;
4509 uint64_t Size;
4510 Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
4511 : Alloca(AI), Offset(O), Size(S) {}
4512 };
4513 SmallVector<Fragment, 4> Fragments;
4514
4515 // Rewrite each partition.
4516 for (auto &P : AS.partitions()) {
4517 if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
4518 Changed = true;
4519 if (NewAI != &AI) {
4520 uint64_t SizeOfByte = 8;
4521 uint64_t AllocaSize =
4522 DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedSize();
4523 // Don't include any padding.
4524 uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
4525 Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
4526 }
4527 }
4528 ++NumPartitions;
4529 }
4530
4531 NumAllocaPartitions += NumPartitions;
4532 MaxPartitionsPerAlloca.updateMax(NumPartitions);
4533
4534 // Migrate debug information from the old alloca to the new alloca(s)
4535 // and the individual partitions.
4536 TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI);
4537 for (DbgVariableIntrinsic *DbgDeclare : DbgDeclares) {
4538 auto *Expr = DbgDeclare->getExpression();
4539 DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
4540 uint64_t AllocaSize =
4541 DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedSize();
4542 for (auto Fragment : Fragments) {
4543 // Create a fragment expression describing the new partition or reuse AI's
4544 // expression if there is only one partition.
4545 auto *FragmentExpr = Expr;
4546 if (Fragment.Size < AllocaSize || Expr->isFragment()) {
4547 // If this alloca is already a scalar replacement of a larger aggregate,
4548 // Fragment.Offset describes the offset inside the scalar.
4549 auto ExprFragment = Expr->getFragmentInfo();
4550 uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
4551 uint64_t Start = Offset + Fragment.Offset;
4552 uint64_t Size = Fragment.Size;
4553 if (ExprFragment) {
4554 uint64_t AbsEnd =
4555 ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
4556 if (Start >= AbsEnd)
4557 // No need to describe a SROAed padding.
4558 continue;
4559 Size = std::min(Size, AbsEnd - Start);
4560 }
4561 // The new, smaller fragment is stenciled out from the old fragment.
4562 if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
4563 assert(Start >= OrigFragment->OffsetInBits &&((void)0)
4564 "new fragment is outside of original fragment")((void)0);
4565 Start -= OrigFragment->OffsetInBits;
4566 }
4567
4568 // The alloca may be larger than the variable.
4569 auto VarSize = DbgDeclare->getVariable()->getSizeInBits();
4570 if (VarSize) {
4571 if (Size > *VarSize)
4572 Size = *VarSize;
4573 if (Size == 0 || Start + Size > *VarSize)
4574 continue;
4575 }
4576
4577 // Avoid creating a fragment expression that covers the entire variable.
4578 if (!VarSize || *VarSize != Size) {
4579 if (auto E =
4580 DIExpression::createFragmentExpression(Expr, Start, Size))
4581 FragmentExpr = *E;
4582 else
4583 continue;
4584 }
4585 }
4586
4587 // Remove any existing intrinsics on the new alloca describing
4588 // the variable fragment.
4589 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) {
4590 auto SameVariableFragment = [](const DbgVariableIntrinsic *LHS,
4591 const DbgVariableIntrinsic *RHS) {
4592 return LHS->getVariable() == RHS->getVariable() &&
4593 LHS->getDebugLoc()->getInlinedAt() ==
4594 RHS->getDebugLoc()->getInlinedAt();
4595 };
4596 if (SameVariableFragment(OldDII, DbgDeclare))
4597 OldDII->eraseFromParent();
4598 }
4599
4600 DIB.insertDeclare(Fragment.Alloca, DbgDeclare->getVariable(), FragmentExpr,
4601 DbgDeclare->getDebugLoc(), &AI);
4602 }
4603 }
4604 return Changed;
4605}
4606
4607/// Clobber a use with undef, deleting the used value if it becomes dead.
4608void SROA::clobberUse(Use &U) {
4609 Value *OldV = U;
4610 // Replace the use with an undef value.
4611 U = UndefValue::get(OldV->getType());
4612
4613 // Check for this making an instruction dead. We have to garbage collect
4614 // all the dead instructions to ensure the uses of any alloca end up being
4615 // minimal.
4616 if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4617 if (isInstructionTriviallyDead(OldI)) {
4618 DeadInsts.push_back(OldI);
4619 }
4620}
4621
4622/// Analyze an alloca for SROA.
4623///
4624/// This analyzes the alloca to ensure we can reason about it, builds
4625/// the slices of the alloca, and then hands it off to be split and
4626/// rewritten as needed.
4627bool SROA::runOnAlloca(AllocaInst &AI) {
4628 LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n")do { } while (false);
4629 ++NumAllocasAnalyzed;
4630
4631 // Special case dead allocas, as they're trivial.
4632 if (AI.use_empty()) {
4633 AI.eraseFromParent();
4634 return true;
4635 }
4636 const DataLayout &DL = AI.getModule()->getDataLayout();
4637
4638 // Skip alloca forms that this analysis can't handle.
4639 auto *AT = AI.getAllocatedType();
4640 if (AI.isArrayAllocation() || !AT->isSized() || isa<ScalableVectorType>(AT) ||
4641 DL.getTypeAllocSize(AT).getFixedSize() == 0)
4642 return false;
4643
4644 bool Changed = false;
4645
4646 // First, split any FCA loads and stores touching this alloca to promote
4647 // better splitting and promotion opportunities.
4648 AggLoadStoreRewriter AggRewriter(DL);
4649 Changed |= AggRewriter.rewrite(AI);
4650
4651 // Build the slices using a recursive instruction-visiting builder.
4652 AllocaSlices AS(DL, AI);
4653 LLVM_DEBUG(AS.print(dbgs()))do { } while (false);
4654 if (AS.isEscaped())
4655 return Changed;
4656
4657 // Delete all the dead users of this alloca before splitting and rewriting it.
4658 for (Instruction *DeadUser : AS.getDeadUsers()) {
4659 // Free up everything used by this instruction.
4660 for (Use &DeadOp : DeadUser->operands())
4661 clobberUse(DeadOp);
4662
4663 // Now replace the uses of this instruction.
4664 DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType()));
4665
4666 // And mark it for deletion.
4667 DeadInsts.push_back(DeadUser);
4668 Changed = true;
4669 }
4670 for (Use *DeadOp : AS.getDeadOperands()) {
4671 clobberUse(*DeadOp);
4672 Changed = true;
4673 }
4674
4675 // No slices to split. Leave the dead alloca for a later pass to clean up.
4676 if (AS.begin() == AS.end())
4677 return Changed;
4678
4679 Changed |= splitAlloca(AI, AS);
4680
4681 LLVM_DEBUG(dbgs() << " Speculating PHIs\n")do { } while (false);
4682 while (!SpeculatablePHIs.empty())
4683 speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
4684
4685 LLVM_DEBUG(dbgs() << " Speculating Selects\n")do { } while (false);
4686 while (!SpeculatableSelects.empty())
4687 speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
4688
4689 return Changed;
4690}
4691
4692/// Delete the dead instructions accumulated in this run.
4693///
4694/// Recursively deletes the dead instructions we've accumulated. This is done
4695/// at the very end to maximize locality of the recursive delete and to
4696/// minimize the problems of invalidated instruction pointers as such pointers
4697/// are used heavily in the intermediate stages of the algorithm.
4698///
4699/// We also record the alloca instructions deleted here so that they aren't
4700/// subsequently handed to mem2reg to promote.
4701bool SROA::deleteDeadInstructions(
4702 SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
4703 bool Changed = false;
4704 while (!DeadInsts.empty()) {
4705 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
4706 if (!I) continue;
4707 LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n")do { } while (false);
4708
4709 // If the instruction is an alloca, find the possible dbg.declare connected
4710 // to it, and remove it too. We must do this before calling RAUW or we will
4711 // not be able to find it.
4712 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4713 DeletedAllocas.insert(AI);
4714 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI))
4715 OldDII->eraseFromParent();
4716 }
4717
4718 I->replaceAllUsesWith(UndefValue::get(I->getType()));
4719
4720 for (Use &Operand : I->operands())
4721 if (Instruction *U = dyn_cast<Instruction>(Operand)) {
4722 // Zero out the operand and see if it becomes trivially dead.
4723 Operand = nullptr;
4724 if (isInstructionTriviallyDead(U))
4725 DeadInsts.push_back(U);
4726 }
4727
4728 ++NumDeleted;
4729 I->eraseFromParent();
4730 Changed = true;
4731 }
4732 return Changed;
4733}
4734
4735/// Promote the allocas, using the best available technique.
4736///
4737/// This attempts to promote whatever allocas have been identified as viable in
4738/// the PromotableAllocas list. If that list is empty, there is nothing to do.
4739/// This function returns whether any promotion occurred.
4740bool SROA::promoteAllocas(Function &F) {
4741 if (PromotableAllocas.empty())
4742 return false;
4743
4744 NumPromoted += PromotableAllocas.size();
4745
4746 LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n")do { } while (false);
4747 PromoteMemToReg(PromotableAllocas, *DT, AC);
4748 PromotableAllocas.clear();
4749 return true;
4750}
4751
4752PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT,
4753 AssumptionCache &RunAC) {
4754 LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n")do { } while (false);
4755 C = &F.getContext();
4756 DT = &RunDT;
4757 AC = &RunAC;
4758
4759 BasicBlock &EntryBB = F.getEntryBlock();
4760 for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
4761 I != E; ++I) {
4762 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4763 if (isa<ScalableVectorType>(AI->getAllocatedType())) {
4764 if (isAllocaPromotable(AI))
4765 PromotableAllocas.push_back(AI);
4766 } else {
4767 Worklist.insert(AI);
4768 }
4769 }
4770 }
4771
4772 bool Changed = false;
4773 // A set of deleted alloca instruction pointers which should be removed from
4774 // the list of promotable allocas.
4775 SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
4776
4777 do {
4778 while (!Worklist.empty()) {
4779 Changed |= runOnAlloca(*Worklist.pop_back_val());
4780 Changed |= deleteDeadInstructions(DeletedAllocas);
4781
4782 // Remove the deleted allocas from various lists so that we don't try to
4783 // continue processing them.
4784 if (!DeletedAllocas.empty()) {
4785 auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
4786 Worklist.remove_if(IsInSet);
4787 PostPromotionWorklist.remove_if(IsInSet);
4788 llvm::erase_if(PromotableAllocas, IsInSet);
4789 DeletedAllocas.clear();
4790 }
4791 }
4792
4793 Changed |= promoteAllocas(F);
4794
4795 Worklist = PostPromotionWorklist;
4796 PostPromotionWorklist.clear();
4797 } while (!Worklist.empty());
4798
4799 if (!Changed)
4800 return PreservedAnalyses::all();
4801
4802 PreservedAnalyses PA;
4803 PA.preserveSet<CFGAnalyses>();
4804 return PA;
4805}
4806
4807PreservedAnalyses SROA::run(Function &F, FunctionAnalysisManager &AM) {
4808 return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F),
4809 AM.getResult<AssumptionAnalysis>(F));
4810}
4811
4812/// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
4813///
4814/// This is in the llvm namespace purely to allow it to be a friend of the \c
4815/// SROA pass.
4816class llvm::sroa::SROALegacyPass : public FunctionPass {
4817 /// The SROA implementation.
4818 SROA Impl;
4819
4820public:
4821 static char ID;
4822
4823 SROALegacyPass() : FunctionPass(ID) {
4824 initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
4825 }
4826
4827 bool runOnFunction(Function &F) override {
4828 if (skipFunction(F))
4829 return false;
4830
4831 auto PA = Impl.runImpl(
4832 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4833 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
4834 return !PA.areAllPreserved();
4835 }
4836
4837 void getAnalysisUsage(AnalysisUsage &AU) const override {
4838 AU.addRequired<AssumptionCacheTracker>();
4839 AU.addRequired<DominatorTreeWrapperPass>();
4840 AU.addPreserved<GlobalsAAWrapperPass>();
4841 AU.setPreservesCFG();
4842 }
4843
4844 StringRef getPassName() const override { return "SROA"; }
4845};
4846
4847char SROALegacyPass::ID = 0;
4848
4849FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); }
4850
4851INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",static void *initializeSROALegacyPassPassOnce(PassRegistry &
Registry) {
4852 "Scalar Replacement Of Aggregates", false, false)static void *initializeSROALegacyPassPassOnce(PassRegistry &
Registry) {
4853INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
4854INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
4855INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",PassInfo *PI = new PassInfo( "Scalar Replacement Of Aggregates"
, "sroa", &SROALegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<SROALegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeSROALegacyPassPassFlag
; void llvm::initializeSROALegacyPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeSROALegacyPassPassFlag, initializeSROALegacyPassPassOnce
, std::ref(Registry)); }
4856 false, false)PassInfo *PI = new PassInfo( "Scalar Replacement Of Aggregates"
, "sroa", &SROALegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<SROALegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeSROALegacyPassPassFlag
; void llvm::initializeSROALegacyPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeSROALegacyPassPassFlag, initializeSROALegacyPassPassOnce
, std::ref(Registry)); }

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/None.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringRef.h"
25#include "llvm/ADT/Twine.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/IR/Attributes.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/CFG.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/InstrTypes.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/OperandTraits.h"
38#include "llvm/IR/Type.h"
39#include "llvm/IR/Use.h"
40#include "llvm/IR/User.h"
41#include "llvm/IR/Value.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include <cassert>
46#include <cstddef>
47#include <cstdint>
48#include <iterator>
49
50namespace llvm {
51
52class APInt;
53class ConstantInt;
54class DataLayout;
55class LLVMContext;
56
57//===----------------------------------------------------------------------===//
58// AllocaInst Class
59//===----------------------------------------------------------------------===//
60
61/// an instruction to allocate memory on the stack
62class AllocaInst : public UnaryInstruction {
63 Type *AllocatedType;
64
65 using AlignmentField = AlignmentBitfieldElementT<0>;
66 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
67 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
68 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
69 SwiftErrorField>(),
70 "Bitfields must be contiguous");
71
72protected:
73 // Note: Instruction needs to be a friend here to call cloneImpl.
74 friend class Instruction;
75
76 AllocaInst *cloneImpl() const;
77
78public:
79 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
80 const Twine &Name, Instruction *InsertBefore);
81 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
82 const Twine &Name, BasicBlock *InsertAtEnd);
83
84 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
85 Instruction *InsertBefore);
86 AllocaInst(Type *Ty, unsigned AddrSpace,
87 const Twine &Name, BasicBlock *InsertAtEnd);
88
89 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
90 const Twine &Name = "", Instruction *InsertBefore = nullptr);
91 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
92 const Twine &Name, BasicBlock *InsertAtEnd);
93
94 /// Return true if there is an allocation size parameter to the allocation
95 /// instruction that is not 1.
96 bool isArrayAllocation() const;
97
98 /// Get the number of elements allocated. For a simple allocation of a single
99 /// element, this will return a constant 1 value.
100 const Value *getArraySize() const { return getOperand(0); }
101 Value *getArraySize() { return getOperand(0); }
102
103 /// Overload to return most specific pointer type.
104 PointerType *getType() const {
105 return cast<PointerType>(Instruction::getType());
106 }
107
108 /// Get allocation size in bits. Returns None if size can't be determined,
109 /// e.g. in case of a VLA.
110 Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
111
112 /// Return the type that is being allocated by the instruction.
113 Type *getAllocatedType() const { return AllocatedType; }
114 /// for use only in special circumstances that need to generically
115 /// transform a whole instruction (eg: IR linking and vectorization).
116 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
117
118 /// Return the alignment of the memory that is being allocated by the
119 /// instruction.
120 Align getAlign() const {
121 return Align(1ULL << getSubclassData<AlignmentField>());
4
Calling constructor for 'Align'
9
Returning from constructor for 'Align'
122 }
123
124 void setAlignment(Align Align) {
125 setSubclassData<AlignmentField>(Log2(Align));
126 }
127
128 // FIXME: Remove this one transition to Align is over.
129 unsigned getAlignment() const { return getAlign().value(); }
130
131 /// Return true if this alloca is in the entry block of the function and is a
132 /// constant size. If so, the code generator will fold it into the
133 /// prolog/epilog code, so it is basically free.
134 bool isStaticAlloca() const;
135
136 /// Return true if this alloca is used as an inalloca argument to a call. Such
137 /// allocas are never considered static even if they are in the entry block.
138 bool isUsedWithInAlloca() const {
139 return getSubclassData<UsedWithInAllocaField>();
140 }
141
142 /// Specify whether this alloca is used to represent the arguments to a call.
143 void setUsedWithInAlloca(bool V) {
144 setSubclassData<UsedWithInAllocaField>(V);
145 }
146
147 /// Return true if this alloca is used as a swifterror argument to a call.
148 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
149 /// Specify whether this alloca is used to represent a swifterror.
150 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
151
152 // Methods for support type inquiry through isa, cast, and dyn_cast:
153 static bool classof(const Instruction *I) {
154 return (I->getOpcode() == Instruction::Alloca);
155 }
156 static bool classof(const Value *V) {
157 return isa<Instruction>(V) && classof(cast<Instruction>(V));
158 }
159
160private:
161 // Shadow Instruction::setInstructionSubclassData with a private forwarding
162 // method so that subclasses cannot accidentally use it.
163 template <typename Bitfield>
164 void setSubclassData(typename Bitfield::Type Value) {
165 Instruction::setSubclassData<Bitfield>(Value);
166 }
167};
168
169//===----------------------------------------------------------------------===//
170// LoadInst Class
171//===----------------------------------------------------------------------===//
172
173/// An instruction for reading from memory. This uses the SubclassData field in
174/// Value to store whether or not the load is volatile.
175class LoadInst : public UnaryInstruction {
176 using VolatileField = BoolBitfieldElementT<0>;
177 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
178 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
179 static_assert(
180 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
181 "Bitfields must be contiguous");
182
183 void AssertOK();
184
185protected:
186 // Note: Instruction needs to be a friend here to call cloneImpl.
187 friend class Instruction;
188
189 LoadInst *cloneImpl() const;
190
191public:
192 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
193 Instruction *InsertBefore);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
195 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
196 Instruction *InsertBefore);
197 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
198 BasicBlock *InsertAtEnd);
199 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
200 Align Align, Instruction *InsertBefore = nullptr);
201 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
202 Align Align, BasicBlock *InsertAtEnd);
203 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
204 Align Align, AtomicOrdering Order,
205 SyncScope::ID SSID = SyncScope::System,
206 Instruction *InsertBefore = nullptr);
207 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
208 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
209 BasicBlock *InsertAtEnd);
210
211 /// Return true if this is a load from a volatile memory location.
212 bool isVolatile() const { return getSubclassData<VolatileField>(); }
213
214 /// Specify whether this is a volatile load or not.
215 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
216
217 /// Return the alignment of the access that is being performed.
218 /// FIXME: Remove this function once transition to Align is over.
219 /// Use getAlign() instead.
220 unsigned getAlignment() const { return getAlign().value(); }
221
222 /// Return the alignment of the access that is being performed.
223 Align getAlign() const {
224 return Align(1ULL << (getSubclassData<AlignmentField>()));
225 }
226
227 void setAlignment(Align Align) {
228 setSubclassData<AlignmentField>(Log2(Align));
229 }
230
231 /// Returns the ordering constraint of this load instruction.
232 AtomicOrdering getOrdering() const {
233 return getSubclassData<OrderingField>();
234 }
235 /// Sets the ordering constraint of this load instruction. May not be Release
236 /// or AcquireRelease.
237 void setOrdering(AtomicOrdering Ordering) {
238 setSubclassData<OrderingField>(Ordering);
239 }
240
241 /// Returns the synchronization scope ID of this load instruction.
242 SyncScope::ID getSyncScopeID() const {
243 return SSID;
244 }
245
246 /// Sets the synchronization scope ID of this load instruction.
247 void setSyncScopeID(SyncScope::ID SSID) {
248 this->SSID = SSID;
249 }
250
251 /// Sets the ordering constraint and the synchronization scope ID of this load
252 /// instruction.
253 void setAtomic(AtomicOrdering Ordering,
254 SyncScope::ID SSID = SyncScope::System) {
255 setOrdering(Ordering);
256 setSyncScopeID(SSID);
257 }
258
259 bool isSimple() const { return !isAtomic() && !isVolatile(); }
260
261 bool isUnordered() const {
262 return (getOrdering() == AtomicOrdering::NotAtomic ||
263 getOrdering() == AtomicOrdering::Unordered) &&
264 !isVolatile();
265 }
266
267 Value *getPointerOperand() { return getOperand(0); }
268 const Value *getPointerOperand() const { return getOperand(0); }
269 static unsigned getPointerOperandIndex() { return 0U; }
270 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
271
272 /// Returns the address space of the pointer operand.
273 unsigned getPointerAddressSpace() const {
274 return getPointerOperandType()->getPointerAddressSpace();
275 }
276
277 // Methods for support type inquiry through isa, cast, and dyn_cast:
278 static bool classof(const Instruction *I) {
279 return I->getOpcode() == Instruction::Load;
280 }
281 static bool classof(const Value *V) {
282 return isa<Instruction>(V) && classof(cast<Instruction>(V));
283 }
284
285private:
286 // Shadow Instruction::setInstructionSubclassData with a private forwarding
287 // method so that subclasses cannot accidentally use it.
288 template <typename Bitfield>
289 void setSubclassData(typename Bitfield::Type Value) {
290 Instruction::setSubclassData<Bitfield>(Value);
291 }
292
293 /// The synchronization scope ID of this load instruction. Not quite enough
294 /// room in SubClassData for everything, so synchronization scope ID gets its
295 /// own field.
296 SyncScope::ID SSID;
297};
298
299//===----------------------------------------------------------------------===//
300// StoreInst Class
301//===----------------------------------------------------------------------===//
302
303/// An instruction for storing to memory.
304class StoreInst : public Instruction {
305 using VolatileField = BoolBitfieldElementT<0>;
306 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
307 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
308 static_assert(
309 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
310 "Bitfields must be contiguous");
311
312 void AssertOK();
313
314protected:
315 // Note: Instruction needs to be a friend here to call cloneImpl.
316 friend class Instruction;
317
318 StoreInst *cloneImpl() const;
319
320public:
321 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
322 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
323 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
325 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
326 Instruction *InsertBefore = nullptr);
327 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
328 BasicBlock *InsertAtEnd);
329 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
330 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
331 Instruction *InsertBefore = nullptr);
332 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
333 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
334
335 // allocate space for exactly two operands
336 void *operator new(size_t S) { return User::operator new(S, 2); }
337 void operator delete(void *Ptr) { User::operator delete(Ptr); }
338
339 /// Return true if this is a store to a volatile memory location.
340 bool isVolatile() const { return getSubclassData<VolatileField>(); }
341
342 /// Specify whether this is a volatile store or not.
343 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344
345 /// Transparently provide more efficient getOperand methods.
346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
347
348 /// Return the alignment of the access that is being performed
349 /// FIXME: Remove this function once transition to Align is over.
350 /// Use getAlign() instead.
351 unsigned getAlignment() const { return getAlign().value(); }
352
353 Align getAlign() const {
354 return Align(1ULL << (getSubclassData<AlignmentField>()));
355 }
356
357 void setAlignment(Align Align) {
358 setSubclassData<AlignmentField>(Log2(Align));
359 }
360
361 /// Returns the ordering constraint of this store instruction.
362 AtomicOrdering getOrdering() const {
363 return getSubclassData<OrderingField>();
364 }
365
366 /// Sets the ordering constraint of this store instruction. May not be
367 /// Acquire or AcquireRelease.
368 void setOrdering(AtomicOrdering Ordering) {
369 setSubclassData<OrderingField>(Ordering);
370 }
371
372 /// Returns the synchronization scope ID of this store instruction.
373 SyncScope::ID getSyncScopeID() const {
374 return SSID;
375 }
376
377 /// Sets the synchronization scope ID of this store instruction.
378 void setSyncScopeID(SyncScope::ID SSID) {
379 this->SSID = SSID;
380 }
381
382 /// Sets the ordering constraint and the synchronization scope ID of this
383 /// store instruction.
384 void setAtomic(AtomicOrdering Ordering,
385 SyncScope::ID SSID = SyncScope::System) {
386 setOrdering(Ordering);
387 setSyncScopeID(SSID);
388 }
389
390 bool isSimple() const { return !isAtomic() && !isVolatile(); }
391
392 bool isUnordered() const {
393 return (getOrdering() == AtomicOrdering::NotAtomic ||
394 getOrdering() == AtomicOrdering::Unordered) &&
395 !isVolatile();
396 }
397
398 Value *getValueOperand() { return getOperand(0); }
399 const Value *getValueOperand() const { return getOperand(0); }
400
401 Value *getPointerOperand() { return getOperand(1); }
402 const Value *getPointerOperand() const { return getOperand(1); }
403 static unsigned getPointerOperandIndex() { return 1U; }
404 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405
406 /// Returns the address space of the pointer operand.
407 unsigned getPointerAddressSpace() const {
408 return getPointerOperandType()->getPointerAddressSpace();
409 }
410
411 // Methods for support type inquiry through isa, cast, and dyn_cast:
412 static bool classof(const Instruction *I) {
413 return I->getOpcode() == Instruction::Store;
414 }
415 static bool classof(const Value *V) {
416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
417 }
418
419private:
420 // Shadow Instruction::setInstructionSubclassData with a private forwarding
421 // method so that subclasses cannot accidentally use it.
422 template <typename Bitfield>
423 void setSubclassData(typename Bitfield::Type Value) {
424 Instruction::setSubclassData<Bitfield>(Value);
425 }
426
427 /// The synchronization scope ID of this store instruction. Not quite enough
428 /// room in SubClassData for everything, so synchronization scope ID gets its
429 /// own field.
430 SyncScope::ID SSID;
431};
432
433template <>
434struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435};
436
437DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<StoreInst>::op_begin(const_cast
<StoreInst*>(this))[i_nocapture].get()); } void StoreInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<StoreInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned StoreInst::getNumOperands() const
{ return OperandTraits<StoreInst>::operands(this); } template
<int Idx_nocapture> Use &StoreInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &StoreInst::Op() const { return this->OpFrom
<Idx_nocapture>(this); }
438
439//===----------------------------------------------------------------------===//
440// FenceInst Class
441//===----------------------------------------------------------------------===//
442
443/// An instruction for ordering other memory operations.
444class FenceInst : public Instruction {
445 using OrderingField = AtomicOrderingBitfieldElementT<0>;
446
447 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448
449protected:
450 // Note: Instruction needs to be a friend here to call cloneImpl.
451 friend class Instruction;
452
453 FenceInst *cloneImpl() const;
454
455public:
456 // Ordering may only be Acquire, Release, AcquireRelease, or
457 // SequentiallyConsistent.
458 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459 SyncScope::ID SSID = SyncScope::System,
460 Instruction *InsertBefore = nullptr);
461 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462 BasicBlock *InsertAtEnd);
463
464 // allocate space for exactly zero operands
465 void *operator new(size_t S) { return User::operator new(S, 0); }
466 void operator delete(void *Ptr) { User::operator delete(Ptr); }
467
468 /// Returns the ordering constraint of this fence instruction.
469 AtomicOrdering getOrdering() const {
470 return getSubclassData<OrderingField>();
471 }
472
473 /// Sets the ordering constraint of this fence instruction. May only be
474 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
475 void setOrdering(AtomicOrdering Ordering) {
476 setSubclassData<OrderingField>(Ordering);
477 }
478
479 /// Returns the synchronization scope ID of this fence instruction.
480 SyncScope::ID getSyncScopeID() const {
481 return SSID;
482 }
483
484 /// Sets the synchronization scope ID of this fence instruction.
485 void setSyncScopeID(SyncScope::ID SSID) {
486 this->SSID = SSID;
487 }
488
489 // Methods for support type inquiry through isa, cast, and dyn_cast:
490 static bool classof(const Instruction *I) {
491 return I->getOpcode() == Instruction::Fence;
492 }
493 static bool classof(const Value *V) {
494 return isa<Instruction>(V) && classof(cast<Instruction>(V));
495 }
496
497private:
498 // Shadow Instruction::setInstructionSubclassData with a private forwarding
499 // method so that subclasses cannot accidentally use it.
500 template <typename Bitfield>
501 void setSubclassData(typename Bitfield::Type Value) {
502 Instruction::setSubclassData<Bitfield>(Value);
503 }
504
505 /// The synchronization scope ID of this fence instruction. Not quite enough
506 /// room in SubClassData for everything, so synchronization scope ID gets its
507 /// own field.
508 SyncScope::ID SSID;
509};
510
511//===----------------------------------------------------------------------===//
512// AtomicCmpXchgInst Class
513//===----------------------------------------------------------------------===//
514
515/// An instruction that atomically checks whether a
516/// specified value is in a memory location, and, if it is, stores a new value
517/// there. The value returned by this instruction is a pair containing the
518/// original value as first element, and an i1 indicating success (true) or
519/// failure (false) as second element.
520///
521class AtomicCmpXchgInst : public Instruction {
522 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
523 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
524 SyncScope::ID SSID);
525
526 template <unsigned Offset>
527 using AtomicOrderingBitfieldElement =
528 typename Bitfield::Element<AtomicOrdering, Offset, 3,
529 AtomicOrdering::LAST>;
530
531protected:
532 // Note: Instruction needs to be a friend here to call cloneImpl.
