| File: | dev/usb/if_uath.c |
| Warning: | line 1183, column 2 Value stored to 'hdr' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: if_uath.c,v 1.88 2022/04/21 21:03:03 stsp Exp $ */ |
| 2 | |
| 3 | /*- |
| 4 | * Copyright (c) 2006 |
| 5 | * Damien Bergamini <damien.bergamini@free.fr> |
| 6 | * |
| 7 | * Permission to use, copy, modify, and distribute this software for any |
| 8 | * purpose with or without fee is hereby granted, provided that the above |
| 9 | * copyright notice and this permission notice appear in all copies. |
| 10 | * |
| 11 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 12 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 13 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 14 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 15 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 16 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 17 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 18 | */ |
| 19 | |
| 20 | /*- |
| 21 | * Driver for Atheros AR5005UG/AR5005UX chipsets. |
| 22 | * |
| 23 | * IMPORTANT NOTICE: |
| 24 | * This driver was written without any documentation or support from Atheros |
| 25 | * Communications. It is based on a black-box analysis of the Windows binary |
| 26 | * driver. It handles both pre and post-firmware devices. |
| 27 | */ |
| 28 | |
| 29 | #include "bpfilter.h" |
| 30 | |
| 31 | #include <sys/param.h> |
| 32 | #include <sys/sockio.h> |
| 33 | #include <sys/mbuf.h> |
| 34 | #include <sys/kernel.h> |
| 35 | #include <sys/socket.h> |
| 36 | #include <sys/systm.h> |
| 37 | #include <sys/timeout.h> |
| 38 | #include <sys/conf.h> |
| 39 | #include <sys/device.h> |
| 40 | #include <sys/endian.h> |
| 41 | |
| 42 | #include <machine/bus.h> |
| 43 | #include <machine/intr.h> |
| 44 | |
| 45 | #if NBPFILTER1 > 0 |
| 46 | #include <net/bpf.h> |
| 47 | #endif |
| 48 | #include <net/if.h> |
| 49 | #include <net/if_dl.h> |
| 50 | #include <net/if_media.h> |
| 51 | |
| 52 | #include <netinet/in.h> |
| 53 | #include <netinet/if_ether.h> |
| 54 | |
| 55 | #include <net80211/ieee80211_var.h> |
| 56 | #include <net80211/ieee80211_radiotap.h> |
| 57 | |
| 58 | #include <dev/usb/usb.h> |
| 59 | #include <dev/usb/usbdi.h> |
| 60 | #include <dev/usb/usbdivar.h> /* needs_reattach() */ |
| 61 | #include <dev/usb/usbdi_util.h> |
| 62 | #include <dev/usb/usbdevs.h> |
| 63 | |
| 64 | #include <dev/usb/if_uathreg.h> |
| 65 | #include <dev/usb/if_uathvar.h> |
| 66 | |
| 67 | #ifdef UATH_DEBUG |
| 68 | #define DPRINTF(x) do { if (uath_debug) printf x; } while (0) |
| 69 | #define DPRINTFN(n, x) do { if (uath_debug >= (n)) printf x; } while (0) |
| 70 | int uath_debug = 1; |
| 71 | #else |
| 72 | #define DPRINTF(x) |
| 73 | #define DPRINTFN(n, x) |
| 74 | #endif |
| 75 | |
| 76 | /*- |
| 77 | * Various supported device vendors/products. |
| 78 | * UB51: AR5005UG 802.11b/g, UB52: AR5005UX 802.11a/b/g |
| 79 | */ |
| 80 | #define UATH_DEV(v, p, f){ { USB_VENDOR_v, USB_PRODUCT_v_p }, (f) }, { { USB_VENDOR_v, USB_PRODUCT_v_p_NF }, (f) | (1 << 0) } \ |
| 81 | { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, (f) }, \ |
| 82 | { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p##_NF }, \ |
| 83 | (f) | UATH_FLAG_PRE_FIRMWARE(1 << 0) } |
| 84 | #define UATH_DEV_UG(v, p){ { USB_VENDOR_v, USB_PRODUCT_v_p }, (0) }, { { USB_VENDOR_v, USB_PRODUCT_v_p_NF }, (0) | (1 << 0) } UATH_DEV(v, p, 0){ { USB_VENDOR_v, USB_PRODUCT_v_p }, (0) }, { { USB_VENDOR_v, USB_PRODUCT_v_p_NF }, (0) | (1 << 0) } |
| 85 | #define UATH_DEV_UX(v, p){ { USB_VENDOR_v, USB_PRODUCT_v_p }, ((1 << 1)) }, { { USB_VENDOR_v , USB_PRODUCT_v_p_NF }, ((1 << 1)) | (1 << 0) } UATH_DEV(v, p, UATH_FLAG_ABG){ { USB_VENDOR_v, USB_PRODUCT_v_p }, ((1 << 1)) }, { { USB_VENDOR_v , USB_PRODUCT_v_p_NF }, ((1 << 1)) | (1 << 0) } |
| 86 | static const struct uath_type { |
| 87 | struct usb_devno dev; |
| 88 | unsigned int flags; |
| 89 | #define UATH_FLAG_PRE_FIRMWARE(1 << 0) (1 << 0) |
| 90 | #define UATH_FLAG_ABG(1 << 1) (1 << 1) |
| 91 | } uath_devs[] = { |
| 92 | UATH_DEV_UG(ACCTON, SMCWUSBTG2){ { 0x083a, 0x4506 }, (0) }, { { 0x083a, 0x4507 }, (0) | (1 << 0) }, |
| 93 | UATH_DEV_UG(ATHEROS, AR5523){ { 0x168c, 0x0001 }, (0) }, { { 0x168c, 0x0002 }, (0) | (1 << 0) }, |
| 94 | UATH_DEV_UG(ATHEROS2, AR5523_1){ { 0x0cf3, 0x0001 }, (0) }, { { 0x0cf3, 0x0002 }, (0) | (1 << 0) }, |
| 95 | UATH_DEV_UG(ATHEROS2, AR5523_2){ { 0x0cf3, 0x0003 }, (0) }, { { 0x0cf3, 0x0004 }, (0) | (1 << 0) }, |
| 96 | UATH_DEV_UX(ATHEROS2, AR5523_3){ { 0x0cf3, 0x0005 }, ((1 << 1)) }, { { 0x0cf3, 0x0006 } , ((1 << 1)) | (1 << 0) }, |
| 97 | UATH_DEV_UG(CONCEPTRONIC, AR5523_1){ { 0x0d8e, 0x7801 }, (0) }, { { 0x0d8e, 0x7802 }, (0) | (1 << 0) }, |
| 98 | UATH_DEV_UX(CONCEPTRONIC, AR5523_2){ { 0x0d8e, 0x7811 }, ((1 << 1)) }, { { 0x0d8e, 0x7812 } , ((1 << 1)) | (1 << 0) }, |
| 99 | UATH_DEV_UX(DLINK, DWLAG122){ { 0x2001, 0x3a04 }, ((1 << 1)) }, { { 0x2001, 0x3a05 } , ((1 << 1)) | (1 << 0) }, |
| 100 | UATH_DEV_UX(DLINK, DWLAG132){ { 0x2001, 0x3a00 }, ((1 << 1)) }, { { 0x2001, 0x3a01 } , ((1 << 1)) | (1 << 0) }, |
| 101 | UATH_DEV_UG(DLINK, DWLG132){ { 0x2001, 0x3a02 }, (0) }, { { 0x2001, 0x3a03 }, (0) | (1 << 0) }, |
| 102 | UATH_DEV_UG(DLINK2, WUA2340){ { 0x07d1, 0x3a07 }, (0) }, { { 0x07d1, 0x3a08 }, (0) | (1 << 0) }, |
| 103 | UATH_DEV_UG(GIGASET, AR5523){ { 0x1690, 0x0712 }, (0) }, { { 0x1690, 0x0713 }, (0) | (1 << 0) }, |
| 104 | UATH_DEV_UG(GIGASET, SMCWUSBTG){ { 0x1690, 0x0710 }, (0) }, { { 0x1690, 0x0711 }, (0) | (1 << 0) }, |
| 105 | UATH_DEV_UG(GLOBALSUN, AR5523_1){ { 0x16ab, 0x7801 }, (0) }, { { 0x16ab, 0x7802 }, (0) | (1 << 0) }, |
| 106 | UATH_DEV_UX(GLOBALSUN, AR5523_2){ { 0x16ab, 0x7811 }, ((1 << 1)) }, { { 0x16ab, 0x7812 } , ((1 << 1)) | (1 << 0) }, |
| 107 | UATH_DEV_UG(IODATA, USBWNG54US){ { 0x04bb, 0x0928 }, (0) }, { { 0x04bb, 0x0929 }, (0) | (1 << 0) }, |
| 108 | UATH_DEV_UG(MELCO, WLIU2KAMG54){ { 0x0411, 0x0091 }, (0) }, { { 0x0411, 0x0092 }, (0) | (1 << 0) }, |
| 109 | UATH_DEV_UX(NETGEAR, WG111U){ { 0x0846, 0x4300 }, ((1 << 1)) }, { { 0x0846, 0x4301 } , ((1 << 1)) | (1 << 0) }, |
| 110 | UATH_DEV_UG(NETGEAR3, WG111T){ { 0x1385, 0x4250 }, (0) }, { { 0x1385, 0x4251 }, (0) | (1 << 0) }, |
| 111 | UATH_DEV_UG(NETGEAR3, WPN111){ { 0x1385, 0x5f00 }, (0) }, { { 0x1385, 0x5f01 }, (0) | (1 << 0) }, |
| 112 | UATH_DEV_UG(PHILIPS, SNU6500){ { 0x0471, 0x1232 }, (0) }, { { 0x0471, 0x1233 }, (0) | (1 << 0) }, |
| 113 | UATH_DEV_UX(UMEDIA, AR5523_2){ { 0x157e, 0x3205 }, ((1 << 1)) }, { { 0x157e, 0x3206 } , ((1 << 1)) | (1 << 0) }, |
| 114 | UATH_DEV_UG(UMEDIA, TEW444UBEU){ { 0x157e, 0x3006 }, (0) }, { { 0x157e, 0x3007 }, (0) | (1 << 0) }, |
| 115 | UATH_DEV_UG(WISTRONNEWEB, AR5523_1){ { 0x1435, 0x0826 }, (0) }, { { 0x1435, 0x0827 }, (0) | (1 << 0) }, |
| 116 | UATH_DEV_UX(WISTRONNEWEB, AR5523_2){ { 0x1435, 0x082a }, ((1 << 1)) }, { { 0x1435, 0x0829 } , ((1 << 1)) | (1 << 0) }, |
| 117 | UATH_DEV_UG(ZCOM, AR5523){ { 0x0cde, 0x0012 }, (0) }, { { 0x0cde, 0x0013 }, (0) | (1 << 0) }, |
| 118 | |
| 119 | /* Devices that share one of the IDs above. */ |
| 120 | { { USB_VENDOR_NETGEAR30x1385, USB_PRODUCT_NETGEAR3_WG111T_10x4252 }, 0 } \ |
| 121 | }; |
| 122 | #define uath_lookup(v, p)((const struct uath_type *)usbd_match_device((const struct usb_devno *)(uath_devs), sizeof (uath_devs) / sizeof ((uath_devs)[0]), sizeof ((uath_devs)[0]), (v), (p))) \ |
| 123 | ((const struct uath_type *)usb_lookup(uath_devs, v, p)usbd_match_device((const struct usb_devno *)(uath_devs), sizeof (uath_devs) / sizeof ((uath_devs)[0]), sizeof ((uath_devs)[0 ]), (v), (p))) |
| 124 | |
| 125 | void uath_attachhook(struct device *); |
| 126 | int uath_open_pipes(struct uath_softc *); |
| 127 | void uath_close_pipes(struct uath_softc *); |
| 128 | int uath_alloc_tx_data_list(struct uath_softc *); |
| 129 | void uath_free_tx_data_list(struct uath_softc *); |
| 130 | int uath_alloc_rx_data_list(struct uath_softc *); |
| 131 | void uath_free_rx_data_list(struct uath_softc *); |
| 132 | int uath_alloc_tx_cmd_list(struct uath_softc *); |
| 133 | void uath_free_tx_cmd_list(struct uath_softc *); |
| 134 | int uath_alloc_rx_cmd_list(struct uath_softc *); |
| 135 | void uath_free_rx_cmd_list(struct uath_softc *); |
| 136 | int uath_media_change(struct ifnet *); |
| 137 | void uath_stat(void *); |
| 138 | void uath_next_scan(void *); |
| 139 | void uath_task(void *); |
| 140 | int uath_newstate(struct ieee80211com *, enum ieee80211_state, int); |
| 141 | #ifdef UATH_DEBUG |
| 142 | void uath_dump_cmd(const uint8_t *, int, char); |
| 143 | #endif |
| 144 | int uath_cmd(struct uath_softc *, uint32_t, const void *, int, void *, |
| 145 | int); |
| 146 | int uath_cmd_write(struct uath_softc *, uint32_t, const void *, int, int); |
| 147 | int uath_cmd_read(struct uath_softc *, uint32_t, const void *, int, void *, |
| 148 | int); |
| 149 | int uath_write_reg(struct uath_softc *, uint32_t, uint32_t); |
| 150 | int uath_write_multi(struct uath_softc *, uint32_t, const void *, int); |
| 151 | int uath_read_reg(struct uath_softc *, uint32_t, uint32_t *); |
| 152 | int uath_read_eeprom(struct uath_softc *, uint32_t, void *); |
| 153 | void uath_cmd_rxeof(struct usbd_xfer *, void *, usbd_status); |
| 154 | void uath_data_rxeof(struct usbd_xfer *, void *, usbd_status); |
| 155 | void uath_data_txeof(struct usbd_xfer *, void *, usbd_status); |
| 156 | int uath_tx_null(struct uath_softc *); |
| 157 | int uath_tx_data(struct uath_softc *, struct mbuf *, |
| 158 | struct ieee80211_node *); |
| 159 | void uath_start(struct ifnet *); |
| 160 | void uath_watchdog(struct ifnet *); |
| 161 | int uath_ioctl(struct ifnet *, u_long, caddr_t); |
| 162 | int uath_query_eeprom(struct uath_softc *); |
| 163 | int uath_reset(struct uath_softc *); |
| 164 | int uath_reset_tx_queues(struct uath_softc *); |
| 165 | int uath_wme_init(struct uath_softc *); |
| 166 | int uath_set_chan(struct uath_softc *, struct ieee80211_channel *); |
| 167 | int uath_set_key(struct uath_softc *, const struct ieee80211_key *, int); |
| 168 | int uath_set_keys(struct uath_softc *); |
| 169 | int uath_set_rates(struct uath_softc *, const struct ieee80211_rateset *); |
| 170 | int uath_set_rxfilter(struct uath_softc *, uint32_t, uint32_t); |
| 171 | int uath_set_led(struct uath_softc *, int, int); |
| 172 | int uath_switch_channel(struct uath_softc *, struct ieee80211_channel *); |
| 173 | int uath_init(struct ifnet *); |
| 174 | void uath_stop(struct ifnet *, int); |
| 175 | int uath_loadfirmware(struct uath_softc *, const u_char *, int); |
| 176 | |
| 177 | int uath_match(struct device *, void *, void *); |
| 178 | void uath_attach(struct device *, struct device *, void *); |
| 179 | int uath_detach(struct device *, int); |
| 180 | |
| 181 | struct cfdriver uath_cd = { |
| 182 | NULL((void *)0), "uath", DV_IFNET |
| 183 | }; |
| 184 | |
| 185 | const struct cfattach uath_ca = { |
| 186 | sizeof(struct uath_softc), uath_match, uath_attach, uath_detach |
| 187 | }; |
| 188 | |
| 189 | int |
| 190 | uath_match(struct device *parent, void *match, void *aux) |
| 191 | { |
| 192 | struct usb_attach_arg *uaa = aux; |
| 193 | |
| 194 | if (uaa->iface == NULL((void *)0) || uaa->configno != UATH_CONFIG_NO1) |
| 195 | return UMATCH_NONE0; |
| 196 | |
| 197 | return (uath_lookup(uaa->vendor, uaa->product)((const struct uath_type *)usbd_match_device((const struct usb_devno *)(uath_devs), sizeof (uath_devs) / sizeof ((uath_devs)[0]), sizeof ((uath_devs)[0]), (uaa->vendor), (uaa->product) )) != NULL((void *)0)) ? |
| 198 | UMATCH_VENDOR_PRODUCT13 : UMATCH_NONE0; |
| 199 | } |
| 200 | |
| 201 | void |
| 202 | uath_attachhook(struct device *self) |
| 203 | { |
| 204 | struct uath_softc *sc = (struct uath_softc *)self; |
| 205 | u_char *fw; |
| 206 | size_t size; |
| 207 | int error; |
| 208 | |
| 209 | if ((error = loadfirmware("uath-ar5523", &fw, &size)) != 0) { |
| 210 | printf("%s: error %d, could not read firmware %s\n", |
| 211 | sc->sc_dev.dv_xname, error, "uath-ar5523"); |
| 212 | return; |
| 213 | } |
| 214 | |
| 215 | error = uath_loadfirmware(sc, fw, size); |
| 216 | free(fw, M_DEVBUF2, size); |
| 217 | |
| 218 | if (error == 0) { |
| 219 | /* |
| 220 | * Hack alert: the device doesn't always gracefully detach |
| 221 | * from the bus after a firmware upload. We need to force |
| 222 | * a port reset and a re-exploration on the parent hub. |
| 223 | */ |
| 224 | usbd_reset_port(sc->sc_uhub, sc->sc_port); |
| 225 | usb_needs_reattach(sc->sc_udev); |
| 226 | } else { |
| 227 | printf("%s: could not load firmware (error=%s)\n", |
| 228 | sc->sc_dev.dv_xname, usbd_errstr(error)); |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | void |
| 233 | uath_attach(struct device *parent, struct device *self, void *aux) |
| 234 | { |
| 235 | struct uath_softc *sc = (struct uath_softc *)self; |
| 236 | struct usb_attach_arg *uaa = aux; |
| 237 | struct ieee80211com *ic = &sc->sc_ic; |
| 238 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 239 | usbd_status error; |
| 240 | int i; |
| 241 | |
| 242 | sc->sc_udev = uaa->device; |
| 243 | sc->sc_uhub = uaa->device->myhub; |
| 244 | sc->sc_port = uaa->port; |
| 245 | |
