| File: | arch/amd64/amd64/machdep.c |
| Warning: | line 1668, column 8 Access to field 'avail_end' results in a dereference of a null pointer (loaded from variable 'vps') |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: machdep.c,v 1.288 2023/09/08 20:47:22 kn Exp $ */ | |||
| 2 | /* $NetBSD: machdep.c,v 1.3 2003/05/07 22:58:18 fvdl Exp $ */ | |||
| 3 | ||||
| 4 | /*- | |||
| 5 | * Copyright (c) 1996, 1997, 1998, 2000 The NetBSD Foundation, Inc. | |||
| 6 | * All rights reserved. | |||
| 7 | * | |||
| 8 | * This code is derived from software contributed to The NetBSD Foundation | |||
| 9 | * by Charles M. Hannum and by Jason R. Thorpe of the Numerical Aerospace | |||
| 10 | * Simulation Facility, NASA Ames Research Center. | |||
| 11 | * | |||
| 12 | * Redistribution and use in source and binary forms, with or without | |||
| 13 | * modification, are permitted provided that the following conditions | |||
| 14 | * are met: | |||
| 15 | * 1. Redistributions of source code must retain the above copyright | |||
| 16 | * notice, this list of conditions and the following disclaimer. | |||
| 17 | * 2. Redistributions in binary form must reproduce the above copyright | |||
| 18 | * notice, this list of conditions and the following disclaimer in the | |||
| 19 | * documentation and/or other materials provided with the distribution. | |||
| 20 | * | |||
| 21 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS | |||
| 22 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED | |||
| 23 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |||
| 24 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS | |||
| 25 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |||
| 26 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |||
| 27 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |||
| 28 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |||
| 29 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |||
| 30 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |||
| 31 | * POSSIBILITY OF SUCH DAMAGE. | |||
| 32 | */ | |||
| 33 | ||||
| 34 | /*- | |||
| 35 | * Copyright (c) 1982, 1987, 1990 The Regents of the University of California. | |||
| 36 | * All rights reserved. | |||
| 37 | * | |||
| 38 | * This code is derived from software contributed to Berkeley by | |||
| 39 | * William Jolitz. | |||
| 40 | * | |||
| 41 | * Redistribution and use in source and binary forms, with or without | |||
| 42 | * modification, are permitted provided that the following conditions | |||
| 43 | * are met: | |||
| 44 | * 1. Redistributions of source code must retain the above copyright | |||
| 45 | * notice, this list of conditions and the following disclaimer. | |||
| 46 | * 2. Redistributions in binary form must reproduce the above copyright | |||
| 47 | * notice, this list of conditions and the following disclaimer in the | |||
| 48 | * documentation and/or other materials provided with the distribution. | |||
| 49 | * 3. Neither the name of the University nor the names of its contributors | |||
| 50 | * may be used to endorse or promote products derived from this software | |||
| 51 | * without specific prior written permission. | |||
| 52 | * | |||
| 53 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |||
| 54 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |||
| 55 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |||
| 56 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |||
| 57 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |||
| 58 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |||
| 59 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |||
| 60 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |||
| 61 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |||
| 62 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |||
| 63 | * SUCH DAMAGE. | |||
| 64 | * | |||
| 65 | * @(#)machdep.c 7.4 (Berkeley) 6/3/91 | |||
| 66 | */ | |||
| 67 | ||||
| 68 | #include <sys/param.h> | |||
| 69 | #include <sys/systm.h> | |||
| 70 | #include <sys/signal.h> | |||
| 71 | #include <sys/signalvar.h> | |||
| 72 | #include <sys/proc.h> | |||
| 73 | #include <sys/user.h> | |||
| 74 | #include <sys/exec.h> | |||
| 75 | #include <sys/buf.h> | |||
| 76 | #include <sys/reboot.h> | |||
| 77 | #include <sys/conf.h> | |||
| 78 | #include <sys/msgbuf.h> | |||
| 79 | #include <sys/mount.h> | |||
| 80 | #include <sys/extent.h> | |||
| 81 | #include <sys/core.h> | |||
| 82 | #include <sys/kcore.h> | |||
| 83 | #include <sys/syscallargs.h> | |||
| 84 | ||||
| 85 | #include <dev/cons.h> | |||
| 86 | #include <stand/boot/bootarg.h> | |||
| 87 | ||||
| 88 | #include <net/if.h> | |||
| 89 | #include <uvm/uvm_extern.h> | |||
| 90 | ||||
| 91 | #include <sys/sysctl.h> | |||
| 92 | ||||
| 93 | #include <machine/cpu_full.h> | |||
| 94 | #include <machine/cpufunc.h> | |||
| 95 | #include <machine/pio.h> | |||
| 96 | #include <machine/psl.h> | |||
| 97 | #include <machine/reg.h> | |||
| 98 | #include <machine/fpu.h> | |||
| 99 | #include <machine/biosvar.h> | |||
| 100 | #include <machine/mpbiosvar.h> | |||
| 101 | #include <machine/kcore.h> | |||
| 102 | #include <machine/tss.h> | |||
| 103 | ||||
| 104 | #include <dev/isa/isareg.h> | |||
| 105 | #include <dev/ic/i8042reg.h> | |||
| 106 | ||||
| 107 | #ifdef DDB1 | |||
| 108 | #include <machine/db_machdep.h> | |||
| 109 | #include <ddb/db_extern.h> | |||
| 110 | extern int db_console; | |||
| 111 | #endif | |||
| 112 | ||||
| 113 | #include "isa.h" | |||
| 114 | #include "isadma.h" | |||
| 115 | #include "ksyms.h" | |||
| 116 | ||||
| 117 | #include "acpi.h" | |||
| 118 | #if NACPI1 > 0 | |||
| 119 | #include <dev/acpi/acpivar.h> | |||
| 120 | #endif | |||
| 121 | ||||
| 122 | #include "com.h" | |||
| 123 | #if NCOM1 > 0 | |||
| 124 | #include <sys/tty.h> | |||
| 125 | #include <dev/ic/comvar.h> | |||
| 126 | #include <dev/ic/comreg.h> | |||
| 127 | #endif | |||
| 128 | ||||
| 129 | #include "efi.h" | |||
| 130 | #if NEFI1 > 0 | |||
| 131 | #include <dev/efi/efi.h> | |||
| 132 | #endif | |||
| 133 | ||||
| 134 | #include "softraid.h" | |||
| 135 | #if NSOFTRAID1 > 0 | |||
| 136 | #include <dev/softraidvar.h> | |||
| 137 | #endif | |||
| 138 | ||||
| 139 | #ifdef HIBERNATE1 | |||
| 140 | #include <machine/hibernate_var.h> | |||
| 141 | #endif /* HIBERNATE */ | |||
| 142 | ||||
| 143 | #include "ukbd.h" | |||
| 144 | #include "pckbc.h" | |||
| 145 | #if NPCKBC1 > 0 && NUKBD1 > 0 | |||
| 146 | #include <dev/ic/pckbcvar.h> | |||
| 147 | #endif | |||
| 148 | ||||
| 149 | /* #define MACHDEP_DEBUG */ | |||
| 150 | ||||
| 151 | #ifdef MACHDEP_DEBUG | |||
| 152 | #define DPRINTF(x...) do { printf(x); } while(0) | |||
| 153 | #else | |||
| 154 | #define DPRINTF(x...) | |||
| 155 | #endif /* MACHDEP_DEBUG */ | |||
| 156 | ||||
| 157 | /* the following is used externally (sysctl_hw) */ | |||
| 158 | char machine[] = MACHINE"amd64"; | |||
| 159 | ||||
| 160 | /* | |||
| 161 | * switchto vectors | |||
| 162 | */ | |||
| 163 | void cpu_idle_cycle_hlt(void); | |||
| 164 | void (*cpu_idle_cycle_fcn)(void) = &cpu_idle_cycle_hlt; | |||
| 165 | ||||
| 166 | /* the following is used externally for concurrent handlers */ | |||
| 167 | int setperf_prio = 0; | |||
| 168 | ||||
| 169 | #ifdef CPURESET_DELAY | |||
| 170 | int cpureset_delay = CPURESET_DELAY; | |||
| 171 | #else | |||
| 172 | int cpureset_delay = 0; | |||
| 173 | #endif | |||
| 174 | ||||
| 175 | char *ssym = 0, *esym = 0; /* start and end of symbol table */ | |||
| 176 | dev_t bootdev = 0; /* device we booted from */ | |||
| 177 | int biosbasemem = 0; /* base memory reported by BIOS */ | |||
| 178 | u_int bootapiver = 0; /* /boot API version */ | |||
| 179 | ||||
| 180 | int physmem; | |||
| 181 | u_int64_t dumpmem_low; | |||
| 182 | u_int64_t dumpmem_high; | |||
| 183 | extern int boothowto; | |||
| 184 | int cpu_class; | |||
| 185 | ||||
| 186 | paddr_t dumpmem_paddr; | |||
| 187 | vaddr_t dumpmem_vaddr; | |||
| 188 | psize_t dumpmem_sz; | |||
| 189 | ||||
| 190 | vaddr_t kern_end; | |||
| 191 | ||||
| 192 | vaddr_t msgbuf_vaddr; | |||
| 193 | paddr_t msgbuf_paddr; | |||
| 194 | ||||
| 195 | vaddr_t idt_vaddr; | |||
| 196 | paddr_t idt_paddr; | |||
| 197 | ||||
| 198 | vaddr_t lo32_vaddr; | |||
| 199 | paddr_t lo32_paddr; | |||
| 200 | paddr_t tramp_pdirpa; | |||
| 201 | ||||
| 202 | int kbd_reset; | |||
| 203 | int lid_action = 1; | |||
| 204 | int pwr_action = 1; | |||
| 205 | int forceukbd; | |||
| 206 | ||||
| 207 | /* | |||
| 208 | * safepri is a safe priority for sleep to set for a spin-wait | |||
| 209 | * during autoconfiguration or after a panic. | |||
| 210 | */ | |||
| 211 | int safepri = 0; | |||
| 212 | ||||
| 213 | struct vm_map *exec_map = NULL((void *)0); | |||
| 214 | struct vm_map *phys_map = NULL((void *)0); | |||
| 215 | ||||
| 216 | /* UVM constraint ranges. */ | |||
| 217 | struct uvm_constraint_range isa_constraint = { 0x0, 0x00ffffffUL }; | |||
| 218 | struct uvm_constraint_range dma_constraint = { 0x0, 0xffffffffUL }; | |||
| 219 | struct uvm_constraint_range *uvm_md_constraints[] = { | |||
| 220 | &isa_constraint, | |||
| 221 | &dma_constraint, | |||
| 222 | NULL((void *)0), | |||
| 223 | }; | |||
| 224 | ||||
| 225 | paddr_t avail_start; | |||
| 226 | paddr_t avail_end; | |||
| 227 | ||||
| 228 | void (*delay_func)(int) = i8254_delay; | |||
| 229 | void (*initclock_func)(void) = i8254_initclocks; | |||
| 230 | void (*startclock_func)(void) = i8254_start_both_clocks; | |||
| 231 | ||||
| 232 | /* | |||
| 233 | * Format of boot information passed to us by 32-bit /boot | |||
| 234 | */ | |||
| 235 | typedef struct _boot_args32 { | |||
| 236 | int ba_type; | |||
| 237 | int ba_size; | |||
| 238 | int ba_nextX; /* a ptr in 32-bit world, but not here */ | |||
| 239 | char ba_arg[1]; | |||
| 240 | } bootarg32_t; | |||
| 241 | ||||
| 242 | #define BOOTARGC_MAX(1 << 12) NBPG(1 << 12) /* one page */ | |||
| 243 | ||||
| 244 | bios_bootmac_t *bios_bootmac; | |||
| 245 | ||||
| 246 | /* locore copies the arguments from /boot to here for us */ | |||
| 247 | char bootinfo[BOOTARGC_MAX(1 << 12)]; | |||
| 248 | int bootinfo_size = BOOTARGC_MAX(1 << 12); | |||
| 249 | ||||
| 250 | void getbootinfo(char *, int); | |||
| 251 | ||||
| 252 | /* Data passed to us by /boot, filled in by getbootinfo() */ | |||
| 253 | bios_diskinfo_t *bios_diskinfo; | |||
| 254 | bios_memmap_t *bios_memmap; | |||
| 255 | u_int32_t bios_cksumlen; | |||
| 256 | bios_efiinfo_t *bios_efiinfo; | |||
| 257 | bios_ucode_t *bios_ucode; | |||
| 258 | ||||
| 259 | #if NEFI1 > 0 | |||
| 260 | EFI_MEMORY_DESCRIPTOR *mmap; | |||
| 261 | #endif | |||
| 262 | ||||
| 263 | /* | |||
| 264 | * Size of memory segments, before any memory is stolen. | |||
| 265 | */ | |||
| 266 | phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX16]; | |||
| 267 | int mem_cluster_cnt; | |||
| 268 | ||||
| 269 | int cpu_dump(void); | |||
| 270 | int cpu_dumpsize(void); | |||
| 271 | u_long cpu_dump_mempagecnt(void); | |||
| 272 | void dumpsys(void); | |||
| 273 | void cpu_init_extents(void); | |||
| 274 | void map_tramps(void); | |||
| 275 | void init_x86_64(paddr_t); | |||
| 276 | void (*cpuresetfn)(void); | |||
| 277 | void enter_shared_special_pages(void); | |||
| 278 | ||||
| 279 | #ifdef APERTURE1 | |||
| 280 | int allowaperture = 0; | |||
| 281 | #endif | |||
| 282 | ||||
| 283 | /* | |||
| 284 | * Machine-dependent startup code | |||
| 285 | */ | |||
| 286 | void | |||
| 287 | cpu_startup(void) | |||
| 288 | { | |||
| 289 | vaddr_t minaddr, maxaddr; | |||
| 290 | ||||