533 friend class Instruction;
534
535 AtomicCmpXchgInst *cloneImpl() const;
536
537public:
538 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
539 AtomicOrdering SuccessOrdering,
540 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
541 Instruction *InsertBefore = nullptr);
542 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
543 AtomicOrdering SuccessOrdering,
544 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
545 BasicBlock *InsertAtEnd);
546
547 // allocate space for exactly three operands
548 void *operator new(size_t S) { return User::operator new(S, 3); }
549 void operator delete(void *Ptr) { User::operator delete(Ptr); }
550
551 using VolatileField = BoolBitfieldElementT<0>;
552 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
553 using SuccessOrderingField =
554 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
555 using FailureOrderingField =
556 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
557 using AlignmentField =
558 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
559 static_assert(
560 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
561 FailureOrderingField, AlignmentField>(),
562 "Bitfields must be contiguous");
563
564 /// Return the alignment of the memory that is being allocated by the
565 /// instruction.
566 Align getAlign() const {
567 return Align(1ULL << getSubclassData<AlignmentField>());
568 }
569
570 void setAlignment(Align Align) {
571 setSubclassData<AlignmentField>(Log2(Align));
572 }
573
574 /// Return true if this is a cmpxchg from a volatile memory
575 /// location.
576 ///
577 bool isVolatile() const { return getSubclassData<VolatileField>(); }
578
579 /// Specify whether this is a volatile cmpxchg.
580 ///
581 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
582
583 /// Return true if this cmpxchg may spuriously fail.
584 bool isWeak() const { return getSubclassData<WeakField>(); }
585
586 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
587
588 /// Transparently provide more efficient getOperand methods.
589 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
590
591 static bool isValidSuccessOrdering(AtomicOrdering Ordering) {
592 return Ordering != AtomicOrdering::NotAtomic &&
593 Ordering != AtomicOrdering::Unordered;
594 }
595
596 static bool isValidFailureOrdering(AtomicOrdering Ordering) {
597 return Ordering != AtomicOrdering::NotAtomic &&
598 Ordering != AtomicOrdering::Unordered &&
599 Ordering != AtomicOrdering::AcquireRelease &&
600 Ordering != AtomicOrdering::Release;
601 }
602
603 /// Returns the success ordering constraint of this cmpxchg instruction.
604 AtomicOrdering getSuccessOrdering() const {
605 return getSubclassData<SuccessOrderingField>();
606 }
607
608 /// Sets the success ordering constraint of this cmpxchg instruction.
609 void setSuccessOrdering(AtomicOrdering Ordering) {
610 assert(isValidSuccessOrdering(Ordering) &&((void)0)
611 "invalid CmpXchg success ordering")((void)0);
612 setSubclassData<SuccessOrderingField>(Ordering);
613 }
614
615 /// Returns the failure ordering constraint of this cmpxchg instruction.
616 AtomicOrdering getFailureOrdering() const {
617 return getSubclassData<FailureOrderingField>();
618 }
619
620 /// Sets the failure ordering constraint of this cmpxchg instruction.
621 void setFailureOrdering(AtomicOrdering Ordering) {
622 assert(isValidFailureOrdering(Ordering) &&((void)0)
623 "invalid CmpXchg failure ordering")((void)0);
624 setSubclassData<FailureOrderingField>(Ordering);
625 }
626
627 /// Returns a single ordering which is at least as strong as both the
628 /// success and failure orderings for this cmpxchg.
629 AtomicOrdering getMergedOrdering() const {
630 if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent)
631 return AtomicOrdering::SequentiallyConsistent;
632 if (getFailureOrdering() == AtomicOrdering::Acquire) {
633 if (getSuccessOrdering() == AtomicOrdering::Monotonic)
634 return AtomicOrdering::Acquire;
635 if (getSuccessOrdering() == AtomicOrdering::Release)
636 return AtomicOrdering::AcquireRelease;
637 }
638 return getSuccessOrdering();
639 }
640
641 /// Returns the synchronization scope ID of this cmpxchg instruction.
642 SyncScope::ID getSyncScopeID() const {
643 return SSID;
644 }
645
646 /// Sets the synchronization scope ID of this cmpxchg instruction.
647 void setSyncScopeID(SyncScope::ID SSID) {
648 this->SSID = SSID;
649 }
650
651 Value *getPointerOperand() { return getOperand(0); }
652 const Value *getPointerOperand() const { return getOperand(0); }
653 static unsigned getPointerOperandIndex() { return 0U; }
654
655 Value *getCompareOperand() { return getOperand(1); }
656 const Value *getCompareOperand() const { return getOperand(1); }
657
658 Value *getNewValOperand() { return getOperand(2); }
659 const Value *getNewValOperand() const { return getOperand(2); }
660
661 /// Returns the address space of the pointer operand.
662 unsigned getPointerAddressSpace() const {
663 return getPointerOperand()->getType()->getPointerAddressSpace();
664 }
665
666 /// Returns the strongest permitted ordering on failure, given the
667 /// desired ordering on success.
668 ///
669 /// If the comparison in a cmpxchg operation fails, there is no atomic store
670 /// so release semantics cannot be provided. So this function drops explicit
671 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
672 /// operation would remain SequentiallyConsistent.
673 static AtomicOrdering
674 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
675 switch (SuccessOrdering) {
676 default:
677 llvm_unreachable("invalid cmpxchg success ordering")__builtin_unreachable();
678 case AtomicOrdering::Release:
679 case AtomicOrdering::Monotonic:
680 return AtomicOrdering::Monotonic;
681 case AtomicOrdering::AcquireRelease:
682 case AtomicOrdering::Acquire:
683 return AtomicOrdering::Acquire;
684 case AtomicOrdering::SequentiallyConsistent:
685 return AtomicOrdering::SequentiallyConsistent;
686 }
687 }
688
689 // Methods for support type inquiry through isa, cast, and dyn_cast:
690 static bool classof(const Instruction *I) {
691 return I->getOpcode() == Instruction::AtomicCmpXchg;
692 }
693 static bool classof(const Value *V) {
694 return isa<Instruction>(V) && classof(cast<Instruction>(V));
695 }
696
697private:
698 // Shadow Instruction::setInstructionSubclassData with a private forwarding
699 // method so that subclasses cannot accidentally use it.
700 template <typename Bitfield>
701 void setSubclassData(typename Bitfield::Type Value) {
702 Instruction::setSubclassData<Bitfield>(Value);
703 }
704
705 /// The synchronization scope ID of this cmpxchg instruction. Not quite
706 /// enough room in SubClassData for everything, so synchronization scope ID
707 /// gets its own field.
708 SyncScope::ID SSID;
709};
710
711template <>
712struct OperandTraits<AtomicCmpXchgInst> :
713 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
714};
715
716DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast
<AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void
AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<AtomicCmpXchgInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned AtomicCmpXchgInst
::getNumOperands() const { return OperandTraits<AtomicCmpXchgInst
>::operands(this); } template <int Idx_nocapture> Use
&AtomicCmpXchgInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
AtomicCmpXchgInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
717
718//===----------------------------------------------------------------------===//
719// AtomicRMWInst Class
720//===----------------------------------------------------------------------===//
721
722/// an instruction that atomically reads a memory location,
723/// combines it with another value, and then stores the result back. Returns
724/// the old value.
725///
726class AtomicRMWInst : public Instruction {
727protected:
728 // Note: Instruction needs to be a friend here to call cloneImpl.
729 friend class Instruction;
730
731 AtomicRMWInst *cloneImpl() const;
732
733public:
734 /// This enumeration lists the possible modifications atomicrmw can make. In
735 /// the descriptions, 'p' is the pointer to the instruction's memory location,
736 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
737 /// instruction. These instructions always return 'old'.
738 enum BinOp : unsigned {
739 /// *p = v
740 Xchg,
741 /// *p = old + v
742 Add,
743 /// *p = old - v
744 Sub,
745 /// *p = old & v
746 And,
747 /// *p = ~(old & v)
748 Nand,
749 /// *p = old | v
750 Or,
751 /// *p = old ^ v
752 Xor,
753 /// *p = old >signed v ? old : v
754 Max,
755 /// *p = old <signed v ? old : v
756 Min,
757 /// *p = old >unsigned v ? old : v
758 UMax,
759 /// *p = old <unsigned v ? old : v
760 UMin,
761
762 /// *p = old + v
763 FAdd,
764
765 /// *p = old - v
766 FSub,
767
768 FIRST_BINOP = Xchg,
769 LAST_BINOP = FSub,
770 BAD_BINOP
771 };
772
773private:
774 template <unsigned Offset>
775 using AtomicOrderingBitfieldElement =
776 typename Bitfield::Element<AtomicOrdering, Offset, 3,
777 AtomicOrdering::LAST>;
778
779 template <unsigned Offset>
780 using BinOpBitfieldElement =
781 typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
782
783public:
784 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
785 AtomicOrdering Ordering, SyncScope::ID SSID,
786 Instruction *InsertBefore = nullptr);
787 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
788 AtomicOrdering Ordering, SyncScope::ID SSID,
789 BasicBlock *InsertAtEnd);
790
791 // allocate space for exactly two operands
792 void *operator new(size_t S) { return User::operator new(S, 2); }
793 void operator delete(void *Ptr) { User::operator delete(Ptr); }
794
795 using VolatileField = BoolBitfieldElementT<0>;
796 using AtomicOrderingField =
797 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
798 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
799 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
800 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
801 OperationField, AlignmentField>(),
802 "Bitfields must be contiguous");
803
804 BinOp getOperation() const { return getSubclassData<OperationField>(); }
805
806 static StringRef getOperationName(BinOp Op);
807
808 static bool isFPOperation(BinOp Op) {
809 switch (Op) {
810 case AtomicRMWInst::FAdd:
811 case AtomicRMWInst::FSub:
812 return true;
813 default:
814 return false;
815 }
816 }
817
818 void setOperation(BinOp Operation) {
819 setSubclassData<OperationField>(Operation);
820 }
821
822 /// Return the alignment of the memory that is being allocated by the
823 /// instruction.
824 Align getAlign() const {
825 return Align(1ULL << getSubclassData<AlignmentField>());
826 }
827
828 void setAlignment(Align Align) {
829 setSubclassData<AlignmentField>(Log2(Align));
830 }
831
832 /// Return true if this is a RMW on a volatile memory location.
833 ///
834 bool isVolatile() const { return getSubclassData<VolatileField>(); }
835
836 /// Specify whether this is a volatile RMW or not.
837 ///
838 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
839
840 /// Transparently provide more efficient getOperand methods.
841 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
842
843 /// Returns the ordering constraint of this rmw instruction.
844 AtomicOrdering getOrdering() const {
845 return getSubclassData<AtomicOrderingField>();
846 }
847
848 /// Sets the ordering constraint of this rmw instruction.
849 void setOrdering(AtomicOrdering Ordering) {
850 assert(Ordering != AtomicOrdering::NotAtomic &&((void)0)
851 "atomicrmw instructions can only be atomic.")((void)0);
852 setSubclassData<AtomicOrderingField>(Ordering);
853 }
854
855 /// Returns the synchronization scope ID of this rmw instruction.
856 SyncScope::ID getSyncScopeID() const {
857 return SSID;
858 }
859
860 /// Sets the synchronization scope ID of this rmw instruction.
861 void setSyncScopeID(SyncScope::ID SSID) {
862 this->SSID = SSID;
863 }
864
865 Value *getPointerOperand() { return getOperand(0); }
866 const Value *getPointerOperand() const { return getOperand(0); }
867 static unsigned getPointerOperandIndex() { return 0U; }
868
869 Value *getValOperand() { return getOperand(1); }
870 const Value *getValOperand() const { return getOperand(1); }
871
872 /// Returns the address space of the pointer operand.
873 unsigned getPointerAddressSpace() const {
874 return getPointerOperand()->getType()->getPointerAddressSpace();
875 }
876
877 bool isFloatingPointOperation() const {
878 return isFPOperation(getOperation());
879 }
880
881 // Methods for support type inquiry through isa, cast, and dyn_cast:
882 static bool classof(const Instruction *I) {
883 return I->getOpcode() == Instruction::AtomicRMW;
884 }
885 static bool classof(const Value *V) {
886 return isa<Instruction>(V) && classof(cast<Instruction>(V));
887 }
888
889private:
890 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
891 AtomicOrdering Ordering, SyncScope::ID SSID);
892
893 // Shadow Instruction::setInstructionSubclassData with a private forwarding
894 // method so that subclasses cannot accidentally use it.
895 template <typename Bitfield>
896 void setSubclassData(typename Bitfield::Type Value) {
897 Instruction::setSubclassData<Bitfield>(Value);
898 }
899
900 /// The synchronization scope ID of this rmw instruction. Not quite enough
901 /// room in SubClassData for everything, so synchronization scope ID gets its
902 /// own field.
903 SyncScope::ID SSID;
904};
905
906template <>
907struct OperandTraits<AtomicRMWInst>
908 : public FixedNumOperandTraits<AtomicRMWInst,2> {
909};
910
911DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast
<AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<AtomicRMWInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned AtomicRMWInst::getNumOperands()
const { return OperandTraits<AtomicRMWInst>::operands(
this); } template <int Idx_nocapture> Use &AtomicRMWInst
::Op() { return this->OpFrom<Idx_nocapture>(this); }
template <int Idx_nocapture> const Use &AtomicRMWInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
912
913//===----------------------------------------------------------------------===//
914// GetElementPtrInst Class
915//===----------------------------------------------------------------------===//
916
917// checkGEPType - Simple wrapper function to give a better assertion failure
918// message on bad indexes for a gep instruction.
919//
920inline Type *checkGEPType(Type *Ty) {
921 assert(Ty && "Invalid GetElementPtrInst indices for type!")((void)0);
922 return Ty;
923}
924
925/// an instruction for type-safe pointer arithmetic to
926/// access elements of arrays and structs
927///
928class GetElementPtrInst : public Instruction {
929 Type *SourceElementType;
930 Type *ResultElementType;
931
932 GetElementPtrInst(const GetElementPtrInst &GEPI);
933
934 /// Constructors - Create a getelementptr instruction with a base pointer an
935 /// list of indices. The first ctor can optionally insert before an existing
936 /// instruction, the second appends the new instruction to the specified
937 /// BasicBlock.
938 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
939 ArrayRef<Value *> IdxList, unsigned Values,
940 const Twine &NameStr, Instruction *InsertBefore);
941 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
942 ArrayRef<Value *> IdxList, unsigned Values,
943 const Twine &NameStr, BasicBlock *InsertAtEnd);
944
945 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
946
947protected:
948 // Note: Instruction needs to be a friend here to call cloneImpl.
949 friend class Instruction;
950
951 GetElementPtrInst *cloneImpl() const;
952
953public:
954 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
955 ArrayRef<Value *> IdxList,
956 const Twine &NameStr = "",
957 Instruction *InsertBefore = nullptr) {
958 unsigned Values = 1 + unsigned(IdxList.size());
959 assert(PointeeType && "Must specify element type")((void)0);
960 assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0)
961 ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0);
962 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
963 NameStr, InsertBefore);
964 }
965
966 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
967 ArrayRef<Value *> IdxList,
968 const Twine &NameStr,
969 BasicBlock *InsertAtEnd) {
970 unsigned Values = 1 + unsigned(IdxList.size());
971 assert(PointeeType && "Must specify element type")((void)0);
972 assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0)
973 ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0);
974 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
975 NameStr, InsertAtEnd);
976 }
977
978 LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
979 Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
980 Instruction *InsertBefore = nullptr),[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
981 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
{
982 return CreateInBounds(
983 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
984 NameStr, InsertBefore);
985 }
986
987 /// Create an "inbounds" getelementptr. See the documentation for the
988 /// "inbounds" flag in LangRef.html for details.
989 static GetElementPtrInst *
990 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
991 const Twine &NameStr = "",
992 Instruction *InsertBefore = nullptr) {
993 GetElementPtrInst *GEP =
994 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
995 GEP->setIsInBounds(true);
996 return GEP;
997 }
998
999 LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1000 Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1001 BasicBlock *InsertAtEnd),[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1002 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
{
1003 return CreateInBounds(
1004 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
1005 NameStr, InsertAtEnd);
1006 }
1007
1008 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
1009 ArrayRef<Value *> IdxList,
1010 const Twine &NameStr,
1011 BasicBlock *InsertAtEnd) {
1012 GetElementPtrInst *GEP =
1013 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
1014 GEP->setIsInBounds(true);
1015 return GEP;
1016 }
1017
1018 /// Transparently provide more efficient getOperand methods.
1019 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1020
1021 Type *getSourceElementType() const { return SourceElementType; }
1022
1023 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1024 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1025
1026 Type *getResultElementType() const {
1027 assert(cast<PointerType>(getType()->getScalarType())((void)0)
1028 ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0);
1029 return ResultElementType;
1030 }
1031
1032 /// Returns the address space of this instruction's pointer type.
1033 unsigned getAddressSpace() const {
1034 // Note that this is always the same as the pointer operand's address space
1035 // and that is cheaper to compute, so cheat here.
1036 return getPointerAddressSpace();
1037 }
1038
1039 /// Returns the result type of a getelementptr with the given source
1040 /// element type and indexes.
1041 ///
1042 /// Null is returned if the indices are invalid for the specified
1043 /// source element type.
1044 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1045 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1046 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1047
1048 /// Return the type of the element at the given index of an indexable
1049 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1050 ///
1051 /// Returns null if the type can't be indexed, or the given index is not
1052 /// legal for the given type.
1053 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1054 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1055
1056 inline op_iterator idx_begin() { return op_begin()+1; }
1057 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1058 inline op_iterator idx_end() { return op_end(); }
1059 inline const_op_iterator idx_end() const { return op_end(); }
1060
1061 inline iterator_range<op_iterator> indices() {
1062 return make_range(idx_begin(), idx_end());
1063 }
1064
1065 inline iterator_range<const_op_iterator> indices() const {
1066 return make_range(idx_begin(), idx_end());
1067 }
1068
1069 Value *getPointerOperand() {
1070 return getOperand(0);
1071 }
1072 const Value *getPointerOperand() const {
1073 return getOperand(0);
1074 }
1075 static unsigned getPointerOperandIndex() {
1076 return 0U; // get index for modifying correct operand.
1077 }
1078
1079 /// Method to return the pointer operand as a
1080 /// PointerType.
1081 Type *getPointerOperandType() const {
1082 return getPointerOperand()->getType();
1083 }
1084
1085 /// Returns the address space of the pointer operand.
1086 unsigned getPointerAddressSpace() const {
1087 return getPointerOperandType()->getPointerAddressSpace();
1088 }
1089
1090 /// Returns the pointer type returned by the GEP
1091 /// instruction, which may be a vector of pointers.
1092 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1093 ArrayRef<Value *> IdxList) {
1094 PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1095 unsigned AddrSpace = OrigPtrTy->getAddressSpace();
1096 Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList));
1097 Type *PtrTy = OrigPtrTy->isOpaque()
1098 ? PointerType::get(OrigPtrTy->getContext(), AddrSpace)
1099 : PointerType::get(ResultElemTy, AddrSpace);
1100 // Vector GEP
1101 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1102 ElementCount EltCount = PtrVTy->getElementCount();
1103 return VectorType::get(PtrTy, EltCount);
1104 }
1105 for (Value *Index : IdxList)
1106 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1107 ElementCount EltCount = IndexVTy->getElementCount();
1108 return VectorType::get(PtrTy, EltCount);
1109 }
1110 // Scalar GEP
1111 return PtrTy;
1112 }
1113
1114 unsigned getNumIndices() const { // Note: always non-negative
1115 return getNumOperands() - 1;
1116 }
1117
1118 bool hasIndices() const {
1119 return getNumOperands() > 1;
1120 }
1121
1122 /// Return true if all of the indices of this GEP are
1123 /// zeros. If so, the result pointer and the first operand have the same
1124 /// value, just potentially different types.
1125 bool hasAllZeroIndices() const;
1126
1127 /// Return true if all of the indices of this GEP are
1128 /// constant integers. If so, the result pointer and the first operand have
1129 /// a constant offset between them.
1130 bool hasAllConstantIndices() const;
1131
1132 /// Set or clear the inbounds flag on this GEP instruction.
1133 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1134 void setIsInBounds(bool b = true);
1135
1136 /// Determine whether the GEP has the inbounds flag.
1137 bool isInBounds() const;
1138
1139 /// Accumulate the constant address offset of this GEP if possible.
1140 ///
1141 /// This routine accepts an APInt into which it will accumulate the constant
1142 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1143 /// all-constant, it returns false and the value of the offset APInt is
1144 /// undefined (it is *not* preserved!). The APInt passed into this routine
1145 /// must be at least as wide as the IntPtr type for the address space of
1146 /// the base GEP pointer.
1147 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1148 bool collectOffset(const DataLayout &DL, unsigned BitWidth,
1149 MapVector<Value *, APInt> &VariableOffsets,
1150 APInt &ConstantOffset) const;
1151 // Methods for support type inquiry through isa, cast, and dyn_cast:
1152 static bool classof(const Instruction *I) {
1153 return (I->getOpcode() == Instruction::GetElementPtr);
1154 }
1155 static bool classof(const Value *V) {
1156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1157 }
1158};
1159
1160template <>
1161struct OperandTraits<GetElementPtrInst> :
1162 public VariadicOperandTraits<GetElementPtrInst, 1> {
1163};
1164
1165GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1166 ArrayRef<Value *> IdxList, unsigned Values,
1167 const Twine &NameStr,
1168 Instruction *InsertBefore)
1169 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1170 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1171 Values, InsertBefore),
1172 SourceElementType(PointeeType),
1173 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1174 assert(cast<PointerType>(getType()->getScalarType())((void)0)
1175 ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0);
1176 init(Ptr, IdxList, NameStr);
1177}
1178
1179GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1180 ArrayRef<Value *> IdxList, unsigned Values,
1181 const Twine &NameStr,
1182 BasicBlock *InsertAtEnd)
1183 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1184 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1185 Values, InsertAtEnd),
1186 SourceElementType(PointeeType),
1187 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1188 assert(cast<PointerType>(getType()->getScalarType())((void)0)
1189 ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0);
1190 init(Ptr, IdxList, NameStr);
1191}
1192
1193DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<GetElementPtrInst>::op_begin(const_cast
<GetElementPtrInst*>(this))[i_nocapture].get()); } void
GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<GetElementPtrInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned GetElementPtrInst
::getNumOperands() const { return OperandTraits<GetElementPtrInst
>::operands(this); } template <int Idx_nocapture> Use
&GetElementPtrInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
GetElementPtrInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1194
1195//===----------------------------------------------------------------------===//
1196// ICmpInst Class
1197//===----------------------------------------------------------------------===//
1198
1199/// This instruction compares its operands according to the predicate given
1200/// to the constructor. It only operates on integers or pointers. The operands
1201/// must be identical types.
1202/// Represent an integer comparison operator.
1203class ICmpInst: public CmpInst {
1204 void AssertOK() {
1205 assert(isIntPredicate() &&((void)0)
1206 "Invalid ICmp predicate value")((void)0);
1207 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0)
1208 "Both operands to ICmp instruction are not of the same type!")((void)0);
1209 // Check that the operands are the right type
1210 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||((void)0)
1211 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&((void)0)
1212 "Invalid operand types for ICmp instruction")((void)0);
1213 }
1214
1215protected:
1216 // Note: Instruction needs to be a friend here to call cloneImpl.
1217 friend class Instruction;
1218
1219 /// Clone an identical ICmpInst
1220 ICmpInst *cloneImpl() const;
1221
1222public:
1223 /// Constructor with insert-before-instruction semantics.
1224 ICmpInst(
1225 Instruction *InsertBefore, ///< Where to insert
1226 Predicate pred, ///< The predicate to use for the comparison
1227 Value *LHS, ///< The left-hand-side of the expression
1228 Value *RHS, ///< The right-hand-side of the expression
1229 const Twine &NameStr = "" ///< Name of the instruction
1230 ) : CmpInst(makeCmpResultType(LHS->getType()),
1231 Instruction::ICmp, pred, LHS, RHS, NameStr,
1232 InsertBefore) {
1233#ifndef NDEBUG1
1234 AssertOK();
1235#endif
1236 }
1237
1238 /// Constructor with insert-at-end semantics.
1239 ICmpInst(
1240 BasicBlock &InsertAtEnd, ///< Block to insert into.
1241 Predicate pred, ///< The predicate to use for the comparison
1242 Value *LHS, ///< The left-hand-side of the expression
1243 Value *RHS, ///< The right-hand-side of the expression
1244 const Twine &NameStr = "" ///< Name of the instruction
1245 ) : CmpInst(makeCmpResultType(LHS->getType()),
1246 Instruction::ICmp, pred, LHS, RHS, NameStr,
1247 &InsertAtEnd) {
1248#ifndef NDEBUG1
1249 AssertOK();
1250#endif
1251 }
1252
1253 /// Constructor with no-insertion semantics
1254 ICmpInst(
1255 Predicate pred, ///< The predicate to use for the comparison
1256 Value *LHS, ///< The left-hand-side of the expression
1257 Value *RHS, ///< The right-hand-side of the expression
1258 const Twine &NameStr = "" ///< Name of the instruction
1259 ) : CmpInst(makeCmpResultType(LHS->getType()),
1260 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1261#ifndef NDEBUG1
1262 AssertOK();
1263#endif
1264 }
1265
1266 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1267 /// @returns the predicate that would be the result if the operand were
1268 /// regarded as signed.
1269 /// Return the signed version of the predicate
1270 Predicate getSignedPredicate() const {
1271 return getSignedPredicate(getPredicate());
1272 }
1273
1274 /// This is a static version that you can use without an instruction.
1275 /// Return the signed version of the predicate.
1276 static Predicate getSignedPredicate(Predicate pred);
1277
1278 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1279 /// @returns the predicate that would be the result if the operand were
1280 /// regarded as unsigned.
1281 /// Return the unsigned version of the predicate
1282 Predicate getUnsignedPredicate() const {
1283 return getUnsignedPredicate(getPredicate());
1284 }
1285
1286 /// This is a static version that you can use without an instruction.
1287 /// Return the unsigned version of the predicate.
1288 static Predicate getUnsignedPredicate(Predicate pred);
1289
1290 /// Return true if this predicate is either EQ or NE. This also
1291 /// tests for commutativity.
1292 static bool isEquality(Predicate P) {
1293 return P == ICMP_EQ || P == ICMP_NE;
1294 }
1295
1296 /// Return true if this predicate is either EQ or NE. This also
1297 /// tests for commutativity.
1298 bool isEquality() const {
1299 return isEquality(getPredicate());
1300 }
1301
1302 /// @returns true if the predicate of this ICmpInst is commutative
1303 /// Determine if this relation is commutative.
1304 bool isCommutative() const { return isEquality(); }
1305
1306 /// Return true if the predicate is relational (not EQ or NE).
1307 ///
1308 bool isRelational() const {
1309 return !isEquality();
1310 }
1311
1312 /// Return true if the predicate is relational (not EQ or NE).
1313 ///
1314 static bool isRelational(Predicate P) {
1315 return !isEquality(P);
1316 }
1317
1318 /// Return true if the predicate is SGT or UGT.
1319 ///
1320 static bool isGT(Predicate P) {
1321 return P == ICMP_SGT || P == ICMP_UGT;
1322 }
1323
1324 /// Return true if the predicate is SLT or ULT.
1325 ///
1326 static bool isLT(Predicate P) {
1327 return P == ICMP_SLT || P == ICMP_ULT;
1328 }
1329
1330 /// Return true if the predicate is SGE or UGE.
1331 ///
1332 static bool isGE(Predicate P) {
1333 return P == ICMP_SGE || P == ICMP_UGE;
1334 }
1335
1336 /// Return true if the predicate is SLE or ULE.
1337 ///
1338 static bool isLE(Predicate P) {
1339 return P == ICMP_SLE || P == ICMP_ULE;
1340 }
1341
1342 /// Exchange the two operands to this instruction in such a way that it does
1343 /// not modify the semantics of the instruction. The predicate value may be
1344 /// changed to retain the same result if the predicate is order dependent
1345 /// (e.g. ult).
1346 /// Swap operands and adjust predicate.
1347 void swapOperands() {
1348 setPredicate(getSwappedPredicate());
1349 Op<0>().swap(Op<1>());
1350 }
1351
1352 // Methods for support type inquiry through isa, cast, and dyn_cast:
1353 static bool classof(const Instruction *I) {
1354 return I->getOpcode() == Instruction::ICmp;
1355 }
1356 static bool classof(const Value *V) {
1357 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1358 }
1359};
1360
1361//===----------------------------------------------------------------------===//
1362// FCmpInst Class
1363//===----------------------------------------------------------------------===//
1364
1365/// This instruction compares its operands according to the predicate given
1366/// to the constructor. It only operates on floating point values or packed
1367/// vectors of floating point values. The operands must be identical types.
1368/// Represents a floating point comparison operator.
1369class FCmpInst: public CmpInst {
1370 void AssertOK() {
1371 assert(isFPPredicate() && "Invalid FCmp predicate value")((void)0);
1372 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0)
1373 "Both operands to FCmp instruction are not of the same type!")((void)0);
1374 // Check that the operands are the right type
1375 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((void)0)
1376 "Invalid operand types for FCmp instruction")((void)0);
1377 }
1378
1379protected:
1380 // Note: Instruction needs to be a friend here to call cloneImpl.