| 246 | sc->sc_flags = uath_lookup(uaa->vendor, uaa->product)((const struct uath_type *)usbd_match_device((const struct usb_devno *)(uath_devs), sizeof (uath_devs) / sizeof ((uath_devs)[0]), sizeof ((uath_devs)[0]), (uaa->vendor), (uaa->product) ))->flags; |
| 247 | |
| 248 | /* get the first interface handle */ |
| 249 | error = usbd_device2interface_handle(sc->sc_udev, UATH_IFACE_INDEX0, |
| 250 | &sc->sc_iface); |
| 251 | if (error != 0) { |
| 252 | printf("%s: could not get interface handle\n", |
| 253 | sc->sc_dev.dv_xname); |
| 254 | return; |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * We must open the pipes early because they're used to upload the |
| 259 | * firmware (pre-firmware devices) or to send firmware commands. |
| 260 | */ |
| 261 | if (uath_open_pipes(sc) != 0) { |
| 262 | printf("%s: could not open pipes\n", sc->sc_dev.dv_xname); |
| 263 | return; |
| 264 | } |
| 265 | |
| 266 | if (sc->sc_flags & UATH_FLAG_PRE_FIRMWARE(1 << 0)) { |
| 267 | config_mountroot(self, uath_attachhook); |
| 268 | return; |
| 269 | } |
| 270 | |
| 271 | /* |
| 272 | * Only post-firmware devices here. |
| 273 | */ |
| 274 | usb_init_task(&sc->sc_task, uath_task, sc, USB_TASK_TYPE_GENERIC)((&sc->sc_task)->fun = (uath_task), (&sc->sc_task )->arg = (sc), (&sc->sc_task)->type = (0), (& sc->sc_task)->state = 0x0); |
| 275 | timeout_set(&sc->scan_to, uath_next_scan, sc); |
| 276 | timeout_set(&sc->stat_to, uath_stat, sc); |
| 277 | |
| 278 | /* |
| 279 | * Allocate xfers for firmware commands. |
| 280 | */ |
| 281 | if (uath_alloc_tx_cmd_list(sc) != 0) { |
| 282 | printf("%s: could not allocate Tx command list\n", |
| 283 | sc->sc_dev.dv_xname); |
| 284 | goto fail; |
| 285 | } |
| 286 | if (uath_alloc_rx_cmd_list(sc) != 0) { |
| 287 | printf("%s: could not allocate Rx command list\n", |
| 288 | sc->sc_dev.dv_xname); |
| 289 | goto fail; |
| 290 | } |
| 291 | |
| 292 | /* |
| 293 | * Queue Rx command xfers. |
| 294 | */ |
| 295 | for (i = 0; i < UATH_RX_CMD_LIST_COUNT1; i++) { |
| 296 | struct uath_rx_cmd *cmd = &sc->rx_cmd[i]; |
| 297 | |
| 298 | usbd_setup_xfer(cmd->xfer, sc->cmd_rx_pipe, cmd, cmd->buf, |
| 299 | UATH_MAX_RXCMDSZ512, USBD_SHORT_XFER_OK0x04 | USBD_NO_COPY0x01, |
| 300 | USBD_NO_TIMEOUT0, uath_cmd_rxeof); |
| 301 | error = usbd_transfer(cmd->xfer); |
| 302 | if (error != USBD_IN_PROGRESS && error != 0) { |
| 303 | printf("%s: could not queue Rx command xfer\n", |
| 304 | sc->sc_dev.dv_xname); |
| 305 | goto fail; |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | /* |
| 310 | * We're now ready to send/receive firmware commands. |
| 311 | */ |
| 312 | if (uath_reset(sc) != 0) { |
| 313 | printf("%s: could not initialize adapter\n", |
| 314 | sc->sc_dev.dv_xname); |
| 315 | goto fail; |
| 316 | } |
| 317 | if (uath_query_eeprom(sc) != 0) { |
| 318 | printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname); |
| 319 | goto fail; |
| 320 | } |
| 321 | |
| 322 | printf("%s: MAC/BBP AR5523, RF AR%c112, address %s\n", |
| 323 | sc->sc_dev.dv_xname, (sc->sc_flags & UATH_FLAG_ABG(1 << 1)) ? '5': '2', |
| 324 | ether_sprintf(ic->ic_myaddr)); |
| 325 | |
| 326 | /* |
| 327 | * Allocate xfers for Tx/Rx data pipes. |
| 328 | */ |
| 329 | if (uath_alloc_tx_data_list(sc) != 0) { |
| 330 | printf("%s: could not allocate Tx data list\n", |
| 331 | sc->sc_dev.dv_xname); |
| 332 | goto fail; |
| 333 | } |
| 334 | if (uath_alloc_rx_data_list(sc) != 0) { |
| 335 | printf("%s: could not allocate Rx data list\n", |
| 336 | sc->sc_dev.dv_xname); |
| 337 | goto fail; |
| 338 | } |
| 339 | |
| 340 | ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ |
| 341 | ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ |
| 342 | ic->ic_state = IEEE80211_S_INIT; |
| 343 | |
| 344 | /* set device capabilities */ |
| 345 | ic->ic_caps = |
| 346 | IEEE80211_C_MONITOR0x00000200 | /* monitor mode supported */ |
| 347 | IEEE80211_C_TXPMGT0x00000040 | /* tx power management */ |
| 348 | IEEE80211_C_SHPREAMBLE0x00000100 | /* short preamble supported */ |
| 349 | IEEE80211_C_SHSLOT0x00000080 | /* short slot time supported */ |
| 350 | IEEE80211_C_WEP0x00000001; /* h/w WEP */ |
| 351 | |
| 352 | /* set supported .11b and .11g rates */ |
| 353 | ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; |
| 354 | ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; |
| 355 | |
| 356 | /* set supported .11b and .11g channels (1 through 14) */ |
| 357 | for (i = 1; i <= 14; i++) { |
| 358 | ic->ic_channels[i].ic_freq = |
| 359 | ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ0x0080); |
| 360 | ic->ic_channels[i].ic_flags = |
| 361 | IEEE80211_CHAN_CCK0x0020 | IEEE80211_CHAN_OFDM0x0040 | |
| 362 | IEEE80211_CHAN_DYN0x0400 | IEEE80211_CHAN_2GHZ0x0080; |
| 363 | } |
| 364 | |
| 365 | ifp->if_softc = sc; |
| 366 | ifp->if_flags = IFF_BROADCAST0x2 | IFF_SIMPLEX0x800 | IFF_MULTICAST0x8000; |
| 367 | ifp->if_ioctl = uath_ioctl; |
| 368 | ifp->if_start = uath_start; |
| 369 | ifp->if_watchdog = uath_watchdog; |
| 370 | memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ)__builtin_memcpy((ifp->if_xname), (sc->sc_dev.dv_xname) , (16)); |
| 371 | |
| 372 | if_attach(ifp); |
| 373 | ieee80211_ifattach(ifp); |
| 374 | |
| 375 | /* override state transition machine */ |
| 376 | sc->sc_newstate = ic->ic_newstate; |
| 377 | ic->ic_newstate = uath_newstate; |
| 378 | ieee80211_media_init(ifp, uath_media_change, ieee80211_media_status); |
| 379 | |
| 380 | #if NBPFILTER1 > 0 |
| 381 | bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO127, |
| 382 | sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN64); |
| 383 | |
| 384 | sc->sc_rxtap_len = sizeof sc->sc_rxtapu; |
| 385 | sc->sc_rxtapsc_rxtapu.th.wr_ihdr.it_len = htole16(sc->sc_rxtap_len)((__uint16_t)(sc->sc_rxtap_len)); |
| 386 | sc->sc_rxtapsc_rxtapu.th.wr_ihdr.it_present = htole32(UATH_RX_RADIOTAP_PRESENT)((__uint32_t)(((1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_CHANNEL) | (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL )))); |
| 387 | |
| 388 | sc->sc_txtap_len = sizeof sc->sc_txtapu; |
| 389 | sc->sc_txtapsc_txtapu.th.wt_ihdr.it_len = htole16(sc->sc_txtap_len)((__uint16_t)(sc->sc_txtap_len)); |
| 390 | sc->sc_txtapsc_txtapu.th.wt_ihdr.it_present = htole32(UATH_TX_RADIOTAP_PRESENT)((__uint32_t)(((1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_CHANNEL)))); |
| 391 | #endif |
| 392 | |
| 393 | return; |
| 394 | |
| 395 | fail: uath_close_pipes(sc); |
| 396 | uath_free_tx_data_list(sc); |
| 397 | uath_free_rx_cmd_list(sc); |
| 398 | uath_free_tx_cmd_list(sc); |
| 399 | usbd_deactivate(sc->sc_udev); |
| 400 | } |
| 401 | |
| 402 | int |
| 403 | uath_detach(struct device *self, int flags) |
| 404 | { |
| 405 | struct uath_softc *sc = (struct uath_softc *)self; |
| 406 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
| 407 | int s; |
| 408 | |
| 409 | s = splnet()splraise(0x4); |
| 410 | |
| 411 | if (sc->sc_flags & UATH_FLAG_PRE_FIRMWARE(1 << 0)) { |
| 412 | uath_close_pipes(sc); |
| 413 | splx(s)spllower(s); |
| 414 | return 0; |
| 415 | } |
| 416 | |
| 417 | /* post-firmware device */ |
| 418 | |
| 419 | usb_rem_task(sc->sc_udev, &sc->sc_task); |
| 420 | if (timeout_initialized(&sc->scan_to)((&sc->scan_to)->to_flags & 0x04)) |
| 421 | timeout_del(&sc->scan_to); |
| 422 | if (timeout_initialized(&sc->stat_to)((&sc->stat_to)->to_flags & 0x04)) |
| 423 | timeout_del(&sc->stat_to); |
| 424 | |
| 425 | /* close Tx/Rx pipes */ |
| 426 | uath_close_pipes(sc); |
| 427 | |
| 428 | /* free xfers */ |
| 429 | uath_free_tx_data_list(sc); |
| 430 | uath_free_rx_data_list(sc); |
| 431 | uath_free_tx_cmd_list(sc); |
| 432 | uath_free_rx_cmd_list(sc); |
| 433 | |
| 434 | if (ifp->if_softc != NULL((void *)0)) { |
| 435 | ieee80211_ifdetach(ifp); /* free all nodes */ |
| 436 | if_detach(ifp); |
| 437 | } |
| 438 | |
| 439 | splx(s)spllower(s); |
| 440 | |
| 441 | return 0; |
| 442 | } |
| 443 | |
| 444 | int |
| 445 | uath_open_pipes(struct uath_softc *sc) |
| 446 | { |
| 447 | int error; |
| 448 | |
| 449 | /* |
| 450 | * XXX pipes numbers are hardcoded because we don't have any way |
| 451 | * to distinguish the data pipes from the firmware command pipes |
| 452 | * (both are bulk pipes) using the endpoints descriptors. |
| 453 | */ |
| 454 | error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE0x01, |
| 455 | &sc->cmd_tx_pipe); |
| 456 | if (error != 0) { |
| 457 | printf("%s: could not open Tx command pipe: %s\n", |
| 458 | sc->sc_dev.dv_xname, usbd_errstr(error)); |
| 459 | goto fail; |
| 460 | } |
| 461 | |
| 462 | error = usbd_open_pipe(sc->sc_iface, 0x02, USBD_EXCLUSIVE_USE0x01, |
| 463 | &sc->data_tx_pipe); |
| 464 | if (error != 0) { |
| 465 | printf("%s: could not open Tx data pipe: %s\n", |
| 466 | sc->sc_dev.dv_xname, usbd_errstr(error)); |
| 467 | goto fail; |
| 468 | } |
| 469 | |
| 470 | error = usbd_open_pipe(sc->sc_iface, 0x81, USBD_EXCLUSIVE_USE0x01, |
| 471 | &sc->cmd_rx_pipe); |
| 472 | if (error != 0) { |
| 473 | printf("%s: could not open Rx command pipe: %s\n", |
| 474 | sc->sc_dev.dv_xname, usbd_errstr(error)); |
| 475 | goto fail; |
| 476 | } |
| 477 | |
| 478 | error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE0x01, |
| 479 | &sc->data_rx_pipe); |
| 480 | if (error != 0) { |
| 481 | printf("%s: could not open Rx data pipe: %s\n", |
| 482 | sc->sc_dev.dv_xname, usbd_errstr(error)); |
| 483 | goto fail; |
| 484 | } |
| 485 | |
| 486 | return 0; |
| 487 | |
| 488 | fail: uath_close_pipes(sc); |
| 489 | return error; |
| 490 | } |
| 491 | |
| 492 | void |
| 493 | uath_close_pipes(struct uath_softc *sc) |
| 494 | { |
| 495 | if (sc->data_tx_pipe != NULL((void *)0)) { |
| 496 | usbd_close_pipe(sc->data_tx_pipe); |
| 497 | sc->data_tx_pipe = NULL((void *)0); |
| 498 | } |
| 499 | |
| 500 | if (sc->data_rx_pipe != NULL((void *)0)) { |
| 501 | usbd_close_pipe(sc->data_rx_pipe); |
| 502 | sc->data_rx_pipe = NULL((void *)0); |
| 503 | } |
| 504 | |
| 505 | if (sc->cmd_tx_pipe != NULL((void *)0)) { |
| 506 | usbd_close_pipe(sc->cmd_tx_pipe); |
| 507 | sc->cmd_tx_pipe = NULL((void *)0); |
| 508 | } |
| 509 | |
| 510 | if (sc->cmd_rx_pipe != NULL((void *)0)) { |
| 511 | usbd_close_pipe(sc->cmd_rx_pipe); |
| 512 | sc->cmd_rx_pipe = NULL((void *)0); |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | int |
| 517 | uath_alloc_tx_data_list(struct uath_softc *sc) |
| 518 | { |
| 519 | int i, error; |
| 520 | |
| 521 | for (i = 0; i < UATH_TX_DATA_LIST_COUNT8; i++) { |
| 522 | struct uath_tx_data *data = &sc->tx_data[i]; |
| 523 | |
| 524 | data->sc = sc; /* backpointer for callbacks */ |
| 525 | |
| 526 | data->xfer = usbd_alloc_xfer(sc->sc_udev); |
| 527 | if (data->xfer == NULL((void *)0)) { |
| 528 | printf("%s: could not allocate xfer\n", |
| 529 | sc->sc_dev.dv_xname); |
| 530 | error = ENOMEM12; |
| 531 | goto fail; |
| 532 | } |
| 533 | data->buf = usbd_alloc_buffer(data->xfer, UATH_MAX_TXBUFSZ(sizeof (uint32_t) + sizeof (struct uath_tx_desc) + (2300 + 4 + (3 + 1 + 4)))); |
| 534 | if (data->buf == NULL((void *)0)) { |
| 535 | printf("%s: could not allocate xfer buffer\n", |
| 536 | sc->sc_dev.dv_xname); |
| 537 | error = ENOMEM12; |
| 538 | goto fail; |
| 539 | } |
| 540 | } |
| 541 | return 0; |
| 542 | |
| 543 | fail: uath_free_tx_data_list(sc); |
| 544 | return error; |
| 545 | } |
| 546 | |
| 547 | void |
| 548 | uath_free_tx_data_list(struct uath_softc *sc) |
| 549 | { |
| 550 | int i; |
| 551 | |
| 552 | for (i = 0; i < UATH_TX_DATA_LIST_COUNT8; i++) |
| 553 | if (sc->tx_data[i].xfer != NULL((void *)0)) { |
| 554 | usbd_free_xfer(sc->tx_data[i].xfer); |
| 555 | sc->tx_data[i].xfer = NULL((void *)0); |
| 556 | } |
| 557 | } |
| 558 | |
| 559 | int |
| 560 | uath_alloc_rx_data_list(struct uath_softc *sc) |
| 561 | { |
| 562 | int i, error; |
| 563 | |
| 564 | for (i = 0; i < UATH_RX_DATA_LIST_COUNT1; i++) { |
| 565 | struct uath_rx_data *data = &sc->rx_data[i]; |
| 566 | |
| 567 | data->sc = sc; /* backpointer for callbacks */ |
| 568 | |
| 569 | data->xfer = usbd_alloc_xfer(sc->sc_udev); |
| 570 | if (data->xfer == NULL((void *)0)) { |
| 571 | printf("%s: could not allocate xfer\n", |
| 572 | sc->sc_dev.dv_xname); |
| 573 | error = ENOMEM12; |
| 574 | goto fail; |
| 575 | } |
| 576 | if (usbd_alloc_buffer(data->xfer, sc->rxbufsz) == NULL((void *)0)) { |
| 577 | printf("%s: could not allocate xfer buffer\n", |
| 578 | sc->sc_dev.dv_xname); |
| 579 | error = ENOMEM12; |
| 580 | goto fail; |
| 581 | } |
| 582 | |
| 583 | MGETHDR(data->m, M_DONTWAIT, MT_DATA)data->m = m_gethdr((0x0002), (1)); |
| 584 | if (data->m == NULL((void *)0)) { |
| 585 | printf("%s: could not allocate rx mbuf\n", |
| 586 | sc->sc_dev.dv_xname); |
| 587 | error = ENOMEM12; |
| 588 | goto fail; |
| 589 | } |
| 590 | MCLGETL(data->m, M_DONTWAIT, sc->rxbufsz)m_clget((data->m), (0x0002), (sc->rxbufsz)); |
| 591 | if (!(data->m->m_flagsm_hdr.mh_flags & M_EXT0x0001)) { |
| 592 | printf("%s: could not allocate rx mbuf cluster\n", |
| 593 | sc->sc_dev.dv_xname); |
| 594 | error = ENOMEM12; |
| 595 | goto fail; |
| 596 | } |
| 597 | |
| 598 | data->buf = mtod(data->m, uint8_t *)((uint8_t *)((data->m)->m_hdr.mh_data)); |
