Bug Summary

File:src/gnu/usr.bin/clang/libclangAST/../../../llvm/clang/lib/AST/Decl.cpp
Warning:line 3886, column 5
Storage provided to placement new is only 0 bytes, whereas the allocated type requires 32 bytes

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Decl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangAST/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libclangAST/obj/../include/clang/AST -I /usr/src/gnu/usr.bin/clang/libclangAST/../../../llvm/clang/include -I /usr/src/gnu/usr.bin/clang/libclangAST/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libclangAST/../include -I /usr/src/gnu/usr.bin/clang/libclangAST/obj -I /usr/src/gnu/usr.bin/clang/libclangAST/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangAST/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libclangAST/../../../llvm/clang/lib/AST/Decl.cpp

/usr/src/gnu/usr.bin/clang/libclangAST/../../../llvm/clang/lib/AST/Decl.cpp

1//===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Decl.h"
14#include "Linkage.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTDiagnostic.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/CanonicalType.h"
21#include "clang/AST/DeclBase.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclOpenMP.h"
25#include "clang/AST/DeclTemplate.h"
26#include "clang/AST/DeclarationName.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/ExternalASTSource.h"
30#include "clang/AST/ODRHash.h"
31#include "clang/AST/PrettyDeclStackTrace.h"
32#include "clang/AST/PrettyPrinter.h"
33#include "clang/AST/Redeclarable.h"
34#include "clang/AST/Stmt.h"
35#include "clang/AST/TemplateBase.h"
36#include "clang/AST/Type.h"
37#include "clang/AST/TypeLoc.h"
38#include "clang/Basic/Builtins.h"
39#include "clang/Basic/IdentifierTable.h"
40#include "clang/Basic/LLVM.h"
41#include "clang/Basic/LangOptions.h"
42#include "clang/Basic/Linkage.h"
43#include "clang/Basic/Module.h"
44#include "clang/Basic/NoSanitizeList.h"
45#include "clang/Basic/PartialDiagnostic.h"
46#include "clang/Basic/Sanitizers.h"
47#include "clang/Basic/SourceLocation.h"
48#include "clang/Basic/SourceManager.h"
49#include "clang/Basic/Specifiers.h"
50#include "clang/Basic/TargetCXXABI.h"
51#include "clang/Basic/TargetInfo.h"
52#include "clang/Basic/Visibility.h"
53#include "llvm/ADT/APSInt.h"
54#include "llvm/ADT/ArrayRef.h"
55#include "llvm/ADT/None.h"
56#include "llvm/ADT/Optional.h"
57#include "llvm/ADT/STLExtras.h"
58#include "llvm/ADT/SmallVector.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/StringSwitch.h"
61#include "llvm/ADT/Triple.h"
62#include "llvm/Support/Casting.h"
63#include "llvm/Support/ErrorHandling.h"
64#include "llvm/Support/raw_ostream.h"
65#include <algorithm>
66#include <cassert>
67#include <cstddef>
68#include <cstring>
69#include <memory>
70#include <string>
71#include <tuple>
72#include <type_traits>
73
74using namespace clang;
75
76Decl *clang::getPrimaryMergedDecl(Decl *D) {
77 return D->getASTContext().getPrimaryMergedDecl(D);
78}
79
80void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81 SourceLocation Loc = this->Loc;
82 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83 if (Loc.isValid()) {
84 Loc.print(OS, Context.getSourceManager());
85 OS << ": ";
86 }
87 OS << Message;
88
89 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90 OS << " '";
91 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92 OS << "'";
93 }
94
95 OS << '\n';
96}
97
98// Defined here so that it can be inlined into its direct callers.
99bool Decl::isOutOfLine() const {
100 return !getLexicalDeclContext()->Equals(getDeclContext());
101}
102
103TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104 : Decl(TranslationUnit, nullptr, SourceLocation()),
105 DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
106
107//===----------------------------------------------------------------------===//
108// NamedDecl Implementation
109//===----------------------------------------------------------------------===//
110
111// Visibility rules aren't rigorously externally specified, but here
112// are the basic principles behind what we implement:
113//
114// 1. An explicit visibility attribute is generally a direct expression
115// of the user's intent and should be honored. Only the innermost
116// visibility attribute applies. If no visibility attribute applies,
117// global visibility settings are considered.
118//
119// 2. There is one caveat to the above: on or in a template pattern,
120// an explicit visibility attribute is just a default rule, and
121// visibility can be decreased by the visibility of template
122// arguments. But this, too, has an exception: an attribute on an
123// explicit specialization or instantiation causes all the visibility
124// restrictions of the template arguments to be ignored.
125//
126// 3. A variable that does not otherwise have explicit visibility can
127// be restricted by the visibility of its type.
128//
129// 4. A visibility restriction is explicit if it comes from an
130// attribute (or something like it), not a global visibility setting.
131// When emitting a reference to an external symbol, visibility
132// restrictions are ignored unless they are explicit.
133//
134// 5. When computing the visibility of a non-type, including a
135// non-type member of a class, only non-type visibility restrictions
136// are considered: the 'visibility' attribute, global value-visibility
137// settings, and a few special cases like __private_extern.
138//
139// 6. When computing the visibility of a type, including a type member
140// of a class, only type visibility restrictions are considered:
141// the 'type_visibility' attribute and global type-visibility settings.
142// However, a 'visibility' attribute counts as a 'type_visibility'
143// attribute on any declaration that only has the former.
144//
145// The visibility of a "secondary" entity, like a template argument,
146// is computed using the kind of that entity, not the kind of the
147// primary entity for which we are computing visibility. For example,
148// the visibility of a specialization of either of these templates:
149// template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150// template <class T, bool (&compare)(T, X)> class matcher;
151// is restricted according to the type visibility of the argument 'T',
152// the type visibility of 'bool(&)(T,X)', and the value visibility of
153// the argument function 'compare'. That 'has_match' is a value
154// and 'matcher' is a type only matters when looking for attributes
155// and settings from the immediate context.
156
157/// Does this computation kind permit us to consider additional
158/// visibility settings from attributes and the like?
159static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160 return computation.IgnoreExplicitVisibility;
161}
162
163/// Given an LVComputationKind, return one of the same type/value sort
164/// that records that it already has explicit visibility.
165static LVComputationKind
166withExplicitVisibilityAlready(LVComputationKind Kind) {
167 Kind.IgnoreExplicitVisibility = true;
168 return Kind;
169}
170
171static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172 LVComputationKind kind) {
173 assert(!kind.IgnoreExplicitVisibility &&((void)0)
174 "asking for explicit visibility when we shouldn't be")((void)0);
175 return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176}
177
178/// Is the given declaration a "type" or a "value" for the purposes of
179/// visibility computation?
180static bool usesTypeVisibility(const NamedDecl *D) {
181 return isa<TypeDecl>(D) ||
182 isa<ClassTemplateDecl>(D) ||
183 isa<ObjCInterfaceDecl>(D);
184}
185
186/// Does the given declaration have member specialization information,
187/// and if so, is it an explicit specialization?
188template <class T> static typename
189std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190isExplicitMemberSpecialization(const T *D) {
191 if (const MemberSpecializationInfo *member =
192 D->getMemberSpecializationInfo()) {
193 return member->isExplicitSpecialization();
194 }
195 return false;
196}
197
198/// For templates, this question is easier: a member template can't be
199/// explicitly instantiated, so there's a single bit indicating whether
200/// or not this is an explicit member specialization.
201static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202 return D->isMemberSpecialization();
203}
204
205/// Given a visibility attribute, return the explicit visibility
206/// associated with it.
207template <class T>
208static Visibility getVisibilityFromAttr(const T *attr) {
209 switch (attr->getVisibility()) {
210 case T::Default:
211 return DefaultVisibility;
212 case T::Hidden:
213 return HiddenVisibility;
214 case T::Protected:
215 return ProtectedVisibility;
216 }
217 llvm_unreachable("bad visibility kind")__builtin_unreachable();
218}
219
220/// Return the explicit visibility of the given declaration.
221static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
222 NamedDecl::ExplicitVisibilityKind kind) {
223 // If we're ultimately computing the visibility of a type, look for
224 // a 'type_visibility' attribute before looking for 'visibility'.
225 if (kind == NamedDecl::VisibilityForType) {
226 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227 return getVisibilityFromAttr(A);
228 }
229 }
230
231 // If this declaration has an explicit visibility attribute, use it.
232 if (const auto *A = D->getAttr<VisibilityAttr>()) {
233 return getVisibilityFromAttr(A);
234 }
235
236 return None;
237}
238
239LinkageInfo LinkageComputer::getLVForType(const Type &T,
240 LVComputationKind computation) {
241 if (computation.IgnoreAllVisibility)
242 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243 return getTypeLinkageAndVisibility(&T);
244}
245
246/// Get the most restrictive linkage for the types in the given
247/// template parameter list. For visibility purposes, template
248/// parameters are part of the signature of a template.
249LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250 const TemplateParameterList *Params, LVComputationKind computation) {
251 LinkageInfo LV;
252 for (const NamedDecl *P : *Params) {
253 // Template type parameters are the most common and never
254 // contribute to visibility, pack or not.
255 if (isa<TemplateTypeParmDecl>(P))
256 continue;
257
258 // Non-type template parameters can be restricted by the value type, e.g.
259 // template <enum X> class A { ... };
260 // We have to be careful here, though, because we can be dealing with
261 // dependent types.
262 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263 // Handle the non-pack case first.
264 if (!NTTP->isExpandedParameterPack()) {
265 if (!NTTP->getType()->isDependentType()) {
266 LV.merge(getLVForType(*NTTP->getType(), computation));
267 }
268 continue;
269 }
270
271 // Look at all the types in an expanded pack.
272 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273 QualType type = NTTP->getExpansionType(i);
274 if (!type->isDependentType())
275 LV.merge(getTypeLinkageAndVisibility(type));
276 }
277 continue;
278 }
279
280 // Template template parameters can be restricted by their
281 // template parameters, recursively.
282 const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283
284 // Handle the non-pack case first.
285 if (!TTP->isExpandedParameterPack()) {
286 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287 computation));
288 continue;
289 }
290
291 // Look at all expansions in an expanded pack.
292 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293 i != n; ++i) {
294 LV.merge(getLVForTemplateParameterList(
295 TTP->getExpansionTemplateParameters(i), computation));
296 }
297 }
298
299 return LV;
300}
301
302static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303 const Decl *Ret = nullptr;
304 const DeclContext *DC = D->getDeclContext();
305 while (DC->getDeclKind() != Decl::TranslationUnit) {
306 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307 Ret = cast<Decl>(DC);
308 DC = DC->getParent();
309 }
310 return Ret;
311}
312
313/// Get the most restrictive linkage for the types and
314/// declarations in the given template argument list.
315///
316/// Note that we don't take an LVComputationKind because we always
317/// want to honor the visibility of template arguments in the same way.
318LinkageInfo
319LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320 LVComputationKind computation) {
321 LinkageInfo LV;
322
323 for (const TemplateArgument &Arg : Args) {
324 switch (Arg.getKind()) {
325 case TemplateArgument::Null:
326 case TemplateArgument::Integral:
327 case TemplateArgument::Expression:
328 continue;
329
330 case TemplateArgument::Type:
331 LV.merge(getLVForType(*Arg.getAsType(), computation));
332 continue;
333
334 case TemplateArgument::Declaration: {
335 const NamedDecl *ND = Arg.getAsDecl();
336 assert(!usesTypeVisibility(ND))((void)0);
337 LV.merge(getLVForDecl(ND, computation));
338 continue;
339 }
340
341 case TemplateArgument::NullPtr:
342 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343 continue;
344
345 case TemplateArgument::Template:
346 case TemplateArgument::TemplateExpansion:
347 if (TemplateDecl *Template =
348 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349 LV.merge(getLVForDecl(Template, computation));
350 continue;
351
352 case TemplateArgument::Pack:
353 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354 continue;
355 }
356 llvm_unreachable("bad template argument kind")__builtin_unreachable();
357 }
358
359 return LV;
360}
361
362LinkageInfo
363LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364 LVComputationKind computation) {
365 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366}
367
368static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
369 const FunctionTemplateSpecializationInfo *specInfo) {
370 // Include visibility from the template parameters and arguments
371 // only if this is not an explicit instantiation or specialization
372 // with direct explicit visibility. (Implicit instantiations won't
373 // have a direct attribute.)
374 if (!specInfo->isExplicitInstantiationOrSpecialization())
375 return true;
376
377 return !fn->hasAttr<VisibilityAttr>();
378}
379
380/// Merge in template-related linkage and visibility for the given
381/// function template specialization.
382///
383/// We don't need a computation kind here because we can assume
384/// LVForValue.
385///
386/// \param[out] LV the computation to use for the parent
387void LinkageComputer::mergeTemplateLV(
388 LinkageInfo &LV, const FunctionDecl *fn,
389 const FunctionTemplateSpecializationInfo *specInfo,
390 LVComputationKind computation) {
391 bool considerVisibility =
392 shouldConsiderTemplateVisibility(fn, specInfo);
393
394 // Merge information from the template parameters.
395 FunctionTemplateDecl *temp = specInfo->getTemplate();
396 LinkageInfo tempLV =
397 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399
400 // Merge information from the template arguments.
401 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404}
405
406/// Does the given declaration have a direct visibility attribute
407/// that would match the given rules?
408static bool hasDirectVisibilityAttribute(const NamedDecl *D,
409 LVComputationKind computation) {
410 if (computation.IgnoreAllVisibility)
411 return false;
412
413 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414 D->hasAttr<VisibilityAttr>();
415}
416
417/// Should we consider visibility associated with the template
418/// arguments and parameters of the given class template specialization?
419static bool shouldConsiderTemplateVisibility(
420 const ClassTemplateSpecializationDecl *spec,
421 LVComputationKind computation) {
422 // Include visibility from the template parameters and arguments
423 // only if this is not an explicit instantiation or specialization
424 // with direct explicit visibility (and note that implicit
425 // instantiations won't have a direct attribute).
426 //
427 // Furthermore, we want to ignore template parameters and arguments
428 // for an explicit specialization when computing the visibility of a
429 // member thereof with explicit visibility.
430 //
431 // This is a bit complex; let's unpack it.
432 //
433 // An explicit class specialization is an independent, top-level
434 // declaration. As such, if it or any of its members has an
435 // explicit visibility attribute, that must directly express the
436 // user's intent, and we should honor it. The same logic applies to
437 // an explicit instantiation of a member of such a thing.
438
439 // Fast path: if this is not an explicit instantiation or
440 // specialization, we always want to consider template-related
441 // visibility restrictions.
442 if (!spec->isExplicitInstantiationOrSpecialization())
443 return true;
444
445 // This is the 'member thereof' check.
446 if (spec->isExplicitSpecialization() &&
447 hasExplicitVisibilityAlready(computation))
448 return false;
449
450 return !hasDirectVisibilityAttribute(spec, computation);
451}
452
453/// Merge in template-related linkage and visibility for the given
454/// class template specialization.
455void LinkageComputer::mergeTemplateLV(
456 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
457 LVComputationKind computation) {
458 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459
460 // Merge information from the template parameters, but ignore
461 // visibility if we're only considering template arguments.
462
463 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
464 LinkageInfo tempLV =
465 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466 LV.mergeMaybeWithVisibility(tempLV,
467 considerVisibility && !hasExplicitVisibilityAlready(computation));
468
469 // Merge information from the template arguments. We ignore
470 // template-argument visibility if we've got an explicit
471 // instantiation with a visibility attribute.
472 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474 if (considerVisibility)
475 LV.mergeVisibility(argsLV);
476 LV.mergeExternalVisibility(argsLV);
477}
478
479/// Should we consider visibility associated with the template
480/// arguments and parameters of the given variable template
481/// specialization? As usual, follow class template specialization
482/// logic up to initialization.
483static bool shouldConsiderTemplateVisibility(
484 const VarTemplateSpecializationDecl *spec,
485 LVComputationKind computation) {
486 // Include visibility from the template parameters and arguments
487 // only if this is not an explicit instantiation or specialization
488 // with direct explicit visibility (and note that implicit
489 // instantiations won't have a direct attribute).
490 if (!spec->isExplicitInstantiationOrSpecialization())
491 return true;
492
493 // An explicit variable specialization is an independent, top-level
494 // declaration. As such, if it has an explicit visibility attribute,
495 // that must directly express the user's intent, and we should honor
496 // it.
497 if (spec->isExplicitSpecialization() &&
498 hasExplicitVisibilityAlready(computation))
499 return false;
500
501 return !hasDirectVisibilityAttribute(spec, computation);
502}
503
504/// Merge in template-related linkage and visibility for the given
505/// variable template specialization. As usual, follow class template
506/// specialization logic up to initialization.
507void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508 const VarTemplateSpecializationDecl *spec,
509 LVComputationKind computation) {
510 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511
512 // Merge information from the template parameters, but ignore
513 // visibility if we're only considering template arguments.
514
515 VarTemplateDecl *temp = spec->getSpecializedTemplate();
516 LinkageInfo tempLV =
517 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518 LV.mergeMaybeWithVisibility(tempLV,
519 considerVisibility && !hasExplicitVisibilityAlready(computation));
520
521 // Merge information from the template arguments. We ignore
522 // template-argument visibility if we've got an explicit
523 // instantiation with a visibility attribute.
524 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526 if (considerVisibility)
527 LV.mergeVisibility(argsLV);
528 LV.mergeExternalVisibility(argsLV);
529}
530
531static bool useInlineVisibilityHidden(const NamedDecl *D) {
532 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533 const LangOptions &Opts = D->getASTContext().getLangOpts();
534 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535 return false;
536
537 const auto *FD = dyn_cast<FunctionDecl>(D);
538 if (!FD)
539 return false;
540
541 TemplateSpecializationKind TSK = TSK_Undeclared;
542 if (FunctionTemplateSpecializationInfo *spec
543 = FD->getTemplateSpecializationInfo()) {
544 TSK = spec->getTemplateSpecializationKind();
545 } else if (MemberSpecializationInfo *MSI =
546 FD->getMemberSpecializationInfo()) {
547 TSK = MSI->getTemplateSpecializationKind();
548 }
549
550 const FunctionDecl *Def = nullptr;
551 // InlineVisibilityHidden only applies to definitions, and
552 // isInlined() only gives meaningful answers on definitions
553 // anyway.
554 return TSK != TSK_ExplicitInstantiationDeclaration &&
555 TSK != TSK_ExplicitInstantiationDefinition &&
556 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557}
558
559template <typename T> static bool isFirstInExternCContext(T *D) {
560 const T *First = D->getFirstDecl();
561 return First->isInExternCContext();
562}
563
564static bool isSingleLineLanguageLinkage(const Decl &D) {
565 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566 if (!SD->hasBraces())
567 return true;
568 return false;
569}
570
571/// Determine whether D is declared in the purview of a named module.
572static bool isInModulePurview(const NamedDecl *D) {
573 if (auto *M = D->getOwningModule())
574 return M->isModulePurview();
575 return false;
576}
577
578static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
579 // FIXME: Handle isModulePrivate.
580 switch (D->getModuleOwnershipKind()) {
581 case Decl::ModuleOwnershipKind::Unowned:
582 case Decl::ModuleOwnershipKind::ModulePrivate:
583 return false;
584 case Decl::ModuleOwnershipKind::Visible:
585 case Decl::ModuleOwnershipKind::VisibleWhenImported:
586 return isInModulePurview(D);
587 }
588 llvm_unreachable("unexpected module ownership kind")__builtin_unreachable();
589}
590
591static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
592 // Internal linkage declarations within a module interface unit are modeled
593 // as "module-internal linkage", which means that they have internal linkage
594 // formally but can be indirectly accessed from outside the module via inline
595 // functions and templates defined within the module.
596 if (isInModulePurview(D))
597 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
598
599 return LinkageInfo::internal();
600}
601
602static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
603 // C++ Modules TS [basic.link]/6.8:
604 // - A name declared at namespace scope that does not have internal linkage
605 // by the previous rules and that is introduced by a non-exported
606 // declaration has module linkage.
607 if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit(
608 cast<NamedDecl>(D->getCanonicalDecl())))
609 return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
610
611 return LinkageInfo::external();
612}
613
614static StorageClass getStorageClass(const Decl *D) {
615 if (auto *TD = dyn_cast<TemplateDecl>(D))
616 D = TD->getTemplatedDecl();
617 if (D) {
618 if (auto *VD = dyn_cast<VarDecl>(D))
619 return VD->getStorageClass();
620 if (auto *FD = dyn_cast<FunctionDecl>(D))
621 return FD->getStorageClass();
622 }
623 return SC_None;
624}
625
626LinkageInfo
627LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
628 LVComputationKind computation,
629 bool IgnoreVarTypeLinkage) {
630 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&((void)0)
631 "Not a name having namespace scope")((void)0);
632 ASTContext &Context = D->getASTContext();
633
634 // C++ [basic.link]p3:
635 // A name having namespace scope (3.3.6) has internal linkage if it
636 // is the name of
637
638 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
639 // - a variable, variable template, function, or function template
640 // that is explicitly declared static; or
641 // (This bullet corresponds to C99 6.2.2p3.)
642 return getInternalLinkageFor(D);
643 }
644
645 if (const auto *Var = dyn_cast<VarDecl>(D)) {
646 // - a non-template variable of non-volatile const-qualified type, unless
647 // - it is explicitly declared extern, or
648 // - it is inline or exported, or
649 // - it was previously declared and the prior declaration did not have
650 // internal linkage
651 // (There is no equivalent in C99.)
652 if (Context.getLangOpts().CPlusPlus &&
653 Var->getType().isConstQualified() &&
654 !Var->getType().isVolatileQualified() &&
655 !Var->isInline() &&
656 !isExportedFromModuleInterfaceUnit(Var) &&
657 !isa<VarTemplateSpecializationDecl>(Var) &&
658 !Var->getDescribedVarTemplate()) {
659 const VarDecl *PrevVar = Var->getPreviousDecl();
660 if (PrevVar)
661 return getLVForDecl(PrevVar, computation);
662
663 if (Var->getStorageClass() != SC_Extern &&
664 Var->getStorageClass() != SC_PrivateExtern &&
665 !isSingleLineLanguageLinkage(*Var))
666 return getInternalLinkageFor(Var);
667 }
668
669 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
670 PrevVar = PrevVar->getPreviousDecl()) {
671 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
672 Var->getStorageClass() == SC_None)
673 return getDeclLinkageAndVisibility(PrevVar);
674 // Explicitly declared static.