1381 friend class Instruction;
1382
1383 /// Clone an identical FCmpInst
1384 FCmpInst *cloneImpl() const;
1385
1386public:
1387 /// Constructor with insert-before-instruction semantics.
1388 FCmpInst(
1389 Instruction *InsertBefore, ///< Where to insert
1390 Predicate pred, ///< The predicate to use for the comparison
1391 Value *LHS, ///< The left-hand-side of the expression
1392 Value *RHS, ///< The right-hand-side of the expression
1393 const Twine &NameStr = "" ///< Name of the instruction
1394 ) : CmpInst(makeCmpResultType(LHS->getType()),
1395 Instruction::FCmp, pred, LHS, RHS, NameStr,
1396 InsertBefore) {
1397 AssertOK();
1398 }
1399
1400 /// Constructor with insert-at-end semantics.
1401 FCmpInst(
1402 BasicBlock &InsertAtEnd, ///< Block to insert into.
1403 Predicate pred, ///< The predicate to use for the comparison
1404 Value *LHS, ///< The left-hand-side of the expression
1405 Value *RHS, ///< The right-hand-side of the expression
1406 const Twine &NameStr = "" ///< Name of the instruction
1407 ) : CmpInst(makeCmpResultType(LHS->getType()),
1408 Instruction::FCmp, pred, LHS, RHS, NameStr,
1409 &InsertAtEnd) {
1410 AssertOK();
1411 }
1412
1413 /// Constructor with no-insertion semantics
1414 FCmpInst(
1415 Predicate Pred, ///< The predicate to use for the comparison
1416 Value *LHS, ///< The left-hand-side of the expression
1417 Value *RHS, ///< The right-hand-side of the expression
1418 const Twine &NameStr = "", ///< Name of the instruction
1419 Instruction *FlagsSource = nullptr
1420 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1421 RHS, NameStr, nullptr, FlagsSource) {
1422 AssertOK();
1423 }
1424
1425 /// @returns true if the predicate of this instruction is EQ or NE.
1426 /// Determine if this is an equality predicate.
1427 static bool isEquality(Predicate Pred) {
1428 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1429 Pred == FCMP_UNE;
1430 }
1431
1432 /// @returns true if the predicate of this instruction is EQ or NE.
1433 /// Determine if this is an equality predicate.
1434 bool isEquality() const { return isEquality(getPredicate()); }
1435
1436 /// @returns true if the predicate of this instruction is commutative.
1437 /// Determine if this is a commutative predicate.
1438 bool isCommutative() const {
1439 return isEquality() ||
1440 getPredicate() == FCMP_FALSE ||
1441 getPredicate() == FCMP_TRUE ||
1442 getPredicate() == FCMP_ORD ||
1443 getPredicate() == FCMP_UNO;
1444 }
1445
1446 /// @returns true if the predicate is relational (not EQ or NE).
1447 /// Determine if this a relational predicate.
1448 bool isRelational() const { return !isEquality(); }
1449
1450 /// Exchange the two operands to this instruction in such a way that it does
1451 /// not modify the semantics of the instruction. The predicate value may be
1452 /// changed to retain the same result if the predicate is order dependent
1453 /// (e.g. ult).
1454 /// Swap operands and adjust predicate.
1455 void swapOperands() {
1456 setPredicate(getSwappedPredicate());
1457 Op<0>().swap(Op<1>());
1458 }
1459
1460 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1461 static bool classof(const Instruction *I) {
1462 return I->getOpcode() == Instruction::FCmp;
1463 }
1464 static bool classof(const Value *V) {
1465 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1466 }
1467};
1468
1469//===----------------------------------------------------------------------===//
1470/// This class represents a function call, abstracting a target
1471/// machine's calling convention. This class uses low bit of the SubClassData
1472/// field to indicate whether or not this is a tail call. The rest of the bits
1473/// hold the calling convention of the call.
1474///
1475class CallInst : public CallBase {
1476 CallInst(const CallInst &CI);
1477
1478 /// Construct a CallInst given a range of arguments.
1479 /// Construct a CallInst from a range of arguments
1480 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1481 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1482 Instruction *InsertBefore);
1483
1484 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1485 const Twine &NameStr, Instruction *InsertBefore)
1486 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1487
1488 /// Construct a CallInst given a range of arguments.
1489 /// Construct a CallInst from a range of arguments
1490 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1491 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1492 BasicBlock *InsertAtEnd);
1493
1494 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1495 Instruction *InsertBefore);
1496
1497 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1498 BasicBlock *InsertAtEnd);
1499
1500 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1501 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1502 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1503
1504 /// Compute the number of operands to allocate.
1505 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1506 // We need one operand for the called function, plus the input operand
1507 // counts provided.
1508 return 1 + NumArgs + NumBundleInputs;
1509 }
1510
1511protected:
1512 // Note: Instruction needs to be a friend here to call cloneImpl.
1513 friend class Instruction;
1514
1515 CallInst *cloneImpl() const;
1516
1517public:
1518 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1519 Instruction *InsertBefore = nullptr) {
1520 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1521 }
1522
1523 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1524 const Twine &NameStr,
1525 Instruction *InsertBefore = nullptr) {
1526 return new (ComputeNumOperands(Args.size()))
1527 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1528 }
1529
1530 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1531 ArrayRef<OperandBundleDef> Bundles = None,
1532 const Twine &NameStr = "",
1533 Instruction *InsertBefore = nullptr) {
1534 const int NumOperands =
1535 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1536 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1537
1538 return new (NumOperands, DescriptorBytes)
1539 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1540 }
1541
1542 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1543 BasicBlock *InsertAtEnd) {
1544 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1545 }
1546
1547 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1548 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1549 return new (ComputeNumOperands(Args.size()))
1550 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1551 }
1552
1553 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1554 ArrayRef<OperandBundleDef> Bundles,
1555 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1556 const int NumOperands =
1557 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1558 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1559
1560 return new (NumOperands, DescriptorBytes)
1561 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1562 }
1563
1564 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1565 Instruction *InsertBefore = nullptr) {
1566 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1567 InsertBefore);
1568 }
1569
1570 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1571 ArrayRef<OperandBundleDef> Bundles = None,
1572 const Twine &NameStr = "",
1573 Instruction *InsertBefore = nullptr) {
1574 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1575 NameStr, InsertBefore);
1576 }
1577
1578 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1579 const Twine &NameStr,
1580 Instruction *InsertBefore = nullptr) {
1581 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1582 InsertBefore);
1583 }
1584
1585 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1586 BasicBlock *InsertAtEnd) {
1587 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1588 InsertAtEnd);
1589 }
1590
1591 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1592 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1593 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1594 InsertAtEnd);
1595 }
1596
1597 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1598 ArrayRef<OperandBundleDef> Bundles,
1599 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1600 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1601 NameStr, InsertAtEnd);
1602 }
1603
1604 /// Create a clone of \p CI with a different set of operand bundles and
1605 /// insert it before \p InsertPt.
1606 ///
1607 /// The returned call instruction is identical \p CI in every way except that
1608 /// the operand bundles for the new instruction are set to the operand bundles
1609 /// in \p Bundles.
1610 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1611 Instruction *InsertPt = nullptr);
1612
1613 /// Generate the IR for a call to malloc:
1614 /// 1. Compute the malloc call's argument as the specified type's size,
1615 /// possibly multiplied by the array size if the array size is not
1616 /// constant 1.
1617 /// 2. Call malloc with that argument.
1618 /// 3. Bitcast the result of the malloc call to the specified type.
1619 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1620 Type *AllocTy, Value *AllocSize,
1621 Value *ArraySize = nullptr,
1622 Function *MallocF = nullptr,
1623 const Twine &Name = "");
1624 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1625 Type *AllocTy, Value *AllocSize,
1626 Value *ArraySize = nullptr,
1627 Function *MallocF = nullptr,
1628 const Twine &Name = "");
1629 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1630 Type *AllocTy, Value *AllocSize,
1631 Value *ArraySize = nullptr,
1632 ArrayRef<OperandBundleDef> Bundles = None,
1633 Function *MallocF = nullptr,
1634 const Twine &Name = "");
1635 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1636 Type *AllocTy, Value *AllocSize,
1637 Value *ArraySize = nullptr,
1638 ArrayRef<OperandBundleDef> Bundles = None,
1639 Function *MallocF = nullptr,
1640 const Twine &Name = "");
1641 /// Generate the IR for a call to the builtin free function.
1642 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1643 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1644 static Instruction *CreateFree(Value *Source,
1645 ArrayRef<OperandBundleDef> Bundles,
1646 Instruction *InsertBefore);
1647 static Instruction *CreateFree(Value *Source,
1648 ArrayRef<OperandBundleDef> Bundles,
1649 BasicBlock *InsertAtEnd);
1650
1651 // Note that 'musttail' implies 'tail'.
1652 enum TailCallKind : unsigned {
1653 TCK_None = 0,
1654 TCK_Tail = 1,
1655 TCK_MustTail = 2,
1656 TCK_NoTail = 3,
1657 TCK_LAST = TCK_NoTail
1658 };
1659
1660 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1661 static_assert(
1662 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1663 "Bitfields must be contiguous");
1664
1665 TailCallKind getTailCallKind() const {
1666 return getSubclassData<TailCallKindField>();
1667 }
1668
1669 bool isTailCall() const {
1670 TailCallKind Kind = getTailCallKind();
1671 return Kind == TCK_Tail || Kind == TCK_MustTail;
1672 }
1673
1674 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1675
1676 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1677
1678 void setTailCallKind(TailCallKind TCK) {
1679 setSubclassData<TailCallKindField>(TCK);
1680 }
1681
1682 void setTailCall(bool IsTc = true) {
1683 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1684 }
1685
1686 /// Return true if the call can return twice
1687 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1688 void setCanReturnTwice() {
1689 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1690 }
1691
1692 // Methods for support type inquiry through isa, cast, and dyn_cast:
1693 static bool classof(const Instruction *I) {
1694 return I->getOpcode() == Instruction::Call;
1695 }
1696 static bool classof(const Value *V) {
1697 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1698 }
1699
1700 /// Updates profile metadata by scaling it by \p S / \p T.
1701 void updateProfWeight(uint64_t S, uint64_t T);
1702
1703private:
1704 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1705 // method so that subclasses cannot accidentally use it.
1706 template <typename Bitfield>
1707 void setSubclassData(typename Bitfield::Type Value) {
1708 Instruction::setSubclassData<Bitfield>(Value);
1709 }
1710};
1711
1712CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1713 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1714 BasicBlock *InsertAtEnd)
1715 : CallBase(Ty->getReturnType(), Instruction::Call,
1716 OperandTraits<CallBase>::op_end(this) -
1717 (Args.size() + CountBundleInputs(Bundles) + 1),
1718 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1719 InsertAtEnd) {
1720 init(Ty, Func, Args, Bundles, NameStr);
1721}
1722
1723CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1724 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1725 Instruction *InsertBefore)
1726 : CallBase(Ty->getReturnType(), Instruction::Call,
1727 OperandTraits<CallBase>::op_end(this) -
1728 (Args.size() + CountBundleInputs(Bundles) + 1),
1729 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1730 InsertBefore) {
1731 init(Ty, Func, Args, Bundles, NameStr);
1732}
1733
1734//===----------------------------------------------------------------------===//
1735// SelectInst Class
1736//===----------------------------------------------------------------------===//
1737
1738/// This class represents the LLVM 'select' instruction.
1739///
1740class SelectInst : public Instruction {
1741 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1742 Instruction *InsertBefore)
1743 : Instruction(S1->getType(), Instruction::Select,
1744 &Op<0>(), 3, InsertBefore) {
1745 init(C, S1, S2);
1746 setName(NameStr);
1747 }
1748
1749 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1750 BasicBlock *InsertAtEnd)
1751 : Instruction(S1->getType(), Instruction::Select,
1752 &Op<0>(), 3, InsertAtEnd) {
1753 init(C, S1, S2);
1754 setName(NameStr);
1755 }
1756
1757 void init(Value *C, Value *S1, Value *S2) {
1758 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((void)0);
1759 Op<0>() = C;
1760 Op<1>() = S1;
1761 Op<2>() = S2;
1762 }
1763
1764protected:
1765 // Note: Instruction needs to be a friend here to call cloneImpl.
1766 friend class Instruction;
1767
1768 SelectInst *cloneImpl() const;
1769
1770public:
1771 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1772 const Twine &NameStr = "",
1773 Instruction *InsertBefore = nullptr,
1774 Instruction *MDFrom = nullptr) {
1775 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1776 if (MDFrom)
1777 Sel->copyMetadata(*MDFrom);
1778 return Sel;
1779 }
1780
1781 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1782 const Twine &NameStr,
1783 BasicBlock *InsertAtEnd) {
1784 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1785 }
1786
1787 const Value *getCondition() const { return Op<0>(); }
1788 const Value *getTrueValue() const { return Op<1>(); }
1789 const Value *getFalseValue() const { return Op<2>(); }
1790 Value *getCondition() { return Op<0>(); }
1791 Value *getTrueValue() { return Op<1>(); }
1792 Value *getFalseValue() { return Op<2>(); }
1793
1794 void setCondition(Value *V) { Op<0>() = V; }
1795 void setTrueValue(Value *V) { Op<1>() = V; }
1796 void setFalseValue(Value *V) { Op<2>() = V; }
1797
1798 /// Swap the true and false values of the select instruction.
1799 /// This doesn't swap prof metadata.
1800 void swapValues() { Op<1>().swap(Op<2>()); }
1801
1802 /// Return a string if the specified operands are invalid
1803 /// for a select operation, otherwise return null.
1804 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1805
1806 /// Transparently provide more efficient getOperand methods.
1807 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1808
1809 OtherOps getOpcode() const {
1810 return static_cast<OtherOps>(Instruction::getOpcode());
1811 }
1812
1813 // Methods for support type inquiry through isa, cast, and dyn_cast:
1814 static bool classof(const Instruction *I) {
1815 return I->getOpcode() == Instruction::Select;
1816 }
1817 static bool classof(const Value *V) {
1818 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1819 }
1820};
1821
1822template <>
1823struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1824};
1825
1826DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<SelectInst>::op_begin(const_cast
<SelectInst*>(this))[i_nocapture].get()); } void SelectInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<SelectInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned SelectInst::getNumOperands() const
{ return OperandTraits<SelectInst>::operands(this); } template
<int Idx_nocapture> Use &SelectInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &SelectInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
1827
1828//===----------------------------------------------------------------------===//
1829// VAArgInst Class
1830//===----------------------------------------------------------------------===//
1831
1832/// This class represents the va_arg llvm instruction, which returns
1833/// an argument of the specified type given a va_list and increments that list
1834///
1835class VAArgInst : public UnaryInstruction {
1836protected:
1837 // Note: Instruction needs to be a friend here to call cloneImpl.
1838 friend class Instruction;
1839
1840 VAArgInst *cloneImpl() const;
1841
1842public:
1843 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1844 Instruction *InsertBefore = nullptr)
1845 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1846 setName(NameStr);
1847 }
1848
1849 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1850 BasicBlock *InsertAtEnd)
1851 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1852 setName(NameStr);
1853 }
1854
1855 Value *getPointerOperand() { return getOperand(0); }
1856 const Value *getPointerOperand() const { return getOperand(0); }
1857 static unsigned getPointerOperandIndex() { return 0U; }
1858
1859 // Methods for support type inquiry through isa, cast, and dyn_cast:
1860 static bool classof(const Instruction *I) {
1861 return I->getOpcode() == VAArg;
1862 }
1863 static bool classof(const Value *V) {
1864 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1865 }
1866};
1867
1868//===----------------------------------------------------------------------===//
1869// ExtractElementInst Class
1870//===----------------------------------------------------------------------===//
1871
1872/// This instruction extracts a single (scalar)
1873/// element from a VectorType value
1874///
1875class ExtractElementInst : public Instruction {
1876 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1877 Instruction *InsertBefore = nullptr);
1878 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1879 BasicBlock *InsertAtEnd);
1880
1881protected:
1882 // Note: Instruction needs to be a friend here to call cloneImpl.
1883 friend class Instruction;
1884
1885 ExtractElementInst *cloneImpl() const;
1886
1887public:
1888 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1889 const Twine &NameStr = "",
1890 Instruction *InsertBefore = nullptr) {
1891 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1892 }
1893
1894 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1895 const Twine &NameStr,
1896 BasicBlock *InsertAtEnd) {
1897 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1898 }
1899
1900 /// Return true if an extractelement instruction can be
1901 /// formed with the specified operands.
1902 static bool isValidOperands(const Value *Vec, const Value *Idx);
1903
1904 Value *getVectorOperand() { return Op<0>(); }
1905 Value *getIndexOperand() { return Op<1>(); }
1906 const Value *getVectorOperand() const { return Op<0>(); }
1907 const Value *getIndexOperand() const { return Op<1>(); }
1908
1909 VectorType *getVectorOperandType() const {
1910 return cast<VectorType>(getVectorOperand()->getType());
1911 }
1912
1913 /// Transparently provide more efficient getOperand methods.
1914 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1915
1916 // Methods for support type inquiry through isa, cast, and dyn_cast:
1917 static bool classof(const Instruction *I) {
1918 return I->getOpcode() == Instruction::ExtractElement;
1919 }
1920 static bool classof(const Value *V) {
1921 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1922 }
1923};
1924
1925template <>
1926struct OperandTraits<ExtractElementInst> :
1927 public FixedNumOperandTraits<ExtractElementInst, 2> {
1928};
1929
1930DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
((void)0); return cast_or_null<Value>( OperandTraits<
ExtractElementInst>::op_begin(const_cast<ExtractElementInst
*>(this))[i_nocapture].get()); } void ExtractElementInst::
setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void
)0); OperandTraits<ExtractElementInst>::op_begin(this)[
i_nocapture] = Val_nocapture; } unsigned ExtractElementInst::
getNumOperands() const { return OperandTraits<ExtractElementInst
>::operands(this); } template <int Idx_nocapture> Use
&ExtractElementInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ExtractElementInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1931
1932//===----------------------------------------------------------------------===//
1933// InsertElementInst Class
1934//===----------------------------------------------------------------------===//
1935
1936/// This instruction inserts a single (scalar)
1937/// element into a VectorType value
1938///
1939class InsertElementInst : public Instruction {
1940 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1941 const Twine &NameStr = "",
1942 Instruction *InsertBefore = nullptr);
1943 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1944 BasicBlock *InsertAtEnd);
1945
1946protected:
1947 // Note: Instruction needs to be a friend here to call cloneImpl.
1948 friend class Instruction;
1949
1950 InsertElementInst *cloneImpl() const;
1951
1952public:
1953 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1954 const Twine &NameStr = "",
1955 Instruction *InsertBefore = nullptr) {
1956 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1957 }
1958
1959 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1960 const Twine &NameStr,
1961 BasicBlock *InsertAtEnd) {
1962 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1963 }
1964
1965 /// Return true if an insertelement instruction can be
1966 /// formed with the specified operands.
1967 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1968 const Value *Idx);
1969
1970 /// Overload to return most specific vector type.
1971 ///
1972 VectorType *getType() const {
1973 return cast<VectorType>(Instruction::getType());
1974 }
1975
1976 /// Transparently provide more efficient getOperand methods.
1977 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1978
1979 // Methods for support type inquiry through isa, cast, and dyn_cast:
1980 static bool classof(const Instruction *I) {
1981 return I->getOpcode() == Instruction::InsertElement;
1982 }
1983 static bool classof(const Value *V) {
1984 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1985 }
1986};
1987
1988template <>
1989struct OperandTraits<InsertElementInst> :
1990 public FixedNumOperandTraits<InsertElementInst, 3> {
1991};
1992
1993DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<InsertElementInst>::op_begin(const_cast
<InsertElementInst*>(this))[i_nocapture].get()); } void
InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<InsertElementInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned InsertElementInst
::getNumOperands() const { return OperandTraits<InsertElementInst
>::operands(this); } template <int Idx_nocapture> Use
&InsertElementInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
InsertElementInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1994
1995//===----------------------------------------------------------------------===//
1996// ShuffleVectorInst Class
1997//===----------------------------------------------------------------------===//
1998
1999constexpr int UndefMaskElem = -1;
2000
2001/// This instruction constructs a fixed permutation of two
2002/// input vectors.
2003///
2004/// For each element of the result vector, the shuffle mask selects an element
2005/// from one of the input vectors to copy to the result. Non-negative elements
2006/// in the mask represent an index into the concatenated pair of input vectors.
2007/// UndefMaskElem (-1) specifies that the result element is undefined.
2008///
2009/// For scalable vectors, all the elements of the mask must be 0 or -1. This
2010/// requirement may be relaxed in the future.
2011class ShuffleVectorInst : public Instruction {
2012 SmallVector<int, 4> ShuffleMask;
2013 Constant *ShuffleMaskForBitcode;
2014
2015protected:
2016 // Note: Instruction needs to be a friend here to call cloneImpl.
2017 friend class Instruction;
2018
2019 ShuffleVectorInst *cloneImpl() const;
2020
2021public:
2022 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2023 const Twine &NameStr = "",
2024 Instruction *InsertBefor = nullptr);
2025 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2026 const Twine &NameStr, BasicBlock *InsertAtEnd);
2027 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2028 const Twine &NameStr = "",
2029 Instruction *InsertBefor = nullptr);
2030 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2031 const Twine &NameStr, BasicBlock *InsertAtEnd);
2032
2033 void *operator new(size_t S) { return User::operator new(S, 2); }
2034 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
2035
2036 /// Swap the operands and adjust the mask to preserve the semantics
2037 /// of the instruction.
2038 void commute();
2039
2040 /// Return true if a shufflevector instruction can be
2041 /// formed with the specified operands.
2042 static bool isValidOperands(const Value *V1, const Value *V2,
2043 const Value *Mask);
2044 static bool isValidOperands(const Value *V1, const Value *V2,
2045 ArrayRef<int> Mask);
2046
2047 /// Overload to return most specific vector type.
2048 ///
2049 VectorType *getType() const {
2050 return cast<VectorType>(Instruction::getType());
2051 }
2052
2053 /// Transparently provide more efficient getOperand methods.
2054 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2055
2056 /// Return the shuffle mask value of this instruction for the given element
2057 /// index. Return UndefMaskElem if the element is undef.
2058 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2059
2060 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2061 /// elements of the mask are returned as UndefMaskElem.
2062 static void getShuffleMask(const Constant *Mask,
2063 SmallVectorImpl<int> &Result);
2064
2065 /// Return the mask for this instruction as a vector of integers. Undefined
2066 /// elements of the mask are returned as UndefMaskElem.
2067 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2068 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2069 }
2070
2071 /// Return the mask for this instruction, for use in bitcode.
2072 ///
2073 /// TODO: This is temporary until we decide a new bitcode encoding for
2074 /// shufflevector.
2075 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2076
2077 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2078 Type *ResultTy);
2079
2080 void setShuffleMask(ArrayRef<int> Mask);
2081
2082 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2083
2084 /// Return true if this shuffle returns a vector with a different number of
2085 /// elements than its source vectors.
2086 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2087 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2088 bool changesLength() const {
2089 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2090 ->getElementCount()
2091 .getKnownMinValue();
2092 unsigned NumMaskElts = ShuffleMask.size();
2093 return NumSourceElts != NumMaskElts;
2094 }
2095
2096 /// Return true if this shuffle returns a vector with a greater number of
2097 /// elements than its source vectors.
2098 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2099 bool increasesLength() const {
2100 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2101 ->getElementCount()
2102 .getKnownMinValue();
2103 unsigned NumMaskElts = ShuffleMask.size();
2104 return NumSourceElts < NumMaskElts;
2105 }
2106
2107 /// Return true if this shuffle mask chooses elements from exactly one source
2108 /// vector.
2109 /// Example: <7,5,undef,7>
2110 /// This assumes that vector operands are the same length as the mask.
2111 static bool isSingleSourceMask(ArrayRef<int> Mask);
2112 static bool isSingleSourceMask(const Constant *Mask) {
2113 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2114 SmallVector<int, 16> MaskAsInts;
2115 getShuffleMask(Mask, MaskAsInts);
2116 return isSingleSourceMask(MaskAsInts);
2117 }
2118
2119 /// Return true if this shuffle chooses elements from exactly one source
2120 /// vector without changing the length of that vector.
2121 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2122 /// TODO: Optionally allow length-changing shuffles.
2123 bool isSingleSource() const {
2124 return !changesLength() && isSingleSourceMask(ShuffleMask);
2125 }
2126
2127 /// Return true if this shuffle mask chooses elements from exactly one source
2128 /// vector without lane crossings. A shuffle using this mask is not
2129 /// necessarily a no-op because it may change the number of elements from its
2130 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2131 /// Example: <undef,undef,2,3>
2132 static bool isIdentityMask(ArrayRef<int> Mask);
2133 static bool isIdentityMask(const Constant *Mask) {
2134 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2135 SmallVector<int, 16> MaskAsInts;
2136 getShuffleMask(Mask, MaskAsInts);
2137 return isIdentityMask(MaskAsInts);
2138 }
2139
2140 /// Return true if this shuffle chooses elements from exactly one source
2141 /// vector without lane crossings and does not change the number of elements
2142 /// from its input vectors.
2143 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2144 bool isIdentity() const {
2145 return !changesLength() && isIdentityMask(ShuffleMask);
2146 }
2147
2148 /// Return true if this shuffle lengthens exactly one source vector with
2149 /// undefs in the high elements.
2150 bool isIdentityWithPadding() const;
2151
2152 /// Return true if this shuffle extracts the first N elements of exactly one
2153 /// source vector.
2154 bool isIdentityWithExtract() const;
2155
2156 /// Return true if this shuffle concatenates its 2 source vectors. This
2157 /// returns false if either input is undefined. In that case, the shuffle is
2158 /// is better classified as an identity with padding operation.
2159 bool isConcat() const;
2160
2161 /// Return true if this shuffle mask chooses elements from its source vectors
2162 /// without lane crossings. A shuffle using this mask would be
2163 /// equivalent to a vector select with a constant condition operand.
2164 /// Example: <4,1,6,undef>
2165 /// This returns false if the mask does not choose from both input vectors.
2166 /// In that case, the shuffle is better classified as an identity shuffle.
2167 /// This assumes that vector operands are the same length as the mask
2168 /// (a length-changing shuffle can never be equivalent to a vector select).
2169 static bool isSelectMask(ArrayRef<int> Mask);
2170 static bool isSelectMask(const Constant *Mask) {
2171 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2172 SmallVector<int, 16> MaskAsInts;
2173 getShuffleMask(Mask, MaskAsInts);
2174 return isSelectMask(MaskAsInts);
2175 }
2176
2177 /// Return true if this shuffle chooses elements from its source vectors
2178 /// without lane crossings and all operands have the same number of elements.
2179 /// In other words, this shuffle is equivalent to a vector select with a
2180 /// constant condition operand.
2181 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2182 /// This returns false if the mask does not choose from both input vectors.
2183 /// In that case, the shuffle is better classified as an identity shuffle.
2184 /// TODO: Optionally allow length-changing shuffles.
2185 bool isSelect() const {
2186 return !changesLength() && isSelectMask(ShuffleMask);
2187 }
2188
2189 /// Return true if this shuffle mask swaps the order of elements from exactly
2190 /// one source vector.
2191 /// Example: <7,6,undef,4>
2192 /// This assumes that vector operands are the same length as the mask.
2193 static bool isReverseMask(ArrayRef<int> Mask);
2194 static bool isReverseMask(const Constant *Mask) {
2195 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2196 SmallVector<int, 16> MaskAsInts;
2197 getShuffleMask(Mask, MaskAsInts);
2198 return isReverseMask(MaskAsInts);
2199 }
2200
2201 /// Return true if this shuffle swaps the order of elements from exactly
2202 /// one source vector.
2203 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2204 /// TODO: Optionally allow length-changing shuffles.
2205 bool isReverse() const {
2206 return !changesLength() && isReverseMask(ShuffleMask);
2207 }
2208
2209 /// Return true if this shuffle mask chooses all elements with the same value
2210 /// as the first element of exactly one source vector.
2211 /// Example: <4,undef,undef,4>
2212 /// This assumes that vector operands are the same length as the mask.
2213 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2214 static bool isZeroEltSplatMask(const Constant *Mask) {
2215 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2216 SmallVector<int, 16> MaskAsInts;
2217 getShuffleMask(Mask, MaskAsInts);
2218 return isZeroEltSplatMask(MaskAsInts);
2219 }
2220
2221 /// Return true if all elements of this shuffle are the same value as the
2222 /// first element of exactly one source vector without changing the length
2223 /// of that vector.
2224 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2225 /// TODO: Optionally allow length-changing shuffles.
2226 /// TODO: Optionally allow splats from other elements.
2227 bool isZeroEltSplat() const {
2228 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2229 }
2230
2231 /// Return true if this shuffle mask is a transpose mask.
2232 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2233 /// even- or odd-numbered vector elements from two n-dimensional source
2234 /// vectors and write each result into consecutive elements of an
2235 /// n-dimensional destination vector. Two shuffles are necessary to complete
2236 /// the transpose, one for the even elements and another for the odd elements.