| 599 | } |
| 600 | return 0; |
| 601 | |
| 602 | fail: uath_free_rx_data_list(sc); |
| 603 | return error; |
| 604 | } |
| 605 | |
| 606 | void |
| 607 | uath_free_rx_data_list(struct uath_softc *sc) |
| 608 | { |
| 609 | int i; |
| 610 | |
| 611 | for (i = 0; i < UATH_RX_DATA_LIST_COUNT1; i++) { |
| 612 | struct uath_rx_data *data = &sc->rx_data[i]; |
| 613 | |
| 614 | if (data->xfer != NULL((void *)0)) { |
| 615 | usbd_free_xfer(data->xfer); |
| 616 | data->xfer = NULL((void *)0); |
| 617 | } |
| 618 | |
| 619 | if (data->m != NULL((void *)0)) { |
| 620 | m_freem(data->m); |
| 621 | data->m = NULL((void *)0); |
| 622 | } |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | int |
| 627 | uath_alloc_tx_cmd_list(struct uath_softc *sc) |
| 628 | { |
| 629 | int i, error; |
| 630 | |
| 631 | for (i = 0; i < UATH_TX_CMD_LIST_COUNT8; i++) { |
| 632 | struct uath_tx_cmd *cmd = &sc->tx_cmd[i]; |
| 633 | |
| 634 | cmd->sc = sc; /* backpointer for callbacks */ |
| 635 | |
| 636 | cmd->xfer = usbd_alloc_xfer(sc->sc_udev); |
| 637 | if (cmd->xfer == NULL((void *)0)) { |
| 638 | printf("%s: could not allocate xfer\n", |
| 639 | sc->sc_dev.dv_xname); |
| 640 | error = ENOMEM12; |
| 641 | goto fail; |
| 642 | } |
| 643 | cmd->buf = usbd_alloc_buffer(cmd->xfer, UATH_MAX_TXCMDSZ512); |
| 644 | if (cmd->buf == NULL((void *)0)) { |
| 645 | printf("%s: could not allocate xfer buffer\n", |
| 646 | sc->sc_dev.dv_xname); |
| 647 | error = ENOMEM12; |
| 648 | goto fail; |
| 649 | } |
| 650 | } |
| 651 | return 0; |
| 652 | |
| 653 | fail: uath_free_tx_cmd_list(sc); |
| 654 | return error; |
| 655 | } |
| 656 | |
| 657 | void |
| 658 | uath_free_tx_cmd_list(struct uath_softc *sc) |
| 659 | { |
| 660 | int i; |
| 661 | |
| 662 | for (i = 0; i < UATH_TX_CMD_LIST_COUNT8; i++) |
| 663 | if (sc->tx_cmd[i].xfer != NULL((void *)0)) { |
| 664 | usbd_free_xfer(sc->tx_cmd[i].xfer); |
| 665 | sc->tx_cmd[i].xfer = NULL((void *)0); |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | int |
| 670 | uath_alloc_rx_cmd_list(struct uath_softc *sc) |
| 671 | { |
| 672 | int i, error; |
| 673 | |
| 674 | for (i = 0; i < UATH_RX_CMD_LIST_COUNT1; i++) { |
| 675 | struct uath_rx_cmd *cmd = &sc->rx_cmd[i]; |
| 676 | |
| 677 | cmd->sc = sc; /* backpointer for callbacks */ |
| 678 | |
| 679 | cmd->xfer = usbd_alloc_xfer(sc->sc_udev); |
| 680 | if (cmd->xfer == NULL((void *)0)) { |
| 681 | printf("%s: could not allocate xfer\n", |
| 682 | sc->sc_dev.dv_xname); |
| 683 | error = ENOMEM12; |
| 684 | goto fail; |
| 685 | } |
| 686 | cmd->buf = usbd_alloc_buffer(cmd->xfer, UATH_MAX_RXCMDSZ512); |
| 687 | if (cmd->buf == NULL((void *)0)) { |
| 688 | printf("%s: could not allocate xfer buffer\n", |
| 689 | sc->sc_dev.dv_xname); |
| 690 | error = ENOMEM12; |
| 691 | goto fail; |
| 692 | } |
| 693 | } |
| 694 | return 0; |
| 695 | |
| 696 | fail: uath_free_rx_cmd_list(sc); |
| 697 | return error; |
| 698 | } |
| 699 | |
| 700 | void |
| 701 | uath_free_rx_cmd_list(struct uath_softc *sc) |
| 702 | { |
| 703 | int i; |
| 704 | |
| 705 | for (i = 0; i < UATH_RX_CMD_LIST_COUNT1; i++) |
| 706 | if (sc->rx_cmd[i].xfer != NULL((void *)0)) { |
| 707 | usbd_free_xfer(sc->rx_cmd[i].xfer); |
| 708 | sc->rx_cmd[i].xfer = NULL((void *)0); |
| 709 | } |
| 710 | } |
| 711 | |
| 712 | int |
| 713 | uath_media_change(struct ifnet *ifp) |
| 714 | { |
| 715 | int error; |
| 716 | |
| 717 | error = ieee80211_media_change(ifp); |
| 718 | if (error != ENETRESET52) |
| 719 | return error; |
| 720 | |
| 721 | if ((ifp->if_flags & (IFF_UP0x1 | IFF_RUNNING0x40)) == (IFF_UP0x1 | IFF_RUNNING0x40)) |
| 722 | error = uath_init(ifp); |
| 723 | |
| 724 | return error; |
| 725 | } |
| 726 | |
| 727 | /* |
| 728 | * This function is called periodically (every second) when associated to |
| 729 | * query device statistics. |
| 730 | */ |
| 731 | void |
| 732 | uath_stat(void *arg) |
| 733 | { |
| 734 | struct uath_softc *sc = arg; |
| 735 | int error; |
| 736 | |
| 737 | /* |
| 738 | * Send request for statistics asynchronously. The timer will be |
| 739 | * restarted when we'll get the stats notification. |
| 740 | */ |
| 741 | error = uath_cmd_write(sc, UATH_CMD_STATS0x06, NULL((void *)0), 0, |
| 742 | UATH_CMD_FLAG_ASYNC(1 << 0)); |
| 743 | if (error != 0) { |
| 744 | printf("%s: could not query statistics (error=%d)\n", |
| 745 | sc->sc_dev.dv_xname, error); |
| 746 | } |
| 747 | } |
| 748 | |
| 749 | /* |
| 750 | * This function is called periodically (every 250ms) during scanning to |
| 751 | * switch from one channel to another. |
| 752 | */ |
| 753 | void |
| 754 | uath_next_scan(void *arg) |
| 755 | { |
| 756 | struct uath_softc *sc = arg; |
| 757 | struct ieee80211com *ic = &sc->sc_ic; |
| 758 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 759 | |
| 760 | if (ic->ic_state == IEEE80211_S_SCAN) |
| 761 | ieee80211_next_scan(ifp); |
| 762 | } |
| 763 | |
| 764 | void |
| 765 | uath_task(void *arg) |
| 766 | { |
| 767 | struct uath_softc *sc = arg; |
| 768 | struct ieee80211com *ic = &sc->sc_ic; |
| 769 | enum ieee80211_state ostate; |
| 770 | |
| 771 | ostate = ic->ic_state; |
| 772 | |
| 773 | switch (sc->sc_state) { |
| 774 | case IEEE80211_S_INIT: |
| 775 | if (ostate == IEEE80211_S_RUN) { |
| 776 | /* turn link and activity LEDs off */ |
| 777 | (void)uath_set_led(sc, UATH_LED_LINK0, 0); |
| 778 | (void)uath_set_led(sc, UATH_LED_ACTIVITY1, 0); |
| 779 | } |
| 780 | break; |
| 781 | |
| 782 | case IEEE80211_S_SCAN: |
| 783 | if (uath_switch_channel(sc, ic->ic_bss->ni_chan) != 0) { |
| 784 | printf("%s: could not switch channel\n", |
| 785 | sc->sc_dev.dv_xname); |
| 786 | break; |
| 787 | } |
| 788 | timeout_add_msec(&sc->scan_to, 250); |
| 789 | break; |
| 790 | |
| 791 | case IEEE80211_S_AUTH: |
| 792 | { |
| 793 | struct ieee80211_node *ni = ic->ic_bss; |
| 794 | struct uath_cmd_bssid bssid; |
| 795 | struct uath_cmd_0b cmd0b; |
| 796 | struct uath_cmd_0c cmd0c; |
| 797 | |
| 798 | if (uath_switch_channel(sc, ni->ni_chan) != 0) { |
| 799 | printf("%s: could not switch channel\n", |
| 800 | sc->sc_dev.dv_xname); |
| 801 | break; |
| 802 | } |
| 803 | |
| 804 | (void)uath_cmd_write(sc, UATH_CMD_240x24, NULL((void *)0), 0, 0); |
| 805 | |
| 806 | bzero(&bssid, sizeof bssid)__builtin_bzero((&bssid), (sizeof bssid)); |
| 807 | bssid.len = htobe32(IEEE80211_ADDR_LEN)(__uint32_t)(__builtin_constant_p(6) ? (__uint32_t)(((__uint32_t )(6) & 0xff) << 24 | ((__uint32_t)(6) & 0xff00) << 8 | ((__uint32_t)(6) & 0xff0000) >> 8 | ( (__uint32_t)(6) & 0xff000000) >> 24) : __swap32md(6 )); |
| 808 | IEEE80211_ADDR_COPY(bssid.bssid, ni->ni_bssid)__builtin_memcpy((bssid.bssid), (ni->ni_bssid), (6)); |
| 809 | (void)uath_cmd_write(sc, UATH_CMD_SET_BSSID0x21, &bssid, |
| 810 | sizeof bssid, 0); |
| 811 | |
| 812 | bzero(&cmd0b, sizeof cmd0b)__builtin_bzero((&cmd0b), (sizeof cmd0b)); |
| 813 | cmd0b.code = htobe32(2)(__uint32_t)(__builtin_constant_p(2) ? (__uint32_t)(((__uint32_t )(2) & 0xff) << 24 | ((__uint32_t)(2) & 0xff00) << 8 | ((__uint32_t)(2) & 0xff0000) >> 8 | ( (__uint32_t)(2) & 0xff000000) >> 24) : __swap32md(2 )); |
| 814 | cmd0b.size = htobe32(sizeof (cmd0b.data))(__uint32_t)(__builtin_constant_p(sizeof (cmd0b.data)) ? (__uint32_t )(((__uint32_t)(sizeof (cmd0b.data)) & 0xff) << 24 | ((__uint32_t)(sizeof (cmd0b.data)) & 0xff00) << 8 | ((__uint32_t)(sizeof (cmd0b.data)) & 0xff0000) >> 8 | ((__uint32_t)(sizeof (cmd0b.data)) & 0xff000000) >> 24) : __swap32md(sizeof (cmd0b.data))); |
| 815 | (void)uath_cmd_write(sc, UATH_CMD_0B0x0b, &cmd0b, sizeof cmd0b, 0); |
| 816 | |
| 817 | bzero(&cmd0c, sizeof cmd0c)__builtin_bzero((&cmd0c), (sizeof cmd0c)); |
| 818 | cmd0c.magic1 = htobe32(2)(__uint32_t)(__builtin_constant_p(2) ? (__uint32_t)(((__uint32_t )(2) & 0xff) << 24 | ((__uint32_t)(2) & 0xff00) << 8 | ((__uint32_t)(2) & 0xff0000) >> 8 | ( (__uint32_t)(2) & 0xff000000) >> 24) : __swap32md(2 )); |
| 819 | cmd0c.magic2 = htobe32(7)(__uint32_t)(__builtin_constant_p(7) ? (__uint32_t)(((__uint32_t )(7) & 0xff) << 24 | ((__uint32_t)(7) & 0xff00) << 8 | ((__uint32_t)(7) & 0xff0000) >> 8 | ( (__uint32_t)(7) & 0xff000000) >> 24) : __swap32md(7 )); |
| 820 | cmd0c.magic3 = htobe32(1)(__uint32_t)(__builtin_constant_p(1) ? (__uint32_t)(((__uint32_t )(1) & 0xff) << 24 | ((__uint32_t)(1) & 0xff00) << 8 | ((__uint32_t)(1) & 0xff0000) >> 8 | ( (__uint32_t)(1) & 0xff000000) >> 24) : __swap32md(1 )); |
| 821 | (void)uath_cmd_write(sc, UATH_CMD_0C0x0c, &cmd0c, sizeof cmd0c, 0); |
| 822 | |
| 823 | if (uath_set_rates(sc, &ni->ni_rates) != 0) { |
| 824 | printf("%s: could not set negotiated rate set\n", |
| 825 | sc->sc_dev.dv_xname); |
| 826 | break; |
| 827 | } |
| 828 | break; |
| 829 | } |
| 830 | |
| 831 | case IEEE80211_S_ASSOC: |
| 832 | break; |
| 833 | |
| 834 | case IEEE80211_S_RUN: |
| 835 | { |
| 836 | struct ieee80211_node *ni = ic->ic_bss; |
| 837 | struct uath_cmd_bssid bssid; |
| 838 | struct uath_cmd_xled xled; |
| 839 | uint32_t val; |
| 840 | |
| 841 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
| 842 | /* make both LEDs blink while monitoring */ |
| 843 | bzero(&xled, sizeof xled)__builtin_bzero((&xled), (sizeof xled)); |
| 844 | xled.which = htobe32(0)(__uint32_t)(__builtin_constant_p(0) ? (__uint32_t)(((__uint32_t )(0) & 0xff) << 24 | ((__uint32_t)(0) & 0xff00) << 8 | ((__uint32_t)(0) & 0xff0000) >> 8 | ( (__uint32_t)(0) & 0xff000000) >> 24) : __swap32md(0 )); |
| 845 | xled.rate = htobe32(1)(__uint32_t)(__builtin_constant_p(1) ? (__uint32_t)(((__uint32_t )(1) & 0xff) << 24 | ((__uint32_t)(1) & 0xff00) << 8 | ((__uint32_t)(1) & 0xff0000) >> 8 | ( (__uint32_t)(1) & 0xff000000) >> 24) : __swap32md(1 )); |
| 846 | xled.mode = htobe32(2)(__uint32_t)(__builtin_constant_p(2) ? (__uint32_t)(((__uint32_t )(2) & 0xff) << 24 | ((__uint32_t)(2) & 0xff00) << 8 | ((__uint32_t)(2) & 0xff0000) >> 8 | ( (__uint32_t)(2) & 0xff000000) >> 24) : __swap32md(2 )); |
| 847 | (void)uath_cmd_write(sc, UATH_CMD_SET_XLED0x18, &xled, |
| 848 | sizeof xled, 0); |
| 849 | break; |
| 850 | } |
| 851 | |
| 852 | /* |
| 853 | * Tx rate is controlled by firmware, report the maximum |
| 854 | * negotiated rate in ifconfig output. |
| 855 | */ |
| 856 | ni->ni_txrate = ni->ni_rates.rs_nrates - 1; |
| 857 | |
| 858 | val = htobe32(1)(__uint32_t)(__builtin_constant_p(1) ? (__uint32_t)(((__uint32_t )(1) & 0xff) << 24 | ((__uint32_t)(1) & 0xff00) << 8 | ((__uint32_t)(1) & 0xff0000) >> 8 | ( (__uint32_t)(1) & 0xff000000) >> 24) : __swap32md(1 )); |
| 859 | (void)uath_cmd_write(sc, UATH_CMD_2E0x2e, &val, sizeof val, 0); |
| 860 | |
| 861 | bzero(&bssid, sizeof bssid)__builtin_bzero((&bssid), (sizeof bssid)); |
| 862 | bssid.flags1 = htobe32(0xc004)(__uint32_t)(__builtin_constant_p(0xc004) ? (__uint32_t)(((__uint32_t )(0xc004) & 0xff) << 24 | ((__uint32_t)(0xc004) & 0xff00) << 8 | ((__uint32_t)(0xc004) & 0xff0000) >> 8 | ((__uint32_t)(0xc004) & 0xff000000) >> 24) : __swap32md (0xc004)); |
| 863 | bssid.flags2 = htobe32(0x003b)(__uint32_t)(__builtin_constant_p(0x003b) ? (__uint32_t)(((__uint32_t )(0x003b) & 0xff) << 24 | ((__uint32_t)(0x003b) & 0xff00) << 8 | ((__uint32_t)(0x003b) & 0xff0000) >> 8 | ((__uint32_t)(0x003b) & 0xff000000) >> 24) : __swap32md (0x003b)); |
| 864 | bssid.len = htobe32(IEEE80211_ADDR_LEN)(__uint32_t)(__builtin_constant_p(6) ? (__uint32_t)(((__uint32_t )(6) & 0xff) << 24 | ((__uint32_t)(6) & 0xff00) << 8 | ((__uint32_t)(6) & 0xff0000) >> 8 | ( (__uint32_t)(6) & 0xff000000) >> 24) : __swap32md(6 )); |
| 865 | IEEE80211_ADDR_COPY(bssid.bssid, ni->ni_bssid)__builtin_memcpy((bssid.bssid), (ni->ni_bssid), (6)); |
| 866 | (void)uath_cmd_write(sc, UATH_CMD_SET_BSSID0x21, &bssid, |
| 867 | sizeof bssid, 0); |
| 868 | |
| 869 | /* turn link LED on */ |
| 870 | (void)uath_set_led(sc, UATH_LED_LINK0, 1); |
| 871 | |
| 872 | /* make activity LED blink */ |
| 873 | bzero(&xled, sizeof xled)__builtin_bzero((&xled), (sizeof xled)); |
| 874 | xled.which = htobe32(1)(__uint32_t)(__builtin_constant_p(1) ? (__uint32_t)(((__uint32_t )(1) & 0xff) << 24 | ((__uint32_t)(1) & 0xff00) << 8 | ((__uint32_t)(1) & 0xff0000) >> 8 | ( (__uint32_t)(1) & 0xff000000) >> 24) : __swap32md(1 )); |
| 875 | xled.rate = htobe32(1)(__uint32_t)(__builtin_constant_p(1) ? (__uint32_t)(((__uint32_t )(1) & 0xff) << 24 | ((__uint32_t)(1) & 0xff00) << 8 | ((__uint32_t)(1) & 0xff0000) >> 8 | ( (__uint32_t)(1) & 0xff000000) >> 24) : __swap32md(1 )); |
| 876 | xled.mode = htobe32(2)(__uint32_t)(__builtin_constant_p(2) ? (__uint32_t)(((__uint32_t )(2) & 0xff) << 24 | ((__uint32_t)(2) & 0xff00) << 8 | ((__uint32_t)(2) & 0xff0000) >> 8 | ( (__uint32_t)(2) & 0xff000000) >> 24) : __swap32md(2 )); |
| 877 | (void)uath_cmd_write(sc, UATH_CMD_SET_XLED0x18, &xled, sizeof xled, |
| 878 | 0); |
| 879 | |
| 880 | /* set state to associated */ |
| 881 | val = htobe32(1)(__uint32_t)(__builtin_constant_p(1) ? (__uint32_t)(((__uint32_t )(1) & 0xff) << 24 | ((__uint32_t)(1) & 0xff00) << 8 | ((__uint32_t)(1) & 0xff0000) >> 8 | ( (__uint32_t)(1) & 0xff000000) >> 24) : __swap32md(1 )); |
| 882 | (void)uath_cmd_write(sc, UATH_CMD_SET_STATE0x20, &val, sizeof val, |
| 883 | 0); |
| 884 | |
| 885 | /* start statistics timer */ |
| 886 | timeout_add_sec(&sc->stat_to, 1); |