675 if (PrevVar->getStorageClass() == SC_Static)
676 return getInternalLinkageFor(Var);
677 }
678 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
679 // - a data member of an anonymous union.
680 const VarDecl *VD = IFD->getVarDecl();
681 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!")((void)0);
682 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
683 }
684 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!")((void)0);
685
686 // FIXME: This gives internal linkage to names that should have no linkage
687 // (those not covered by [basic.link]p6).
688 if (D->isInAnonymousNamespace()) {
689 const auto *Var = dyn_cast<VarDecl>(D);
690 const auto *Func = dyn_cast<FunctionDecl>(D);
691 // FIXME: The check for extern "C" here is not justified by the standard
692 // wording, but we retain it from the pre-DR1113 model to avoid breaking
693 // code.
694 //
695 // C++11 [basic.link]p4:
696 // An unnamed namespace or a namespace declared directly or indirectly
697 // within an unnamed namespace has internal linkage.
698 if ((!Var || !isFirstInExternCContext(Var)) &&
699 (!Func || !isFirstInExternCContext(Func)))
700 return getInternalLinkageFor(D);
701 }
702
703 // Set up the defaults.
704
705 // C99 6.2.2p5:
706 // If the declaration of an identifier for an object has file
707 // scope and no storage-class specifier, its linkage is
708 // external.
709 LinkageInfo LV = getExternalLinkageFor(D);
710
711 if (!hasExplicitVisibilityAlready(computation)) {
712 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
713 LV.mergeVisibility(*Vis, true);
714 } else {
715 // If we're declared in a namespace with a visibility attribute,
716 // use that namespace's visibility, and it still counts as explicit.
717 for (const DeclContext *DC = D->getDeclContext();
718 !isa<TranslationUnitDecl>(DC);
719 DC = DC->getParent()) {
720 const auto *ND = dyn_cast<NamespaceDecl>(DC);
721 if (!ND) continue;
722 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
723 LV.mergeVisibility(*Vis, true);
724 break;
725 }
726 }
727 }
728
729 // Add in global settings if the above didn't give us direct visibility.
730 if (!LV.isVisibilityExplicit()) {
731 // Use global type/value visibility as appropriate.
732 Visibility globalVisibility =
733 computation.isValueVisibility()
734 ? Context.getLangOpts().getValueVisibilityMode()
735 : Context.getLangOpts().getTypeVisibilityMode();
736 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
737
738 // If we're paying attention to global visibility, apply
739 // -finline-visibility-hidden if this is an inline method.
740 if (useInlineVisibilityHidden(D))
741 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
742 }
743 }
744
745 // C++ [basic.link]p4:
746
747 // A name having namespace scope that has not been given internal linkage
748 // above and that is the name of
749 // [...bullets...]
750 // has its linkage determined as follows:
751 // - if the enclosing namespace has internal linkage, the name has
752 // internal linkage; [handled above]
753 // - otherwise, if the declaration of the name is attached to a named
754 // module and is not exported, the name has module linkage;
755 // - otherwise, the name has external linkage.
756 // LV is currently set up to handle the last two bullets.
757 //
758 // The bullets are:
759
760 // - a variable; or
761 if (const auto *Var = dyn_cast<VarDecl>(D)) {
762 // GCC applies the following optimization to variables and static
763 // data members, but not to functions:
764 //
765 // Modify the variable's LV by the LV of its type unless this is
766 // C or extern "C". This follows from [basic.link]p9:
767 // A type without linkage shall not be used as the type of a
768 // variable or function with external linkage unless
769 // - the entity has C language linkage, or
770 // - the entity is declared within an unnamed namespace, or
771 // - the entity is not used or is defined in the same
772 // translation unit.
773 // and [basic.link]p10:
774 // ...the types specified by all declarations referring to a
775 // given variable or function shall be identical...
776 // C does not have an equivalent rule.
777 //
778 // Ignore this if we've got an explicit attribute; the user
779 // probably knows what they're doing.
780 //
781 // Note that we don't want to make the variable non-external
782 // because of this, but unique-external linkage suits us.
783 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
784 !IgnoreVarTypeLinkage) {
785 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
786 if (!isExternallyVisible(TypeLV.getLinkage()))
787 return LinkageInfo::uniqueExternal();
788 if (!LV.isVisibilityExplicit())
789 LV.mergeVisibility(TypeLV);
790 }
791
792 if (Var->getStorageClass() == SC_PrivateExtern)
793 LV.mergeVisibility(HiddenVisibility, true);
794
795 // Note that Sema::MergeVarDecl already takes care of implementing
796 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
797 // to do it here.
798
799 // As per function and class template specializations (below),
800 // consider LV for the template and template arguments. We're at file
801 // scope, so we do not need to worry about nested specializations.
802 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
803 mergeTemplateLV(LV, spec, computation);
804 }
805
806 // - a function; or
807 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
808 // In theory, we can modify the function's LV by the LV of its
809 // type unless it has C linkage (see comment above about variables
810 // for justification). In practice, GCC doesn't do this, so it's
811 // just too painful to make work.
812
813 if (Function->getStorageClass() == SC_PrivateExtern)
814 LV.mergeVisibility(HiddenVisibility, true);
815
816 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
817 // merging storage classes and visibility attributes, so we don't have to
818 // look at previous decls in here.
819
820 // In C++, then if the type of the function uses a type with
821 // unique-external linkage, it's not legally usable from outside
822 // this translation unit. However, we should use the C linkage
823 // rules instead for extern "C" declarations.
824 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
825 // Only look at the type-as-written. Otherwise, deducing the return type
826 // of a function could change its linkage.
827 QualType TypeAsWritten = Function->getType();
828 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
829 TypeAsWritten = TSI->getType();
830 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831 return LinkageInfo::uniqueExternal();
832 }
833
834 // Consider LV from the template and the template arguments.
835 // We're at file scope, so we do not need to worry about nested
836 // specializations.
837 if (FunctionTemplateSpecializationInfo *specInfo
838 = Function->getTemplateSpecializationInfo()) {
839 mergeTemplateLV(LV, Function, specInfo, computation);
840 }
841
842 // - a named class (Clause 9), or an unnamed class defined in a
843 // typedef declaration in which the class has the typedef name
844 // for linkage purposes (7.1.3); or
845 // - a named enumeration (7.2), or an unnamed enumeration
846 // defined in a typedef declaration in which the enumeration
847 // has the typedef name for linkage purposes (7.1.3); or
848 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
849 // Unnamed tags have no linkage.
850 if (!Tag->hasNameForLinkage())
851 return LinkageInfo::none();
852
853 // If this is a class template specialization, consider the
854 // linkage of the template and template arguments. We're at file
855 // scope, so we do not need to worry about nested specializations.
856 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
857 mergeTemplateLV(LV, spec, computation);
858 }
859
860 // FIXME: This is not part of the C++ standard any more.
861 // - an enumerator belonging to an enumeration with external linkage; or
862 } else if (isa<EnumConstantDecl>(D)) {
863 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
864 computation);
865 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
866 return LinkageInfo::none();
867 LV.merge(EnumLV);
868
869 // - a template
870 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
871 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
872 LinkageInfo tempLV =
873 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
874 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
875
876 // An unnamed namespace or a namespace declared directly or indirectly
877 // within an unnamed namespace has internal linkage. All other namespaces
878 // have external linkage.
879 //
880 // We handled names in anonymous namespaces above.
881 } else if (isa<NamespaceDecl>(D)) {
882 return LV;
883
884 // By extension, we assign external linkage to Objective-C
885 // interfaces.
886 } else if (isa<ObjCInterfaceDecl>(D)) {
887 // fallout
888
889 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
890 // A typedef declaration has linkage if it gives a type a name for
891 // linkage purposes.
892 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
893 return LinkageInfo::none();
894
895 } else if (isa<MSGuidDecl>(D)) {
896 // A GUID behaves like an inline variable with external linkage. Fall
897 // through.
898
899 // Everything not covered here has no linkage.
900 } else {
901 return LinkageInfo::none();
902 }
903
904 // If we ended up with non-externally-visible linkage, visibility should
905 // always be default.
906 if (!isExternallyVisible(LV.getLinkage()))
907 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
908
909 // Mark the symbols as hidden when compiling for the device.
910 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice)
911 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
912
913 return LV;
914}
915
916LinkageInfo
917LinkageComputer::getLVForClassMember(const NamedDecl *D,
918 LVComputationKind computation,
919 bool IgnoreVarTypeLinkage) {
920 // Only certain class members have linkage. Note that fields don't
921 // really have linkage, but it's convenient to say they do for the
922 // purposes of calculating linkage of pointer-to-data-member
923 // template arguments.
924 //
925 // Templates also don't officially have linkage, but since we ignore
926 // the C++ standard and look at template arguments when determining
927 // linkage and visibility of a template specialization, we might hit
928 // a template template argument that way. If we do, we need to
929 // consider its linkage.
930 if (!(isa<CXXMethodDecl>(D) ||
931 isa<VarDecl>(D) ||
932 isa<FieldDecl>(D) ||
933 isa<IndirectFieldDecl>(D) ||
934 isa<TagDecl>(D) ||
935 isa<TemplateDecl>(D)))
936 return LinkageInfo::none();
937
938 LinkageInfo LV;
939
940 // If we have an explicit visibility attribute, merge that in.
941 if (!hasExplicitVisibilityAlready(computation)) {
942 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
943 LV.mergeVisibility(*Vis, true);
944 // If we're paying attention to global visibility, apply
945 // -finline-visibility-hidden if this is an inline method.
946 //
947 // Note that we do this before merging information about
948 // the class visibility.
949 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
950 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
951 }
952
953 // If this class member has an explicit visibility attribute, the only
954 // thing that can change its visibility is the template arguments, so
955 // only look for them when processing the class.
956 LVComputationKind classComputation = computation;
957 if (LV.isVisibilityExplicit())
958 classComputation = withExplicitVisibilityAlready(computation);
959
960 LinkageInfo classLV =
961 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
962 // The member has the same linkage as the class. If that's not externally
963 // visible, we don't need to compute anything about the linkage.
964 // FIXME: If we're only computing linkage, can we bail out here?
965 if (!isExternallyVisible(classLV.getLinkage()))
966 return classLV;
967
968
969 // Otherwise, don't merge in classLV yet, because in certain cases
970 // we need to completely ignore the visibility from it.
971
972 // Specifically, if this decl exists and has an explicit attribute.
973 const NamedDecl *explicitSpecSuppressor = nullptr;
974
975 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
976 // Only look at the type-as-written. Otherwise, deducing the return type
977 // of a function could change its linkage.
978 QualType TypeAsWritten = MD->getType();
979 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
980 TypeAsWritten = TSI->getType();
981 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
982 return LinkageInfo::uniqueExternal();
983
984 // If this is a method template specialization, use the linkage for
985 // the template parameters and arguments.
986 if (FunctionTemplateSpecializationInfo *spec
987 = MD->getTemplateSpecializationInfo()) {
988 mergeTemplateLV(LV, MD, spec, computation);
989 if (spec->isExplicitSpecialization()) {
990 explicitSpecSuppressor = MD;
991 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
992 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
993 }
994 } else if (isExplicitMemberSpecialization(MD)) {
995 explicitSpecSuppressor = MD;
996 }
997
998 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
999 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1000 mergeTemplateLV(LV, spec, computation);
1001 if (spec->isExplicitSpecialization()) {
1002 explicitSpecSuppressor = spec;
1003 } else {
1004 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1005 if (isExplicitMemberSpecialization(temp)) {
1006 explicitSpecSuppressor = temp->getTemplatedDecl();
1007 }
1008 }
1009 } else if (isExplicitMemberSpecialization(RD)) {
1010 explicitSpecSuppressor = RD;
1011 }
1012
1013 // Static data members.
1014 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1015 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1016 mergeTemplateLV(LV, spec, computation);
1017
1018 // Modify the variable's linkage by its type, but ignore the
1019 // type's visibility unless it's a definition.
1020 if (!IgnoreVarTypeLinkage) {
1021 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1022 // FIXME: If the type's linkage is not externally visible, we can
1023 // give this static data member UniqueExternalLinkage.
1024 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1025 LV.mergeVisibility(typeLV);
1026 LV.mergeExternalVisibility(typeLV);
1027 }
1028
1029 if (isExplicitMemberSpecialization(VD)) {
1030 explicitSpecSuppressor = VD;
1031 }
1032
1033 // Template members.
1034 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1035 bool considerVisibility =
1036 (!LV.isVisibilityExplicit() &&
1037 !classLV.isVisibilityExplicit() &&
1038 !hasExplicitVisibilityAlready(computation));
1039 LinkageInfo tempLV =
1040 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1041 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1042
1043 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1044 if (isExplicitMemberSpecialization(redeclTemp)) {
1045 explicitSpecSuppressor = temp->getTemplatedDecl();
1046 }
1047 }
1048 }
1049
1050 // We should never be looking for an attribute directly on a template.
1051 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor))((void)0);
1052
1053 // If this member is an explicit member specialization, and it has
1054 // an explicit attribute, ignore visibility from the parent.
1055 bool considerClassVisibility = true;
1056 if (explicitSpecSuppressor &&
1057 // optimization: hasDVA() is true only with explicit visibility.
1058 LV.isVisibilityExplicit() &&
1059 classLV.getVisibility() != DefaultVisibility &&
1060 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1061 considerClassVisibility = false;
1062 }
1063
1064 // Finally, merge in information from the class.
1065 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1066 return LV;
1067}
1068
1069void NamedDecl::anchor() {}
1070
1071bool NamedDecl::isLinkageValid() const {
1072 if (!hasCachedLinkage())
1073 return true;
1074
1075 Linkage L = LinkageComputer{}
1076 .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1077 .getLinkage();
1078 return L == getCachedLinkage();
1079}
1080
1081ReservedIdentifierStatus
1082NamedDecl::isReserved(const LangOptions &LangOpts) const {
1083 const IdentifierInfo *II = getIdentifier();
1084
1085 // This triggers at least for CXXLiteralIdentifiers, which we already checked
1086 // at lexing time.
1087 if (!II)
1088 return ReservedIdentifierStatus::NotReserved;
1089
1090 ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1091 if (Status == ReservedIdentifierStatus::StartsWithUnderscoreAtGlobalScope) {
1092 // Check if we're at TU level or not.
1093 if (isa<ParmVarDecl>(this) || isTemplateParameter())
1094 return ReservedIdentifierStatus::NotReserved;
1095 const DeclContext *DC = getDeclContext()->getRedeclContext();
1096 if (!DC->isTranslationUnit())
1097 return ReservedIdentifierStatus::NotReserved;
1098 }
1099
1100 return Status;
1101}
1102
1103ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1104 StringRef name = getName();
1105 if (name.empty()) return SFF_None;
1106
1107 if (name.front() == 'C')
1108 if (name == "CFStringCreateWithFormat" ||
1109 name == "CFStringCreateWithFormatAndArguments" ||
1110 name == "CFStringAppendFormat" ||
1111 name == "CFStringAppendFormatAndArguments")
1112 return SFF_CFString;
1113 return SFF_None;
1114}
1115
1116Linkage NamedDecl::getLinkageInternal() const {
1117 // We don't care about visibility here, so ask for the cheapest
1118 // possible visibility analysis.
1119 return LinkageComputer{}
1120 .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1121 .getLinkage();
1122}
1123
1124LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1125 return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1126}
1127
1128static Optional<Visibility>
1129getExplicitVisibilityAux(const NamedDecl *ND,
1130 NamedDecl::ExplicitVisibilityKind kind,
1131 bool IsMostRecent) {
1132 assert(!IsMostRecent || ND == ND->getMostRecentDecl())((void)0);
1133
1134 // Check the declaration itself first.
1135 if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1136 return V;
1137
1138 // If this is a member class of a specialization of a class template
1139 // and the corresponding decl has explicit visibility, use that.
1140 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1141 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1142 if (InstantiatedFrom)
1143 return getVisibilityOf(InstantiatedFrom, kind);
1144 }
1145
1146 // If there wasn't explicit visibility there, and this is a
1147 // specialization of a class template, check for visibility
1148 // on the pattern.
1149 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1150 // Walk all the template decl till this point to see if there are
1151 // explicit visibility attributes.
1152 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1153 while (TD != nullptr) {
1154 auto Vis = getVisibilityOf(TD, kind);
1155 if (Vis != None)
1156 return Vis;
1157 TD = TD->getPreviousDecl();
1158 }
1159 return None;
1160 }
1161
1162 // Use the most recent declaration.
1163 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1164 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1165 if (MostRecent != ND)
1166 return getExplicitVisibilityAux(MostRecent, kind, true);
1167 }
1168
1169 if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1170 if (Var->isStaticDataMember()) {
1171 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1172 if (InstantiatedFrom)
1173 return getVisibilityOf(InstantiatedFrom, kind);
1174 }
1175
1176 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1177 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1178 kind);
1179
1180 return None;
1181 }
1182 // Also handle function template specializations.
1183 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1184 // If the function is a specialization of a template with an
1185 // explicit visibility attribute, use that.
1186 if (FunctionTemplateSpecializationInfo *templateInfo
1187 = fn->getTemplateSpecializationInfo())
1188 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1189 kind);
1190
1191 // If the function is a member of a specialization of a class template
1192 // and the corresponding decl has explicit visibility, use that.
1193 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1194 if (InstantiatedFrom)
1195 return getVisibilityOf(InstantiatedFrom, kind);
1196
1197 return None;
1198 }
1199
1200 // The visibility of a template is stored in the templated decl.
1201 if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1202 return getVisibilityOf(TD->getTemplatedDecl(), kind);
1203
1204 return None;
1205}
1206
1207Optional<Visibility>
1208NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1209 return getExplicitVisibilityAux(this, kind, false);
1210}
1211
1212LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1213 Decl *ContextDecl,
1214 LVComputationKind computation) {
1215 // This lambda has its linkage/visibility determined by its owner.
1216 const NamedDecl *Owner;
1217 if (!ContextDecl)
1218 Owner = dyn_cast<NamedDecl>(DC);
1219 else if (isa<ParmVarDecl>(ContextDecl))
1220 Owner =
1221 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1222 else
1223 Owner = cast<NamedDecl>(ContextDecl);
1224
1225 if (!Owner)
1226 return LinkageInfo::none();
1227
1228 // If the owner has a deduced type, we need to skip querying the linkage and
1229 // visibility of that type, because it might involve this closure type. The
1230 // only effect of this is that we might give a lambda VisibleNoLinkage rather
1231 // than NoLinkage when we don't strictly need to, which is benign.
1232 auto *VD = dyn_cast<VarDecl>(Owner);
1233 LinkageInfo OwnerLV =
1234 VD && VD->getType()->getContainedDeducedType()
1235 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1236 : getLVForDecl(Owner, computation);
1237
1238 // A lambda never formally has linkage. But if the owner is externally
1239 // visible, then the lambda is too. We apply the same rules to blocks.
1240 if (!isExternallyVisible(OwnerLV.getLinkage()))
1241 return LinkageInfo::none();
1242 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1243 OwnerLV.isVisibilityExplicit());
1244}
1245
1246LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1247 LVComputationKind computation) {
1248 if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1249 if (Function->isInAnonymousNamespace() &&
1250 !isFirstInExternCContext(Function))
1251 return getInternalLinkageFor(Function);
1252
1253 // This is a "void f();" which got merged with a file static.
1254 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1255 return getInternalLinkageFor(Function);
1256
1257 LinkageInfo LV;
1258 if (!hasExplicitVisibilityAlready(computation)) {
1259 if (Optional<Visibility> Vis =
1260 getExplicitVisibility(Function, computation))
1261 LV.mergeVisibility(*Vis, true);
1262 }
1263
1264 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1265 // merging storage classes and visibility attributes, so we don't have to
1266 // look at previous decls in here.
1267
1268 return LV;
1269 }
1270
1271 if (const auto *Var = dyn_cast<VarDecl>(D)) {
1272 if (Var->hasExternalStorage()) {
1273 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1274 return getInternalLinkageFor(Var);
1275
1276 LinkageInfo LV;
1277 if (Var->getStorageClass() == SC_PrivateExtern)
1278 LV.mergeVisibility(HiddenVisibility, true);
1279 else if (!hasExplicitVisibilityAlready(computation)) {
1280 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1281 LV.mergeVisibility(*Vis, true);
1282 }
1283
1284 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1285 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1286 if (PrevLV.getLinkage())
1287 LV.setLinkage(PrevLV.getLinkage());
1288 LV.mergeVisibility(PrevLV);
1289 }
1290
1291 return LV;
1292 }
1293
1294 if (!Var->isStaticLocal())
1295 return LinkageInfo::none();
1296 }
1297
1298 ASTContext &Context = D->getASTContext();
1299 if (!Context.getLangOpts().CPlusPlus)
1300 return LinkageInfo::none();
1301
1302 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1303 if (!OuterD || OuterD->isInvalidDecl())
1304 return LinkageInfo::none();
1305
1306 LinkageInfo LV;
1307 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1308 if (!BD->getBlockManglingNumber())
1309 return LinkageInfo::none();
1310
1311 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1312 BD->getBlockManglingContextDecl(), computation);
1313 } else {
1314 const auto *FD = cast<FunctionDecl>(OuterD);
1315 if (!FD->isInlined() &&
1316 !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1317 return LinkageInfo::none();
1318
1319 // If a function is hidden by -fvisibility-inlines-hidden option and
1320 // is not explicitly attributed as a hidden function,
1321 // we should not make static local variables in the function hidden.
1322 LV = getLVForDecl(FD, computation);
1323 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1324 !LV.isVisibilityExplicit() &&
1325 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1326 assert(cast<VarDecl>(D)->isStaticLocal())((void)0);
1327 // If this was an implicitly hidden inline method, check again for
1328 // explicit visibility on the parent class, and use that for static locals
1329 // if present.
1330 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1331 LV = getLVForDecl(MD->getParent(), computation);
1332 if (!LV.isVisibilityExplicit()) {
1333 Visibility globalVisibility =
1334 computation.isValueVisibility()
1335 ? Context.getLangOpts().getValueVisibilityMode()
1336 : Context.getLangOpts().getTypeVisibilityMode();
1337 return LinkageInfo(VisibleNoLinkage, globalVisibility,
1338 /*visibilityExplicit=*/false);
1339 }
1340 }
1341 }
1342 if (!isExternallyVisible(LV.getLinkage()))
1343 return LinkageInfo::none();
1344 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1345 LV.isVisibilityExplicit());
1346}
1347
1348LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1349 LVComputationKind computation,
1350 bool IgnoreVarTypeLinkage) {
1351 // Internal_linkage attribute overrides other considerations.