2237 /// This description closely follows how the TRN1 and TRN2 AArch64
2238 /// instructions operate.
2239 ///
2240 /// For example, a simple 2x2 matrix can be transposed with:
2241 ///
2242 /// ; Original matrix
2243 /// m0 = < a, b >
2244 /// m1 = < c, d >
2245 ///
2246 /// ; Transposed matrix
2247 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2248 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2249 ///
2250 /// For matrices having greater than n columns, the resulting nx2 transposed
2251 /// matrix is stored in two result vectors such that one vector contains
2252 /// interleaved elements from all the even-numbered rows and the other vector
2253 /// contains interleaved elements from all the odd-numbered rows. For example,
2254 /// a 2x4 matrix can be transposed with:
2255 ///
2256 /// ; Original matrix
2257 /// m0 = < a, b, c, d >
2258 /// m1 = < e, f, g, h >
2259 ///
2260 /// ; Transposed matrix
2261 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2262 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2263 static bool isTransposeMask(ArrayRef<int> Mask);
2264 static bool isTransposeMask(const Constant *Mask) {
2265 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2266 SmallVector<int, 16> MaskAsInts;
2267 getShuffleMask(Mask, MaskAsInts);
2268 return isTransposeMask(MaskAsInts);
2269 }
2270
2271 /// Return true if this shuffle transposes the elements of its inputs without
2272 /// changing the length of the vectors. This operation may also be known as a
2273 /// merge or interleave. See the description for isTransposeMask() for the
2274 /// exact specification.
2275 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2276 bool isTranspose() const {
2277 return !changesLength() && isTransposeMask(ShuffleMask);
2278 }
2279
2280 /// Return true if this shuffle mask is an extract subvector mask.
2281 /// A valid extract subvector mask returns a smaller vector from a single
2282 /// source operand. The base extraction index is returned as well.
2283 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2284 int &Index);
2285 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2286 int &Index) {
2287 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0);
2288 // Not possible to express a shuffle mask for a scalable vector for this
2289 // case.
2290 if (isa<ScalableVectorType>(Mask->getType()))
2291 return false;
2292 SmallVector<int, 16> MaskAsInts;
2293 getShuffleMask(Mask, MaskAsInts);
2294 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2295 }
2296
2297 /// Return true if this shuffle mask is an extract subvector mask.
2298 bool isExtractSubvectorMask(int &Index) const {
2299 // Not possible to express a shuffle mask for a scalable vector for this
2300 // case.
2301 if (isa<ScalableVectorType>(getType()))
2302 return false;
2303
2304 int NumSrcElts =
2305 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2306 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2307 }
2308
2309 /// Change values in a shuffle permute mask assuming the two vector operands
2310 /// of length InVecNumElts have swapped position.
2311 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2312 unsigned InVecNumElts) {
2313 for (int &Idx : Mask) {
2314 if (Idx == -1)
2315 continue;
2316 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2317 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((void)0)
2318 "shufflevector mask index out of range")((void)0);
2319 }
2320 }
2321
2322 // Methods for support type inquiry through isa, cast, and dyn_cast:
2323 static bool classof(const Instruction *I) {
2324 return I->getOpcode() == Instruction::ShuffleVector;
2325 }
2326 static bool classof(const Value *V) {
2327 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2328 }
2329};
2330
2331template <>
2332struct OperandTraits<ShuffleVectorInst>
2333 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2334
2335DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<ShuffleVectorInst>::op_begin(const_cast
<ShuffleVectorInst*>(this))[i_nocapture].get()); } void
ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<ShuffleVectorInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned ShuffleVectorInst
::getNumOperands() const { return OperandTraits<ShuffleVectorInst
>::operands(this); } template <int Idx_nocapture> Use
&ShuffleVectorInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ShuffleVectorInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2336
2337//===----------------------------------------------------------------------===//
2338// ExtractValueInst Class
2339//===----------------------------------------------------------------------===//
2340
2341/// This instruction extracts a struct member or array
2342/// element value from an aggregate value.
2343///
2344class ExtractValueInst : public UnaryInstruction {
2345 SmallVector<unsigned, 4> Indices;
2346
2347 ExtractValueInst(const ExtractValueInst &EVI);
2348
2349 /// Constructors - Create a extractvalue instruction with a base aggregate
2350 /// value and a list of indices. The first ctor can optionally insert before
2351 /// an existing instruction, the second appends the new instruction to the
2352 /// specified BasicBlock.
2353 inline ExtractValueInst(Value *Agg,
2354 ArrayRef<unsigned> Idxs,
2355 const Twine &NameStr,
2356 Instruction *InsertBefore);
2357 inline ExtractValueInst(Value *Agg,
2358 ArrayRef<unsigned> Idxs,
2359 const Twine &NameStr, BasicBlock *InsertAtEnd);
2360
2361 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2362
2363protected:
2364 // Note: Instruction needs to be a friend here to call cloneImpl.
2365 friend class Instruction;
2366
2367 ExtractValueInst *cloneImpl() const;
2368
2369public:
2370 static ExtractValueInst *Create(Value *Agg,
2371 ArrayRef<unsigned> Idxs,
2372 const Twine &NameStr = "",
2373 Instruction *InsertBefore = nullptr) {
2374 return new
2375 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2376 }
2377
2378 static ExtractValueInst *Create(Value *Agg,
2379 ArrayRef<unsigned> Idxs,
2380 const Twine &NameStr,
2381 BasicBlock *InsertAtEnd) {
2382 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2383 }
2384
2385 /// Returns the type of the element that would be extracted
2386 /// with an extractvalue instruction with the specified parameters.
2387 ///
2388 /// Null is returned if the indices are invalid for the specified type.
2389 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2390
2391 using idx_iterator = const unsigned*;
2392
2393 inline idx_iterator idx_begin() const { return Indices.begin(); }
2394 inline idx_iterator idx_end() const { return Indices.end(); }
2395 inline iterator_range<idx_iterator> indices() const {
2396 return make_range(idx_begin(), idx_end());
2397 }
2398
2399 Value *getAggregateOperand() {
2400 return getOperand(0);
2401 }
2402 const Value *getAggregateOperand() const {
2403 return getOperand(0);
2404 }
2405 static unsigned getAggregateOperandIndex() {
2406 return 0U; // get index for modifying correct operand
2407 }
2408
2409 ArrayRef<unsigned> getIndices() const {
2410 return Indices;
2411 }
2412
2413 unsigned getNumIndices() const {
2414 return (unsigned)Indices.size();
2415 }
2416
2417 bool hasIndices() const {
2418 return true;
2419 }
2420
2421 // Methods for support type inquiry through isa, cast, and dyn_cast:
2422 static bool classof(const Instruction *I) {
2423 return I->getOpcode() == Instruction::ExtractValue;
2424 }
2425 static bool classof(const Value *V) {
2426 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2427 }
2428};
2429
2430ExtractValueInst::ExtractValueInst(Value *Agg,
2431 ArrayRef<unsigned> Idxs,
2432 const Twine &NameStr,
2433 Instruction *InsertBefore)
2434 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2435 ExtractValue, Agg, InsertBefore) {
2436 init(Idxs, NameStr);
2437}
2438
2439ExtractValueInst::ExtractValueInst(Value *Agg,
2440 ArrayRef<unsigned> Idxs,
2441 const Twine &NameStr,
2442 BasicBlock *InsertAtEnd)
2443 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2444 ExtractValue, Agg, InsertAtEnd) {
2445 init(Idxs, NameStr);
2446}
2447
2448//===----------------------------------------------------------------------===//
2449// InsertValueInst Class
2450//===----------------------------------------------------------------------===//
2451
2452/// This instruction inserts a struct field of array element
2453/// value into an aggregate value.
2454///
2455class InsertValueInst : public Instruction {
2456 SmallVector<unsigned, 4> Indices;
2457
2458 InsertValueInst(const InsertValueInst &IVI);
2459
2460 /// Constructors - Create a insertvalue instruction with a base aggregate
2461 /// value, a value to insert, and a list of indices. The first ctor can
2462 /// optionally insert before an existing instruction, the second appends
2463 /// the new instruction to the specified BasicBlock.
2464 inline InsertValueInst(Value *Agg, Value *Val,
2465 ArrayRef<unsigned> Idxs,
2466 const Twine &NameStr,
2467 Instruction *InsertBefore);
2468 inline InsertValueInst(Value *Agg, Value *Val,
2469 ArrayRef<unsigned> Idxs,
2470 const Twine &NameStr, BasicBlock *InsertAtEnd);
2471
2472 /// Constructors - These two constructors are convenience methods because one
2473 /// and two index insertvalue instructions are so common.
2474 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2475 const Twine &NameStr = "",
2476 Instruction *InsertBefore = nullptr);
2477 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2478 BasicBlock *InsertAtEnd);
2479
2480 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2481 const Twine &NameStr);
2482
2483protected:
2484 // Note: Instruction needs to be a friend here to call cloneImpl.
2485 friend class Instruction;
2486
2487 InsertValueInst *cloneImpl() const;
2488
2489public:
2490 // allocate space for exactly two operands
2491 void *operator new(size_t S) { return User::operator new(S, 2); }
2492 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2493
2494 static InsertValueInst *Create(Value *Agg, Value *Val,
2495 ArrayRef<unsigned> Idxs,
2496 const Twine &NameStr = "",
2497 Instruction *InsertBefore = nullptr) {
2498 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2499 }
2500
2501 static InsertValueInst *Create(Value *Agg, Value *Val,
2502 ArrayRef<unsigned> Idxs,
2503 const Twine &NameStr,
2504 BasicBlock *InsertAtEnd) {
2505 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2506 }
2507
2508 /// Transparently provide more efficient getOperand methods.
2509 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2510
2511 using idx_iterator = const unsigned*;
2512
2513 inline idx_iterator idx_begin() const { return Indices.begin(); }
2514 inline idx_iterator idx_end() const { return Indices.end(); }
2515 inline iterator_range<idx_iterator> indices() const {
2516 return make_range(idx_begin(), idx_end());
2517 }
2518
2519 Value *getAggregateOperand() {
2520 return getOperand(0);
2521 }
2522 const Value *getAggregateOperand() const {
2523 return getOperand(0);
2524 }
2525 static unsigned getAggregateOperandIndex() {
2526 return 0U; // get index for modifying correct operand
2527 }
2528
2529 Value *getInsertedValueOperand() {
2530 return getOperand(1);
2531 }
2532 const Value *getInsertedValueOperand() const {
2533 return getOperand(1);
2534 }
2535 static unsigned getInsertedValueOperandIndex() {
2536 return 1U; // get index for modifying correct operand
2537 }
2538
2539 ArrayRef<unsigned> getIndices() const {
2540 return Indices;
2541 }
2542
2543 unsigned getNumIndices() const {
2544 return (unsigned)Indices.size();
2545 }
2546
2547 bool hasIndices() const {
2548 return true;
2549 }
2550
2551 // Methods for support type inquiry through isa, cast, and dyn_cast:
2552 static bool classof(const Instruction *I) {
2553 return I->getOpcode() == Instruction::InsertValue;
2554 }
2555 static bool classof(const Value *V) {
2556 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2557 }
2558};
2559
2560template <>
2561struct OperandTraits<InsertValueInst> :
2562 public FixedNumOperandTraits<InsertValueInst, 2> {
2563};
2564
2565InsertValueInst::InsertValueInst(Value *Agg,
2566 Value *Val,
2567 ArrayRef<unsigned> Idxs,
2568 const Twine &NameStr,
2569 Instruction *InsertBefore)
2570 : Instruction(Agg->getType(), InsertValue,
2571 OperandTraits<InsertValueInst>::op_begin(this),
2572 2, InsertBefore) {
2573 init(Agg, Val, Idxs, NameStr);
2574}
2575
2576InsertValueInst::InsertValueInst(Value *Agg,
2577 Value *Val,
2578 ArrayRef<unsigned> Idxs,
2579 const Twine &NameStr,
2580 BasicBlock *InsertAtEnd)
2581 : Instruction(Agg->getType(), InsertValue,
2582 OperandTraits<InsertValueInst>::op_begin(this),
2583 2, InsertAtEnd) {
2584 init(Agg, Val, Idxs, NameStr);
2585}
2586
2587DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<InsertValueInst>::op_begin
(const_cast<InsertValueInst*>(this))[i_nocapture].get()
); } void InsertValueInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<InsertValueInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertValueInst::getNumOperands() const { return OperandTraits
<InsertValueInst>::operands(this); } template <int Idx_nocapture
> Use &InsertValueInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &InsertValueInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2588
2589//===----------------------------------------------------------------------===//
2590// PHINode Class
2591//===----------------------------------------------------------------------===//
2592
2593// PHINode - The PHINode class is used to represent the magical mystical PHI
2594// node, that can not exist in nature, but can be synthesized in a computer
2595// scientist's overactive imagination.
2596//
2597class PHINode : public Instruction {
2598 /// The number of operands actually allocated. NumOperands is
2599 /// the number actually in use.
2600 unsigned ReservedSpace;
2601
2602 PHINode(const PHINode &PN);
2603
2604 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2605 const Twine &NameStr = "",
2606 Instruction *InsertBefore = nullptr)
2607 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2608 ReservedSpace(NumReservedValues) {
2609 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0);
2610 setName(NameStr);
2611 allocHungoffUses(ReservedSpace);
2612 }
2613
2614 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2615 BasicBlock *InsertAtEnd)
2616 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2617 ReservedSpace(NumReservedValues) {
2618 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0);
2619 setName(NameStr);
2620 allocHungoffUses(ReservedSpace);
2621 }
2622
2623protected:
2624 // Note: Instruction needs to be a friend here to call cloneImpl.
2625 friend class Instruction;
2626
2627 PHINode *cloneImpl() const;
2628
2629 // allocHungoffUses - this is more complicated than the generic
2630 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2631 // values and pointers to the incoming blocks, all in one allocation.
2632 void allocHungoffUses(unsigned N) {
2633 User::allocHungoffUses(N, /* IsPhi */ true);
2634 }
2635
2636public:
2637 /// Constructors - NumReservedValues is a hint for the number of incoming
2638 /// edges that this phi node will have (use 0 if you really have no idea).
2639 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2640 const Twine &NameStr = "",
2641 Instruction *InsertBefore = nullptr) {
2642 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2643 }
2644
2645 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2646 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2647 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2648 }
2649
2650 /// Provide fast operand accessors
2651 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2652
2653 // Block iterator interface. This provides access to the list of incoming
2654 // basic blocks, which parallels the list of incoming values.
2655
2656 using block_iterator = BasicBlock **;
2657 using const_block_iterator = BasicBlock * const *;
2658
2659 block_iterator block_begin() {
2660 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2661 }
2662
2663 const_block_iterator block_begin() const {
2664 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2665 }
2666
2667 block_iterator block_end() {
2668 return block_begin() + getNumOperands();
2669 }
2670
2671 const_block_iterator block_end() const {
2672 return block_begin() + getNumOperands();
2673 }
2674
2675 iterator_range<block_iterator> blocks() {
2676 return make_range(block_begin(), block_end());
2677 }
2678
2679 iterator_range<const_block_iterator> blocks() const {
2680 return make_range(block_begin(), block_end());
2681 }
2682
2683 op_range incoming_values() { return operands(); }
2684
2685 const_op_range incoming_values() const { return operands(); }
2686
2687 /// Return the number of incoming edges
2688 ///
2689 unsigned getNumIncomingValues() const { return getNumOperands(); }
2690
2691 /// Return incoming value number x
2692 ///
2693 Value *getIncomingValue(unsigned i) const {
2694 return getOperand(i);
2695 }
2696 void setIncomingValue(unsigned i, Value *V) {
2697 assert(V && "PHI node got a null value!")((void)0);
2698 assert(getType() == V->getType() &&((void)0)
2699 "All operands to PHI node must be the same type as the PHI node!")((void)0);
2700 setOperand(i, V);
2701 }
2702
2703 static unsigned getOperandNumForIncomingValue(unsigned i) {
2704 return i;
2705 }
2706
2707 static unsigned getIncomingValueNumForOperand(unsigned i) {
2708 return i;
2709 }
2710
2711 /// Return incoming basic block number @p i.
2712 ///
2713 BasicBlock *getIncomingBlock(unsigned i) const {
2714 return block_begin()[i];
2715 }
2716
2717 /// Return incoming basic block corresponding
2718 /// to an operand of the PHI.
2719 ///
2720 BasicBlock *getIncomingBlock(const Use &U) const {
2721 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((void)0);
2722 return getIncomingBlock(unsigned(&U - op_begin()));
2723 }
2724
2725 /// Return incoming basic block corresponding
2726 /// to value use iterator.
2727 ///
2728 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2729 return getIncomingBlock(I.getUse());
2730 }
2731
2732 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2733 assert(BB && "PHI node got a null basic block!")((void)0);
2734 block_begin()[i] = BB;
2735 }
2736
2737 /// Replace every incoming basic block \p Old to basic block \p New.
2738 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2739 assert(New && Old && "PHI node got a null basic block!")((void)0);
2740 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2741 if (getIncomingBlock(Op) == Old)
2742 setIncomingBlock(Op, New);
2743 }
2744
2745 /// Add an incoming value to the end of the PHI list
2746 ///
2747 void addIncoming(Value *V, BasicBlock *BB) {
2748 if (getNumOperands() == ReservedSpace)
2749 growOperands(); // Get more space!
2750 // Initialize some new operands.
2751 setNumHungOffUseOperands(getNumOperands() + 1);
2752 setIncomingValue(getNumOperands() - 1, V);
2753 setIncomingBlock(getNumOperands() - 1, BB);
2754 }
2755
2756 /// Remove an incoming value. This is useful if a
2757 /// predecessor basic block is deleted. The value removed is returned.
2758 ///
2759 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2760 /// is true), the PHI node is destroyed and any uses of it are replaced with
2761 /// dummy values. The only time there should be zero incoming values to a PHI
2762 /// node is when the block is dead, so this strategy is sound.
2763 ///
2764 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2765
2766 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2767 int Idx = getBasicBlockIndex(BB);
2768 assert(Idx >= 0 && "Invalid basic block argument to remove!")((void)0);
2769 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2770 }
2771
2772 /// Return the first index of the specified basic
2773 /// block in the value list for this PHI. Returns -1 if no instance.
2774 ///
2775 int getBasicBlockIndex(const BasicBlock *BB) const {
2776 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2777 if (block_begin()[i] == BB)
2778 return i;
2779 return -1;
2780 }
2781
2782 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2783 int Idx = getBasicBlockIndex(BB);
2784 assert(Idx >= 0 && "Invalid basic block argument!")((void)0);
2785 return getIncomingValue(Idx);
2786 }
2787
2788 /// Set every incoming value(s) for block \p BB to \p V.
2789 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2790 assert(BB && "PHI node got a null basic block!")((void)0);
2791 bool Found = false;
2792 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2793 if (getIncomingBlock(Op) == BB) {
2794 Found = true;
2795 setIncomingValue(Op, V);
2796 }
2797 (void)Found;
2798 assert(Found && "Invalid basic block argument to set!")((void)0);
2799 }
2800
2801 /// If the specified PHI node always merges together the
2802 /// same value, return the value, otherwise return null.
2803 Value *hasConstantValue() const;
2804
2805 /// Whether the specified PHI node always merges
2806 /// together the same value, assuming undefs are equal to a unique
2807 /// non-undef value.
2808 bool hasConstantOrUndefValue() const;
2809
2810 /// If the PHI node is complete which means all of its parent's predecessors
2811 /// have incoming value in this PHI, return true, otherwise return false.
2812 bool isComplete() const {
2813 return llvm::all_of(predecessors(getParent()),
2814 [this](const BasicBlock *Pred) {
2815 return getBasicBlockIndex(Pred) >= 0;
2816 });
2817 }
2818
2819 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2820 static bool classof(const Instruction *I) {
2821 return I->getOpcode() == Instruction::PHI;
2822 }
2823 static bool classof(const Value *V) {
2824 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2825 }
2826
2827private:
2828 void growOperands();
2829};
2830
2831template <>
2832struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2833};
2834
2835DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { ((void)0); return cast_or_null<Value>( OperandTraits
<PHINode>::op_begin(const_cast<PHINode*>(this))[i_nocapture
].get()); } void PHINode::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<PHINode>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned PHINode::getNumOperands
() const { return OperandTraits<PHINode>::operands(this
); } template <int Idx_nocapture> Use &PHINode::Op(
) { return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &PHINode::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
2836
2837//===----------------------------------------------------------------------===//
2838// LandingPadInst Class
2839//===----------------------------------------------------------------------===//
2840
2841//===---------------------------------------------------------------------------
2842/// The landingpad instruction holds all of the information
2843/// necessary to generate correct exception handling. The landingpad instruction
2844/// cannot be moved from the top of a landing pad block, which itself is
2845/// accessible only from the 'unwind' edge of an invoke. This uses the
2846/// SubclassData field in Value to store whether or not the landingpad is a
2847/// cleanup.
2848///
2849class LandingPadInst : public Instruction {
2850 using CleanupField = BoolBitfieldElementT<0>;
2851
2852 /// The number of operands actually allocated. NumOperands is
2853 /// the number actually in use.
2854 unsigned ReservedSpace;
2855
2856 LandingPadInst(const LandingPadInst &LP);
2857
2858public:
2859 enum ClauseType { Catch, Filter };
2860
2861private:
2862 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2863 const Twine &NameStr, Instruction *InsertBefore);
2864 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2865 const Twine &NameStr, BasicBlock *InsertAtEnd);
2866
2867 // Allocate space for exactly zero operands.
2868 void *operator new(size_t S) { return User::operator new(S); }
2869
2870 void growOperands(unsigned Size);
2871 void init(unsigned NumReservedValues, const Twine &NameStr);
2872
2873protected:
2874 // Note: Instruction needs to be a friend here to call cloneImpl.
2875 friend class Instruction;
2876
2877 LandingPadInst *cloneImpl() const;
2878
2879public:
2880 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2881
2882 /// Constructors - NumReservedClauses is a hint for the number of incoming
2883 /// clauses that this landingpad will have (use 0 if you really have no idea).
2884 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2885 const Twine &NameStr = "",
2886 Instruction *InsertBefore = nullptr);
2887 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2888 const Twine &NameStr, BasicBlock *InsertAtEnd);
2889
2890 /// Provide fast operand accessors
2891 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2892
2893 /// Return 'true' if this landingpad instruction is a
2894 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2895 /// doesn't catch the exception.
2896 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2897
2898 /// Indicate that this landingpad instruction is a cleanup.
2899 void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2900
2901 /// Add a catch or filter clause to the landing pad.
2902 void addClause(Constant *ClauseVal);
2903
2904 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2905 /// determine what type of clause this is.
2906 Constant *getClause(unsigned Idx) const {
2907 return cast<Constant>(getOperandList()[Idx]);
2908 }
2909
2910 /// Return 'true' if the clause and index Idx is a catch clause.
2911 bool isCatch(unsigned Idx) const {
2912 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2913 }
2914
2915 /// Return 'true' if the clause and index Idx is a filter clause.
2916 bool isFilter(unsigned Idx) const {
2917 return isa<ArrayType>(getOperandList()[Idx]->getType());
2918 }
2919
2920 /// Get the number of clauses for this landing pad.
2921 unsigned getNumClauses() const { return getNumOperands(); }
2922
2923 /// Grow the size of the operand list to accommodate the new
2924 /// number of clauses.
2925 void reserveClauses(unsigned Size) { growOperands(Size); }
2926
2927 // Methods for support type inquiry through isa, cast, and dyn_cast:
2928 static bool classof(const Instruction *I) {
2929 return I->getOpcode() == Instruction::LandingPad;
2930 }
2931 static bool classof(const Value *V) {
2932 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2933 }
2934};
2935
2936template <>
2937struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2938};
2939
2940DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<LandingPadInst>::op_begin(
const_cast<LandingPadInst*>(this))[i_nocapture].get());
} void LandingPadInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<LandingPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2941
2942//===----------------------------------------------------------------------===//
2943// ReturnInst Class
2944//===----------------------------------------------------------------------===//
2945
2946//===---------------------------------------------------------------------------
2947/// Return a value (possibly void), from a function. Execution
2948/// does not continue in this function any longer.
2949///
2950class ReturnInst : public Instruction {
2951 ReturnInst(const ReturnInst &RI);
2952
2953private:
2954 // ReturnInst constructors:
2955 // ReturnInst() - 'ret void' instruction
2956 // ReturnInst( null) - 'ret void' instruction
2957 // ReturnInst(Value* X) - 'ret X' instruction
2958 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2959 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2960 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2961 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2962 //
2963 // NOTE: If the Value* passed is of type void then the constructor behaves as
2964 // if it was passed NULL.
2965 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2966 Instruction *InsertBefore = nullptr);
2967 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2968 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2969
2970protected:
2971 // Note: Instruction needs to be a friend here to call cloneImpl.
2972 friend class Instruction;
2973
2974 ReturnInst *cloneImpl() const;
2975
2976public:
2977 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2978 Instruction *InsertBefore = nullptr) {
2979 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2980 }
2981
2982 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2983 BasicBlock *InsertAtEnd) {
2984 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2985 }
2986
2987 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2988 return new(0) ReturnInst(C, InsertAtEnd);
2989 }
2990
2991 /// Provide fast operand accessors
2992 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2993
2994 /// Convenience accessor. Returns null if there is no return value.
2995 Value *getReturnValue() const {
2996 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2997 }
2998
2999 unsigned getNumSuccessors() const { return 0; }
3000
3001 // Methods for support type inquiry through isa, cast, and dyn_cast:
3002 static bool classof(const Instruction *I) {
3003 return (I->getOpcode() == Instruction::Ret);
3004 }
3005 static bool classof(const Value *V) {
3006 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3007 }
3008
3009private:
3010 BasicBlock *getSuccessor(unsigned idx) const {
3011 llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable();
3012 }
3013
3014 void setSuccessor(unsigned idx, BasicBlock *B) {
3015 llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable();
3016 }
3017};
3018
3019template <>
3020struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
3021};
3022
3023DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<ReturnInst>::op_begin(const_cast
<ReturnInst*>(this))[i_nocapture].get()); } void ReturnInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<ReturnInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ReturnInst::getNumOperands() const
{ return OperandTraits<ReturnInst>::operands(this); } template
<int Idx_nocapture> Use &ReturnInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ReturnInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3024
3025//===----------------------------------------------------------------------===//
3026// BranchInst Class
3027//===----------------------------------------------------------------------===//
3028
3029//===---------------------------------------------------------------------------
3030/// Conditional or Unconditional Branch instruction.
3031///
3032class BranchInst : public Instruction {
3033 /// Ops list - Branches are strange. The operands are ordered:
3034 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3035 /// they don't have to check for cond/uncond branchness. These are mostly
3036 /// accessed relative from op_end().
3037 BranchInst(const BranchInst &BI);
3038 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3039 // BranchInst(BB *B) - 'br B'
3040 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3041 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3042 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3043 // BranchInst(BB* B, BB *I) - 'br B' insert at end
3044 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3045 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3046 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3047 Instruction *InsertBefore = nullptr);
3048 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3049 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3050 BasicBlock *InsertAtEnd);
3051
3052 void AssertOK();
3053
3054protected:
3055 // Note: Instruction needs to be a friend here to call cloneImpl.
3056 friend class Instruction;
3057
3058 BranchInst *cloneImpl() const;
3059
3060public:
3061 /// Iterator type that casts an operand to a basic block.
3062 ///
3063 /// This only makes sense because the successors are stored as adjacent
3064 /// operands for branch instructions.
3065 struct succ_op_iterator
3066 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3067 std::random_access_iterator_tag, BasicBlock *,
3068 ptrdiff_t, BasicBlock *, BasicBlock *> {
3069 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3070
3071 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3072 BasicBlock *operator->() const { return operator*(); }
3073 };
3074
3075 /// The const version of `succ_op_iterator`.
3076 struct const_succ_op_iterator
3077 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3078 std::random_access_iterator_tag,
3079 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3080 const BasicBlock *> {
3081 explicit const_succ_op_iterator(const_value_op_iterator I)
3082 : iterator_adaptor_base(I) {}
3083
3084 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3085 const BasicBlock *operator->() const { return operator*(); }
3086 };
3087
3088 static BranchInst *Create(BasicBlock *IfTrue,
3089 Instruction *InsertBefore = nullptr) {
3090 return new(1) BranchInst(IfTrue, InsertBefore);
3091 }
3092
3093 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3094 Value *Cond, Instruction *InsertBefore = nullptr) {
3095 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3096 }
3097
3098 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3099 return new(1) BranchInst(IfTrue, InsertAtEnd);
3100 }
3101
3102 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3103 Value *Cond, BasicBlock *InsertAtEnd) {
3104 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3105 }
3106
3107 /// Transparently provide more efficient getOperand methods.
3108 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3109
3110 bool isUnconditional() const { return getNumOperands() == 1; }
3111 bool isConditional() const { return getNumOperands() == 3; }
3112
3113 Value *getCondition() const {
3114 assert(isConditional() && "Cannot get condition of an uncond branch!")((void)0);
3115 return Op<-3>();
3116 }
3117
3118 void setCondition(Value *V) {
3119 assert(isConditional() && "Cannot set condition of unconditional branch!")((void)0);
3120 Op<-3>() = V;
3121 }
3122
3123 unsigned getNumSuccessors() const { return 1+isConditional(); }
3124
3125 BasicBlock *getSuccessor(unsigned i) const {
3126 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((void)0);
3127 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3128 }
3129
3130 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3131 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((void)0);
3132 *(&Op<-1>() - idx) = NewSucc;
3133 }
3134
3135 /// Swap the successors of this branch instruction.