| 291 | msgbuf_vaddr = PMAP_DIRECT_MAP(msgbuf_paddr)((vaddr_t)(((((511 - 4) * (1ULL << 39))) | 0xffff000000000000 )) + (msgbuf_paddr)); | |||
| 292 | initmsgbuf((caddr_t)msgbuf_vaddr, round_page(MSGBUFSIZE)((((32 * (1 << 12))) + ((1 << 12) - 1)) & ~(( 1 << 12) - 1))); | |||
| 293 | ||||
| 294 | printf("%s", version); | |||
| 295 | startclocks(); | |||
| 296 | rtcinit(); | |||
| 297 | ||||
| 298 | printf("real mem = %lu (%luMB)\n", ptoa((psize_t)physmem)((paddr_t)((psize_t)physmem) << 12), | |||
| 299 | ptoa((psize_t)physmem)((paddr_t)((psize_t)physmem) << 12)/1024/1024); | |||
| 300 | ||||
| 301 | /* | |||
| 302 | * Allocate a submap for exec arguments. This map effectively | |||
| 303 | * limits the number of processes exec'ing at any time. | |||
| 304 | */ | |||
| 305 | minaddr = vm_map_min(kernel_map)((kernel_map)->min_offset); | |||
| 306 | exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr, | |||
| 307 | 16*NCARGS(512 * 1024), VM_MAP_PAGEABLE0x01, FALSE0, NULL((void *)0)); | |||
| 308 | ||||
| 309 | /* | |||
| 310 | * Allocate a submap for physio | |||
| 311 | */ | |||
| 312 | minaddr = vm_map_min(kernel_map)((kernel_map)->min_offset); | |||
| 313 | phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr, | |||
| 314 | VM_PHYS_SIZE(300*(1 << 12)), 0, FALSE0, NULL((void *)0)); | |||
| 315 | ||||
| 316 | printf("avail mem = %lu (%luMB)\n", ptoa((psize_t)uvmexp.free)((paddr_t)((psize_t)uvmexp.free) << 12), | |||
| 317 | ptoa((psize_t)uvmexp.free)((paddr_t)((psize_t)uvmexp.free) << 12)/1024/1024); | |||
| 318 | ||||
| 319 | bufinit(); | |||
| 320 | ||||
| 321 | if (boothowto & RB_CONFIG0x00400) { | |||
| 322 | #ifdef BOOT_CONFIG1 | |||
| 323 | user_config(); | |||
| 324 | #else | |||
| 325 | printf("kernel does not support -c; continuing..\n"); | |||
| 326 | #endif | |||
| 327 | } | |||
| 328 | ||||
| 329 | /* Safe for i/o port / memory space allocation to use malloc now. */ | |||
| 330 | x86_bus_space_mallocok(); | |||
| 331 | ||||
| 332 | #ifndef SMALL_KERNEL | |||
| 333 | cpu_ucode_setup(); | |||
| 334 | cpu_ucode_apply(&cpu_info_primary(*(struct cpu_info *)((char *)&cpu_info_full_primary + 4096 *2 - __builtin_offsetof(struct cpu_info, ci_dev)))); | |||
| 335 | #endif | |||
| 336 | cpu_tsx_disable(&cpu_info_primary(*(struct cpu_info *)((char *)&cpu_info_full_primary + 4096 *2 - __builtin_offsetof(struct cpu_info, ci_dev)))); | |||
| 337 | ||||
| 338 | /* enter the IDT and trampoline code in the u-k maps */ | |||
| 339 | enter_shared_special_pages(); | |||
| 340 | ||||
| 341 | /* initialize CPU0's TSS and GDT and put them in the u-k maps */ | |||
| 342 | cpu_enter_pages(&cpu_info_full_primary); | |||
| 343 | } | |||
| 344 | ||||
| 345 | /* | |||
| 346 | * enter_shared_special_pages | |||
| 347 | * | |||
| 348 | * Requests mapping of various special pages required in the Intel Meltdown | |||
| 349 | * case (to be entered into the U-K page table): | |||
| 350 | * | |||
| 351 | * 1 IDT page | |||
| 352 | * Various number of pages covering the U-K ".kutext" section. This section | |||
| 353 | * contains code needed during trampoline operation | |||
| 354 | * Various number of pages covering the U-K ".kudata" section. This section | |||
| 355 | * contains data accessed by the trampoline, before switching to U+K | |||
| 356 | * (for example, various shared global variables used by IPIs, etc) | |||
| 357 | * | |||
| 358 | * The linker script places the required symbols in the sections above. | |||
| 359 | * | |||
| 360 | * On CPUs not affected by Meltdown, the calls to pmap_enter_special below | |||
| 361 | * become no-ops. | |||
| 362 | */ | |||
| 363 | void | |||
| 364 | enter_shared_special_pages(void) | |||
| 365 | { | |||
| 366 | extern char __kutext_start[], __kutext_end[], __kernel_kutext_phys[]; | |||
| 367 | extern char __text_page_start[], __text_page_end[]; | |||
| 368 | extern char __kernel_kutext_page_phys[]; | |||
| 369 | extern char __kudata_start[], __kudata_end[], __kernel_kudata_phys[]; | |||
| 370 | vaddr_t va; | |||
| 371 | paddr_t pa; | |||
| 372 | ||||
| 373 | /* idt */ | |||
| 374 | pmap_enter_special(idt_vaddr, idt_paddr, PROT_READ0x01); | |||
| 375 | DPRINTF("%s: entered idt page va 0x%llx pa 0x%llx\n", __func__, | |||
| 376 | (uint64_t)idt_vaddr, (uint64_t)idt_paddr); | |||
| 377 | ||||
| 378 | /* .kutext section */ | |||
| 379 | va = (vaddr_t)__kutext_start; | |||
| 380 | pa = (paddr_t)__kernel_kutext_phys; | |||
| 381 | while (va < (vaddr_t)__kutext_end) { | |||
| 382 | pmap_enter_special(va, pa, PROT_READ0x01 | PROT_EXEC0x04); | |||
| 383 | DPRINTF("%s: entered kutext page va 0x%llx pa 0x%llx\n", | |||
| 384 | __func__, (uint64_t)va, (uint64_t)pa); | |||
| 385 | va += PAGE_SIZE(1 << 12); | |||
| 386 | pa += PAGE_SIZE(1 << 12); | |||
| 387 | } | |||
| 388 | ||||
| 389 | /* .kutext.page section */ | |||
| 390 | va = (vaddr_t)__text_page_start; | |||
| 391 | pa = (paddr_t)__kernel_kutext_page_phys; | |||
| 392 | while (va < (vaddr_t)__text_page_end) { | |||
| 393 | pmap_enter_special(va, pa, PROT_READ0x01 | PROT_EXEC0x04); | |||
| 394 | DPRINTF("%s: entered kutext.page va 0x%llx pa 0x%llx\n", | |||
| 395 | __func__, (uint64_t)va, (uint64_t)pa); | |||
| 396 | va += PAGE_SIZE(1 << 12); | |||
| 397 | pa += PAGE_SIZE(1 << 12); | |||
| 398 | } | |||
| 399 | ||||
| 400 | /* .kudata section */ | |||
| 401 | va = (vaddr_t)__kudata_start; | |||
| 402 | pa = (paddr_t)__kernel_kudata_phys; | |||
| 403 | while (va < (vaddr_t)__kudata_end) { | |||
| 404 | pmap_enter_special(va, pa, PROT_READ0x01 | PROT_WRITE0x02); | |||
| 405 | DPRINTF("%s: entered kudata page va 0x%llx pa 0x%llx\n", | |||
| 406 | __func__, (uint64_t)va, (uint64_t)pa); | |||
| 407 | va += PAGE_SIZE(1 << 12); | |||
| 408 | pa += PAGE_SIZE(1 << 12); | |||
| 409 | } | |||
| 410 | } | |||
| 411 | ||||
| 412 | /* | |||
| 413 | * Set up proc0's PCB and the cpu's TSS. | |||
| 414 | */ | |||
| 415 | void | |||
| 416 | x86_64_proc0_tss_ldt_init(void) | |||
| 417 | { | |||
| 418 | struct pcb *pcb; | |||
| 419 | ||||
| 420 | cpu_info_primary(*(struct cpu_info *)((char *)&cpu_info_full_primary + 4096 *2 - __builtin_offsetof(struct cpu_info, ci_dev))).ci_curpcb = pcb = &proc0.p_addr->u_pcb; | |||
| 421 | pcb->pcb_fsbase = 0; | |||
| 422 | pcb->pcb_kstack = (u_int64_t)proc0.p_addr + USPACE(6 * (1 << 12)) - 16; | |||
| 423 | proc0.p_md.md_regs = (struct trapframe *)pcb->pcb_kstack - 1; | |||
| 424 | ||||
| 425 | ltr(GSYSSEL(GPROC0_SEL, SEL_KPL)((((0) << 4) + (6 << 3)) | 0)); | |||
| 426 | lldt(0); | |||
| 427 | } | |||
| 428 | ||||
| 429 | bios_diskinfo_t * | |||
| 430 | bios_getdiskinfo(dev_t dev) | |||
| 431 | { | |||
| 432 | bios_diskinfo_t *pdi; | |||
| 433 | ||||
| 434 | if (bios_diskinfo == NULL((void *)0)) | |||
| 435 | return NULL((void *)0); | |||
| 436 | ||||
| 437 | for (pdi = bios_diskinfo; pdi->bios_number != -1; pdi++) { | |||
| 438 | if ((dev & B_MAGICMASK0xf0000000) == B_DEVMAGIC0xa0000000) { /* search by bootdev */ | |||
| 439 | if (pdi->bsd_dev == dev) | |||
| 440 | break; | |||
| 441 | } else { | |||
| 442 | if (pdi->bios_number == dev) | |||
| 443 | break; | |||
| 444 | } | |||
| 445 | } | |||
| 446 | ||||
| 447 | if (pdi->bios_number == -1) | |||
| 448 | return NULL((void *)0); | |||
| 449 | else | |||
| 450 | return pdi; | |||
| 451 | } | |||
| 452 | ||||
| 453 | int | |||
| 454 | bios_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, | |||
| 455 | size_t newlen, struct proc *p) | |||
| 456 | { | |||
| 457 | bios_diskinfo_t *pdi; | |||
| 458 | int biosdev; | |||
| 459 | ||||
| 460 | /* all sysctl names at this level except diskinfo are terminal */ | |||
| 461 | if (namelen != 1 && name[0] != BIOS_DISKINFO2) | |||
| 462 | return (ENOTDIR20); /* overloaded */ | |||
| 463 | ||||
| 464 | if (!(bootapiver & BAPIV_VECTOR0x00000002)) | |||
| 465 | return EOPNOTSUPP45; | |||
| 466 | ||||
| 467 | switch (name[0]) { | |||
| 468 | case BIOS_DEV1: | |||
| 469 | if ((pdi = bios_getdiskinfo(bootdev)) == NULL((void *)0)) | |||
| 470 | return ENXIO6; | |||
| 471 | biosdev = pdi->bios_number; | |||
| 472 | return sysctl_rdint(oldp, oldlenp, newp, biosdev); | |||
| 473 | case BIOS_DISKINFO2: | |||
| 474 | if (namelen != 2) | |||
| 475 | return ENOTDIR20; | |||
| 476 | if ((pdi = bios_getdiskinfo(name[1])) == NULL((void *)0)) | |||
| 477 | return ENXIO6; | |||
| 478 | return sysctl_rdstruct(oldp, oldlenp, newp, pdi, sizeof(*pdi)); | |||
| 479 | case BIOS_CKSUMLEN3: | |||
| 480 | return sysctl_rdint(oldp, oldlenp, newp, bios_cksumlen); | |||
| 481 | default: | |||
| 482 | return EOPNOTSUPP45; | |||
| 483 | } | |||
| 484 | /* NOTREACHED */ | |||
| 485 | } | |||
| 486 | ||||
| 487 | extern int tsc_is_invariant; | |||
| 488 | extern int amd64_has_xcrypt; | |||
| 489 | ||||
| 490 | const struct sysctl_bounded_args cpuctl_vars[] = { | |||
| 491 | { CPU_LIDACTION14, &lid_action, 0, 2 }, | |||
| 492 | { CPU_PWRACTION18, &pwr_action, 0, 2 }, | |||
| 493 | { CPU_CPUID7, &cpu_id, SYSCTL_INT_READONLY1,0 }, | |||
| 494 | { CPU_CPUFEATURE8, &cpu_feature, SYSCTL_INT_READONLY1,0 }, | |||
| 495 | { CPU_XCRYPT12, &amd64_has_xcrypt, SYSCTL_INT_READONLY1,0 }, | |||
| 496 | { CPU_INVARIANTTSC17, &tsc_is_invariant, SYSCTL_INT_READONLY1,0 }, | |||
| 497 | }; | |||
| 498 | ||||
| 499 | /* | |||
| 500 | * machine dependent system variables. | |||
| 501 | */ | |||
| 502 | int | |||
| 503 | cpu_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, | |||
| 504 | size_t newlen, struct proc *p) | |||
| 505 | { | |||
| 506 | extern uint64_t tsc_frequency; | |||
| 507 | dev_t consdev; | |||
| 508 | dev_t dev; | |||
| 509 | ||||
| 510 | switch (name[0]) { | |||
| 511 | case CPU_CONSDEV1: | |||
| 512 | if (namelen != 1) | |||
| 513 | return (ENOTDIR20); /* overloaded */ | |||
| 514 | if (cn_tab != NULL((void *)0)) | |||
| 515 | consdev = cn_tab->cn_dev; | |||
| 516 | else | |||
| 517 | consdev = NODEV(dev_t)(-1); | |||
| 518 | return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev, | |||
| 519 | sizeof consdev)); | |||
| 520 | case CPU_CHR2BLK4: | |||
| 521 | if (namelen != 2) | |||
| 522 | return (ENOTDIR20); /* overloaded */ | |||
| 523 | dev = chrtoblk((dev_t)name[1]); | |||
| 524 | return sysctl_rdstruct(oldp, oldlenp, newp, &dev, sizeof(dev)); | |||
| 525 | case CPU_BIOS2: | |||
| 526 | return bios_sysctl(name + 1, namelen - 1, oldp, oldlenp, | |||
| 527 | newp, newlen, p); | |||
| 528 | case CPU_CPUVENDOR6: | |||
| 529 | return (sysctl_rdstring(oldp, oldlenp, newp, cpu_vendor)); | |||
| 530 | case CPU_KBDRESET10: | |||
| 531 | return (sysctl_securelevel_int(oldp, oldlenp, newp, newlen, | |||
| 532 | &kbd_reset)); | |||
| 533 | case CPU_ALLOWAPERTURE5: | |||
| 534 | if (namelen != 1) | |||
| 535 | return (ENOTDIR20); /* overloaded */ | |||
| 536 | #ifdef APERTURE1 | |||
| 537 | if (securelevel > 0) | |||
| 538 | return (sysctl_int_lower(oldp, oldlenp, newp, newlen, | |||
| 539 | &allowaperture)); | |||
| 540 | else | |||
| 541 | return (sysctl_int(oldp, oldlenp, newp, newlen, | |||
| 542 | &allowaperture)); | |||
| 543 | #else | |||
| 544 | return (sysctl_rdint(oldp, oldlenp, newp, 0)); | |||
| 545 | #endif | |||
| 546 | #if NPCKBC1 > 0 && NUKBD1 > 0 | |||
| 547 | case CPU_FORCEUKBD15: | |||
| 548 | { | |||
| 549 | int error; | |||
| 550 | ||||
| 551 | if (forceukbd) | |||
| 552 | return (sysctl_rdint(oldp, oldlenp, newp, forceukbd)); | |||
| 553 | ||||
| 554 | error = sysctl_int(oldp, oldlenp, newp, newlen, &forceukbd); | |||
| 555 | if (forceukbd) | |||
| 556 | pckbc_release_console(); | |||
| 557 | return (error); | |||
| 558 | } | |||
| 559 | #endif | |||
| 560 | case CPU_TSCFREQ16: | |||
| 561 | return (sysctl_rdquad(oldp, oldlenp, newp, tsc_frequency)); | |||
| 562 | default: | |||