1352 if (D->hasAttr<InternalLinkageAttr>())
1353 return getInternalLinkageFor(D);
1354
1355 // Objective-C: treat all Objective-C declarations as having external
1356 // linkage.
1357 switch (D->getKind()) {
1358 default:
1359 break;
1360
1361 // Per C++ [basic.link]p2, only the names of objects, references,
1362 // functions, types, templates, namespaces, and values ever have linkage.
1363 //
1364 // Note that the name of a typedef, namespace alias, using declaration,
1365 // and so on are not the name of the corresponding type, namespace, or
1366 // declaration, so they do *not* have linkage.
1367 case Decl::ImplicitParam:
1368 case Decl::Label:
1369 case Decl::NamespaceAlias:
1370 case Decl::ParmVar:
1371 case Decl::Using:
1372 case Decl::UsingEnum:
1373 case Decl::UsingShadow:
1374 case Decl::UsingDirective:
1375 return LinkageInfo::none();
1376
1377 case Decl::EnumConstant:
1378 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1379 if (D->getASTContext().getLangOpts().CPlusPlus)
1380 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1381 return LinkageInfo::visible_none();
1382
1383 case Decl::Typedef:
1384 case Decl::TypeAlias:
1385 // A typedef declaration has linkage if it gives a type a name for
1386 // linkage purposes.
1387 if (!cast<TypedefNameDecl>(D)
1388 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1389 return LinkageInfo::none();
1390 break;
1391
1392 case Decl::TemplateTemplateParm: // count these as external
1393 case Decl::NonTypeTemplateParm:
1394 case Decl::ObjCAtDefsField:
1395 case Decl::ObjCCategory:
1396 case Decl::ObjCCategoryImpl:
1397 case Decl::ObjCCompatibleAlias:
1398 case Decl::ObjCImplementation:
1399 case Decl::ObjCMethod:
1400 case Decl::ObjCProperty:
1401 case Decl::ObjCPropertyImpl:
1402 case Decl::ObjCProtocol:
1403 return getExternalLinkageFor(D);
1404
1405 case Decl::CXXRecord: {
1406 const auto *Record = cast<CXXRecordDecl>(D);
1407 if (Record->isLambda()) {
1408 if (Record->hasKnownLambdaInternalLinkage() ||
1409 !Record->getLambdaManglingNumber()) {
1410 // This lambda has no mangling number, so it's internal.
1411 return getInternalLinkageFor(D);
1412 }
1413
1414 return getLVForClosure(
1415 Record->getDeclContext()->getRedeclContext(),
1416 Record->getLambdaContextDecl(), computation);
1417 }
1418
1419 break;
1420 }
1421
1422 case Decl::TemplateParamObject: {
1423 // The template parameter object can be referenced from anywhere its type
1424 // and value can be referenced.
1425 auto *TPO = cast<TemplateParamObjectDecl>(D);
1426 LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1427 LV.merge(getLVForValue(TPO->getValue(), computation));
1428 return LV;
1429 }
1430 }
1431
1432 // Handle linkage for namespace-scope names.
1433 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1434 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1435
1436 // C++ [basic.link]p5:
1437 // In addition, a member function, static data member, a named
1438 // class or enumeration of class scope, or an unnamed class or
1439 // enumeration defined in a class-scope typedef declaration such
1440 // that the class or enumeration has the typedef name for linkage
1441 // purposes (7.1.3), has external linkage if the name of the class
1442 // has external linkage.
1443 if (D->getDeclContext()->isRecord())
1444 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1445
1446 // C++ [basic.link]p6:
1447 // The name of a function declared in block scope and the name of
1448 // an object declared by a block scope extern declaration have
1449 // linkage. If there is a visible declaration of an entity with
1450 // linkage having the same name and type, ignoring entities
1451 // declared outside the innermost enclosing namespace scope, the
1452 // block scope declaration declares that same entity and receives
1453 // the linkage of the previous declaration. If there is more than
1454 // one such matching entity, the program is ill-formed. Otherwise,
1455 // if no matching entity is found, the block scope entity receives
1456 // external linkage.
1457 if (D->getDeclContext()->isFunctionOrMethod())
1458 return getLVForLocalDecl(D, computation);
1459
1460 // C++ [basic.link]p6:
1461 // Names not covered by these rules have no linkage.
1462 return LinkageInfo::none();
1463}
1464
1465/// getLVForDecl - Get the linkage and visibility for the given declaration.
1466LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1467 LVComputationKind computation) {
1468 // Internal_linkage attribute overrides other considerations.
1469 if (D->hasAttr<InternalLinkageAttr>())
1470 return getInternalLinkageFor(D);
1471
1472 if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1473 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1474
1475 if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1476 return *LI;
1477
1478 LinkageInfo LV = computeLVForDecl(D, computation);
1479 if (D->hasCachedLinkage())
1480 assert(D->getCachedLinkage() == LV.getLinkage())((void)0);
1481
1482 D->setCachedLinkage(LV.getLinkage());
1483 cache(D, computation, LV);
1484
1485#ifndef NDEBUG1
1486 // In C (because of gnu inline) and in c++ with microsoft extensions an
1487 // static can follow an extern, so we can have two decls with different
1488 // linkages.
1489 const LangOptions &Opts = D->getASTContext().getLangOpts();
1490 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1491 return LV;
1492
1493 // We have just computed the linkage for this decl. By induction we know
1494 // that all other computed linkages match, check that the one we just
1495 // computed also does.
1496 NamedDecl *Old = nullptr;
1497 for (auto I : D->redecls()) {
1498 auto *T = cast<NamedDecl>(I);
1499 if (T == D)
1500 continue;
1501 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1502 Old = T;
1503 break;
1504 }
1505 }
1506 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage())((void)0);
1507#endif
1508
1509 return LV;
1510}
1511
1512LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1513 NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D)
1514 ? NamedDecl::VisibilityForType
1515 : NamedDecl::VisibilityForValue;
1516 LVComputationKind CK(EK);
1517 return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1518 ? CK.forLinkageOnly()
1519 : CK);
1520}
1521
1522Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1523 Module *M = getOwningModule();
1524 if (!M)
1525 return nullptr;
1526
1527 switch (M->Kind) {
1528 case Module::ModuleMapModule:
1529 // Module map modules have no special linkage semantics.
1530 return nullptr;
1531
1532 case Module::ModuleInterfaceUnit:
1533 return M;
1534
1535 case Module::GlobalModuleFragment: {
1536 // External linkage declarations in the global module have no owning module
1537 // for linkage purposes. But internal linkage declarations in the global
1538 // module fragment of a particular module are owned by that module for
1539 // linkage purposes.
1540 if (IgnoreLinkage)
1541 return nullptr;
1542 bool InternalLinkage;
1543 if (auto *ND = dyn_cast<NamedDecl>(this))
1544 InternalLinkage = !ND->hasExternalFormalLinkage();
1545 else {
1546 auto *NSD = dyn_cast<NamespaceDecl>(this);
1547 InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1548 isInAnonymousNamespace();
1549 }
1550 return InternalLinkage ? M->Parent : nullptr;
1551 }
1552
1553 case Module::PrivateModuleFragment:
1554 // The private module fragment is part of its containing module for linkage
1555 // purposes.
1556 return M->Parent;
1557 }
1558
1559 llvm_unreachable("unknown module kind")__builtin_unreachable();
1560}
1561
1562void NamedDecl::printName(raw_ostream &os) const {
1563 os << Name;
1564}
1565
1566std::string NamedDecl::getQualifiedNameAsString() const {
1567 std::string QualName;
1568 llvm::raw_string_ostream OS(QualName);
1569 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1570 return OS.str();
1571}
1572
1573void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1574 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1575}
1576
1577void NamedDecl::printQualifiedName(raw_ostream &OS,
1578 const PrintingPolicy &P) const {
1579 if (getDeclContext()->isFunctionOrMethod()) {
1580 // We do not print '(anonymous)' for function parameters without name.
1581 printName(OS);
1582 return;
1583 }
1584 printNestedNameSpecifier(OS, P);
1585 if (getDeclName())
1586 OS << *this;
1587 else {
1588 // Give the printName override a chance to pick a different name before we
1589 // fall back to "(anonymous)".
1590 SmallString<64> NameBuffer;
1591 llvm::raw_svector_ostream NameOS(NameBuffer);
1592 printName(NameOS);
1593 if (NameBuffer.empty())
1594 OS << "(anonymous)";
1595 else
1596 OS << NameBuffer;
1597 }
1598}
1599
1600void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1601 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1602}
1603
1604void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1605 const PrintingPolicy &P) const {
1606 const DeclContext *Ctx = getDeclContext();
1607
1608 // For ObjC methods and properties, look through categories and use the
1609 // interface as context.
1610 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1611 if (auto *ID = MD->getClassInterface())
1612 Ctx = ID;
1613 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1614 if (auto *MD = PD->getGetterMethodDecl())
1615 if (auto *ID = MD->getClassInterface())
1616 Ctx = ID;
1617 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1618 if (auto *CI = ID->getContainingInterface())
1619 Ctx = CI;
1620 }
1621
1622 if (Ctx->isFunctionOrMethod())
1623 return;
1624
1625 using ContextsTy = SmallVector<const DeclContext *, 8>;
1626 ContextsTy Contexts;
1627
1628 // Collect named contexts.
1629 DeclarationName NameInScope = getDeclName();
1630 for (; Ctx; Ctx = Ctx->getParent()) {
1631 // Suppress anonymous namespace if requested.
1632 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1633 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1634 continue;
1635
1636 // Suppress inline namespace if it doesn't make the result ambiguous.
1637 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1638 cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope))
1639 continue;
1640
1641 // Skip non-named contexts such as linkage specifications and ExportDecls.
1642 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1643 if (!ND)
1644 continue;
1645
1646 Contexts.push_back(Ctx);
1647 NameInScope = ND->getDeclName();
1648 }
1649
1650 for (unsigned I = Contexts.size(); I != 0; --I) {
1651 const DeclContext *DC = Contexts[I - 1];
1652 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1653 OS << Spec->getName();
1654 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1655 printTemplateArgumentList(
1656 OS, TemplateArgs.asArray(), P,
1657 Spec->getSpecializedTemplate()->getTemplateParameters());
1658 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1659 if (ND->isAnonymousNamespace()) {
1660 OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1661 : "(anonymous namespace)");
1662 }
1663 else
1664 OS << *ND;
1665 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1666 if (!RD->getIdentifier())
1667 OS << "(anonymous " << RD->getKindName() << ')';
1668 else
1669 OS << *RD;
1670 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1671 const FunctionProtoType *FT = nullptr;
1672 if (FD->hasWrittenPrototype())
1673 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1674
1675 OS << *FD << '(';
1676 if (FT) {
1677 unsigned NumParams = FD->getNumParams();
1678 for (unsigned i = 0; i < NumParams; ++i) {
1679 if (i)
1680 OS << ", ";
1681 OS << FD->getParamDecl(i)->getType().stream(P);
1682 }
1683
1684 if (FT->isVariadic()) {
1685 if (NumParams > 0)
1686 OS << ", ";
1687 OS << "...";
1688 }
1689 }
1690 OS << ')';
1691 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1692 // C++ [dcl.enum]p10: Each enum-name and each unscoped
1693 // enumerator is declared in the scope that immediately contains
1694 // the enum-specifier. Each scoped enumerator is declared in the
1695 // scope of the enumeration.
1696 // For the case of unscoped enumerator, do not include in the qualified
1697 // name any information about its enum enclosing scope, as its visibility
1698 // is global.
1699 if (ED->isScoped())
1700 OS << *ED;
1701 else
1702 continue;
1703 } else {
1704 OS << *cast<NamedDecl>(DC);
1705 }
1706 OS << "::";
1707 }
1708}
1709
1710void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1711 const PrintingPolicy &Policy,
1712 bool Qualified) const {
1713 if (Qualified)
1714 printQualifiedName(OS, Policy);
1715 else
1716 printName(OS);
1717}
1718
1719template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1720 return true;
1721}
1722static bool isRedeclarableImpl(...) { return false; }
1723static bool isRedeclarable(Decl::Kind K) {
1724 switch (K) {
1725#define DECL(Type, Base) \
1726 case Decl::Type: \
1727 return isRedeclarableImpl((Type##Decl *)nullptr);
1728#define ABSTRACT_DECL(DECL)
1729#include "clang/AST/DeclNodes.inc"
1730 }
1731 llvm_unreachable("unknown decl kind")__builtin_unreachable();
1732}
1733
1734bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1735 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch")((void)0);
1736
1737 // Never replace one imported declaration with another; we need both results
1738 // when re-exporting.
1739 if (OldD->isFromASTFile() && isFromASTFile())
1740 return false;
1741
1742 // A kind mismatch implies that the declaration is not replaced.
1743 if (OldD->getKind() != getKind())
1744 return false;
1745
1746 // For method declarations, we never replace. (Why?)
1747 if (isa<ObjCMethodDecl>(this))
1748 return false;
1749
1750 // For parameters, pick the newer one. This is either an error or (in
1751 // Objective-C) permitted as an extension.
1752 if (isa<ParmVarDecl>(this))
1753 return true;
1754
1755 // Inline namespaces can give us two declarations with the same
1756 // name and kind in the same scope but different contexts; we should
1757 // keep both declarations in this case.
1758 if (!this->getDeclContext()->getRedeclContext()->Equals(
1759 OldD->getDeclContext()->getRedeclContext()))
1760 return false;
1761
1762 // Using declarations can be replaced if they import the same name from the
1763 // same context.
1764 if (auto *UD = dyn_cast<UsingDecl>(this)) {
1765 ASTContext &Context = getASTContext();
1766 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1767 Context.getCanonicalNestedNameSpecifier(
1768 cast<UsingDecl>(OldD)->getQualifier());
1769 }
1770 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1771 ASTContext &Context = getASTContext();
1772 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1773 Context.getCanonicalNestedNameSpecifier(
1774 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1775 }
1776
1777 if (isRedeclarable(getKind())) {
1778 if (getCanonicalDecl() != OldD->getCanonicalDecl())
1779 return false;
1780
1781 if (IsKnownNewer)
1782 return true;
1783
1784 // Check whether this is actually newer than OldD. We want to keep the
1785 // newer declaration. This loop will usually only iterate once, because
1786 // OldD is usually the previous declaration.
1787 for (auto D : redecls()) {
1788 if (D == OldD)
1789 break;
1790
1791 // If we reach the canonical declaration, then OldD is not actually older
1792 // than this one.
1793 //
1794 // FIXME: In this case, we should not add this decl to the lookup table.
1795 if (D->isCanonicalDecl())
1796 return false;
1797 }
1798
1799 // It's a newer declaration of the same kind of declaration in the same
1800 // scope: we want this decl instead of the existing one.
1801 return true;
1802 }
1803
1804 // In all other cases, we need to keep both declarations in case they have
1805 // different visibility. Any attempt to use the name will result in an
1806 // ambiguity if more than one is visible.
1807 return false;
1808}
1809
1810bool NamedDecl::hasLinkage() const {
1811 return getFormalLinkage() != NoLinkage;
1812}
1813
1814NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1815 NamedDecl *ND = this;
1816 while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1817 ND = UD->getTargetDecl();
1818
1819 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1820 return AD->getClassInterface();
1821
1822 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1823 return AD->getNamespace();
1824
1825 return ND;
1826}
1827
1828bool NamedDecl::isCXXInstanceMember() const {
1829 if (!isCXXClassMember())
1830 return false;
1831
1832 const NamedDecl *D = this;
1833 if (isa<UsingShadowDecl>(D))
1834 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1835
1836 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1837 return true;
1838 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1839 return MD->isInstance();
1840 return false;
1841}
1842
1843//===----------------------------------------------------------------------===//
1844// DeclaratorDecl Implementation
1845//===----------------------------------------------------------------------===//
1846
1847template <typename DeclT>
1848static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1849 if (decl->getNumTemplateParameterLists() > 0)
1850 return decl->getTemplateParameterList(0)->getTemplateLoc();
1851 return decl->getInnerLocStart();
1852}
1853
1854SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1855 TypeSourceInfo *TSI = getTypeSourceInfo();
1856 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1857 return SourceLocation();
1858}
1859
1860SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1861 TypeSourceInfo *TSI = getTypeSourceInfo();
1862 if (TSI) return TSI->getTypeLoc().getEndLoc();
1863 return SourceLocation();
1864}
1865
1866void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1867 if (QualifierLoc) {
1868 // Make sure the extended decl info is allocated.
1869 if (!hasExtInfo()) {
1870 // Save (non-extended) type source info pointer.
1871 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1872 // Allocate external info struct.
1873 DeclInfo = new (getASTContext()) ExtInfo;
1874 // Restore savedTInfo into (extended) decl info.
1875 getExtInfo()->TInfo = savedTInfo;
1876 }
1877 // Set qualifier info.
1878 getExtInfo()->QualifierLoc = QualifierLoc;
1879 } else if (hasExtInfo()) {
1880 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1881 getExtInfo()->QualifierLoc = QualifierLoc;
1882 }
1883}
1884
1885void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1886 assert(TrailingRequiresClause)((void)0);
1887 // Make sure the extended decl info is allocated.
1888 if (!hasExtInfo()) {
1889 // Save (non-extended) type source info pointer.
1890 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1891 // Allocate external info struct.
1892 DeclInfo = new (getASTContext()) ExtInfo;
1893 // Restore savedTInfo into (extended) decl info.
1894 getExtInfo()->TInfo = savedTInfo;
1895 }
1896 // Set requires clause info.
1897 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1898}
1899
1900void DeclaratorDecl::setTemplateParameterListsInfo(
1901 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1902 assert(!TPLists.empty())((void)0);
1903 // Make sure the extended decl info is allocated.
1904 if (!hasExtInfo()) {
1905 // Save (non-extended) type source info pointer.
1906 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1907 // Allocate external info struct.
1908 DeclInfo = new (getASTContext()) ExtInfo;
1909 // Restore savedTInfo into (extended) decl info.
1910 getExtInfo()->TInfo = savedTInfo;
1911 }
1912 // Set the template parameter lists info.
1913 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1914}
1915
1916SourceLocation DeclaratorDecl::getOuterLocStart() const {
1917 return getTemplateOrInnerLocStart(this);
1918}
1919
1920// Helper function: returns true if QT is or contains a type
1921// having a postfix component.
1922static bool typeIsPostfix(QualType QT) {
1923 while (true) {
1924 const Type* T = QT.getTypePtr();
1925 switch (T->getTypeClass()) {
1926 default:
1927 return false;
1928 case Type::Pointer:
1929 QT = cast<PointerType>(T)->getPointeeType();
1930 break;
1931 case Type::BlockPointer:
1932 QT = cast<BlockPointerType>(T)->getPointeeType();
1933 break;
1934 case Type::MemberPointer:
1935 QT = cast<MemberPointerType>(T)->getPointeeType();
1936 break;
1937 case Type::LValueReference:
1938 case Type::RValueReference:
1939 QT = cast<ReferenceType>(T)->getPointeeType();
1940 break;
1941 case Type::PackExpansion:
1942 QT = cast<PackExpansionType>(T)->getPattern();
1943 break;
1944 case Type::Paren:
1945 case Type::ConstantArray:
1946 case Type::DependentSizedArray:
1947 case Type::IncompleteArray:
1948 case Type::VariableArray:
1949 case Type::FunctionProto:
1950 case Type::FunctionNoProto:
1951 return true;
1952 }
1953 }
1954}
1955
1956SourceRange DeclaratorDecl::getSourceRange() const {
1957 SourceLocation RangeEnd = getLocation();
1958 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1959 // If the declaration has no name or the type extends past the name take the
1960 // end location of the type.
1961 if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1962 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1963 }
1964 return SourceRange(getOuterLocStart(), RangeEnd);
1965}
1966
1967void QualifierInfo::setTemplateParameterListsInfo(
1968 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1969 // Free previous template parameters (if any).
1970 if (NumTemplParamLists > 0) {
1971 Context.Deallocate(TemplParamLists);
1972 TemplParamLists = nullptr;
1973 NumTemplParamLists = 0;
1974 }
1975 // Set info on matched template parameter lists (if any).
1976 if (!TPLists.empty()) {
1977 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1978 NumTemplParamLists = TPLists.size();
1979 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1980 }
1981}
1982
1983//===----------------------------------------------------------------------===//
1984// VarDecl Implementation
1985//===----------------------------------------------------------------------===//
1986
1987const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1988 switch (SC) {
1989 case SC_None: break;
1990 case SC_Auto: return "auto";
1991 case SC_Extern: return "extern";
1992 case SC_PrivateExtern: return "__private_extern__";
1993 case SC_Register: return "register";
1994 case SC_Static: return "static";
1995 }
1996
1997 llvm_unreachable("Invalid storage class")__builtin_unreachable();
1998}
1999
2000VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
2001 SourceLocation StartLoc, SourceLocation IdLoc,
2002 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2003 StorageClass SC)
2004 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2005 redeclarable_base(C) {
2006 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2007 "VarDeclBitfields too large!");
2008 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2009 "ParmVarDeclBitfields too large!");
2010 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2011 "NonParmVarDeclBitfields too large!");
2012 AllBits = 0;
2013 VarDeclBits.SClass = SC;
2014 // Everything else is implicitly initialized to false.
2015}
2016
2017VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
2018 SourceLocation StartL, SourceLocation IdL,
2019 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2020 StorageClass S) {
2021 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2022}
2023
2024VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2025 return new (C, ID)
2026 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2027 QualType(), nullptr, SC_None);
2028}
2029
2030void VarDecl::setStorageClass(StorageClass SC) {
2031 assert(isLegalForVariable(SC))((void)0);
2032 VarDeclBits.SClass = SC;
2033}
2034
2035VarDecl::TLSKind VarDecl::getTLSKind() const {
2036 switch (VarDeclBits.TSCSpec) {
2037 case TSCS_unspecified:
2038 if (!hasAttr<ThreadAttr>() &&
2039 !(getASTContext().getLangOpts().OpenMPUseTLS &&
2040 getASTContext().getTargetInfo().isTLSSupported() &&
2041 hasAttr<OMPThreadPrivateDeclAttr>()))
2042 return TLS_None;
2043 return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2044 LangOptions::MSVC2015)) ||
2045 hasAttr<OMPThreadPrivateDeclAttr>())
2046 ? TLS_Dynamic
2047 : TLS_Static;
2048 case TSCS___thread: // Fall through.