3136 ///
3137 /// Swaps the successors of the branch instruction. This also swaps any
3138 /// branch weight metadata associated with the instruction so that it
3139 /// continues to map correctly to each operand.
3140 void swapSuccessors();
3141
3142 iterator_range<succ_op_iterator> successors() {
3143 return make_range(
3144 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3145 succ_op_iterator(value_op_end()));
3146 }
3147
3148 iterator_range<const_succ_op_iterator> successors() const {
3149 return make_range(const_succ_op_iterator(
3150 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3151 const_succ_op_iterator(value_op_end()));
3152 }
3153
3154 // Methods for support type inquiry through isa, cast, and dyn_cast:
3155 static bool classof(const Instruction *I) {
3156 return (I->getOpcode() == Instruction::Br);
3157 }
3158 static bool classof(const Value *V) {
3159 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3160 }
3161};
3162
3163template <>
3164struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3165};
3166
3167DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<BranchInst>::op_begin(const_cast
<BranchInst*>(this))[i_nocapture].get()); } void BranchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<BranchInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned BranchInst::getNumOperands() const
{ return OperandTraits<BranchInst>::operands(this); } template
<int Idx_nocapture> Use &BranchInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &BranchInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3168
3169//===----------------------------------------------------------------------===//
3170// SwitchInst Class
3171//===----------------------------------------------------------------------===//
3172
3173//===---------------------------------------------------------------------------
3174/// Multiway switch
3175///
3176class SwitchInst : public Instruction {
3177 unsigned ReservedSpace;
3178
3179 // Operand[0] = Value to switch on
3180 // Operand[1] = Default basic block destination
3181 // Operand[2n ] = Value to match
3182 // Operand[2n+1] = BasicBlock to go to on match
3183 SwitchInst(const SwitchInst &SI);
3184
3185 /// Create a new switch instruction, specifying a value to switch on and a
3186 /// default destination. The number of additional cases can be specified here
3187 /// to make memory allocation more efficient. This constructor can also
3188 /// auto-insert before another instruction.
3189 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3190 Instruction *InsertBefore);
3191
3192 /// Create a new switch instruction, specifying a value to switch on and a
3193 /// default destination. The number of additional cases can be specified here
3194 /// to make memory allocation more efficient. This constructor also
3195 /// auto-inserts at the end of the specified BasicBlock.
3196 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3197 BasicBlock *InsertAtEnd);
3198
3199 // allocate space for exactly zero operands
3200 void *operator new(size_t S) { return User::operator new(S); }
3201
3202 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3203 void growOperands();
3204
3205protected:
3206 // Note: Instruction needs to be a friend here to call cloneImpl.
3207 friend class Instruction;
3208
3209 SwitchInst *cloneImpl() const;
3210
3211public:
3212 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3213
3214 // -2
3215 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3216
3217 template <typename CaseHandleT> class CaseIteratorImpl;
3218
3219 /// A handle to a particular switch case. It exposes a convenient interface
3220 /// to both the case value and the successor block.
3221 ///
3222 /// We define this as a template and instantiate it to form both a const and
3223 /// non-const handle.
3224 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3225 class CaseHandleImpl {
3226 // Directly befriend both const and non-const iterators.
3227 friend class SwitchInst::CaseIteratorImpl<
3228 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3229
3230 protected:
3231 // Expose the switch type we're parameterized with to the iterator.
3232 using SwitchInstType = SwitchInstT;
3233
3234 SwitchInstT *SI;
3235 ptrdiff_t Index;
3236
3237 CaseHandleImpl() = default;
3238 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3239
3240 public:
3241 /// Resolves case value for current case.
3242 ConstantIntT *getCaseValue() const {
3243 assert((unsigned)Index < SI->getNumCases() &&((void)0)
3244 "Index out the number of cases.")((void)0);
3245 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3246 }
3247
3248 /// Resolves successor for current case.
3249 BasicBlockT *getCaseSuccessor() const {
3250 assert(((unsigned)Index < SI->getNumCases() ||((void)0)
3251 (unsigned)Index == DefaultPseudoIndex) &&((void)0)
3252 "Index out the number of cases.")((void)0);
3253 return SI->getSuccessor(getSuccessorIndex());
3254 }
3255
3256 /// Returns number of current case.
3257 unsigned getCaseIndex() const { return Index; }
3258
3259 /// Returns successor index for current case successor.
3260 unsigned getSuccessorIndex() const {
3261 assert(((unsigned)Index == DefaultPseudoIndex ||((void)0)
3262 (unsigned)Index < SI->getNumCases()) &&((void)0)
3263 "Index out the number of cases.")((void)0);
3264 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3265 }
3266
3267 bool operator==(const CaseHandleImpl &RHS) const {
3268 assert(SI == RHS.SI && "Incompatible operators.")((void)0);
3269 return Index == RHS.Index;
3270 }
3271 };
3272
3273 using ConstCaseHandle =
3274 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3275
3276 class CaseHandle
3277 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3278 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3279
3280 public:
3281 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3282
3283 /// Sets the new value for current case.
3284 void setValue(ConstantInt *V) {
3285 assert((unsigned)Index < SI->getNumCases() &&((void)0)
3286 "Index out the number of cases.")((void)0);
3287 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3288 }
3289
3290 /// Sets the new successor for current case.
3291 void setSuccessor(BasicBlock *S) {
3292 SI->setSuccessor(getSuccessorIndex(), S);
3293 }
3294 };
3295
3296 template <typename CaseHandleT>
3297 class CaseIteratorImpl
3298 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3299 std::random_access_iterator_tag,
3300 CaseHandleT> {
3301 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3302
3303 CaseHandleT Case;
3304
3305 public:
3306 /// Default constructed iterator is in an invalid state until assigned to
3307 /// a case for a particular switch.
3308 CaseIteratorImpl() = default;
3309
3310 /// Initializes case iterator for given SwitchInst and for given
3311 /// case number.
3312 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3313
3314 /// Initializes case iterator for given SwitchInst and for given
3315 /// successor index.
3316 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3317 unsigned SuccessorIndex) {
3318 assert(SuccessorIndex < SI->getNumSuccessors() &&((void)0)
3319 "Successor index # out of range!")((void)0);
3320 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3321 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3322 }
3323
3324 /// Support converting to the const variant. This will be a no-op for const
3325 /// variant.
3326 operator CaseIteratorImpl<ConstCaseHandle>() const {
3327 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3328 }
3329
3330 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3331 // Check index correctness after addition.
3332 // Note: Index == getNumCases() means end().
3333 assert(Case.Index + N >= 0 &&((void)0)
3334 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((void)0)
3335 "Case.Index out the number of cases.")((void)0);
3336 Case.Index += N;
3337 return *this;
3338 }
3339 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3340 // Check index correctness after subtraction.
3341 // Note: Case.Index == getNumCases() means end().
3342 assert(Case.Index - N >= 0 &&((void)0)
3343 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((void)0)
3344 "Case.Index out the number of cases.")((void)0);
3345 Case.Index -= N;
3346 return *this;
3347 }
3348 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3349 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0);
3350 return Case.Index - RHS.Case.Index;
3351 }
3352 bool operator==(const CaseIteratorImpl &RHS) const {
3353 return Case == RHS.Case;
3354 }
3355 bool operator<(const CaseIteratorImpl &RHS) const {
3356 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0);
3357 return Case.Index < RHS.Case.Index;
3358 }
3359 CaseHandleT &operator*() { return Case; }
3360 const CaseHandleT &operator*() const { return Case; }
3361 };
3362
3363 using CaseIt = CaseIteratorImpl<CaseHandle>;
3364 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3365
3366 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3367 unsigned NumCases,
3368 Instruction *InsertBefore = nullptr) {
3369 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3370 }
3371
3372 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3373 unsigned NumCases, BasicBlock *InsertAtEnd) {
3374 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3375 }
3376
3377 /// Provide fast operand accessors
3378 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3379
3380 // Accessor Methods for Switch stmt
3381 Value *getCondition() const { return getOperand(0); }
3382 void setCondition(Value *V) { setOperand(0, V); }
3383
3384 BasicBlock *getDefaultDest() const {
3385 return cast<BasicBlock>(getOperand(1));
3386 }
3387
3388 void setDefaultDest(BasicBlock *DefaultCase) {
3389 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3390 }
3391
3392 /// Return the number of 'cases' in this switch instruction, excluding the
3393 /// default case.
3394 unsigned getNumCases() const {
3395 return getNumOperands()/2 - 1;
3396 }
3397
3398 /// Returns a read/write iterator that points to the first case in the
3399 /// SwitchInst.
3400 CaseIt case_begin() {
3401 return CaseIt(this, 0);
3402 }
3403
3404 /// Returns a read-only iterator that points to the first case in the
3405 /// SwitchInst.
3406 ConstCaseIt case_begin() const {
3407 return ConstCaseIt(this, 0);
3408 }
3409
3410 /// Returns a read/write iterator that points one past the last in the
3411 /// SwitchInst.
3412 CaseIt case_end() {
3413 return CaseIt(this, getNumCases());
3414 }
3415
3416 /// Returns a read-only iterator that points one past the last in the
3417 /// SwitchInst.
3418 ConstCaseIt case_end() const {
3419 return ConstCaseIt(this, getNumCases());
3420 }
3421
3422 /// Iteration adapter for range-for loops.
3423 iterator_range<CaseIt> cases() {
3424 return make_range(case_begin(), case_end());
3425 }
3426
3427 /// Constant iteration adapter for range-for loops.
3428 iterator_range<ConstCaseIt> cases() const {
3429 return make_range(case_begin(), case_end());
3430 }
3431
3432 /// Returns an iterator that points to the default case.
3433 /// Note: this iterator allows to resolve successor only. Attempt
3434 /// to resolve case value causes an assertion.
3435 /// Also note, that increment and decrement also causes an assertion and
3436 /// makes iterator invalid.
3437 CaseIt case_default() {
3438 return CaseIt(this, DefaultPseudoIndex);
3439 }
3440 ConstCaseIt case_default() const {
3441 return ConstCaseIt(this, DefaultPseudoIndex);
3442 }
3443
3444 /// Search all of the case values for the specified constant. If it is
3445 /// explicitly handled, return the case iterator of it, otherwise return
3446 /// default case iterator to indicate that it is handled by the default
3447 /// handler.
3448 CaseIt findCaseValue(const ConstantInt *C) {
3449 CaseIt I = llvm::find_if(
3450 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3451 if (I != case_end())
3452 return I;
3453
3454 return case_default();
3455 }
3456 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3457 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3458 return Case.getCaseValue() == C;
3459 });
3460 if (I != case_end())
3461 return I;
3462
3463 return case_default();
3464 }
3465
3466 /// Finds the unique case value for a given successor. Returns null if the
3467 /// successor is not found, not unique, or is the default case.
3468 ConstantInt *findCaseDest(BasicBlock *BB) {
3469 if (BB == getDefaultDest())
3470 return nullptr;
3471
3472 ConstantInt *CI = nullptr;
3473 for (auto Case : cases()) {
3474 if (Case.getCaseSuccessor() != BB)
3475 continue;
3476
3477 if (CI)
3478 return nullptr; // Multiple cases lead to BB.
3479
3480 CI = Case.getCaseValue();
3481 }
3482
3483 return CI;
3484 }
3485
3486 /// Add an entry to the switch instruction.
3487 /// Note:
3488 /// This action invalidates case_end(). Old case_end() iterator will
3489 /// point to the added case.
3490 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3491
3492 /// This method removes the specified case and its successor from the switch
3493 /// instruction. Note that this operation may reorder the remaining cases at
3494 /// index idx and above.
3495 /// Note:
3496 /// This action invalidates iterators for all cases following the one removed,
3497 /// including the case_end() iterator. It returns an iterator for the next
3498 /// case.
3499 CaseIt removeCase(CaseIt I);
3500
3501 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3502 BasicBlock *getSuccessor(unsigned idx) const {
3503 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((void)0);
3504 return cast<BasicBlock>(getOperand(idx*2+1));
3505 }
3506 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3507 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((void)0);
3508 setOperand(idx * 2 + 1, NewSucc);
3509 }
3510
3511 // Methods for support type inquiry through isa, cast, and dyn_cast:
3512 static bool classof(const Instruction *I) {
3513 return I->getOpcode() == Instruction::Switch;
3514 }
3515 static bool classof(const Value *V) {
3516 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3517 }
3518};
3519
3520/// A wrapper class to simplify modification of SwitchInst cases along with
3521/// their prof branch_weights metadata.
3522class SwitchInstProfUpdateWrapper {
3523 SwitchInst &SI;
3524 Optional<SmallVector<uint32_t, 8> > Weights = None;
3525 bool Changed = false;
3526
3527protected:
3528 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3529
3530 MDNode *buildProfBranchWeightsMD();
3531
3532 void init();
3533
3534public:
3535 using CaseWeightOpt = Optional<uint32_t>;
3536 SwitchInst *operator->() { return &SI; }
3537 SwitchInst &operator*() { return SI; }
3538 operator SwitchInst *() { return &SI; }
3539
3540 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3541
3542 ~SwitchInstProfUpdateWrapper() {
3543 if (Changed)
3544 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3545 }
3546
3547 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3548 /// correspondent branch weight.
3549 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3550
3551 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3552 /// specified branch weight for the added case.
3553 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3554
3555 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3556 /// this object to not touch the underlying SwitchInst in destructor.
3557 SymbolTableList<Instruction>::iterator eraseFromParent();
3558
3559 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3560 CaseWeightOpt getSuccessorWeight(unsigned idx);
3561
3562 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3563};
3564
3565template <>
3566struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3567};
3568
3569DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<SwitchInst>::op_begin(const_cast
<SwitchInst*>(this))[i_nocapture].get()); } void SwitchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<SwitchInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned SwitchInst::getNumOperands() const
{ return OperandTraits<SwitchInst>::operands(this); } template
<int Idx_nocapture> Use &SwitchInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &SwitchInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
3570
3571//===----------------------------------------------------------------------===//
3572// IndirectBrInst Class
3573//===----------------------------------------------------------------------===//
3574
3575//===---------------------------------------------------------------------------
3576/// Indirect Branch Instruction.
3577///
3578class IndirectBrInst : public Instruction {
3579 unsigned ReservedSpace;
3580
3581 // Operand[0] = Address to jump to
3582 // Operand[n+1] = n-th destination
3583 IndirectBrInst(const IndirectBrInst &IBI);
3584
3585 /// Create a new indirectbr instruction, specifying an
3586 /// Address to jump to. The number of expected destinations can be specified
3587 /// here to make memory allocation more efficient. This constructor can also
3588 /// autoinsert before another instruction.
3589 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3590
3591 /// Create a new indirectbr instruction, specifying an
3592 /// Address to jump to. The number of expected destinations can be specified
3593 /// here to make memory allocation more efficient. This constructor also
3594 /// autoinserts at the end of the specified BasicBlock.
3595 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3596
3597 // allocate space for exactly zero operands
3598 void *operator new(size_t S) { return User::operator new(S); }
3599
3600 void init(Value *Address, unsigned NumDests);
3601 void growOperands();
3602
3603protected:
3604 // Note: Instruction needs to be a friend here to call cloneImpl.
3605 friend class Instruction;
3606
3607 IndirectBrInst *cloneImpl() const;
3608
3609public:
3610 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3611
3612 /// Iterator type that casts an operand to a basic block.
3613 ///
3614 /// This only makes sense because the successors are stored as adjacent
3615 /// operands for indirectbr instructions.
3616 struct succ_op_iterator
3617 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3618 std::random_access_iterator_tag, BasicBlock *,
3619 ptrdiff_t, BasicBlock *, BasicBlock *> {
3620 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3621
3622 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3623 BasicBlock *operator->() const { return operator*(); }
3624 };
3625
3626 /// The const version of `succ_op_iterator`.
3627 struct const_succ_op_iterator
3628 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3629 std::random_access_iterator_tag,
3630 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3631 const BasicBlock *> {
3632 explicit const_succ_op_iterator(const_value_op_iterator I)
3633 : iterator_adaptor_base(I) {}
3634
3635 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3636 const BasicBlock *operator->() const { return operator*(); }
3637 };
3638
3639 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3640 Instruction *InsertBefore = nullptr) {
3641 return new IndirectBrInst(Address, NumDests, InsertBefore);
3642 }
3643
3644 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3645 BasicBlock *InsertAtEnd) {
3646 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3647 }
3648
3649 /// Provide fast operand accessors.
3650 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3651
3652 // Accessor Methods for IndirectBrInst instruction.
3653 Value *getAddress() { return getOperand(0); }
3654 const Value *getAddress() const { return getOperand(0); }
3655 void setAddress(Value *V) { setOperand(0, V); }
3656
3657 /// return the number of possible destinations in this
3658 /// indirectbr instruction.
3659 unsigned getNumDestinations() const { return getNumOperands()-1; }
3660
3661 /// Return the specified destination.
3662 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3663 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3664
3665 /// Add a destination.
3666 ///
3667 void addDestination(BasicBlock *Dest);
3668
3669 /// This method removes the specified successor from the
3670 /// indirectbr instruction.
3671 void removeDestination(unsigned i);
3672
3673 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3674 BasicBlock *getSuccessor(unsigned i) const {
3675 return cast<BasicBlock>(getOperand(i+1));
3676 }
3677 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3678 setOperand(i + 1, NewSucc);
3679 }
3680
3681 iterator_range<succ_op_iterator> successors() {
3682 return make_range(succ_op_iterator(std::next(value_op_begin())),
3683 succ_op_iterator(value_op_end()));
3684 }
3685
3686 iterator_range<const_succ_op_iterator> successors() const {
3687 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3688 const_succ_op_iterator(value_op_end()));
3689 }
3690
3691 // Methods for support type inquiry through isa, cast, and dyn_cast:
3692 static bool classof(const Instruction *I) {
3693 return I->getOpcode() == Instruction::IndirectBr;
3694 }
3695 static bool classof(const Value *V) {
3696 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3697 }
3698};
3699
3700template <>
3701struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3702};
3703
3704DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<IndirectBrInst>::op_begin(
const_cast<IndirectBrInst*>(this))[i_nocapture].get());
} void IndirectBrInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<IndirectBrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
IndirectBrInst::getNumOperands() const { return OperandTraits
<IndirectBrInst>::operands(this); } template <int Idx_nocapture
> Use &IndirectBrInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &IndirectBrInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
3705
3706//===----------------------------------------------------------------------===//
3707// InvokeInst Class
3708//===----------------------------------------------------------------------===//
3709
3710/// Invoke instruction. The SubclassData field is used to hold the
3711/// calling convention of the call.
3712///
3713class InvokeInst : public CallBase {
3714 /// The number of operands for this call beyond the called function,
3715 /// arguments, and operand bundles.
3716 static constexpr int NumExtraOperands = 2;
3717
3718 /// The index from the end of the operand array to the normal destination.
3719 static constexpr int NormalDestOpEndIdx = -3;
3720
3721 /// The index from the end of the operand array to the unwind destination.
3722 static constexpr int UnwindDestOpEndIdx = -2;
3723
3724 InvokeInst(const InvokeInst &BI);
3725
3726 /// Construct an InvokeInst given a range of arguments.
3727 ///
3728 /// Construct an InvokeInst from a range of arguments
3729 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3730 BasicBlock *IfException, ArrayRef<Value *> Args,
3731 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3732 const Twine &NameStr, Instruction *InsertBefore);
3733
3734 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3735 BasicBlock *IfException, ArrayRef<Value *> Args,
3736 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3737 const Twine &NameStr, BasicBlock *InsertAtEnd);
3738
3739 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3740 BasicBlock *IfException, ArrayRef<Value *> Args,
3741 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3742
3743 /// Compute the number of operands to allocate.
3744 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3745 // We need one operand for the called function, plus our extra operands and
3746 // the input operand counts provided.
3747 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3748 }
3749
3750protected:
3751 // Note: Instruction needs to be a friend here to call cloneImpl.
3752 friend class Instruction;
3753
3754 InvokeInst *cloneImpl() const;
3755
3756public:
3757 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3758 BasicBlock *IfException, ArrayRef<Value *> Args,
3759 const Twine &NameStr,
3760 Instruction *InsertBefore = nullptr) {
3761 int NumOperands = ComputeNumOperands(Args.size());
3762 return new (NumOperands)
3763 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3764 NameStr, InsertBefore);
3765 }
3766
3767 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3768 BasicBlock *IfException, ArrayRef<Value *> Args,
3769 ArrayRef<OperandBundleDef> Bundles = None,
3770 const Twine &NameStr = "",
3771 Instruction *InsertBefore = nullptr) {
3772 int NumOperands =
3773 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3774 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3775
3776 return new (NumOperands, DescriptorBytes)
3777 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3778 NameStr, InsertBefore);
3779 }
3780
3781 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3782 BasicBlock *IfException, ArrayRef<Value *> Args,
3783 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3784 int NumOperands = ComputeNumOperands(Args.size());
3785 return new (NumOperands)
3786 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3787 NameStr, InsertAtEnd);
3788 }
3789
3790 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3791 BasicBlock *IfException, ArrayRef<Value *> Args,
3792 ArrayRef<OperandBundleDef> Bundles,
3793 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3794 int NumOperands =
3795 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3796 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3797
3798 return new (NumOperands, DescriptorBytes)
3799 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3800 NameStr, InsertAtEnd);
3801 }
3802
3803 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3804 BasicBlock *IfException, ArrayRef<Value *> Args,
3805 const Twine &NameStr,
3806 Instruction *InsertBefore = nullptr) {
3807 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3808 IfException, Args, None, NameStr, InsertBefore);
3809 }
3810
3811 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3812 BasicBlock *IfException, ArrayRef<Value *> Args,
3813 ArrayRef<OperandBundleDef> Bundles = None,
3814 const Twine &NameStr = "",
3815 Instruction *InsertBefore = nullptr) {
3816 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3817 IfException, Args, Bundles, NameStr, InsertBefore);
3818 }
3819
3820 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3821 BasicBlock *IfException, ArrayRef<Value *> Args,
3822 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3823 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3824 IfException, Args, NameStr, InsertAtEnd);
3825 }
3826
3827 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3828 BasicBlock *IfException, ArrayRef<Value *> Args,
3829 ArrayRef<OperandBundleDef> Bundles,
3830 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3831 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3832 IfException, Args, Bundles, NameStr, InsertAtEnd);
3833 }
3834
3835 /// Create a clone of \p II with a different set of operand bundles and
3836 /// insert it before \p InsertPt.
3837 ///
3838 /// The returned invoke instruction is identical to \p II in every way except
3839 /// that the operand bundles for the new instruction are set to the operand
3840 /// bundles in \p Bundles.
3841 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3842 Instruction *InsertPt = nullptr);
3843
3844 // get*Dest - Return the destination basic blocks...
3845 BasicBlock *getNormalDest() const {
3846 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3847 }
3848 BasicBlock *getUnwindDest() const {
3849 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3850 }
3851 void setNormalDest(BasicBlock *B) {
3852 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3853 }
3854 void setUnwindDest(BasicBlock *B) {
3855 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3856 }
3857
3858 /// Get the landingpad instruction from the landing pad
3859 /// block (the unwind destination).
3860 LandingPadInst *getLandingPadInst() const;
3861
3862 BasicBlock *getSuccessor(unsigned i) const {
3863 assert(i < 2 && "Successor # out of range for invoke!")((void)0);
3864 return i == 0 ? getNormalDest() : getUnwindDest();
3865 }
3866
3867 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3868 assert(i < 2 && "Successor # out of range for invoke!")((void)0);
3869 if (i == 0)
3870 setNormalDest(NewSucc);
3871 else
3872 setUnwindDest(NewSucc);
3873 }
3874
3875 unsigned getNumSuccessors() const { return 2; }
3876
3877 // Methods for support type inquiry through isa, cast, and dyn_cast:
3878 static bool classof(const Instruction *I) {
3879 return (I->getOpcode() == Instruction::Invoke);
3880 }
3881 static bool classof(const Value *V) {
3882 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3883 }
3884
3885private:
3886 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3887 // method so that subclasses cannot accidentally use it.
3888 template <typename Bitfield>
3889 void setSubclassData(typename Bitfield::Type Value) {
3890 Instruction::setSubclassData<Bitfield>(Value);
3891 }
3892};
3893
3894InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3895 BasicBlock *IfException, ArrayRef<Value *> Args,
3896 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3897 const Twine &NameStr, Instruction *InsertBefore)
3898 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3899 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3900 InsertBefore) {
3901 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3902}
3903
3904InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3905 BasicBlock *IfException, ArrayRef<Value *> Args,
3906 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3907 const Twine &NameStr, BasicBlock *InsertAtEnd)
3908 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3909 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3910 InsertAtEnd) {
3911 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3912}
3913
3914//===----------------------------------------------------------------------===//
3915// CallBrInst Class
3916//===----------------------------------------------------------------------===//
3917
3918/// CallBr instruction, tracking function calls that may not return control but
3919/// instead transfer it to a third location. The SubclassData field is used to
3920/// hold the calling convention of the call.
3921///
3922class CallBrInst : public CallBase {
3923
3924 unsigned NumIndirectDests;
3925
3926 CallBrInst(const CallBrInst &BI);
3927
3928 /// Construct a CallBrInst given a range of arguments.
3929 ///
3930 /// Construct a CallBrInst from a range of arguments
3931 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3932 ArrayRef<BasicBlock *> IndirectDests,
3933 ArrayRef<Value *> Args,
3934 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3935 const Twine &NameStr, Instruction *InsertBefore);
3936
3937 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3938 ArrayRef<BasicBlock *> IndirectDests,
3939 ArrayRef<Value *> Args,
3940 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3941 const Twine &NameStr, BasicBlock *InsertAtEnd);
3942
3943 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3944 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3945 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3946
3947 /// Should the Indirect Destinations change, scan + update the Arg list.
3948 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3949
3950 /// Compute the number of operands to allocate.
3951 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3952 int NumBundleInputs = 0) {
3953 // We need one operand for the called function, plus our extra operands and
3954 // the input operand counts provided.
3955 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3956 }
3957
3958protected:
3959 // Note: Instruction needs to be a friend here to call cloneImpl.
3960 friend class Instruction;
3961
3962 CallBrInst *cloneImpl() const;
3963
3964public:
3965 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3966 BasicBlock *DefaultDest,
3967 ArrayRef<BasicBlock *> IndirectDests,
3968 ArrayRef<Value *> Args, const Twine &NameStr,
3969 Instruction *InsertBefore = nullptr) {
3970 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3971 return new (NumOperands)
3972 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3973 NumOperands, NameStr, InsertBefore);
3974 }
3975
3976 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3977 BasicBlock *DefaultDest,
3978 ArrayRef<BasicBlock *> IndirectDests,
3979 ArrayRef<Value *> Args,
3980 ArrayRef<OperandBundleDef> Bundles = None,
3981 const Twine &NameStr = "",
3982 Instruction *InsertBefore = nullptr) {
3983 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3984 CountBundleInputs(Bundles));
3985 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3986
3987 return new (NumOperands, DescriptorBytes)
3988 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3989 NumOperands, NameStr, InsertBefore);
3990 }
3991
3992 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3993 BasicBlock *DefaultDest,
3994 ArrayRef<BasicBlock *> IndirectDests,
3995 ArrayRef<Value *> Args, const Twine &NameStr,
3996 BasicBlock *InsertAtEnd) {
3997 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3998 return new (NumOperands)
3999 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4000 NumOperands, NameStr, InsertAtEnd);
4001 }
4002
4003 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4004 BasicBlock *DefaultDest,
4005 ArrayRef<BasicBlock *> IndirectDests,
4006 ArrayRef<Value *> Args,
4007 ArrayRef<OperandBundleDef> Bundles,
4008 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4009 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4010 CountBundleInputs(Bundles));
4011 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4012
4013 return new (NumOperands, DescriptorBytes)
4014 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4015 NumOperands, NameStr, InsertAtEnd);
4016 }
4017
4018 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4019 ArrayRef<BasicBlock *> IndirectDests,
4020 ArrayRef<Value *> Args, const Twine &NameStr,
4021 Instruction *InsertBefore = nullptr) {
4022 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4023 IndirectDests, Args, NameStr, InsertBefore);
4024 }
4025
4026 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4027 ArrayRef<BasicBlock *> IndirectDests,
4028 ArrayRef<Value *> Args,
4029 ArrayRef<OperandBundleDef> Bundles = None,
4030 const Twine &NameStr = "",
4031 Instruction *InsertBefore = nullptr) {
4032 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4033 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4034 }
4035
4036 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4037 ArrayRef<BasicBlock *> IndirectDests,
4038 ArrayRef<Value *> Args, const Twine &NameStr,
4039 BasicBlock *InsertAtEnd) {
4040 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4041 IndirectDests, Args, NameStr, InsertAtEnd);
4042 }
4043
4044 static CallBrInst *Create(FunctionCallee Func,
4045 BasicBlock *DefaultDest,
4046 ArrayRef<BasicBlock *> IndirectDests,
4047 ArrayRef<Value *> Args,
4048 ArrayRef<OperandBundleDef> Bundles,
4049 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4050 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4051 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4052 }
4053
4054 /// Create a clone of \p CBI with a different set of operand bundles and
4055 /// insert it before \p InsertPt.