| 887 | break; |
| 888 | } |
| 889 | } |
| 890 | sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); |
| 891 | } |
| 892 | |
| 893 | int |
| 894 | uath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) |
| 895 | { |
| 896 | struct uath_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
| 897 | |
| 898 | usb_rem_task(sc->sc_udev, &sc->sc_task); |
| 899 | timeout_del(&sc->scan_to); |
| 900 | timeout_del(&sc->stat_to); |
| 901 | |
| 902 | /* do it in a process context */ |
| 903 | sc->sc_state = nstate; |
| 904 | sc->sc_arg = arg; |
| 905 | usb_add_task(sc->sc_udev, &sc->sc_task); |
| 906 | return 0; |
| 907 | } |
| 908 | |
| 909 | #ifdef UATH_DEBUG |
| 910 | void |
| 911 | uath_dump_cmd(const uint8_t *buf, int len, char prefix) |
| 912 | { |
| 913 | int i; |
| 914 | |
| 915 | for (i = 0; i < len; i++) { |
| 916 | if ((i % 16) == 0) |
| 917 | printf("\n%c ", prefix); |
| 918 | else if ((i % 4) == 0) |
| 919 | printf(" "); |
| 920 | printf("%02x", buf[i]); |
| 921 | } |
| 922 | printf("\n"); |
| 923 | } |
| 924 | #endif |
| 925 | |
| 926 | /* |
| 927 | * Low-level function to send read or write commands to the firmware. |
| 928 | */ |
| 929 | int |
| 930 | uath_cmd(struct uath_softc *sc, uint32_t code, const void *idata, int ilen, |
| 931 | void *odata, int flags) |
| 932 | { |
| 933 | struct uath_cmd_hdr *hdr; |
| 934 | struct uath_tx_cmd *cmd; |
| 935 | uint16_t xferflags; |
| 936 | int s, xferlen, error; |
| 937 | |
| 938 | /* grab a xfer */ |
| 939 | cmd = &sc->tx_cmd[sc->cmd_idx]; |
| 940 | |
| 941 | /* always bulk-out a multiple of 4 bytes */ |
| 942 | xferlen = (sizeof (struct uath_cmd_hdr) + ilen + 3) & ~3; |
| 943 | |
| 944 | hdr = (struct uath_cmd_hdr *)cmd->buf; |
| 945 | bzero(hdr, sizeof (struct uath_cmd_hdr))__builtin_bzero((hdr), (sizeof (struct uath_cmd_hdr))); |
| 946 | hdr->len = htobe32(xferlen)(__uint32_t)(__builtin_constant_p(xferlen) ? (__uint32_t)(((__uint32_t )(xferlen) & 0xff) << 24 | ((__uint32_t)(xferlen) & 0xff00) << 8 | ((__uint32_t)(xferlen) & 0xff0000) >> 8 | ((__uint32_t)(xferlen) & 0xff000000) >> 24) : __swap32md (xferlen)); |
| 947 | hdr->code = htobe32(code)(__uint32_t)(__builtin_constant_p(code) ? (__uint32_t)(((__uint32_t )(code) & 0xff) << 24 | ((__uint32_t)(code) & 0xff00 ) << 8 | ((__uint32_t)(code) & 0xff0000) >> 8 | ((__uint32_t)(code) & 0xff000000) >> 24) : __swap32md (code)); |
| 948 | hdr->priv = sc->cmd_idx; /* don't care about endianness */ |
| 949 | hdr->magic = htobe32((flags & UATH_CMD_FLAG_MAGIC) ? 1 << 24 : 0)(__uint32_t)(__builtin_constant_p((flags & (1 << 2) ) ? 1 << 24 : 0) ? (__uint32_t)(((__uint32_t)((flags & (1 << 2)) ? 1 << 24 : 0) & 0xff) << 24 | ((__uint32_t)((flags & (1 << 2)) ? 1 << 24 : 0) & 0xff00) << 8 | ((__uint32_t)((flags & ( 1 << 2)) ? 1 << 24 : 0) & 0xff0000) >> 8 | ((__uint32_t)((flags & (1 << 2)) ? 1 << 24 : 0) & 0xff000000) >> 24) : __swap32md((flags & (1 << 2)) ? 1 << 24 : 0)); |
| 950 | bcopy(idata, (uint8_t *)(hdr + 1), ilen); |
| 951 | |
| 952 | #ifdef UATH_DEBUG |
| 953 | if (uath_debug >= 5) { |
| 954 | printf("sending command code=0x%02x flags=0x%x index=%u", |
| 955 | code, flags, sc->cmd_idx); |
| 956 | uath_dump_cmd(cmd->buf, xferlen, '+'); |
| 957 | } |
| 958 | #endif |
| 959 | xferflags = USBD_FORCE_SHORT_XFER0x08 | USBD_NO_COPY0x01; |
| 960 | if (!(flags & UATH_CMD_FLAG_READ(1 << 1))) { |
| 961 | if (!(flags & UATH_CMD_FLAG_ASYNC(1 << 0))) |
| 962 | xferflags |= USBD_SYNCHRONOUS0x02; |
| 963 | } else |
| 964 | s = splusb()splraise(0x2); |
| 965 | |
| 966 | cmd->odata = odata; |
| 967 | |
| 968 | usbd_setup_xfer(cmd->xfer, sc->cmd_tx_pipe, cmd, cmd->buf, xferlen, |
| 969 | xferflags, UATH_CMD_TIMEOUT1000, NULL((void *)0)); |
| 970 | error = usbd_transfer(cmd->xfer); |
| 971 | if (error != USBD_IN_PROGRESS && error != 0) { |
| 972 | if (flags & UATH_CMD_FLAG_READ(1 << 1)) |
| 973 | splx(s)spllower(s); |
| 974 | printf("%s: could not send command 0x%x (error=%s)\n", |
| 975 | sc->sc_dev.dv_xname, code, usbd_errstr(error)); |
| 976 | return error; |
| 977 | } |
| 978 | sc->cmd_idx = (sc->cmd_idx + 1) % UATH_TX_CMD_LIST_COUNT8; |
| 979 | |
| 980 | if (!(flags & UATH_CMD_FLAG_READ(1 << 1))) |
| 981 | return 0; /* write: don't wait for reply */ |
| 982 | |
| 983 | /* wait at most two seconds for command reply */ |
| 984 | error = tsleep_nsec(cmd, PCATCH0x100, "uathcmd", SEC_TO_NSEC(2)); |
| 985 | cmd->odata = NULL((void *)0); /* in case answer is received too late */ |
| 986 | splx(s)spllower(s); |
| 987 | if (error != 0) { |
| 988 | printf("%s: timeout waiting for command reply\n", |
| 989 | sc->sc_dev.dv_xname); |
| 990 | } |
| 991 | return error; |
| 992 | } |
| 993 | |
| 994 | int |
| 995 | uath_cmd_write(struct uath_softc *sc, uint32_t code, const void *data, int len, |
| 996 | int flags) |
| 997 | { |
| 998 | flags &= ~UATH_CMD_FLAG_READ(1 << 1); |
| 999 | return uath_cmd(sc, code, data, len, NULL((void *)0), flags); |
| 1000 | } |
| 1001 | |
| 1002 | int |
| 1003 | uath_cmd_read(struct uath_softc *sc, uint32_t code, const void *idata, |
| 1004 | int ilen, void *odata, int flags) |
| 1005 | { |
| 1006 | flags |= UATH_CMD_FLAG_READ(1 << 1); |
| 1007 | return uath_cmd(sc, code, idata, ilen, odata, flags); |
| 1008 | } |
| 1009 | |
| 1010 | int |
| 1011 | uath_write_reg(struct uath_softc *sc, uint32_t reg, uint32_t val) |
| 1012 | { |
| 1013 | struct uath_write_mac write; |
| 1014 | int error; |
| 1015 | |
| 1016 | write.reg = htobe32(reg)(__uint32_t)(__builtin_constant_p(reg) ? (__uint32_t)(((__uint32_t )(reg) & 0xff) << 24 | ((__uint32_t)(reg) & 0xff00 ) << 8 | ((__uint32_t)(reg) & 0xff0000) >> 8 | ((__uint32_t)(reg) & 0xff000000) >> 24) : __swap32md (reg)); |
| 1017 | write.len = htobe32(0)(__uint32_t)(__builtin_constant_p(0) ? (__uint32_t)(((__uint32_t )(0) & 0xff) << 24 | ((__uint32_t)(0) & 0xff00) << 8 | ((__uint32_t)(0) & 0xff0000) >> 8 | ( (__uint32_t)(0) & 0xff000000) >> 24) : __swap32md(0 )); /* 0 = single write */ |
| 1018 | *(uint32_t *)write.data = htobe32(val)(__uint32_t)(__builtin_constant_p(val) ? (__uint32_t)(((__uint32_t )(val) & 0xff) << 24 | ((__uint32_t)(val) & 0xff00 ) << 8 | ((__uint32_t)(val) & 0xff0000) >> 8 | ((__uint32_t)(val) & 0xff000000) >> 24) : __swap32md (val)); |
| 1019 | |
| 1020 | error = uath_cmd_write(sc, UATH_CMD_WRITE_MAC0x04, &write, |
| 1021 | 3 * sizeof (uint32_t), 0); |
| 1022 | if (error != 0) { |
| 1023 | printf("%s: could not write register 0x%02x\n", |
| 1024 | sc->sc_dev.dv_xname, reg); |
| 1025 | } |
| 1026 | return error; |
| 1027 | } |
| 1028 | |
| 1029 | int |
| 1030 | uath_write_multi(struct uath_softc *sc, uint32_t reg, const void *data, |
| 1031 | int len) |
| 1032 | { |
| 1033 | struct uath_write_mac write; |
| 1034 | int error; |
| 1035 | |
| 1036 | write.reg = htobe32(reg)(__uint32_t)(__builtin_constant_p(reg) ? (__uint32_t)(((__uint32_t )(reg) & 0xff) << 24 | ((__uint32_t)(reg) & 0xff00 ) << 8 | ((__uint32_t)(reg) & 0xff0000) >> 8 | ((__uint32_t)(reg) & 0xff000000) >> 24) : __swap32md (reg)); |
| 1037 | write.len = htobe32(len)(__uint32_t)(__builtin_constant_p(len) ? (__uint32_t)(((__uint32_t )(len) & 0xff) << 24 | ((__uint32_t)(len) & 0xff00 ) << 8 | ((__uint32_t)(len) & 0xff0000) >> 8 | ((__uint32_t)(len) & 0xff000000) >> 24) : __swap32md (len)); |
| 1038 | bcopy(data, write.data, len); |
| 1039 | |
| 1040 | /* properly handle the case where len is zero (reset) */ |
| 1041 | error = uath_cmd_write(sc, UATH_CMD_WRITE_MAC0x04, &write, |
| 1042 | (len == 0) ? sizeof (uint32_t) : 2 * sizeof (uint32_t) + len, 0); |
| 1043 | if (error != 0) { |
| 1044 | printf("%s: could not write %d bytes to register 0x%02x\n", |
| 1045 | sc->sc_dev.dv_xname, len, reg); |
| 1046 | } |
| 1047 | return error; |
| 1048 | } |
| 1049 | |
| 1050 | int |
| 1051 | uath_read_reg(struct uath_softc *sc, uint32_t reg, uint32_t *val) |
| 1052 | { |
| 1053 | struct uath_read_mac read; |
| 1054 | int error; |
| 1055 | |
| 1056 | reg = htobe32(reg)(__uint32_t)(__builtin_constant_p(reg) ? (__uint32_t)(((__uint32_t )(reg) & 0xff) << 24 | ((__uint32_t)(reg) & 0xff00 ) << 8 | ((__uint32_t)(reg) & 0xff0000) >> 8 | ((__uint32_t)(reg) & 0xff000000) >> 24) : __swap32md (reg)); |
| 1057 | error = uath_cmd_read(sc, UATH_CMD_READ_MAC0x03, ®, sizeof reg, &read, |
| 1058 | 0); |
| 1059 | if (error != 0) { |
| 1060 | printf("%s: could not read register 0x%02x\n", |
| 1061 | sc->sc_dev.dv_xname, betoh32(reg)(__uint32_t)(__builtin_constant_p(reg) ? (__uint32_t)(((__uint32_t )(reg) & 0xff) << 24 | ((__uint32_t)(reg) & 0xff00 ) << 8 | ((__uint32_t)(reg) & 0xff0000) >> 8 | ((__uint32_t)(reg) & 0xff000000) >> 24) : __swap32md (reg))); |
| 1062 | return error; |
| 1063 | } |
| 1064 | *val = betoh32(*(uint32_t *)read.data)(__uint32_t)(__builtin_constant_p(*(uint32_t *)read.data) ? ( __uint32_t)(((__uint32_t)(*(uint32_t *)read.data) & 0xff) << 24 | ((__uint32_t)(*(uint32_t *)read.data) & 0xff00 ) << 8 | ((__uint32_t)(*(uint32_t *)read.data) & 0xff0000 ) >> 8 | ((__uint32_t)(*(uint32_t *)read.data) & 0xff000000 ) >> 24) : __swap32md(*(uint32_t *)read.data)); |
| 1065 | return error; |
| 1066 | } |
| 1067 | |
| 1068 | int |
| 1069 | uath_read_eeprom(struct uath_softc *sc, uint32_t reg, void *odata) |
| 1070 | { |
| 1071 | struct uath_read_mac read; |
| 1072 | int len, error; |
| 1073 | |
| 1074 | reg = htobe32(reg)(__uint32_t)(__builtin_constant_p(reg) ? (__uint32_t)(((__uint32_t )(reg) & 0xff) << 24 | ((__uint32_t)(reg) & 0xff00 ) << 8 | ((__uint32_t)(reg) & 0xff0000) >> 8 | ((__uint32_t)(reg) & 0xff000000) >> 24) : __swap32md (reg)); |
| 1075 | error = uath_cmd_read(sc, UATH_CMD_READ_EEPROM0x05, ®, sizeof reg, |
| 1076 | &read, 0); |
| 1077 | if (error != 0) { |
| 1078 | printf("%s: could not read EEPROM offset 0x%02x\n", |
| 1079 | sc->sc_dev.dv_xname, betoh32(reg)(__uint32_t)(__builtin_constant_p(reg) ? (__uint32_t)(((__uint32_t )(reg) & 0xff) << 24 | ((__uint32_t)(reg) & 0xff00 ) << 8 | ((__uint32_t)(reg) & 0xff0000) >> 8 | ((__uint32_t)(reg) & 0xff000000) >> 24) : __swap32md (reg))); |
| 1080 | return error; |
| 1081 | } |
| 1082 | len = betoh32(read.len)(__uint32_t)(__builtin_constant_p(read.len) ? (__uint32_t)((( __uint32_t)(read.len) & 0xff) << 24 | ((__uint32_t) (read.len) & 0xff00) << 8 | ((__uint32_t)(read.len) & 0xff0000) >> 8 | ((__uint32_t)(read.len) & 0xff000000 ) >> 24) : __swap32md(read.len)); |
| 1083 | bcopy(read.data, odata, (len == 0) ? sizeof (uint32_t) : len); |
| 1084 | return error; |
| 1085 | } |
| 1086 | |
| 1087 | void |
| 1088 | uath_cmd_rxeof(struct usbd_xfer *xfer, void *priv, |
| 1089 | usbd_status status) |
| 1090 | { |
| 1091 | struct uath_rx_cmd *cmd = priv; |
| 1092 | struct uath_softc *sc = cmd->sc; |
| 1093 | struct uath_cmd_hdr *hdr; |
| 1094 | |
| 1095 | if (status != USBD_NORMAL_COMPLETION) { |
| 1096 | if (status == USBD_STALLED) |
| 1097 | usbd_clear_endpoint_stall_async(sc->cmd_rx_pipe); |
| 1098 | return; |
| 1099 | } |
| 1100 | |
| 1101 | hdr = (struct uath_cmd_hdr *)cmd->buf; |
| 1102 | |
| 1103 | #ifdef UATH_DEBUG |
| 1104 | if (uath_debug >= 5) { |
| 1105 | printf("received command code=0x%x index=%u len=%u", |
| 1106 | betoh32(hdr->code)(__uint32_t)(__builtin_constant_p(hdr->code) ? (__uint32_t )(((__uint32_t)(hdr->code) & 0xff) << 24 | ((__uint32_t )(hdr->code) & 0xff00) << 8 | ((__uint32_t)(hdr-> code) & 0xff0000) >> 8 | ((__uint32_t)(hdr->code ) & 0xff000000) >> 24) : __swap32md(hdr->code)), hdr->priv, betoh32(hdr->len)(__uint32_t)(__builtin_constant_p(hdr->len) ? (__uint32_t) (((__uint32_t)(hdr->len) & 0xff) << 24 | ((__uint32_t )(hdr->len) & 0xff00) << 8 | ((__uint32_t)(hdr-> len) & 0xff0000) >> 8 | ((__uint32_t)(hdr->len) & 0xff000000) >> 24) : __swap32md(hdr->len))); |
| 1107 | uath_dump_cmd(cmd->buf, betoh32(hdr->len)(__uint32_t)(__builtin_constant_p(hdr->len) ? (__uint32_t) (((__uint32_t)(hdr->len) & 0xff) << 24 | ((__uint32_t )(hdr->len) & 0xff00) << 8 | ((__uint32_t)(hdr-> len) & 0xff0000) >> 8 | ((__uint32_t)(hdr->len) & 0xff000000) >> 24) : __swap32md(hdr->len)), '-'); |
| 1108 | } |
| 1109 | #endif |
| 1110 | |
| 1111 | switch (betoh32(hdr->code)(__uint32_t)(__builtin_constant_p(hdr->code) ? (__uint32_t )(((__uint32_t)(hdr->code) & 0xff) << 24 | ((__uint32_t )(hdr->code) & 0xff00) << 8 | ((__uint32_t)(hdr-> code) & 0xff0000) >> 8 | ((__uint32_t)(hdr->code ) & 0xff000000) >> 24) : __swap32md(hdr->code)) & 0xff) { |
| 1112 | /* reply to a read command */ |
| 1113 | default: |
| 1114 | { |
| 1115 | struct uath_tx_cmd *txcmd = &sc->tx_cmd[hdr->priv]; |
| 1116 | |
| 1117 | if (txcmd->odata != NULL((void *)0)) { |
| 1118 | /* copy answer into caller's supplied buffer */ |
| 1119 | bcopy((uint8_t *)(hdr + 1), txcmd->odata, |
| 1120 | betoh32(hdr->len)(__uint32_t)(__builtin_constant_p(hdr->len) ? (__uint32_t) (((__uint32_t)(hdr->len) & 0xff) << 24 | ((__uint32_t )(hdr->len) & 0xff00) << 8 | ((__uint32_t)(hdr-> len) & 0xff0000) >> 8 | ((__uint32_t)(hdr->len) & 0xff000000) >> 24) : __swap32md(hdr->len)) - sizeof (struct uath_cmd_hdr)); |
| 1121 | } |
| 1122 | wakeup(txcmd); /* wake up caller */ |
| 1123 | break; |
| 1124 | } |
| 1125 | /* spontaneous firmware notifications */ |
| 1126 | case UATH_NOTIF_READY0x12: |