| 563 | return (sysctl_bounded_arr(cpuctl_vars, nitems(cpuctl_vars)(sizeof((cpuctl_vars)) / sizeof((cpuctl_vars)[0])), | |||
| 564 | name, namelen, oldp, oldlenp, newp, newlen)); | |||
| 565 | } | |||
| 566 | /* NOTREACHED */ | |||
| 567 | } | |||
| 568 | ||||
| 569 | static inline void | |||
| 570 | maybe_enable_user_cet(struct proc *p) | |||
| 571 | { | |||
| 572 | #ifndef SMALL_KERNEL | |||
| 573 | /* Enable indirect-branch tracking if present and not disabled */ | |||
| 574 | if ((xsave_mask & XFEATURE_CET_U0x00000800) && | |||
| 575 | (p->p_p->ps_flags & PS_NOBTCFI0x02000000) == 0) { | |||
| 576 | uint64_t msr = rdmsr(MSR_U_CET0x6a0); | |||
| 577 | wrmsr(MSR_U_CET0x6a0, msr | MSR_CET_ENDBR_EN(1 << 2) | MSR_CET_NO_TRACK_EN(1 << 4)); | |||
| 578 | } | |||
| 579 | #endif | |||
| 580 | } | |||
| 581 | ||||
| 582 | static inline void | |||
| 583 | initialize_thread_xstate(struct proc *p) | |||
| 584 | { | |||
| 585 | if (cpu_use_xsaves) { | |||
| 586 | xrstors(fpu_cleandata(&proc0.p_addr->u_pcb.pcb_savefpu), xsave_mask); | |||
| 587 | maybe_enable_user_cet(p); | |||
| 588 | } else { | |||
| 589 | /* Reset FPU state in PCB */ | |||
| 590 | memcpy(&p->p_addr->u_pcb.pcb_savefpu, fpu_cleandata,__builtin_memcpy((&p->p_addr->u_pcb.pcb_savefpu), ( (&proc0.p_addr->u_pcb.pcb_savefpu)), (fpu_save_len)) | |||
| 591 | fpu_save_len)__builtin_memcpy((&p->p_addr->u_pcb.pcb_savefpu), ( (&proc0.p_addr->u_pcb.pcb_savefpu)), (fpu_save_len)); | |||
| 592 | ||||
| 593 | if (curcpu()({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_pflags & CPUPF_USERXSTATE0x02) { | |||
| 594 | /* state in CPU is obsolete; reset it */ | |||
| 595 | fpureset()xrstor_kern((&proc0.p_addr->u_pcb.pcb_savefpu), xsave_mask ); | |||
| 596 | } | |||
| 597 | } | |||
| 598 | ||||
| 599 | /* The reset state _is_ the userspace state for this thread now */ | |||
| 600 | curcpu()({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_pflags |= CPUPF_USERXSTATE0x02; | |||
| 601 | } | |||
| 602 | ||||
| 603 | /* | |||
| 604 | * Copy out the FPU state, massaging it to be usable from userspace | |||
| 605 | * and acceptable to xrstor_user() | |||
| 606 | */ | |||
| 607 | static inline int | |||
| 608 | copyoutfpu(struct savefpu *sfp, char *sp, size_t len) | |||
| 609 | { | |||
| 610 | uint64_t bvs[2]; | |||
| 611 | ||||
| 612 | if (copyout(sfp, sp, len)) | |||
| 613 | return 1; | |||
| 614 | if (len > offsetof(struct savefpu, fp_xstate.xstate_bv)__builtin_offsetof(struct savefpu, fp_xstate.xstate_bv)) { | |||
| 615 | sp += offsetof(struct savefpu, fp_xstate.xstate_bv)__builtin_offsetof(struct savefpu, fp_xstate.xstate_bv); | |||
| 616 | len -= offsetof(struct savefpu, fp_xstate.xstate_bv)__builtin_offsetof(struct savefpu, fp_xstate.xstate_bv); | |||
| 617 | bvs[0] = sfp->fp_xstate.xstate_bv & XFEATURE_XCR0_MASK(0x00000001 | 0x00000002 | 0x00000004 | (0x00000008 | 0x00000010 ) | (0x00000020 | 0x00000040 | 0x00000080) | 0x00000200 | (0x00040000 | 0x00040000)); | |||
| 618 | bvs[1] = sfp->fp_xstate.xstate_xcomp_bv & | |||
| 619 | (XFEATURE_XCR0_MASK(0x00000001 | 0x00000002 | 0x00000004 | (0x00000008 | 0x00000010 ) | (0x00000020 | 0x00000040 | 0x00000080) | 0x00000200 | (0x00040000 | 0x00040000)) | XFEATURE_COMPRESSED(1ULL << 63)); | |||
| 620 | if (copyout(bvs, sp, min(len, sizeof bvs))) | |||
| 621 | return 1; | |||
| 622 | } | |||
| 623 | return 0; | |||
| 624 | } | |||
| 625 | ||||
| 626 | /* | |||
| 627 | * Send an interrupt to process. | |||
| 628 | * | |||
| 629 | * Stack is set up to allow sigcode to call routine, followed by | |||
| 630 | * syscall to sigreturn routine below. After sigreturn resets the | |||
| 631 | * signal mask, the stack, and the frame pointer, it returns to the | |||
| 632 | * user specified pc. | |||
| 633 | */ | |||
| 634 | int | |||
| 635 | sendsig(sig_t catcher, int sig, sigset_t mask, const siginfo_t *ksip, | |||
| 636 | int info, int onstack) | |||
| 637 | { | |||
| 638 | struct proc *p = curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc; | |||
| 639 | struct trapframe *tf = p->p_md.md_regs; | |||
| 640 | struct sigcontext ksc; | |||
| 641 | struct savefpu *sfp = &p->p_addr->u_pcb.pcb_savefpu; | |||
| 642 | register_t sp, scp, sip; | |||
| 643 | u_long sss; | |||
| 644 | ||||
| 645 | memset(&ksc, 0, sizeof ksc)__builtin_memset((&ksc), (0), (sizeof ksc)); | |||
| 646 | ksc.sc_rdi = tf->tf_rdi; | |||
| 647 | ksc.sc_rsi = tf->tf_rsi; | |||
| 648 | ksc.sc_rdx = tf->tf_rdx; | |||
| 649 | ksc.sc_rcx = tf->tf_rcx; | |||
| 650 | ksc.sc_r8 = tf->tf_r8; | |||
| 651 | ksc.sc_r9 = tf->tf_r9; | |||
| 652 | ksc.sc_r10 = tf->tf_r10; | |||
| 653 | ksc.sc_r11 = tf->tf_r11; | |||
| 654 | ksc.sc_r12 = tf->tf_r12; | |||
| 655 | ksc.sc_r13 = tf->tf_r13; | |||
| 656 | ksc.sc_r14 = tf->tf_r14; | |||
| 657 | ksc.sc_r15 = tf->tf_r15; | |||
| 658 | ksc.sc_rbx = tf->tf_rbx; | |||
| 659 | ksc.sc_rax = tf->tf_rax; | |||
| 660 | ksc.sc_rbp = tf->tf_rbp; | |||
| 661 | ksc.sc_rip = tf->tf_rip; | |||
| 662 | ksc.sc_cs = tf->tf_cs; | |||
| 663 | ksc.sc_rflags = tf->tf_rflags; | |||
| 664 | ksc.sc_rsp = tf->tf_rsp; | |||
| 665 | ksc.sc_ss = tf->tf_ss; | |||
| 666 | ksc.sc_mask = mask; | |||
| 667 | ||||
| 668 | /* Allocate space for the signal handler context. */ | |||
| 669 | if ((p->p_sigstk.ss_flags & SS_DISABLE0x0004) == 0 && | |||
| 670 | !sigonstack(tf->tf_rsp) && onstack) | |||
| 671 | sp = trunc_page((vaddr_t)p->p_sigstk.ss_sp + p->p_sigstk.ss_size)(((vaddr_t)p->p_sigstk.ss_sp + p->p_sigstk.ss_size) & ~((1 << 12) - 1)); | |||
| 672 | else | |||
| 673 | sp = tf->tf_rsp - 128; | |||
| 674 | ||||
| 675 | sp -= fpu_save_len; | |||
| 676 | if (cpu_use_xsaves) | |||
| 677 | sp &= ~63ULL; /* just in case */ | |||
| 678 | else | |||
| 679 | sp &= ~15ULL; /* just in case */ | |||
| 680 | ||||
| 681 | /* Save FPU state to PCB if necessary, then copy it out */ | |||
| 682 | if (curcpu()({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_pflags & CPUPF_USERXSTATE0x02) | |||
| 683 | fpusave(&p->p_addr->u_pcb.pcb_savefpu); | |||
| 684 | if (copyoutfpu(sfp, (void *)sp, fpu_save_len)) | |||
| 685 | return 1; | |||
| 686 | ||||
| 687 | initialize_thread_xstate(p); | |||
| 688 | ||||
| 689 | ksc.sc_fpstate = (struct fxsave64 *)sp; | |||
| 690 | sss = (sizeof(ksc) + 15) & ~15; | |||
| 691 | sip = 0; | |||
| 692 | if (info) { | |||
| 693 | sip = sp - ((sizeof(*ksip) + 15) & ~15); | |||
| 694 | sss += (sizeof(*ksip) + 15) & ~15; | |||
| 695 | ||||
| 696 | if (copyout(ksip, (void *)sip, sizeof(*ksip))) | |||
| 697 | return 1; | |||
| 698 | } | |||
| 699 | scp = sp - sss; | |||
| 700 | ||||
| 701 | ksc.sc_cookie = (long)scp ^ p->p_p->ps_sigcookie; | |||
| 702 | if (copyout(&ksc, (void *)scp, sizeof(ksc))) | |||
| 703 | return 1; | |||
| 704 | ||||
| 705 | /* | |||
| 706 | * Build context to run handler in. | |||
| 707 | */ | |||
| 708 | tf->tf_rax = (u_int64_t)catcher; | |||
| 709 | tf->tf_rdi = sig; | |||
| 710 | tf->tf_rsi = sip; | |||
| 711 | tf->tf_rdx = scp; | |||
| 712 | ||||
| 713 | tf->tf_rip = (u_int64_t)p->p_p->ps_sigcode; | |||
| 714 | tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL)(((5) << 3) | 3); | |||
| 715 | tf->tf_rflags &= ~(PSL_T0x00000100|PSL_D0x00000400|PSL_VM0x00020000|PSL_AC0x00040000); | |||
| 716 | tf->tf_rsp = scp; | |||
| 717 | tf->tf_ss = GSEL(GUDATA_SEL, SEL_UPL)(((4) << 3) | 3); | |||
| 718 | ||||
| 719 | return 0; | |||
| 720 | } | |||
| 721 | ||||
| 722 | /* | |||
| 723 | * System call to cleanup state after a signal | |||
| 724 | * has been taken. Reset signal mask and | |||
| 725 | * stack state from context left by sendsig (above). | |||
| 726 | * Return to previous pc and psl as specified by | |||
| 727 | * context left by sendsig. Check carefully to | |||
| 728 | * make sure that the user has not modified the | |||
| 729 | * psl to gain improper privileges or to cause | |||
| 730 | * a machine fault. | |||
| 731 | */ | |||
| 732 | int | |||
| 733 | sys_sigreturn(struct proc *p, void *v, register_t *retval) | |||
| 734 | { | |||
| 735 | struct sys_sigreturn_args /* { | |||
| 736 | syscallarg(struct sigcontext *) sigcntxp; | |||
| 737 | } */ *uap = v; | |||
| 738 | struct sigcontext ksc, *scp = SCARG(uap, sigcntxp)((uap)->sigcntxp.le.datum); | |||
| 739 | struct trapframe *tf = p->p_md.md_regs; | |||
| 740 | struct savefpu *sfp = &p->p_addr->u_pcb.pcb_savefpu; | |||
| 741 | int error; | |||
| 742 | ||||
| 743 | if (PROC_PC(p)((p)->p_md.md_regs->tf_rip) != p->p_p->ps_sigcoderet) { | |||
| 744 | sigexit(p, SIGILL4); | |||
| 745 | return (EPERM1); | |||
| 746 | } | |||
| 747 | ||||
| 748 | if ((error = copyin((caddr_t)scp, &ksc, sizeof ksc))) | |||
| 749 | return (error); | |||
| 750 | ||||
| 751 | if (ksc.sc_cookie != ((long)scp ^ p->p_p->ps_sigcookie)) { | |||
| 752 | sigexit(p, SIGILL4); | |||
| 753 | return (EFAULT14); | |||
| 754 | } | |||
| 755 | ||||
| 756 | /* Prevent reuse of the sigcontext cookie */ | |||
| 757 | ksc.sc_cookie = 0; | |||
| 758 | (void)copyout(&ksc.sc_cookie, (caddr_t)scp + | |||
| 759 | offsetof(struct sigcontext, sc_cookie)__builtin_offsetof(struct sigcontext, sc_cookie), sizeof (ksc.sc_cookie)); | |||
| 760 | ||||
| 761 | if (((ksc.sc_rflags ^ tf->tf_rflags) & PSL_USERSTATIC(0x00000002 | 0xffc08028 | 0x00000200 | 0x00003000 | 0x00004000 | 0x00020000 | 0x00080000 | 0x00100000)) != 0 || | |||
| 762 | !USERMODE(ksc.sc_cs, ksc.sc_eflags)(((ksc.sc_cs) & 3) == 3)) | |||
| 763 | return (EINVAL22); | |||
| 764 | ||||
| 765 | /* Current FPU state is obsolete; toss it and force a reload */ | |||
| 766 | if (curcpu()({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_pflags & CPUPF_USERXSTATE0x02) { | |||
| 767 | curcpu()({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_pflags &= ~CPUPF_USERXSTATE0x02; | |||
| 768 | fpureset()xrstor_kern((&proc0.p_addr->u_pcb.pcb_savefpu), xsave_mask ); | |||
| 769 | } | |||
| 770 | ||||
| 771 | /* Copy in the FPU state to restore */ | |||
| 772 | if (__predict_true(ksc.sc_fpstate != NULL)__builtin_expect(((ksc.sc_fpstate != ((void *)0)) != 0), 1)) { | |||
| 773 | if ((error = copyin(ksc.sc_fpstate, sfp, fpu_save_len))) | |||
| 774 | return error; | |||
| 775 | if (xrstor_user(sfp, xsave_mask)) { | |||
| 776 | memcpy(sfp, fpu_cleandata, fpu_save_len)__builtin_memcpy((sfp), ((&proc0.p_addr->u_pcb.pcb_savefpu )), (fpu_save_len)); | |||
| 777 | return EINVAL22; | |||
| 778 | } | |||
| 779 | maybe_enable_user_cet(p); | |||
| 780 | curcpu()({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_pflags |= CPUPF_USERXSTATE0x02; | |||
| 781 | } else { | |||
| 782 | /* shouldn't happen, but handle it */ | |||
| 783 | initialize_thread_xstate(p); | |||
| 784 | } | |||
| 785 | ||||
| 786 | tf->tf_rdi = ksc.sc_rdi; | |||
| 787 | tf->tf_rsi = ksc.sc_rsi; | |||
| 788 | tf->tf_rdx = ksc.sc_rdx; | |||
| 789 | tf->tf_rcx = ksc.sc_rcx; | |||
| 790 | tf->tf_r8 = ksc.sc_r8; | |||
| 791 | tf->tf_r9 = ksc.sc_r9; | |||
| 792 | tf->tf_r10 = ksc.sc_r10; | |||
| 793 | tf->tf_r11 = ksc.sc_r11; | |||
| 794 | tf->tf_r12 = ksc.sc_r12; | |||
| 795 | tf->tf_r13 = ksc.sc_r13; | |||
| 796 | tf->tf_r14 = ksc.sc_r14; | |||
| 797 | tf->tf_r15 = ksc.sc_r15; | |||
| 798 | tf->tf_rbx = ksc.sc_rbx; | |||
| 799 | tf->tf_rax = ksc.sc_rax; | |||
| 800 | tf->tf_rbp = ksc.sc_rbp; | |||
| 801 | tf->tf_rip = ksc.sc_rip; | |||
| 802 | tf->tf_cs = ksc.sc_cs; | |||
| 803 | tf->tf_rflags = ksc.sc_rflags; | |||
| 804 | tf->tf_rsp = ksc.sc_rsp; | |||
| 805 | tf->tf_ss = ksc.sc_ss; | |||
| 806 | ||||
| 807 | /* Restore signal mask. */ | |||
| 808 | p->p_sigmask = ksc.sc_mask & ~sigcantmask((1U << ((9)-1)) | (1U << ((17)-1))); | |||
| 809 | ||||
| 810 | /* | |||