4056 ///
4057 /// The returned callbr instruction is identical to \p CBI in every way
4058 /// except that the operand bundles for the new instruction are set to the
4059 /// operand bundles in \p Bundles.
4060 static CallBrInst *Create(CallBrInst *CBI,
4061 ArrayRef<OperandBundleDef> Bundles,
4062 Instruction *InsertPt = nullptr);
4063
4064 /// Return the number of callbr indirect dest labels.
4065 ///
4066 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4067
4068 /// getIndirectDestLabel - Return the i-th indirect dest label.
4069 ///
4070 Value *getIndirectDestLabel(unsigned i) const {
4071 assert(i < getNumIndirectDests() && "Out of bounds!")((void)0);
4072 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4073 1);
4074 }
4075
4076 Value *getIndirectDestLabelUse(unsigned i) const {
4077 assert(i < getNumIndirectDests() && "Out of bounds!")((void)0);
4078 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4079 1);
4080 }
4081
4082 // Return the destination basic blocks...
4083 BasicBlock *getDefaultDest() const {
4084 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4085 }
4086 BasicBlock *getIndirectDest(unsigned i) const {
4087 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4088 }
4089 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4090 SmallVector<BasicBlock *, 16> IndirectDests;
4091 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4092 IndirectDests.push_back(getIndirectDest(i));
4093 return IndirectDests;
4094 }
4095 void setDefaultDest(BasicBlock *B) {
4096 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4097 }
4098 void setIndirectDest(unsigned i, BasicBlock *B) {
4099 updateArgBlockAddresses(i, B);
4100 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4101 }
4102
4103 BasicBlock *getSuccessor(unsigned i) const {
4104 assert(i < getNumSuccessors() + 1 &&((void)0)
4105 "Successor # out of range for callbr!")((void)0);
4106 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4107 }
4108
4109 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4110 assert(i < getNumIndirectDests() + 1 &&((void)0)
4111 "Successor # out of range for callbr!")((void)0);
4112 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4113 }
4114
4115 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4116
4117 // Methods for support type inquiry through isa, cast, and dyn_cast:
4118 static bool classof(const Instruction *I) {
4119 return (I->getOpcode() == Instruction::CallBr);
4120 }
4121 static bool classof(const Value *V) {
4122 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4123 }
4124
4125private:
4126 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4127 // method so that subclasses cannot accidentally use it.
4128 template <typename Bitfield>
4129 void setSubclassData(typename Bitfield::Type Value) {
4130 Instruction::setSubclassData<Bitfield>(Value);
4131 }
4132};
4133
4134CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4135 ArrayRef<BasicBlock *> IndirectDests,
4136 ArrayRef<Value *> Args,
4137 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4138 const Twine &NameStr, Instruction *InsertBefore)
4139 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4140 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4141 InsertBefore) {
4142 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4143}
4144
4145CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4146 ArrayRef<BasicBlock *> IndirectDests,
4147 ArrayRef<Value *> Args,
4148 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4149 const Twine &NameStr, BasicBlock *InsertAtEnd)
4150 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4151 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4152 InsertAtEnd) {
4153 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4154}
4155
4156//===----------------------------------------------------------------------===//
4157// ResumeInst Class
4158//===----------------------------------------------------------------------===//
4159
4160//===---------------------------------------------------------------------------
4161/// Resume the propagation of an exception.
4162///
4163class ResumeInst : public Instruction {
4164 ResumeInst(const ResumeInst &RI);
4165
4166 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4167 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4168
4169protected:
4170 // Note: Instruction needs to be a friend here to call cloneImpl.
4171 friend class Instruction;
4172
4173 ResumeInst *cloneImpl() const;
4174
4175public:
4176 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4177 return new(1) ResumeInst(Exn, InsertBefore);
4178 }
4179
4180 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4181 return new(1) ResumeInst(Exn, InsertAtEnd);
4182 }
4183
4184 /// Provide fast operand accessors
4185 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4186
4187 /// Convenience accessor.
4188 Value *getValue() const { return Op<0>(); }
4189
4190 unsigned getNumSuccessors() const { return 0; }
4191
4192 // Methods for support type inquiry through isa, cast, and dyn_cast:
4193 static bool classof(const Instruction *I) {
4194 return I->getOpcode() == Instruction::Resume;
4195 }
4196 static bool classof(const Value *V) {
4197 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4198 }
4199
4200private:
4201 BasicBlock *getSuccessor(unsigned idx) const {
4202 llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable();
4203 }
4204
4205 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4206 llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable();
4207 }
4208};
4209
4210template <>
4211struct OperandTraits<ResumeInst> :
4212 public FixedNumOperandTraits<ResumeInst, 1> {
4213};
4214
4215DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<ResumeInst>::op_begin(const_cast
<ResumeInst*>(this))[i_nocapture].get()); } void ResumeInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
void)0); OperandTraits<ResumeInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned ResumeInst::getNumOperands() const
{ return OperandTraits<ResumeInst>::operands(this); } template
<int Idx_nocapture> Use &ResumeInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ResumeInst::Op() const { return
this->OpFrom<Idx_nocapture>(this); }
4216
4217//===----------------------------------------------------------------------===//
4218// CatchSwitchInst Class
4219//===----------------------------------------------------------------------===//
4220class CatchSwitchInst : public Instruction {
4221 using UnwindDestField = BoolBitfieldElementT<0>;
4222
4223 /// The number of operands actually allocated. NumOperands is
4224 /// the number actually in use.
4225 unsigned ReservedSpace;
4226
4227 // Operand[0] = Outer scope
4228 // Operand[1] = Unwind block destination
4229 // Operand[n] = BasicBlock to go to on match
4230 CatchSwitchInst(const CatchSwitchInst &CSI);
4231
4232 /// Create a new switch instruction, specifying a
4233 /// default destination. The number of additional handlers can be specified
4234 /// here to make memory allocation more efficient.
4235 /// This constructor can also autoinsert before another instruction.
4236 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4237 unsigned NumHandlers, const Twine &NameStr,
4238 Instruction *InsertBefore);
4239
4240 /// Create a new switch instruction, specifying a
4241 /// default destination. The number of additional handlers can be specified
4242 /// here to make memory allocation more efficient.
4243 /// This constructor also autoinserts at the end of the specified BasicBlock.
4244 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4245 unsigned NumHandlers, const Twine &NameStr,
4246 BasicBlock *InsertAtEnd);
4247
4248 // allocate space for exactly zero operands
4249 void *operator new(size_t S) { return User::operator new(S); }
4250
4251 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4252 void growOperands(unsigned Size);
4253
4254protected:
4255 // Note: Instruction needs to be a friend here to call cloneImpl.
4256 friend class Instruction;
4257
4258 CatchSwitchInst *cloneImpl() const;
4259
4260public:
4261 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
4262
4263 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4264 unsigned NumHandlers,
4265 const Twine &NameStr = "",
4266 Instruction *InsertBefore = nullptr) {
4267 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4268 InsertBefore);
4269 }
4270
4271 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4272 unsigned NumHandlers, const Twine &NameStr,
4273 BasicBlock *InsertAtEnd) {
4274 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4275 InsertAtEnd);
4276 }
4277
4278 /// Provide fast operand accessors
4279 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4280
4281 // Accessor Methods for CatchSwitch stmt
4282 Value *getParentPad() const { return getOperand(0); }
4283 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4284
4285 // Accessor Methods for CatchSwitch stmt
4286 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4287 bool unwindsToCaller() const { return !hasUnwindDest(); }
4288 BasicBlock *getUnwindDest() const {
4289 if (hasUnwindDest())
4290 return cast<BasicBlock>(getOperand(1));
4291 return nullptr;
4292 }
4293 void setUnwindDest(BasicBlock *UnwindDest) {
4294 assert(UnwindDest)((void)0);
4295 assert(hasUnwindDest())((void)0);
4296 setOperand(1, UnwindDest);
4297 }
4298
4299 /// return the number of 'handlers' in this catchswitch
4300 /// instruction, except the default handler
4301 unsigned getNumHandlers() const {
4302 if (hasUnwindDest())
4303 return getNumOperands() - 2;
4304 return getNumOperands() - 1;
4305 }
4306
4307private:
4308 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4309 static const BasicBlock *handler_helper(const Value *V) {
4310 return cast<BasicBlock>(V);
4311 }
4312
4313public:
4314 using DerefFnTy = BasicBlock *(*)(Value *);
4315 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4316 using handler_range = iterator_range<handler_iterator>;
4317 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4318 using const_handler_iterator =
4319 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4320 using const_handler_range = iterator_range<const_handler_iterator>;
4321
4322 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4323 handler_iterator handler_begin() {
4324 op_iterator It = op_begin() + 1;
4325 if (hasUnwindDest())
4326 ++It;
4327 return handler_iterator(It, DerefFnTy(handler_helper));
4328 }
4329
4330 /// Returns an iterator that points to the first handler in the
4331 /// CatchSwitchInst.
4332 const_handler_iterator handler_begin() const {
4333 const_op_iterator It = op_begin() + 1;
4334 if (hasUnwindDest())
4335 ++It;
4336 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4337 }
4338
4339 /// Returns a read-only iterator that points one past the last
4340 /// handler in the CatchSwitchInst.
4341 handler_iterator handler_end() {
4342 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4343 }
4344
4345 /// Returns an iterator that points one past the last handler in the
4346 /// CatchSwitchInst.
4347 const_handler_iterator handler_end() const {
4348 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4349 }
4350
4351 /// iteration adapter for range-for loops.
4352 handler_range handlers() {
4353 return make_range(handler_begin(), handler_end());
4354 }
4355
4356 /// iteration adapter for range-for loops.
4357 const_handler_range handlers() const {
4358 return make_range(handler_begin(), handler_end());
4359 }
4360
4361 /// Add an entry to the switch instruction...
4362 /// Note:
4363 /// This action invalidates handler_end(). Old handler_end() iterator will
4364 /// point to the added handler.
4365 void addHandler(BasicBlock *Dest);
4366
4367 void removeHandler(handler_iterator HI);
4368
4369 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4370 BasicBlock *getSuccessor(unsigned Idx) const {
4371 assert(Idx < getNumSuccessors() &&((void)0)
4372 "Successor # out of range for catchswitch!")((void)0);
4373 return cast<BasicBlock>(getOperand(Idx + 1));
4374 }
4375 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4376 assert(Idx < getNumSuccessors() &&((void)0)
4377 "Successor # out of range for catchswitch!")((void)0);
4378 setOperand(Idx + 1, NewSucc);
4379 }
4380
4381 // Methods for support type inquiry through isa, cast, and dyn_cast:
4382 static bool classof(const Instruction *I) {
4383 return I->getOpcode() == Instruction::CatchSwitch;
4384 }
4385 static bool classof(const Value *V) {
4386 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4387 }
4388};
4389
4390template <>
4391struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4392
4393DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return
OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst
::const_op_iterator CatchSwitchInst::op_begin() const { return
OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst
::op_end() { return OperandTraits<CatchSwitchInst>::op_end
(this); } CatchSwitchInst::const_op_iterator CatchSwitchInst::
op_end() const { return OperandTraits<CatchSwitchInst>::
op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<CatchSwitchInst>::op_begin
(const_cast<CatchSwitchInst*>(this))[i_nocapture].get()
); } void CatchSwitchInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<CatchSwitchInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchSwitchInst::getNumOperands() const { return OperandTraits
<CatchSwitchInst>::operands(this); } template <int Idx_nocapture
> Use &CatchSwitchInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchSwitchInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4394
4395//===----------------------------------------------------------------------===//
4396// CleanupPadInst Class
4397//===----------------------------------------------------------------------===//
4398class CleanupPadInst : public FuncletPadInst {
4399private:
4400 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4401 unsigned Values, const Twine &NameStr,
4402 Instruction *InsertBefore)
4403 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4404 NameStr, InsertBefore) {}
4405 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4406 unsigned Values, const Twine &NameStr,
4407 BasicBlock *InsertAtEnd)
4408 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4409 NameStr, InsertAtEnd) {}
4410
4411public:
4412 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4413 const Twine &NameStr = "",
4414 Instruction *InsertBefore = nullptr) {
4415 unsigned Values = 1 + Args.size();
4416 return new (Values)
4417 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4418 }
4419
4420 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4421 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4422 unsigned Values = 1 + Args.size();
4423 return new (Values)
4424 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4425 }
4426
4427 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4428 static bool classof(const Instruction *I) {
4429 return I->getOpcode() == Instruction::CleanupPad;
4430 }
4431 static bool classof(const Value *V) {
4432 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4433 }
4434};
4435
4436//===----------------------------------------------------------------------===//
4437// CatchPadInst Class
4438//===----------------------------------------------------------------------===//
4439class CatchPadInst : public FuncletPadInst {
4440private:
4441 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4442 unsigned Values, const Twine &NameStr,
4443 Instruction *InsertBefore)
4444 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4445 NameStr, InsertBefore) {}
4446 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4447 unsigned Values, const Twine &NameStr,
4448 BasicBlock *InsertAtEnd)
4449 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4450 NameStr, InsertAtEnd) {}
4451
4452public:
4453 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4454 const Twine &NameStr = "",
4455 Instruction *InsertBefore = nullptr) {
4456 unsigned Values = 1 + Args.size();
4457 return new (Values)
4458 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4459 }
4460
4461 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4462 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4463 unsigned Values = 1 + Args.size();
4464 return new (Values)
4465 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4466 }
4467
4468 /// Convenience accessors
4469 CatchSwitchInst *getCatchSwitch() const {
4470 return cast<CatchSwitchInst>(Op<-1>());
4471 }
4472 void setCatchSwitch(Value *CatchSwitch) {
4473 assert(CatchSwitch)((void)0);
4474 Op<-1>() = CatchSwitch;
4475 }
4476
4477 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4478 static bool classof(const Instruction *I) {
4479 return I->getOpcode() == Instruction::CatchPad;
4480 }
4481 static bool classof(const Value *V) {
4482 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4483 }
4484};
4485
4486//===----------------------------------------------------------------------===//
4487// CatchReturnInst Class
4488//===----------------------------------------------------------------------===//
4489
4490class CatchReturnInst : public Instruction {
4491 CatchReturnInst(const CatchReturnInst &RI);
4492 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4493 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4494
4495 void init(Value *CatchPad, BasicBlock *BB);
4496
4497protected:
4498 // Note: Instruction needs to be a friend here to call cloneImpl.
4499 friend class Instruction;
4500
4501 CatchReturnInst *cloneImpl() const;
4502
4503public:
4504 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4505 Instruction *InsertBefore = nullptr) {
4506 assert(CatchPad)((void)0);
4507 assert(BB)((void)0);
4508 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4509 }
4510
4511 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4512 BasicBlock *InsertAtEnd) {
4513 assert(CatchPad)((void)0);
4514 assert(BB)((void)0);
4515 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4516 }
4517
4518 /// Provide fast operand accessors
4519 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4520
4521 /// Convenience accessors.
4522 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4523 void setCatchPad(CatchPadInst *CatchPad) {
4524 assert(CatchPad)((void)0);
4525 Op<0>() = CatchPad;
4526 }
4527
4528 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4529 void setSuccessor(BasicBlock *NewSucc) {
4530 assert(NewSucc)((void)0);
4531 Op<1>() = NewSucc;
4532 }
4533 unsigned getNumSuccessors() const { return 1; }
4534
4535 /// Get the parentPad of this catchret's catchpad's catchswitch.
4536 /// The successor block is implicitly a member of this funclet.
4537 Value *getCatchSwitchParentPad() const {
4538 return getCatchPad()->getCatchSwitch()->getParentPad();
4539 }
4540
4541 // Methods for support type inquiry through isa, cast, and dyn_cast:
4542 static bool classof(const Instruction *I) {
4543 return (I->getOpcode() == Instruction::CatchRet);
4544 }
4545 static bool classof(const Value *V) {
4546 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4547 }
4548
4549private:
4550 BasicBlock *getSuccessor(unsigned Idx) const {
4551 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0);
4552 return getSuccessor();
4553 }
4554
4555 void setSuccessor(unsigned Idx, BasicBlock *B) {
4556 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0);
4557 setSuccessor(B);
4558 }
4559};
4560
4561template <>
4562struct OperandTraits<CatchReturnInst>
4563 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4564
4565DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return
OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst
::const_op_iterator CatchReturnInst::op_begin() const { return
OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst
::op_end() { return OperandTraits<CatchReturnInst>::op_end
(this); } CatchReturnInst::const_op_iterator CatchReturnInst::
op_end() const { return OperandTraits<CatchReturnInst>::
op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst
::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null
<Value>( OperandTraits<CatchReturnInst>::op_begin
(const_cast<CatchReturnInst*>(this))[i_nocapture].get()
); } void CatchReturnInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { ((void)0); OperandTraits<CatchReturnInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchReturnInst::getNumOperands() const { return OperandTraits
<CatchReturnInst>::operands(this); } template <int Idx_nocapture
> Use &CatchReturnInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchReturnInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4566
4567//===----------------------------------------------------------------------===//
4568// CleanupReturnInst Class
4569//===----------------------------------------------------------------------===//
4570
4571class CleanupReturnInst : public Instruction {
4572 using UnwindDestField = BoolBitfieldElementT<0>;
4573
4574private:
4575 CleanupReturnInst(const CleanupReturnInst &RI);
4576 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4577 Instruction *InsertBefore = nullptr);
4578 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4579 BasicBlock *InsertAtEnd);
4580
4581 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4582
4583protected:
4584 // Note: Instruction needs to be a friend here to call cloneImpl.
4585 friend class Instruction;
4586
4587 CleanupReturnInst *cloneImpl() const;
4588
4589public:
4590 static CleanupReturnInst *Create(Value *CleanupPad,
4591 BasicBlock *UnwindBB = nullptr,
4592 Instruction *InsertBefore = nullptr) {
4593 assert(CleanupPad)((void)0);
4594 unsigned Values = 1;
4595 if (UnwindBB)
4596 ++Values;
4597 return new (Values)
4598 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4599 }
4600
4601 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4602 BasicBlock *InsertAtEnd) {
4603 assert(CleanupPad)((void)0);
4604 unsigned Values = 1;
4605 if (UnwindBB)
4606 ++Values;
4607 return new (Values)
4608 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4609 }
4610
4611 /// Provide fast operand accessors
4612 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4613
4614 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4615 bool unwindsToCaller() const { return !hasUnwindDest(); }
4616
4617 /// Convenience accessor.
4618 CleanupPadInst *getCleanupPad() const {
4619 return cast<CleanupPadInst>(Op<0>());
4620 }
4621 void setCleanupPad(CleanupPadInst *CleanupPad) {
4622 assert(CleanupPad)((void)0);
4623 Op<0>() = CleanupPad;
4624 }
4625
4626 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4627
4628 BasicBlock *getUnwindDest() const {
4629 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4630 }
4631 void setUnwindDest(BasicBlock *NewDest) {
4632 assert(NewDest)((void)0);
4633 assert(hasUnwindDest())((void)0);
4634 Op<1>() = NewDest;
4635 }
4636
4637 // Methods for support type inquiry through isa, cast, and dyn_cast:
4638 static bool classof(const Instruction *I) {
4639 return (I->getOpcode() == Instruction::CleanupRet);
4640 }
4641 static bool classof(const Value *V) {
4642 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4643 }
4644
4645private:
4646 BasicBlock *getSuccessor(unsigned Idx) const {
4647 assert(Idx == 0)((void)0);
4648 return getUnwindDest();
4649 }
4650
4651 void setSuccessor(unsigned Idx, BasicBlock *B) {
4652 assert(Idx == 0)((void)0);
4653 setUnwindDest(B);
4654 }
4655
4656 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4657 // method so that subclasses cannot accidentally use it.
4658 template <typename Bitfield>
4659 void setSubclassData(typename Bitfield::Type Value) {
4660 Instruction::setSubclassData<Bitfield>(Value);
4661 }
4662};
4663
4664template <>
4665struct OperandTraits<CleanupReturnInst>
4666 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4667
4668DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() {
return OperandTraits<CleanupReturnInst>::op_begin(this
); } CleanupReturnInst::const_op_iterator CleanupReturnInst::
op_begin() const { return OperandTraits<CleanupReturnInst>
::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst
::op_iterator CleanupReturnInst::op_end() { return OperandTraits
<CleanupReturnInst>::op_end(this); } CleanupReturnInst::
const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits
<CleanupReturnInst>::op_end(const_cast<CleanupReturnInst
*>(this)); } Value *CleanupReturnInst::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Value
>( OperandTraits<CleanupReturnInst>::op_begin(const_cast
<CleanupReturnInst*>(this))[i_nocapture].get()); } void
CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((void)0); OperandTraits<CleanupReturnInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned CleanupReturnInst
::getNumOperands() const { return OperandTraits<CleanupReturnInst
>::operands(this); } template <int Idx_nocapture> Use
&CleanupReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
CleanupReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
4669
4670//===----------------------------------------------------------------------===//
4671// UnreachableInst Class
4672//===----------------------------------------------------------------------===//
4673
4674//===---------------------------------------------------------------------------
4675/// This function has undefined behavior. In particular, the
4676/// presence of this instruction indicates some higher level knowledge that the
4677/// end of the block cannot be reached.
4678///
4679class UnreachableInst : public Instruction {
4680protected:
4681 // Note: Instruction needs to be a friend here to call cloneImpl.
4682 friend class Instruction;
4683
4684 UnreachableInst *cloneImpl() const;
4685
4686public:
4687 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4688 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4689
4690 // allocate space for exactly zero operands
4691 void *operator new(size_t S) { return User::operator new(S, 0); }
4692 void operator delete(void *Ptr) { User::operator delete(Ptr); }
4693
4694 unsigned getNumSuccessors() const { return 0; }
4695
4696 // Methods for support type inquiry through isa, cast, and dyn_cast:
4697 static bool classof(const Instruction *I) {
4698 return I->getOpcode() == Instruction::Unreachable;
4699 }
4700 static bool classof(const Value *V) {
4701 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4702 }
4703
4704private:
4705 BasicBlock *getSuccessor(unsigned idx) const {
4706 llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable();
4707 }
4708
4709 void setSuccessor(unsigned idx, BasicBlock *B) {
4710 llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable();
4711 }
4712};
4713
4714//===----------------------------------------------------------------------===//
4715// TruncInst Class
4716//===----------------------------------------------------------------------===//
4717
4718/// This class represents a truncation of integer types.
4719class TruncInst : public CastInst {
4720protected:
4721 // Note: Instruction needs to be a friend here to call cloneImpl.
4722 friend class Instruction;
4723
4724 /// Clone an identical TruncInst
4725 TruncInst *cloneImpl() const;
4726
4727public:
4728 /// Constructor with insert-before-instruction semantics
4729 TruncInst(
4730 Value *S, ///< The value to be truncated
4731 Type *Ty, ///< The (smaller) type to truncate to
4732 const Twine &NameStr = "", ///< A name for the new instruction
4733 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4734 );
4735
4736 /// Constructor with insert-at-end-of-block semantics
4737 TruncInst(
4738 Value *S, ///< The value to be truncated
4739 Type *Ty, ///< The (smaller) type to truncate to
4740 const Twine &NameStr, ///< A name for the new instruction
4741 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4742 );
4743
4744 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4745 static bool classof(const Instruction *I) {
4746 return I->getOpcode() == Trunc;
4747 }
4748 static bool classof(const Value *V) {
4749 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4750 }
4751};
4752
4753//===----------------------------------------------------------------------===//
4754// ZExtInst Class
4755//===----------------------------------------------------------------------===//
4756
4757/// This class represents zero extension of integer types.
4758class ZExtInst : public CastInst {
4759protected:
4760 // Note: Instruction needs to be a friend here to call cloneImpl.
4761 friend class Instruction;
4762
4763 /// Clone an identical ZExtInst
4764 ZExtInst *cloneImpl() const;
4765
4766public:
4767 /// Constructor with insert-before-instruction semantics
4768 ZExtInst(
4769 Value *S, ///< The value to be zero extended
4770 Type *Ty, ///< The type to zero extend to
4771 const Twine &NameStr = "", ///< A name for the new instruction
4772 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4773 );
4774
4775 /// Constructor with insert-at-end semantics.
4776 ZExtInst(
4777 Value *S, ///< The value to be zero extended
4778 Type *Ty, ///< The type to zero extend to
4779 const Twine &NameStr, ///< A name for the new instruction
4780 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4781 );
4782
4783 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4784 static bool classof(const Instruction *I) {
4785 return I->getOpcode() == ZExt;
4786 }
4787 static bool classof(const Value *V) {
4788 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4789 }
4790};
4791
4792//===----------------------------------------------------------------------===//
4793// SExtInst Class
4794//===----------------------------------------------------------------------===//
4795
4796/// This class represents a sign extension of integer types.
4797class SExtInst : public CastInst {
4798protected:
4799 // Note: Instruction needs to be a friend here to call cloneImpl.
4800 friend class Instruction;
4801
4802 /// Clone an identical SExtInst
4803 SExtInst *cloneImpl() const;
4804
4805public:
4806 /// Constructor with insert-before-instruction semantics
4807 SExtInst(
4808 Value *S, ///< The value to be sign extended
4809 Type *Ty, ///< The type to sign extend to
4810 const Twine &NameStr = "", ///< A name for the new instruction
4811 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4812 );
4813
4814 /// Constructor with insert-at-end-of-block semantics
4815 SExtInst(
4816 Value *S, ///< The value to be sign extended
4817 Type *Ty, ///< The type to sign extend to
4818 const Twine &NameStr, ///< A name for the new instruction
4819 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4820 );
4821
4822 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4823 static bool classof(const Instruction *I) {
4824 return I->getOpcode() == SExt;
4825 }
4826 static bool classof(const Value *V) {
4827 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4828 }
4829};
4830
4831//===----------------------------------------------------------------------===//
4832// FPTruncInst Class
4833//===----------------------------------------------------------------------===//
4834
4835/// This class represents a truncation of floating point types.
4836class FPTruncInst : public CastInst {
4837protected:
4838 // Note: Instruction needs to be a friend here to call cloneImpl.
4839 friend class Instruction;
4840
4841 /// Clone an identical FPTruncInst
4842 FPTruncInst *cloneImpl() const;
4843
4844public:
4845 /// Constructor with insert-before-instruction semantics
4846 FPTruncInst(
4847 Value *S, ///< The value to be truncated
4848 Type *Ty, ///< The type to truncate to
4849 const Twine &NameStr = "", ///< A name for the new instruction
4850 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4851 );
4852
4853 /// Constructor with insert-before-instruction semantics
4854 FPTruncInst(
4855 Value *S, ///< The value to be truncated
4856 Type *Ty, ///< The type to truncate to
4857 const Twine &NameStr, ///< A name for the new instruction
4858 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4859 );
4860
4861 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4862 static bool classof(const Instruction *I) {
4863 return I->getOpcode() == FPTrunc;
4864 }
4865 static bool classof(const Value *V) {
4866 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4867 }
4868};
4869
4870//===----------------------------------------------------------------------===//
4871// FPExtInst Class
4872//===----------------------------------------------------------------------===//
4873
4874/// This class represents an extension of floating point types.
4875class FPExtInst : public CastInst {
4876protected:
4877 // Note: Instruction needs to be a friend here to call cloneImpl.
4878 friend class Instruction;
4879
4880 /// Clone an identical FPExtInst
4881 FPExtInst *cloneImpl() const;
4882
4883public:
4884 /// Constructor with insert-before-instruction semantics
4885 FPExtInst(
4886 Value *S, ///< The value to be extended
4887 Type *Ty, ///< The type to extend to
4888 const Twine &NameStr = "", ///< A name for the new instruction
4889 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4890 );
4891
4892 /// Constructor with insert-at-end-of-block semantics
4893 FPExtInst(
4894 Value *S, ///< The value to be extended
4895 Type *Ty, ///< The type to extend to
4896 const Twine &NameStr, ///< A name for the new instruction
4897 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4898 );
4899
4900 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4901 static bool classof(const Instruction *I) {
4902 return I->getOpcode() == FPExt;
4903 }
4904 static bool classof(const Value *V) {
4905 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4906 }
4907};
4908
4909//===----------------------------------------------------------------------===//
4910// UIToFPInst Class
4911//===----------------------------------------------------------------------===//
4912
4913/// This class represents a cast unsigned integer to floating point.
4914class UIToFPInst : public CastInst {
4915protected:
4916 // Note: Instruction needs to be a friend here to call cloneImpl.
4917 friend class Instruction;
4918
4919 /// Clone an identical UIToFPInst
4920 UIToFPInst *cloneImpl() const;
4921
4922public:
4923 /// Constructor with insert-before-instruction semantics
4924 UIToFPInst(
4925 Value *S, ///< The value to be converted
4926 Type *Ty, ///< The type to convert to
4927 const Twine &NameStr = "", ///< A name for the new instruction
4928 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4929 );
4930
4931 /// Constructor with insert-at-end-of-block semantics
4932 UIToFPInst(
4933 Value *S, ///< The value to be converted
4934 Type *Ty, ///< The type to convert to
4935 const Twine &NameStr, ///< A name for the new instruction
4936 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4937 );
4938
4939 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4940 static bool classof(const Instruction *I) {
4941 return I->getOpcode() == UIToFP;
4942 }
4943 static bool classof(const Value *V) {
4944 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4945 }
4946};
4947
4948//===----------------------------------------------------------------------===//
4949// SIToFPInst Class
4950//===----------------------------------------------------------------------===//
4951
4952/// This class represents a cast from signed integer to floating point.