| 1127 | DPRINTF(("received device ready notification\n")); |
| 1128 | wakeup(UATH_COND_INIT(sc)((caddr_t)sc + 1)); |
| 1129 | break; |
| 1130 | |
| 1131 | case UATH_NOTIF_TX0x13: |
| 1132 | /* this notification is sent when UATH_TX_NOTIFY is set */ |
| 1133 | DPRINTF(("received Tx notification\n")); |
| 1134 | break; |
| 1135 | |
| 1136 | case UATH_NOTIF_STATS0x10: |
| 1137 | DPRINTFN(2, ("received device statistics\n")); |
| 1138 | timeout_add_sec(&sc->stat_to, 1); |
| 1139 | break; |
| 1140 | } |
| 1141 | |
| 1142 | /* setup a new transfer */ |
| 1143 | usbd_setup_xfer(xfer, sc->cmd_rx_pipe, cmd, cmd->buf, UATH_MAX_RXCMDSZ512, |
| 1144 | USBD_SHORT_XFER_OK0x04 | USBD_NO_COPY0x01, USBD_NO_TIMEOUT0, |
| 1145 | uath_cmd_rxeof); |
| 1146 | (void)usbd_transfer(xfer); |
| 1147 | } |
| 1148 | |
| 1149 | void |
| 1150 | uath_data_rxeof(struct usbd_xfer *xfer, void *priv, |
| 1151 | usbd_status status) |
| 1152 | { |
| 1153 | struct uath_rx_data *data = priv; |
| 1154 | struct uath_softc *sc = data->sc; |
| 1155 | struct ieee80211com *ic = &sc->sc_ic; |
| 1156 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 1157 | struct ieee80211_frame *wh; |
| 1158 | struct ieee80211_rxinfo rxi; |
| 1159 | struct ieee80211_node *ni; |
| 1160 | struct uath_rx_desc *desc; |
| 1161 | struct mbuf *mnew, *m; |
| 1162 | uint32_t hdr; |
| 1163 | int s, len; |
| 1164 | |
| 1165 | if (status != USBD_NORMAL_COMPLETION) { |
| 1166 | if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) |
| 1167 | return; |
| 1168 | |
| 1169 | if (status == USBD_STALLED) |
| 1170 | usbd_clear_endpoint_stall_async(sc->data_rx_pipe); |
| 1171 | |
| 1172 | ifp->if_ierrorsif_data.ifi_ierrors++; |
| 1173 | return; |
| 1174 | } |
| 1175 | usbd_get_xfer_status(xfer, NULL((void *)0), NULL((void *)0), &len, NULL((void *)0)); |
| 1176 | |
| 1177 | if (len < UATH_MIN_RXBUFSZ(((sizeof (uint32_t) + sizeof (struct ieee80211_frame_min) + sizeof (struct uath_rx_desc)) + 3) & ~3)) { |
| 1178 | DPRINTF(("wrong xfer size (len=%d)\n", len)); |
| 1179 | ifp->if_ierrorsif_data.ifi_ierrors++; |
| 1180 | goto skip; |
| 1181 | } |
| 1182 | |
| 1183 | hdr = betoh32(*(uint32_t *)data->buf)(__uint32_t)(__builtin_constant_p(*(uint32_t *)data->buf) ? (__uint32_t)(((__uint32_t)(*(uint32_t *)data->buf) & 0xff ) << 24 | ((__uint32_t)(*(uint32_t *)data->buf) & 0xff00) << 8 | ((__uint32_t)(*(uint32_t *)data->buf ) & 0xff0000) >> 8 | ((__uint32_t)(*(uint32_t *)data ->buf) & 0xff000000) >> 24) : __swap32md(*(uint32_t *)data->buf)); |
Value stored to 'hdr' is never read | |
| 1184 | |
| 1185 | /* Rx descriptor is located at the end, 32-bit aligned */ |
| 1186 | desc = (struct uath_rx_desc *) |
| 1187 | (data->buf + len - sizeof (struct uath_rx_desc)); |
| 1188 | |
| 1189 | if (betoh32(desc->len)(__uint32_t)(__builtin_constant_p(desc->len) ? (__uint32_t )(((__uint32_t)(desc->len) & 0xff) << 24 | ((__uint32_t )(desc->len) & 0xff00) << 8 | ((__uint32_t)(desc ->len) & 0xff0000) >> 8 | ((__uint32_t)(desc-> len) & 0xff000000) >> 24) : __swap32md(desc->len )) > sc->rxbufsz) { |
| 1190 | DPRINTF(("bad descriptor (len=%d)\n", betoh32(desc->len))); |
| 1191 | ifp->if_ierrorsif_data.ifi_ierrors++; |
| 1192 | goto skip; |
| 1193 | } |
| 1194 | |
| 1195 | /* there's probably a "bad CRC" flag somewhere in the descriptor.. */ |
| 1196 | |
| 1197 | MGETHDR(mnew, M_DONTWAIT, MT_DATA)mnew = m_gethdr((0x0002), (1)); |
| 1198 | if (mnew == NULL((void *)0)) { |
| 1199 | printf("%s: could not allocate rx mbuf\n", |
| 1200 | sc->sc_dev.dv_xname); |
| 1201 | ifp->if_ierrorsif_data.ifi_ierrors++; |
| 1202 | goto skip; |
| 1203 | } |
| 1204 | MCLGETL(mnew, M_DONTWAIT, sc->rxbufsz)m_clget((mnew), (0x0002), (sc->rxbufsz)); |
| 1205 | if (!(mnew->m_flagsm_hdr.mh_flags & M_EXT0x0001)) { |
| 1206 | printf("%s: could not allocate rx mbuf cluster\n", |
| 1207 | sc->sc_dev.dv_xname); |
| 1208 | m_freem(mnew); |
| 1209 | ifp->if_ierrorsif_data.ifi_ierrors++; |
| 1210 | goto skip; |
| 1211 | } |
| 1212 | |
| 1213 | m = data->m; |
| 1214 | data->m = mnew; |
| 1215 | |
| 1216 | /* finalize mbuf */ |
| 1217 | m->m_datam_hdr.mh_data = data->buf + sizeof (uint32_t); |
| 1218 | m->m_pkthdrM_dat.MH.MH_pkthdr.len = m->m_lenm_hdr.mh_len = betoh32(desc->len)(__uint32_t)(__builtin_constant_p(desc->len) ? (__uint32_t )(((__uint32_t)(desc->len) & 0xff) << 24 | ((__uint32_t )(desc->len) & 0xff00) << 8 | ((__uint32_t)(desc ->len) & 0xff0000) >> 8 | ((__uint32_t)(desc-> len) & 0xff000000) >> 24) : __swap32md(desc->len )) - |
| 1219 | sizeof (struct uath_rx_desc) - IEEE80211_CRC_LEN4; |
| 1220 | |
| 1221 | data->buf = mtod(data->m, uint8_t *)((uint8_t *)((data->m)->m_hdr.mh_data)); |
| 1222 | |
| 1223 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 1224 | memset(&rxi, 0, sizeof(rxi))__builtin_memset((&rxi), (0), (sizeof(rxi))); |
| 1225 | if ((wh->i_fc[1] & IEEE80211_FC1_WEP0x40) && |
| 1226 | ic->ic_opmode != IEEE80211_M_MONITOR) { |
| 1227 | /* |
| 1228 | * Hardware decrypts the frame itself but leaves the WEP bit |
| 1229 | * set in the 802.11 header and doesn't remove the IV and CRC |
| 1230 | * fields. |
| 1231 | */ |
| 1232 | wh->i_fc[1] &= ~IEEE80211_FC1_WEP0x40; |
| 1233 | memmove((caddr_t)wh + IEEE80211_WEP_IVLEN +__builtin_memmove(((caddr_t)wh + 3 + 1), (wh), (sizeof (struct ieee80211_frame))) |
| 1234 | IEEE80211_WEP_KIDLEN, wh, sizeof (struct ieee80211_frame))__builtin_memmove(((caddr_t)wh + 3 + 1), (wh), (sizeof (struct ieee80211_frame))); |
| 1235 | m_adj(m, IEEE80211_WEP_IVLEN3 + IEEE80211_WEP_KIDLEN1); |
| 1236 | m_adj(m, -IEEE80211_WEP_CRCLEN4); |
| 1237 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 1238 | |
| 1239 | rxi.rxi_flags |= IEEE80211_RXI_HWDEC0x00000001; |
| 1240 | } |
| 1241 | |
| 1242 | #if NBPFILTER1 > 0 |
| 1243 | /* there are a lot more fields in the Rx descriptor */ |
| 1244 | if (sc->sc_drvbpf != NULL((void *)0)) { |
| 1245 | struct mbuf mb; |
| 1246 | struct uath_rx_radiotap_header *tap = &sc->sc_rxtapsc_rxtapu.th; |
| 1247 | |
| 1248 | tap->wr_flags = 0; |
| 1249 | tap->wr_chan_freq = htole16(betoh32(desc->freq))((__uint16_t)((__uint32_t)(__builtin_constant_p(desc->freq ) ? (__uint32_t)(((__uint32_t)(desc->freq) & 0xff) << 24 | ((__uint32_t)(desc->freq) & 0xff00) << 8 | ((__uint32_t)(desc->freq) & 0xff0000) >> 8 | (( __uint32_t)(desc->freq) & 0xff000000) >> 24) : __swap32md (desc->freq)))); |
| 1250 | tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags)((__uint16_t)(ic->ic_bss->ni_chan->ic_flags)); |
| 1251 | tap->wr_dbm_antsignal = (int8_t)betoh32(desc->rssi)(__uint32_t)(__builtin_constant_p(desc->rssi) ? (__uint32_t )(((__uint32_t)(desc->rssi) & 0xff) << 24 | ((__uint32_t )(desc->rssi) & 0xff00) << 8 | ((__uint32_t)(desc ->rssi) & 0xff0000) >> 8 | ((__uint32_t)(desc-> rssi) & 0xff000000) >> 24) : __swap32md(desc->rssi )); |
| 1252 | |
| 1253 | mb.m_datam_hdr.mh_data = (caddr_t)tap; |
| 1254 | mb.m_lenm_hdr.mh_len = sc->sc_rxtap_len; |
| 1255 | mb.m_nextm_hdr.mh_next = m; |
| 1256 | mb.m_nextpktm_hdr.mh_nextpkt = NULL((void *)0); |
| 1257 | mb.m_typem_hdr.mh_type = 0; |
| 1258 | mb.m_flagsm_hdr.mh_flags = 0; |
| 1259 | bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN(1 << 0)); |
| 1260 | } |
| 1261 | #endif |
| 1262 | |
| 1263 | s = splnet()splraise(0x4); |
| 1264 | ni = ieee80211_find_rxnode(ic, wh); |
| 1265 | rxi.rxi_rssi = (int)betoh32(desc->rssi)(__uint32_t)(__builtin_constant_p(desc->rssi) ? (__uint32_t )(((__uint32_t)(desc->rssi) & 0xff) << 24 | ((__uint32_t )(desc->rssi) & 0xff00) << 8 | ((__uint32_t)(desc ->rssi) & 0xff0000) >> 8 | ((__uint32_t)(desc-> rssi) & 0xff000000) >> 24) : __swap32md(desc->rssi )); |
| 1266 | ieee80211_input(ifp, m, ni, &rxi); |
| 1267 | |
| 1268 | /* node is no longer needed */ |
| 1269 | ieee80211_release_node(ic, ni); |
| 1270 | splx(s)spllower(s); |
| 1271 | |
| 1272 | skip: /* setup a new transfer */ |
| 1273 | usbd_setup_xfer(xfer, sc->data_rx_pipe, data, data->buf, sc->rxbufsz, |
| 1274 | USBD_SHORT_XFER_OK0x04, USBD_NO_TIMEOUT0, uath_data_rxeof); |
| 1275 | (void)usbd_transfer(data->xfer); |
| 1276 | } |
| 1277 | |
| 1278 | int |
| 1279 | uath_tx_null(struct uath_softc *sc) |
| 1280 | { |
| 1281 | struct uath_tx_data *data; |
| 1282 | struct uath_tx_desc *desc; |
| 1283 | |
| 1284 | data = &sc->tx_data[sc->data_idx]; |
| 1285 | |
| 1286 | data->ni = NULL((void *)0); |
| 1287 | |
| 1288 | *(uint32_t *)data->buf = UATH_MAKECTL(1, sizeof (struct uath_tx_desc))(__uint32_t)(__builtin_constant_p((1) << 16 | (sizeof ( struct uath_tx_desc))) ? (__uint32_t)(((__uint32_t)((1) << 16 | (sizeof (struct uath_tx_desc))) & 0xff) << 24 | ((__uint32_t)((1) << 16 | (sizeof (struct uath_tx_desc ))) & 0xff00) << 8 | ((__uint32_t)((1) << 16 | (sizeof (struct uath_tx_desc))) & 0xff0000) >> 8 | ((__uint32_t)((1) << 16 | (sizeof (struct uath_tx_desc ))) & 0xff000000) >> 24) : __swap32md((1) << 16 | (sizeof (struct uath_tx_desc)))); |
| 1289 | desc = (struct uath_tx_desc *)(data->buf + sizeof (uint32_t)); |
| 1290 | |
| 1291 | bzero(desc, sizeof (struct uath_tx_desc))__builtin_bzero((desc), (sizeof (struct uath_tx_desc))); |
| 1292 | desc->len = htobe32(sizeof (struct uath_tx_desc))(__uint32_t)(__builtin_constant_p(sizeof (struct uath_tx_desc )) ? (__uint32_t)(((__uint32_t)(sizeof (struct uath_tx_desc)) & 0xff) << 24 | ((__uint32_t)(sizeof (struct uath_tx_desc )) & 0xff00) << 8 | ((__uint32_t)(sizeof (struct uath_tx_desc )) & 0xff0000) >> 8 | ((__uint32_t)(sizeof (struct uath_tx_desc )) & 0xff000000) >> 24) : __swap32md(sizeof (struct uath_tx_desc))); |
| 1293 | desc->type = htobe32(UATH_TX_NULL)(__uint32_t)(__builtin_constant_p(0xf) ? (__uint32_t)(((__uint32_t )(0xf) & 0xff) << 24 | ((__uint32_t)(0xf) & 0xff00 ) << 8 | ((__uint32_t)(0xf) & 0xff0000) >> 8 | ((__uint32_t)(0xf) & 0xff000000) >> 24) : __swap32md (0xf)); |
| 1294 | |
| 1295 | usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf, |
| 1296 | sizeof (uint32_t) + sizeof (struct uath_tx_desc), USBD_NO_COPY0x01 | |
| 1297 | USBD_FORCE_SHORT_XFER0x08 | USBD_SYNCHRONOUS0x02, UATH_DATA_TIMEOUT10000, NULL((void *)0)); |
| 1298 | if (usbd_transfer(data->xfer) != 0) |
| 1299 | return EIO5; |
| 1300 | |
| 1301 | sc->data_idx = (sc->data_idx + 1) % UATH_TX_DATA_LIST_COUNT8; |
| 1302 | |
| 1303 | return uath_cmd_write(sc, UATH_CMD_0F0x0f, NULL((void *)0), 0, UATH_CMD_FLAG_ASYNC(1 << 0)); |
| 1304 | } |
| 1305 | |
| 1306 | void |
| 1307 | uath_data_txeof(struct usbd_xfer *xfer, void *priv, |
| 1308 | usbd_status status) |
| 1309 | { |
| 1310 | struct uath_tx_data *data = priv; |
| 1311 | struct uath_softc *sc = data->sc; |
| 1312 | struct ieee80211com *ic = &sc->sc_ic; |
| 1313 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 1314 | int s; |
| 1315 | |
| 1316 | if (status != USBD_NORMAL_COMPLETION) { |
| 1317 | if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) |
| 1318 | return; |
| 1319 | |
| 1320 | printf("%s: could not transmit buffer: %s\n", |
| 1321 | sc->sc_dev.dv_xname, usbd_errstr(status)); |
| 1322 | |
| 1323 | if (status == USBD_STALLED) |
| 1324 | usbd_clear_endpoint_stall_async(sc->data_tx_pipe); |
| 1325 | |
| 1326 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 1327 | return; |
| 1328 | } |
| 1329 | |
| 1330 | s = splnet()splraise(0x4); |
| 1331 | |
| 1332 | ieee80211_release_node(ic, data->ni); |
| 1333 | data->ni = NULL((void *)0); |
| 1334 | |
| 1335 | sc->tx_queued--; |
| 1336 | |
| 1337 | sc->sc_tx_timer = 0; |
| 1338 | ifq_clr_oactive(&ifp->if_snd); |
| 1339 | uath_start(ifp); |
| 1340 | |
| 1341 | splx(s)spllower(s); |
| 1342 | } |
| 1343 | |
| 1344 | int |
| 1345 | uath_tx_data(struct uath_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) |
| 1346 | { |
| 1347 | struct ieee80211com *ic = &sc->sc_ic; |
| 1348 | struct uath_tx_data *data; |
| 1349 | struct uath_tx_desc *desc; |
| 1350 | const struct ieee80211_frame *wh; |
| 1351 | int paylen, totlen, xferlen, error; |
| 1352 | |
| 1353 | data = &sc->tx_data[sc->data_idx]; |
| 1354 | desc = (struct uath_tx_desc *)(data->buf + sizeof (uint32_t)); |
| 1355 | |
| 1356 | data->ni = ni; |
| 1357 | |
| 1358 | #if NBPFILTER1 > 0 |
| 1359 | if (sc->sc_drvbpf != NULL((void *)0)) { |
| 1360 | struct mbuf mb; |
| 1361 | struct uath_tx_radiotap_header *tap = &sc->sc_txtapsc_txtapu.th; |
| 1362 | |
| 1363 | tap->wt_flags = 0; |
| 1364 | tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq)((__uint16_t)(ic->ic_bss->ni_chan->ic_freq)); |
| 1365 | tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags)((__uint16_t)(ic->ic_bss->ni_chan->ic_flags)); |
| 1366 | |
| 1367 | mb.m_datam_hdr.mh_data = (caddr_t)tap; |
| 1368 | mb.m_lenm_hdr.mh_len = sc->sc_txtap_len; |
| 1369 | mb.m_nextm_hdr.mh_next = m0; |
| 1370 | mb.m_nextpktm_hdr.mh_nextpkt = NULL((void *)0); |
| 1371 | mb.m_typem_hdr.mh_type = 0; |
| 1372 | mb.m_flagsm_hdr.mh_flags = 0; |
| 1373 | bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT(1 << 1)); |
| 1374 | } |
| 1375 | #endif |
| 1376 | |
| 1377 | paylen = m0->m_pkthdrM_dat.MH.MH_pkthdr.len; |
| 1378 | xferlen = sizeof (uint32_t) + sizeof (struct uath_tx_desc) + paylen; |
| 1379 | |
| 1380 | wh = mtod(m0, struct ieee80211_frame *)((struct ieee80211_frame *)((m0)->m_hdr.mh_data)); |