| 811 | * sigreturn() needs to return to userspace via the 'iretq' | |||
| 812 | * method, so that if the process was interrupted (by tick, | |||
| 813 | * an IPI, whatever) as opposed to already being in the kernel | |||
| 814 | * when a signal was being delivered, the process will be | |||
| 815 | * completely restored, including the userland %rcx and %r11 | |||
| 816 | * registers which the 'sysretq' instruction cannot restore. | |||
| 817 | * Also need to make sure we can handle faulting on xrstor. | |||
| 818 | */ | |||
| 819 | p->p_md.md_flags |= MDP_IRET0x0002; | |||
| 820 | ||||
| 821 | return (EJUSTRETURN-2); | |||
| 822 | } | |||
| 823 | ||||
| 824 | #ifdef MULTIPROCESSOR1 | |||
| 825 | /* force a CPU into the kernel, whether or not it's idle */ | |||
| 826 | void | |||
| 827 | cpu_kick(struct cpu_info *ci) | |||
| 828 | { | |||
| 829 | /* only need to kick other CPUs */ | |||
| 830 | if (ci != curcpu()({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})) { | |||
| 831 | if (cpu_mwait_size > 0) { | |||
| 832 | /* | |||
| 833 | * If not idling, then send an IPI, else | |||
| 834 | * just clear the "keep idling" bit. | |||
| 835 | */ | |||
| 836 | if ((ci->ci_mwait & MWAIT_IN_IDLE0x1) == 0) | |||
| 837 | x86_send_ipi(ci, X86_IPI_NOP0x00000002); | |||
| 838 | else | |||
| 839 | atomic_clearbits_intx86_atomic_clearbits_u32(&ci->ci_mwait, | |||
| 840 | MWAIT_KEEP_IDLING0x2); | |||
| 841 | } else { | |||
| 842 | /* no mwait, so need an IPI */ | |||
| 843 | x86_send_ipi(ci, X86_IPI_NOP0x00000002); | |||
| 844 | } | |||
| 845 | } | |||
| 846 | } | |||
| 847 | #endif | |||
| 848 | ||||
| 849 | /* | |||
| 850 | * Notify the current process (p) that it has a signal pending, | |||
| 851 | * process as soon as possible. | |||
| 852 | */ | |||
| 853 | void | |||
| 854 | signotify(struct proc *p) | |||
| 855 | { | |||
| 856 | aston(p)((p)->p_md.md_astpending = 1); | |||
| 857 | cpu_kick(p->p_cpu); | |||
| 858 | } | |||
| 859 | ||||
| 860 | #ifdef MULTIPROCESSOR1 | |||
| 861 | void | |||
| 862 | cpu_unidle(struct cpu_info *ci) | |||
| 863 | { | |||
| 864 | if (cpu_mwait_size > 0 && (ci->ci_mwait & MWAIT_ONLY0x4)) { | |||
| 865 | /* | |||
| 866 | * Just clear the "keep idling" bit; if it wasn't | |||
| 867 | * idling then we didn't need to do anything anyway. | |||
| 868 | */ | |||
| 869 | atomic_clearbits_intx86_atomic_clearbits_u32(&ci->ci_mwait, MWAIT_KEEP_IDLING0x2); | |||
| 870 | return; | |||
| 871 | } | |||
| 872 | ||||
| 873 | if (ci != curcpu()({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})) | |||
| 874 | x86_send_ipi(ci, X86_IPI_NOP0x00000002); | |||
| 875 | } | |||
| 876 | #endif | |||
| 877 | ||||
| 878 | int waittime = -1; | |||
| 879 | struct pcb dumppcb; | |||
| 880 | ||||
| 881 | __dead__attribute__((__noreturn__)) void | |||
| 882 | boot(int howto) | |||
| 883 | { | |||
| 884 | if ((howto & RB_POWERDOWN0x01000) != 0) | |||
| 885 | lid_action = 0; | |||
| 886 | ||||
| 887 | if ((howto & RB_RESET0x08000) != 0) | |||
| 888 | goto doreset; | |||
| 889 | ||||
| 890 | if (cold) { | |||
| 891 | if ((howto & RB_USERREQ0x04000) == 0) | |||
| 892 | howto |= RB_HALT0x00008; | |||
| 893 | goto haltsys; | |||
| 894 | } | |||
| 895 | ||||
| 896 | boothowto = howto; | |||
| 897 | if ((howto & RB_NOSYNC0x00004) == 0 && waittime < 0) { | |||
| 898 | waittime = 0; | |||
| 899 | vfs_shutdown(curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc); | |||
| 900 | ||||
| 901 | if ((howto & RB_TIMEBAD0x00800) == 0) { | |||
| 902 | resettodr(); | |||
| 903 | } else { | |||
| 904 | printf("WARNING: not updating battery clock\n"); | |||
| 905 | } | |||
| 906 | } | |||
| 907 | if_downall(); | |||
| 908 | ||||
| 909 | uvm_shutdown(); | |||
| 910 | splhigh()splraise(0xd); | |||
| 911 | cold = 1; | |||
| 912 | ||||
| 913 | if ((howto & RB_DUMP0x00100) != 0) | |||
| 914 | dumpsys(); | |||
| 915 | ||||
| 916 | haltsys: | |||
| 917 | config_suspend_all(DVACT_POWERDOWN6); | |||
| 918 | ||||
| 919 | #ifdef MULTIPROCESSOR1 | |||
| 920 | x86_broadcast_ipi(X86_IPI_HALT0x00000001); | |||
| 921 | #endif | |||
| 922 | ||||
| 923 | if ((howto & RB_HALT0x00008) != 0) { | |||
| 924 | #if NACPI1 > 0 && !defined(SMALL_KERNEL) | |||
| 925 | extern int acpi_enabled; | |||
| 926 | ||||
| 927 | if (acpi_enabled) { | |||
| 928 | delay(500000)(*delay_func)(500000); | |||
| 929 | if ((howto & RB_POWERDOWN0x01000) != 0) | |||
| 930 | acpi_powerdown(); | |||
| 931 | } | |||
| 932 | #endif | |||
| 933 | printf("\n"); | |||
| 934 | printf("The operating system has halted.\n"); | |||
| 935 | printf("Please press any key to reboot.\n\n"); | |||
| 936 | cnpollc(1); /* for proper keyboard command handling */ | |||
| 937 | cngetc(); | |||
| 938 | cnpollc(0); | |||
| 939 | } | |||
| 940 | ||||
| 941 | doreset: | |||
| 942 | printf("rebooting...\n"); | |||
| 943 | if (cpureset_delay > 0) | |||
| 944 | delay(cpureset_delay * 1000)(*delay_func)(cpureset_delay * 1000); | |||
| 945 | cpu_reset(); | |||
| 946 | for (;;) | |||
| 947 | continue; | |||
| 948 | /* NOTREACHED */ | |||
| 949 | } | |||
| 950 | ||||
| 951 | /* | |||
| 952 | * These variables are needed by /sbin/savecore | |||
| 953 | */ | |||
| 954 | u_long dumpmag = 0x8fca0101; /* magic number */ | |||
| 955 | int dumpsize = 0; /* pages */ | |||
| 956 | long dumplo = 0; /* blocks */ | |||
| 957 | ||||
| 958 | /* | |||
| 959 | * cpu_dump: dump the machine-dependent kernel core dump headers. | |||
| 960 | */ | |||
| 961 | int | |||
| 962 | cpu_dump(void) | |||
| 963 | { | |||
| 964 | int (*dump)(dev_t, daddr_t, caddr_t, size_t); | |||
| 965 | char buf[dbtob(1)((1) << 9)]; | |||
| 966 | kcore_seg_t *segp; | |||
| 967 | cpu_kcore_hdr_t *cpuhdrp; | |||
| 968 | phys_ram_seg_t *memsegp; | |||
| 969 | caddr_t va; | |||
| 970 | int i; | |||
| 971 | ||||
| 972 | dump = bdevsw[major(dumpdev)(((unsigned)(dumpdev) >> 8) & 0xff)].d_dump; | |||
| 973 | ||||
| 974 | memset(buf, 0, sizeof buf)__builtin_memset((buf), (0), (sizeof buf)); | |||
| 975 | segp = (kcore_seg_t *)buf; | |||
| 976 | cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))(((unsigned long)(sizeof(*segp)) + (sizeof(long) - 1)) &~ (sizeof(long) - 1))]; | |||
| 977 | memsegp = (phys_ram_seg_t *)&buf[ALIGN(sizeof(*segp))(((unsigned long)(sizeof(*segp)) + (sizeof(long) - 1)) &~ (sizeof(long) - 1)) + | |||
| 978 | ALIGN(sizeof(*cpuhdrp))(((unsigned long)(sizeof(*cpuhdrp)) + (sizeof(long) - 1)) & ~(sizeof(long) - 1))]; | |||
| 979 | ||||
| 980 | /* | |||
| 981 | * Generate a segment header. | |||
| 982 | */ | |||
| 983 | CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU)( (*segp).c_midmag = (__uint32_t)(__builtin_constant_p(( ((1) & 0x3f) << 26) | ( ((157) & 0x03ff) << 16 ) | ( ((0x8fca) & 0xffff) )) ? (__uint32_t)(((__uint32_t) (( ((1) & 0x3f) << 26) | ( ((157) & 0x03ff) << 16) | ( ((0x8fca) & 0xffff) )) & 0xff) << 24 | ((__uint32_t)(( ((1) & 0x3f) << 26) | ( ((157) & 0x03ff) << 16) | ( ((0x8fca) & 0xffff) )) & 0xff00 ) << 8 | ((__uint32_t)(( ((1) & 0x3f) << 26) | ( ((157) & 0x03ff) << 16) | ( ((0x8fca) & 0xffff ) )) & 0xff0000) >> 8 | ((__uint32_t)(( ((1) & 0x3f ) << 26) | ( ((157) & 0x03ff) << 16) | ( ((0x8fca ) & 0xffff) )) & 0xff000000) >> 24) : __swap32md (( ((1) & 0x3f) << 26) | ( ((157) & 0x03ff) << 16) | ( ((0x8fca) & 0xffff) ))) ); | |||
| 984 | segp->c_size = dbtob(1)((1) << 9) - ALIGN(sizeof(*segp))(((unsigned long)(sizeof(*segp)) + (sizeof(long) - 1)) &~ (sizeof(long) - 1)); | |||
| 985 | ||||
| 986 | /* | |||
| 987 | * Add the machine-dependent header info. | |||
| 988 | */ | |||
| 989 | cpuhdrp->ptdpaddr = proc0.p_addr->u_pcb.pcb_cr3; | |||
| 990 | cpuhdrp->nmemsegs = mem_cluster_cnt; | |||
| 991 | ||||
| 992 | /* | |||
| 993 | * Fill in the memory segment descriptors. | |||
| 994 | */ | |||
| 995 | for (i = 0; i < mem_cluster_cnt; i++) { | |||
| 996 | memsegp[i].start = mem_clusters[i].start; | |||
| 997 | memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK((1 << 12) - 1); | |||
| 998 | } | |||
| 999 | ||||
| 1000 | /* | |||
| 1001 | * If we have dump memory then assume the kernel stack is in high | |||
| 1002 | * memory and bounce | |||
| 1003 | */ | |||
| 1004 | if (dumpmem_vaddr != 0) { | |||
| 1005 | memcpy((char *)dumpmem_vaddr, buf, sizeof(buf))__builtin_memcpy(((char *)dumpmem_vaddr), (buf), (sizeof(buf) )); | |||
| 1006 | va = (caddr_t)dumpmem_vaddr; | |||
| 1007 | } else { | |||
| 1008 | va = (caddr_t)buf; | |||
| 1009 | } | |||
| 1010 | return (dump(dumpdev, dumplo, va, dbtob(1)((1) << 9))); | |||
| 1011 | } | |||
| 1012 | ||||
| 1013 | /* | |||
| 1014 | * This is called by main to set dumplo and dumpsize. | |||
| 1015 | * Dumps always skip the first PAGE_SIZE of disk space | |||
| 1016 | * in case there might be a disk label stored there. | |||
| 1017 | * If there is extra space, put dump at the end to | |||
| 1018 | * reduce the chance that swapping trashes it. | |||
| 1019 | */ | |||
| 1020 | void | |||
| 1021 | dumpconf(void) | |||
| 1022 | { | |||
| 1023 | int nblks, dumpblks; /* size of dump area */ | |||
| 1024 | ||||
| 1025 | if (dumpdev == NODEV(dev_t)(-1) || | |||
| 1026 | (nblks = (bdevsw[major(dumpdev)(((unsigned)(dumpdev) >> 8) & 0xff)].d_psize)(dumpdev)) == 0) | |||
| 1027 | return; | |||
| 1028 | if (nblks <= ctod(1)((1) << (12 - 9))) | |||
| 1029 | return; | |||
| 1030 | ||||
| 1031 | dumpblks = cpu_dumpsize(); | |||
| 1032 | if (dumpblks < 0) | |||
| 1033 | return; | |||
| 1034 | dumpblks += ctod(cpu_dump_mempagecnt())((cpu_dump_mempagecnt()) << (12 - 9)); | |||
| 1035 | ||||
| 1036 | /* If dump won't fit (incl. room for possible label), punt. */ | |||
| 1037 | if (dumpblks > (nblks - ctod(1)((1) << (12 - 9)))) | |||
| 1038 | return; | |||
| 1039 | ||||
| 1040 | /* Put dump at end of partition */ | |||
| 1041 | dumplo = nblks - dumpblks; | |||
| 1042 | ||||
| 1043 | /* dumpsize is in page units, and doesn't include headers. */ | |||
| 1044 | dumpsize = cpu_dump_mempagecnt(); | |||
| 1045 | } | |||
| 1046 | ||||
| 1047 | /* | |||
| 1048 | * Doadump comes here after turning off memory management and | |||
| 1049 | * getting on the dump stack, either when called above, or by | |||
| 1050 | * the auto-restart code. | |||
| 1051 | */ | |||
| 1052 | #define BYTES_PER_DUMP(64 * 1024) MAXPHYS(64 * 1024) /* must be a multiple of pagesize */ | |||
| 1053 | ||||
| 1054 | void | |||
| 1055 | dumpsys(void) | |||
| 1056 | { | |||
| 1057 | u_long totalbytesleft, bytes, i, n, memseg; | |||
| 1058 | u_long maddr; | |||
| 1059 | daddr_t blkno; | |||
| 1060 | void *va; | |||
| 1061 | int (*dump)(dev_t, daddr_t, caddr_t, size_t); | |||
| 1062 | int error; | |||
| 1063 | ||||
| 1064 | /* Save registers. */ | |||
| 1065 | savectx(&dumppcb); | |||
| 1066 | ||||
| 1067 | if (dumpdev == NODEV(dev_t)(-1)) | |||
| 1068 | return; | |||
| 1069 | ||||
| 1070 | /* | |||
| 1071 | * For dumps during autoconfiguration, | |||
| 1072 | * if dump device has already configured... | |||
| 1073 | */ | |||
| 1074 | if (dumpsize == 0) | |||
| 1075 | dumpconf(); | |||
| 1076 | if (dumplo <= 0 || dumpsize == 0) { | |||
| 1077 | printf("\ndump to dev %u,%u not possible\n", major(dumpdev)(((unsigned)(dumpdev) >> 8) & 0xff), | |||
| 1078 | minor(dumpdev)((unsigned)((dumpdev) & 0xff) | (((dumpdev) & 0xffff0000 ) >> 8))); | |||
| 1079 | return; | |||
| 1080 | } | |||
| 1081 | printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev)(((unsigned)(dumpdev) >> 8) & 0xff), | |||
| 1082 | minor(dumpdev)((unsigned)((dumpdev) & 0xff) | (((dumpdev) & 0xffff0000 ) >> 8)), dumplo); | |||
| 1083 | ||||
| 1084 | error = (*bdevsw[major(dumpdev)(((unsigned)(dumpdev) >> 8) & 0xff)].d_psize)(dumpdev); | |||
| 1085 | printf("dump "); | |||