2049 case TSCS__Thread_local:
2050 return TLS_Static;
2051 case TSCS_thread_local:
2052 return TLS_Dynamic;
2053 }
2054 llvm_unreachable("Unknown thread storage class specifier!")__builtin_unreachable();
2055}
2056
2057SourceRange VarDecl::getSourceRange() const {
2058 if (const Expr *Init = getInit()) {
2059 SourceLocation InitEnd = Init->getEndLoc();
2060 // If Init is implicit, ignore its source range and fallback on
2061 // DeclaratorDecl::getSourceRange() to handle postfix elements.
2062 if (InitEnd.isValid() && InitEnd != getLocation())
2063 return SourceRange(getOuterLocStart(), InitEnd);
2064 }
2065 return DeclaratorDecl::getSourceRange();
2066}
2067
2068template<typename T>
2069static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2070 // C++ [dcl.link]p1: All function types, function names with external linkage,
2071 // and variable names with external linkage have a language linkage.
2072 if (!D.hasExternalFormalLinkage())
2073 return NoLanguageLinkage;
2074
2075 // Language linkage is a C++ concept, but saying that everything else in C has
2076 // C language linkage fits the implementation nicely.
2077 ASTContext &Context = D.getASTContext();
2078 if (!Context.getLangOpts().CPlusPlus)
2079 return CLanguageLinkage;
2080
2081 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2082 // language linkage of the names of class members and the function type of
2083 // class member functions.
2084 const DeclContext *DC = D.getDeclContext();
2085 if (DC->isRecord())
2086 return CXXLanguageLinkage;
2087
2088 // If the first decl is in an extern "C" context, any other redeclaration
2089 // will have C language linkage. If the first one is not in an extern "C"
2090 // context, we would have reported an error for any other decl being in one.
2091 if (isFirstInExternCContext(&D))
2092 return CLanguageLinkage;
2093 return CXXLanguageLinkage;
2094}
2095
2096template<typename T>
2097static bool isDeclExternC(const T &D) {
2098 // Since the context is ignored for class members, they can only have C++
2099 // language linkage or no language linkage.
2100 const DeclContext *DC = D.getDeclContext();
2101 if (DC->isRecord()) {
2102 assert(D.getASTContext().getLangOpts().CPlusPlus)((void)0);
2103 return false;
2104 }
2105
2106 return D.getLanguageLinkage() == CLanguageLinkage;
2107}
2108
2109LanguageLinkage VarDecl::getLanguageLinkage() const {
2110 return getDeclLanguageLinkage(*this);
2111}
2112
2113bool VarDecl::isExternC() const {
2114 return isDeclExternC(*this);
2115}
2116
2117bool VarDecl::isInExternCContext() const {
2118 return getLexicalDeclContext()->isExternCContext();
2119}
2120
2121bool VarDecl::isInExternCXXContext() const {
2122 return getLexicalDeclContext()->isExternCXXContext();
2123}
2124
2125VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2126
2127VarDecl::DefinitionKind
2128VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2129 if (isThisDeclarationADemotedDefinition())
2130 return DeclarationOnly;
2131
2132 // C++ [basic.def]p2:
2133 // A declaration is a definition unless [...] it contains the 'extern'
2134 // specifier or a linkage-specification and neither an initializer [...],
2135 // it declares a non-inline static data member in a class declaration [...],
2136 // it declares a static data member outside a class definition and the variable
2137 // was defined within the class with the constexpr specifier [...],
2138 // C++1y [temp.expl.spec]p15:
2139 // An explicit specialization of a static data member or an explicit
2140 // specialization of a static data member template is a definition if the
2141 // declaration includes an initializer; otherwise, it is a declaration.
2142 //
2143 // FIXME: How do you declare (but not define) a partial specialization of
2144 // a static data member template outside the containing class?
2145 if (isStaticDataMember()) {
2146 if (isOutOfLine() &&
2147 !(getCanonicalDecl()->isInline() &&
2148 getCanonicalDecl()->isConstexpr()) &&
2149 (hasInit() ||
2150 // If the first declaration is out-of-line, this may be an
2151 // instantiation of an out-of-line partial specialization of a variable
2152 // template for which we have not yet instantiated the initializer.
2153 (getFirstDecl()->isOutOfLine()
2154 ? getTemplateSpecializationKind() == TSK_Undeclared
2155 : getTemplateSpecializationKind() !=
2156 TSK_ExplicitSpecialization) ||
2157 isa<VarTemplatePartialSpecializationDecl>(this)))
2158 return Definition;
2159 if (!isOutOfLine() && isInline())
2160 return Definition;
2161 return DeclarationOnly;
2162 }
2163 // C99 6.7p5:
2164 // A definition of an identifier is a declaration for that identifier that
2165 // [...] causes storage to be reserved for that object.
2166 // Note: that applies for all non-file-scope objects.
2167 // C99 6.9.2p1:
2168 // If the declaration of an identifier for an object has file scope and an
2169 // initializer, the declaration is an external definition for the identifier
2170 if (hasInit())
2171 return Definition;
2172
2173 if (hasDefiningAttr())
2174 return Definition;
2175
2176 if (const auto *SAA = getAttr<SelectAnyAttr>())
2177 if (!SAA->isInherited())
2178 return Definition;
2179
2180 // A variable template specialization (other than a static data member
2181 // template or an explicit specialization) is a declaration until we
2182 // instantiate its initializer.
2183 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2184 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2185 !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2186 !VTSD->IsCompleteDefinition)
2187 return DeclarationOnly;
2188 }
2189
2190 if (hasExternalStorage())
2191 return DeclarationOnly;
2192
2193 // [dcl.link] p7:
2194 // A declaration directly contained in a linkage-specification is treated
2195 // as if it contains the extern specifier for the purpose of determining
2196 // the linkage of the declared name and whether it is a definition.
2197 if (isSingleLineLanguageLinkage(*this))
2198 return DeclarationOnly;
2199
2200 // C99 6.9.2p2:
2201 // A declaration of an object that has file scope without an initializer,
2202 // and without a storage class specifier or the scs 'static', constitutes
2203 // a tentative definition.
2204 // No such thing in C++.
2205 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2206 return TentativeDefinition;
2207
2208 // What's left is (in C, block-scope) declarations without initializers or
2209 // external storage. These are definitions.
2210 return Definition;
2211}
2212
2213VarDecl *VarDecl::getActingDefinition() {
2214 DefinitionKind Kind = isThisDeclarationADefinition();
2215 if (Kind != TentativeDefinition)
2216 return nullptr;
2217
2218 VarDecl *LastTentative = nullptr;
2219 VarDecl *First = getFirstDecl();
2220 for (auto I : First->redecls()) {
2221 Kind = I->isThisDeclarationADefinition();
2222 if (Kind == Definition)
2223 return nullptr;
2224 if (Kind == TentativeDefinition)
2225 LastTentative = I;
2226 }
2227 return LastTentative;
2228}
2229
2230VarDecl *VarDecl::getDefinition(ASTContext &C) {
2231 VarDecl *First = getFirstDecl();
2232 for (auto I : First->redecls()) {
2233 if (I->isThisDeclarationADefinition(C) == Definition)
2234 return I;
2235 }
2236 return nullptr;
2237}
2238
2239VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2240 DefinitionKind Kind = DeclarationOnly;
2241
2242 const VarDecl *First = getFirstDecl();
2243 for (auto I : First->redecls()) {
2244 Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2245 if (Kind == Definition)
2246 break;
2247 }
2248
2249 return Kind;
2250}
2251
2252const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2253 for (auto I : redecls()) {
2254 if (auto Expr = I->getInit()) {
2255 D = I;
2256 return Expr;
2257 }
2258 }
2259 return nullptr;
2260}
2261
2262bool VarDecl::hasInit() const {
2263 if (auto *P = dyn_cast<ParmVarDecl>(this))
2264 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2265 return false;
2266
2267 return !Init.isNull();
2268}
2269
2270Expr *VarDecl::getInit() {
2271 if (!hasInit())
2272 return nullptr;
2273
2274 if (auto *S = Init.dyn_cast<Stmt *>())
2275 return cast<Expr>(S);
2276
2277 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2278}
2279
2280Stmt **VarDecl::getInitAddress() {
2281 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2282 return &ES->Value;
2283
2284 return Init.getAddrOfPtr1();
2285}
2286
2287VarDecl *VarDecl::getInitializingDeclaration() {
2288 VarDecl *Def = nullptr;
2289 for (auto I : redecls()) {
2290 if (I->hasInit())
2291 return I;
2292
2293 if (I->isThisDeclarationADefinition()) {
2294 if (isStaticDataMember())
2295 return I;
2296 Def = I;
2297 }
2298 }
2299 return Def;
2300}
2301
2302bool VarDecl::isOutOfLine() const {
2303 if (Decl::isOutOfLine())
2304 return true;
2305
2306 if (!isStaticDataMember())
2307 return false;
2308
2309 // If this static data member was instantiated from a static data member of
2310 // a class template, check whether that static data member was defined
2311 // out-of-line.
2312 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2313 return VD->isOutOfLine();
2314
2315 return false;
2316}
2317
2318void VarDecl::setInit(Expr *I) {
2319 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2320 Eval->~EvaluatedStmt();
2321 getASTContext().Deallocate(Eval);
2322 }
2323
2324 Init = I;
2325}
2326
2327bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2328 const LangOptions &Lang = C.getLangOpts();
2329
2330 // OpenCL permits const integral variables to be used in constant
2331 // expressions, like in C++98.
2332 if (!Lang.CPlusPlus && !Lang.OpenCL)
2333 return false;
2334
2335 // Function parameters are never usable in constant expressions.
2336 if (isa<ParmVarDecl>(this))
2337 return false;
2338
2339 // The values of weak variables are never usable in constant expressions.
2340 if (isWeak())
2341 return false;
2342
2343 // In C++11, any variable of reference type can be used in a constant
2344 // expression if it is initialized by a constant expression.
2345 if (Lang.CPlusPlus11 && getType()->isReferenceType())
2346 return true;
2347
2348 // Only const objects can be used in constant expressions in C++. C++98 does
2349 // not require the variable to be non-volatile, but we consider this to be a
2350 // defect.
2351 if (!getType().isConstant(C) || getType().isVolatileQualified())
2352 return false;
2353
2354 // In C++, const, non-volatile variables of integral or enumeration types
2355 // can be used in constant expressions.
2356 if (getType()->isIntegralOrEnumerationType())
2357 return true;
2358
2359 // Additionally, in C++11, non-volatile constexpr variables can be used in
2360 // constant expressions.
2361 return Lang.CPlusPlus11 && isConstexpr();
2362}
2363
2364bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2365 // C++2a [expr.const]p3:
2366 // A variable is usable in constant expressions after its initializing
2367 // declaration is encountered...
2368 const VarDecl *DefVD = nullptr;
2369 const Expr *Init = getAnyInitializer(DefVD);
2370 if (!Init || Init->isValueDependent() || getType()->isDependentType())
2371 return false;
2372 // ... if it is a constexpr variable, or it is of reference type or of
2373 // const-qualified integral or enumeration type, ...
2374 if (!DefVD->mightBeUsableInConstantExpressions(Context))
2375 return false;
2376 // ... and its initializer is a constant initializer.
2377 if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
2378 return false;
2379 // C++98 [expr.const]p1:
2380 // An integral constant-expression can involve only [...] const variables
2381 // or static data members of integral or enumeration types initialized with
2382 // [integer] constant expressions (dcl.init)
2383 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2384 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2385 return false;
2386 return true;
2387}
2388
2389/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2390/// form, which contains extra information on the evaluated value of the
2391/// initializer.
2392EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2393 auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2394 if (!Eval) {
2395 // Note: EvaluatedStmt contains an APValue, which usually holds
2396 // resources not allocated from the ASTContext. We need to do some
2397 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2398 // where we can detect whether there's anything to clean up or not.
2399 Eval = new (getASTContext()) EvaluatedStmt;
2400 Eval->Value = Init.get<Stmt *>();
2401 Init = Eval;
2402 }
2403 return Eval;
2404}
2405
2406EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2407 return Init.dyn_cast<EvaluatedStmt *>();
2408}
2409
2410APValue *VarDecl::evaluateValue() const {
2411 SmallVector<PartialDiagnosticAt, 8> Notes;
2412 return evaluateValueImpl(Notes, hasConstantInitialization());
2413}
2414
2415APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
2416 bool IsConstantInitialization) const {
2417 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2418
2419 const auto *Init = cast<Expr>(Eval->Value);
2420 assert(!Init->isValueDependent())((void)0);
2421
2422 // We only produce notes indicating why an initializer is non-constant the
2423 // first time it is evaluated. FIXME: The notes won't always be emitted the
2424 // first time we try evaluation, so might not be produced at all.
2425 if (Eval->WasEvaluated)
2426 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2427
2428 if (Eval->IsEvaluating) {
2429 // FIXME: Produce a diagnostic for self-initialization.
2430 return nullptr;
2431 }
2432
2433 Eval->IsEvaluating = true;
2434
2435 ASTContext &Ctx = getASTContext();
2436 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes,
2437 IsConstantInitialization);
2438
2439 // In C++11, this isn't a constant initializer if we produced notes. In that
2440 // case, we can't keep the result, because it may only be correct under the
2441 // assumption that the initializer is a constant context.
2442 if (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11 &&
2443 !Notes.empty())
2444 Result = false;
2445
2446 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2447 // or that it's empty (so that there's nothing to clean up) if evaluation
2448 // failed.
2449 if (!Result)
2450 Eval->Evaluated = APValue();
2451 else if (Eval->Evaluated.needsCleanup())
2452 Ctx.addDestruction(&Eval->Evaluated);
2453
2454 Eval->IsEvaluating = false;
2455 Eval->WasEvaluated = true;
2456
2457 return Result ? &Eval->Evaluated : nullptr;
2458}
2459
2460APValue *VarDecl::getEvaluatedValue() const {
2461 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2462 if (Eval->WasEvaluated)
2463 return &Eval->Evaluated;
2464
2465 return nullptr;
2466}
2467
2468bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2469 const Expr *Init = getInit();
2470 assert(Init && "no initializer")((void)0);
2471
2472 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2473 if (!Eval->CheckedForICEInit) {
2474 Eval->CheckedForICEInit = true;
2475 Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2476 }
2477 return Eval->HasICEInit;
2478}
2479
2480bool VarDecl::hasConstantInitialization() const {
2481 // In C, all globals (and only globals) have constant initialization.
2482 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus)
2483 return true;
2484
2485 // In C++, it depends on whether the evaluation at the point of definition
2486 // was evaluatable as a constant initializer.
2487 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2488 return Eval->HasConstantInitialization;
2489
2490 return false;
2491}
2492
2493bool VarDecl::checkForConstantInitialization(
2494 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2495 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2496 // If we ask for the value before we know whether we have a constant
2497 // initializer, we can compute the wrong value (for example, due to
2498 // std::is_constant_evaluated()).
2499 assert(!Eval->WasEvaluated &&((void)0)
2500 "already evaluated var value before checking for constant init")((void)0);
2501 assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++")((void)0);
2502
2503 assert(!cast<Expr>(Eval->Value)->isValueDependent())((void)0);
2504
2505 // Evaluate the initializer to check whether it's a constant expression.
2506 Eval->HasConstantInitialization =
2507 evaluateValueImpl(Notes, true) && Notes.empty();
2508
2509 // If evaluation as a constant initializer failed, allow re-evaluation as a
2510 // non-constant initializer if we later find we want the value.
2511 if (!Eval->HasConstantInitialization)
2512 Eval->WasEvaluated = false;
2513
2514 return Eval->HasConstantInitialization;
2515}
2516
2517bool VarDecl::isParameterPack() const {
2518 return isa<PackExpansionType>(getType());
2519}
2520
2521template<typename DeclT>
2522static DeclT *getDefinitionOrSelf(DeclT *D) {
2523 assert(D)((void)0);
2524 if (auto *Def = D->getDefinition())
2525 return Def;
2526 return D;
2527}
2528
2529bool VarDecl::isEscapingByref() const {
2530 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2531}
2532
2533bool VarDecl::isNonEscapingByref() const {
2534 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2535}
2536
2537bool VarDecl::hasDependentAlignment() const {
2538 QualType T = getType();
2539 return T->isDependentType() || T->isUndeducedAutoType() ||
2540 llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) {
2541 return AA->isAlignmentDependent();
2542 });
2543}
2544
2545VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2546 const VarDecl *VD = this;
2547
2548 // If this is an instantiated member, walk back to the template from which
2549 // it was instantiated.
2550 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2551 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2552 VD = VD->getInstantiatedFromStaticDataMember();
2553 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2554 VD = NewVD;
2555 }
2556 }
2557
2558 // If it's an instantiated variable template specialization, find the
2559 // template or partial specialization from which it was instantiated.
2560 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2561 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2562 auto From = VDTemplSpec->getInstantiatedFrom();
2563 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2564 while (!VTD->isMemberSpecialization()) {
2565 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2566 if (!NewVTD)
2567 break;
2568 VTD = NewVTD;
2569 }
2570 return getDefinitionOrSelf(VTD->getTemplatedDecl());
2571 }
2572 if (auto *VTPSD =
2573 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2574 while (!VTPSD->isMemberSpecialization()) {
2575 auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2576 if (!NewVTPSD)
2577 break;
2578 VTPSD = NewVTPSD;
2579 }
2580 return getDefinitionOrSelf<VarDecl>(VTPSD);
2581 }
2582 }
2583 }
2584
2585 // If this is the pattern of a variable template, find where it was
2586 // instantiated from. FIXME: Is this necessary?
2587 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2588 while (!VarTemplate->isMemberSpecialization()) {
2589 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2590 if (!NewVT)
2591 break;
2592 VarTemplate = NewVT;
2593 }
2594
2595 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2596 }
2597
2598 if (VD == this)
2599 return nullptr;
2600 return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2601}
2602
2603VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2604 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2605 return cast<VarDecl>(MSI->getInstantiatedFrom());
2606
2607 return nullptr;
2608}
2609
2610TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2611 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2612 return Spec->getSpecializationKind();
2613
2614 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2615 return MSI->getTemplateSpecializationKind();
2616
2617 return TSK_Undeclared;
2618}
2619
2620TemplateSpecializationKind
2621VarDecl::getTemplateSpecializationKindForInstantiation() const {
2622 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2623 return MSI->getTemplateSpecializationKind();
2624
2625 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2626 return Spec->getSpecializationKind();
2627
2628 return TSK_Undeclared;
2629}
2630
2631SourceLocation VarDecl::getPointOfInstantiation() const {
2632 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2633 return Spec->getPointOfInstantiation();
2634
2635 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2636 return MSI->getPointOfInstantiation();
2637
2638 return SourceLocation();
2639}
2640
2641VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2642 return getASTContext().getTemplateOrSpecializationInfo(this)
2643 .dyn_cast<VarTemplateDecl *>();
2644}
2645
2646void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2647 getASTContext().setTemplateOrSpecializationInfo(this, Template);
2648}
2649
2650bool VarDecl::isKnownToBeDefined() const {
2651 const auto &LangOpts = getASTContext().getLangOpts();
2652 // In CUDA mode without relocatable device code, variables of form 'extern
2653 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2654 // memory pool. These are never undefined variables, even if they appear
2655 // inside of an anon namespace or static function.
2656 //
2657 // With CUDA relocatable device code enabled, these variables don't get
2658 // special handling; they're treated like regular extern variables.
2659 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2660 hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2661 isa<IncompleteArrayType>(getType()))
2662 return true;
2663
2664 return hasDefinition();
2665}
2666
2667bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2668 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2669 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2670 !hasAttr<AlwaysDestroyAttr>()));
2671}
2672
2673QualType::DestructionKind
2674VarDecl::needsDestruction(const ASTContext &Ctx) const {
2675 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2676 if (Eval->HasConstantDestruction)
2677 return QualType::DK_none;
2678
2679 if (isNoDestroy(Ctx))
2680 return QualType::DK_none;
2681
2682 return getType().isDestructedType();
2683}
2684
2685MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2686 if (isStaticDataMember())
2687 // FIXME: Remove ?
2688 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2689 return getASTContext().getTemplateOrSpecializationInfo(this)
2690 .dyn_cast<MemberSpecializationInfo *>();
2691 return nullptr;
2692}
2693
2694void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2695 SourceLocation PointOfInstantiation) {
2696 assert((isa<VarTemplateSpecializationDecl>(this) ||((void)0)
2697 getMemberSpecializationInfo()) &&((void)0)
2698 "not a variable or static data member template specialization")((void)0);
2699
2700 if (VarTemplateSpecializationDecl *Spec =
2701 dyn_cast<VarTemplateSpecializationDecl>(this)) {
2702 Spec->setSpecializationKind(TSK);
2703 if (TSK != TSK_ExplicitSpecialization &&
2704 PointOfInstantiation.isValid() &&
2705 Spec->getPointOfInstantiation().isInvalid()) {
2706 Spec->setPointOfInstantiation(PointOfInstantiation);
2707 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2708 L->InstantiationRequested(this);
2709 }
2710 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2711 MSI->setTemplateSpecializationKind(TSK);
2712 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2713 MSI->getPointOfInstantiation().isInvalid()) {
2714 MSI->setPointOfInstantiation(PointOfInstantiation);
2715 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2716 L->InstantiationRequested(this);
2717 }
2718 }
2719}
2720
2721void
2722VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2723 TemplateSpecializationKind TSK) {
2724 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&((void)0)
2725 "Previous template or instantiation?")((void)0);
2726 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2727}
2728
2729//===----------------------------------------------------------------------===//
2730// ParmVarDecl Implementation
2731//===----------------------------------------------------------------------===//
2732
2733ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2734 SourceLocation StartLoc,
2735 SourceLocation IdLoc, IdentifierInfo *Id,
2736 QualType T, TypeSourceInfo *TInfo,
2737 StorageClass S, Expr *DefArg) {
2738 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2739 S, DefArg);
2740}
2741
2742QualType ParmVarDecl::getOriginalType() const {
2743 TypeSourceInfo *TSI = getTypeSourceInfo();
2744 QualType T = TSI ? TSI->getType() : getType();
2745 if (const auto *DT = dyn_cast<DecayedType>(T))
2746 return DT->getOriginalType();
2747 return T;
2748}
2749
2750ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2751 return new (C, ID)
2752 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2753 nullptr, QualType(), nullptr, SC_None, nullptr);
2754}
2755
2756SourceRange ParmVarDecl::getSourceRange() const {
2757 if (!hasInheritedDefaultArg()) {
2758 SourceRange ArgRange = getDefaultArgRange();
2759 if (ArgRange.isValid())
2760 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2761 }
2762
2763 // DeclaratorDecl considers the range of postfix types as overlapping with the
2764 // declaration name, but this is not the case with parameters in ObjC methods.