| 1381 | if (wh->i_fc[1] & IEEE80211_FC1_WEP0x40) { |
| 1382 | uint8_t *frm = (uint8_t *)(desc + 1); |
| 1383 | uint32_t iv; |
| 1384 | |
| 1385 | /* h/w WEP: it's up to the host to fill the IV field */ |
| 1386 | bcopy(wh, frm, sizeof (struct ieee80211_frame)); |
| 1387 | frm += sizeof (struct ieee80211_frame); |
| 1388 | |
| 1389 | /* insert IV: code copied from net80211 */ |
| 1390 | iv = (ic->ic_iv != 0) ? ic->ic_iv : arc4random(); |
| 1391 | if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00) |
| 1392 | iv += 0x000100; |
| 1393 | ic->ic_iv = iv + 1; |
| 1394 | |
| 1395 | *frm++ = iv & 0xff; |
| 1396 | *frm++ = (iv >> 8) & 0xff; |
| 1397 | *frm++ = (iv >> 16) & 0xff; |
| 1398 | *frm++ = ic->ic_wep_txkeyic_def_txkey << 6; |
| 1399 | |
| 1400 | m_copydata(m0, sizeof(struct ieee80211_frame), |
| 1401 | m0->m_pkthdrM_dat.MH.MH_pkthdr.len - sizeof(struct ieee80211_frame), frm); |
| 1402 | |
| 1403 | paylen += IEEE80211_WEP_IVLEN3 + IEEE80211_WEP_KIDLEN1; |
| 1404 | xferlen += IEEE80211_WEP_IVLEN3 + IEEE80211_WEP_KIDLEN1; |
| 1405 | totlen = xferlen + IEEE80211_WEP_CRCLEN4; |
| 1406 | } else { |
| 1407 | m_copydata(m0, 0, m0->m_pkthdrM_dat.MH.MH_pkthdr.len, desc + 1); |
| 1408 | totlen = xferlen; |
| 1409 | } |
| 1410 | |
| 1411 | /* fill Tx descriptor */ |
| 1412 | *(uint32_t *)data->buf = UATH_MAKECTL(1, xferlen - sizeof (uint32_t))(__uint32_t)(__builtin_constant_p((1) << 16 | (xferlen - sizeof (uint32_t))) ? (__uint32_t)(((__uint32_t)((1) << 16 | (xferlen - sizeof (uint32_t))) & 0xff) << 24 | ((__uint32_t)((1) << 16 | (xferlen - sizeof (uint32_t) )) & 0xff00) << 8 | ((__uint32_t)((1) << 16 | (xferlen - sizeof (uint32_t))) & 0xff0000) >> 8 | ( (__uint32_t)((1) << 16 | (xferlen - sizeof (uint32_t))) & 0xff000000) >> 24) : __swap32md((1) << 16 | (xferlen - sizeof (uint32_t)))); |
| 1413 | |
| 1414 | desc->len = htobe32(totlen)(__uint32_t)(__builtin_constant_p(totlen) ? (__uint32_t)(((__uint32_t )(totlen) & 0xff) << 24 | ((__uint32_t)(totlen) & 0xff00) << 8 | ((__uint32_t)(totlen) & 0xff0000) >> 8 | ((__uint32_t)(totlen) & 0xff000000) >> 24) : __swap32md (totlen)); |
| 1415 | desc->priv = sc->data_idx; /* don't care about endianness */ |
| 1416 | desc->paylen = htobe32(paylen)(__uint32_t)(__builtin_constant_p(paylen) ? (__uint32_t)(((__uint32_t )(paylen) & 0xff) << 24 | ((__uint32_t)(paylen) & 0xff00) << 8 | ((__uint32_t)(paylen) & 0xff0000) >> 8 | ((__uint32_t)(paylen) & 0xff000000) >> 24) : __swap32md (paylen)); |
| 1417 | desc->type = htobe32(UATH_TX_DATA)(__uint32_t)(__builtin_constant_p(0xe) ? (__uint32_t)(((__uint32_t )(0xe) & 0xff) << 24 | ((__uint32_t)(0xe) & 0xff00 ) << 8 | ((__uint32_t)(0xe) & 0xff0000) >> 8 | ((__uint32_t)(0xe) & 0xff000000) >> 24) : __swap32md (0xe)); |
| 1418 | desc->flags = htobe32(0)(__uint32_t)(__builtin_constant_p(0) ? (__uint32_t)(((__uint32_t )(0) & 0xff) << 24 | ((__uint32_t)(0) & 0xff00) << 8 | ((__uint32_t)(0) & 0xff0000) >> 8 | ( (__uint32_t)(0) & 0xff000000) >> 24) : __swap32md(0 )); |
| 1419 | if (IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01)) { |
| 1420 | desc->dest = htobe32(UATH_ID_BROADCAST)(__uint32_t)(__builtin_constant_p(0xffffffff) ? (__uint32_t)( ((__uint32_t)(0xffffffff) & 0xff) << 24 | ((__uint32_t )(0xffffffff) & 0xff00) << 8 | ((__uint32_t)(0xffffffff ) & 0xff0000) >> 8 | ((__uint32_t)(0xffffffff) & 0xff000000) >> 24) : __swap32md(0xffffffff)); |
| 1421 | desc->magic = htobe32(3)(__uint32_t)(__builtin_constant_p(3) ? (__uint32_t)(((__uint32_t )(3) & 0xff) << 24 | ((__uint32_t)(3) & 0xff00) << 8 | ((__uint32_t)(3) & 0xff0000) >> 8 | ( (__uint32_t)(3) & 0xff000000) >> 24) : __swap32md(3 )); |
| 1422 | } else { |
| 1423 | desc->dest = htobe32(UATH_ID_BSS)(__uint32_t)(__builtin_constant_p(2) ? (__uint32_t)(((__uint32_t )(2) & 0xff) << 24 | ((__uint32_t)(2) & 0xff00) << 8 | ((__uint32_t)(2) & 0xff0000) >> 8 | ( (__uint32_t)(2) & 0xff000000) >> 24) : __swap32md(2 )); |
| 1424 | desc->magic = htobe32(1)(__uint32_t)(__builtin_constant_p(1) ? (__uint32_t)(((__uint32_t )(1) & 0xff) << 24 | ((__uint32_t)(1) & 0xff00) << 8 | ((__uint32_t)(1) & 0xff0000) >> 8 | ( (__uint32_t)(1) & 0xff000000) >> 24) : __swap32md(1 )); |
| 1425 | } |
| 1426 | |
| 1427 | m_freem(m0); /* mbuf is no longer needed */ |
| 1428 | |
| 1429 | #ifdef UATH_DEBUG |
| 1430 | if (uath_debug >= 6) { |
| 1431 | printf("sending frame index=%u len=%d xferlen=%d", |
| 1432 | sc->data_idx, paylen, xferlen); |
| 1433 | uath_dump_cmd(data->buf, xferlen, '+'); |
| 1434 | } |
| 1435 | #endif |
| 1436 | usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf, xferlen, |
| 1437 | USBD_FORCE_SHORT_XFER0x08 | USBD_NO_COPY0x01, UATH_DATA_TIMEOUT10000, |
| 1438 | uath_data_txeof); |
| 1439 | error = usbd_transfer(data->xfer); |
| 1440 | if (error != USBD_IN_PROGRESS && error != 0) { |
| 1441 | ic->ic_ific_ac.ac_if.if_oerrorsif_data.ifi_oerrors++; |
| 1442 | return error; |
| 1443 | } |
| 1444 | sc->data_idx = (sc->data_idx + 1) % UATH_TX_DATA_LIST_COUNT8; |
| 1445 | sc->tx_queued++; |
| 1446 | |
| 1447 | return 0; |
| 1448 | } |
| 1449 | |
| 1450 | void |
| 1451 | uath_start(struct ifnet *ifp) |
| 1452 | { |
| 1453 | struct uath_softc *sc = ifp->if_softc; |
| 1454 | struct ieee80211com *ic = &sc->sc_ic; |
| 1455 | struct ieee80211_node *ni; |
| 1456 | struct mbuf *m0; |
| 1457 | |
| 1458 | /* |
| 1459 | * net80211 may still try to send management frames even if the |
| 1460 | * IFF_RUNNING flag is not set... |
| 1461 | */ |
| 1462 | if (!(ifp->if_flags & IFF_RUNNING0x40) && ifq_is_oactive(&ifp->if_snd)) |
| 1463 | return; |
| 1464 | |
| 1465 | for (;;) { |
| 1466 | if (sc->tx_queued >= UATH_TX_DATA_LIST_COUNT8) { |
| 1467 | ifq_set_oactive(&ifp->if_snd); |
| 1468 | break; |
| 1469 | } |
| 1470 | |
| 1471 | m0 = mq_dequeue(&ic->ic_mgtq); |
| 1472 | if (m0 != NULL((void *)0)) { |
| 1473 | ni = m0->m_pkthdrM_dat.MH.MH_pkthdr.ph_cookie; |
| 1474 | #if NBPFILTER1 > 0 |
| 1475 | if (ic->ic_rawbpf != NULL((void *)0)) |
| 1476 | bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT(1 << 1)); |
| 1477 | #endif |
| 1478 | if (uath_tx_data(sc, m0, ni) != 0) |
| 1479 | break; |
| 1480 | } else { |
| 1481 | if (ic->ic_state != IEEE80211_S_RUN) |
| 1482 | break; |
| 1483 | |
| 1484 | m0 = ifq_dequeue(&ifp->if_snd); |
| 1485 | if (m0 == NULL((void *)0)) |
| 1486 | break; |
| 1487 | #if NBPFILTER1 > 0 |
| 1488 | if (ifp->if_bpf != NULL((void *)0)) |
| 1489 | bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT(1 << 1)); |
| 1490 | #endif |
| 1491 | m0 = ieee80211_encap(ifp, m0, &ni); |
| 1492 | if (m0 == NULL((void *)0)) |
| 1493 | continue; |
| 1494 | #if NBPFILTER1 > 0 |
| 1495 | if (ic->ic_rawbpf != NULL((void *)0)) |
| 1496 | bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT(1 << 1)); |
| 1497 | #endif |
| 1498 | if (uath_tx_data(sc, m0, ni) != 0) { |
| 1499 | if (ni != NULL((void *)0)) |
| 1500 | ieee80211_release_node(ic, ni); |
| 1501 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 1502 | break; |
| 1503 | } |
| 1504 | } |
| 1505 | |
| 1506 | sc->sc_tx_timer = 5; |
| 1507 | ifp->if_timer = 1; |
| 1508 | } |
| 1509 | } |
| 1510 | |
| 1511 | void |
| 1512 | uath_watchdog(struct ifnet *ifp) |
| 1513 | { |
| 1514 | struct uath_softc *sc = ifp->if_softc; |
| 1515 | |
| 1516 | ifp->if_timer = 0; |
| 1517 | |
| 1518 | if (sc->sc_tx_timer > 0) { |
| 1519 | if (--sc->sc_tx_timer == 0) { |
| 1520 | printf("%s: device timeout\n", sc->sc_dev.dv_xname); |
| 1521 | /*uath_init(ifp); XXX needs a process context! */ |
| 1522 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 1523 | return; |
| 1524 | } |
| 1525 | ifp->if_timer = 1; |
| 1526 | } |
| 1527 | |
| 1528 | ieee80211_watchdog(ifp); |
| 1529 | } |
| 1530 | |
| 1531 | int |
| 1532 | uath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) |
| 1533 | { |
| 1534 | int s, error = 0; |
| 1535 | |
| 1536 | s = splnet()splraise(0x4); |
| 1537 | |
| 1538 | switch (cmd) { |
| 1539 | case SIOCSIFADDR((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((12))): |
| 1540 | ifp->if_flags |= IFF_UP0x1; |
| 1541 | /* FALLTHROUGH */ |
| 1542 | case SIOCSIFFLAGS((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((16))): |
| 1543 | if (ifp->if_flags & IFF_UP0x1) { |
| 1544 | if (!(ifp->if_flags & IFF_RUNNING0x40)) |
| 1545 | uath_init(ifp); |
| 1546 | } else { |
| 1547 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 1548 | uath_stop(ifp, 1); |
| 1549 | } |
| 1550 | break; |
| 1551 | |
| 1552 | default: |
| 1553 | error = ieee80211_ioctl(ifp, cmd, data); |
| 1554 | } |
| 1555 | |
| 1556 | if (error == ENETRESET52) { |
| 1557 | if ((ifp->if_flags & (IFF_UP0x1 | IFF_RUNNING0x40)) == |
| 1558 | (IFF_UP0x1 | IFF_RUNNING0x40)) |
| 1559 | uath_init(ifp); |
| 1560 | error = 0; |
| 1561 | } |
| 1562 | |
| 1563 | splx(s)spllower(s); |
| 1564 | |
| 1565 | return error; |
| 1566 | } |
| 1567 | |
| 1568 | int |
| 1569 | uath_query_eeprom(struct uath_softc *sc) |
| 1570 | { |
| 1571 | uint32_t tmp; |
| 1572 | int error; |
| 1573 | |
| 1574 | /* retrieve MAC address */ |
| 1575 | error = uath_read_eeprom(sc, UATH_EEPROM_MACADDR0x0b, sc->sc_ic.ic_myaddr); |
| 1576 | if (error != 0) { |
| 1577 | printf("%s: could not read MAC address\n", |
| 1578 | sc->sc_dev.dv_xname); |
| 1579 | return error; |
| 1580 | } |
| 1581 | |
| 1582 | /* retrieve the maximum frame size that the hardware can receive */ |
| 1583 | error = uath_read_eeprom(sc, UATH_EEPROM_RXBUFSZ0x0f, &tmp); |
| 1584 | if (error != 0) { |
| 1585 | printf("%s: could not read maximum Rx buffer size\n", |
| 1586 | sc->sc_dev.dv_xname); |
| 1587 | return error; |
| 1588 | } |
| 1589 | sc->rxbufsz = betoh32(tmp)(__uint32_t)(__builtin_constant_p(tmp) ? (__uint32_t)(((__uint32_t )(tmp) & 0xff) << 24 | ((__uint32_t)(tmp) & 0xff00 ) << 8 | ((__uint32_t)(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000) >> 24) : __swap32md (tmp)) & 0xfff; |
| 1590 | DPRINTF(("maximum Rx buffer size %d\n", sc->rxbufsz)); |
| 1591 | return 0; |
| 1592 | } |
| 1593 | |
| 1594 | int |
| 1595 | uath_reset(struct uath_softc *sc) |
| 1596 | { |
| 1597 | struct uath_cmd_setup setup; |
| 1598 | uint32_t reg, val; |
| 1599 | int s, error; |
| 1600 | |
| 1601 | /* init device with some voodoo incantations.. */ |
| 1602 | setup.magic1 = htobe32(1)(__uint32_t)(__builtin_constant_p(1) ? (__uint32_t)(((__uint32_t )(1) & 0xff) << 24 | ((__uint32_t)(1) & 0xff00) << 8 | ((__uint32_t)(1) & 0xff0000) >> 8 | ( (__uint32_t)(1) & 0xff000000) >> 24) : __swap32md(1 )); |
| 1603 | setup.magic2 = htobe32(5)(__uint32_t)(__builtin_constant_p(5) ? (__uint32_t)(((__uint32_t )(5) & 0xff) << 24 | ((__uint32_t)(5) & 0xff00) << 8 | ((__uint32_t)(5) & 0xff0000) >> 8 | ( (__uint32_t)(5) & 0xff000000) >> 24) : __swap32md(5 )); |
| 1604 | setup.magic3 = htobe32(200)(__uint32_t)(__builtin_constant_p(200) ? (__uint32_t)(((__uint32_t )(200) & 0xff) << 24 | ((__uint32_t)(200) & 0xff00 ) << 8 | ((__uint32_t)(200) & 0xff0000) >> 8 | ((__uint32_t)(200) & 0xff000000) >> 24) : __swap32md (200)); |
| 1605 | setup.magic4 = htobe32(27)(__uint32_t)(__builtin_constant_p(27) ? (__uint32_t)(((__uint32_t )(27) & 0xff) << 24 | ((__uint32_t)(27) & 0xff00 ) << 8 | ((__uint32_t)(27) & 0xff0000) >> 8 | ((__uint32_t)(27) & 0xff000000) >> 24) : __swap32md (27)); |
| 1606 | s = splusb()splraise(0x2); |
| 1607 | error = uath_cmd_write(sc, UATH_CMD_SETUP0x01, &setup, sizeof setup, |
| 1608 | UATH_CMD_FLAG_ASYNC(1 << 0)); |
| 1609 | /* ..and wait until firmware notifies us that it is ready */ |
| 1610 | if (error == 0) |
| 1611 | error = tsleep_nsec(UATH_COND_INIT(sc)((caddr_t)sc + 1), PCATCH0x100, "uathinit", |
| 1612 | SEC_TO_NSEC(5)); |
| 1613 | splx(s)spllower(s); |
| 1614 | if (error != 0) |
| 1615 | return error; |
| 1616 | |
| 1617 | /* read PHY registers */ |
| 1618 | for (reg = 0x09; reg <= 0x24; reg++) { |
| 1619 | if (reg == 0x0b || reg == 0x0c) |
| 1620 | continue; |
| 1621 | DELAY(100)(*delay_func)(100); |
| 1622 | if ((error = uath_read_reg(sc, reg, &val)) != 0) |
| 1623 | return error; |
| 1624 | DPRINTFN(2, ("reg 0x%02x=0x%08x\n", reg, val)); |
| 1625 | } |
| 1626 | return error; |
| 1627 | } |
| 1628 | |
| 1629 | int |
| 1630 | uath_reset_tx_queues(struct uath_softc *sc) |
| 1631 | { |
| 1632 | int ac, error; |
| 1633 | |
| 1634 | for (ac = 0; ac < 4; ac++) { |
| 1635 | const uint32_t qid = htobe32(UATH_AC_TO_QID(ac))(__uint32_t)(__builtin_constant_p((ac)) ? (__uint32_t)(((__uint32_t )((ac)) & 0xff) << 24 | ((__uint32_t)((ac)) & 0xff00 ) << 8 | ((__uint32_t)((ac)) & 0xff0000) >> 8 | ((__uint32_t)((ac)) & 0xff000000) >> 24) : __swap32md ((ac))); |
| 1636 | |
| 1637 | DPRINTF(("resetting Tx queue %d\n", UATH_AC_TO_QID(ac))); |
| 1638 | error = uath_cmd_write(sc, UATH_CMD_RESET_QUEUE0x3b, &qid, |
| 1639 | sizeof qid, 0); |
| 1640 | if (error != 0) |
| 1641 | break; |
| 1642 | } |
| 1643 | return error; |
| 1644 | } |
| 1645 | |
| 1646 | int |
| 1647 | uath_wme_init(struct uath_softc *sc) |
| 1648 | { |
| 1649 | struct uath_qinfo qinfo; |
| 1650 | int ac, error; |
| 1651 | static const struct uath_wme_settings uath_wme_11g[4] = { |
| 1652 | { 7, 4, 10, 0, 0 }, /* Background */ |
| 1653 | { 3, 4, 10, 0, 0 }, /* Best-Effort */ |
| 1654 | { 3, 3, 4, 26, 0 }, /* Video */ |