| 1086 | if (error == -1) { | |||
| 1087 | printf("area unavailable\n"); | |||
| 1088 | return; | |||
| 1089 | } | |||
| 1090 | ||||
| 1091 | if ((error = cpu_dump()) != 0) | |||
| 1092 | goto err; | |||
| 1093 | ||||
| 1094 | totalbytesleft = ptoa(cpu_dump_mempagecnt())((paddr_t)(cpu_dump_mempagecnt()) << 12); | |||
| 1095 | blkno = dumplo + cpu_dumpsize(); | |||
| 1096 | dump = bdevsw[major(dumpdev)(((unsigned)(dumpdev) >> 8) & 0xff)].d_dump; | |||
| 1097 | error = 0; | |||
| 1098 | ||||
| 1099 | for (memseg = 0; memseg < mem_cluster_cnt; memseg++) { | |||
| 1100 | maddr = mem_clusters[memseg].start; | |||
| 1101 | bytes = mem_clusters[memseg].size; | |||
| 1102 | ||||
| 1103 | for (i = 0; i < bytes; i += n, totalbytesleft -= n) { | |||
| 1104 | /* Print out how many MBs we have left to go. */ | |||
| 1105 | if ((totalbytesleft % (1024*1024)) < BYTES_PER_DUMP(64 * 1024)) | |||
| 1106 | printf("%ld ", totalbytesleft / (1024 * 1024)); | |||
| 1107 | ||||
| 1108 | /* Limit size for next transfer. */ | |||
| 1109 | n = bytes - i; | |||
| 1110 | if (n > BYTES_PER_DUMP(64 * 1024)) | |||
| 1111 | n = BYTES_PER_DUMP(64 * 1024); | |||
| 1112 | if (maddr > 0xffffffff) { | |||
| 1113 | va = (void *)dumpmem_vaddr; | |||
| 1114 | if (n > dumpmem_sz) | |||
| 1115 | n = dumpmem_sz; | |||
| 1116 | memcpy(va, (void *)PMAP_DIRECT_MAP(maddr), n)__builtin_memcpy((va), ((void *)((vaddr_t)(((((511 - 4) * (1ULL << 39))) | 0xffff000000000000)) + (maddr))), (n)); | |||
| 1117 | } else { | |||
| 1118 | va = (void *)PMAP_DIRECT_MAP(maddr)((vaddr_t)(((((511 - 4) * (1ULL << 39))) | 0xffff000000000000 )) + (maddr)); | |||
| 1119 | } | |||
| 1120 | ||||
| 1121 | error = (*dump)(dumpdev, blkno, va, n); | |||
| 1122 | if (error) | |||
| 1123 | goto err; | |||
| 1124 | maddr += n; | |||
| 1125 | blkno += btodb(n)((n) >> 9); /* XXX? */ | |||
| 1126 | ||||
| 1127 | #if 0 /* XXX this doesn't work. grr. */ | |||
| 1128 | /* operator aborting dump? */ | |||
| 1129 | if (sget() != NULL((void *)0)) { | |||
| 1130 | error = EINTR4; | |||
| 1131 | break; | |||
| 1132 | } | |||
| 1133 | #endif | |||
| 1134 | } | |||
| 1135 | } | |||
| 1136 | ||||
| 1137 | err: | |||
| 1138 | switch (error) { | |||
| 1139 | ||||
| 1140 | case ENXIO6: | |||
| 1141 | printf("device bad\n"); | |||
| 1142 | break; | |||
| 1143 | ||||
| 1144 | case EFAULT14: | |||
| 1145 | printf("device not ready\n"); | |||
| 1146 | break; | |||
| 1147 | ||||
| 1148 | case EINVAL22: | |||
| 1149 | printf("area improper\n"); | |||
| 1150 | break; | |||
| 1151 | ||||
| 1152 | case EIO5: | |||
| 1153 | printf("i/o error\n"); | |||
| 1154 | break; | |||
| 1155 | ||||
| 1156 | case EINTR4: | |||
| 1157 | printf("aborted from console\n"); | |||
| 1158 | break; | |||
| 1159 | ||||
| 1160 | case 0: | |||
| 1161 | printf("succeeded\n"); | |||
| 1162 | break; | |||
| 1163 | ||||
| 1164 | default: | |||
| 1165 | printf("error %d\n", error); | |||
| 1166 | break; | |||
| 1167 | } | |||
| 1168 | printf("\n\n"); | |||
| 1169 | delay(5000000)(*delay_func)(5000000); /* 5 seconds */ | |||
| 1170 | } | |||
| 1171 | ||||
| 1172 | /* | |||
| 1173 | * Force the userspace FS.base to be reloaded from the PCB on return from | |||
| 1174 | * the kernel, and reset the segment registers (%ds, %es, %fs, and %gs) | |||
| 1175 | * to their expected userspace value. | |||
| 1176 | */ | |||
| 1177 | void | |||
| 1178 | reset_segs(void) | |||
| 1179 | { | |||
| 1180 | /* | |||
| 1181 | * This operates like the cpu_switchto() sequence: if we | |||
| 1182 | * haven't reset %[defg]s already, do so now. | |||
| 1183 | */ | |||
| 1184 | if (curcpu()({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_pflags & CPUPF_USERSEGS0x01) { | |||
| 1185 | curcpu()({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_pflags &= ~CPUPF_USERSEGS0x01; | |||
| 1186 | __asm volatile( | |||
| 1187 | "movw %%ax,%%ds\n\t" | |||
| 1188 | "movw %%ax,%%es\n\t" | |||
| 1189 | "movw %%ax,%%fs\n\t" | |||
| 1190 | "cli\n\t" /* block intr when on user GS.base */ | |||
| 1191 | "swapgs\n\t" /* swap from kernel to user GS.base */ | |||
| 1192 | "movw %%ax,%%gs\n\t"/* set %gs to UDATA and GS.base to 0 */ | |||
| 1193 | "swapgs\n\t" /* back to kernel GS.base */ | |||
| 1194 | "sti" : : "a"(GSEL(GUDATA_SEL, SEL_UPL)(((4) << 3) | 3))); | |||
| 1195 | } | |||
| 1196 | } | |||
| 1197 | ||||
| 1198 | /* | |||
| 1199 | * Clear registers on exec | |||
| 1200 | */ | |||
| 1201 | void | |||
| 1202 | setregs(struct proc *p, struct exec_package *pack, u_long stack, | |||
| 1203 | struct ps_strings *arginfo) | |||
| 1204 | { | |||
| 1205 | struct trapframe *tf; | |||
| 1206 | ||||
| 1207 | initialize_thread_xstate(p); | |||
| 1208 | ||||
| 1209 | /* To reset all registers we have to return via iretq */ | |||
| 1210 | p->p_md.md_flags |= MDP_IRET0x0002; | |||
| 1211 | ||||
| 1212 | reset_segs(); | |||
| 1213 | p->p_addr->u_pcb.pcb_fsbase = 0; | |||
| 1214 | ||||
| 1215 | tf = p->p_md.md_regs; | |||
| 1216 | memset(tf, 0, sizeof *tf)__builtin_memset((tf), (0), (sizeof *tf)); | |||
| 1217 | tf->tf_rip = pack->ep_entry; | |||
| 1218 | tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL)(((5) << 3) | 3); | |||
| 1219 | tf->tf_rflags = PSL_USERSET(0x00000002 | 0x00000200); | |||
| 1220 | tf->tf_rsp = stack; | |||
| 1221 | tf->tf_ss = GSEL(GUDATA_SEL, SEL_UPL)(((4) << 3) | 3); | |||
| 1222 | } | |||
| 1223 | ||||
| 1224 | /* | |||
| 1225 | * Initialize segments and descriptor tables | |||
| 1226 | */ | |||
| 1227 | ||||
| 1228 | struct gate_descriptor *idt; | |||
| 1229 | char idt_allocmap[NIDT256]; | |||
| 1230 | struct user *proc0paddr = NULL((void *)0); | |||
| 1231 | ||||
| 1232 | void | |||
| 1233 | setgate(struct gate_descriptor *gd, void *func, int ist, int type, int dpl, | |||
| 1234 | int sel) | |||
| 1235 | { | |||
| 1236 | gd->gd_looffset = (u_int64_t)func & 0xffff; | |||
| 1237 | gd->gd_selector = sel; | |||
| 1238 | gd->gd_ist = ist; | |||
| 1239 | gd->gd_type = type; | |||
| 1240 | gd->gd_dpl = dpl; | |||
| 1241 | gd->gd_p = 1; | |||
| 1242 | gd->gd_hioffset = (u_int64_t)func >> 16; | |||
| 1243 | gd->gd_zero = 0; | |||
| 1244 | gd->gd_xx1 = 0; | |||
| 1245 | gd->gd_xx2 = 0; | |||
| 1246 | gd->gd_xx3 = 0; | |||
| 1247 | } | |||
| 1248 | ||||
| 1249 | void | |||
| 1250 | unsetgate(struct gate_descriptor *gd) | |||
| 1251 | { | |||
| 1252 | memset(gd, 0, sizeof (*gd))__builtin_memset((gd), (0), (sizeof (*gd))); | |||
| 1253 | } | |||
| 1254 | ||||
| 1255 | void | |||
| 1256 | setregion(struct region_descriptor *rd, void *base, u_int16_t limit) | |||
| 1257 | { | |||
| 1258 | rd->rd_limit = limit; | |||
| 1259 | rd->rd_base = (u_int64_t)base; | |||
| 1260 | } | |||
| 1261 | ||||
| 1262 | /* | |||
| 1263 | * Note that the base and limit fields are ignored in long mode. | |||
| 1264 | */ | |||
| 1265 | void | |||
| 1266 | set_mem_segment(struct mem_segment_descriptor *sd, void *base, size_t limit, | |||
| 1267 | int type, int dpl, int gran, int def32, int is64) | |||
| 1268 | { | |||
| 1269 | sd->sd_lolimit = (unsigned)limit; | |||
| 1270 | sd->sd_lobase = (unsigned long)base; | |||
| 1271 | sd->sd_type = type; | |||
| 1272 | sd->sd_dpl = dpl; | |||
| 1273 | sd->sd_p = 1; | |||
| 1274 | sd->sd_hilimit = (unsigned)limit >> 16; | |||
| 1275 | sd->sd_avl = 0; | |||
| 1276 | sd->sd_long = is64; | |||
| 1277 | sd->sd_def32 = def32; | |||
| 1278 | sd->sd_gran = gran; | |||
| 1279 | sd->sd_hibase = (unsigned long)base >> 24; | |||
| 1280 | } | |||
| 1281 | ||||
| 1282 | void | |||
| 1283 | set_sys_segment(struct sys_segment_descriptor *sd, void *base, size_t limit, | |||
| 1284 | int type, int dpl, int gran) | |||
| 1285 | { | |||
| 1286 | memset(sd, 0, sizeof *sd)__builtin_memset((sd), (0), (sizeof *sd)); | |||
| 1287 | sd->sd_lolimit = (unsigned)limit; | |||
| 1288 | sd->sd_lobase = (u_int64_t)base; | |||
| 1289 | sd->sd_type = type; | |||
| 1290 | sd->sd_dpl = dpl; | |||
| 1291 | sd->sd_p = 1; | |||
| 1292 | sd->sd_hilimit = (unsigned)limit >> 16; | |||
| 1293 | sd->sd_gran = gran; | |||
| 1294 | sd->sd_hibase = (u_int64_t)base >> 24; | |||
| 1295 | } | |||
| 1296 | ||||
| 1297 | void cpu_init_idt(void) | |||
| 1298 | { | |||
| 1299 | struct region_descriptor region; | |||
| 1300 | ||||
| 1301 | setregion(®ion, idt, NIDT256 * sizeof(idt[0]) - 1); | |||
| 1302 | lidt(®ion); | |||
| 1303 | } | |||
| 1304 | ||||
| 1305 | void | |||
| 1306 | cpu_init_extents(void) | |||
| 1307 | { | |||
| 1308 | extern struct extent *iomem_ex; | |||
| 1309 | static int already_done; | |||
| 1310 | int i; | |||
| 1311 | ||||
| 1312 | /* We get called for each CPU, only first should do this */ | |||
| 1313 | if (already_done) | |||
| 1314 | return; | |||
| 1315 | ||||
| 1316 | /* | |||
| 1317 | * Allocate the physical addresses used by RAM from the iomem | |||
| 1318 | * extent map. | |||
| 1319 | */ | |||
| 1320 | for (i = 0; i < mem_cluster_cnt; i++) { | |||
| 1321 | if (extent_alloc_region(iomem_ex, mem_clusters[i].start, | |||
| 1322 | mem_clusters[i].size, EX_NOWAIT0x0000)) { | |||
| 1323 | /* XXX What should we do? */ | |||
| 1324 | printf("WARNING: CAN'T ALLOCATE RAM (%llx-%llx)" | |||
| 1325 | " FROM IOMEM EXTENT MAP!\n", mem_clusters[i].start, | |||
| 1326 | mem_clusters[i].start + mem_clusters[i].size - 1); | |||
| 1327 | } | |||
| 1328 | } | |||
| 1329 | ||||
| 1330 | already_done = 1; | |||
| 1331 | } | |||
| 1332 | ||||
| 1333 | void | |||
| 1334 | map_tramps(void) | |||
| 1335 | { | |||
| 1336 | #if defined(MULTIPROCESSOR1) || \ | |||
| 1337 | (NACPI1 > 0 && !defined(SMALL_KERNEL)) | |||
| 1338 | struct pmap *kmp = pmap_kernel()(&kernel_pmap_store); | |||
| 1339 | extern paddr_t tramp_pdirpa; | |||
| 1340 | #ifdef MULTIPROCESSOR1 | |||
| 1341 | extern u_char cpu_spinup_trampoline[]; | |||
| 1342 | extern u_char cpu_spinup_trampoline_end[]; | |||
| 1343 | extern u_char mp_tramp_data_start[]; | |||
| 1344 | extern u_char mp_tramp_data_end[]; | |||
| 1345 | extern u_int32_t mp_pdirpa; | |||
| 1346 | #endif | |||
| 1347 | ||||
| 1348 | /* | |||
| 1349 | * The initial PML4 pointer must be below 4G, so if the | |||
| 1350 | * current one isn't, use a "bounce buffer" and save it | |||
| 1351 | * for tramps to use. | |||
| 1352 | */ | |||
| 1353 | if (kmp->pm_pdirpa > 0xffffffff) { | |||
| 1354 | pmap_kenter_pa(lo32_vaddr, lo32_paddr, PROT_READ0x01 | PROT_WRITE0x02); | |||
| 1355 | memcpy((void *)lo32_vaddr, kmp->pm_pdir, PAGE_SIZE)__builtin_memcpy(((void *)lo32_vaddr), (kmp->pm_pdir), ((1 << 12))); | |||
| 1356 | tramp_pdirpa = lo32_paddr; | |||
| 1357 | pmap_kremove(lo32_vaddr, PAGE_SIZE(1 << 12)); | |||
| 1358 | } else | |||
| 1359 | tramp_pdirpa = kmp->pm_pdirpa; | |||
| 1360 | ||||
| 1361 | ||||
| 1362 | #ifdef MULTIPROCESSOR1 | |||
| 1363 | /* Map MP tramp code and data pages RW for copy */ | |||
| 1364 | pmap_kenter_pa(MP_TRAMPOLINE(16 * (1 << 12)), MP_TRAMPOLINE(16 * (1 << 12)), | |||
| 1365 | PROT_READ0x01 | PROT_WRITE0x02); | |||
| 1366 | ||||
| 1367 | pmap_kenter_pa(MP_TRAMP_DATA(17 * (1 << 12)), MP_TRAMP_DATA(17 * (1 << 12)), | |||
| 1368 | PROT_READ0x01 | PROT_WRITE0x02); | |||
| 1369 | ||||
| 1370 | memset((caddr_t)MP_TRAMPOLINE, 0xcc, PAGE_SIZE)__builtin_memset(((caddr_t)(16 * (1 << 12))), (0xcc), ( (1 << 12))); | |||
| 1371 | memset((caddr_t)MP_TRAMP_DATA, 0xcc, PAGE_SIZE)__builtin_memset(((caddr_t)(17 * (1 << 12))), (0xcc), ( (1 << 12))); | |||
| 1372 | ||||
| 1373 | memcpy((caddr_t)MP_TRAMPOLINE,__builtin_memcpy(((caddr_t)(16 * (1 << 12))), (cpu_spinup_trampoline ), (cpu_spinup_trampoline_end-cpu_spinup_trampoline)) | |||
| 1374 | cpu_spinup_trampoline,__builtin_memcpy(((caddr_t)(16 * (1 << 12))), (cpu_spinup_trampoline ), (cpu_spinup_trampoline_end-cpu_spinup_trampoline)) | |||