2765 if (isa<ObjCMethodDecl>(getDeclContext()))
2766 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2767
2768 return DeclaratorDecl::getSourceRange();
2769}
2770
2771bool ParmVarDecl::isDestroyedInCallee() const {
2772 if (hasAttr<NSConsumedAttr>())
2773 return true;
2774
2775 auto *RT = getType()->getAs<RecordType>();
2776 if (RT && RT->getDecl()->isParamDestroyedInCallee())
2777 return true;
2778
2779 return false;
2780}
2781
2782Expr *ParmVarDecl::getDefaultArg() {
2783 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!")((void)0);
2784 assert(!hasUninstantiatedDefaultArg() &&((void)0)
2785 "Default argument is not yet instantiated!")((void)0);
2786
2787 Expr *Arg = getInit();
2788 if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2789 return E->getSubExpr();
2790
2791 return Arg;
2792}
2793
2794void ParmVarDecl::setDefaultArg(Expr *defarg) {
2795 ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2796 Init = defarg;
2797}
2798
2799SourceRange ParmVarDecl::getDefaultArgRange() const {
2800 switch (ParmVarDeclBits.DefaultArgKind) {
2801 case DAK_None:
2802 case DAK_Unparsed:
2803 // Nothing we can do here.
2804 return SourceRange();
2805
2806 case DAK_Uninstantiated:
2807 return getUninstantiatedDefaultArg()->getSourceRange();
2808
2809 case DAK_Normal:
2810 if (const Expr *E = getInit())
2811 return E->getSourceRange();
2812
2813 // Missing an actual expression, may be invalid.
2814 return SourceRange();
2815 }
2816 llvm_unreachable("Invalid default argument kind.")__builtin_unreachable();
2817}
2818
2819void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2820 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2821 Init = arg;
2822}
2823
2824Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2825 assert(hasUninstantiatedDefaultArg() &&((void)0)
2826 "Wrong kind of initialization expression!")((void)0);
2827 return cast_or_null<Expr>(Init.get<Stmt *>());
2828}
2829
2830bool ParmVarDecl::hasDefaultArg() const {
2831 // FIXME: We should just return false for DAK_None here once callers are
2832 // prepared for the case that we encountered an invalid default argument and
2833 // were unable to even build an invalid expression.
2834 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2835 !Init.isNull();
2836}
2837
2838void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2839 getASTContext().setParameterIndex(this, parameterIndex);
2840 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2841}
2842
2843unsigned ParmVarDecl::getParameterIndexLarge() const {
2844 return getASTContext().getParameterIndex(this);
2845}
2846
2847//===----------------------------------------------------------------------===//
2848// FunctionDecl Implementation
2849//===----------------------------------------------------------------------===//
2850
2851FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2852 SourceLocation StartLoc,
2853 const DeclarationNameInfo &NameInfo, QualType T,
2854 TypeSourceInfo *TInfo, StorageClass S,
2855 bool isInlineSpecified,
2856 ConstexprSpecKind ConstexprKind,
2857 Expr *TrailingRequiresClause)
2858 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2859 StartLoc),
2860 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2861 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2862 assert(T.isNull() || T->isFunctionType())((void)0);
2863 FunctionDeclBits.SClass = S;
2864 FunctionDeclBits.IsInline = isInlineSpecified;
2865 FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2866 FunctionDeclBits.IsVirtualAsWritten = false;
2867 FunctionDeclBits.IsPure = false;
2868 FunctionDeclBits.HasInheritedPrototype = false;
2869 FunctionDeclBits.HasWrittenPrototype = true;
2870 FunctionDeclBits.IsDeleted = false;
2871 FunctionDeclBits.IsTrivial = false;
2872 FunctionDeclBits.IsTrivialForCall = false;
2873 FunctionDeclBits.IsDefaulted = false;
2874 FunctionDeclBits.IsExplicitlyDefaulted = false;
2875 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2876 FunctionDeclBits.HasImplicitReturnZero = false;
2877 FunctionDeclBits.IsLateTemplateParsed = false;
2878 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
2879 FunctionDeclBits.InstantiationIsPending = false;
2880 FunctionDeclBits.UsesSEHTry = false;
2881 FunctionDeclBits.UsesFPIntrin = false;
2882 FunctionDeclBits.HasSkippedBody = false;
2883 FunctionDeclBits.WillHaveBody = false;
2884 FunctionDeclBits.IsMultiVersion = false;
2885 FunctionDeclBits.IsCopyDeductionCandidate = false;
2886 FunctionDeclBits.HasODRHash = false;
2887 if (TrailingRequiresClause)
2888 setTrailingRequiresClause(TrailingRequiresClause);
2889}
2890
2891void FunctionDecl::getNameForDiagnostic(
2892 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2893 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2894 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2895 if (TemplateArgs)
2896 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2897}
2898
2899bool FunctionDecl::isVariadic() const {
2900 if (const auto *FT = getType()->getAs<FunctionProtoType>())
2901 return FT->isVariadic();
2902 return false;
2903}
2904
2905FunctionDecl::DefaultedFunctionInfo *
2906FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2907 ArrayRef<DeclAccessPair> Lookups) {
2908 DefaultedFunctionInfo *Info = new (Context.Allocate(
2909 totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2910 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2911 DefaultedFunctionInfo;
2912 Info->NumLookups = Lookups.size();
2913 std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2914 Info->getTrailingObjects<DeclAccessPair>());
2915 return Info;
2916}
2917
2918void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
2919 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this")((void)0);
2920 assert(!Body && "can't replace function body with defaulted function info")((void)0);
2921
2922 FunctionDeclBits.HasDefaultedFunctionInfo = true;
2923 DefaultedInfo = Info;
2924}
2925
2926FunctionDecl::DefaultedFunctionInfo *
2927FunctionDecl::getDefaultedFunctionInfo() const {
2928 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
2929}
2930
2931bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2932 for (auto I : redecls()) {
2933 if (I->doesThisDeclarationHaveABody()) {
2934 Definition = I;
2935 return true;
2936 }
2937 }
2938
2939 return false;
2940}
2941
2942bool FunctionDecl::hasTrivialBody() const {
2943 Stmt *S = getBody();
2944 if (!S) {
2945 // Since we don't have a body for this function, we don't know if it's
2946 // trivial or not.
2947 return false;
2948 }
2949
2950 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2951 return true;
2952 return false;
2953}
2954
2955bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
2956 if (!getFriendObjectKind())
2957 return false;
2958
2959 // Check for a friend function instantiated from a friend function
2960 // definition in a templated class.
2961 if (const FunctionDecl *InstantiatedFrom =
2962 getInstantiatedFromMemberFunction())
2963 return InstantiatedFrom->getFriendObjectKind() &&
2964 InstantiatedFrom->isThisDeclarationADefinition();
2965
2966 // Check for a friend function template instantiated from a friend
2967 // function template definition in a templated class.
2968 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
2969 if (const FunctionTemplateDecl *InstantiatedFrom =
2970 Template->getInstantiatedFromMemberTemplate())
2971 return InstantiatedFrom->getFriendObjectKind() &&
2972 InstantiatedFrom->isThisDeclarationADefinition();
2973 }
2974
2975 return false;
2976}
2977
2978bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
2979 bool CheckForPendingFriendDefinition) const {
2980 for (const FunctionDecl *FD : redecls()) {
2981 if (FD->isThisDeclarationADefinition()) {
2982 Definition = FD;
2983 return true;
2984 }
2985
2986 // If this is a friend function defined in a class template, it does not
2987 // have a body until it is used, nevertheless it is a definition, see
2988 // [temp.inst]p2:
2989 //
2990 // ... for the purpose of determining whether an instantiated redeclaration
2991 // is valid according to [basic.def.odr] and [class.mem], a declaration that
2992 // corresponds to a definition in the template is considered to be a
2993 // definition.
2994 //
2995 // The following code must produce redefinition error:
2996 //
2997 // template<typename T> struct C20 { friend void func_20() {} };
2998 // C20<int> c20i;
2999 // void func_20() {}
3000 //
3001 if (CheckForPendingFriendDefinition &&
3002 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
3003 Definition = FD;
3004 return true;
3005 }
3006 }
3007
3008 return false;
3009}
3010
3011Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
3012 if (!hasBody(Definition))
3013 return nullptr;
3014
3015 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&((void)0)
3016 "definition should not have a body")((void)0);
3017 if (Definition->Body)
3018 return Definition->Body.get(getASTContext().getExternalSource());
3019
3020 return nullptr;
3021}
3022
3023void FunctionDecl::setBody(Stmt *B) {
3024 FunctionDeclBits.HasDefaultedFunctionInfo = false;
3025 Body = LazyDeclStmtPtr(B);
3026 if (B)
3027 EndRangeLoc = B->getEndLoc();
3028}
3029
3030void FunctionDecl::setPure(bool P) {
3031 FunctionDeclBits.IsPure = P;
3032 if (P)
3033 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3034 Parent->markedVirtualFunctionPure();
3035}
3036
3037template<std::size_t Len>
3038static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3039 IdentifierInfo *II = ND->getIdentifier();
3040 return II && II->isStr(Str);
3041}
3042
3043bool FunctionDecl::isMain() const {
3044 const TranslationUnitDecl *tunit =
3045 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3046 return tunit &&
3047 !tunit->getASTContext().getLangOpts().Freestanding &&
3048 isNamed(this, "main");
3049}
3050
3051bool FunctionDecl::isMSVCRTEntryPoint() const {
3052 const TranslationUnitDecl *TUnit =
3053 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3054 if (!TUnit)
3055 return false;
3056
3057 // Even though we aren't really targeting MSVCRT if we are freestanding,
3058 // semantic analysis for these functions remains the same.
3059
3060 // MSVCRT entry points only exist on MSVCRT targets.
3061 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3062 return false;
3063
3064 // Nameless functions like constructors cannot be entry points.
3065 if (!getIdentifier())
3066 return false;
3067
3068 return llvm::StringSwitch<bool>(getName())
3069 .Cases("main", // an ANSI console app
3070 "wmain", // a Unicode console App
3071 "WinMain", // an ANSI GUI app
3072 "wWinMain", // a Unicode GUI app
3073 "DllMain", // a DLL
3074 true)
3075 .Default(false);
3076}
3077
3078bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3079 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName)((void)0);
3080 assert(getDeclName().getCXXOverloadedOperator() == OO_New ||((void)0)
3081 getDeclName().getCXXOverloadedOperator() == OO_Delete ||((void)0)
3082 getDeclName().getCXXOverloadedOperator() == OO_Array_New ||((void)0)
3083 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)((void)0);
3084
3085 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3086 return false;
3087
3088 const auto *proto = getType()->castAs<FunctionProtoType>();
3089 if (proto->getNumParams() != 2 || proto->isVariadic())
3090 return false;
3091
3092 ASTContext &Context =
3093 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3094 ->getASTContext();
3095
3096 // The result type and first argument type are constant across all
3097 // these operators. The second argument must be exactly void*.
3098 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3099}
3100
3101bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3102 Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3103 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3104 return false;
3105 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3106 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3107 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3108 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3109 return false;
3110
3111 if (isa<CXXRecordDecl>(getDeclContext()))
3112 return false;
3113
3114 // This can only fail for an invalid 'operator new' declaration.
3115 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3116 return false;
3117
3118 const auto *FPT = getType()->castAs<FunctionProtoType>();
3119 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
3120 return false;
3121
3122 // If this is a single-parameter function, it must be a replaceable global
3123 // allocation or deallocation function.
3124 if (FPT->getNumParams() == 1)
3125 return true;
3126
3127 unsigned Params = 1;
3128 QualType Ty = FPT->getParamType(Params);
3129 ASTContext &Ctx = getASTContext();
3130
3131 auto Consume = [&] {
3132 ++Params;
3133 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3134 };
3135
3136 // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3137 bool IsSizedDelete = false;
3138 if (Ctx.getLangOpts().SizedDeallocation &&
3139 (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3140 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3141 Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3142 IsSizedDelete = true;
3143 Consume();
3144 }
3145
3146 // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3147 // new/delete.
3148 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3149 Consume();
3150 if (AlignmentParam)
3151 *AlignmentParam = Params;
3152 }
3153
3154 // Finally, if this is not a sized delete, the final parameter can
3155 // be a 'const std::nothrow_t&'.
3156 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3157 Ty = Ty->getPointeeType();
3158 if (Ty.getCVRQualifiers() != Qualifiers::Const)
3159 return false;
3160 if (Ty->isNothrowT()) {
3161 if (IsNothrow)
3162 *IsNothrow = true;
3163 Consume();
3164 }
3165 }
3166
3167 return Params == FPT->getNumParams();
3168}
3169
3170bool FunctionDecl::isInlineBuiltinDeclaration() const {
3171 if (!getBuiltinID())
3172 return false;
3173
3174 const FunctionDecl *Definition;
3175 return hasBody(Definition) && Definition->isInlineSpecified();
3176}
3177
3178bool FunctionDecl::isDestroyingOperatorDelete() const {
3179 // C++ P0722:
3180 // Within a class C, a single object deallocation function with signature
3181 // (T, std::destroying_delete_t, <more params>)
3182 // is a destroying operator delete.
3183 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3184 getNumParams() < 2)
3185 return false;
3186
3187 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3188 return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3189 RD->getIdentifier()->isStr("destroying_delete_t");
3190}
3191
3192LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3193 return getDeclLanguageLinkage(*this);
3194}
3195
3196bool FunctionDecl::isExternC() const {
3197 return isDeclExternC(*this);
3198}
3199
3200bool FunctionDecl::isInExternCContext() const {
3201 if (hasAttr<OpenCLKernelAttr>())
3202 return true;
3203 return getLexicalDeclContext()->isExternCContext();
3204}
3205
3206bool FunctionDecl::isInExternCXXContext() const {
3207 return getLexicalDeclContext()->isExternCXXContext();
3208}
3209
3210bool FunctionDecl::isGlobal() const {
3211 if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3212 return Method->isStatic();
3213
3214 if (getCanonicalDecl()->getStorageClass() == SC_Static)
3215 return false;
3216
3217 for (const DeclContext *DC = getDeclContext();
3218 DC->isNamespace();
3219 DC = DC->getParent()) {
3220 if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3221 if (!Namespace->getDeclName())
3222 return false;
3223 break;
3224 }
3225 }
3226
3227 return true;
3228}
3229
3230bool FunctionDecl::isNoReturn() const {
3231 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3232 hasAttr<C11NoReturnAttr>())
3233 return true;
3234
3235 if (auto *FnTy = getType()->getAs<FunctionType>())
3236 return FnTy->getNoReturnAttr();
3237
3238 return false;
3239}
3240
3241
3242MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3243 if (hasAttr<TargetAttr>())
3244 return MultiVersionKind::Target;
3245 if (hasAttr<CPUDispatchAttr>())
3246 return MultiVersionKind::CPUDispatch;
3247 if (hasAttr<CPUSpecificAttr>())
3248 return MultiVersionKind::CPUSpecific;
3249 return MultiVersionKind::None;
3250}
3251
3252bool FunctionDecl::isCPUDispatchMultiVersion() const {
3253 return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3254}
3255
3256bool FunctionDecl::isCPUSpecificMultiVersion() const {
3257 return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3258}
3259
3260bool FunctionDecl::isTargetMultiVersion() const {
3261 return isMultiVersion() && hasAttr<TargetAttr>();
3262}
3263
3264void
3265FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3266 redeclarable_base::setPreviousDecl(PrevDecl);
3267
3268 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3269 FunctionTemplateDecl *PrevFunTmpl
3270 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3271 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch")((void)0);
3272 FunTmpl->setPreviousDecl(PrevFunTmpl);
3273 }
3274
3275 if (PrevDecl && PrevDecl->isInlined())
3276 setImplicitlyInline(true);
3277}
3278
3279FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3280
3281/// Returns a value indicating whether this function corresponds to a builtin
3282/// function.
3283///
3284/// The function corresponds to a built-in function if it is declared at
3285/// translation scope or within an extern "C" block and its name matches with
3286/// the name of a builtin. The returned value will be 0 for functions that do
3287/// not correspond to a builtin, a value of type \c Builtin::ID if in the
3288/// target-independent range \c [1,Builtin::First), or a target-specific builtin
3289/// value.
3290///
3291/// \param ConsiderWrapperFunctions If true, we should consider wrapper
3292/// functions as their wrapped builtins. This shouldn't be done in general, but
3293/// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3294unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3295 unsigned BuiltinID = 0;
3296
3297 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3298 BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3299 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3300 BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3301 } else if (const auto *A = getAttr<BuiltinAttr>()) {
3302 BuiltinID = A->getID();
3303 }
3304
3305 if (!BuiltinID)
3306 return 0;
3307
3308 // If the function is marked "overloadable", it has a different mangled name
3309 // and is not the C library function.
3310 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3311 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3312 return 0;
3313
3314 ASTContext &Context = getASTContext();
3315 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3316 return BuiltinID;
3317
3318 // This function has the name of a known C library
3319 // function. Determine whether it actually refers to the C library
3320 // function or whether it just has the same name.
3321
3322 // If this is a static function, it's not a builtin.
3323 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3324 return 0;
3325
3326 // OpenCL v1.2 s6.9.f - The library functions defined in
3327 // the C99 standard headers are not available.
3328 if (Context.getLangOpts().OpenCL &&
3329 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3330 return 0;
3331
3332 // CUDA does not have device-side standard library. printf and malloc are the
3333 // only special cases that are supported by device-side runtime.
3334 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3335 !hasAttr<CUDAHostAttr>() &&
3336 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3337 return 0;
3338
3339 // As AMDGCN implementation of OpenMP does not have a device-side standard
3340 // library, none of the predefined library functions except printf and malloc
3341 // should be treated as a builtin i.e. 0 should be returned for them.
3342 if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3343 Context.getLangOpts().OpenMPIsDevice &&
3344 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3345 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3346 return 0;
3347
3348 return BuiltinID;
3349}
3350
3351/// getNumParams - Return the number of parameters this function must have
3352/// based on its FunctionType. This is the length of the ParamInfo array
3353/// after it has been created.
3354unsigned FunctionDecl::getNumParams() const {
3355 const auto *FPT = getType()->getAs<FunctionProtoType>();
3356 return FPT ? FPT->getNumParams() : 0;
3357}
3358
3359void FunctionDecl::setParams(ASTContext &C,
3360 ArrayRef<ParmVarDecl *> NewParamInfo) {
3361 assert(!ParamInfo && "Already has param info!")((void)0);
3362 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!")((void)0);
3363
3364 // Zero params -> null pointer.
3365 if (!NewParamInfo.empty()) {
3366 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3367 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3368 }
3369}
3370
3371/// getMinRequiredArguments - Returns the minimum number of arguments
3372/// needed to call this function. This may be fewer than the number of
3373/// function parameters, if some of the parameters have default
3374/// arguments (in C++) or are parameter packs (C++11).
3375unsigned FunctionDecl::getMinRequiredArguments() const {
3376 if (!getASTContext().getLangOpts().CPlusPlus)
3377 return getNumParams();
3378
3379 // Note that it is possible for a parameter with no default argument to
3380 // follow a parameter with a default argument.
3381 unsigned NumRequiredArgs = 0;
3382 unsigned MinParamsSoFar = 0;
3383 for (auto *Param : parameters()) {
3384 if (!Param->isParameterPack()) {
3385 ++MinParamsSoFar;
3386 if (!Param->hasDefaultArg())
3387 NumRequiredArgs = MinParamsSoFar;
3388 }
3389 }
3390 return NumRequiredArgs;
3391}
3392
3393bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3394 return getNumParams() == 1 ||
3395 (getNumParams() > 1 &&
3396 std::all_of(param_begin() + 1, param_end(),
3397 [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3398}
3399
3400/// The combination of the extern and inline keywords under MSVC forces
3401/// the function to be required.
3402///
3403/// Note: This function assumes that we will only get called when isInlined()
3404/// would return true for this FunctionDecl.
3405bool FunctionDecl::isMSExternInline() const {
3406 assert(isInlined() && "expected to get called on an inlined function!")((void)0);
3407
3408 const ASTContext &Context = getASTContext();
3409 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3410 !hasAttr<DLLExportAttr>())
3411 return false;
3412
3413 for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3414 FD = FD->getPreviousDecl())
3415 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3416 return true;
3417
3418 return false;
3419}
3420
3421static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3422 if (Redecl->getStorageClass() != SC_Extern)
3423 return false;
3424
3425 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3426 FD = FD->getPreviousDecl())
3427 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3428 return false;
3429
3430 return true;
3431}
3432
3433static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3434 // Only consider file-scope declarations in this test.
3435 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3436 return false;
3437
3438 // Only consider explicit declarations; the presence of a builtin for a
3439 // libcall shouldn't affect whether a definition is externally visible.
3440 if (Redecl->isImplicit())
3441 return false;
3442
3443 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3444 return true; // Not an inline definition
3445
3446 return false;
3447}
3448
3449/// For a function declaration in C or C++, determine whether this
3450/// declaration causes the definition to be externally visible.
3451///
3452/// For instance, this determines if adding the current declaration to the set
3453/// of redeclarations of the given functions causes
3454/// isInlineDefinitionExternallyVisible to change from false to true.
3455bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3456 assert(!doesThisDeclarationHaveABody() &&((void)0)
3457 "Must have a declaration without a body.")((void)0);
3458
3459 ASTContext &Context = getASTContext();
3460
3461 if (Context.getLangOpts().MSVCCompat) {
3462 const FunctionDecl *Definition;
3463 if (hasBody(Definition) && Definition->isInlined() &&
3464 redeclForcesDefMSVC(this))
3465 return true;
3466 }
3467
3468 if (Context.getLangOpts().CPlusPlus)
3469 return false;
3470
3471 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3472 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3473 // an externally visible definition.
3474 //
3475 // FIXME: What happens if gnu_inline gets added on after the first
3476 // declaration?
3477 if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3478 return false;
3479
3480 const FunctionDecl *Prev = this;
3481 bool FoundBody = false;
3482 while ((Prev = Prev->getPreviousDecl())) {
3483 FoundBody |= Prev->doesThisDeclarationHaveABody();
3484
3485 if (Prev->doesThisDeclarationHaveABody()) {
3486 // If it's not the case that both 'inline' and 'extern' are
3487 // specified on the definition, then it is always externally visible.