| 1655 | { 2, 2, 3, 47, 0 } /* Voice */ |
| 1656 | }; |
| 1657 | |
| 1658 | bzero(&qinfo, sizeof qinfo)__builtin_bzero((&qinfo), (sizeof qinfo)); |
| 1659 | qinfo.size = htobe32(32)(__uint32_t)(__builtin_constant_p(32) ? (__uint32_t)(((__uint32_t )(32) & 0xff) << 24 | ((__uint32_t)(32) & 0xff00 ) << 8 | ((__uint32_t)(32) & 0xff0000) >> 8 | ((__uint32_t)(32) & 0xff000000) >> 24) : __swap32md (32)); |
| 1660 | qinfo.magic1 = htobe32(1)(__uint32_t)(__builtin_constant_p(1) ? (__uint32_t)(((__uint32_t )(1) & 0xff) << 24 | ((__uint32_t)(1) & 0xff00) << 8 | ((__uint32_t)(1) & 0xff0000) >> 8 | ( (__uint32_t)(1) & 0xff000000) >> 24) : __swap32md(1 )); /* XXX ack policy? */ |
| 1661 | qinfo.magic2 = htobe32(1)(__uint32_t)(__builtin_constant_p(1) ? (__uint32_t)(((__uint32_t )(1) & 0xff) << 24 | ((__uint32_t)(1) & 0xff00) << 8 | ((__uint32_t)(1) & 0xff0000) >> 8 | ( (__uint32_t)(1) & 0xff000000) >> 24) : __swap32md(1 )); |
| 1662 | for (ac = 0; ac < 4; ac++) { |
| 1663 | qinfo.qid = htobe32(UATH_AC_TO_QID(ac))(__uint32_t)(__builtin_constant_p((ac)) ? (__uint32_t)(((__uint32_t )((ac)) & 0xff) << 24 | ((__uint32_t)((ac)) & 0xff00 ) << 8 | ((__uint32_t)((ac)) & 0xff0000) >> 8 | ((__uint32_t)((ac)) & 0xff000000) >> 24) : __swap32md ((ac))); |
| 1664 | qinfo.ac = htobe32(ac)(__uint32_t)(__builtin_constant_p(ac) ? (__uint32_t)(((__uint32_t )(ac) & 0xff) << 24 | ((__uint32_t)(ac) & 0xff00 ) << 8 | ((__uint32_t)(ac) & 0xff0000) >> 8 | ((__uint32_t)(ac) & 0xff000000) >> 24) : __swap32md (ac)); |
| 1665 | qinfo.aifsn = htobe32(uath_wme_11g[ac].aifsn)(__uint32_t)(__builtin_constant_p(uath_wme_11g[ac].aifsn) ? ( __uint32_t)(((__uint32_t)(uath_wme_11g[ac].aifsn) & 0xff) << 24 | ((__uint32_t)(uath_wme_11g[ac].aifsn) & 0xff00 ) << 8 | ((__uint32_t)(uath_wme_11g[ac].aifsn) & 0xff0000 ) >> 8 | ((__uint32_t)(uath_wme_11g[ac].aifsn) & 0xff000000 ) >> 24) : __swap32md(uath_wme_11g[ac].aifsn)); |
| 1666 | qinfo.logcwmin = htobe32(uath_wme_11g[ac].logcwmin)(__uint32_t)(__builtin_constant_p(uath_wme_11g[ac].logcwmin) ? (__uint32_t)(((__uint32_t)(uath_wme_11g[ac].logcwmin) & 0xff ) << 24 | ((__uint32_t)(uath_wme_11g[ac].logcwmin) & 0xff00) << 8 | ((__uint32_t)(uath_wme_11g[ac].logcwmin ) & 0xff0000) >> 8 | ((__uint32_t)(uath_wme_11g[ac] .logcwmin) & 0xff000000) >> 24) : __swap32md(uath_wme_11g [ac].logcwmin)); |
| 1667 | qinfo.logcwmax = htobe32(uath_wme_11g[ac].logcwmax)(__uint32_t)(__builtin_constant_p(uath_wme_11g[ac].logcwmax) ? (__uint32_t)(((__uint32_t)(uath_wme_11g[ac].logcwmax) & 0xff ) << 24 | ((__uint32_t)(uath_wme_11g[ac].logcwmax) & 0xff00) << 8 | ((__uint32_t)(uath_wme_11g[ac].logcwmax ) & 0xff0000) >> 8 | ((__uint32_t)(uath_wme_11g[ac] .logcwmax) & 0xff000000) >> 24) : __swap32md(uath_wme_11g [ac].logcwmax)); |
| 1668 | qinfo.txop = htobe32(UATH_TXOP_TO_US((__uint32_t)(__builtin_constant_p(((uath_wme_11g[ac].txop) << 5)) ? (__uint32_t)(((__uint32_t)(((uath_wme_11g[ac].txop) << 5)) & 0xff) << 24 | ((__uint32_t)(((uath_wme_11g[ac ].txop) << 5)) & 0xff00) << 8 | ((__uint32_t) (((uath_wme_11g[ac].txop) << 5)) & 0xff0000) >> 8 | ((__uint32_t)(((uath_wme_11g[ac].txop) << 5)) & 0xff000000) >> 24) : __swap32md(((uath_wme_11g[ac].txop ) << 5))) |
| 1669 | uath_wme_11g[ac].txop))(__uint32_t)(__builtin_constant_p(((uath_wme_11g[ac].txop) << 5)) ? (__uint32_t)(((__uint32_t)(((uath_wme_11g[ac].txop) << 5)) & 0xff) << 24 | ((__uint32_t)(((uath_wme_11g[ac ].txop) << 5)) & 0xff00) << 8 | ((__uint32_t) (((uath_wme_11g[ac].txop) << 5)) & 0xff0000) >> 8 | ((__uint32_t)(((uath_wme_11g[ac].txop) << 5)) & 0xff000000) >> 24) : __swap32md(((uath_wme_11g[ac].txop ) << 5))); |
| 1670 | qinfo.acm = htobe32(uath_wme_11g[ac].acm)(__uint32_t)(__builtin_constant_p(uath_wme_11g[ac].acm) ? (__uint32_t )(((__uint32_t)(uath_wme_11g[ac].acm) & 0xff) << 24 | ((__uint32_t)(uath_wme_11g[ac].acm) & 0xff00) << 8 | ((__uint32_t)(uath_wme_11g[ac].acm) & 0xff0000) >> 8 | ((__uint32_t)(uath_wme_11g[ac].acm) & 0xff000000) >> 24) : __swap32md(uath_wme_11g[ac].acm)); |
| 1671 | |
| 1672 | DPRINTF(("setting up Tx queue %d\n", UATH_AC_TO_QID(ac))); |
| 1673 | error = uath_cmd_write(sc, UATH_CMD_SET_QUEUE0x3a, &qinfo, |
| 1674 | sizeof qinfo, 0); |
| 1675 | if (error != 0) |
| 1676 | break; |
| 1677 | } |
| 1678 | return error; |
| 1679 | } |
| 1680 | |
| 1681 | int |
| 1682 | uath_set_chan(struct uath_softc *sc, struct ieee80211_channel *c) |
| 1683 | { |
| 1684 | struct uath_set_chan chan; |
| 1685 | |
| 1686 | bzero(&chan, sizeof chan)__builtin_bzero((&chan), (sizeof chan)); |
| 1687 | chan.flags = htobe32(0x1400)(__uint32_t)(__builtin_constant_p(0x1400) ? (__uint32_t)(((__uint32_t )(0x1400) & 0xff) << 24 | ((__uint32_t)(0x1400) & 0xff00) << 8 | ((__uint32_t)(0x1400) & 0xff0000) >> 8 | ((__uint32_t)(0x1400) & 0xff000000) >> 24) : __swap32md (0x1400)); |
| 1688 | chan.freq = htobe32(c->ic_freq)(__uint32_t)(__builtin_constant_p(c->ic_freq) ? (__uint32_t )(((__uint32_t)(c->ic_freq) & 0xff) << 24 | ((__uint32_t )(c->ic_freq) & 0xff00) << 8 | ((__uint32_t)(c-> ic_freq) & 0xff0000) >> 8 | ((__uint32_t)(c->ic_freq ) & 0xff000000) >> 24) : __swap32md(c->ic_freq)); |
| 1689 | chan.magic1 = htobe32(20)(__uint32_t)(__builtin_constant_p(20) ? (__uint32_t)(((__uint32_t )(20) & 0xff) << 24 | ((__uint32_t)(20) & 0xff00 ) << 8 | ((__uint32_t)(20) & 0xff0000) >> 8 | ((__uint32_t)(20) & 0xff000000) >> 24) : __swap32md (20)); |
| 1690 | chan.magic2 = htobe32(50)(__uint32_t)(__builtin_constant_p(50) ? (__uint32_t)(((__uint32_t )(50) & 0xff) << 24 | ((__uint32_t)(50) & 0xff00 ) << 8 | ((__uint32_t)(50) & 0xff0000) >> 8 | ((__uint32_t)(50) & 0xff000000) >> 24) : __swap32md (50)); |
| 1691 | chan.magic3 = htobe32(1)(__uint32_t)(__builtin_constant_p(1) ? (__uint32_t)(((__uint32_t )(1) & 0xff) << 24 | ((__uint32_t)(1) & 0xff00) << 8 | ((__uint32_t)(1) & 0xff0000) >> 8 | ( (__uint32_t)(1) & 0xff000000) >> 24) : __swap32md(1 )); |
| 1692 | |
| 1693 | DPRINTF(("switching to channel %d\n", |
| 1694 | ieee80211_chan2ieee(&sc->sc_ic, c))); |
| 1695 | return uath_cmd_write(sc, UATH_CMD_SET_CHAN0x34, &chan, sizeof chan, 0); |
| 1696 | } |
| 1697 | |
| 1698 | int |
| 1699 | uath_set_key(struct uath_softc *sc, const struct ieee80211_key *k, int index) |
| 1700 | { |
| 1701 | struct uath_cmd_crypto crypto; |
| 1702 | int i; |
| 1703 | |
| 1704 | bzero(&crypto, sizeof crypto)__builtin_bzero((&crypto), (sizeof crypto)); |
| 1705 | crypto.keyidx = htobe32(index)(__uint32_t)(__builtin_constant_p(index) ? (__uint32_t)(((__uint32_t )(index) & 0xff) << 24 | ((__uint32_t)(index) & 0xff00) << 8 | ((__uint32_t)(index) & 0xff0000) >> 8 | ((__uint32_t)(index) & 0xff000000) >> 24) : __swap32md (index)); |
| 1706 | crypto.magic1 = htobe32(1)(__uint32_t)(__builtin_constant_p(1) ? (__uint32_t)(((__uint32_t )(1) & 0xff) << 24 | ((__uint32_t)(1) & 0xff00) << 8 | ((__uint32_t)(1) & 0xff0000) >> 8 | ( (__uint32_t)(1) & 0xff000000) >> 24) : __swap32md(1 )); |
| 1707 | crypto.size = htobe32(368)(__uint32_t)(__builtin_constant_p(368) ? (__uint32_t)(((__uint32_t )(368) & 0xff) << 24 | ((__uint32_t)(368) & 0xff00 ) << 8 | ((__uint32_t)(368) & 0xff0000) >> 8 | ((__uint32_t)(368) & 0xff000000) >> 24) : __swap32md (368)); |
| 1708 | crypto.mask = htobe32(0xffff)(__uint32_t)(__builtin_constant_p(0xffff) ? (__uint32_t)(((__uint32_t )(0xffff) & 0xff) << 24 | ((__uint32_t)(0xffff) & 0xff00) << 8 | ((__uint32_t)(0xffff) & 0xff0000) >> 8 | ((__uint32_t)(0xffff) & 0xff000000) >> 24) : __swap32md (0xffff)); |
| 1709 | crypto.flags = htobe32(0x80000068)(__uint32_t)(__builtin_constant_p(0x80000068) ? (__uint32_t)( ((__uint32_t)(0x80000068) & 0xff) << 24 | ((__uint32_t )(0x80000068) & 0xff00) << 8 | ((__uint32_t)(0x80000068 ) & 0xff0000) >> 8 | ((__uint32_t)(0x80000068) & 0xff000000) >> 24) : __swap32md(0x80000068)); |
| 1710 | if (index != UATH_DEFAULT_KEY6) |
| 1711 | crypto.flags |= htobe32(index << 16)(__uint32_t)(__builtin_constant_p(index << 16) ? (__uint32_t )(((__uint32_t)(index << 16) & 0xff) << 24 | ( (__uint32_t)(index << 16) & 0xff00) << 8 | (( __uint32_t)(index << 16) & 0xff0000) >> 8 | ( (__uint32_t)(index << 16) & 0xff000000) >> 24 ) : __swap32md(index << 16)); |
| 1712 | memset(crypto.magic2, 0xff, sizeof crypto.magic2)__builtin_memset((crypto.magic2), (0xff), (sizeof crypto.magic2 )); |
| 1713 | |
| 1714 | /* |
| 1715 | * Each byte of the key must be XOR'ed with 10101010 before being |
| 1716 | * transmitted to the firmware. |
| 1717 | */ |
| 1718 | for (i = 0; i < k->k_len; i++) |
| 1719 | crypto.key[i] = k->k_key[i] ^ 0xaa; |
| 1720 | |
| 1721 | DPRINTF(("setting crypto key index=%d len=%d\n", index, k->k_len)); |
| 1722 | return uath_cmd_write(sc, UATH_CMD_CRYPTO0x1d, &crypto, sizeof crypto, 0); |
| 1723 | } |
| 1724 | |
| 1725 | int |
| 1726 | uath_set_keys(struct uath_softc *sc) |
| 1727 | { |
| 1728 | const struct ieee80211com *ic = &sc->sc_ic; |
| 1729 | int i, error; |
| 1730 | |
| 1731 | for (i = 0; i < IEEE80211_WEP_NKID4; i++) { |
| 1732 | const struct ieee80211_key *k = &ic->ic_nw_keys[i]; |
| 1733 | |
| 1734 | if (k->k_len > 0 && (error = uath_set_key(sc, k, i)) != 0) |
| 1735 | return error; |
| 1736 | } |
| 1737 | return uath_set_key(sc, &ic->ic_nw_keys[ic->ic_wep_txkeyic_def_txkey], |
| 1738 | UATH_DEFAULT_KEY6); |
| 1739 | } |
| 1740 | |
| 1741 | int |
| 1742 | uath_set_rates(struct uath_softc *sc, const struct ieee80211_rateset *rs) |
| 1743 | { |
| 1744 | struct uath_cmd_rates rates; |
| 1745 | |
| 1746 | bzero(&rates, sizeof rates)__builtin_bzero((&rates), (sizeof rates)); |
| 1747 | rates.magic1 = htobe32(0x02)(__uint32_t)(__builtin_constant_p(0x02) ? (__uint32_t)(((__uint32_t )(0x02) & 0xff) << 24 | ((__uint32_t)(0x02) & 0xff00 ) << 8 | ((__uint32_t)(0x02) & 0xff0000) >> 8 | ((__uint32_t)(0x02) & 0xff000000) >> 24) : __swap32md (0x02)); |
| 1748 | rates.size = htobe32(1 + sizeof rates.rates)(__uint32_t)(__builtin_constant_p(1 + sizeof rates.rates) ? ( __uint32_t)(((__uint32_t)(1 + sizeof rates.rates) & 0xff) << 24 | ((__uint32_t)(1 + sizeof rates.rates) & 0xff00 ) << 8 | ((__uint32_t)(1 + sizeof rates.rates) & 0xff0000 ) >> 8 | ((__uint32_t)(1 + sizeof rates.rates) & 0xff000000 ) >> 24) : __swap32md(1 + sizeof rates.rates)); |
| 1749 | rates.nrates = rs->rs_nrates; |
| 1750 | bcopy(rs->rs_rates, rates.rates, rs->rs_nrates); |
| 1751 | |
| 1752 | DPRINTF(("setting supported rates nrates=%d\n", rs->rs_nrates)); |
| 1753 | return uath_cmd_write(sc, UATH_CMD_SET_RATES0x26, &rates, sizeof rates, 0); |
| 1754 | } |
| 1755 | |
| 1756 | int |
| 1757 | uath_set_rxfilter(struct uath_softc *sc, uint32_t filter, uint32_t flags) |
| 1758 | { |
| 1759 | struct uath_cmd_filter rxfilter; |
| 1760 | |
| 1761 | rxfilter.filter = htobe32(filter)(__uint32_t)(__builtin_constant_p(filter) ? (__uint32_t)(((__uint32_t )(filter) & 0xff) << 24 | ((__uint32_t)(filter) & 0xff00) << 8 | ((__uint32_t)(filter) & 0xff0000) >> 8 | ((__uint32_t)(filter) & 0xff000000) >> 24) : __swap32md (filter)); |
| 1762 | rxfilter.flags = htobe32(flags)(__uint32_t)(__builtin_constant_p(flags) ? (__uint32_t)(((__uint32_t )(flags) & 0xff) << 24 | ((__uint32_t)(flags) & 0xff00) << 8 | ((__uint32_t)(flags) & 0xff0000) >> 8 | ((__uint32_t)(flags) & 0xff000000) >> 24) : __swap32md (flags)); |
| 1763 | |
| 1764 | DPRINTF(("setting Rx filter=0x%x flags=0x%x\n", filter, flags)); |
| 1765 | return uath_cmd_write(sc, UATH_CMD_SET_FILTER0x32, &rxfilter, |
| 1766 | sizeof rxfilter, 0); |
| 1767 | } |
| 1768 | |
| 1769 | int |
| 1770 | uath_set_led(struct uath_softc *sc, int which, int on) |
| 1771 | { |
| 1772 | struct uath_cmd_led led; |
| 1773 | |
| 1774 | led.which = htobe32(which)(__uint32_t)(__builtin_constant_p(which) ? (__uint32_t)(((__uint32_t )(which) & 0xff) << 24 | ((__uint32_t)(which) & 0xff00) << 8 | ((__uint32_t)(which) & 0xff0000) >> 8 | ((__uint32_t)(which) & 0xff000000) >> 24) : __swap32md (which)); |
| 1775 | led.state = htobe32(on ? UATH_LED_ON : UATH_LED_OFF)(__uint32_t)(__builtin_constant_p(on ? 1 : 0) ? (__uint32_t)( ((__uint32_t)(on ? 1 : 0) & 0xff) << 24 | ((__uint32_t )(on ? 1 : 0) & 0xff00) << 8 | ((__uint32_t)(on ? 1 : 0) & 0xff0000) >> 8 | ((__uint32_t)(on ? 1 : 0) & 0xff000000) >> 24) : __swap32md(on ? 1 : 0)); |
| 1776 | |
| 1777 | DPRINTFN(2, ("switching %s led %s\n", |
| 1778 | (which == UATH_LED_LINK) ? "link" : "activity", |
| 1779 | on ? "on" : "off")); |
| 1780 | return uath_cmd_write(sc, UATH_CMD_SET_LED0x17, &led, sizeof led, 0); |
| 1781 | } |
| 1782 | |
| 1783 | int |
| 1784 | uath_switch_channel(struct uath_softc *sc, struct ieee80211_channel *c) |
| 1785 | { |
| 1786 | uint32_t val; |
| 1787 | int error; |
| 1788 | |
| 1789 | /* set radio frequency */ |
| 1790 | if ((error = uath_set_chan(sc, c)) != 0) { |
| 1791 | printf("%s: could not set channel\n", sc->sc_dev.dv_xname); |
| 1792 | return error; |
| 1793 | } |
| 1794 | |
| 1795 | /* reset Tx rings */ |
| 1796 | if ((error = uath_reset_tx_queues(sc)) != 0) { |
| 1797 | printf("%s: could not reset Tx queues\n", |
| 1798 | sc->sc_dev.dv_xname); |
| 1799 | return error; |
| 1800 | } |
| 1801 | |
| 1802 | /* set Tx rings WME properties */ |
| 1803 | if ((error = uath_wme_init(sc)) != 0) { |
| 1804 | printf("%s: could not init Tx queues\n", |