| 1375 | cpu_spinup_trampoline_end-cpu_spinup_trampoline)__builtin_memcpy(((caddr_t)(16 * (1 << 12))), (cpu_spinup_trampoline ), (cpu_spinup_trampoline_end-cpu_spinup_trampoline)); | |||
| 1376 | ||||
| 1377 | memcpy((caddr_t)MP_TRAMP_DATA,__builtin_memcpy(((caddr_t)(17 * (1 << 12))), (mp_tramp_data_start ), (mp_tramp_data_end - mp_tramp_data_start)) | |||
| 1378 | mp_tramp_data_start,__builtin_memcpy(((caddr_t)(17 * (1 << 12))), (mp_tramp_data_start ), (mp_tramp_data_end - mp_tramp_data_start)) | |||
| 1379 | mp_tramp_data_end - mp_tramp_data_start)__builtin_memcpy(((caddr_t)(17 * (1 << 12))), (mp_tramp_data_start ), (mp_tramp_data_end - mp_tramp_data_start)); | |||
| 1380 | ||||
| 1381 | /* | |||
| 1382 | * We need to patch this after we copy the tramp data, | |||
| 1383 | * the symbol points into the copied tramp data page. | |||
| 1384 | */ | |||
| 1385 | mp_pdirpa = tramp_pdirpa; | |||
| 1386 | ||||
| 1387 | /* Unmap, will be remapped in cpu_start_secondary */ | |||
| 1388 | pmap_kremove(MP_TRAMPOLINE(16 * (1 << 12)), PAGE_SIZE(1 << 12)); | |||
| 1389 | pmap_kremove(MP_TRAMP_DATA(17 * (1 << 12)), PAGE_SIZE(1 << 12)); | |||
| 1390 | #endif /* MULTIPROCESSOR */ | |||
| 1391 | #endif | |||
| 1392 | } | |||
| 1393 | ||||
| 1394 | #define IDTVEC(name)Xname __CONCAT(X, name)Xname | |||
| 1395 | typedef void (vector)(void); | |||
| 1396 | extern vector *IDTVEC(exceptions)Xexceptions[]; | |||
| 1397 | ||||
| 1398 | paddr_t early_pte_pages; | |||
| 1399 | ||||
| 1400 | void | |||
| 1401 | init_x86_64(paddr_t first_avail) | |||
| 1402 | { | |||
| 1403 | struct region_descriptor region; | |||
| 1404 | bios_memmap_t *bmp; | |||
| 1405 | int x, ist; | |||
| 1406 | uint64_t max_dm_size = ((uint64_t)512 * NUM_L4_SLOT_DIRECT4) << 30; | |||
| 1407 | ||||
| 1408 | /* | |||
| 1409 | * locore0 mapped 3 pages for use before the pmap is initialized | |||
| 1410 | * starting at first_avail. These pages are currently used by | |||
| 1411 | * efifb to create early-use VAs for the framebuffer before efifb | |||
| 1412 | * is attached. | |||
| 1413 | */ | |||
| 1414 | early_pte_pages = first_avail; | |||
| 1415 | first_avail += 3 * NBPG(1 << 12); | |||
| 1416 | ||||
| 1417 | cpu_init_msrs(&cpu_info_primary(*(struct cpu_info *)((char *)&cpu_info_full_primary + 4096 *2 - __builtin_offsetof(struct cpu_info, ci_dev)))); | |||
| 1418 | ||||
| 1419 | proc0.p_addr = proc0paddr; | |||
| 1420 | cpu_info_primary(*(struct cpu_info *)((char *)&cpu_info_full_primary + 4096 *2 - __builtin_offsetof(struct cpu_info, ci_dev))).ci_curpcb = &proc0.p_addr->u_pcb; | |||
| 1421 | ||||
| 1422 | x86_bus_space_init(); | |||
| 1423 | ||||
| 1424 | i8254_startclock(); | |||
| 1425 | ||||
| 1426 | /* | |||
| 1427 | * Initialize PAGE_SIZE-dependent variables. | |||
| 1428 | */ | |||
| 1429 | uvm_setpagesize(); | |||
| 1430 | ||||
| 1431 | /* | |||
| 1432 | * Boot arguments are in a single page specified by /boot. | |||
| 1433 | * | |||
| 1434 | * We require the "new" vector form, as well as memory ranges | |||
| 1435 | * to be given in bytes rather than KB. | |||
| 1436 | * | |||
| 1437 | * locore copies the data into bootinfo[] for us. | |||
| 1438 | */ | |||
| 1439 | if ((bootapiver & (BAPIV_VECTOR0x00000002 | BAPIV_BMEMMAP0x00000008)) == | |||
| ||||
| 1440 | (BAPIV_VECTOR0x00000002 | BAPIV_BMEMMAP0x00000008)) { | |||
| 1441 | if (bootinfo_size >= sizeof(bootinfo)) | |||
| 1442 | panic("boot args too big"); | |||
| 1443 | ||||
| 1444 | getbootinfo(bootinfo, bootinfo_size); | |||
| 1445 | } else | |||
| 1446 | panic("invalid /boot"); | |||
| 1447 | ||||
| 1448 | cninit(); | |||
| 1449 | ||||
| 1450 | /* | |||
| 1451 | * Memory on the AMD64 port is described by three different things. | |||
| 1452 | * | |||
| 1453 | * 1. biosbasemem - This is outdated, and should really only be used to | |||
| 1454 | * sanitize the other values. This is what we get back from the BIOS | |||
| 1455 | * using the legacy routines, describing memory below 640KB. | |||
| 1456 | * | |||
| 1457 | * 2. bios_memmap[] - This is the memory map as the bios has returned | |||
| 1458 | * it to us. It includes memory the kernel occupies, etc. | |||
| 1459 | * | |||
| 1460 | * 3. mem_cluster[] - This is the massaged free memory segments after | |||
| 1461 | * taking into account the contents of bios_memmap, biosbasemem, | |||
| 1462 | * and locore/machdep/pmap kernel allocations of physical | |||
| 1463 | * pages. | |||
| 1464 | * | |||
| 1465 | * The other thing is that the physical page *RANGE* is described by | |||
| 1466 | * three more variables: | |||
| 1467 | * | |||
| 1468 | * avail_start - This is a physical address of the start of available | |||
| 1469 | * pages, until IOM_BEGIN. This is basically the start | |||
| 1470 | * of the UVM managed range of memory, with some holes... | |||
| 1471 | * | |||
| 1472 | * avail_end - This is the end of physical pages. All physical pages | |||
| 1473 | * that UVM manages are between avail_start and avail_end. | |||
| 1474 | * There are holes... | |||
| 1475 | * | |||
| 1476 | * first_avail - This is the first available physical page after the | |||
| 1477 | * kernel, page tables, etc. | |||
| 1478 | * | |||
| 1479 | * We skip the first few pages for trampolines, hibernate, and to avoid | |||
| 1480 | * buggy SMI implementations that could corrupt the first 64KB. | |||
| 1481 | */ | |||
| 1482 | avail_start = 16*PAGE_SIZE(1 << 12); | |||
| 1483 | ||||
| 1484 | #ifdef MULTIPROCESSOR1 | |||
| 1485 | if (avail_start < MP_TRAMPOLINE(16 * (1 << 12)) + PAGE_SIZE(1 << 12)) | |||
| 1486 | avail_start = MP_TRAMPOLINE(16 * (1 << 12)) + PAGE_SIZE(1 << 12); | |||
| 1487 | if (avail_start < MP_TRAMP_DATA(17 * (1 << 12)) + PAGE_SIZE(1 << 12)) | |||
| 1488 | avail_start = MP_TRAMP_DATA(17 * (1 << 12)) + PAGE_SIZE(1 << 12); | |||
| 1489 | #endif | |||
| 1490 | ||||
| 1491 | #if (NACPI1 > 0 && !defined(SMALL_KERNEL)) | |||
| 1492 | if (avail_start < ACPI_TRAMPOLINE(19 * (1 << 12)) + PAGE_SIZE(1 << 12)) | |||
| 1493 | avail_start = ACPI_TRAMPOLINE(19 * (1 << 12)) + PAGE_SIZE(1 << 12); | |||
| 1494 | if (avail_start < ACPI_TRAMP_DATA(20 * (1 << 12)) + PAGE_SIZE(1 << 12)) | |||
| 1495 | avail_start = ACPI_TRAMP_DATA(20 * (1 << 12)) + PAGE_SIZE(1 << 12); | |||
| 1496 | #endif | |||
| 1497 | ||||
| 1498 | #ifdef HIBERNATE1 | |||
| 1499 | if (avail_start < HIBERNATE_HIBALLOC_PAGE((1 << 12) * 34) + PAGE_SIZE(1 << 12)) | |||
| 1500 | avail_start = HIBERNATE_HIBALLOC_PAGE((1 << 12) * 34) + PAGE_SIZE(1 << 12); | |||
| 1501 | #endif /* HIBERNATE */ | |||
| 1502 | ||||
| 1503 | /* | |||
| 1504 | * We need to go through the BIOS memory map given, and | |||
| 1505 | * fill out mem_clusters and mem_cluster_cnt stuff, taking | |||
| 1506 | * into account all the points listed above. | |||
| 1507 | */ | |||
| 1508 | avail_end = mem_cluster_cnt = 0; | |||
| 1509 | for (bmp = bios_memmap; bmp->type != BIOS_MAP_END0x00; bmp++) { | |||
| 1510 | paddr_t s1, s2, e1, e2; | |||
| 1511 | ||||
| 1512 | /* Ignore non-free memory */ | |||
| 1513 | if (bmp->type != BIOS_MAP_FREE0x01) | |||
| 1514 | continue; | |||
| 1515 | if (bmp->size < PAGE_SIZE(1 << 12)) | |||
| 1516 | continue; | |||
| 1517 | ||||
| 1518 | /* Init our segment(s), round/trunc to pages */ | |||
| 1519 | s1 = round_page(bmp->addr)(((bmp->addr) + ((1 << 12) - 1)) & ~((1 << 12) - 1)); | |||
| 1520 | e1 = trunc_page(bmp->addr + bmp->size)((bmp->addr + bmp->size) & ~((1 << 12) - 1)); | |||
| 1521 | s2 = e2 = 0; | |||
| 1522 | ||||
| 1523 | /* | |||
| 1524 | * XXX Some buggy ACPI BIOSes use memory that they | |||
| 1525 | * declare as free. Current worst offender is | |||
| 1526 | * Supermicro 5019D-FTN4. Typically the affected memory | |||
| 1527 | * areas are small blocks between areas reserved for | |||
| 1528 | * ACPI and other BIOS goo. So skip areas smaller | |||
| 1529 | * than 32 MB above the 16 MB boundary (to avoid | |||
| 1530 | * affecting legacy stuff). | |||
| 1531 | */ | |||
| 1532 | if (s1 > 16*1024*1024 && (e1 - s1) < 32*1024*1024) | |||
| 1533 | continue; | |||
| 1534 | ||||
| 1535 | /* Check and adjust our segment(s) */ | |||
| 1536 | /* Nuke low pages */ | |||
| 1537 | if (s1 < avail_start) { | |||
| 1538 | s1 = avail_start; | |||
| 1539 | if (s1 > e1) | |||
| 1540 | continue; | |||
| 1541 | } | |||
| 1542 | ||||
| 1543 | /* | |||
| 1544 | * The direct map is limited to 512GB * NUM_L4_SLOT_DIRECT of | |||
| 1545 | * memory, so discard anything above that. | |||
| 1546 | */ | |||
| 1547 | if (e1 >= max_dm_size) { | |||
| 1548 | e1 = max_dm_size; | |||
| 1549 | if (s1 > e1) | |||
| 1550 | continue; | |||
| 1551 | } | |||
| 1552 | ||||
| 1553 | /* Crop stuff into "640K hole" */ | |||
| 1554 | if (s1 < IOM_BEGIN0x0a0000 && e1 > IOM_BEGIN0x0a0000) | |||
| 1555 | e1 = IOM_BEGIN0x0a0000; | |||
| 1556 | if (s1 < biosbasemem && e1 > biosbasemem) | |||
| 1557 | e1 = biosbasemem; | |||
| 1558 | ||||
| 1559 | /* Split any segments straddling the 16MB boundary */ | |||
| 1560 | if (s1 < 16*1024*1024 && e1 > 16*1024*1024) { | |||
| 1561 | e2 = e1; | |||
| 1562 | s2 = e1 = 16*1024*1024; | |||
| 1563 | } | |||
| 1564 | ||||
| 1565 | /* Store segment(s) */ | |||
| 1566 | if (e1 - s1 >= PAGE_SIZE(1 << 12)) { | |||
| 1567 | mem_clusters[mem_cluster_cnt].start = s1; | |||
| 1568 | mem_clusters[mem_cluster_cnt].size = e1 - s1; | |||
| 1569 | mem_cluster_cnt++; | |||
| 1570 | } | |||
| 1571 | if (e2 - s2 >= PAGE_SIZE(1 << 12)) { | |||
| 1572 | mem_clusters[mem_cluster_cnt].start = s2; | |||
| 1573 | mem_clusters[mem_cluster_cnt].size = e2 - s2; | |||
| 1574 | mem_cluster_cnt++; | |||
| 1575 | } | |||
| 1576 | if (avail_end < e1) avail_end = e1; | |||
| 1577 | if (avail_end < e2) avail_end = e2; | |||
| 1578 | } | |||
| 1579 | ||||
| 1580 | /* | |||
| 1581 | * Call pmap initialization to make new kernel address space. | |||
| 1582 | * We must do this before loading pages into the VM system. | |||
| 1583 | */ | |||
| 1584 | first_avail = pmap_bootstrap(first_avail, trunc_page(avail_end)((avail_end) & ~((1 << 12) - 1))); | |||
| 1585 | ||||
| 1586 | #if NEFI1 > 0 | |||
| 1587 | /* Relocate the EFI memory map. */ | |||
| 1588 | if (bios_efiinfo && bios_efiinfo->mmap_start) { | |||
| 1589 | mmap = (EFI_MEMORY_DESCRIPTOR *)PMAP_DIRECT_MAP(first_avail)((vaddr_t)(((((511 - 4) * (1ULL << 39))) | 0xffff000000000000 )) + (first_avail)); | |||
| 1590 | memcpy(mmap, (void *)PMAP_DIRECT_MAP(bios_efiinfo->mmap_start),__builtin_memcpy((mmap), ((void *)((vaddr_t)(((((511 - 4) * ( 1ULL << 39))) | 0xffff000000000000)) + (bios_efiinfo-> mmap_start))), (bios_efiinfo->mmap_size)) | |||
| 1591 | bios_efiinfo->mmap_size)__builtin_memcpy((mmap), ((void *)((vaddr_t)(((((511 - 4) * ( 1ULL << 39))) | 0xffff000000000000)) + (bios_efiinfo-> mmap_start))), (bios_efiinfo->mmap_size)); | |||
| 1592 | first_avail += round_page(bios_efiinfo->mmap_size)(((bios_efiinfo->mmap_size) + ((1 << 12) - 1)) & ~((1 << 12) - 1)); | |||
| 1593 | } | |||
| 1594 | #endif | |||
| 1595 | ||||
| 1596 | /* Allocate these out of the 640KB base memory */ | |||
| 1597 | if (avail_start != PAGE_SIZE(1 << 12)) | |||
| 1598 | avail_start = pmap_prealloc_lowmem_ptps(avail_start); | |||
| 1599 | ||||
| 1600 | cpu_init_extents(); | |||
| 1601 | ||||
| 1602 | /* Make sure the end of the space used by the kernel is rounded. */ | |||
| 1603 | first_avail = round_page(first_avail)(((first_avail) + ((1 << 12) - 1)) & ~((1 << 12 ) - 1)); | |||
| 1604 | kern_end = KERNBASE0xffffffff80000000 + first_avail; | |||
| 1605 | ||||
| 1606 | /* | |||
| 1607 | * Now, load the memory clusters (which have already been | |||