3488 if (!Prev->isInlineSpecified() ||
3489 Prev->getStorageClass() != SC_Extern)
3490 return false;
3491 } else if (Prev->isInlineSpecified() &&
3492 Prev->getStorageClass() != SC_Extern) {
3493 return false;
3494 }
3495 }
3496 return FoundBody;
3497 }
3498
3499 // C99 6.7.4p6:
3500 // [...] If all of the file scope declarations for a function in a
3501 // translation unit include the inline function specifier without extern,
3502 // then the definition in that translation unit is an inline definition.
3503 if (isInlineSpecified() && getStorageClass() != SC_Extern)
3504 return false;
3505 const FunctionDecl *Prev = this;
3506 bool FoundBody = false;
3507 while ((Prev = Prev->getPreviousDecl())) {
3508 FoundBody |= Prev->doesThisDeclarationHaveABody();
3509 if (RedeclForcesDefC99(Prev))
3510 return false;
3511 }
3512 return FoundBody;
3513}
3514
3515FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3516 const TypeSourceInfo *TSI = getTypeSourceInfo();
3517 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3518 : FunctionTypeLoc();
3519}
3520
3521SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3522 FunctionTypeLoc FTL = getFunctionTypeLoc();
3523 if (!FTL)
3524 return SourceRange();
3525
3526 // Skip self-referential return types.
3527 const SourceManager &SM = getASTContext().getSourceManager();
3528 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3529 SourceLocation Boundary = getNameInfo().getBeginLoc();
3530 if (RTRange.isInvalid() || Boundary.isInvalid() ||
3531 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3532 return SourceRange();
3533
3534 return RTRange;
3535}
3536
3537SourceRange FunctionDecl::getParametersSourceRange() const {
3538 unsigned NP = getNumParams();
3539 SourceLocation EllipsisLoc = getEllipsisLoc();
3540
3541 if (NP == 0 && EllipsisLoc.isInvalid())
3542 return SourceRange();
3543
3544 SourceLocation Begin =
3545 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3546 SourceLocation End = EllipsisLoc.isValid()
3547 ? EllipsisLoc
3548 : ParamInfo[NP - 1]->getSourceRange().getEnd();
3549
3550 return SourceRange(Begin, End);
3551}
3552
3553SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3554 FunctionTypeLoc FTL = getFunctionTypeLoc();
3555 return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3556}
3557
3558/// For an inline function definition in C, or for a gnu_inline function
3559/// in C++, determine whether the definition will be externally visible.
3560///
3561/// Inline function definitions are always available for inlining optimizations.
3562/// However, depending on the language dialect, declaration specifiers, and
3563/// attributes, the definition of an inline function may or may not be
3564/// "externally" visible to other translation units in the program.
3565///
3566/// In C99, inline definitions are not externally visible by default. However,
3567/// if even one of the global-scope declarations is marked "extern inline", the
3568/// inline definition becomes externally visible (C99 6.7.4p6).
3569///
3570/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3571/// definition, we use the GNU semantics for inline, which are nearly the
3572/// opposite of C99 semantics. In particular, "inline" by itself will create
3573/// an externally visible symbol, but "extern inline" will not create an
3574/// externally visible symbol.
3575bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3576 assert((doesThisDeclarationHaveABody() || willHaveBody() ||((void)0)
3577 hasAttr<AliasAttr>()) &&((void)0)
3578 "Must be a function definition")((void)0);
3579 assert(isInlined() && "Function must be inline")((void)0);
3580 ASTContext &Context = getASTContext();
3581
3582 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3583 // Note: If you change the logic here, please change
3584 // doesDeclarationForceExternallyVisibleDefinition as well.
3585 //
3586 // If it's not the case that both 'inline' and 'extern' are
3587 // specified on the definition, then this inline definition is
3588 // externally visible.
3589 if (Context.getLangOpts().CPlusPlus)
3590 return false;
3591 if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3592 return true;
3593
3594 // If any declaration is 'inline' but not 'extern', then this definition
3595 // is externally visible.
3596 for (auto Redecl : redecls()) {
3597 if (Redecl->isInlineSpecified() &&
3598 Redecl->getStorageClass() != SC_Extern)
3599 return true;
3600 }
3601
3602 return false;
3603 }
3604
3605 // The rest of this function is C-only.
3606 assert(!Context.getLangOpts().CPlusPlus &&((void)0)
3607 "should not use C inline rules in C++")((void)0);
3608
3609 // C99 6.7.4p6:
3610 // [...] If all of the file scope declarations for a function in a
3611 // translation unit include the inline function specifier without extern,
3612 // then the definition in that translation unit is an inline definition.
3613 for (auto Redecl : redecls()) {
3614 if (RedeclForcesDefC99(Redecl))
3615 return true;
3616 }
3617
3618 // C99 6.7.4p6:
3619 // An inline definition does not provide an external definition for the
3620 // function, and does not forbid an external definition in another
3621 // translation unit.
3622 return false;
3623}
3624
3625/// getOverloadedOperator - Which C++ overloaded operator this
3626/// function represents, if any.
3627OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3628 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3629 return getDeclName().getCXXOverloadedOperator();
3630 return OO_None;
3631}
3632
3633/// getLiteralIdentifier - The literal suffix identifier this function
3634/// represents, if any.
3635const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3636 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3637 return getDeclName().getCXXLiteralIdentifier();
3638 return nullptr;
3639}
3640
3641FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3642 if (TemplateOrSpecialization.isNull())
3643 return TK_NonTemplate;
3644 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3645 return TK_FunctionTemplate;
3646 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3647 return TK_MemberSpecialization;
3648 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3649 return TK_FunctionTemplateSpecialization;
3650 if (TemplateOrSpecialization.is
3651 <DependentFunctionTemplateSpecializationInfo*>())
3652 return TK_DependentFunctionTemplateSpecialization;
3653
3654 llvm_unreachable("Did we miss a TemplateOrSpecialization type?")__builtin_unreachable();
3655}
3656
3657FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3658 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3659 return cast<FunctionDecl>(Info->getInstantiatedFrom());
3660
3661 return nullptr;
3662}
3663
3664MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3665 if (auto *MSI =
3666 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3667 return MSI;
3668 if (auto *FTSI = TemplateOrSpecialization
3669 .dyn_cast<FunctionTemplateSpecializationInfo *>())
3670 return FTSI->getMemberSpecializationInfo();
3671 return nullptr;
3672}
3673
3674void
3675FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3676 FunctionDecl *FD,
3677 TemplateSpecializationKind TSK) {
3678 assert(TemplateOrSpecialization.isNull() &&((void)0)
3679 "Member function is already a specialization")((void)0);
3680 MemberSpecializationInfo *Info
3681 = new (C) MemberSpecializationInfo(FD, TSK);
3682 TemplateOrSpecialization = Info;
3683}
3684
3685FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3686 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3687}
3688
3689void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3690 assert(TemplateOrSpecialization.isNull() &&((void)0)
3691 "Member function is already a specialization")((void)0);
3692 TemplateOrSpecialization = Template;
3693}
3694
3695bool FunctionDecl::isImplicitlyInstantiable() const {
3696 // If the function is invalid, it can't be implicitly instantiated.
3697 if (isInvalidDecl())
3698 return false;
3699
3700 switch (getTemplateSpecializationKindForInstantiation()) {
3701 case TSK_Undeclared:
3702 case TSK_ExplicitInstantiationDefinition:
3703 case TSK_ExplicitSpecialization:
3704 return false;
3705
3706 case TSK_ImplicitInstantiation:
3707 return true;
3708
3709 case TSK_ExplicitInstantiationDeclaration:
3710 // Handled below.
3711 break;
3712 }
3713
3714 // Find the actual template from which we will instantiate.
3715 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3716 bool HasPattern = false;
3717 if (PatternDecl)
3718 HasPattern = PatternDecl->hasBody(PatternDecl);
3719
3720 // C++0x [temp.explicit]p9:
3721 // Except for inline functions, other explicit instantiation declarations
3722 // have the effect of suppressing the implicit instantiation of the entity
3723 // to which they refer.
3724 if (!HasPattern || !PatternDecl)
3725 return true;
3726
3727 return PatternDecl->isInlined();
3728}
3729
3730bool FunctionDecl::isTemplateInstantiation() const {
3731 // FIXME: Remove this, it's not clear what it means. (Which template
3732 // specialization kind?)
3733 return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3734}
3735
3736FunctionDecl *
3737FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3738 // If this is a generic lambda call operator specialization, its
3739 // instantiation pattern is always its primary template's pattern
3740 // even if its primary template was instantiated from another
3741 // member template (which happens with nested generic lambdas).
3742 // Since a lambda's call operator's body is transformed eagerly,
3743 // we don't have to go hunting for a prototype definition template
3744 // (i.e. instantiated-from-member-template) to use as an instantiation
3745 // pattern.
3746
3747 if (isGenericLambdaCallOperatorSpecialization(
3748 dyn_cast<CXXMethodDecl>(this))) {
3749 assert(getPrimaryTemplate() && "not a generic lambda call operator?")((void)0);
3750 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3751 }
3752
3753 // Check for a declaration of this function that was instantiated from a
3754 // friend definition.
3755 const FunctionDecl *FD = nullptr;
3756 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
3757 FD = this;
3758
3759 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
3760 if (ForDefinition &&
3761 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3762 return nullptr;
3763 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3764 }
3765
3766 if (ForDefinition &&
3767 !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3768 return nullptr;
3769
3770 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3771 // If we hit a point where the user provided a specialization of this
3772 // template, we're done looking.
3773 while (!ForDefinition || !Primary->isMemberSpecialization()) {
3774 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3775 if (!NewPrimary)
3776 break;
3777 Primary = NewPrimary;
3778 }
3779
3780 return getDefinitionOrSelf(Primary->getTemplatedDecl());
3781 }
3782
3783 return nullptr;
3784}
3785
3786FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3787 if (FunctionTemplateSpecializationInfo *Info
3788 = TemplateOrSpecialization
3789 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3790 return Info->getTemplate();
3791 }
3792 return nullptr;
3793}
3794
3795FunctionTemplateSpecializationInfo *
3796FunctionDecl::getTemplateSpecializationInfo() const {
3797 return TemplateOrSpecialization
3798 .dyn_cast<FunctionTemplateSpecializationInfo *>();
3799}
3800
3801const TemplateArgumentList *
3802FunctionDecl::getTemplateSpecializationArgs() const {
3803 if (FunctionTemplateSpecializationInfo *Info
3804 = TemplateOrSpecialization
3805 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3806 return Info->TemplateArguments;
3807 }
3808 return nullptr;
3809}
3810
3811const ASTTemplateArgumentListInfo *
3812FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3813 if (FunctionTemplateSpecializationInfo *Info
3814 = TemplateOrSpecialization
3815 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3816 return Info->TemplateArgumentsAsWritten;
3817 }
3818 return nullptr;
3819}
3820
3821void
3822FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3823 FunctionTemplateDecl *Template,
3824 const TemplateArgumentList *TemplateArgs,
3825 void *InsertPos,
3826 TemplateSpecializationKind TSK,
3827 const TemplateArgumentListInfo *TemplateArgsAsWritten,
3828 SourceLocation PointOfInstantiation) {
3829 assert((TemplateOrSpecialization.isNull() ||((void)0)
3830 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&((void)0)
3831 "Member function is already a specialization")((void)0);
3832 assert(TSK != TSK_Undeclared &&((void)0)
3833 "Must specify the type of function template specialization")((void)0);
3834 assert((TemplateOrSpecialization.isNull() ||((void)0)
3835 TSK == TSK_ExplicitSpecialization) &&((void)0)
3836 "Member specialization must be an explicit specialization")((void)0);
3837 FunctionTemplateSpecializationInfo *Info =
3838 FunctionTemplateSpecializationInfo::Create(
3839 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3840 PointOfInstantiation,
3841 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3842 TemplateOrSpecialization = Info;
3843 Template->addSpecialization(Info, InsertPos);
3844}
3845
3846void
3847FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3848 const UnresolvedSetImpl &Templates,
3849 const TemplateArgumentListInfo &TemplateArgs) {
3850 assert(TemplateOrSpecialization.isNull())((void)0);
3851 DependentFunctionTemplateSpecializationInfo *Info =
3852 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
1
Calling 'DependentFunctionTemplateSpecializationInfo::Create'
3853 TemplateArgs);
3854 TemplateOrSpecialization = Info;
3855}
3856
3857DependentFunctionTemplateSpecializationInfo *
3858FunctionDecl::getDependentSpecializationInfo() const {
3859 return TemplateOrSpecialization
3860 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3861}
3862
3863DependentFunctionTemplateSpecializationInfo *
3864DependentFunctionTemplateSpecializationInfo::Create(
3865 ASTContext &Context, const UnresolvedSetImpl &Ts,
3866 const TemplateArgumentListInfo &TArgs) {
3867 void *Buffer = Context.Allocate(
3868 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3869 TArgs.size(), Ts.size()));
3870 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
2
Calling constructor for 'DependentFunctionTemplateSpecializationInfo'
3871}
3872
3873DependentFunctionTemplateSpecializationInfo::
3874DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3875 const TemplateArgumentListInfo &TArgs)
3876 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3877 NumTemplates = Ts.size();
3878 NumArgs = TArgs.size();
3879
3880 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3881 for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3
Assuming 'I' is equal to 'E'
4
Loop condition is false. Execution continues on line 3884
3882 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3883
3884 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
5
Calling 'TrailingObjects::getTrailingObjects'
14
Returning from 'TrailingObjects::getTrailingObjects'
15
'ArgsArray' initialized here
3885 for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
16
Assuming 'I' is not equal to 'E'
17
Loop condition is true. Entering loop body
3886 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
18
Storage provided to placement new is only 0 bytes, whereas the allocated type requires 32 bytes
3887}
3888
3889TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3890 // For a function template specialization, query the specialization
3891 // information object.
3892 if (FunctionTemplateSpecializationInfo *FTSInfo =
3893 TemplateOrSpecialization
3894 .dyn_cast<FunctionTemplateSpecializationInfo *>())
3895 return FTSInfo->getTemplateSpecializationKind();
3896
3897 if (MemberSpecializationInfo *MSInfo =
3898 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3899 return MSInfo->getTemplateSpecializationKind();
3900
3901 return TSK_Undeclared;
3902}
3903
3904TemplateSpecializationKind
3905FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3906 // This is the same as getTemplateSpecializationKind(), except that for a
3907 // function that is both a function template specialization and a member
3908 // specialization, we prefer the member specialization information. Eg:
3909 //
3910 // template<typename T> struct A {
3911 // template<typename U> void f() {}
3912 // template<> void f<int>() {}
3913 // };
3914 //
3915 // For A<int>::f<int>():
3916 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3917 // * getTemplateSpecializationKindForInstantiation() will return
3918 // TSK_ImplicitInstantiation
3919 //
3920 // This reflects the facts that A<int>::f<int> is an explicit specialization
3921 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3922 // from A::f<int> if a definition is needed.
3923 if (FunctionTemplateSpecializationInfo *FTSInfo =
3924 TemplateOrSpecialization
3925 .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3926 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3927 return MSInfo->getTemplateSpecializationKind();
3928 return FTSInfo->getTemplateSpecializationKind();
3929 }
3930
3931 if (MemberSpecializationInfo *MSInfo =
3932 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3933 return MSInfo->getTemplateSpecializationKind();
3934
3935 return TSK_Undeclared;
3936}
3937
3938void
3939FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3940 SourceLocation PointOfInstantiation) {
3941 if (FunctionTemplateSpecializationInfo *FTSInfo
3942 = TemplateOrSpecialization.dyn_cast<
3943 FunctionTemplateSpecializationInfo*>()) {
3944 FTSInfo->setTemplateSpecializationKind(TSK);
3945 if (TSK != TSK_ExplicitSpecialization &&
3946 PointOfInstantiation.isValid() &&
3947 FTSInfo->getPointOfInstantiation().isInvalid()) {
3948 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3949 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3950 L->InstantiationRequested(this);
3951 }
3952 } else if (MemberSpecializationInfo *MSInfo
3953 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3954 MSInfo->setTemplateSpecializationKind(TSK);
3955 if (TSK != TSK_ExplicitSpecialization &&
3956 PointOfInstantiation.isValid() &&
3957 MSInfo->getPointOfInstantiation().isInvalid()) {
3958 MSInfo->setPointOfInstantiation(PointOfInstantiation);
3959 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3960 L->InstantiationRequested(this);
3961 }
3962 } else
3963 llvm_unreachable("Function cannot have a template specialization kind")__builtin_unreachable();
3964}
3965
3966SourceLocation FunctionDecl::getPointOfInstantiation() const {
3967 if (FunctionTemplateSpecializationInfo *FTSInfo
3968 = TemplateOrSpecialization.dyn_cast<
3969 FunctionTemplateSpecializationInfo*>())
3970 return FTSInfo->getPointOfInstantiation();
3971 if (MemberSpecializationInfo *MSInfo =
3972 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3973 return MSInfo->getPointOfInstantiation();
3974
3975 return SourceLocation();
3976}
3977
3978bool FunctionDecl::isOutOfLine() const {
3979 if (Decl::isOutOfLine())
3980 return true;
3981
3982 // If this function was instantiated from a member function of a
3983 // class template, check whether that member function was defined out-of-line.
3984 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3985 const FunctionDecl *Definition;
3986 if (FD->hasBody(Definition))
3987 return Definition->isOutOfLine();
3988 }
3989
3990 // If this function was instantiated from a function template,
3991 // check whether that function template was defined out-of-line.
3992 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3993 const FunctionDecl *Definition;
3994 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3995 return Definition->isOutOfLine();
3996 }
3997
3998 return false;
3999}
4000
4001SourceRange FunctionDecl::getSourceRange() const {
4002 return SourceRange(getOuterLocStart(), EndRangeLoc);
4003}
4004
4005unsigned FunctionDecl::getMemoryFunctionKind() const {
4006 IdentifierInfo *FnInfo = getIdentifier();
4007
4008 if (!FnInfo)
4009 return 0;
4010
4011 // Builtin handling.
4012 switch (getBuiltinID()) {
4013 case Builtin::BI__builtin_memset:
4014 case Builtin::BI__builtin___memset_chk:
4015 case Builtin::BImemset:
4016 return Builtin::BImemset;
4017
4018 case Builtin::BI__builtin_memcpy:
4019 case Builtin::BI__builtin___memcpy_chk:
4020 case Builtin::BImemcpy:
4021 return Builtin::BImemcpy;
4022
4023 case Builtin::BI__builtin_mempcpy:
4024 case Builtin::BI__builtin___mempcpy_chk:
4025 case Builtin::BImempcpy:
4026 return Builtin::BImempcpy;
4027
4028 case Builtin::BI__builtin_memmove:
4029 case Builtin::BI__builtin___memmove_chk:
4030 case Builtin::BImemmove:
4031 return Builtin::BImemmove;
4032
4033 case Builtin::BIstrlcpy:
4034 case Builtin::BI__builtin___strlcpy_chk:
4035 return Builtin::BIstrlcpy;
4036
4037 case Builtin::BIstrlcat:
4038 case Builtin::BI__builtin___strlcat_chk:
4039 return Builtin::BIstrlcat;
4040
4041 case Builtin::BI__builtin_memcmp:
4042 case Builtin::BImemcmp:
4043 return Builtin::BImemcmp;
4044
4045 case Builtin::BI__builtin_bcmp:
4046 case Builtin::BIbcmp:
4047 return Builtin::BIbcmp;
4048
4049 case Builtin::BI__builtin_strncpy:
4050 case Builtin::BI__builtin___strncpy_chk:
4051 case Builtin::BIstrncpy:
4052 return Builtin::BIstrncpy;
4053
4054 case Builtin::BI__builtin_strncmp:
4055 case Builtin::BIstrncmp:
4056 return Builtin::BIstrncmp;
4057
4058 case Builtin::BI__builtin_strncasecmp:
4059 case Builtin::BIstrncasecmp:
4060 return Builtin::BIstrncasecmp;
4061
4062 case Builtin::BI__builtin_strncat:
4063 case Builtin::BI__builtin___strncat_chk:
4064 case Builtin::BIstrncat:
4065 return Builtin::BIstrncat;
4066
4067 case Builtin::BI__builtin_strndup:
4068 case Builtin::BIstrndup:
4069 return Builtin::BIstrndup;
4070
4071 case Builtin::BI__builtin_strlen:
4072 case Builtin::BIstrlen:
4073 return Builtin::BIstrlen;
4074
4075 case Builtin::BI__builtin_bzero:
4076 case Builtin::BIbzero:
4077 return Builtin::BIbzero;
4078
4079 case Builtin::BIfree:
4080 return Builtin::BIfree;
4081
4082 default:
4083 if (isExternC()) {
4084 if (FnInfo->isStr("memset"))
4085 return Builtin::BImemset;
4086 if (FnInfo->isStr("memcpy"))
4087 return Builtin::BImemcpy;
4088 if (FnInfo->isStr("mempcpy"))
4089 return Builtin::BImempcpy;
4090 if (FnInfo->isStr("memmove"))
4091 return Builtin::BImemmove;
4092 if (FnInfo->isStr("memcmp"))
4093 return Builtin::BImemcmp;
4094 if (FnInfo->isStr("bcmp"))
4095 return Builtin::BIbcmp;
4096 if (FnInfo->isStr("strncpy"))
4097 return Builtin::BIstrncpy;
4098 if (FnInfo->isStr("strncmp"))
4099 return Builtin::BIstrncmp;
4100 if (FnInfo->isStr("strncasecmp"))
4101 return Builtin::BIstrncasecmp;
4102 if (FnInfo->isStr("strncat"))
4103 return Builtin::BIstrncat;
4104 if (FnInfo->isStr("strndup"))
4105 return Builtin::BIstrndup;
4106 if (FnInfo->isStr("strlen"))
4107 return Builtin::BIstrlen;
4108 if (FnInfo->isStr("bzero"))
4109 return Builtin::BIbzero;
4110 } else if (isInStdNamespace()) {
4111 if (FnInfo->isStr("free"))
4112 return Builtin::BIfree;
4113 }
4114 break;
4115 }
4116 return 0;
4117}
4118
4119unsigned FunctionDecl::getODRHash() const {
4120 assert(hasODRHash())((void)0);
4121 return ODRHash;
4122}
4123
4124unsigned FunctionDecl::getODRHash() {
4125 if (hasODRHash())
4126 return ODRHash;
4127
4128 if (auto *FT = getInstantiatedFromMemberFunction()) {
4129 setHasODRHash(true);
4130 ODRHash = FT->getODRHash();
4131 return ODRHash;
4132 }
4133
4134 class ODRHash Hash;
4135 Hash.AddFunctionDecl(this);
4136 setHasODRHash(true);
4137 ODRHash = Hash.CalculateHash();
4138 return ODRHash;
4139}
4140
4141//===----------------------------------------------------------------------===//
4142// FieldDecl Implementation
4143//===----------------------------------------------------------------------===//
4144
4145FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4146 SourceLocation StartLoc, SourceLocation IdLoc,
4147 IdentifierInfo *Id, QualType T,
4148 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4149 InClassInitStyle InitStyle) {
4150 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4151 BW, Mutable, InitStyle);
4152}
4153
4154FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4155 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4156 SourceLocation(), nullptr, QualType(), nullptr,
4157 nullptr, false, ICIS_NoInit);
4158}
4159
4160bool FieldDecl::isAnonymousStructOrUnion() const {
4161 if (!isImplicit() || getDeclName())
4162 return false;
4163
4164 if (const auto *Record = getType()->getAs<RecordType>())
4165 return Record->getDecl()->isAnonymousStructOrUnion();
4166
4167 return false;
4168}
4169
4170unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4171 assert(isBitField() && "not a bitfield")((void)0);
4172 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4173}
4174
4175bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4176 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4177 getBitWidthValue(Ctx) == 0;
4178}
4179
4180bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4181 if (isZeroLengthBitField(Ctx))
4182 return true;
4183
4184 // C++2a [intro.object]p7:
4185 // An object has nonzero size if it
4186 // -- is not a potentially-overlapping subobject, or
4187 if (!hasAttr<NoUniqueAddressAttr>())
4188 return false;
4189
4190 // -- is not of class type, or
4191 const auto *RT = getType()->getAs<RecordType>();
4192 if (!RT)
4193 return false;
4194 const RecordDecl *RD = RT->getDecl()->getDefinition();
4195 if (!RD) {
4196 assert(isInvalidDecl() && "valid field has incomplete type")((void)0);
4197 return false;
4198 }
4199
4200 // -- [has] virtual member functions or virtual base classes, or
4201 // -- has subobjects of nonzero size or bit-fields of nonzero length
4202 const auto *CXXRD = cast<CXXRecordDecl>(RD);
4203 if (!CXXRD->isEmpty())
4204 return false;
4205
4206 // Otherwise, [...] the circumstances under which the object has zero size
4207 // are implementation-defined.