4953class SIToFPInst : public CastInst {
4954protected:
4955 // Note: Instruction needs to be a friend here to call cloneImpl.
4956 friend class Instruction;
4957
4958 /// Clone an identical SIToFPInst
4959 SIToFPInst *cloneImpl() const;
4960
4961public:
4962 /// Constructor with insert-before-instruction semantics
4963 SIToFPInst(
4964 Value *S, ///< The value to be converted
4965 Type *Ty, ///< The type to convert to
4966 const Twine &NameStr = "", ///< A name for the new instruction
4967 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4968 );
4969
4970 /// Constructor with insert-at-end-of-block semantics
4971 SIToFPInst(
4972 Value *S, ///< The value to be converted
4973 Type *Ty, ///< The type to convert to
4974 const Twine &NameStr, ///< A name for the new instruction
4975 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4976 );
4977
4978 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4979 static bool classof(const Instruction *I) {
4980 return I->getOpcode() == SIToFP;
4981 }
4982 static bool classof(const Value *V) {
4983 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4984 }
4985};
4986
4987//===----------------------------------------------------------------------===//
4988// FPToUIInst Class
4989//===----------------------------------------------------------------------===//
4990
4991/// This class represents a cast from floating point to unsigned integer
4992class FPToUIInst : public CastInst {
4993protected:
4994 // Note: Instruction needs to be a friend here to call cloneImpl.
4995 friend class Instruction;
4996
4997 /// Clone an identical FPToUIInst
4998 FPToUIInst *cloneImpl() const;
4999
5000public:
5001 /// Constructor with insert-before-instruction semantics
5002 FPToUIInst(
5003 Value *S, ///< The value to be converted
5004 Type *Ty, ///< The type to convert to
5005 const Twine &NameStr = "", ///< A name for the new instruction
5006 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5007 );
5008
5009 /// Constructor with insert-at-end-of-block semantics
5010 FPToUIInst(
5011 Value *S, ///< The value to be converted
5012 Type *Ty, ///< The type to convert to
5013 const Twine &NameStr, ///< A name for the new instruction
5014 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
5015 );
5016
5017 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5018 static bool classof(const Instruction *I) {
5019 return I->getOpcode() == FPToUI;
5020 }
5021 static bool classof(const Value *V) {
5022 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5023 }
5024};
5025
5026//===----------------------------------------------------------------------===//
5027// FPToSIInst Class
5028//===----------------------------------------------------------------------===//
5029
5030/// This class represents a cast from floating point to signed integer.
5031class FPToSIInst : public CastInst {
5032protected:
5033 // Note: Instruction needs to be a friend here to call cloneImpl.
5034 friend class Instruction;
5035
5036 /// Clone an identical FPToSIInst
5037 FPToSIInst *cloneImpl() const;
5038
5039public:
5040 /// Constructor with insert-before-instruction semantics
5041 FPToSIInst(
5042 Value *S, ///< The value to be converted
5043 Type *Ty, ///< The type to convert to
5044 const Twine &NameStr = "", ///< A name for the new instruction
5045 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5046 );
5047
5048 /// Constructor with insert-at-end-of-block semantics
5049 FPToSIInst(
5050 Value *S, ///< The value to be converted
5051 Type *Ty, ///< The type to convert to
5052 const Twine &NameStr, ///< A name for the new instruction
5053 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5054 );
5055
5056 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5057 static bool classof(const Instruction *I) {
5058 return I->getOpcode() == FPToSI;
5059 }
5060 static bool classof(const Value *V) {
5061 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5062 }
5063};
5064
5065//===----------------------------------------------------------------------===//
5066// IntToPtrInst Class
5067//===----------------------------------------------------------------------===//
5068
5069/// This class represents a cast from an integer to a pointer.
5070class IntToPtrInst : public CastInst {
5071public:
5072 // Note: Instruction needs to be a friend here to call cloneImpl.
5073 friend class Instruction;
5074
5075 /// Constructor with insert-before-instruction semantics
5076 IntToPtrInst(
5077 Value *S, ///< The value to be converted
5078 Type *Ty, ///< The type to convert to
5079 const Twine &NameStr = "", ///< A name for the new instruction
5080 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5081 );
5082
5083 /// Constructor with insert-at-end-of-block semantics
5084 IntToPtrInst(
5085 Value *S, ///< The value to be converted
5086 Type *Ty, ///< The type to convert to
5087 const Twine &NameStr, ///< A name for the new instruction
5088 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5089 );
5090
5091 /// Clone an identical IntToPtrInst.
5092 IntToPtrInst *cloneImpl() const;
5093
5094 /// Returns the address space of this instruction's pointer type.
5095 unsigned getAddressSpace() const {
5096 return getType()->getPointerAddressSpace();
5097 }
5098
5099 // Methods for support type inquiry through isa, cast, and dyn_cast:
5100 static bool classof(const Instruction *I) {
5101 return I->getOpcode() == IntToPtr;
5102 }
5103 static bool classof(const Value *V) {
5104 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5105 }
5106};
5107
5108//===----------------------------------------------------------------------===//
5109// PtrToIntInst Class
5110//===----------------------------------------------------------------------===//
5111
5112/// This class represents a cast from a pointer to an integer.
5113class PtrToIntInst : public CastInst {
5114protected:
5115 // Note: Instruction needs to be a friend here to call cloneImpl.
5116 friend class Instruction;
5117
5118 /// Clone an identical PtrToIntInst.
5119 PtrToIntInst *cloneImpl() const;
5120
5121public:
5122 /// Constructor with insert-before-instruction semantics
5123 PtrToIntInst(
5124 Value *S, ///< The value to be converted
5125 Type *Ty, ///< The type to convert to
5126 const Twine &NameStr = "", ///< A name for the new instruction
5127 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5128 );
5129
5130 /// Constructor with insert-at-end-of-block semantics
5131 PtrToIntInst(
5132 Value *S, ///< The value to be converted
5133 Type *Ty, ///< The type to convert to
5134 const Twine &NameStr, ///< A name for the new instruction
5135 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5136 );
5137
5138 /// Gets the pointer operand.
5139 Value *getPointerOperand() { return getOperand(0); }
5140 /// Gets the pointer operand.
5141 const Value *getPointerOperand() const { return getOperand(0); }
5142 /// Gets the operand index of the pointer operand.
5143 static unsigned getPointerOperandIndex() { return 0U; }
5144
5145 /// Returns the address space of the pointer operand.
5146 unsigned getPointerAddressSpace() const {
5147 return getPointerOperand()->getType()->getPointerAddressSpace();
5148 }
5149
5150 // Methods for support type inquiry through isa, cast, and dyn_cast:
5151 static bool classof(const Instruction *I) {
5152 return I->getOpcode() == PtrToInt;
5153 }
5154 static bool classof(const Value *V) {
5155 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5156 }
5157};
5158
5159//===----------------------------------------------------------------------===//
5160// BitCastInst Class
5161//===----------------------------------------------------------------------===//
5162
5163/// This class represents a no-op cast from one type to another.
5164class BitCastInst : public CastInst {
5165protected:
5166 // Note: Instruction needs to be a friend here to call cloneImpl.
5167 friend class Instruction;
5168
5169 /// Clone an identical BitCastInst.
5170 BitCastInst *cloneImpl() const;
5171
5172public:
5173 /// Constructor with insert-before-instruction semantics
5174 BitCastInst(
5175 Value *S, ///< The value to be casted
5176 Type *Ty, ///< The type to casted to
5177 const Twine &NameStr = "", ///< A name for the new instruction
5178 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5179 );
5180
5181 /// Constructor with insert-at-end-of-block semantics
5182 BitCastInst(
5183 Value *S, ///< The value to be casted
5184 Type *Ty, ///< The type to casted to
5185 const Twine &NameStr, ///< A name for the new instruction
5186 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5187 );
5188
5189 // Methods for support type inquiry through isa, cast, and dyn_cast:
5190 static bool classof(const Instruction *I) {
5191 return I->getOpcode() == BitCast;
5192 }
5193 static bool classof(const Value *V) {
5194 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5195 }
5196};
5197
5198//===----------------------------------------------------------------------===//
5199// AddrSpaceCastInst Class
5200//===----------------------------------------------------------------------===//
5201
5202/// This class represents a conversion between pointers from one address space
5203/// to another.
5204class AddrSpaceCastInst : public CastInst {
5205protected:
5206 // Note: Instruction needs to be a friend here to call cloneImpl.
5207 friend class Instruction;
5208
5209 /// Clone an identical AddrSpaceCastInst.
5210 AddrSpaceCastInst *cloneImpl() const;
5211
5212public:
5213 /// Constructor with insert-before-instruction semantics
5214 AddrSpaceCastInst(
5215 Value *S, ///< The value to be casted
5216 Type *Ty, ///< The type to casted to
5217 const Twine &NameStr = "", ///< A name for the new instruction
5218 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5219 );
5220
5221 /// Constructor with insert-at-end-of-block semantics
5222 AddrSpaceCastInst(
5223 Value *S, ///< The value to be casted
5224 Type *Ty, ///< The type to casted to
5225 const Twine &NameStr, ///< A name for the new instruction
5226 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5227 );
5228
5229 // Methods for support type inquiry through isa, cast, and dyn_cast:
5230 static bool classof(const Instruction *I) {
5231 return I->getOpcode() == AddrSpaceCast;
5232 }
5233 static bool classof(const Value *V) {
5234 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5235 }
5236
5237 /// Gets the pointer operand.
5238 Value *getPointerOperand() {
5239 return getOperand(0);
5240 }
5241
5242 /// Gets the pointer operand.
5243 const Value *getPointerOperand() const {
5244 return getOperand(0);
5245 }
5246
5247 /// Gets the operand index of the pointer operand.
5248 static unsigned getPointerOperandIndex() {
5249 return 0U;
5250 }
5251
5252 /// Returns the address space of the pointer operand.
5253 unsigned getSrcAddressSpace() const {
5254 return getPointerOperand()->getType()->getPointerAddressSpace();
5255 }
5256
5257 /// Returns the address space of the result.
5258 unsigned getDestAddressSpace() const {
5259 return getType()->getPointerAddressSpace();
5260 }
5261};
5262
5263/// A helper function that returns the pointer operand of a load or store
5264/// instruction. Returns nullptr if not load or store.
5265inline const Value *getLoadStorePointerOperand(const Value *V) {
5266 if (auto *Load = dyn_cast<LoadInst>(V))
5267 return Load->getPointerOperand();
5268 if (auto *Store = dyn_cast<StoreInst>(V))
5269 return Store->getPointerOperand();
5270 return nullptr;
5271}
5272inline Value *getLoadStorePointerOperand(Value *V) {
5273 return const_cast<Value *>(
5274 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5275}
5276
5277/// A helper function that returns the pointer operand of a load, store
5278/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5279inline const Value *getPointerOperand(const Value *V) {
5280 if (auto *Ptr = getLoadStorePointerOperand(V))
5281 return Ptr;
5282 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5283 return Gep->getPointerOperand();
5284 return nullptr;
5285}
5286inline Value *getPointerOperand(Value *V) {
5287 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5288}
5289
5290/// A helper function that returns the alignment of load or store instruction.
5291inline Align getLoadStoreAlignment(Value *I) {
5292 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0)
5293 "Expected Load or Store instruction")((void)0);
5294 if (auto *LI = dyn_cast<LoadInst>(I))
5295 return LI->getAlign();
5296 return cast<StoreInst>(I)->getAlign();
5297}
5298
5299/// A helper function that returns the address space of the pointer operand of
5300/// load or store instruction.
5301inline unsigned getLoadStoreAddressSpace(Value *I) {
5302 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0)
5303 "Expected Load or Store instruction")((void)0);
5304 if (auto *LI = dyn_cast<LoadInst>(I))
5305 return LI->getPointerAddressSpace();
5306 return cast<StoreInst>(I)->getPointerAddressSpace();
5307}
5308
5309/// A helper function that returns the type of a load or store instruction.
5310inline Type *getLoadStoreType(Value *I) {
5311 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0)
5312 "Expected Load or Store instruction")((void)0);
5313 if (auto *LI = dyn_cast<LoadInst>(I))
5314 return LI->getType();
5315 return cast<StoreInst>(I)->getValueOperand()->getType();
5316}
5317
5318//===----------------------------------------------------------------------===//
5319// FreezeInst Class
5320//===----------------------------------------------------------------------===//
5321
5322/// This class represents a freeze function that returns random concrete
5323/// value if an operand is either a poison value or an undef value
5324class FreezeInst : public UnaryInstruction {
5325protected:
5326 // Note: Instruction needs to be a friend here to call cloneImpl.
5327 friend class Instruction;
5328
5329 /// Clone an identical FreezeInst
5330 FreezeInst *cloneImpl() const;
5331
5332public:
5333 explicit FreezeInst(Value *S,
5334 const Twine &NameStr = "",
5335 Instruction *InsertBefore = nullptr);
5336 FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5337
5338 // Methods for support type inquiry through isa, cast, and dyn_cast:
5339 static inline bool classof(const Instruction *I) {
5340 return I->getOpcode() == Freeze;
5341 }
5342 static inline bool classof(const Value *V) {
5343 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5344 }
5345};
5346
5347} // end namespace llvm
5348
5349#endif // LLVM_IR_INSTRUCTIONS_H

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h

1//===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains types to represent alignments.
10// They are instrumented to guarantee some invariants are preserved and prevent
11// invalid manipulations.
12//
13// - Align represents an alignment in bytes, it is always set and always a valid
14// power of two, its minimum value is 1 which means no alignment requirements.
15//
16// - MaybeAlign is an optional type, it may be undefined or set. When it's set
17// you can get the underlying Align type by using the getValue() method.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_SUPPORT_ALIGNMENT_H_
22#define LLVM_SUPPORT_ALIGNMENT_H_
23
24#include "llvm/ADT/Optional.h"
25#include "llvm/Support/MathExtras.h"
26#include <cassert>
27#ifndef NDEBUG1
28#include <string>
29#endif // NDEBUG
30
31namespace llvm {
32
33#define ALIGN_CHECK_ISPOSITIVE(decl) \
34 assert(decl > 0 && (#decl " should be defined"))((void)0)
35
36/// This struct is a compact representation of a valid (non-zero power of two)
37/// alignment.
38/// It is suitable for use as static global constants.
39struct Align {
40private:
41 uint8_t ShiftValue = 0; /// The log2 of the required alignment.
42 /// ShiftValue is less than 64 by construction.
43
44 friend struct MaybeAlign;
45 friend unsigned Log2(Align);
46 friend bool operator==(Align Lhs, Align Rhs);
47 friend bool operator!=(Align Lhs, Align Rhs);
48 friend bool operator<=(Align Lhs, Align Rhs);
49 friend bool operator>=(Align Lhs, Align Rhs);
50 friend bool operator<(Align Lhs, Align Rhs);
51 friend bool operator>(Align Lhs, Align Rhs);
52 friend unsigned encode(struct MaybeAlign A);
53 friend struct MaybeAlign decodeMaybeAlign(unsigned Value);
54
55 /// A trivial type to allow construction of constexpr Align.
56 /// This is currently needed to workaround a bug in GCC 5.3 which prevents
57 /// definition of constexpr assign operators.
58 /// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic
59 /// FIXME: Remove this, make all assign operators constexpr and introduce user
60 /// defined literals when we don't have to support GCC 5.3 anymore.
61 /// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain
62 struct LogValue {
63 uint8_t Log;
64 };
65
66public:
67 /// Default is byte-aligned.
68 constexpr Align() = default;
69 /// Do not perform checks in case of copy/move construct/assign, because the
70 /// checks have been performed when building `Other`.
71 constexpr Align(const Align &Other) = default;
72 constexpr Align(Align &&Other) = default;
73 Align &operator=(const Align &Other) = default;
74 Align &operator=(Align &&Other) = default;
75
76 explicit Align(uint64_t Value) {
77 assert(Value > 0 && "Value must not be 0")((void)0);
78 assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2")((void)0);
79 ShiftValue = Log2_64(Value);
5
Calling 'Log2_64'
7
Returning from 'Log2_64'
8
The value 255 is assigned to 'A.ShiftValue'
80 assert(ShiftValue < 64 && "Broken invariant")((void)0);
81 }
82
83 /// This is a hole in the type system and should not be abused.
84 /// Needed to interact with C for instance.
85 uint64_t value() const { return uint64_t(1) << ShiftValue; }
13
The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t'
86
87 /// Allow constructions of constexpr Align.
88 template <size_t kValue> constexpr static LogValue Constant() {
89 return LogValue{static_cast<uint8_t>(CTLog2<kValue>())};
90 }
91
92 /// Allow constructions of constexpr Align from types.
93 /// Compile time equivalent to Align(alignof(T)).
94 template <typename T> constexpr static LogValue Of() {
95 return Constant<std::alignment_of<T>::value>();
96 }
97
98 /// Constexpr constructor from LogValue type.
99 constexpr Align(LogValue CA) : ShiftValue(CA.Log) {}
100};
101
102/// Treats the value 0 as a 1, so Align is always at least 1.
103inline Align assumeAligned(uint64_t Value) {
104 return Value ? Align(Value) : Align();
105}
106
107/// This struct is a compact representation of a valid (power of two) or
108/// undefined (0) alignment.
109struct MaybeAlign : public llvm::Optional<Align> {
110private:
111 using UP = llvm::Optional<Align>;
112
113public:
114 /// Default is undefined.
115 MaybeAlign() = default;
116 /// Do not perform checks in case of copy/move construct/assign, because the
117 /// checks have been performed when building `Other`.
118 MaybeAlign(const MaybeAlign &Other) = default;
119 MaybeAlign &operator=(const MaybeAlign &Other) = default;
120 MaybeAlign(MaybeAlign &&Other) = default;
121 MaybeAlign &operator=(MaybeAlign &&Other) = default;
122
123 /// Use llvm::Optional<Align> constructor.
124 using UP::UP;
125
126 explicit MaybeAlign(uint64_t Value) {
127 assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&((void)0)
128 "Alignment is neither 0 nor a power of 2")((void)0);
129 if (Value)
130 emplace(Value);
131 }
132
133 /// For convenience, returns a valid alignment or 1 if undefined.
134 Align valueOrOne() const { return hasValue() ? getValue() : Align(); }
135};
136
137/// Checks that SizeInBytes is a multiple of the alignment.
138inline bool isAligned(Align Lhs, uint64_t SizeInBytes) {
139 return SizeInBytes % Lhs.value() == 0;
140}
141
142/// Checks that Addr is a multiple of the alignment.
143inline bool isAddrAligned(Align Lhs, const void *Addr) {
144 return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr));
145}
146
147/// Returns a multiple of A needed to store `Size` bytes.
148inline uint64_t alignTo(uint64_t Size, Align A) {
149 const uint64_t Value = A.value();
150 // The following line is equivalent to `(Size + Value - 1) / Value * Value`.
151
152 // The division followed by a multiplication can be thought of as a right
153 // shift followed by a left shift which zeros out the extra bits produced in
154 // the bump; `~(Value - 1)` is a mask where all those bits being zeroed out
155 // are just zero.
156
157 // Most compilers can generate this code but the pattern may be missed when
158 // multiple functions gets inlined.
159 return (Size + Value - 1) & ~(Value - 1U);
160}
161
162/// If non-zero \p Skew is specified, the return value will be a minimal integer
163/// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for
164/// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p
165/// Skew mod \p A'.
166///
167/// Examples:
168/// \code
169/// alignTo(5, Align(8), 7) = 7
170/// alignTo(17, Align(8), 1) = 17
171/// alignTo(~0LL, Align(8), 3) = 3
172/// \endcode
173inline uint64_t alignTo(uint64_t Size, Align A, uint64_t Skew) {
174 const uint64_t Value = A.value();
175 Skew %= Value;
176 return ((Size + Value - 1 - Skew) & ~(Value - 1U)) + Skew;
177}
178
179/// Returns a multiple of A needed to store `Size` bytes.
180/// Returns `Size` if current alignment is undefined.
181inline uint64_t alignTo(uint64_t Size, MaybeAlign A) {
182 return A ? alignTo(Size, A.getValue()) : Size;
183}
184
185/// Aligns `Addr` to `Alignment` bytes, rounding up.
186inline uintptr_t alignAddr(const void *Addr, Align Alignment) {
187 uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr);
188 assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=((void)0)
189 ArithAddr &&((void)0)
190 "Overflow")((void)0);
191 return alignTo(ArithAddr, Alignment);
192}
193
194/// Returns the offset to the next integer (mod 2**64) that is greater than
195/// or equal to \p Value and is a multiple of \p Align.
196inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) {
197 return alignTo(Value, Alignment) - Value;
198}
199
200/// Returns the necessary adjustment for aligning `Addr` to `Alignment`
201/// bytes, rounding up.
202inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) {
203 return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment);
204}
205
206/// Returns the log2 of the alignment.
207inline unsigned Log2(Align A) { return A.ShiftValue; }
208
209/// Returns the alignment that satisfies both alignments.
210/// Same semantic as MinAlign.
211inline Align commonAlignment(Align A, Align B) { return std::min(A, B); }
212
213/// Returns the alignment that satisfies both alignments.
214/// Same semantic as MinAlign.
215inline Align commonAlignment(Align A, uint64_t Offset) {
216 return Align(MinAlign(A.value(), Offset));
12
Calling 'Align::value'
217}
218
219/// Returns the alignment that satisfies both alignments.
220/// Same semantic as MinAlign.
221inline MaybeAlign commonAlignment(MaybeAlign A, MaybeAlign B) {
222 return A && B ? commonAlignment(*A, *B) : A ? A : B;
223}
224
225/// Returns the alignment that satisfies both alignments.
226/// Same semantic as MinAlign.
227inline MaybeAlign commonAlignment(MaybeAlign A, uint64_t Offset) {
228 return MaybeAlign(MinAlign((*A).value(), Offset));
229}
230
231/// Returns a representation of the alignment that encodes undefined as 0.
232inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; }
233
234/// Dual operation of the encode function above.
235inline MaybeAlign decodeMaybeAlign(unsigned Value) {
236 if (Value == 0)
237 return MaybeAlign();
238 Align Out;
239 Out.ShiftValue = Value - 1;
240 return Out;
241}
242
243/// Returns a representation of the alignment, the encoded value is positive by
244/// definition.
245inline unsigned encode(Align A) { return encode(MaybeAlign(A)); }
246
247/// Comparisons between Align and scalars. Rhs must be positive.
248inline bool operator==(Align Lhs, uint64_t Rhs) {
249 ALIGN_CHECK_ISPOSITIVE(Rhs);
250 return Lhs.value() == Rhs;
251}
252inline bool operator!=(Align Lhs, uint64_t Rhs) {
253 ALIGN_CHECK_ISPOSITIVE(Rhs);
254 return Lhs.value() != Rhs;
255}
256inline bool operator<=(Align Lhs, uint64_t Rhs) {
257 ALIGN_CHECK_ISPOSITIVE(Rhs);
258 return Lhs.value() <= Rhs;
259}
260inline bool operator>=(Align Lhs, uint64_t Rhs) {
261 ALIGN_CHECK_ISPOSITIVE(Rhs);
262 return Lhs.value() >= Rhs;
263}
264inline bool operator<(Align Lhs, uint64_t Rhs) {
265 ALIGN_CHECK_ISPOSITIVE(Rhs);
266 return Lhs.value() < Rhs;
267}
268inline bool operator>(Align Lhs, uint64_t Rhs) {
269 ALIGN_CHECK_ISPOSITIVE(Rhs);
270 return Lhs.value() > Rhs;
271}
272
273/// Comparisons between MaybeAlign and scalars.
274inline bool operator==(MaybeAlign Lhs, uint64_t Rhs) {
275 return Lhs ? (*Lhs).value() == Rhs : Rhs == 0;
276}
277inline bool operator!=(MaybeAlign Lhs, uint64_t Rhs) {
278 return Lhs ? (*Lhs).value() != Rhs : Rhs != 0;
279}
280
281/// Comparisons operators between Align.
282inline bool operator==(Align Lhs, Align Rhs) {
283 return Lhs.ShiftValue == Rhs.ShiftValue;
284}
285inline bool operator!=(Align Lhs, Align Rhs) {
286 return Lhs.ShiftValue != Rhs.ShiftValue;
287}
288inline bool operator<=(Align Lhs, Align Rhs) {
289 return Lhs.ShiftValue <= Rhs.ShiftValue;
290}
291inline bool operator>=(Align Lhs, Align Rhs) {
292 return Lhs.ShiftValue >= Rhs.ShiftValue;
293}
294inline bool operator<(Align Lhs, Align Rhs) {
295 return Lhs.ShiftValue < Rhs.ShiftValue;
296}
297inline bool operator>(Align Lhs, Align Rhs) {
298 return Lhs.ShiftValue > Rhs.ShiftValue;
299}
300
301// Don't allow relational comparisons with MaybeAlign.
302bool operator<=(Align Lhs, MaybeAlign Rhs) = delete;
303bool operator>=(Align Lhs, MaybeAlign Rhs) = delete;
304bool operator<(Align Lhs, MaybeAlign Rhs) = delete;
305bool operator>(Align Lhs, MaybeAlign Rhs) = delete;
306
307bool operator<=(MaybeAlign Lhs, Align Rhs) = delete;
308bool operator>=(MaybeAlign Lhs, Align Rhs) = delete;
309bool operator<(MaybeAlign Lhs, Align Rhs) = delete;
310bool operator>(MaybeAlign Lhs, Align Rhs) = delete;
311
312bool operator<=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
313bool operator>=(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
314bool operator<(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
315bool operator>(MaybeAlign Lhs, MaybeAlign Rhs) = delete;
316
317inline Align operator*(Align Lhs, uint64_t Rhs) {
318 assert(Rhs > 0 && "Rhs must be positive")((void)0);
319 return Align(Lhs.value() * Rhs);
320}
321
322inline MaybeAlign operator*(MaybeAlign Lhs, uint64_t Rhs) {
323 assert(Rhs > 0 && "Rhs must be positive")((void)0);
324 return Lhs ? Lhs.getValue() * Rhs : MaybeAlign();
325}
326
327inline Align operator/(Align Lhs, uint64_t Divisor) {
328 assert(llvm::isPowerOf2_64(Divisor) &&((void)0)
329 "Divisor must be positive and a power of 2")((void)0);
330 assert(Lhs != 1 && "Can't halve byte alignment")((void)0);
331 return Align(Lhs.value() / Divisor);
332}
333
334inline MaybeAlign operator/(MaybeAlign Lhs, uint64_t Divisor) {
335 assert(llvm::isPowerOf2_64(Divisor) &&((void)0)
336 "Divisor must be positive and a power of 2")((void)0);
337 return Lhs ? Lhs.getValue() / Divisor : MaybeAlign();
338}
339
340inline Align max(MaybeAlign Lhs, Align Rhs) {
341 return Lhs && *Lhs > Rhs ? *Lhs : Rhs;
342}
343
344inline Align max(Align Lhs, MaybeAlign Rhs) {
345 return Rhs && *Rhs > Lhs ? *Rhs : Lhs;
346}
347
348#ifndef NDEBUG1
349// For usage in LLVM_DEBUG macros.
350inline std::string DebugStr(const Align &A) {
351 return std::to_string(A.value());
352}
353// For usage in LLVM_DEBUG macros.
354inline std::string DebugStr(const MaybeAlign &MA) {
355 if (MA)
356 return std::to_string(MA->value());
357 return "None";
358}
359#endif // NDEBUG
360
361#undef ALIGN_CHECK_ISPOSITIVE
362
363} // namespace llvm
364
365#endif // LLVM_SUPPORT_ALIGNMENT_H_

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/MathExtras.h

1//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains some functions that are useful for math stuff.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_MATHEXTRAS_H
14#define LLVM_SUPPORT_MATHEXTRAS_H
15
16#include "llvm/Support/Compiler.h"
17#include <cassert>
18#include <climits>
19#include <cmath>
20#include <cstdint>
21#include <cstring>
22#include <limits>
23#include <type_traits>
24
25#ifdef __ANDROID_NDK__
26#include <android/api-level.h>
27#endif
28
29#ifdef _MSC_VER
30// Declare these intrinsics manually rather including intrin.h. It's very
31// expensive, and MathExtras.h is popular.
32// #include <intrin.h>
33extern "C" {
34unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
35unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
36unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
37unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
38}
39#endif
40
41namespace llvm {
42
43/// The behavior an operation has on an input of 0.
44enum ZeroBehavior {
45 /// The returned value is undefined.
46 ZB_Undefined,
47 /// The returned value is numeric_limits<T>::max()
48 ZB_Max,
49 /// The returned value is numeric_limits<T>::digits
50 ZB_Width
51};
52
53/// Mathematical constants.
54namespace numbers {
55// TODO: Track C++20 std::numbers.
56// TODO: Favor using the hexadecimal FP constants (requires C++17).
57constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113
58 egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620
59 ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162
60 ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392
61 log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0)
62 log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2)
63 pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796
64 inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541
65 sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161
66 inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197
67 sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219
68 inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1)
69 sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194
70 inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1)
71 phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622
72constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113
73 egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620
74 ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162
75 ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392
76 log2ef = 1.44269504F, // (0x1.715476P+0)
77 log10ef = .434294482F, // (0x1.bcb7b2P-2)
78 pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796
79 inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541
80 sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161
81 inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197
82 sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193
83 inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1)
84 sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194
85 inv_sqrt3f = .577350269F, // (0x1.279a74P-1)
86 phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622
87} // namespace numbers
88
89namespace detail {
90template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
91 static unsigned count(T Val, ZeroBehavior) {
92 if (!Val)
93 return std::numeric_limits<T>::digits;
94 if (Val & 0x1)
95 return 0;
96
97 // Bisection method.
98 unsigned ZeroBits = 0;
99 T Shift = std::numeric_limits<T>::digits >> 1;
100 T Mask = std::numeric_limits<T>::max() >> Shift;
101 while (Shift) {
102 if ((Val & Mask) == 0) {
103 Val >>= Shift;
104 ZeroBits |= Shift;
105 }
106 Shift >>= 1;
107 Mask >>= Shift;
108 }
109 return ZeroBits;
110 }
111};
112
113#if defined(__GNUC__4) || defined(_MSC_VER)
114template <typename T> struct TrailingZerosCounter<T, 4> {
115 static unsigned count(T Val, ZeroBehavior ZB) {
116 if (ZB != ZB_Undefined && Val == 0)
117 return 32;
118
119#if __has_builtin(__builtin_ctz)1 || defined(__GNUC__4)
120 return __builtin_ctz(Val);
121#elif defined(_MSC_VER)
122 unsigned long Index;
123 _BitScanForward(&Index, Val);
124 return Index;
125#endif
126 }
127};
128
129#if !defined(_MSC_VER) || defined(_M_X64)
130template <typename T> struct TrailingZerosCounter<T, 8> {
131 static unsigned count(T Val, ZeroBehavior ZB) {
132 if (ZB != ZB_Undefined && Val == 0)
133 return 64;
134
135#if __has_builtin(__builtin_ctzll)1 || defined(__GNUC__4)
136 return __builtin_ctzll(Val);
137#elif defined(_MSC_VER)
138 unsigned long Index;
139 _BitScanForward64(&Index, Val);
140 return Index;
141#endif
142 }
143};
144#endif
145#endif
146} // namespace detail
147
148/// Count number of 0's from the least significant bit to the most
149/// stopping at the first 1.
150///
151/// Only unsigned integral types are allowed.
152///
153/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
154/// valid arguments.
155template <typename T>
156unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
157 static_assert(std::numeric_limits<T>::is_integer &&
158 !std::numeric_limits<T>::is_signed,
159 "Only unsigned integral types are allowed.");
160 return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
161}
162
163namespace detail {
164template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
165 static unsigned count(T Val, ZeroBehavior) {
166 if (!Val)
167 return std::numeric_limits<T>::digits;
168
169 // Bisection method.
170 unsigned ZeroBits = 0;
171 for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
172 T Tmp = Val >> Shift;
173 if (Tmp)
174 Val = Tmp;
175 else
176 ZeroBits |= Shift;
177 }
178 return ZeroBits;
179 }
180};
181
182#if defined(__GNUC__4) || defined(_MSC_VER)
183template <typename T> struct LeadingZerosCounter<T, 4> {
184 static unsigned count(T Val, ZeroBehavior ZB) {
185 if (ZB != ZB_Undefined && Val == 0)
186 return 32;
187
188#if __has_builtin(__builtin_clz)1 || defined(__GNUC__4)
189 return __builtin_clz(Val);
190#elif defined(_MSC_VER)
191 unsigned long Index;
192 _BitScanReverse(&Index, Val);
193 return Index ^ 31;
194#endif
195 }
196};
197
198#if !defined(_MSC_VER) || defined(_M_X64)
199template <typename T> struct LeadingZerosCounter<T, 8> {
200 static unsigned count(T Val, ZeroBehavior ZB) {
201 if (ZB != ZB_Undefined && Val == 0)
202 return 64;
203
204#if __has_builtin(__builtin_clzll)1 || defined(__GNUC__4)
205 return __builtin_clzll(Val);
206#elif defined(_MSC_VER)
207 unsigned long Index;
208 _BitScanReverse64(&Index, Val);
209 return Index ^ 63;
210#endif
211 }
212};
213#endif
214#endif
215} // namespace detail
216
217/// Count number of 0's from the most significant bit to the least
218/// stopping at the first 1.
219///
220/// Only unsigned integral types are allowed.
221///
222/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
223/// valid arguments.
224template <typename T>
225unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
226 static_assert(std::numeric_limits<T>::is_integer &&
227 !std::numeric_limits<T>::is_signed,
228 "Only unsigned integral types are allowed.");
229 return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
230}
231
232/// Get the index of the first set bit starting from the least
233/// significant bit.
234///
235/// Only unsigned integral types are allowed.
236///
237/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
238/// valid arguments.
239template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
240 if (ZB == ZB_Max && Val == 0)
241 return std::numeric_limits<T>::max();
242
243 return countTrailingZeros(Val, ZB_Undefined);
244}
245
246/// Create a bitmask with the N right-most bits set to 1, and all other
247/// bits set to 0. Only unsigned types are allowed.
248template <typename T> T maskTrailingOnes(unsigned N) {
249 static_assert(std::is_unsigned<T>::value, "Invalid type!");
250 const unsigned Bits = CHAR_BIT8 * sizeof(T);
251 assert(N <= Bits && "Invalid bit index")((void)0);
252 return N == 0 ? 0 : (T(-1) >> (Bits - N));
253}
254
255/// Create a bitmask with the N left-most bits set to 1, and all other
256/// bits set to 0. Only unsigned types are allowed.
257template <typename T> T maskLeadingOnes(unsigned N) {
258 return ~maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
259}
260
261/// Create a bitmask with the N right-most bits set to 0, and all other
262/// bits set to 1. Only unsigned types are allowed.
263template <typename T> T maskTrailingZeros(unsigned N) {
264 return maskLeadingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
265}
266
267/// Create a bitmask with the N left-most bits set to 0, and all other
268/// bits set to 1. Only unsigned types are allowed.
269template <typename T> T maskLeadingZeros(unsigned N) {
270 return maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
271}
272
273/// Get the index of the last set bit starting from the least
274/// significant bit.
275///
276/// Only unsigned integral types are allowed.
277///
278/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
279/// valid arguments.
280template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
281 if (ZB == ZB_Max && Val == 0)
282 return std::numeric_limits<T>::max();
283
284 // Use ^ instead of - because both gcc and llvm can remove the associated ^
285 // in the __builtin_clz intrinsic on x86.
286 return countLeadingZeros(Val, ZB_Undefined) ^
287 (std::numeric_limits<T>::digits - 1);
288}
289
290/// Macro compressed bit reversal table for 256 bits.
291///
292/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
293static const unsigned char BitReverseTable256[256] = {
294#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
295#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
296#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
297 R6(0), R6(2), R6(1), R6(3)
298#undef R2
299#undef R4
300#undef R6
301};
302
303/// Reverse the bits in \p Val.
304template <typename T>
305T reverseBits(T Val) {
306 unsigned char in[sizeof(Val)];
307 unsigned char out[sizeof(Val)];
308 std::memcpy(in, &Val, sizeof(Val));
309 for (unsigned i = 0; i < sizeof(Val); ++i)
310 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
311 std::memcpy(&Val, out, sizeof(Val));
312 return Val;
313}
314
315#if __has_builtin(__builtin_bitreverse8)1
316template<>
317inline uint8_t reverseBits<uint8_t>(uint8_t Val) {
318 return __builtin_bitreverse8(Val);
319}
320#endif
321
322#if __has_builtin(__builtin_bitreverse16)1
323template<>
324inline uint16_t reverseBits<uint16_t>(uint16_t Val) {
325 return __builtin_bitreverse16(Val);
326}
327#endif
328
329#if __has_builtin(__builtin_bitreverse32)1
330template<>
331inline uint32_t reverseBits<uint32_t>(uint32_t Val) {
332 return __builtin_bitreverse32(Val);
333}
334#endif
335
336#if __has_builtin(__builtin_bitreverse64)1
337template<>
338inline uint64_t reverseBits<uint64_t>(uint64_t Val) {
339 return __builtin_bitreverse64(Val);
340}
341#endif
342
343// NOTE: The following support functions use the _32/_64 extensions instead of
344// type overloading so that signed and unsigned integers can be used without
345// ambiguity.
346
347/// Return the high 32 bits of a 64 bit value.
348constexpr inline uint32_t Hi_32(uint64_t Value) {
349 return static_cast<uint32_t>(Value >> 32);
350}
351
352/// Return the low 32 bits of a 64 bit value.
353constexpr inline uint32_t Lo_32(uint64_t Value) {
354 return static_cast<uint32_t>(Value);
355}
356
357/// Make a 64-bit integer from a high / low pair of 32-bit integers.
358constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
359 return ((uint64_t)High << 32) | (uint64_t)Low;
360}
361
362/// Checks if an integer fits into the given bit width.
363template <unsigned N> constexpr inline bool isInt(int64_t x) {
364 return N >= 64 || (-(INT64_C(1)1LL<<(N-1)) <= x && x < (INT64_C(1)1LL<<(N-1)));
365}
366// Template specializations to get better code for common cases.
367template <> constexpr inline bool isInt<8>(int64_t x) {
368 return static_cast<int8_t>(x) == x;
369}
370template <> constexpr inline bool isInt<16>(int64_t x) {
371 return static_cast<int16_t>(x) == x;
372}
373template <> constexpr inline bool isInt<32>(int64_t x) {
374 return static_cast<int32_t>(x) == x;
375}
376
377/// Checks if a signed integer is an N bit number shifted left by S.
378template <unsigned N, unsigned S>
379constexpr inline bool isShiftedInt(int64_t x) {
380 static_assert(
381 N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
382 static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
383 return isInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0);
384}
385
386/// Checks if an unsigned integer fits into the given bit width.
387///
388/// This is written as two functions rather than as simply
389///
390/// return N >= 64 || X < (UINT64_C(1) << N);
391///
392/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
393/// left too many places.
394template <unsigned N>
395constexpr inline std::enable_if_t<(N < 64), bool> isUInt(uint64_t X) {
396 static_assert(N > 0, "isUInt<0> doesn't make sense");
397 return X < (UINT64_C(1)1ULL << (N));
398}
399template <unsigned N>
400constexpr inline std::enable_if_t<N >= 64, bool> isUInt(uint64_t) {
401 return true;
402}
403
404// Template specializations to get better code for common cases.
405template <> constexpr inline bool isUInt<8>(uint64_t x) {
406 return static_cast<uint8_t>(x) == x;
407}
408template <> constexpr inline bool isUInt<16>(uint64_t x) {
409 return static_cast<uint16_t>(x) == x;
410}
411template <> constexpr inline bool isUInt<32>(uint64_t x) {
412 return static_cast<uint32_t>(x) == x;
413}
414
415/// Checks if a unsigned integer is an N bit number shifted left by S.
416template <unsigned N, unsigned S>
417constexpr inline bool isShiftedUInt(uint64_t x) {
418 static_assert(
419 N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
420 static_assert(N + S <= 64,
421 "isShiftedUInt<N, S> with N + S > 64 is too wide.");
422 // Per the two static_asserts above, S must be strictly less than 64. So
423 // 1 << S is not undefined behavior.
424 return isUInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0);
425}
426
427/// Gets the maximum value for a N-bit unsigned integer.
428inline uint64_t maxUIntN(uint64_t N) {
429 assert(N > 0 && N <= 64 && "integer width out of range")((void)0);
430
431 // uint64_t(1) << 64 is undefined behavior, so we can't do
432 // (uint64_t(1) << N) - 1
433 // without checking first that N != 64. But this works and doesn't have a
434 // branch.
435 return UINT64_MAX0xffffffffffffffffULL >> (64 - N);
436}
437
438/// Gets the minimum value for a N-bit signed integer.
439inline int64_t minIntN(int64_t N) {
440 assert(N > 0 && N <= 64 && "integer width out of range")((void)0);
441
442 return UINT64_C(1)1ULL + ~(UINT64_C(1)1ULL << (N - 1));
443}
444
445/// Gets the maximum value for a N-bit signed integer.
446inline int64_t maxIntN(int64_t N) {
447 assert(N > 0 && N <= 64 && "integer width out of range")((void)0);
448
449 // This relies on two's complement wraparound when N == 64, so we convert to
450 // int64_t only at the very end to avoid UB.
451 return (UINT64_C(1)1ULL << (N - 1)) - 1;
452}
453
454/// Checks if an unsigned integer fits into the given (dynamic) bit width.
455inline bool isUIntN(unsigned N, uint64_t x) {
456 return N >= 64 || x <= maxUIntN(N);
457}
458
459/// Checks if an signed integer fits into the given (dynamic) bit width.
460inline bool isIntN(unsigned N, int64_t x) {
461 return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
462}
463
464/// Return true if the argument is a non-empty sequence of ones starting at the
465/// least significant bit with the remainder zero (32 bit version).
466/// Ex. isMask_32(0x0000FFFFU) == true.
467constexpr inline bool isMask_32(uint32_t Value) {
468 return Value && ((Value + 1) & Value) == 0;
469}
470
471/// Return true if the argument is a non-empty sequence of ones starting at the
472/// least significant bit with the remainder zero (64 bit version).
473constexpr inline bool isMask_64(uint64_t Value) {
474 return Value && ((Value + 1) & Value) == 0;
475}
476
477/// Return true if the argument contains a non-empty sequence of ones with the
478/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
479constexpr inline bool isShiftedMask_32(uint32_t Value) {
480 return Value && isMask_32((Value - 1) | Value);
481}
482
483/// Return true if the argument contains a non-empty sequence of ones with the
484/// remainder zero (64 bit version.)
485constexpr inline bool isShiftedMask_64(uint64_t Value) {
486 return Value && isMask_64((Value - 1) | Value);
487}
488
489/// Return true if the argument is a power of two > 0.
490/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
491constexpr inline bool isPowerOf2_32(uint32_t Value) {
492 return Value && !(Value & (Value - 1));
493}
494
495/// Return true if the argument is a power of two > 0 (64 bit edition.)
496constexpr inline bool isPowerOf2_64(uint64_t Value) {
497 return Value && !(Value & (Value - 1));
498}
499
500/// Count the number of ones from the most significant bit to the first
501/// zero bit.
502///
503/// Ex. countLeadingOnes(0xFF0FFF00) == 8.
504/// Only unsigned integral types are allowed.
505///
506/// \param ZB the behavior on an input of all ones. Only ZB_Width and
507/// ZB_Undefined are valid arguments.
508template <typename T>
509unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
510 static_assert(std::numeric_limits<T>::is_integer &&
511 !std::numeric_limits<T>::is_signed,
512 "Only unsigned integral types are allowed.");
513 return countLeadingZeros<T>(~Value, ZB);
514}
515
516/// Count the number of ones from the least significant bit to the first
517/// zero bit.
518///
519/// Ex. countTrailingOnes(0x00FF00FF) == 8.
520/// Only unsigned integral types are allowed.
521///
522/// \param ZB the behavior on an input of all ones. Only ZB_Width and
523/// ZB_Undefined are valid arguments.
524template <typename T>
525unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
526 static_assert(std::numeric_limits<T>::is_integer &&
527 !std::numeric_limits<T>::is_signed,
528 "Only unsigned integral types are allowed.");
529 return countTrailingZeros<T>(~Value, ZB);
530}
531
532namespace detail {
533template <typename T, std::size_t SizeOfT> struct PopulationCounter {
534 static unsigned count(T Value) {
535 // Generic version, forward to 32 bits.
536 static_assert(SizeOfT <= 4, "Not implemented!");
537#if defined(__GNUC__4)
538 return __builtin_popcount(Value);
539#else
540 uint32_t v = Value;
541 v = v - ((v >> 1) & 0x55555555);
542 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
543 return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
544#endif
545 }
546};
547
548template <typename T> struct PopulationCounter<T, 8> {
549 static unsigned count(T Value) {
550#if defined(__GNUC__4)
551 return __builtin_popcountll(Value);
552#else
553 uint64_t v = Value;
554 v = v - ((v >> 1) & 0x5555555555555555ULL);
555 v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
556 v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
557 return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
558#endif
559 }
560};
561} // namespace detail
562
563/// Count the number of set bits in a value.
564/// Ex. countPopulation(0xF000F000) = 8
565/// Returns 0 if the word is zero.
566template <typename T>
567inline unsigned countPopulation(T Value) {
568 static_assert(std::numeric_limits<T>::is_integer &&
569 !std::numeric_limits<T>::is_signed,
570 "Only unsigned integral types are allowed.");
571 return detail::PopulationCounter<T, sizeof(T)>::count(Value);
572}
573
574/// Compile time Log2.
575/// Valid only for positive powers of two.
576template <size_t kValue> constexpr inline size_t CTLog2() {
577 static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue),
578 "Value is not a valid power of 2");
579 return 1 + CTLog2<kValue / 2>();
580}
581
582template <> constexpr inline size_t CTLog2<1>() { return 0; }
583
584/// Return the log base 2 of the specified value.
585inline double Log2(double Value) {
586#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
587 return __builtin_log(Value) / __builtin_log(2.0);
588#else
589 return log2(Value);
590#endif
591}
592
593/// Return the floor log base 2 of the specified value, -1 if the value is zero.
594/// (32 bit edition.)
595/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
596inline unsigned Log2_32(uint32_t Value) {
597 return 31 - countLeadingZeros(Value);
598}
599
600/// Return the floor log base 2 of the specified value, -1 if the value is zero.
601/// (64 bit edition.)
602inline unsigned Log2_64(uint64_t Value) {
603 return 63 - countLeadingZeros(Value);
6
Returning the value 4294967295
604}
605
606/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
607/// (32 bit edition).
608/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
609inline unsigned Log2_32_Ceil(uint32_t Value) {
610 return 32 - countLeadingZeros(Value - 1);
611}
612
613/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
614/// (64 bit edition.)
615inline unsigned Log2_64_Ceil(uint64_t Value) {
616 return 64 - countLeadingZeros(Value - 1);
617}
618
619/// Return the greatest common divisor of the values using Euclid's algorithm.
620template <typename T>
621inline T greatestCommonDivisor(T A, T B) {
622 while (B) {
623 T Tmp = B;
624 B = A % B;
625 A = Tmp;
626 }
627 return A;
628}
629
630inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
631 return greatestCommonDivisor<uint64_t>(A, B);
632}
633
634/// This function takes a 64-bit integer and returns the bit equivalent double.
635inline double BitsToDouble(uint64_t Bits) {
636 double D;
637 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
638 memcpy(&D, &Bits, sizeof(Bits));
639 return D;
640}
641
642/// This function takes a 32-bit integer and returns the bit equivalent float.
643inline float BitsToFloat(uint32_t Bits) {
644 float F;
645 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
646 memcpy(&F, &Bits, sizeof(Bits));
647 return F;
648}
649
650/// This function takes a double and returns the bit equivalent 64-bit integer.
651/// Note that copying doubles around changes the bits of NaNs on some hosts,
652/// notably x86, so this routine cannot be used if these bits are needed.
653inline uint64_t DoubleToBits(double Double) {
654 uint64_t Bits;
655 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
656 memcpy(&Bits, &Double, sizeof(Double));
657 return Bits;
658}
659
660/// This function takes a float and returns the bit equivalent 32-bit integer.
661/// Note that copying floats around changes the bits of NaNs on some hosts,
662/// notably x86, so this routine cannot be used if these bits are needed.
663inline uint32_t FloatToBits(float Float) {
664 uint32_t Bits;
665 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
666 memcpy(&Bits, &Float, sizeof(Float));
667 return Bits;
668}
669
670/// A and B are either alignments or offsets. Return the minimum alignment that
671/// may be assumed after adding the two together.
672constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
673 // The largest power of 2 that divides both A and B.
674 //
675 // Replace "-Value" by "1+~Value" in the following commented code to avoid
676 // MSVC warning C4146
677 // return (A | B) & -(A | B);
678 return (A | B) & (1 + ~(A | B));
679}
680
681/// Returns the next power of two (in 64-bits) that is strictly greater than A.
682/// Returns zero on overflow.
683inline uint64_t NextPowerOf2(uint64_t A) {
684 A |= (A >> 1);
685 A |= (A >> 2);
686 A |= (A >> 4);
687 A |= (A >> 8);
688 A |= (A >> 16);
689 A |= (A >> 32);
690 return A + 1;
691}
692
693/// Returns the power of two which is less than or equal to the given value.
694/// Essentially, it is a floor operation across the domain of powers of two.
695inline uint64_t PowerOf2Floor(uint64_t A) {
696 if (!A) return 0;
697 return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
698}
699
700/// Returns the power of two which is greater than or equal to the given value.
701/// Essentially, it is a ceil operation across the domain of powers of two.
702inline uint64_t PowerOf2Ceil(uint64_t A) {
703 if (!A)
704 return 0;
705 return NextPowerOf2(A - 1);
706}
707
708/// Returns the next integer (mod 2**64) that is greater than or equal to
709/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
710///
711/// If non-zero \p Skew is specified, the return value will be a minimal
712/// integer that is greater than or equal to \p Value and equal to
713/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
714/// \p Align, its value is adjusted to '\p Skew mod \p Align'.
715///
716/// Examples:
717/// \code
718/// alignTo(5, 8) = 8
719/// alignTo(17, 8) = 24
720/// alignTo(~0LL, 8) = 0
721/// alignTo(321, 255) = 510
722///
723/// alignTo(5, 8, 7) = 7
724/// alignTo(17, 8, 1) = 17
725/// alignTo(~0LL, 8, 3) = 3
726/// alignTo(321, 255, 42) = 552
727/// \endcode
728inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
729 assert(Align != 0u && "Align can't be 0.")((void)0);
730 Skew %= Align;
731 return (Value + Align - 1 - Skew) / Align * Align + Skew;
732}
733
734/// Returns the next integer (mod 2**64) that is greater than or equal to
735/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
736template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
737 static_assert(Align != 0u, "Align must be non-zero");
738 return (Value + Align - 1) / Align * Align;
739}
740
741/// Returns the integer ceil(Numerator / Denominator).
742inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
743 return alignTo(Numerator, Denominator) / Denominator;
744}
745
746/// Returns the integer nearest(Numerator / Denominator).
747inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) {
748 return (Numerator + (Denominator / 2)) / Denominator;
749}
750
751/// Returns the largest uint64_t less than or equal to \p Value and is
752/// \p Skew mod \p Align. \p Align must be non-zero
753inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
754 assert(Align != 0u && "Align can't be 0.")((void)0);
755 Skew %= Align;
756 return (Value - Skew) / Align * Align + Skew;
757}
758
759/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
760/// Requires 0 < B <= 32.
761template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
762 static_assert(B > 0, "Bit width can't be 0.");
763 static_assert(B <= 32, "Bit width out of range.");
764 return int32_t(X << (32 - B)) >> (32 - B);
765}
766
767/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
768/// Requires 0 < B <= 32.
769inline int32_t SignExtend32(uint32_t X, unsigned B) {
770 assert(B > 0 && "Bit width can't be 0.")((void)0);
771 assert(B <= 32 && "Bit width out of range.")((void)0);
772 return int32_t(X << (32 - B)) >> (32 - B);
773}
774
775/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
776/// Requires 0 < B <= 64.
777template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
778 static_assert(B > 0, "Bit width can't be 0.");
779 static_assert(B <= 64, "Bit width out of range.");
780 return int64_t(x << (64 - B)) >> (64 - B);
781}
782
783/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
784/// Requires 0 < B <= 64.
785inline int64_t SignExtend64(uint64_t X, unsigned B) {
786 assert(B > 0 && "Bit width can't be 0.")((void)0);
787 assert(B <= 64 && "Bit width out of range.")((void)0);
788 return int64_t(X << (64 - B)) >> (64 - B);
789}
790
791/// Subtract two unsigned integers, X and Y, of type T and return the absolute
792/// value of the result.
793template <typename T>
794std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) {
795 return X > Y ? (X - Y) : (Y - X);
796}
797
798/// Add two unsigned integers, X and Y, of type T. Clamp the result to the
799/// maximum representable value of T on overflow. ResultOverflowed indicates if
800/// the result is larger than the maximum representable value of type T.
801template <typename T>
802std::enable_if_t<std::is_unsigned<T>::value, T>
803SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
804 bool Dummy;
805 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
806 // Hacker's Delight, p. 29
807 T Z = X + Y;
808 Overflowed = (Z < X || Z < Y);
809 if (Overflowed)
810 return std::numeric_limits<T>::max();
811 else
812 return Z;
813}
814
815/// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
816/// maximum representable value of T on overflow. ResultOverflowed indicates if
817/// the result is larger than the maximum representable value of type T.
818template <typename T>
819std::enable_if_t<std::is_unsigned<T>::value, T>
820SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
821 bool Dummy;
822 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
823
824 // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
825 // because it fails for uint16_t (where multiplication can have undefined
826 // behavior due to promotion to int), and requires a division in addition
827 // to the multiplication.
828
829 Overflowed = false;
830
831 // Log2(Z) would be either Log2Z or Log2Z + 1.
832 // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
833 // will necessarily be less than Log2Max as desired.
834 int Log2Z = Log2_64(X) + Log2_64(Y);
835 const T Max = std::numeric_limits<T>::max();
836 int Log2Max = Log2_64(Max);
837 if (Log2Z < Log2Max) {
838 return X * Y;
839 }
840 if (Log2Z > Log2Max) {
841 Overflowed = true;
842 return Max;
843 }
844
845 // We're going to use the top bit, and maybe overflow one
846 // bit past it. Multiply all but the bottom bit then add
847 // that on at the end.
848 T Z = (X >> 1) * Y;
849 if (Z & ~(Max >> 1)) {
850 Overflowed = true;
851 return Max;
852 }
853 Z <<= 1;
854 if (X & 1)
855 return SaturatingAdd(Z, Y, ResultOverflowed);
856
857 return Z;
858}
859
860/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
861/// the product. Clamp the result to the maximum representable value of T on
862/// overflow. ResultOverflowed indicates if the result is larger than the
863/// maximum representable value of type T.
864template <typename T>
865std::enable_if_t<std::is_unsigned<T>::value, T>
866SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
867 bool Dummy;
868 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
869
870 T Product = SaturatingMultiply(X, Y, &Overflowed);
871 if (Overflowed)
872 return Product;
873
874 return SaturatingAdd(A, Product, &Overflowed);
875}
876
877/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
878extern const float huge_valf;
879
880
881/// Add two signed integers, computing the two's complement truncated result,
882/// returning true if overflow occured.
883template <typename T>
884std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) {
885#if __has_builtin(__builtin_add_overflow)1
886 return __builtin_add_overflow(X, Y, &Result);
887#else
888 // Perform the unsigned addition.
889 using U = std::make_unsigned_t<T>;
890 const U UX = static_cast<U>(X);
891 const U UY = static_cast<U>(Y);
892 const U UResult = UX + UY;
893
894 // Convert to signed.
895 Result = static_cast<T>(UResult);
896
897 // Adding two positive numbers should result in a positive number.
898 if (X > 0 && Y > 0)
899 return Result <= 0;
900 // Adding two negatives should result in a negative number.
901 if (X < 0 && Y < 0)
902 return Result >= 0;
903 return false;
904#endif
905}
906
907/// Subtract two signed integers, computing the two's complement truncated
908/// result, returning true if an overflow ocurred.
909template <typename T>
910std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) {
911#if __has_builtin(__builtin_sub_overflow)1
912 return __builtin_sub_overflow(X, Y, &Result);
913#else
914 // Perform the unsigned addition.
915 using U = std::make_unsigned_t<T>;
916 const U UX = static_cast<U>(X);
917 const U UY = static_cast<U>(Y);
918 const U UResult = UX - UY;
919
920 // Convert to signed.
921 Result = static_cast<T>(UResult);
922
923 // Subtracting a positive number from a negative results in a negative number.
924 if (X <= 0 && Y > 0)
925 return Result >= 0;
926 // Subtracting a negative number from a positive results in a positive number.
927 if (X >= 0 && Y < 0)
928 return Result <= 0;
929 return false;
930#endif
931}
932
933/// Multiply two signed integers, computing the two's complement truncated
934/// result, returning true if an overflow ocurred.
935template <typename T>
936std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) {
937 // Perform the unsigned multiplication on absolute values.
938 using U = std::make_unsigned_t<T>;
939 const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
940 const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
941 const U UResult = UX * UY;
942
943 // Convert to signed.
944 const bool IsNegative = (X < 0) ^ (Y < 0);
945 Result = IsNegative ? (0 - UResult) : UResult;
946
947 // If any of the args was 0, result is 0 and no overflow occurs.
948 if (UX == 0 || UY == 0)
949 return false;
950
951 // UX and UY are in [1, 2^n], where n is the number of digits.
952 // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
953 // positive) divided by an argument compares to the other.
954 if (IsNegative)
955 return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY;
956 else
957 return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY;
958}
959
960} // End llvm namespace
961
962#endif