| 1608 | * flensed) into the VM system. | |||
| 1609 | */ | |||
| 1610 | for (x = 0; x < mem_cluster_cnt; x++) { | |||
| 1611 | paddr_t seg_start = mem_clusters[x].start; | |||
| 1612 | paddr_t seg_end = seg_start + mem_clusters[x].size; | |||
| 1613 | ||||
| 1614 | if (seg_start < first_avail) seg_start = first_avail; | |||
| 1615 | if (seg_start > seg_end) continue; | |||
| 1616 | if (seg_end - seg_start < PAGE_SIZE(1 << 12)) continue; | |||
| 1617 | ||||
| 1618 | physmem += atop(mem_clusters[x].size)((mem_clusters[x].size) >> 12); | |||
| 1619 | ||||
| 1620 | #if DEBUG_MEMLOAD | |||
| 1621 | printf("loading 0x%lx-0x%lx (0x%lx-0x%lx)\n", | |||
| 1622 | seg_start, seg_end, atop(seg_start)((seg_start) >> 12), atop(seg_end)((seg_end) >> 12)); | |||
| 1623 | #endif | |||
| 1624 | uvm_page_physload(atop(seg_start)((seg_start) >> 12), atop(seg_end)((seg_end) >> 12), | |||
| 1625 | atop(seg_start)((seg_start) >> 12), atop(seg_end)((seg_end) >> 12), 0); | |||
| 1626 | } | |||
| 1627 | ||||
| 1628 | /* | |||
| 1629 | * Now, load the memory between the end of I/O memory "hole" | |||
| 1630 | * and the kernel. | |||
| 1631 | */ | |||
| 1632 | { | |||
| 1633 | paddr_t seg_start = round_page(IOM_END)(((0x100000) + ((1 << 12) - 1)) & ~((1 << 12) - 1)); | |||
| 1634 | paddr_t seg_end = trunc_page(KERNTEXTOFF - KERNBASE)(((0xffffffff80000000 +0x1000000) - 0xffffffff80000000) & ~((1 << 12) - 1)); | |||
| 1635 | ||||
| 1636 | if (seg_start
| |||
| 1637 | #if DEBUG_MEMLOAD | |||
| 1638 | printf("loading 0x%lx-0x%lx\n", seg_start, seg_end); | |||
| 1639 | #endif | |||
| 1640 | uvm_page_physload(atop(seg_start)((seg_start) >> 12), atop(seg_end)((seg_end) >> 12), | |||
| 1641 | atop(seg_start)((seg_start) >> 12), atop(seg_end)((seg_end) >> 12), 0); | |||
| 1642 | } | |||
| 1643 | } | |||
| 1644 | ||||
| 1645 | #if DEBUG_MEMLOAD | |||
| 1646 | printf("avail_start = 0x%lx\n", avail_start); | |||
| 1647 | printf("avail_end = 0x%lx\n", avail_end); | |||
| 1648 | printf("first_avail = 0x%lx\n", first_avail); | |||
| 1649 | #endif | |||
| 1650 | ||||
| 1651 | /* | |||
| 1652 | * Steal memory for the message buffer (at end of core). | |||
| 1653 | */ | |||
| 1654 | { | |||
| 1655 | struct vm_physseg *vps = NULL((void *)0); | |||
| 1656 | psize_t sz = round_page(MSGBUFSIZE)((((32 * (1 << 12))) + ((1 << 12) - 1)) & ~(( 1 << 12) - 1)); | |||
| 1657 | psize_t reqsz = sz; | |||
| 1658 | ||||
| 1659 | for (x = 0; x < vm_nphysseg; x++) { | |||
| 1660 | vps = &vm_physmem[x]; | |||
| 1661 | if (ptoa(vps->avail_end)((paddr_t)(vps->avail_end) << 12) == avail_end) | |||
| 1662 | break; | |||
| 1663 | } | |||
| 1664 | if (x == vm_nphysseg) | |||
| 1665 | panic("init_x86_64: can't find end of memory"); | |||
| 1666 | ||||
| 1667 | /* Shrink so it'll fit in the last segment. */ | |||
| 1668 | if ((vps->avail_end - vps->avail_start) < atop(sz)((sz) >> 12)) | |||
| ||||
| 1669 | sz = ptoa(vps->avail_end - vps->avail_start)((paddr_t)(vps->avail_end - vps->avail_start) << 12 ); | |||
| 1670 | ||||
| 1671 | vps->avail_end -= atop(sz)((sz) >> 12); | |||
| 1672 | vps->end -= atop(sz)((sz) >> 12); | |||
| 1673 | msgbuf_paddr = ptoa(vps->avail_end)((paddr_t)(vps->avail_end) << 12); | |||
| 1674 | ||||
| 1675 | /* Remove the last segment if it now has no pages. */ | |||
| 1676 | if (vps->start == vps->end) { | |||
| 1677 | for (vm_nphysseg--; x < vm_nphysseg; x++) | |||
| 1678 | vm_physmem[x] = vm_physmem[x + 1]; | |||
| 1679 | } | |||
| 1680 | ||||
| 1681 | /* Now find where the new avail_end is. */ | |||
| 1682 | for (avail_end = 0, x = 0; x < vm_nphysseg; x++) | |||
| 1683 | if (vm_physmem[x].avail_end > avail_end) | |||
| 1684 | avail_end = vm_physmem[x].avail_end; | |||
| 1685 | avail_end = ptoa(avail_end)((paddr_t)(avail_end) << 12); | |||
| 1686 | ||||
| 1687 | /* Warn if the message buffer had to be shrunk. */ | |||
| 1688 | if (sz != reqsz) | |||
| 1689 | printf("WARNING: %ld bytes not available for msgbuf " | |||
| 1690 | "in last cluster (%ld used)\n", reqsz, sz); | |||
| 1691 | } | |||
| 1692 | ||||
| 1693 | /* | |||
| 1694 | * Steal some memory for a dump bouncebuffer if we have memory over | |||
| 1695 | * the 32-bit barrier. | |||
| 1696 | */ | |||
| 1697 | if (avail_end > 0xffffffff) { | |||
| 1698 | struct vm_physseg *vps = NULL((void *)0); | |||
| 1699 | psize_t sz = round_page(MAX(BYTES_PER_DUMP, dbtob(1)))(((((((64 * 1024))>(((1) << 9)))?((64 * 1024)):(((1) << 9)))) + ((1 << 12) - 1)) & ~((1 << 12 ) - 1)); | |||
| 1700 | ||||
| 1701 | /* XXX assumes segments are ordered */ | |||
| 1702 | for (x = 0; x < vm_nphysseg; x++) { | |||
| 1703 | vps = &vm_physmem[x]; | |||
| 1704 | /* Find something between 16meg and 4gig */ | |||
| 1705 | if (ptoa(vps->avail_end)((paddr_t)(vps->avail_end) << 12) <= 0xffffffff && | |||
| 1706 | ptoa(vps->avail_start)((paddr_t)(vps->avail_start) << 12) >= 0xffffff) | |||
| 1707 | break; | |||
| 1708 | } | |||
| 1709 | if (x == vm_nphysseg) | |||
| 1710 | panic("init_x86_64: no memory between " | |||
| 1711 | "0xffffff-0xffffffff"); | |||
| 1712 | ||||
| 1713 | /* Shrink so it'll fit in the segment. */ | |||
| 1714 | if ((vps->avail_end - vps->avail_start) < atop(sz)((sz) >> 12)) | |||
| 1715 | sz = ptoa(vps->avail_end - vps->avail_start)((paddr_t)(vps->avail_end - vps->avail_start) << 12 ); | |||
| 1716 | ||||
| 1717 | vps->avail_end -= atop(sz)((sz) >> 12); | |||
| 1718 | vps->end -= atop(sz)((sz) >> 12); | |||
| 1719 | dumpmem_paddr = ptoa(vps->avail_end)((paddr_t)(vps->avail_end) << 12); | |||
| 1720 | dumpmem_vaddr = PMAP_DIRECT_MAP(dumpmem_paddr)((vaddr_t)(((((511 - 4) * (1ULL << 39))) | 0xffff000000000000 )) + (dumpmem_paddr)); | |||
| 1721 | dumpmem_sz = sz; | |||
| 1722 | ||||
| 1723 | /* Remove the last segment if it now has no pages. */ | |||
| 1724 | if (vps->start == vps->end) { | |||
| 1725 | for (vm_nphysseg--; x < vm_nphysseg; x++) | |||
| 1726 | vm_physmem[x] = vm_physmem[x + 1]; | |||
| 1727 | } | |||
| 1728 | } | |||
| 1729 | ||||
| 1730 | pmap_growkernel(VM_MIN_KERNEL_ADDRESS0xffff800000000000 + 32 * 1024 * 1024); | |||
| 1731 | ||||
| 1732 | pmap_kenter_pa(idt_vaddr, idt_paddr, PROT_READ0x01 | PROT_WRITE0x02); | |||
| 1733 | ||||
| 1734 | idt = (struct gate_descriptor *)idt_vaddr; | |||
| 1735 | cpu_info_primary(*(struct cpu_info *)((char *)&cpu_info_full_primary + 4096 *2 - __builtin_offsetof(struct cpu_info, ci_dev))).ci_tss = &cpu_info_full_primary.cif_tsscif_RO.u_tssgdt.uu_tss; | |||
| 1736 | cpu_info_primary(*(struct cpu_info *)((char *)&cpu_info_full_primary + 4096 *2 - __builtin_offsetof(struct cpu_info, ci_dev))).ci_gdt = &cpu_info_full_primary.cif_gdtcif_RO.u_tssgdt.uu_gdt; | |||
| 1737 | ||||
| 1738 | /* make gdt gates and memory segments */ | |||
| 1739 | set_mem_segment(GDT_ADDR_MEM(cpu_info_primary.ci_gdt, GCODE_SEL)((struct mem_segment_descriptor *)((char *)((*(struct cpu_info *)((char *)&cpu_info_full_primary + 4096*2 - __builtin_offsetof (struct cpu_info, ci_dev))).ci_gdt) + ((1) << 3))), 0, | |||
| 1740 | 0xfffff, SDT_MEMERA27, SEL_KPL0, 1, 0, 1); | |||
| 1741 | ||||
| 1742 | set_mem_segment(GDT_ADDR_MEM(cpu_info_primary.ci_gdt, GDATA_SEL)((struct mem_segment_descriptor *)((char *)((*(struct cpu_info *)((char *)&cpu_info_full_primary + 4096*2 - __builtin_offsetof (struct cpu_info, ci_dev))).ci_gdt) + ((2) << 3))), 0, | |||
| 1743 | 0xfffff, SDT_MEMRWA19, SEL_KPL0, 1, 0, 1); | |||
| 1744 | ||||
| 1745 | set_mem_segment(GDT_ADDR_MEM(cpu_info_primary.ci_gdt, GUCODE32_SEL)((struct mem_segment_descriptor *)((char *)((*(struct cpu_info *)((char *)&cpu_info_full_primary + 4096*2 - __builtin_offsetof (struct cpu_info, ci_dev))).ci_gdt) + ((3) << 3))), 0, | |||
| 1746 | atop(VM_MAXUSER_ADDRESS32)((0xffffc000) >> 12) - 1, SDT_MEMERA27, SEL_UPL3, 1, 1, 0); | |||
| 1747 | ||||
| 1748 | set_mem_segment(GDT_ADDR_MEM(cpu_info_primary.ci_gdt, GUDATA_SEL)((struct mem_segment_descriptor *)((char *)((*(struct cpu_info *)((char *)&cpu_info_full_primary + 4096*2 - __builtin_offsetof (struct cpu_info, ci_dev))).ci_gdt) + ((4) << 3))), 0, | |||
| 1749 | atop(VM_MAXUSER_ADDRESS)((0x00007f7fffffc000) >> 12) - 1, SDT_MEMRWA19, SEL_UPL3, 1, 0, 1); | |||
| 1750 | ||||
| 1751 | set_mem_segment(GDT_ADDR_MEM(cpu_info_primary.ci_gdt, GUCODE_SEL)((struct mem_segment_descriptor *)((char *)((*(struct cpu_info *)((char *)&cpu_info_full_primary + 4096*2 - __builtin_offsetof (struct cpu_info, ci_dev))).ci_gdt) + ((5) << 3))), 0, | |||
| 1752 | atop(VM_MAXUSER_ADDRESS)((0x00007f7fffffc000) >> 12) - 1, SDT_MEMERA27, SEL_UPL3, 1, 0, 1); | |||
| 1753 | ||||
| 1754 | set_sys_segment(GDT_ADDR_SYS(cpu_info_primary.ci_gdt, GPROC0_SEL)((struct sys_segment_descriptor *)((char *)((*(struct cpu_info *)((char *)&cpu_info_full_primary + 4096*2 - __builtin_offsetof (struct cpu_info, ci_dev))).ci_gdt) + ((0) << 4) + (6 << 3))), | |||
| 1755 | cpu_info_primary(*(struct cpu_info *)((char *)&cpu_info_full_primary + 4096 *2 - __builtin_offsetof(struct cpu_info, ci_dev))).ci_tss, sizeof (struct x86_64_tss)-1, | |||
| 1756 | SDT_SYS386TSS9, SEL_KPL0, 0); | |||
| 1757 | ||||
| 1758 | /* exceptions */ | |||
| 1759 | for (x = 0; x < 32; x++) { | |||
| 1760 | /* trap2 == NMI, trap8 == double fault */ | |||
| 1761 | ist = (x == 2) ? 2 : (x == 8) ? 1 : 0; | |||
| 1762 | setgate(&idt[x], IDTVEC(exceptions)Xexceptions[x], ist, SDT_SYS386IGT14, | |||
| 1763 | (x == 3) ? SEL_UPL3 : SEL_KPL0, | |||
| 1764 | GSEL(GCODE_SEL, SEL_KPL)(((1) << 3) | 0)); | |||
| 1765 | idt_allocmap[x] = 1; | |||
| 1766 | } | |||
| 1767 | ||||
| 1768 | setregion(®ion, cpu_info_primary(*(struct cpu_info *)((char *)&cpu_info_full_primary + 4096 *2 - __builtin_offsetof(struct cpu_info, ci_dev))).ci_gdt, GDT_SIZE((6 << 3) + (1 << 4)) - 1); | |||
| 1769 | lgdt(®ion); | |||
| 1770 | ||||
| 1771 | cpu_init_idt(); | |||
| 1772 | ||||
| 1773 | intr_default_setup(); | |||
| 1774 | ||||
| 1775 | fpuinit(&cpu_info_primary(*(struct cpu_info *)((char *)&cpu_info_full_primary + 4096 *2 - __builtin_offsetof(struct cpu_info, ci_dev)))); | |||
| 1776 | ||||
| 1777 | softintr_init(); | |||
| 1778 | splraise(IPL_IPI0xe); | |||
| 1779 | intr_enable(); | |||
| 1780 | ||||
| 1781 | #ifdef DDB1 | |||
| 1782 | db_machine_init(); | |||
| 1783 | ddb_init(); | |||
| 1784 | if (boothowto & RB_KDB0x00040) | |||
| 1785 | db_enter(); | |||
| 1786 | #endif | |||
| 1787 | } | |||
| 1788 | ||||
| 1789 | void | |||
| 1790 | cpu_reset(void) | |||
| 1791 | { | |||
| 1792 | intr_disable(); | |||
| 1793 | ||||
| 1794 | if (cpuresetfn) | |||
| 1795 | (*cpuresetfn)(); | |||
| 1796 | ||||
| 1797 | /* | |||
| 1798 | * The keyboard controller has 4 random output pins, one of which is | |||
| 1799 | * connected to the RESET pin on the CPU in many PCs. We tell the | |||
| 1800 | * keyboard controller to pulse this line a couple of times. | |||
| 1801 | */ | |||
| 1802 | outb(IO_KBD + KBCMDP, KBC_PULSE0)( (__builtin_constant_p((0x060 + 4)) && (0x060 + 4) < 0x100) ? __outbc(0x060 + 4, 0xfe) : __outb(0x060 + 4, 0xfe)); | |||
| 1803 | delay(100000)(*delay_func)(100000); | |||
| 1804 | outb(IO_KBD + KBCMDP, KBC_PULSE0)( (__builtin_constant_p((0x060 + 4)) && (0x060 + 4) < 0x100) ? __outbc(0x060 + 4, 0xfe) : __outb(0x060 + 4, 0xfe)); | |||
| 1805 | delay(100000)(*delay_func)(100000); | |||
| 1806 | ||||
| 1807 | /* | |||
| 1808 | * Try to cause a triple fault and watchdog reset by making the IDT | |||
| 1809 | * invalid and causing a fault. | |||
| 1810 | */ | |||
| 1811 | memset((caddr_t)idt, 0, NIDT * sizeof(idt[0]))__builtin_memset(((caddr_t)idt), (0), (256 * sizeof(idt[0]))); | |||
| 1812 | __asm volatile("divl %0,%1" : : "q" (0), "a" (0)); | |||
| 1813 | ||||
| 1814 | for (;;) | |||