4208 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4209 // ABI will do.
4210 return true;
4211}
4212
4213unsigned FieldDecl::getFieldIndex() const {
4214 const FieldDecl *Canonical = getCanonicalDecl();
4215 if (Canonical != this)
4216 return Canonical->getFieldIndex();
4217
4218 if (CachedFieldIndex) return CachedFieldIndex - 1;
4219
4220 unsigned Index = 0;
4221 const RecordDecl *RD = getParent()->getDefinition();
4222 assert(RD && "requested index for field of struct with no definition")((void)0);
4223
4224 for (auto *Field : RD->fields()) {
4225 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4226 ++Index;
4227 }
4228
4229 assert(CachedFieldIndex && "failed to find field in parent")((void)0);
4230 return CachedFieldIndex - 1;
4231}
4232
4233SourceRange FieldDecl::getSourceRange() const {
4234 const Expr *FinalExpr = getInClassInitializer();
4235 if (!FinalExpr)
4236 FinalExpr = getBitWidth();
4237 if (FinalExpr)
4238 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4239 return DeclaratorDecl::getSourceRange();
4240}
4241
4242void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4243 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&((void)0)
4244 "capturing type in non-lambda or captured record.")((void)0);
4245 assert(InitStorage.getInt() == ISK_NoInit &&((void)0)
4246 InitStorage.getPointer() == nullptr &&((void)0)
4247 "bit width, initializer or captured type already set")((void)0);
4248 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4249 ISK_CapturedVLAType);
4250}
4251
4252//===----------------------------------------------------------------------===//
4253// TagDecl Implementation
4254//===----------------------------------------------------------------------===//
4255
4256TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4257 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4258 SourceLocation StartL)
4259 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4260 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4261 assert((DK != Enum || TK == TTK_Enum) &&((void)0)
4262 "EnumDecl not matched with TTK_Enum")((void)0);
4263 setPreviousDecl(PrevDecl);
4264 setTagKind(TK);
4265 setCompleteDefinition(false);
4266 setBeingDefined(false);
4267 setEmbeddedInDeclarator(false);
4268 setFreeStanding(false);
4269 setCompleteDefinitionRequired(false);
4270}
4271
4272SourceLocation TagDecl::getOuterLocStart() const {
4273 return getTemplateOrInnerLocStart(this);
4274}
4275
4276SourceRange TagDecl::getSourceRange() const {
4277 SourceLocation RBraceLoc = BraceRange.getEnd();
4278 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4279 return SourceRange(getOuterLocStart(), E);
4280}
4281
4282TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4283
4284void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4285 TypedefNameDeclOrQualifier = TDD;
4286 if (const Type *T = getTypeForDecl()) {
4287 (void)T;
4288 assert(T->isLinkageValid())((void)0);
4289 }
4290 assert(isLinkageValid())((void)0);
4291}
4292
4293void TagDecl::startDefinition() {
4294 setBeingDefined(true);
4295
4296 if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4297 struct CXXRecordDecl::DefinitionData *Data =
4298 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4299 for (auto I : redecls())
4300 cast<CXXRecordDecl>(I)->DefinitionData = Data;
4301 }
4302}
4303
4304void TagDecl::completeDefinition() {
4305 assert((!isa<CXXRecordDecl>(this) ||((void)0)
4306 cast<CXXRecordDecl>(this)->hasDefinition()) &&((void)0)
4307 "definition completed but not started")((void)0);
4308
4309 setCompleteDefinition(true);
4310 setBeingDefined(false);
4311
4312 if (ASTMutationListener *L = getASTMutationListener())
4313 L->CompletedTagDefinition(this);
4314}
4315
4316TagDecl *TagDecl::getDefinition() const {
4317 if (isCompleteDefinition())
4318 return const_cast<TagDecl *>(this);
4319
4320 // If it's possible for us to have an out-of-date definition, check now.
4321 if (mayHaveOutOfDateDef()) {
4322 if (IdentifierInfo *II = getIdentifier()) {
4323 if (II->isOutOfDate()) {
4324 updateOutOfDate(*II);
4325 }
4326 }
4327 }
4328
4329 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4330 return CXXRD->getDefinition();
4331
4332 for (auto R : redecls())
4333 if (R->isCompleteDefinition())
4334 return R;
4335
4336 return nullptr;
4337}
4338
4339void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4340 if (QualifierLoc) {
4341 // Make sure the extended qualifier info is allocated.
4342 if (!hasExtInfo())
4343 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4344 // Set qualifier info.
4345 getExtInfo()->QualifierLoc = QualifierLoc;
4346 } else {
4347 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4348 if (hasExtInfo()) {
4349 if (getExtInfo()->NumTemplParamLists == 0) {
4350 getASTContext().Deallocate(getExtInfo());
4351 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4352 }
4353 else
4354 getExtInfo()->QualifierLoc = QualifierLoc;
4355 }
4356 }
4357}
4358
4359void TagDecl::setTemplateParameterListsInfo(
4360 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4361 assert(!TPLists.empty())((void)0);
4362 // Make sure the extended decl info is allocated.
4363 if (!hasExtInfo())
4364 // Allocate external info struct.
4365 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4366 // Set the template parameter lists info.
4367 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4368}
4369
4370//===----------------------------------------------------------------------===//
4371// EnumDecl Implementation
4372//===----------------------------------------------------------------------===//
4373
4374EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4375 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4376 bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4377 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4378 assert(Scoped || !ScopedUsingClassTag)((void)0);
4379 IntegerType = nullptr;
4380 setNumPositiveBits(0);
4381 setNumNegativeBits(0);
4382 setScoped(Scoped);
4383 setScopedUsingClassTag(ScopedUsingClassTag);
4384 setFixed(Fixed);
4385 setHasODRHash(false);
4386 ODRHash = 0;
4387}
4388
4389void EnumDecl::anchor() {}
4390
4391EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4392 SourceLocation StartLoc, SourceLocation IdLoc,
4393 IdentifierInfo *Id,
4394 EnumDecl *PrevDecl, bool IsScoped,
4395 bool IsScopedUsingClassTag, bool IsFixed) {
4396 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4397 IsScoped, IsScopedUsingClassTag, IsFixed);
4398 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4399 C.getTypeDeclType(Enum, PrevDecl);
4400 return Enum;
4401}
4402
4403EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4404 EnumDecl *Enum =
4405 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4406 nullptr, nullptr, false, false, false);
4407 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4408 return Enum;
4409}
4410
4411SourceRange EnumDecl::getIntegerTypeRange() const {
4412 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4413 return TI->getTypeLoc().getSourceRange();
4414 return SourceRange();
4415}
4416
4417void EnumDecl::completeDefinition(QualType NewType,
4418 QualType NewPromotionType,
4419 unsigned NumPositiveBits,
4420 unsigned NumNegativeBits) {
4421 assert(!isCompleteDefinition() && "Cannot redefine enums!")((void)0);
4422 if (!IntegerType)
4423 IntegerType = NewType.getTypePtr();
4424 PromotionType = NewPromotionType;
4425 setNumPositiveBits(NumPositiveBits);
4426 setNumNegativeBits(NumNegativeBits);
4427 TagDecl::completeDefinition();
4428}
4429
4430bool EnumDecl::isClosed() const {
4431 if (const auto *A = getAttr<EnumExtensibilityAttr>())
4432 return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4433 return true;
4434}
4435
4436bool EnumDecl::isClosedFlag() const {
4437 return isClosed() && hasAttr<FlagEnumAttr>();
4438}
4439
4440bool EnumDecl::isClosedNonFlag() const {
4441 return isClosed() && !hasAttr<FlagEnumAttr>();
4442}
4443
4444TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4445 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4446 return MSI->getTemplateSpecializationKind();
4447
4448 return TSK_Undeclared;
4449}
4450
4451void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4452 SourceLocation PointOfInstantiation) {
4453 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4454 assert(MSI && "Not an instantiated member enumeration?")((void)0);
4455 MSI->setTemplateSpecializationKind(TSK);
4456 if (TSK != TSK_ExplicitSpecialization &&
4457 PointOfInstantiation.isValid() &&
4458 MSI->getPointOfInstantiation().isInvalid())
4459 MSI->setPointOfInstantiation(PointOfInstantiation);
4460}
4461
4462EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4463 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4464 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4465 EnumDecl *ED = getInstantiatedFromMemberEnum();
4466 while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4467 ED = NewED;
4468 return getDefinitionOrSelf(ED);
4469 }
4470 }
4471
4472 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&((void)0)
4473 "couldn't find pattern for enum instantiation")((void)0);
4474 return nullptr;
4475}
4476
4477EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4478 if (SpecializationInfo)
4479 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4480
4481 return nullptr;
4482}
4483
4484void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4485 TemplateSpecializationKind TSK) {
4486 assert(!SpecializationInfo && "Member enum is already a specialization")((void)0);
4487 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4488}
4489
4490unsigned EnumDecl::getODRHash() {
4491 if (hasODRHash())
4492 return ODRHash;
4493
4494 class ODRHash Hash;
4495 Hash.AddEnumDecl(this);
4496 setHasODRHash(true);
4497 ODRHash = Hash.CalculateHash();
4498 return ODRHash;
4499}
4500
4501//===----------------------------------------------------------------------===//
4502// RecordDecl Implementation
4503//===----------------------------------------------------------------------===//
4504
4505RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4506 DeclContext *DC, SourceLocation StartLoc,
4507 SourceLocation IdLoc, IdentifierInfo *Id,
4508 RecordDecl *PrevDecl)
4509 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4510 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!")((void)0);
4511 setHasFlexibleArrayMember(false);
4512 setAnonymousStructOrUnion(false);
4513 setHasObjectMember(false);
4514 setHasVolatileMember(false);
4515 setHasLoadedFieldsFromExternalStorage(false);
4516 setNonTrivialToPrimitiveDefaultInitialize(false);
4517 setNonTrivialToPrimitiveCopy(false);
4518 setNonTrivialToPrimitiveDestroy(false);
4519 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4520 setHasNonTrivialToPrimitiveDestructCUnion(false);
4521 setHasNonTrivialToPrimitiveCopyCUnion(false);
4522 setParamDestroyedInCallee(false);
4523 setArgPassingRestrictions(APK_CanPassInRegs);
4524}
4525
4526RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4527 SourceLocation StartLoc, SourceLocation IdLoc,
4528 IdentifierInfo *Id, RecordDecl* PrevDecl) {
4529 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4530 StartLoc, IdLoc, Id, PrevDecl);
4531 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4532
4533 C.getTypeDeclType(R, PrevDecl);
4534 return R;
4535}
4536
4537RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4538 RecordDecl *R =
4539 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4540 SourceLocation(), nullptr, nullptr);
4541 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4542 return R;
4543}
4544
4545bool RecordDecl::isInjectedClassName() const {
4546 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4547 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4548}
4549
4550bool RecordDecl::isLambda() const {
4551 if (auto RD = dyn_cast<CXXRecordDecl>(this))
4552 return RD->isLambda();
4553 return false;
4554}
4555
4556bool RecordDecl::isCapturedRecord() const {
4557 return hasAttr<CapturedRecordAttr>();
4558}
4559
4560void RecordDecl::setCapturedRecord() {
4561 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4562}
4563
4564bool RecordDecl::isOrContainsUnion() const {
4565 if (isUnion())
4566 return true;
4567
4568 if (const RecordDecl *Def = getDefinition()) {
4569 for (const FieldDecl *FD : Def->fields()) {
4570 const RecordType *RT = FD->getType()->getAs<RecordType>();
4571 if (RT && RT->getDecl()->isOrContainsUnion())
4572 return true;
4573 }
4574 }
4575
4576 return false;
4577}
4578
4579RecordDecl::field_iterator RecordDecl::field_begin() const {
4580 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4581 LoadFieldsFromExternalStorage();
4582
4583 return field_iterator(decl_iterator(FirstDecl));
4584}
4585
4586/// completeDefinition - Notes that the definition of this type is now
4587/// complete.
4588void RecordDecl::completeDefinition() {
4589 assert(!isCompleteDefinition() && "Cannot redefine record!")((void)0);
4590 TagDecl::completeDefinition();
4591
4592 ASTContext &Ctx = getASTContext();
4593
4594 // Layouts are dumped when computed, so if we are dumping for all complete
4595 // types, we need to force usage to get types that wouldn't be used elsewhere.
4596 if (Ctx.getLangOpts().DumpRecordLayoutsComplete)
4597 (void)Ctx.getASTRecordLayout(this);
4598}
4599
4600/// isMsStruct - Get whether or not this record uses ms_struct layout.
4601/// This which can be turned on with an attribute, pragma, or the
4602/// -mms-bitfields command-line option.
4603bool RecordDecl::isMsStruct(const ASTContext &C) const {
4604 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4605}
4606
4607void RecordDecl::LoadFieldsFromExternalStorage() const {
4608 ExternalASTSource *Source = getASTContext().getExternalSource();
4609 assert(hasExternalLexicalStorage() && Source && "No external storage?")((void)0);
4610
4611 // Notify that we have a RecordDecl doing some initialization.
4612 ExternalASTSource::Deserializing TheFields(Source);
4613
4614 SmallVector<Decl*, 64> Decls;
4615 setHasLoadedFieldsFromExternalStorage(true);
4616 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4617 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4618 }, Decls);
4619
4620#ifndef NDEBUG1
4621 // Check that all decls we got were FieldDecls.
4622 for (unsigned i=0, e=Decls.size(); i != e; ++i)
4623 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]))((void)0);
4624#endif
4625
4626 if (Decls.empty())
4627 return;
4628
4629 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4630 /*FieldsAlreadyLoaded=*/false);
4631}
4632
4633bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4634 ASTContext &Context = getASTContext();
4635 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4636 (SanitizerKind::Address | SanitizerKind::KernelAddress);
4637 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4638 return false;
4639 const auto &NoSanitizeList = Context.getNoSanitizeList();
4640 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4641 // We may be able to relax some of these requirements.
4642 int ReasonToReject = -1;
4643 if (!CXXRD || CXXRD->isExternCContext())
4644 ReasonToReject = 0; // is not C++.
4645 else if (CXXRD->hasAttr<PackedAttr>())
4646 ReasonToReject = 1; // is packed.
4647 else if (CXXRD->isUnion())
4648 ReasonToReject = 2; // is a union.
4649 else if (CXXRD->isTriviallyCopyable())
4650 ReasonToReject = 3; // is trivially copyable.
4651 else if (CXXRD->hasTrivialDestructor())
4652 ReasonToReject = 4; // has trivial destructor.
4653 else if (CXXRD->isStandardLayout())
4654 ReasonToReject = 5; // is standard layout.
4655 else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(),
4656 "field-padding"))
4657 ReasonToReject = 6; // is in an excluded file.
4658 else if (NoSanitizeList.containsType(
4659 EnabledAsanMask, getQualifiedNameAsString(), "field-padding"))
4660 ReasonToReject = 7; // The type is excluded.
4661
4662 if (EmitRemark) {
4663 if (ReasonToReject >= 0)
4664 Context.getDiagnostics().Report(
4665 getLocation(),
4666 diag::remark_sanitize_address_insert_extra_padding_rejected)
4667 << getQualifiedNameAsString() << ReasonToReject;
4668 else
4669 Context.getDiagnostics().Report(
4670 getLocation(),
4671 diag::remark_sanitize_address_insert_extra_padding_accepted)
4672 << getQualifiedNameAsString();
4673 }
4674 return ReasonToReject < 0;
4675}
4676
4677const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4678 for (const auto *I : fields()) {
4679 if (I->getIdentifier())
4680 return I;
4681
4682 if (const auto *RT = I->getType()->getAs<RecordType>())
4683 if (const FieldDecl *NamedDataMember =
4684 RT->getDecl()->findFirstNamedDataMember())
4685 return NamedDataMember;
4686 }
4687
4688 // We didn't find a named data member.
4689 return nullptr;
4690}
4691
4692//===----------------------------------------------------------------------===//
4693// BlockDecl Implementation
4694//===----------------------------------------------------------------------===//
4695
4696BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4697 : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4698 setIsVariadic(false);
4699 setCapturesCXXThis(false);
4700 setBlockMissingReturnType(true);
4701 setIsConversionFromLambda(false);
4702 setDoesNotEscape(false);
4703 setCanAvoidCopyToHeap(false);
4704}
4705
4706void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4707 assert(!ParamInfo && "Already has param info!")((void)0);
4708
4709 // Zero params -> null pointer.
4710 if (!NewParamInfo.empty()) {
4711 NumParams = NewParamInfo.size();
4712 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4713 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4714 }
4715}
4716
4717void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4718 bool CapturesCXXThis) {
4719 this->setCapturesCXXThis(CapturesCXXThis);
4720 this->NumCaptures = Captures.size();
4721
4722 if (Captures.empty()) {
4723 this->Captures = nullptr;
4724 return;
4725 }
4726
4727 this->Captures = Captures.copy(Context).data();
4728}
4729
4730bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4731 for (const auto &I : captures())
4732 // Only auto vars can be captured, so no redeclaration worries.