| 1805 | sc->sc_dev.dv_xname); |
| 1806 | return error; |
| 1807 | } |
| 1808 | |
| 1809 | val = htobe32(0)(__uint32_t)(__builtin_constant_p(0) ? (__uint32_t)(((__uint32_t )(0) & 0xff) << 24 | ((__uint32_t)(0) & 0xff00) << 8 | ((__uint32_t)(0) & 0xff0000) >> 8 | ( (__uint32_t)(0) & 0xff000000) >> 24) : __swap32md(0 )); |
| 1810 | error = uath_cmd_write(sc, UATH_CMD_SET_STATE0x20, &val, sizeof val, 0); |
| 1811 | if (error != 0) { |
| 1812 | printf("%s: could not set state\n", sc->sc_dev.dv_xname); |
| 1813 | return error; |
| 1814 | } |
| 1815 | |
| 1816 | return uath_tx_null(sc); |
| 1817 | } |
| 1818 | |
| 1819 | int |
| 1820 | uath_init(struct ifnet *ifp) |
| 1821 | { |
| 1822 | struct uath_softc *sc = ifp->if_softc; |
| 1823 | struct ieee80211com *ic = &sc->sc_ic; |
| 1824 | struct uath_cmd_31 cmd31; |
| 1825 | uint32_t val; |
| 1826 | int i, error; |
| 1827 | |
| 1828 | /* reset data and command rings */ |
| 1829 | sc->tx_queued = sc->data_idx = sc->cmd_idx = 0; |
| 1830 | |
| 1831 | val = htobe32(0)(__uint32_t)(__builtin_constant_p(0) ? (__uint32_t)(((__uint32_t )(0) & 0xff) << 24 | ((__uint32_t)(0) & 0xff00) << 8 | ((__uint32_t)(0) & 0xff0000) >> 8 | ( (__uint32_t)(0) & 0xff000000) >> 24) : __swap32md(0 )); |
| 1832 | (void)uath_cmd_write(sc, UATH_CMD_020x02, &val, sizeof val, 0); |
| 1833 | |
| 1834 | /* set MAC address */ |
| 1835 | IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl))__builtin_memcpy((ic->ic_myaddr), (((caddr_t)((ifp->if_sadl )->sdl_data + (ifp->if_sadl)->sdl_nlen))), (6)); |
| 1836 | (void)uath_write_multi(sc, 0x13, ic->ic_myaddr, IEEE80211_ADDR_LEN6); |
| 1837 | |
| 1838 | (void)uath_write_reg(sc, 0x02, 0x00000001); |
| 1839 | (void)uath_write_reg(sc, 0x0e, 0x0000003f); |
| 1840 | (void)uath_write_reg(sc, 0x10, 0x00000001); |
| 1841 | (void)uath_write_reg(sc, 0x06, 0x0000001e); |
| 1842 | |
| 1843 | /* |
| 1844 | * Queue Rx data xfers. |
| 1845 | */ |
| 1846 | for (i = 0; i < UATH_RX_DATA_LIST_COUNT1; i++) { |
| 1847 | struct uath_rx_data *data = &sc->rx_data[i]; |
| 1848 | |
| 1849 | usbd_setup_xfer(data->xfer, sc->data_rx_pipe, data, data->buf, |
| 1850 | sc->rxbufsz, USBD_SHORT_XFER_OK0x04, USBD_NO_TIMEOUT0, |
| 1851 | uath_data_rxeof); |
| 1852 | error = usbd_transfer(data->xfer); |
| 1853 | if (error != USBD_IN_PROGRESS && error != 0) { |
| 1854 | printf("%s: could not queue Rx transfer\n", |
| 1855 | sc->sc_dev.dv_xname); |
| 1856 | goto fail; |
| 1857 | } |
| 1858 | } |
| 1859 | |
| 1860 | error = uath_cmd_read(sc, UATH_CMD_070x07, NULL((void *)0), 0, &val, |
| 1861 | UATH_CMD_FLAG_MAGIC(1 << 2)); |
| 1862 | if (error != 0) { |
| 1863 | printf("%s: could not send read command 07h\n", |
| 1864 | sc->sc_dev.dv_xname); |
| 1865 | goto fail; |
| 1866 | } |
| 1867 | DPRINTF(("command 07h return code: %x\n", betoh32(val))); |
| 1868 | |
| 1869 | /* set default channel */ |
| 1870 | ic->ic_bss->ni_chan = ic->ic_ibss_chan; |
| 1871 | if ((error = uath_set_chan(sc, ic->ic_bss->ni_chan)) != 0) { |
| 1872 | printf("%s: could not set channel\n", sc->sc_dev.dv_xname); |
| 1873 | goto fail; |
| 1874 | } |
| 1875 | |
| 1876 | if ((error = uath_wme_init(sc)) != 0) { |
| 1877 | printf("%s: could not setup WME parameters\n", |
| 1878 | sc->sc_dev.dv_xname); |
| 1879 | goto fail; |
| 1880 | } |
| 1881 | |
| 1882 | /* init MAC registers */ |
| 1883 | (void)uath_write_reg(sc, 0x19, 0x00000000); |
| 1884 | (void)uath_write_reg(sc, 0x1a, 0x0000003c); |
| 1885 | (void)uath_write_reg(sc, 0x1b, 0x0000003c); |
| 1886 | (void)uath_write_reg(sc, 0x1c, 0x00000000); |
| 1887 | (void)uath_write_reg(sc, 0x1e, 0x00000000); |
| 1888 | (void)uath_write_reg(sc, 0x1f, 0x00000003); |
| 1889 | (void)uath_write_reg(sc, 0x0c, 0x00000000); |
| 1890 | (void)uath_write_reg(sc, 0x0f, 0x00000002); |
| 1891 | (void)uath_write_reg(sc, 0x0a, 0x00000007); /* XXX retry? */ |
| 1892 | (void)uath_write_reg(sc, 0x09, ic->ic_rtsthreshold); |
| 1893 | |
| 1894 | val = htobe32(4)(__uint32_t)(__builtin_constant_p(4) ? (__uint32_t)(((__uint32_t )(4) & 0xff) << 24 | ((__uint32_t)(4) & 0xff00) << 8 | ((__uint32_t)(4) & 0xff0000) >> 8 | ( (__uint32_t)(4) & 0xff000000) >> 24) : __swap32md(4 )); |
| 1895 | (void)uath_cmd_write(sc, UATH_CMD_270x27, &val, sizeof val, 0); |
| 1896 | (void)uath_cmd_write(sc, UATH_CMD_270x27, &val, sizeof val, 0); |
| 1897 | (void)uath_cmd_write(sc, UATH_CMD_1B0x1b, NULL((void *)0), 0, 0); |
| 1898 | |
| 1899 | if ((error = uath_set_keys(sc)) != 0) { |
| 1900 | printf("%s: could not set crypto keys\n", |
| 1901 | sc->sc_dev.dv_xname); |
| 1902 | goto fail; |
| 1903 | } |
| 1904 | |
| 1905 | /* enable Rx */ |
| 1906 | (void)uath_set_rxfilter(sc, 0x0000, 4); |
| 1907 | (void)uath_set_rxfilter(sc, 0x0817, 1); |
| 1908 | |
| 1909 | cmd31.magic1 = htobe32(0xffffffff)(__uint32_t)(__builtin_constant_p(0xffffffff) ? (__uint32_t)( ((__uint32_t)(0xffffffff) & 0xff) << 24 | ((__uint32_t )(0xffffffff) & 0xff00) << 8 | ((__uint32_t)(0xffffffff ) & 0xff0000) >> 8 | ((__uint32_t)(0xffffffff) & 0xff000000) >> 24) : __swap32md(0xffffffff)); |
| 1910 | cmd31.magic2 = htobe32(0xffffffff)(__uint32_t)(__builtin_constant_p(0xffffffff) ? (__uint32_t)( ((__uint32_t)(0xffffffff) & 0xff) << 24 | ((__uint32_t )(0xffffffff) & 0xff00) << 8 | ((__uint32_t)(0xffffffff ) & 0xff0000) >> 8 | ((__uint32_t)(0xffffffff) & 0xff000000) >> 24) : __swap32md(0xffffffff)); |
| 1911 | (void)uath_cmd_write(sc, UATH_CMD_310x31, &cmd31, sizeof cmd31, 0); |
| 1912 | |
| 1913 | ifp->if_flags |= IFF_RUNNING0x40; |
| 1914 | ifq_clr_oactive(&ifp->if_snd); |
| 1915 | |
| 1916 | if (ic->ic_opmode == IEEE80211_M_MONITOR) |
| 1917 | ieee80211_new_state(ic, IEEE80211_S_RUN, -1)(((ic)->ic_newstate)((ic), (IEEE80211_S_RUN), (-1))); |
| 1918 | else |
| 1919 | ieee80211_new_state(ic, IEEE80211_S_SCAN, -1)(((ic)->ic_newstate)((ic), (IEEE80211_S_SCAN), (-1))); |
| 1920 | |
| 1921 | return 0; |
| 1922 | |
| 1923 | fail: uath_stop(ifp, 1); |
| 1924 | return error; |
| 1925 | } |
| 1926 | |
| 1927 | void |
| 1928 | uath_stop(struct ifnet *ifp, int disable) |
| 1929 | { |
| 1930 | struct uath_softc *sc = ifp->if_softc; |
| 1931 | struct ieee80211com *ic = &sc->sc_ic; |
| 1932 | uint32_t val; |
| 1933 | int s; |
| 1934 | |
| 1935 | s = splusb()splraise(0x2); |
| 1936 | |
| 1937 | sc->sc_tx_timer = 0; |
| 1938 | ifp->if_timer = 0; |
| 1939 | ifp->if_flags &= ~IFF_RUNNING0x40; |
| 1940 | ifq_clr_oactive(&ifp->if_snd); |
| 1941 | |
| 1942 | ieee80211_new_state(ic, IEEE80211_S_INIT, -1)(((ic)->ic_newstate)((ic), (IEEE80211_S_INIT), (-1))); /* free all nodes */ |
| 1943 | |
| 1944 | val = htobe32(0)(__uint32_t)(__builtin_constant_p(0) ? (__uint32_t)(((__uint32_t )(0) & 0xff) << 24 | ((__uint32_t)(0) & 0xff00) << 8 | ((__uint32_t)(0) & 0xff0000) >> 8 | ( (__uint32_t)(0) & 0xff000000) >> 24) : __swap32md(0 )); |
| 1945 | (void)uath_cmd_write(sc, UATH_CMD_SET_STATE0x20, &val, sizeof val, 0); |
| 1946 | (void)uath_cmd_write(sc, UATH_CMD_RESET0x35, NULL((void *)0), 0, 0); |
| 1947 | |
| 1948 | val = htobe32(0)(__uint32_t)(__builtin_constant_p(0) ? (__uint32_t)(((__uint32_t )(0) & 0xff) << 24 | ((__uint32_t)(0) & 0xff00) << 8 | ((__uint32_t)(0) & 0xff0000) >> 8 | ( (__uint32_t)(0) & 0xff000000) >> 24) : __swap32md(0 )); |
| 1949 | (void)uath_cmd_write(sc, UATH_CMD_150x15, &val, sizeof val, 0); |
| 1950 | |
| 1951 | #if 0 |
| 1952 | (void)uath_cmd_read(sc, UATH_CMD_SHUTDOWN0x08, NULL((void *)0), 0, NULL((void *)0), |
| 1953 | UATH_CMD_FLAG_MAGIC(1 << 2)); |
| 1954 | #endif |
| 1955 | |
| 1956 | /* abort any pending transfers */ |
| 1957 | usbd_abort_pipe(sc->data_tx_pipe); |
| 1958 | usbd_abort_pipe(sc->data_rx_pipe); |
| 1959 | usbd_abort_pipe(sc->cmd_tx_pipe); |
| 1960 | |
| 1961 | splx(s)spllower(s); |
| 1962 | } |
| 1963 | |
| 1964 | /* |
| 1965 | * Load the MIPS R4000 microcode into the device. Once the image is loaded, |
| 1966 | * the device will detach itself from the bus and reattach later with a new |
| 1967 | * product Id (a la ezusb). XXX this could also be implemented in userland |
| 1968 | * through /dev/ugen. |
| 1969 | */ |
| 1970 | int |
| 1971 | uath_loadfirmware(struct uath_softc *sc, const u_char *fw, int len) |
| 1972 | { |
| 1973 | struct usbd_xfer *ctlxfer, *txxfer, *rxxfer; |
| 1974 | struct uath_fwblock *txblock, *rxblock; |
| 1975 | uint8_t *txdata; |
| 1976 | int error = 0; |
| 1977 | |
| 1978 | if ((ctlxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL((void *)0)) { |
| 1979 | printf("%s: could not allocate Tx control xfer\n", |
| 1980 | sc->sc_dev.dv_xname); |
| 1981 | error = USBD_NOMEM; |
| 1982 | goto fail1; |
| 1983 | } |
| 1984 | txblock = usbd_alloc_buffer(ctlxfer, sizeof (struct uath_fwblock)); |
| 1985 | if (txblock == NULL((void *)0)) { |
| 1986 | printf("%s: could not allocate Tx control block\n", |
| 1987 | sc->sc_dev.dv_xname); |
| 1988 | error = USBD_NOMEM; |
| 1989 | goto fail2; |
| 1990 | } |
| 1991 | |
| 1992 | if ((txxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL((void *)0)) { |
| 1993 | printf("%s: could not allocate Tx xfer\n", |
| 1994 | sc->sc_dev.dv_xname); |
| 1995 | error = USBD_NOMEM; |
| 1996 | goto fail2; |
| 1997 | } |
| 1998 | txdata = usbd_alloc_buffer(txxfer, UATH_MAX_FWBLOCK_SIZE2048); |
| 1999 | if (txdata == NULL((void *)0)) { |
| 2000 | printf("%s: could not allocate Tx buffer\n", |
| 2001 | sc->sc_dev.dv_xname); |
| 2002 | error = USBD_NOMEM; |
| 2003 | goto fail3; |
| 2004 | } |
| 2005 | |
| 2006 | if ((rxxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL((void *)0)) { |
| 2007 | printf("%s: could not allocate Rx control xfer\n", |
| 2008 | sc->sc_dev.dv_xname); |
| 2009 | error = USBD_NOMEM; |
| 2010 | goto fail3; |
| 2011 | } |
| 2012 | rxblock = usbd_alloc_buffer(rxxfer, sizeof (struct uath_fwblock)); |
| 2013 | if (rxblock == NULL((void *)0)) { |
| 2014 | printf("%s: could not allocate Rx control block\n", |
| 2015 | sc->sc_dev.dv_xname); |
| 2016 | error = USBD_NOMEM; |
| 2017 | goto fail4; |
| 2018 | } |
| 2019 | |
| 2020 | bzero(txblock, sizeof (struct uath_fwblock))__builtin_bzero((txblock), (sizeof (struct uath_fwblock))); |
| 2021 | txblock->flags = htobe32(UATH_WRITE_BLOCK)(__uint32_t)(__builtin_constant_p((1 << 4)) ? (__uint32_t )(((__uint32_t)((1 << 4)) & 0xff) << 24 | ((__uint32_t )((1 << 4)) & 0xff00) << 8 | ((__uint32_t)((1 << 4)) & 0xff0000) >> 8 | ((__uint32_t)((1 << 4)) & 0xff000000) >> 24) : __swap32md((1 << 4 ))); |
| 2022 | txblock->total = htobe32(len)(__uint32_t)(__builtin_constant_p(len) ? (__uint32_t)(((__uint32_t )(len) & 0xff) << 24 | ((__uint32_t)(len) & 0xff00 ) << 8 | ((__uint32_t)(len) & 0xff0000) >> 8 | ((__uint32_t)(len) & 0xff000000) >> 24) : __swap32md (len)); |
| 2023 | |
| 2024 | while (len > 0) { |
| 2025 | int mlen = min(len, UATH_MAX_FWBLOCK_SIZE2048); |
| 2026 | |
| 2027 | txblock->remain = htobe32(len - mlen)(__uint32_t)(__builtin_constant_p(len - mlen) ? (__uint32_t)( ((__uint32_t)(len - mlen) & 0xff) << 24 | ((__uint32_t )(len - mlen) & 0xff00) << 8 | ((__uint32_t)(len - mlen ) & 0xff0000) >> 8 | ((__uint32_t)(len - mlen) & 0xff000000) >> 24) : __swap32md(len - mlen)); |
| 2028 | txblock->len = htobe32(mlen)(__uint32_t)(__builtin_constant_p(mlen) ? (__uint32_t)(((__uint32_t )(mlen) & 0xff) << 24 | ((__uint32_t)(mlen) & 0xff00 ) << 8 | ((__uint32_t)(mlen) & 0xff0000) >> 8 | ((__uint32_t)(mlen) & 0xff000000) >> 24) : __swap32md (mlen)); |
| 2029 | |
| 2030 | DPRINTF(("sending firmware block: %d bytes remaining\n", |
| 2031 | len - mlen)); |
| 2032 | |
| 2033 | /* send firmware block meta-data */ |
| 2034 | usbd_setup_xfer(ctlxfer, sc->cmd_tx_pipe, sc, txblock, |
| 2035 | sizeof (struct uath_fwblock), |
| 2036 | USBD_NO_COPY0x01 | USBD_SYNCHRONOUS0x02, |
| 2037 | UATH_CMD_TIMEOUT1000, NULL((void *)0)); |
| 2038 | if ((error = usbd_transfer(ctlxfer)) != 0) { |
| 2039 | printf("%s: could not send firmware block info\n", |
| 2040 | sc->sc_dev.dv_xname); |
| 2041 | break; |
| 2042 | } |
| 2043 | |
| 2044 | /* send firmware block data */ |
| 2045 | bcopy(fw, txdata, mlen); |
| 2046 | usbd_setup_xfer(txxfer, sc->data_tx_pipe, sc, txdata, mlen, |
| 2047 | USBD_NO_COPY0x01 | USBD_SYNCHRONOUS0x02, UATH_DATA_TIMEOUT10000, NULL((void *)0)); |
| 2048 | if ((error = usbd_transfer(txxfer)) != 0) { |
| 2049 | printf("%s: could not send firmware block data\n", |
| 2050 | sc->sc_dev.dv_xname); |
| 2051 | break; |
| 2052 | } |
| 2053 | |
| 2054 | /* wait for ack from firmware */ |
| 2055 | usbd_setup_xfer(rxxfer, sc->cmd_rx_pipe, sc, rxblock, |
| 2056 | sizeof (struct uath_fwblock), USBD_SHORT_XFER_OK0x04 | |
| 2057 | USBD_NO_COPY0x01 | USBD_SYNCHRONOUS0x02, UATH_CMD_TIMEOUT1000, NULL((void *)0)); |
| 2058 | if ((error = usbd_transfer(rxxfer)) != 0) { |
| 2059 | printf("%s: could not read firmware answer\n", |
| 2060 | sc->sc_dev.dv_xname); |
| 2061 | break; |
| 2062 | } |
| 2063 | |
| 2064 | DPRINTFN(2, ("rxblock flags=0x%x total=%d\n", |
| 2065 | betoh32(rxblock->flags), betoh32(rxblock->rxtotal))); |
| 2066 | fw += mlen; |
| 2067 | len -= mlen; |
| 2068 | } |
| 2069 | |
| 2070 | fail4: usbd_free_xfer(rxxfer); |
| 2071 | fail3: usbd_free_xfer(txxfer); |
| 2072 | fail2: usbd_free_xfer(ctlxfer); |
| 2073 | fail1: return error; |
| 2074 | } |