| 1815 | continue; | |||
| 1816 | /* NOTREACHED */ | |||
| 1817 | } | |||
| 1818 | ||||
| 1819 | /* | |||
| 1820 | * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers. | |||
| 1821 | */ | |||
| 1822 | int | |||
| 1823 | cpu_dumpsize(void) | |||
| 1824 | { | |||
| 1825 | int size; | |||
| 1826 | ||||
| 1827 | size = ALIGN(sizeof(kcore_seg_t))(((unsigned long)(sizeof(kcore_seg_t)) + (sizeof(long) - 1)) & ~(sizeof(long) - 1)) + | |||
| 1828 | ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t))(((unsigned long)(mem_cluster_cnt * sizeof(phys_ram_seg_t)) + (sizeof(long) - 1)) &~(sizeof(long) - 1)); | |||
| 1829 | if (roundup(size, dbtob(1))((((size)+((((1) << 9))-1))/(((1) << 9)))*(((1) << 9))) != dbtob(1)((1) << 9)) | |||
| 1830 | return (-1); | |||
| 1831 | ||||
| 1832 | return (1); | |||
| 1833 | } | |||
| 1834 | ||||
| 1835 | /* | |||
| 1836 | * cpu_dump_mempagecnt: calculate the size of RAM (in pages) to be dumped. | |||
| 1837 | */ | |||
| 1838 | u_long | |||
| 1839 | cpu_dump_mempagecnt(void) | |||
| 1840 | { | |||
| 1841 | u_long i, n; | |||
| 1842 | ||||
| 1843 | n = 0; | |||
| 1844 | for (i = 0; i < mem_cluster_cnt; i++) | |||
| 1845 | n += atop(mem_clusters[i].size)((mem_clusters[i].size) >> 12); | |||
| 1846 | return (n); | |||
| 1847 | } | |||
| 1848 | ||||
| 1849 | /* | |||
| 1850 | * Figure out which portions of memory are used by the kernel/system. | |||
| 1851 | */ | |||
| 1852 | int | |||
| 1853 | amd64_pa_used(paddr_t addr) | |||
| 1854 | { | |||
| 1855 | struct vm_page *pg; | |||
| 1856 | ||||
| 1857 | /* Kernel manages these */ | |||
| 1858 | if ((pg = PHYS_TO_VM_PAGE(addr)) && (pg->pg_flags & PG_DEV0x00000200) == 0) | |||
| 1859 | return 1; | |||
| 1860 | ||||
| 1861 | /* Kernel is loaded here */ | |||
| 1862 | if (addr > IOM_END0x100000 && addr < (kern_end - KERNBASE0xffffffff80000000)) | |||
| 1863 | return 1; | |||
| 1864 | ||||
| 1865 | /* Low memory used for various bootstrap things */ | |||
| 1866 | if (addr < avail_start) | |||
| 1867 | return 1; | |||
| 1868 | ||||
| 1869 | /* | |||
| 1870 | * The only regions I can think of that are left are the things | |||
| 1871 | * we steal away from UVM. The message buffer? | |||
| 1872 | * XXX - ignore these for now. | |||
| 1873 | */ | |||
| 1874 | ||||
| 1875 | return 0; | |||
| 1876 | } | |||
| 1877 | ||||
| 1878 | void | |||
| 1879 | cpu_initclocks(void) | |||
| 1880 | { | |||
| 1881 | (*initclock_func)(); | |||
| 1882 | } | |||
| 1883 | ||||
| 1884 | void | |||
| 1885 | cpu_startclock(void) | |||
| 1886 | { | |||
| 1887 | (*startclock_func)(); | |||
| 1888 | } | |||
| 1889 | ||||
| 1890 | void | |||
| 1891 | need_resched(struct cpu_info *ci) | |||
| 1892 | { | |||
| 1893 | ci->ci_want_resched = 1; | |||
| 1894 | ||||
| 1895 | /* There's a risk we'll be called before the idle threads start */ | |||
| 1896 | if (ci->ci_curproc) { | |||
| 1897 | aston(ci->ci_curproc)((ci->ci_curproc)->p_md.md_astpending = 1); | |||
| 1898 | cpu_kick(ci); | |||
| 1899 | } | |||
| 1900 | } | |||
| 1901 | ||||
| 1902 | /* | |||
| 1903 | * Allocate an IDT vector slot within the given range. | |||
| 1904 | * XXX needs locking to avoid MP allocation races. | |||
| 1905 | */ | |||
| 1906 | ||||
| 1907 | int | |||
| 1908 | idt_vec_alloc(int low, int high) | |||
| 1909 | { | |||
| 1910 | int vec; | |||
| 1911 | ||||
| 1912 | for (vec = low; vec <= high; vec++) { | |||
| 1913 | if (idt_allocmap[vec] == 0) { | |||
| 1914 | idt_allocmap[vec] = 1; | |||
| 1915 | return vec; | |||
| 1916 | } | |||
| 1917 | } | |||
| 1918 | return 0; | |||
| 1919 | } | |||
| 1920 | ||||
| 1921 | void | |||
| 1922 | idt_vec_set(int vec, void (*function)(void)) | |||
| 1923 | { | |||
| 1924 | /* | |||
| 1925 | * Vector should be allocated, so no locking needed. | |||
| 1926 | */ | |||
| 1927 | KASSERT(idt_allocmap[vec] == 1)((idt_allocmap[vec] == 1) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/arch/amd64/amd64/machdep.c", 1927, "idt_allocmap[vec] == 1" )); | |||
| 1928 | setgate(&idt[vec], function, 0, SDT_SYS386IGT14, SEL_KPL0, | |||
| 1929 | GSEL(GCODE_SEL, SEL_KPL)(((1) << 3) | 0)); | |||
| 1930 | } | |||
| 1931 | ||||
| 1932 | void | |||
| 1933 | idt_vec_free(int vec) | |||
| 1934 | { | |||
| 1935 | unsetgate(&idt[vec]); | |||
| 1936 | idt_allocmap[vec] = 0; | |||
| 1937 | } | |||
| 1938 | ||||
| 1939 | #ifdef DIAGNOSTIC1 | |||
| 1940 | void | |||
| 1941 | splassert_check(int wantipl, const char *func) | |||
| 1942 | { | |||
| 1943 | int cpl = curcpu()({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_ilevel; | |||
| 1944 | int floor = curcpu()({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_handled_intr_level; | |||
| 1945 | ||||
| 1946 | if (cpl < wantipl) { | |||
| 1947 | splassert_fail(wantipl, cpl, func); | |||
| 1948 | } | |||
| 1949 | if (floor > wantipl) { | |||
| 1950 | splassert_fail(wantipl, floor, func); | |||
| 1951 | } | |||
| 1952 | ||||
| 1953 | } | |||
| 1954 | #endif | |||
| 1955 | ||||
| 1956 | int | |||
| 1957 | copyin32(const uint32_t *uaddr, uint32_t *kaddr) | |||
| 1958 | { | |||
| 1959 | if ((vaddr_t)uaddr & 0x3) | |||
| 1960 | return EFAULT14; | |||
| 1961 | ||||
| 1962 | /* copyin(9) is atomic */ | |||
| 1963 | return copyin(uaddr, kaddr, sizeof(uint32_t)); | |||
| 1964 | } | |||
| 1965 | ||||
| 1966 | void | |||
| 1967 | getbootinfo(char *bootinfo, int bootinfo_size) | |||
| 1968 | { | |||
| 1969 | bootarg32_t *q; | |||
| 1970 | bios_ddb_t *bios_ddb; | |||
| 1971 | bios_bootduid_t *bios_bootduid; | |||
| 1972 | bios_bootsr_t *bios_bootsr; | |||
| 1973 | #undef BOOTINFO_DEBUG | |||
| 1974 | #ifdef BOOTINFO_DEBUG | |||
| 1975 | printf("bootargv:"); | |||
| 1976 | #endif | |||
| 1977 | ||||
| 1978 | for (q = (bootarg32_t *)bootinfo; | |||
| 1979 | (q->ba_type != BOOTARG_END-1) && | |||
| 1980 | ((((char *)q) - bootinfo) < bootinfo_size); | |||
| 1981 | q = (bootarg32_t *)(((char *)q) + q->ba_size)) { | |||
| 1982 | ||||
| 1983 | switch (q->ba_type) { | |||
| 1984 | case BOOTARG_MEMMAP0: | |||
| 1985 | bios_memmap = (bios_memmap_t *)q->ba_arg; | |||
| 1986 | #ifdef BOOTINFO_DEBUG | |||
| 1987 | printf(" memmap %p", bios_memmap); | |||
| 1988 | #endif | |||
| 1989 | break; | |||
| 1990 | case BOOTARG_DISKINFO1: | |||
| 1991 | bios_diskinfo = (bios_diskinfo_t *)q->ba_arg; | |||
| 1992 | #ifdef BOOTINFO_DEBUG | |||
| 1993 | printf(" diskinfo %p", bios_diskinfo); | |||
| 1994 | #endif | |||
| 1995 | break; | |||
| 1996 | case BOOTARG_APMINFO2: | |||
| 1997 | /* generated by i386 boot loader */ | |||
| 1998 | break; | |||
| 1999 | case BOOTARG_CKSUMLEN3: | |||
| 2000 | bios_cksumlen = *(u_int32_t *)q->ba_arg; | |||
| 2001 | #ifdef BOOTINFO_DEBUG | |||
| 2002 | printf(" cksumlen %d", bios_cksumlen); | |||
| 2003 | #endif | |||
| 2004 | break; | |||
| 2005 | case BOOTARG_PCIINFO4: | |||
| 2006 | /* generated by i386 boot loader */ | |||
| 2007 | break; | |||
| 2008 | case BOOTARG_CONSDEV5: { | |||
| 2009 | #if NCOM1 > 0 | |||
| 2010 | bios_consdev_t *cdp = (bios_consdev_t*)q->ba_arg; | |||
| 2011 | static const int ports[] = | |||
| 2012 | { 0x3f8, 0x2f8, 0x3e8, 0x2e8 }; | |||
| 2013 | int unit = minor(cdp->consdev)((unsigned)((cdp->consdev) & 0xff) | (((cdp->consdev ) & 0xffff0000) >> 8)); | |||
| 2014 | uint64_t consaddr = cdp->consaddr; | |||
| 2015 | if (consaddr == -1 && unit >= 0 && unit < nitems(ports)(sizeof((ports)) / sizeof((ports)[0]))) | |||
| 2016 | consaddr = ports[unit]; | |||
| 2017 | if (major(cdp->consdev)(((unsigned)(cdp->consdev) >> 8) & 0xff) == 8 && consaddr != -1) { | |||
| 2018 | comconsunit = unit; | |||
| 2019 | comconsaddr = consaddr; | |||
| 2020 | comconsrate = cdp->conspeed; | |||
| 2021 | comconsfreq = cdp->consfreq; | |||
| 2022 | comcons_reg_width = cdp->reg_width; | |||
| 2023 | comcons_reg_shift = cdp->reg_shift; | |||
| 2024 | if (cdp->flags & BCD_MMIO0x00000001) | |||
| 2025 | comconsiot = X86_BUS_SPACE_MEM(&x86_bus_space_mem_ops); | |||
| 2026 | else | |||
| 2027 | comconsiot = X86_BUS_SPACE_IO(&x86_bus_space_io_ops); | |||
| 2028 | } | |||
| 2029 | #endif | |||
| 2030 | #ifdef BOOTINFO_DEBUG | |||
| 2031 | printf(" console 0x%x:%d", cdp->consdev, cdp->conspeed); | |||
| 2032 | #endif | |||
| 2033 | break; | |||
| 2034 | } | |||
| 2035 | case BOOTARG_BOOTMAC7: | |||
| 2036 | bios_bootmac = (bios_bootmac_t *)q->ba_arg; | |||
| 2037 | break; | |||
| 2038 | ||||
| 2039 | case BOOTARG_DDB8: | |||
| 2040 | bios_ddb = (bios_ddb_t *)q->ba_arg; | |||
| 2041 | #ifdef DDB1 | |||
| 2042 | db_console = bios_ddb->db_console; | |||
| 2043 | #endif | |||
| 2044 | break; | |||
| 2045 | ||||
| 2046 | case BOOTARG_BOOTDUID9: | |||
| 2047 | bios_bootduid = (bios_bootduid_t *)q->ba_arg; | |||
| 2048 | memcpy(bootduid, bios_bootduid, sizeof(bootduid))__builtin_memcpy((bootduid), (bios_bootduid), (sizeof(bootduid ))); | |||
| 2049 | break; | |||
| 2050 | ||||
| 2051 | case BOOTARG_BOOTSR10: | |||
| 2052 | bios_bootsr = (bios_bootsr_t *)q->ba_arg; | |||
| 2053 | #if NSOFTRAID1 > 0 | |||
| 2054 | memcpy(&sr_bootuuid, &bios_bootsr->uuid,__builtin_memcpy((&sr_bootuuid), (&bios_bootsr->uuid ), (sizeof(sr_bootuuid))) | |||
| 2055 | sizeof(sr_bootuuid))__builtin_memcpy((&sr_bootuuid), (&bios_bootsr->uuid ), (sizeof(sr_bootuuid))); | |||
| 2056 | memcpy(&sr_bootkey, &bios_bootsr->maskkey,__builtin_memcpy((&sr_bootkey), (&bios_bootsr->maskkey ), (sizeof(sr_bootkey))) | |||
| 2057 | sizeof(sr_bootkey))__builtin_memcpy((&sr_bootkey), (&bios_bootsr->maskkey ), (sizeof(sr_bootkey))); | |||
| 2058 | #endif | |||
| 2059 | explicit_bzero(bios_bootsr, sizeof(bios_bootsr_t)); | |||
| 2060 | break; | |||
| 2061 | ||||
| 2062 | case BOOTARG_EFIINFO11: | |||
| 2063 | bios_efiinfo = (bios_efiinfo_t *)q->ba_arg; | |||
| 2064 | break; | |||
| 2065 | ||||
| 2066 | case BOOTARG_UCODE12: | |||
| 2067 | bios_ucode = (bios_ucode_t *)q->ba_arg; | |||
| 2068 | break; | |||
| 2069 | ||||
| 2070 | default: | |||
| 2071 | #ifdef BOOTINFO_DEBUG | |||
| 2072 | printf(" unsupported arg (%d) %p", q->ba_type, | |||
| 2073 | q->ba_arg); | |||
| 2074 | #endif | |||
| 2075 | break; | |||
| 2076 | } | |||
| 2077 | } | |||
| 2078 | #ifdef BOOTINFO_DEBUG | |||
| 2079 | printf("\n"); | |||
| 2080 | #endif | |||
| 2081 | } | |||
| 2082 | ||||
| 2083 | int | |||
| 2084 | check_context(const struct reg *regs, struct trapframe *tf) | |||
| 2085 | { | |||
| 2086 | uint16_t sel; | |||
| 2087 | ||||
| 2088 | if (((regs->r_rflags ^ tf->tf_rflags) & PSL_USERSTATIC(0x00000002 | 0xffc08028 | 0x00000200 | 0x00003000 | 0x00004000 | 0x00020000 | 0x00080000 | 0x00100000)) != 0) | |||
| 2089 | return EINVAL22; | |||
| 2090 | ||||
| 2091 | sel = regs->r_ss & 0xffff; | |||
| 2092 | if (!VALID_USER_DSEL(sel)((sel) == (((4) << 3) | 3))) | |||
| 2093 | return EINVAL22; | |||
| 2094 | ||||
| 2095 | sel = regs->r_cs & 0xffff; | |||
| 2096 | if (!VALID_USER_CSEL(sel)((sel) == (((5) << 3) | 3))) | |||
| 2097 | return EINVAL22; | |||
| 2098 | ||||
| 2099 | if (regs->r_rip >= VM_MAXUSER_ADDRESS0x00007f7fffffc000) | |||
| 2100 | return EINVAL22; | |||
| 2101 | ||||
| 2102 | return 0; | |||
| 2103 | } | |||
| 2104 | ||||
| 2105 | int amd64_delay_quality; | |||
| 2106 | ||||
| 2107 | void | |||
| 2108 | delay_init(void(*fn)(int), int fn_quality) | |||
| 2109 | { | |||
| 2110 | if (fn_quality > amd64_delay_quality) { | |||
| 2111 | delay_func = fn; | |||
| 2112 | amd64_delay_quality = fn_quality; | |||
| 2113 | } | |||
| 2114 | } | |||
| 2115 | ||||
| 2116 | void | |||
| 2117 | delay_fini(void (*fn)(int)) | |||
| 2118 | { | |||
| 2119 | if (fn == delay_func) { | |||
| 2120 | delay_func = i8254_delay; | |||
| 2121 | amd64_delay_quality = 0; | |||
| 2122 | } | |||
| 2123 | } |