4733 if (I.getVariable() == variable)
4734 return true;
4735
4736 return false;
4737}
4738
4739SourceRange BlockDecl::getSourceRange() const {
4740 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4741}
4742
4743//===----------------------------------------------------------------------===//
4744// Other Decl Allocation/Deallocation Method Implementations
4745//===----------------------------------------------------------------------===//
4746
4747void TranslationUnitDecl::anchor() {}
4748
4749TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4750 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4751}
4752
4753void PragmaCommentDecl::anchor() {}
4754
4755PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4756 TranslationUnitDecl *DC,
4757 SourceLocation CommentLoc,
4758 PragmaMSCommentKind CommentKind,
4759 StringRef Arg) {
4760 PragmaCommentDecl *PCD =
4761 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4762 PragmaCommentDecl(DC, CommentLoc, CommentKind);
4763 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4764 PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4765 return PCD;
4766}
4767
4768PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4769 unsigned ID,
4770 unsigned ArgSize) {
4771 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4772 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4773}
4774
4775void PragmaDetectMismatchDecl::anchor() {}
4776
4777PragmaDetectMismatchDecl *
4778PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4779 SourceLocation Loc, StringRef Name,
4780 StringRef Value) {
4781 size_t ValueStart = Name.size() + 1;
4782 PragmaDetectMismatchDecl *PDMD =
4783 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4784 PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4785 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4786 PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4787 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4788 Value.size());
4789 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4790 return PDMD;
4791}
4792
4793PragmaDetectMismatchDecl *
4794PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4795 unsigned NameValueSize) {
4796 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4797 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4798}
4799
4800void ExternCContextDecl::anchor() {}
4801
4802ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4803 TranslationUnitDecl *DC) {
4804 return new (C, DC) ExternCContextDecl(DC);
4805}
4806
4807void LabelDecl::anchor() {}
4808
4809LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4810 SourceLocation IdentL, IdentifierInfo *II) {
4811 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4812}
4813
4814LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4815 SourceLocation IdentL, IdentifierInfo *II,
4816 SourceLocation GnuLabelL) {
4817 assert(GnuLabelL != IdentL && "Use this only for GNU local labels")((void)0);
4818 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4819}
4820
4821LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4822 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4823 SourceLocation());
4824}
4825
4826void LabelDecl::setMSAsmLabel(StringRef Name) {
4827char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4828 memcpy(Buffer, Name.data(), Name.size());
4829 Buffer[Name.size()] = '\0';
4830 MSAsmName = Buffer;
4831}
4832
4833void ValueDecl::anchor() {}
4834
4835bool ValueDecl::isWeak() const {
4836 auto *MostRecent = getMostRecentDecl();
4837 return MostRecent->hasAttr<WeakAttr>() ||
4838 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
4839}
4840
4841void ImplicitParamDecl::anchor() {}
4842
4843ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4844 SourceLocation IdLoc,
4845 IdentifierInfo *Id, QualType Type,
4846 ImplicitParamKind ParamKind) {
4847 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4848}
4849
4850ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4851 ImplicitParamKind ParamKind) {
4852 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4853}
4854
4855ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4856 unsigned ID) {
4857 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4858}
4859
4860FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
4861 SourceLocation StartLoc,
4862 const DeclarationNameInfo &NameInfo,
4863 QualType T, TypeSourceInfo *TInfo,
4864 StorageClass SC, bool isInlineSpecified,
4865 bool hasWrittenPrototype,
4866 ConstexprSpecKind ConstexprKind,
4867 Expr *TrailingRequiresClause) {
4868 FunctionDecl *New =
4869 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4870 SC, isInlineSpecified, ConstexprKind,
4871 TrailingRequiresClause);
4872 New->setHasWrittenPrototype(hasWrittenPrototype);
4873 return New;
4874}
4875
4876FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4877 return new (C, ID) FunctionDecl(
4878 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
4879 nullptr, SC_None, false, ConstexprSpecKind::Unspecified, nullptr);
4880}
4881
4882BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4883 return new (C, DC) BlockDecl(DC, L);
4884}
4885
4886BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4887 return new (C, ID) BlockDecl(nullptr, SourceLocation());
4888}
4889
4890CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4891 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4892 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4893
4894CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4895 unsigned NumParams) {
4896 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4897 CapturedDecl(DC, NumParams);
4898}
4899
4900CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4901 unsigned NumParams) {
4902 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4903 CapturedDecl(nullptr, NumParams);
4904}
4905
4906Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4907void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4908
4909bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4910void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4911
4912EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4913 SourceLocation L,
4914 IdentifierInfo *Id, QualType T,
4915 Expr *E, const llvm::APSInt &V) {
4916 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4917}
4918
4919EnumConstantDecl *
4920EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4921 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4922 QualType(), nullptr, llvm::APSInt());
4923}
4924
4925void IndirectFieldDecl::anchor() {}
4926
4927IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4928 SourceLocation L, DeclarationName N,
4929 QualType T,
4930 MutableArrayRef<NamedDecl *> CH)
4931 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4932 ChainingSize(CH.size()) {
4933 // In C++, indirect field declarations conflict with tag declarations in the
4934 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4935 if (C.getLangOpts().CPlusPlus)
4936 IdentifierNamespace |= IDNS_Tag;
4937}
4938
4939IndirectFieldDecl *
4940IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4941 IdentifierInfo *Id, QualType T,
4942 llvm::MutableArrayRef<NamedDecl *> CH) {
4943 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4944}
4945
4946IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4947 unsigned ID) {
4948 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4949 DeclarationName(), QualType(), None);
4950}
4951
4952SourceRange EnumConstantDecl::getSourceRange() const {
4953 SourceLocation End = getLocation();
4954 if (Init)
4955 End = Init->getEndLoc();
4956 return SourceRange(getLocation(), End);
4957}
4958
4959void TypeDecl::anchor() {}
4960
4961TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4962 SourceLocation StartLoc, SourceLocation IdLoc,
4963 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4964 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4965}
4966
4967void TypedefNameDecl::anchor() {}
4968
4969TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4970 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4971 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4972 auto *ThisTypedef = this;
4973 if (AnyRedecl && OwningTypedef) {
4974 OwningTypedef = OwningTypedef->getCanonicalDecl();
4975 ThisTypedef = ThisTypedef->getCanonicalDecl();
4976 }
4977 if (OwningTypedef == ThisTypedef)
4978 return TT->getDecl();
4979 }
4980
4981 return nullptr;
4982}
4983
4984bool TypedefNameDecl::isTransparentTagSlow() const {
4985 auto determineIsTransparent = [&]() {
4986 if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4987 if (auto *TD = TT->getDecl()) {
4988 if (TD->getName() != getName())
4989 return false;
4990 SourceLocation TTLoc = getLocation();
4991 SourceLocation TDLoc = TD->getLocation();
4992 if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4993 return false;
4994 SourceManager &SM = getASTContext().getSourceManager();
4995 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4996 }
4997 }
4998 return false;
4999 };
5000
5001 bool isTransparent = determineIsTransparent();
5002 MaybeModedTInfo.setInt((isTransparent << 1) | 1);
5003 return isTransparent;
5004}
5005
5006TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5007 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
5008 nullptr, nullptr);
5009}
5010
5011TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
5012 SourceLocation StartLoc,
5013 SourceLocation IdLoc, IdentifierInfo *Id,
5014 TypeSourceInfo *TInfo) {
5015 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5016}
5017
5018TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5019 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5020 SourceLocation(), nullptr, nullptr);
5021}
5022
5023SourceRange TypedefDecl::getSourceRange() const {
5024 SourceLocation RangeEnd = getLocation();
5025 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5026 if (typeIsPostfix(TInfo->getType()))
5027 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5028 }
5029 return SourceRange(getBeginLoc(), RangeEnd);
5030}
5031
5032SourceRange TypeAliasDecl::getSourceRange() const {
5033 SourceLocation RangeEnd = getBeginLoc();
5034 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5035 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5036 return SourceRange(getBeginLoc(), RangeEnd);
5037}
5038
5039void FileScopeAsmDecl::anchor() {}
5040
5041FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5042 StringLiteral *Str,
5043 SourceLocation AsmLoc,
5044 SourceLocation RParenLoc) {
5045 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5046}
5047
5048FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5049 unsigned ID) {
5050 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5051 SourceLocation());
5052}
5053
5054void EmptyDecl::anchor() {}
5055
5056EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5057 return new (C, DC) EmptyDecl(DC, L);
5058}
5059
5060EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5061 return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5062}
5063
5064//===----------------------------------------------------------------------===//
5065// ImportDecl Implementation
5066//===----------------------------------------------------------------------===//
5067
5068/// Retrieve the number of module identifiers needed to name the given
5069/// module.
5070static unsigned getNumModuleIdentifiers(Module *Mod) {
5071 unsigned Result = 1;
5072 while (Mod->Parent) {
5073 Mod = Mod->Parent;
5074 ++Result;
5075 }
5076 return Result;
5077}
5078
5079ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5080 Module *Imported,
5081 ArrayRef<SourceLocation> IdentifierLocs)
5082 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5083 NextLocalImportAndComplete(nullptr, true) {
5084 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size())((void)0);
5085 auto *StoredLocs = getTrailingObjects<SourceLocation>();
5086 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5087 StoredLocs);
5088}
5089
5090ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5091 Module *Imported, SourceLocation EndLoc)
5092 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5093 NextLocalImportAndComplete(nullptr, false) {
5094 *getTrailingObjects<SourceLocation>() = EndLoc;
5095}
5096
5097ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5098 SourceLocation StartLoc, Module *Imported,
5099 ArrayRef<SourceLocation> IdentifierLocs) {
5100 return new (C, DC,
5101 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5102 ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5103}
5104
5105ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5106 SourceLocation StartLoc,
5107 Module *Imported,
5108 SourceLocation EndLoc) {
5109 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5110 ImportDecl(DC, StartLoc, Imported, EndLoc);
5111 Import->setImplicit();
5112 return Import;
5113}
5114
5115ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5116 unsigned NumLocations) {
5117 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5118 ImportDecl(EmptyShell());
5119}
5120
5121ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5122 if (!isImportComplete())
5123 return None;
5124
5125 const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5126 return llvm::makeArrayRef(StoredLocs,
5127 getNumModuleIdentifiers(getImportedModule()));
5128}
5129
5130SourceRange ImportDecl::getSourceRange() const {
5131 if (!isImportComplete())
5132 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5133
5134 return SourceRange(getLocation(), getIdentifierLocs().back());
5135}
5136
5137//===----------------------------------------------------------------------===//
5138// ExportDecl Implementation
5139//===----------------------------------------------------------------------===//
5140
5141void ExportDecl::anchor() {}
5142
5143ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5144 SourceLocation ExportLoc) {
5145 return new (C, DC) ExportDecl(DC, ExportLoc);
5146}
5147
5148ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5149 return new (C, ID) ExportDecl(nullptr, SourceLocation());
5150}

/usr/src/gnu/usr.bin/clang/libclangAST/../../../llvm/llvm/include/llvm/Support/TrailingObjects.h

1//===--- TrailingObjects.h - Variable-length classes ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This header defines support for implementing classes that have
11/// some trailing object (or arrays of objects) appended to them. The
12/// main purpose is to make it obvious where this idiom is being used,
13/// and to make the usage more idiomatic and more difficult to get
14/// wrong.
15///
16/// The TrailingObject template abstracts away the reinterpret_cast,
17/// pointer arithmetic, and size calculations used for the allocation
18/// and access of appended arrays of objects, and takes care that they
19/// are all allocated at their required alignment. Additionally, it
20/// ensures that the base type is final -- deriving from a class that
21/// expects data appended immediately after it is typically not safe.
22///
23/// Users are expected to derive from this template, and provide
24/// numTrailingObjects implementations for each trailing type except
25/// the last, e.g. like this sample:
26///
27/// \code
28/// class VarLengthObj : private TrailingObjects<VarLengthObj, int, double> {
29/// friend TrailingObjects;
30///
31/// unsigned NumInts, NumDoubles;
32/// size_t numTrailingObjects(OverloadToken<int>) const { return NumInts; }
33/// };
34/// \endcode
35///
36/// You can access the appended arrays via 'getTrailingObjects', and
37/// determine the size needed for allocation via
38/// 'additionalSizeToAlloc' and 'totalSizeToAlloc'.
39///
40/// All the methods implemented by this class are are intended for use
41/// by the implementation of the class, not as part of its interface
42/// (thus, private inheritance is suggested).
43///
44//===----------------------------------------------------------------------===//
45
46#ifndef LLVM_SUPPORT_TRAILINGOBJECTS_H
47#define LLVM_SUPPORT_TRAILINGOBJECTS_H
48
49#include "llvm/Support/AlignOf.h"
50#include "llvm/Support/Alignment.h"
51#include "llvm/Support/Compiler.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/type_traits.h"
54#include <new>
55#include <type_traits>
56
57namespace llvm {
58
59namespace trailing_objects_internal {
60/// Helper template to calculate the max alignment requirement for a set of
61/// objects.
62template <typename First, typename... Rest> class AlignmentCalcHelper {
63private:
64 enum {
65 FirstAlignment = alignof(First),
66 RestAlignment = AlignmentCalcHelper<Rest...>::Alignment,
67 };
68
69public:
70 enum {
71 Alignment = FirstAlignment > RestAlignment ? FirstAlignment : RestAlignment
72 };
73};
74
75template <typename First> class AlignmentCalcHelper<First> {
76public:
77 enum { Alignment = alignof(First) };
78};
79
80/// The base class for TrailingObjects* classes.
81class TrailingObjectsBase {
82protected:
83 /// OverloadToken's purpose is to allow specifying function overloads
84 /// for different types, without actually taking the types as
85 /// parameters. (Necessary because member function templates cannot
86 /// be specialized, so overloads must be used instead of
87 /// specialization.)
88 template <typename T> struct OverloadToken {};
89};
90
91// Just a little helper for transforming a type pack into the same
92// number of a different type. e.g.:
93// ExtractSecondType<Foo..., int>::type
94template <typename Ty1, typename Ty2> struct ExtractSecondType {
95 typedef Ty2 type;
96};
97
98// TrailingObjectsImpl is somewhat complicated, because it is a
99// recursively inheriting template, in order to handle the template
100// varargs. Each level of inheritance picks off a single trailing type
101// then recurses on the rest. The "Align", "BaseTy", and
102// "TopTrailingObj" arguments are passed through unchanged through the
103// recursion. "PrevTy" is, at each level, the type handled by the
104// level right above it.
105
106template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy,
107 typename... MoreTys>
108class TrailingObjectsImpl {
109 // The main template definition is never used -- the two
110 // specializations cover all possibilities.
111};
112
113template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy,
114 typename NextTy, typename... MoreTys>
115class TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy, NextTy,
116 MoreTys...>
117 : public TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy,
118 MoreTys...> {
119
120 typedef TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy, MoreTys...>
121 ParentType;
122
123 struct RequiresRealignment {
124 static const bool value = alignof(PrevTy) < alignof(NextTy);
125 };
126
127 static constexpr bool requiresRealignment() {
128 return RequiresRealignment::value;
129 }
130
131protected:
132 // Ensure the inherited getTrailingObjectsImpl is not hidden.
133 using ParentType::getTrailingObjectsImpl;
134
135 // These two functions are helper functions for
136 // TrailingObjects::getTrailingObjects. They recurse to the left --
137 // the result for each type in the list of trailing types depends on
138 // the result of calling the function on the type to the
139 // left. However, the function for the type to the left is
140 // implemented by a *subclass* of this class, so we invoke it via
141 // the TopTrailingObj, which is, via the
142 // curiously-recurring-template-pattern, the most-derived type in
143 // this recursion, and thus, contains all the overloads.
144 static const NextTy *
145 getTrailingObjectsImpl(const BaseTy *Obj,
146 TrailingObjectsBase::OverloadToken<NextTy>) {
147 auto *Ptr = TopTrailingObj::getTrailingObjectsImpl(
148 Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) +
149 TopTrailingObj::callNumTrailingObjects(
150 Obj, TrailingObjectsBase::OverloadToken<PrevTy>());
151
152 if (requiresRealignment())
153 return reinterpret_cast<const NextTy *>(
154 alignAddr(Ptr, Align::Of<NextTy>()));
155 else
156 return reinterpret_cast<const NextTy *>(Ptr);
157 }
158
159 static NextTy *
160 getTrailingObjectsImpl(BaseTy *Obj,
161 TrailingObjectsBase::OverloadToken<NextTy>) {
162 auto *Ptr = TopTrailingObj::getTrailingObjectsImpl(
9
'Ptr' initialized here
163 Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) +
8
Passing value via 1st parameter 'Obj'
164 TopTrailingObj::callNumTrailingObjects(
165 Obj, TrailingObjectsBase::OverloadToken<PrevTy>());
166
167 if (requiresRealignment())
10
Taking false branch
168 return reinterpret_cast<NextTy *>(alignAddr(Ptr, Align::Of<NextTy>()));
169 else
170 return reinterpret_cast<NextTy *>(Ptr);
11
Returning pointer (loaded from 'Ptr')
171 }
172
173 // Helper function for TrailingObjects::additionalSizeToAlloc: this
174 // function recurses to superclasses, each of which requires one
175 // fewer size_t argument, and adds its own size.
176 static constexpr size_t additionalSizeToAllocImpl(
177 size_t SizeSoFar, size_t Count1,
178 typename ExtractSecondType<MoreTys, size_t>::type... MoreCounts) {
179 return ParentType::additionalSizeToAllocImpl(
180 (requiresRealignment() ? llvm::alignTo<alignof(NextTy)>(SizeSoFar)
181 : SizeSoFar) +
182 sizeof(NextTy) * Count1,
183 MoreCounts...);
184 }
185};
186
187// The base case of the TrailingObjectsImpl inheritance recursion,
188// when there's no more trailing types.
189template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy>
190class alignas(Align) TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy>
191 : public TrailingObjectsBase {
192protected:
193 // This is a dummy method, only here so the "using" doesn't fail --
194 // it will never be called, because this function recurses backwards
195 // up the inheritance chain to subclasses.
196 static void getTrailingObjectsImpl();
197
198 static constexpr size_t additionalSizeToAllocImpl(size_t SizeSoFar) {
199 return SizeSoFar;
200 }
201
202 template <bool CheckAlignment> static void verifyTrailingObjectsAlignment() {}
203};
204
205} // end namespace trailing_objects_internal
206
207// Finally, the main type defined in this file, the one intended for users...
208
209/// See the file comment for details on the usage of the
210/// TrailingObjects type.
211template <typename BaseTy, typename... TrailingTys>
212class TrailingObjects : private trailing_objects_internal::TrailingObjectsImpl<
213 trailing_objects_internal::AlignmentCalcHelper<
214 TrailingTys...>::Alignment,
215 BaseTy, TrailingObjects<BaseTy, TrailingTys...>,
216 BaseTy, TrailingTys...> {
217
218 template <int A, typename B, typename T, typename P, typename... M>
219 friend class trailing_objects_internal::TrailingObjectsImpl;
220
221 template <typename... Tys> class Foo {};
222
223 typedef trailing_objects_internal::TrailingObjectsImpl<
224 trailing_objects_internal::AlignmentCalcHelper<TrailingTys...>::Alignment,
225 BaseTy, TrailingObjects<BaseTy, TrailingTys...>, BaseTy, TrailingTys...>
226 ParentType;
227 using TrailingObjectsBase = trailing_objects_internal::TrailingObjectsBase;
228
229 using ParentType::getTrailingObjectsImpl;
230
231 // This function contains only a static_assert BaseTy is final. The
232 // static_assert must be in a function, and not at class-level
233 // because BaseTy isn't complete at class instantiation time, but
234 // will be by the time this function is instantiated.
235 static void verifyTrailingObjectsAssertions() {
236 static_assert(std::is_final<BaseTy>(), "BaseTy must be final.");
237 }
238
239 // These two methods are the base of the recursion for this method.
240 static const BaseTy *
241 getTrailingObjectsImpl(const BaseTy *Obj,
242 TrailingObjectsBase::OverloadToken<BaseTy>) {
243 return Obj;
244 }
245
246 static BaseTy *
247 getTrailingObjectsImpl(BaseTy *Obj,
248 TrailingObjectsBase::OverloadToken<BaseTy>) {
249 return Obj;
250 }
251
252 // callNumTrailingObjects simply calls numTrailingObjects on the
253 // provided Obj -- except when the type being queried is BaseTy
254 // itself. There is always only one of the base object, so that case
255 // is handled here. (An additional benefit of indirecting through
256 // this function is that consumers only say "friend
257 // TrailingObjects", and thus, only this class itself can call the
258 // numTrailingObjects function.)
259 static size_t
260 callNumTrailingObjects(const BaseTy *Obj,
261 TrailingObjectsBase::OverloadToken<BaseTy>) {
262 return 1;
263 }
264
265 template <typename T>
266 static size_t callNumTrailingObjects(const BaseTy *Obj,
267 TrailingObjectsBase::OverloadToken<T>) {
268 return Obj->numTrailingObjects(TrailingObjectsBase::OverloadToken<T>());
269 }
270
271public:
272 // Make this (privately inherited) member public.
273#ifndef _MSC_VER
274 using ParentType::OverloadToken;
275#else
276 // An MSVC bug prevents the above from working, (last tested at CL version
277 // 19.28). "Class5" in TrailingObjectsTest.cpp tests the problematic case.
278 template <typename T>
279 using OverloadToken = typename ParentType::template OverloadToken<T>;
280#endif
281
282 /// Returns a pointer to the trailing object array of the given type
283 /// (which must be one of those specified in the class template). The
284 /// array may have zero or more elements in it.
285 template <typename T> const T *getTrailingObjects() const {
286 verifyTrailingObjectsAssertions();
287 // Forwards to an impl function with overloads, since member
288 // function templates can't be specialized.
289 return this->getTrailingObjectsImpl(
290 static_cast<const BaseTy *>(this),
291 TrailingObjectsBase::OverloadToken<T>());
292 }
293
294 /// Returns a pointer to the trailing object array of the given type
295 /// (which must be one of those specified in the class template). The
296 /// array may have zero or more elements in it.
297 template <typename T> T *getTrailingObjects() {
298 verifyTrailingObjectsAssertions();
299 // Forwards to an impl function with overloads, since member
300 // function templates can't be specialized.
301 return this->getTrailingObjectsImpl(
7
Calling 'TrailingObjectsImpl::getTrailingObjectsImpl'
12
Returning from 'TrailingObjectsImpl::getTrailingObjectsImpl'
13
Returning pointer
302 static_cast<BaseTy *>(this), TrailingObjectsBase::OverloadToken<T>());
6
Passing value via 1st parameter 'Obj'
303 }
304
305 /// Returns the size of the trailing data, if an object were
306 /// allocated with the given counts (The counts are in the same order
307 /// as the template arguments). This does not include the size of the
308 /// base object. The template arguments must be the same as those
309 /// used in the class; they are supplied here redundantly only so
310 /// that it's clear what the counts are counting in callers.
311 template <typename... Tys>
312 static constexpr std::enable_if_t<
313 std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>
314 additionalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
315 TrailingTys, size_t>::type... Counts) {
316 return ParentType::additionalSizeToAllocImpl(0, Counts...);
317 }
318
319 /// Returns the total size of an object if it were allocated with the
320 /// given trailing object counts. This is the same as
321 /// additionalSizeToAlloc, except it *does* include the size of the base
322 /// object.
323 template <typename... Tys>
324 static constexpr std::enable_if_t<
325 std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>
326 totalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
327 TrailingTys, size_t>::type... Counts) {
328 return sizeof(BaseTy) + ParentType::additionalSizeToAllocImpl(0, Counts...);
329 }
330
331 TrailingObjects() = default;
332 TrailingObjects(const TrailingObjects &) = delete;
333 TrailingObjects(TrailingObjects &&) = delete;
334 TrailingObjects &operator=(const TrailingObjects &) = delete;
335 TrailingObjects &operator=(TrailingObjects &&) = delete;
336
337 /// A type where its ::with_counts template member has a ::type member
338 /// suitable for use as uninitialized storage for an object with the given
339 /// trailing object counts. The template arguments are similar to those
340 /// of additionalSizeToAlloc.
341 ///
342 /// Use with FixedSizeStorageOwner, e.g.:
343 ///
344 /// \code{.cpp}
345 ///
346 /// MyObj::FixedSizeStorage<void *>::with_counts<1u>::type myStackObjStorage;
347 /// MyObj::FixedSizeStorageOwner
348 /// myStackObjOwner(new ((void *)&myStackObjStorage) MyObj);
349 /// MyObj *const myStackObjPtr = myStackObjOwner.get();
350 ///
351 /// \endcode
352 template <typename... Tys> struct FixedSizeStorage {
353 template <size_t... Counts> struct with_counts {
354 enum { Size = totalSizeToAlloc<Tys...>(Counts...) };
355 struct type {
356 alignas(BaseTy) char buffer[Size];
357 };
358 };
359 };
360
361 /// A type that acts as the owner for an object placed into fixed storage.
362 class FixedSizeStorageOwner {
363 public:
364 FixedSizeStorageOwner(BaseTy *p) : p(p) {}
365 ~FixedSizeStorageOwner() {
366 assert(p && "FixedSizeStorageOwner owns null?")((void)0);
367 p->~BaseTy();
368 }
369
370 BaseTy *get() { return p; }
371 const BaseTy *get() const { return p; }
372
373 private:
374 FixedSizeStorageOwner(const FixedSizeStorageOwner &) = delete;
375 FixedSizeStorageOwner(FixedSizeStorageOwner &&) = delete;
376 FixedSizeStorageOwner &operator=(const FixedSizeStorageOwner &) = delete;
377 FixedSizeStorageOwner &operator=(FixedSizeStorageOwner &&) = delete;
378
379 BaseTy *const p;
380 };
381};
382
383} // end namespace llvm
384
385#endif